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A B S T R A C T

Peer-to-peer electricity markets are dedicated markets that enable the direct participation of small electricity
end-users in energy trading activities. They are seen as a promising alternative that can empower end-users
and accelerate the energy transition, by researchers, business developers, and legislators. Moreover, they
can include environmental, social, or altruistic preferences that are relevant to end-users, in addition to
the economic perspective. Such preferences are sometimes included in the modeling of P2P markets in the
existing literature, but the assumptions behind them are rarely validated in practice. To investigate the desired
attributes and preferences of end-users to participate in P2P markets, an online survey including a discrete
choice experiment was conducted in The Netherlands The results of the survey are used to design a P2P
electricity market with product differentiation. The participants in the market are residential end-users that
are equipped with a home energy management system that can control some of the household appliances
and automate the decision-making process for participation in the market. To facilitate this, a multi-objective
stochastic optimization model is presented that incorporates results from the discrete choice experiment and
real smart-meter measurements. The case study results demonstrate user preferences’ influence on market
outcomes.
1. Introduction

1.1. Background and motivation

User-centric energy markets are dedicated markets that enable the
direct participation of (small) end users, who otherwise would not have
direct access to existing energy markets. Such markets include local
and community energy markets (LEM & CEM) as well as peer-to-peer
(P2P) energy markets [1,2]. There is a significant and continuously
growing body of literature that studies different aspects of the design
and implementation of such markets. Also, a number of pilot projects
have been established around the world to evaluate the practical feasi-
bility and implementation of user-centric markets [2]. Moreover, their
development is supported by national and international legislation,
such as the European Directive on the internal electricity market which
aims for active inclusion and involvement of the electricity end-users
in the energy transition [3].

From the perspective of small residential end-users, the electrifica-
tion of heating and mobility increases their reliance on electricity and
its importance as an energy carrier. Furthermore, the interest in the

✩ This work is part of the research program ‘‘Enabling peer-to-peer energy trading by leveraging prosumer analytics’’ with project number 647.003.003, partly
supported by The Netherlands Organization for Scientific Research (NWO).
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E-mail address: i.dukovska@tue.nl (I. Dukovska).

installation of distributed energy resources (DERs), such as PV and bat-
tery systems continues to rise, whereas the subsidies that support these
activities are being phased out. Considering these developments, P2P
electricity markets, which are the focus of this paper, represent a viable
alternative that empowers end-users and supports the energy transition.
The deployment of smart meters that enable granular tracking of
electricity prosumption and the existence of commercial home energy
management systems (HEMS) that can control household appliances
can facilitate the development of P2P markets from a technological
point of view.

The development of P2P markets has therefore been an active area
of research in recent years, with the initial works in [4,5], highlighting
the benefits of such electricity markets for end users and for the
electrical system in general. A vast area of research focuses on the
design and modeling of P2P markets. Methods from mathematical
optimization, especially decomposition techniques that are suitable for
the distributed nature of P2P markets are vastly used, mostly for convex
problem formulations [6,7]. Methods from bilateral negotiation [8,9]
and auction theory [10,11] have also been used as well as game
vailable online 14 March 2023
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theory [12,13] that accounts for the possible strategic behavior of
participants. A majority of the earlier studies demonstrate proof of
concept and use deterministic models as identified in the recent review
paper [14]. Even in the presence of sophisticated forecasting algo-
rithms, the consumption and production of individual users are very
stochastic and to a great degree uncontrollable. Therefore, a properly
designed P2P market should also consider the inherent uncertainty of
commitments that are made before the time of delivery and possi-
ble deviations and recourse actions concerning this uncertainty. More
recent studies focus on incorporating uncertainty in the models [15–
19]. Moreover, little attention is paid to the interaction of new P2P
market models and the existing retail market, which is relevant for their
large-scale deployment [2].

Large body of literature dedicated to P2P electricity markets, fo-
cuses on the economic aspects of these markets and maximizing the
financial benefits for the participants or related stakeholders. How-
ever, by placing the focus solely on the financial benefits [10,20,21],
which may be relatively small and thus not sufficient motivation for
participation, other reasons for the establishment and participation in
these markets are being neglected. In addition to financial benefits,
P2P energy markets can offer product and service differentiation that
currently cannot be found through traditional channels [22]. This may
include preferences for the type of electricity traded [7], its location of
origin [23], or the choice of a specific trading partner [24]. More-
over, these markets offer a unique possibility to consider the social
dimension and enable altruistic behaviors, such as providing electricity
for free [7,24]. Thus, it is important to evaluate which attributes are
desirable to end-users in the first place. At the same time, it is relevant
to determine the end-user preferences and willingness-to-pay (WTP)
for these attributes. Afterward, these attributes can be incorporated as
different products in P2P energy markets.

From an implementation point of view, the design of the partici-
pation and communication structure that will enable end-users to get
involved in P2P markets is another important factor that can signifi-
cantly influence the success of their implementation and the level of
consumer engagement [25]. Decision support systems that can incor-
porate feedback from end-users, but do not require input on a regular
basis can overcome the challenges of active user participation [11].
Decision support systems should also be able to incorporate user pref-
erences and automate the control actions, which can be done if they
are combined with a Home Energy Management System (HEMS) [26].

The objective of this paper is to address the following two questions
regarding the integration of end-users in P2P electricity markets. First,
the question of eliciting user preferences is addressed and designing a
P2P market that supports product differentiation. Second, the question
of modeling an automated decision support tool for participation in
such a market on behalf of end users is analyzed. The goal is that model
should be able to incorporate user preferences and deal with multiple
and somewhat conflicting objectives, as well as consider the underlying
uncertainty of the load and consumption in a household and the P2P
market prices.

1.2. Related work

In this section, a review of the relevant studies related to the
relevant aspects of this paper, namely modeling and elicitation of
user preferences for P2P electricity trading, as well as considering
uncertainty and multiple objectives in the HEMS modeling is presented.

In the existing literature, the modeling of user preferences in P2P
electricity markets and market clearing has been addressed in different
ways. An additional utility that is expressed in monetary terms is
used in [7] to model preference for purchasing renewable, i.e. green
energy, and for supplying low-income households with subsidized, and
consequently cheaper electricity. Trading preferences have also been
modeled through bilateral coefficients that can serve for product differ-
2

entiation in the P2P market models [27] or develop different bilateral
trading strategies [20]. Price-based prosumer preference coefficients
are used to model the quadratic objective functions of prosumers in
intra-day transactive markets [18]. Preferences that are determined
by the distribution system operator (DSO) based on the electrical dis-
tance between the market participants in the distribution network are
used in [28]. However, these preferences actually reflect the potential
benefits for the DSO and do not necessarily reflect the wishes of
participating peers. Thus, studies that include user preferences in their
models, focus solely on the modeling and they do not elicit preferences
nor do they validate the assumptions behind them.

In order to derive user preferences, preference elicitation methods
can be used. User preference elicitation is an important field that is
overlapping the fields of economics, market research, and multiple
attribute decision-making (MADM) [29]. For products or services that
are not yet present, such as P2P electricity markets, the revealed
preferences (RP) of consumers that are determined through their actual
choices cannot be evaluated. Hence, the analysis of stated preference
(SP) is the most common method to collect and analyze user preference
data in these cases [30].

There are several preference elicitation methods and Discrete choice
experiments (DCE), also called choice-based conjoint analysis (CBC), is
one of the prominent methods to derive and analyze user preferences.
In recent years, CBC has also been applied as a method to evaluate how
users may engage with new products and services in the energy domain.
The willingness to pay for electricity supplied by cooperatives [31] or
the willingness to pay for renewable or locally produced energy [32]
has been evaluated by applying DCE. Moreover, it has also been applied
to evaluate preferences in local or P2P electricity markets. In [23],
an Adaptive Choice-Based Conjoint (ACBC) analysis is performed to
analyze the acceptability and interest of German residential customers
to participate in local energy markets (LEM). In [33], the preferences
for economic, environmental, social, and technological aspects of P2P
energy markets were evaluated for Dutch prosumers. The results of
these studies provide insights into the preferences of users, potential
clusters, and market segments. However, the focus of these papers is
to assess the wider techno-economical-policy ecosystem of prosumer-
centric electricity markets. Therefore, some of the attributes that are
considered cannot be directly related to the market or the product itself,
nor it will necessarily result in a direct correlation. Hence, these stud-
ies usually conclude with recommendations on policy and regulatory
matters that correspond to study findings. None of the existing studies
that use DCE attempted to incorporate the preferences in a model and
investigated how they would affect the outcomes in a P2P market.

Other methods for deriving user preferences in the form of pref-
erence weights have been used in the existing literature to extract
information from homeowners for different energy applications, includ-
ing P2P markets. The SMARTER method for determining priority and
acceptable levels for the decisions of a HEMS is presented in [34],
whereas an analytical hierarchy process (AHP) is used to determine
priorities for HEMS for demand response in [35]. Preferences for selling
surplus electricity in P2P markets related to the state of charge of
the owned battery system and the offered electricity price are studied
in [36]. Lastly, pricing preferences toward different possible trading
partners were evaluated in a survey in UK and Germany in [24].
This study provides insights into the differences in preferences across
two different countries. This highlights the necessity to investigate
the attitudes and preferences of prosumer-centric markets per country,
as cultural and societal differences contribute to variations in their
acceptance or their structure.

Different sources of uncertainty can influence the outcomes of P2P
markets. This includes stochastic consumption and production, as well
as stochastic market clearing prices. When it comes to the consideration
of uncertainty in P2P markets, most of the implemented pilot projects
perform the calculation of the price and traded energy after the time
of realization, using measurements of the actual consumption and pro-

duction [2]. Even though the majority of papers propose deterministic
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Table 1
Classification of relevant literature.
Reference Preference Preference Uncertainty Recourse Product Multi-objective

elicitation modeling modeling actions differentiation optimization

[7,20,27,28] × ✓ × × ✓ ×
[23,24,31–33] ✓ × × × ✓ ×
[18,38] × ✓ ✓ × × ×
[15–17,39] × × ✓ × × ×
This work ✓ ✓ ✓ ✓ ✓ ✓
P2P trading models as a concept, the question of uncertainty in the
commitments in the P2P markets has also been addressed more recently
in the existing literature. This has been done in different ways and it is
dependent on the adopted modeling framework of the P2P market.

Stochastic optimization has been applied in the scheduling stage
of the household appliances [18], in P2P matching with cooperative
game theory, [16] and day-ahead stochastic decentralized community
market with the option to adjust the commitments in real-time [17].
Instead of adjustments, penalties for not fulfilling the bids can also be
foreseen [37]. Call options that are traded after closing the forward P2P
market and before real-time operation have also been considered [9]
and incorporating risk preferences through conditional value-at-risk
is used in [38]. Lastly, considering the DSO perspective of the im-
pacts of P2P trading on the electrical network, distributional locational
marginal pricing considering uncertainty is used to send signals to the
P2P market [15,39].

1.3. Research gaps and contributions

Several challenging questions need to be addressed to enable the
successful practical implementation of prosumer-centric electricity mar-
kets. The design of prosumer-centric markets should provide oppor-
tunities to include product differentiation and consider different user
preferences in the matching mechanism. These preferences or the
assumptions behind them should be validated or based on experimental
results, which is not done in the existing literature. Moreover, the
interaction with other existing market stakeholders, such as the existing
retail market is rarely addressed. In addition, Finally, the underlying
uncertainty in the market commitments and the P2P market-clearing
prices should be addressed. Whereas methods for addressing the uncer-
tainty in the market commitments have been proposed, recourse actions
are often not considered nor the uncertainty in the P2P market-clearing
prices has been covered.

As summarized in Table 1, existing studies focus on different aspects
of the design and modeling of P2P markets. Studies that focus on
eliciting preferences do not include modeling and vice versa. Moreover,
studies that consider uncertainty, do not account for recourse actions
nor do they support product differentiation. Finally, none of the stud-
ies provides a multi-objective model formulation. Thus, none of the
existing studies proposes an encompassing approach that includes all
necessary aspects to bring forward these markets to reality.

Therefore, to address the aforementioned challenges, we propose a
forward P2P market design in which product differentiation is possible
and user preferences can be expressed toward different products and
goals. To derive user preferences and investigate desirable products
in the P2P market, a DCE is conducted in the Netherlands through
an online survey. The specific product classes that are included in
the market are derived based on the DCE results to be relevant for
the studied context. Moreover, the results of the survey are used as
inputs in a HEMS that automates the decision-making of households
participating in the P2P market. By aptly accounting for the user
preferences, the HEMS will be able to make decisions following those
preferences without requiring constant input from the user. The op-
eration of the HEMS is cast as a two-stage stochastic multi-objective
optimization model. Hence, the stochasticity in the load and generation
of each market participant as well as the uncertainty concerning the
P2P clearing prices are considered.
3

The contributions of this paper are twofold:
1. A method for elicitation of user preferences for electricity prod-
ucts based on desired attributes in a P2P market is proposed. The
method is based on a discrete choice experiment and real data
gathered from a sample of residential users in the Netherlands
was used to design a P2P market with product differentiation.

2. A multi-objective stochastic optimization model with recourse
actions is proposed. Its purpose is to automate the decision-
making process of home energy management systems for house-
holds participating in P2P electricity trading.

The remainder of the paper is organized as follows: The general
context and methodology proposed in this paper are outlined in Sec-
tion 2. The methodology behind the discrete choice experiment, as well
as the design and the results of the survey are presented in Section 3.
The methodology and the exact formulation for the stochastic multi-
objective optimization model used for modeling user preferences in a
HEMS for P2P markets as well as the results of a case study are shown
in Section 4. Finally, conclusions are drawn in Section 5.

2. Methodology

In this paper, a P2P electricity trading market is considered to be
complementary to the existing retail market. Hence, users have the
option to buy electricity from other peers, in addition to the option to
buy from a conventional retailer. Moreover, they can also sell the excess
electricity they produce (for example, through PV panels) to other peers
instead of selling it back to their retailer at the contracted feed-in-tariff
(FiT) rate. Moreover, the participating users can decide on acceptable
buying and selling prices for electricity. The term end users or users
is used in this paper to refer to both users that produce as well as for
users that only consume electricity.

An overview of the methodology followed in this paper is presented
in Fig. 1. To determine the preferences and objectives of partici-
pants to participate in P2P electricity markets, a descriptive analysis
is performed. This is done through conducting an online survey that
includes a DCE through which the preferences for different attributes
of electricity are evaluated. DCE is chosen as an adequate method for
deriving user preferences for several reasons. It is an implicit method
for deriving preferences, so the incentive to provide potentially untrue
but socially acceptable answers is disabled [32]. Other methods require
that the respondents rank and explicitly state their preferences which
strongly relies on the following assumptions: (1) that they know their
true preferences for a new product, and (2) that they are able to
evaluate the trade-offs and express the preferences explicitly. Finally,
DCE simulates a setting in which respondents are faced with choices
very similar to real implementation, making it a state-of-the-art method
for deriving user preferences [40]. The list of relevant attributes for
the DCE is formulated based on a literature review and discussion with
experts. It is taken into consideration that the selected attributes can
be represented as market commodities or market parameters in the
proposed P2P market.

Based on the analysis of the desired attribute levels, several products
can be defined for the market. Moreover, the utility that different
attributes bring to the end-user is used to express the objectives for
participation in P2P electricity markets. This results in a multi-attribute

decision-making problem. This can be formulated as a multi-objective
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Fig. 1. Overview of the proposed methodology.
optimization problem which is part of the prescriptive analytics per-
formed in this study. As a method to solve the resulting MOO, stochastic
goal programming (SGP) is used. Goal programming (GP) as a method
supports non-convex multi-objective optimization, which has not been
applied to the problem of P2P electricity trading, to the best of the
authors’ knowledge. Since the preference weights are discovered in the
previous stage of the descriptive analytics, a decision for each HEMS
can be made by incorporating the weights in the SGP, instead of first
generating a Pareto front and then selecting a solution based on the
user preferences, a process that may take longer computation time.
In addition to the objectives, and the defined market products, the
relative attribute importance weights of the DCE are used to weigh
the importance of the different objectives in the SGP. The different
objectives are directly related to the attributes of electricity and are
determined for each prosumer. They do not depend on the availability
of electricity in the market [20], the related cost function [18], or the
(electrical) distance between the trading partners [20,28,41].

To consider the uncertainty in both production and generation as
well as the P2P market clearing prices, stochastic programming is used
in combination with goal programming. Recourse actions that follow
the realization of the two sources of uncertainty can be included in the
model. Therefore, there is no need to formulate probabilistic constraints
and adequate response to uncertainty can be modeled by using only
stochastic programming. Moreover, stochastic programming is a better-
suited method than robust optimization since it is less conservative.
Very conservative estimates may lead to a lower market activity which
will reduce the attractiveness of P2P markets. For the purposes of the
SGP, as part of the predictive analytics, a joint scenario set based on
actual smart meter measurements and simulated P2P market clearing
prices is created and used as input in the SGP model.
4

The HEMS should decide if and how much power the household
needs to buy or sell to participate in the P2P market which is a forward
market. The time between the market clearing and the realization
depends on the technological and regulatory requirements. The clearing
can be done day-ahead or at a shorter time frame before realization.
In this paper, a day-ahead market clearing is considered. The quantity
that is bid or offered in the P2P market or scheduled for exchange with
the retailer is a result of solving the SGP. The willingness-to-pay for
different products in the survey is used to determine the prices for the
bids and offers for the market product.

The resulting tuples of quantity and price for each bid and offer
can be submitted to several market-clearing mechanisms, either di-
rectly or with minor adjustments. Such mechanisms include bilateral
matching-based methods [8,21,28] and (continuous) double auction-
based methods [10–12]. In this paper, we opt for a double-sided
auction-based method that is cleared for every time interval and each
market product. It is further assumed that the participants are non-
strategic and therefore they are bidding truthfully. Further research
into strategic behavior and the design of suitable incentive-compatible
market-clearing mechanisms is beyond the scope of the paper.

3. Descriptive analytics with discrete choice experiments

3.1. Discrete choice experiments and data analysis

A Discrete choice experiment or Choice-based Conjoint is a method-
ology to mathematically model user preferences and predict the choice
behavior of users, based on random utility theory. The utility of a

given alternative consists of a deterministic observable part of the
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Table 2
List of attributes and corresponding levels.
Attribute Levels

Supplier Conventional supplier | P2P market
Energy type Green | Mixed | Gray
Selling 10 |6|3| Donateprice [€ct/kWh]
Monthly costs [€] 30 |40|50|60| 70

utility that is the sum of part-worth utilities of the different attributes
and a random, error component [42]. It is assumed that users aim
to maximize their utility. In a DCE, respondents are provided with
menus consisting of several alternatives with different attribute levels
of the specific product or service to choose from. Through repeated
choices of alternatives from these menus, the stated preferences of the
respondents can be estimated.

Due to the combinatorial nature of the different attributes and
levels, the total number of possible alternatives is too large for the
complete set to be presented to individual respondents. Therefore,
each respondent receives a subset of alternatives for a predetermined
number of choice tasks in any DCE method. Several methods can be
used to analyze the data from a DCE, such as the multinomial logit
model or latent class analysis [43] that can calculate the preferences or
part-worth utilities on an aggregate level or cluster level, respectively.
One of the most advanced methods that consider heterogeneity among
respondents’ preferences and is able to calculate individual part-worth
utilities is the Hierarchical Bayes (HB) method. To deal with the lack of
complete information at the individual level, the HB method consists of
two levels. At the higher level of the group, it assumes a multivariate
normal distribution, with a vector of means and covariance matrix that
both need to be estimated. At the lower, individual level, it assumes
that the heterogeneous part-worth utilities follow a multinomial logit
model. The evaluation of the parameters of both levels is done in an
iterative way using Markov Chain Monte Carlo until convergence is
reached [44].

3.2. Choice of attributes and levels

The design of the survey investigating desirable product or service
attributes should be relatable and easily understandable by respon-
dents [42]. On the one hand, they should understand the meaning of
the proposed attributes and the impact of their choices to derive mean-
ingful conclusions. On the other hand, it may be difficult to present
a new concept with limited explanation and rely on the ability of the
respondent to understand the context. A preliminary set of attributes
identified in the relevant literature was tested in an initial survey with
experts, which resulted in the final set of four attributes. The criteria
for the choice of relevant attributes for this study was to have attributes
that can be directly translated into features of electricity as a product in
prosumer-centric markets. The attributes and their corresponding levels
are presented in Table 2.

The outcomes in markets, including P2P electricity markets, depend
on the actions of all participants, the market-clearing mechanism in
place, as well as the availability of energy to be traded. Thus, it is
not possible to estimate the costs of participating in such a market
through the individual choices of a single agent. Therefore, the total
cost for a choice option is not directly correlated to the attribute
levels, as in the summed-pricing approach used in [23]. This is done
to avoid the respondents assuming that individual attributes such as
P2P trading always lead to lower or higher costs, but instead allow for
both possibilities to be offered to the respondents.

Since DCE creates a semi-random combination of all levels of the
attributes, there may be some illogical combinations. For this reason,
a limitation of combinations can be imposed. This should be done
with consideration so as not to limit some potential combinations that
5

although not possible currently, may still be desired. In this study the
following two limitations are imposed: (1) The level Donating electricity
of Selling price is only possible for the P2P market as a supplier, and
(2) it is assumed that electricity offered in the P2P market will not be
generated solely by conventional energy sources, therefore the level
Gray energy was excluded for the P2P market level of the Supplier
attribute.

3.2.1. Supplier
For the choice of trading partner, two options are given, the conven-

tional supplier, i.e. a retailer, or the possibility to trade with a peer from
the local P2P market. Additional specifications about the type of peers,
such as neighbors or friends are not considered. This is a design choice
to keep the market frameworks as general as possible. Not considering
geographically close users explicitly, provides for a market framework
that can be extended for participation to a larger geographical area, on
a national or even international level. Nevertheless, to make the choice
relatable and comprehensible to the respondents, it was indicated that
the P2P market is local, whereas local was not defined in further detail.
The reason for this is the residents in the Netherlands are familiar with
local activities related to energy through the postcode-based reduced
rate scheme [45] and energy cooperatives which are usually established
on a local level. Moreover, due to the way of implementation or
regulations limitations, it may not be possible to choose a specific
trading partner. Finally, such specific choices in P2P networks can lead
to undesired effects such as discrimination and limit the access for the
participation of some social categories [46]. Since electricity is a public
good, the markets that are designed for it should be inclusive and not
discriminatory.

3.2.2. Energy type
The electricity sold in P2P electricity markets usually is generated

by renewable energy resources. As such it can expand the offer of
renewable (green) electricity at the level of the retail market. It is
relevant to assess how much and at what price the users are interested
in purchasing green electricity as opposed to conventionally generated
electricity (gray), or a combination of it (mixed) and what is the role
of P2P markets in this.

3.2.3. Selling price
P2P electricity markets can offer the unique possibility for pro-

sumers to indicate and influence the price at which they would like to
sell their electricity. Three levels were defined, that range between the
low and high FiT prices on the retail market in the Netherlands [47].
Due to the phasing out of the current net-metering scheme [48], it
is planned that after 2023 the FiT prices will be reduced, which can
lead to increased interest in alternative user-centric markets for selling
electricity. In addition to the regular options for indicating the selling
price, a special price category was introduced for the P2P market,
i.e. the option to donate electricity to economically disadvantaged
participants in the P2P market. The reason for this option is to evaluate
the altruistic behavior of people.

3.2.4. Monthly costs
To make the estimate of the resulting costs easily understandable

to respondents, the total costs for trading electricity on monthly basis
are translated into a monthly bill. The value of 50 € is chosen as a
reference point for average expenses for electricity in the Netherlands.
Variations of 40% below or above this value are the boundary levels of

this attribute.
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3.3. Design of survey and method of data collection

In this survey, a balanced profile design was used for the DCE. Each
respondent was shown 10 choice tasks to avoid respondent fatigue.
Each choice task consisted of three product alternatives. A description
was provided to the respondents at the beginning of the survey ex-
plaining to them briefly the context and the meaning of the different
attributes and levels. This was followed by the DCE section. Then
the respondents were asked several socio-demographical questions and
other general questions regarding their attitudes toward smart grid
technologies and initiatives.

The target population for the survey was residential electricity
customers that live in the Netherlands. The survey was distributed
to a user panel maintained by the Product Evaluation Lab (PEL) at
Delft University of Technology (TUD) [49]. The initial analysis of
the survey design was conducted using Sawtooth Software [50]. The
final survey was created and conducted through an online surveying
platform, Qualtrics [51]. Therefore, the limitation for participation in
the survey is that the panel members have an email, which amounts
to 1600 potential respondents. For the design of the survey with ten
choice tasks, a minimum of 170 responses was required. The survey
was opened by 408 people and was completed by 397, resulting in a
response rate of 25%. From the completed survey, 68 were removed
due to the incompleteness of the CBC, leaving a total of 329 responses
who were included in the analysis. The survey was available from May
20 to June 17 2021 and was conducted in Dutch. Supplementary data
about the survey can be found at [52].

3.4. Results from the discrete choice experiment

3.4.1. General characteristics of the sample
The social-demographic characteristics of the respondents and a

general analysis of the sample are presented in this section. Based
on the part-worth utility values presented in Section 3.4.2, Qualtrics
identified two clusters of prosumers, with 171 respondents in the first
cluster and 158 respondents in the second cluster. The analysis is done
per cluster as well as for the total sample. The socio-demographical
characteristics are given in Table 3. Since few of the respondents
did not complete the full questionnaire after the DCE, the number
of responses per question is indicated in parentheses in the table. In
terms of gender, there are more male than female respondents in the
total sample, however, their representation in Cluster 1 is relatively
balanced. Regarding age, the majority of the people that filled in the
survey are over the age of 40. In Cluster 2, the percentage of the elderly
population over 70 years is higher than in the other cluster, whereas,
in Cluster 1, the percentages of people of age groups 40–54 and 55–
69 are higher. The age distribution corresponds to the results of the
employment status. The percentage of working people, either full-time
or part-time amounts to 54.01%, i.e. half of the respondents for the
total sample, as well as 57% in Cluster 1 and 42.08% in Cluster 2.
Moreover, 44.81% of the respondents in Cluster 2 are retired, compared
to the total sample percentage of 37.35%. The largest percentage in
each group has obtained a university education, followed by education
at universities of applied sciences and vocational education. A majority
of the respondents in the total sample (70%), but also in the two clus-
ters live in a house compared to a smaller percentage that lives in an
apartment (25% for the total sample). The other types of properties are
significantly less present. Moreover, the majority of respondents own
their households (80.19%) as compared to 19.5% that are renting. This
difference is higher for Cluster 1, in favor of ownership, and smaller
for Cluster 2, where the percentage of renting is higher (22.22%). The
fact that the majority of respondents own their houses indicates that
the respondents will likely not be biased against taking energy-related
actions in their homes, which may not always be so in the case of
renting [53]. Lastly, the majority of households are composed of 1–2
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Table 3
Socio-demographic characteristics of the final sample in % (the number of responses
is given in parentheses).

Sample [%] Cluster 1 [%] Cluster 2 [%]
(329) (171) (158)

Gender (324) (170) (154)
Female 45.99 49.41 42.21
Male 54.01 50.59 57.79
Other 0 0 0

Age (324) (170) (154)
<25 0.31 0.59 0
25–39 6.5 7.07 5.85
40–54 19.13 21.76 16.25
55–69 47.54 52.34 42.24
>70 26.57 18.23 35.73

Employment status (324) (170) (154)
Student 0.62 0.59 0.65
Unemployed/Searching 2.78 4.12 1.3
Part-time 21.6 26.47 16.23
Full-time 32.41 31.18 33.77
Retired 37.35 30.59 44.81
Other 5.25 7.06 3.25

Education (324) (170) (154)
Elementary school 3.09 1.77 4.55
Secondary school 9.57 7.06 12.34
High school 6.17 8.82 3.25
Vocational education 10.8 5.88 16.23
Univ. of applied sciences 32.1 35.29 28.57
University 37.65 41.18 33.77
Other 0.62 0 1.3

House type (323) (170) (153)
House 70.59 73.53 67.32
Apartment 25.39 23.53 27.45
Studio 0 0 0
Room 0.93 1.18 0.65
Care facility 0.62 0 1.31
Boat/Trailer 0.31 0 0.65
Other 2.17 1.76 2.61

Household ownership (323) (170) (153)
Own 80.19 82.94 77.12
Rent 19.5 17.06 22.22
Other 0.31 0 0.65

Household size (323) (170) (153)
1–2 72.14 72.35 71.89
3–4 22.29 22.94 21.57
5–6 4.03 3.53 4.57
>7 1.55 1.18 1.96

Fig. 2. Percentage of current usage of DER and participation in energy-related
activities.

members across the sample and two clusters, followed by 3–4 members

households. Larger household sizes are less frequent.
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Fig. 3. Likeliness for future use/participation for the respondents [%].

In order to gain insight into the energy-related behaviors of the
respondents, they were asked about the types of devices that they are
already using in their homes (such as PV or EV) and initiatives in which
they are taking part (such as membership in an energy cooperative).
7

Moreover, they were asked to express their willingness to use them or
participate in the next 5 years. The results of these two inquiries are
shown in Fig. 2 for the present and Fig. 3 for the future. Around half
of the respondents are standard consumers. They do not have any DER
installed in their home nor do they use smart HEMS or are members
of a cooperative. The percentage is higher for members of Cluster
2 compared to Cluster 1. The most represented DER is PV systems,
which are installed in the household of 44.71% of respondents from
Cluster 1 and 34.21% of Cluster 2. In terms of other activities that the
respondents are involved in, 9 respondents indicated that they own a
hybrid or hydrogen-powered vehicle. Other responses included among
other: green energy, solar thermal heater, or shared installation for PV.

Regarding the 5-year outlook, a large portion of the respondents
is neutral regarding the purchase of DER or participation in energy
cooperatives. The percentage of responses in the category ’Very un-
likely’ or ‘Unlikely’ is higher for members of Cluster 2, whereas the
members of Cluster 1, are more likely to have a positive outlook or
neutral. From the listed options, a PV system is likely to be installed for
respondents of Cluster 1 and to a lower degree for Cluster 2. A similar
trend is observed for EVs for Cluster 1; however, members of Cluster
2 are not likely to purchase an EV. It is interesting to observe that the
interest in electrification of the heating with heat pumps is very low
and unlikely to happen, considering the plans and legislation in the
Netherlands to phase out gas boilers and replace them with hybrid heat
pumps [54]. The majority of respondents are mostly neutral toward
purchasing ESS, Smart HEMS, or participating in an energy cooperative,
with the balance weighing toward unlikely to do it. Nevertheless, the
considerable percentage of neutral responses, indicates that with the
proper incentives and mechanisms in place these options can have a
higher uptake in the future.

3.4.2. Part-worth utilities
The analysis of the DCE data was conducted using Hierarchical

Bayes (HB) estimation of the part-worth utility values that comprise the
utility function of the respondents at the individual level. The results
are zero-centered on the level of an attribute and they are normalized,
so a comparison between the different groups can be performed. The
results of the part-worth utilities of the total sample and the two
identified clusters are presented in Table 4.

The utility of the total sample and the first cluster for the attribute
Supplier is higher for the Local P2P market. However, the second
cluster receives a higher utility from exchanging electricity with a
Conventional supplier. Both clusters have the highest utility for green
electricity from the attribute Energy type. The utility decreases for the
other levels of the attribute, with the least steep decline being the
one from the second cluster, which indicates the smallest reduction in
utility if the type of electricity is not renewable. The results for the
attribute Selling price are quite straightforward, as all respondents get
the highest utility from the highest level. A very interesting observation
is that all respondents get a negative utility for the level Donate, which
is drastically different from the positive utilities obtained for the other
levels. This finding contradicts the findings in [33], where prosumers
indicated a high willingness to share electricity for indirect financial or
no return at all to households that cannot afford electricity. However,
it is in line with the findings from an actual implementation of a
P2P electricity market in which participants can adjust their selling
prices, and in which, none of the participants was willing to offer their
electricity at a price lower than the FiT [55]. Lastly, the utility for the
attribute Monthly cost is the highest for the lowest level and decreases
as the costs per level increase. The decline is higher for respondents of
Cluster 2.
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Table 4
Average part-worth utility values for the total sample and the two clusters.

Attribute Levels Sample Cluster 1 Cluster 2

Supplier Conventional
supplier

−4.47 −4.29 4.75

Local P2P
market

4.47 4.29 −4.75

Energy type
Green 19.29 25.12 9.42
Mixed 0.64 −1.74 5.77
Gray −19.93 −23.38 −15.19

Selling price
[€ct/kWh]

10 5.51 4.93 6.30
6 2.74 1.25 5.21
3 2.20 0.86 4.43
Donate −10.44 −7.04 −15.94

Monthly cost
[€]

30 15.77 13.48 19.37
40 10.19 8.79 12.39
50 1.75 1.72 1.80
60 −7.60 −6.53 −9.28
70 −20.12 −17.46 −24.29

Fig. 4. Relative attribute importance weights.

Fig. 5. Willingness-to-pay for different levels of the attributes (one level is the base).

3.4.3. Attribute importance and attributes ranking
The importance of each attribute for making the final decision

can be calculated using the part-worth utilities. The importance is
calculated as the range of the maximum and minimum value for all
levels of a single attribute and divided by the sum of the ranges of all
attributes. Thus, the total sum of the attributes’ importance weights is
8

Table 5
Results of explicit ranking of the attributes (1-most important, 4 - least important).

Attribute Total sample Cluster 1 Cluster 2
Mean (SD) Mean (SD) Mean (SD)

Energy type 1.71 (0.9) 1.37 (0.69) 2.08 (0.96)
Supplier 3.05 (1.0) 3.06 (0.92) 3.03 (1.08)
Selling price 3.06 (0.87) 3.3 (0.71) 2.81 (0.96)
Monthly cost 2.18 (1.03) 2.26 (0.94) 2.08 (1.12)

equal to 1, the weight of each attribute is relative to the other attributes
and cannot be analyzed independently. The relative importance of the
attributes is presented in Fig. 4. These weighting factors are used in the
multi-objective optimization problem formulation in Section 4.

The two most important attributes are the Energy type and the
Monthly cost, in that order for the total sample and the first cluster. Re-
spondents from the second cluster are more influenced by the Monthly
cost. They also give larger importance to the attribute Selling price,
indicating that their decisions are motivated by economic reasons. The
fact that respondents do not attribute high importance to the Selling
price can be due to a preference for using automated prices and not
having to set prices by themselves, at least on a regular basis [25].
The importance for Supplier received the lowest weight across the
respondents. This may indicate that the respondents do not necessarily
find participation in a P2P market to be of great importance. However,
it may mean that they are not opposed to participating in such a
market if it offers them benefits or is on par with the option of a
conventional supplier. This finding can be related to the finding that
consumers value the type of energy produced by the P2P market,
i.e. how renewable it is, the most, compared to other attributes, based
on the willingness-to-pay [31].

In the survey, after completing the DCE, the respondents were asked
to rank the attributes in order of importance to their decisions. The
objective is to compare the implicitly derived attribute importance
weights from the actual choices with the self-declared explicit im-
portance rankings which are shown in Table 5. The analysis aims to
discover whether the respondents can truthfully and explicitly state
their preferences or if there is a discrepancy. By doing this after the
DCE, the respondents could reflect on their choices and assess their
attitude toward the importance of attributes. The explicit responses for
the total sample are in line with the implicit weights derived from the
DCE analysis. For the total sample, the mean of the ranking results
corresponds to the implicit weights for relative attribute importance.
However, the ranks for Supplier and Selling price are close to each
other, due to the high percentage of respondents ranking them as the
least important - 4 (44.44% - Supplier and 37.35 % - Selling price.
The ranking for Cluster 1 is more definitive. However, in the explicit
ranking, the Selling price is ranked lower than Supplier, which is the
opposite of the derived attribute weights. The rankings of Cluster 2
for the top two attributes Monthly cost and Energy type have the same
mean value, which is contradictory to the derived attribute importance
weights. According to the latter, the attribute Monthly cost significantly
outweighs the Energy type. The rankings for the other two attributes
are more spaced out and in line with the results of the implicitly
derived weights. This discrepancy may be due to the so-called ‘‘warm
glow’’ effect which explains that people will select an option because it
makes them feel better about themselves or in the eyes of others [56].
Consuming renewable energy is generally considered to be desired
behavior, according to social norms [56]. Therefore, respondents may
over-estimate the importance they give to this attribute than what they
actually do when faced with simulated choices or actual behavior in
reality, an example of the intention-behavior gap [11,33].

3.4.4. Willingness to participate
The respondents were asked to express their willingness to partici-

pate in a P2P market as described in the study if that was possible. A
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considerable part of the respondents (41.97%) are likely or very likely
to participate in such a market. A significant percentage are neutral
(36.73%) regarding their participation. This can be related to the rela-
tively low importance of the attribute Supplier that can be interpreted
that participation in P2P markets is not a goal per se for some users,
but it may be an attractive option if it provides additional benefits to
its participants. Lastly, a smaller portion of the respondents (21.29%)
declared that they would not want to participate in such a market. In
terms of practical implementation and successful deployment of P2P
electricity markets, such attitudes have to be considered in the design
of the markets and related products and services.

3.4.5. Willingness-to-pay
The willingness-to-pay (WTP) is another indicator of how the re-

spondents value different attributes of electricity as a product, in
monetary terms. The WTP is calculated using the monthly cost attribute
for the three other attributes. For each attribute, one level is taken as
a base related to which the WTP is calculated. The results for WTP
are shown in Fig. 5. The highest WTP is regarding the type of elec-
tricity, specifically green energy. This indicates that the respondents
are willing to pay more for renewable electricity, in line with [31].
The level P2P market from Supplier attribute received positive WTP for

embers of Cluster 1 and negative for Cluster 2. This represents a clear
istinction between these two clusters. For the attribute Selling price,

it is observed that the higher prices have a higher WTP. Moreover, it
is evident that the option of donating electricity is not attractive to a
varying level to none of the respondents.

3.4.6. Generalization of the results
The generalization of the results can be to some extent limited

since the majority of the respondents are over 55 years old. The
study contained a relatively balanced ratio between prosumers and
consumers which is important for the viability of user-centric markets,
as their design should accommodate the needs of both. Even though the
results of the study are quite plausible and in line with some pilot ex-
periments [25], the possibility of a gap between the stated preferences
and the actual behavior still exists. This should be evaluated further,
preferably with real-life pilot and sandbox projects.

4. Prescriptive analytics with mathematical optimization

4.1. Stochastic goal programming

The methods available in the field of multi-objective optimization
can be divided into no-preference methods for which the preferences
of the decision-maker are not considered, a priori and a posteriori
methods, in both of which the preferences of the decision-maker are
considered. The difference between the a priori and a posteriori meth-
ods lies in which stage are the preferences considered in the MOO.
Whereas in the a posteriori methods, the Pareto front is calculated first,
and then preference weights are used to find a satisfactory solution, in
a priori methods the preferences are incorporated in the MOO method
in the initial stage.

Goal programming is a method within the field of multi-objective
optimization methods that belongs to the subgroup of a priori methods.
It can be applied to solving optimization problems in which multiple
and possibly conflicting objective functions exist [57]. This is the case
in this study where there are three objective functions 𝑓𝑖(𝑥), 𝑖 ∈ 𝐼
erived from the attributes assessed in the survey. For each of these
bjectives, a target or aspiration level for the goal 𝑔𝑖,∀𝑖 ∈ 𝐼 is

determined. The deviation or distance to these target levels is subject
to minimization in goal programming. The deviations can be both
positive (𝛿−𝑖 ) and negative (𝛿+𝑖 ), or only of one type, depending on
the problem formulation. One method of solving GP problems is the
weighted approach, in which the weighted deviations from the targets
for each objective are minimized [57,58]. In a priori MOO methods,
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the preferences of the decision-maker are known beforehand and are
used as weights in the weighted GP model. In this study, the attribute
importance weights from the DCE analysis are used as preference
weights in the weighted GP model, providing a natural connection
between the descriptive DCE model and the prescriptive mathematical
optimization model.

Due to the forward market-clearing adopted in this study, there
is inherent uncertainty regarding the actual production of renewable
energy as the main source of electricity offered in the P2P market
as well as uncertainty regarding the actual uncontrollable demand.
Moreover, due to the auction-based market clearing, there is uncer-
tainty regarding the market-clearing prices, and their realization is not
known during the decision-making process. To address this uncertainty
a stochastic optimization approach is adopted. To combine stochastic
programming and goal programming, a combined stochastic goal pro-
gramming model is proposed and a deterministic reformulation that
minimizes the distance from the expected target values is used [59].

min
∑

𝑖∈𝐼
𝑤𝑖(𝛿−𝑖 − 𝛿+𝑖 ) (1a)

s.t. E(𝑓𝑖(𝑥, ⋅)) + 𝛿−𝑖 − 𝛿+𝑖 = E(𝑔𝑖), ∀𝑖 ∈ 𝐼 (1b)

𝛿+𝑖 , 𝛿
−
𝑖 ,≥ 0, ∀𝑖 ∈ 𝐼 (1c)

The general SGP formulation is given in (1). In this formulation, the
deviations of the expected value of the objective functions E(𝑓𝑖(𝑥, ⋅))
from the expected value of the target levels of the goals E(𝑔𝑖) are
minimized.

4.2. Stochastic goal programming model of HEMS for P2P markets

This section details the decision-making problem of a HEMS that can
control some household appliances and make decisions on participation
in the P2P electricity market based on user preferences. A multi-period
model is considered, in which decisions can be made for each time
interval. Based on the DCE analysis, there are two types of products
that can be traded in the P2P market: green electricity (or 𝑃 2𝑃 , 𝑔)
which is directly sold electricity produced by renewable resources, and
regular electricity (or 𝑃 2𝑃 , 𝑟) which is electricity that comes either from
non-renewable sources or comes from storage devices. Even though
electricity that is stored and sold at a later stage can come from renew-
able sources, the proposed division encourages real-time consumption
of renewable energy and diminishes the possibility of influencing the
market through arbitrage. Since donating electricity had negative util-
ity across the two clusters, indicating that the analyzed sample did not
consider this to be a desirable product in a P2P electricity market, it was
not included in the market design. However, the market model can be
extended to include this type of product as well as other attributes that
can be potentially considered to be desirable.

In this study, it is considered that the electricity consumption and
PV production of the households are stochastic and each household has
its own set of possible realizations. Moreover, the P2P market-clearing
prices are also uncertain, and the same set of price scenarios is used for
all households participating in the P2P electricity market. The uncer-
tainty is accounted for in the model by using stochastic optimization.
The SGP model is a two-stage stochastic multi-objective optimization
model. In the first stage, the power that will be bought or sold to the
P2P market or the retailer is scheduled. The first stage variables related
to the P2P market are then sent as bids or offers. Adjustments to the first
stage variables with regards to possible realizations of uncertainty con-
sidered in the scenario sets are possible in the second stage. Recourse
actions are possible by adjusting the local flexible loads or buying or
selling more energy from the conventional retailer. In this manner,
the retailer acts as a balancing party for the market participants and
provides certainty about fulfilling the market-clearing commitments.

The objective functions and the constraints of the model are presented
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Table 6
Nomenclature.
Sets and indices 𝑃 𝑠,𝑃 2𝑃 ,𝑟

𝑡 Scheduled regular power to sell to P2P market in
ℎ(𝐻) Index (set) of households. time 𝑡 [kW].
𝑡(𝑇 ) Index (set) of time intervals. 𝑃 𝑠,𝑅,𝑟

𝑡 Scheduled regular power to sell to retailer
𝑠(𝑆) Index (set) of scenarios. in time 𝑡 [kW]
𝑇 𝐸𝑉 ,𝑎𝑣 Set of time intervals when EV is available. 𝑃 𝐸𝑉 ,𝑐ℎ

𝑡 Scheduled EV charging power in time 𝑡 [kW].
𝑇 𝐸𝑉 ,𝑛𝑎𝑣 Set of time intervals when EV is not available. 𝑃 𝐸𝑉 ,𝑑𝑐

𝑡 Scheduled EV discharging power in time 𝑡 [kW].
Parameters 𝑃 𝐸𝑉 ,𝑠

𝑡 Scheduled EV power to sell in time 𝑡 [kW].
𝑐𝑏,𝑃2𝑃 ,𝑔𝑡,𝑠 Price for buying green electricity from P2P market 𝑃 𝐸𝑉 ,𝑢

𝑡 Scheduled EV power to use in time 𝑡 [kW].
in time 𝑡 in scenario 𝑠 €/kWh]. 𝑃 𝐸𝑉 ,𝑐ℎ

𝑡,𝑠 EV charging power in time 𝑡 in scenario 𝑠 [kW].
𝑐𝑏,𝑃2𝑃 ,𝑟𝑡,𝑠 Price for buying regular electricity from P2P market 𝑃 𝐸𝑉 ,𝑑𝑐

𝑡,𝑠 EV discharging power in time 𝑡 in scenario 𝑠 [kW].
in time 𝑡 in scenario 𝑠 €/kWh]. 𝑃 𝐸𝑉 ,𝑠

𝑡,𝑠 EV power to sell in time 𝑡 in scenario 𝑠 [kW].
𝑐𝑠,𝑃2𝑃 ,𝑔𝑡,𝑠 Price for selling green electricity to P2P market 𝑃 𝐸𝑉 ,𝑢

𝑡,𝑠 EV power to use in time 𝑡 in scenario 𝑠 [kW].
in time 𝑡 in scenario 𝑠 €/kWh]. 𝑃 𝐿

𝑡 Scheduled inflexible load in time 𝑡 [kW].
𝑐𝑠,𝑃2𝑃 ,𝑟𝑡,𝑠 Price for selling regular electricity to P2P market 𝑃 𝑃𝑉 ,𝑠,𝑔

𝑡 Scheduled green PV power to sell in time 𝑡 [kW].
in time 𝑡 in scenario 𝑠 €/kWh]. 𝑃 𝑃𝑉 ,𝑠,𝑟

𝑡 Scheduled regular PV power to sell in time 𝑡 [kW].
𝑐𝑏,𝑅,𝑔𝑡 Price for buying green electricity from retailer in 𝑃 𝑃𝑉

𝑡 Scheduled PV power in time 𝑡 [kW].
time 𝑡 €/kWh]. 𝑃 𝑃𝑉 ,𝑢

𝑡 Scheduled PV power to use in time 𝑡 [kW].
𝑐𝑏,𝑅,𝑟𝑡 Price for buying regular electricity from retailer in 𝑃 𝑃𝑉 ,𝑠

𝑡,𝑠 PV power to sell in time 𝑡 in scenario 𝑠 [kW].
time 𝑡 €/kWh]. 𝑃 𝑃𝑉 ,𝑢

𝑡,𝑠 PV power to use in time 𝑡 in scenario 𝑠 [kW].
𝑐𝑠,𝑅,𝑟𝑡 Price for selling regular electricity to retailer in 𝑃 𝑢

𝑡 Scheduled power for household use in time 𝑡 [kWh].
time 𝑡 €/kWh]. ̂𝑆𝑂𝐸

𝐸𝑉
𝑡 Scheduled SOE of EV in time 𝑡 [kWh].

𝐸𝐸𝑉 ,𝑒𝑜𝑚 SOE of EV at end-of-morning [kWh]. 𝑆𝑂𝐸𝐸𝑉
𝑡,𝑠 SOE of EV in time 𝑡 in scenario 𝑠 [kWh].

𝐸𝐸𝑉 ,𝑒𝑜𝑑 SOE of EV at end-of-day [kWh]. �̂�𝐸𝑉
𝑡 Binary variable: 1 if EV is scheduled to charge in

𝑃 𝐿
𝑡,𝑠 Inflexible demand in period 𝑡 in scenario 𝑠 [kW]. time 𝑡 , 0 otherwise.

𝑃 𝑃𝑉
𝑡,𝑠 PV production in period 𝑡 in scenario 𝑠 [kW]. 𝑢𝐸𝑉

𝑡,𝑠 Binary variable: 1 if EV is charging in time 𝑡 in
𝑃

𝐸𝑉
Charging rate of EV [kW]. scenario 𝑠 , 0 otherwise.

𝑃
ℎ

Power limit of the household h [kW]. 𝑢𝐸𝑉 ,𝑐ℎ,+
𝑡,𝑠 Binary variable: 1 if EV is charging more in time 𝑡

𝑆𝑂𝐸𝐸𝑉 ,𝑚 Initial morning SOE of EV for [kWh]. in scenario 𝑠 , 0 otherwise.
𝑆𝑂𝐸𝐸𝑉 ,𝑎 Initial afternoon SOE of EV [kWh]. 𝑢𝐸𝑉 ,𝑐ℎ,−

𝑡,𝑠 Binary variable: 1 if EV is charging less in time 𝑡 in
𝑆𝑂𝐸

𝐸𝑉
Maximum SOE of EV [kWh]. scenario 𝑠 , 0 otherwise.

𝑆𝑂𝐸𝐸𝑉 Minimum SOE of EV [kWh]. 𝑢𝐸𝑉 ,𝑑𝑐,+
𝑡,𝑠 Binary variable: 1 if EV is discharging more in

𝑇 𝑎 Arrival time of EV [h]. time 𝑡 in scenario 𝑠 , 0 otherwise.
𝑇 𝑑 Departure time of EV [h]. 𝑢𝐸𝑉 ,𝑑𝑐,−

𝑡,𝑠 Binary variable: 1 if EV is discharging less in time 𝑡
𝛥𝑡 Time interval duration [h]. in scenario 𝑠 , 0 otherwise.
𝜂𝐸𝑉 ,𝑐ℎ EV charging efficiency. �̂�ℎ𝑡 Binary variable: 1 if household is scheduled to buy
𝜂𝐸𝑉 ,𝑑𝑐 EV discharging efficiency. in time 𝑡 , 0 otherwise.
𝑤𝑐 , 𝑤𝑝 , 𝑤𝑐𝑝 Preference weights for cost, profit, and cost-profit. 𝑢ℎ𝑡,𝑠 Binary variable: 1 if household is buying in time 𝑡
𝑤𝑠 , 𝑤𝑒 Preference weights for supplier and energy type. in scenario 𝑠, 0 otherwise.
𝜋𝑠 Probability of scenario 𝑠. (𝛿𝑐𝑝) 𝛿𝑐𝑝 (Normalized) Distance to goal for cost-profit.
Decision variables (𝛿𝑒) 𝛿𝑒 (Normalized) Distance to goal for energy type.
𝑃 𝑏
𝑡 Scheduled power to buy in time 𝑡 [kWh]. (𝛿𝑠) 𝛿𝑠 (Normalized) Distance to goal for supplier.

𝑃 𝑏
𝑡,𝑠 Power to buy in time 𝑡 in scenario 𝑠 [kW]. 𝛥𝑃 𝑏,+

𝑡,𝑠 Plus power to be bought in time 𝑡 in scenario
𝑃 𝑏,𝑃2𝑃 ,𝑔
𝑡 Scheduled green power to buy from P2P market 𝑠 [kW].

in time 𝑡 [kW]. 𝛥𝑃 𝑏,−
𝑡,𝑠 Minus power to be bought in time 𝑡 in scenario

𝑃 𝑏,𝑃2𝑃 ,𝑟
𝑡 Scheduled regular power to buy from P2P market 𝑠 [kW].

in time 𝑡 [kW]. 𝛥𝑃 𝑠,+
𝑡,𝑠 Plus power to be sold in time 𝑡 in scenario 𝑠 [kW].

𝑃 𝑏,𝑅,𝑔
𝑡 Scheduled green power to buy from retailer in 𝛥𝑃 𝑠,−

𝑡,𝑠 Minus power to be sold in time 𝑡 in scenario 𝑠 [kW].
time 𝑡 [kW]. 𝛥𝑃 𝐸𝑉 ,𝑐ℎ,+

𝑡,𝑠 Plus power to charge EV in time 𝑡 in scenario
𝑃 𝑏,𝑅,𝑟
𝑡 Scheduled regular power to buy from retailer in 𝑠 [kW].

time 𝑡 [kW]. 𝛥𝑃 𝐸𝑉 ,𝑐ℎ,−
𝑡,𝑠 Minus power to charge EV in time 𝑡 in scenario

𝑃 𝑑
𝑡 Scheduled demand in time 𝑡 [kWh]. 𝑠 [kW].

𝑃 𝑠
𝑡 Scheduled power to sell in time 𝑡 [kWh]. 𝛥𝑃 𝐸𝑉 ,𝑑𝑐,+

𝑡,𝑠 Plus power to discharge EV in time 𝑡 in scenario
𝑃 𝑠
𝑡,𝑠 Power to sell in time 𝑡 in scenario 𝑠 [kW]. 𝑠 [kW].

𝑃 𝑠,𝑃2𝑃 ,𝑔
𝑡 Scheduled green power to sell to P2P market in 𝛥𝑃 𝐸𝑉 ,𝑑𝑐,−

𝑡,𝑠 Minus power to discharge EV in time 𝑡 in scenario
time 𝑡 [kW]. 𝑠 [kW].
in the remainder of this Section. Each household that participates in the
P2P electricity market solves individually a SGP model using its own
parameters, objectives, and preferences. The majority of the symbols
are defined in Table 6, whereas the remaining are defined where they
are first introduced.

4.2.1. Objective functions and target distance constraints
Objective functions for the optimization problem are introduced for

the four attributes that are evaluated in Section 3. The two attributes
related to financial aspects, i.e. costs and selling price are combined in
a single objective. The objectives for the remaining two attributes: the
type of energy bought and the energy bought from different suppliers
are considered separately.

Based on the average part-worth utility values for the two clusters,
users receive a higher utility for lower monthly costs and for higher
accepted selling prices. This can be translated into two separate ob-
jectives: minimization of the costs and maximization of the profits. By
10
reversing the sign of the expression for the expected value for profits,
this objective function should be minimized and can be combined with
the minimization of costs, in a single objective 𝑓 𝑐𝑝 as given in (2).
The components from (2): energy bought (𝐸𝑏,𝑃2𝑃 ) and sold (𝐸𝑠,𝑃2𝑃 )
in the P2P market, as well as the energy bought (𝐸𝑏,𝑅) and sold (𝐸𝑠,𝑅)
by the retailer are decomposed in (3)–(6) The combination of these
two objectives allows for simultaneous optimization of the household’s
expenses for electricity. Moreover, it prevents a situation in which the
aspiration value for the profit objective equals 0, which happens for
users that only consume electricity and do not have own generation.
Since the resulting objective function is minimized, only the positive
deviation from its target value is considered in (10).

The expected value of the second objective function 𝑓 𝑒 is to maxi-
mize the purchase of green electricity, either from the P2P market or
from a retailer that sells green electricity. Both clusters receive higher

utility when they purchase green electricity as seen in Section 3 albeit
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to a different extent. Due to the maximization of this objective function,
the negative deviation from its target is minimized in (11).

For the third objective, regarding maximizing the electricity pur-
chased from different suppliers 𝑓 𝑠, there is a difference in the desired
utility for the two clusters. Hence, participants belonging to Cluster
1 maximize their utility when purchasing electricity from the P2P
market, whereas participants from Cluster 2 prefer to purchase regular
electricity from the retailer. This is reflected in (8) and (9). In both
cases, the negative deviation to the target is minimized in (12). All
distance variables are positive or equal to 0, as in (13).

E(𝑓 𝑐𝑝(𝑥, ⋅)) = 𝑤𝑐

𝑤𝑐𝑝 (𝐸
𝑏,𝑃2𝑃 + 𝐸𝑏,𝑅) − 𝑤𝑝

𝑤𝑐𝑝 (𝐸
𝑠,𝑃 2𝑃 + 𝐸𝑠,𝑅) (2)

𝐸𝑏,𝑃2𝑃 =
∑

𝑠∈𝑆
𝜋𝑠
(
∑

𝑡∈𝑇
(𝑐𝑏,𝑃2𝑃 ,𝑔𝑡,𝑠 𝑃 𝑏,𝑃2𝑃 ,𝑔

𝑡 + 𝑐𝑏,𝑃 2𝑃 ,𝑟𝑡,𝑠 𝑃 𝑏,𝑃2𝑃 ,𝑟
𝑡 )

)

(3)

𝐸𝑏,𝑅 =
∑

𝑠∈𝑆
𝜋𝑠
(
∑

𝑡∈𝑇
(𝑐𝑏,𝑅,𝑔𝑡 𝑃 𝑏,𝑅,𝑔

𝑡 + 𝑐𝑏,𝑅,𝑟𝑡 (𝑃 𝑏,𝑅,𝑟
𝑡 + 𝛥𝑃 𝑏,+

𝑡,𝑠 + 𝛥𝑃 𝑠,−
𝑡,𝑠 ))

)

(4)

𝐸𝑠,𝑃 2𝑃 =
∑

𝑠∈𝑆
𝜋𝑠
(
∑

𝑡∈𝑇
(𝑐𝑠,𝑃 2𝑃 ,𝑔𝑡,𝑠 𝑃 𝑠,𝑃 2𝑃 ,𝑔

𝑡 + 𝑐𝑠,𝑃 2𝑃 ,𝑟𝑡,𝑠 𝑃 𝑠,𝑃 2𝑃 ,𝑟
𝑡 )

)

(5)

𝐸𝑠,𝑅 =
∑

𝑠∈𝑆
𝜋𝑠
(
∑

𝑡∈𝑇
(𝑐𝑠,𝑅,𝑔𝑡 𝑃 𝑠,𝑅,𝑔

𝑡 + 𝑐𝑠,𝑅,𝑟𝑡 (𝑃 𝑠,𝑅,𝑟
𝑡 + 𝛥𝑃 𝑠,+

𝑡,𝑠 + 𝛥𝑃 𝑏,−
𝑡,𝑠 ))

)

(6)

E(𝑓 𝑒(𝑥, ⋅)) =
∑

𝑡∈𝑇

(

𝑃 𝑏,𝑅,𝑔
𝑡 + 𝑃 𝑏,𝑃2𝑃 ,𝑔

𝑡

)

(7)

E(𝑓 𝑠(𝑥, ⋅)) =
∑

𝑡∈𝑇

(

𝑃 𝑏,𝑃2𝑃 ,𝑟
𝑡 + 𝑃 𝑏,𝑃2𝑃 ,𝑔

𝑡

)

, for C1 (8)

(𝑓 𝑠(𝑥, ⋅)) =
∑

𝑡∈𝑇

(

𝑃 𝑏,𝑅,𝑟
𝑡 + 𝑃 𝑏,𝑅,𝑔

𝑡

)

, for C2 (9)

(𝑓 𝑐𝑝(𝑥, ⋅)) − 𝛿𝑐𝑝 = E(𝑔𝑐𝑝) (10)

(𝑓 𝑒(𝑥, ⋅)) + 𝛿𝑒 = E(𝑔𝑒) (11)

E(𝑓 𝑠(𝑥, ⋅)) + 𝛿𝑠 = E(𝑔𝑠) (12)

𝛿𝑐𝑝, 𝛿𝑒, 𝛿𝑠 ≥ 0 (13)

where 𝑥 = {𝑃 𝑏,𝑅.𝑟
𝑡 , 𝑃 𝑏,𝑅,𝑔

𝑡 , 𝑃 𝑏,𝑃2𝑃 ,𝑟
𝑡 , 𝑃 𝑏,𝑃2𝑃 ,𝑔

𝑡 , 𝑃 𝑠,𝑅,𝑟
𝑡 ,

𝑃 𝑠,𝑃 2𝑃 ,𝑟
𝑡 , 𝑃 𝑠,𝑃 2𝑃 ,𝑔

𝑡 ,∀𝑡 ∈ 𝑇 }

4.2.2. Household appliance constraints
Each household can schedule how much power to buy or sell for all

time intervals, based on their expected production and consumption.
Some households have PV generation and all households have an
electric vehicle (EV) that is a controllable load and can operate in
vehicle-to-grid and vehicle-to-home modes. The model can be extended
and other controllable appliances can be added. In this subsection,
the first stage constraints related to decisions made for scheduling
the commitments to the markets are presented. Moreover, the second
stage constraints related to the recourse actions as well as the link-
ing constraints that connect the first and second stage decisions are
detailed.

1. First stage constraints. The power balance for the electricity that is
scheduled for use and purchase by the household is given in (14). The
decomposition of the household demand is given in (15), whereas the
decomposition of the power bought and the power used within the
household are given in (16) and (17), respectively. A household can
sell power in the form of different products, as in (18). The power
that can be sold as green to the P2P market comes solely from PV (19),
whereas the remainder of the PV power that is sold as well as power
from the EV can be sold as regular electricity, either to the P2P market
or to the retailer as in (20). The household is limited to only buying
or selling power at a given time interval, and up to the allowed limit
by (21) and (22). The power produced by the PV can be either sold
or used to cover some of the load of the household, as per (23). The
power that can be scheduled from the PV and the load is limited by
the maximum values observed in the scenario set for the given time
interval as detailed in (24) and (25).
11

𝑃

̂𝑑
𝑡 = 𝑃 𝑏

𝑡 + 𝑃 𝑢
𝑡 , ∀𝑡 ∈ 𝑇 (14)

̂𝑑
𝑡 = 𝑃𝐿

𝑡 + 𝑃𝐸𝑉 ,𝑐ℎ
𝑡 , ∀𝑡 ∈ 𝑇 (15)

̂ 𝑏
𝑡 = 𝑃 𝑏,𝑃2𝑃 ,𝑔

𝑡 + 𝑃 𝑏,𝑃2𝑃 ,𝑟
𝑡 + 𝑃 𝑏,𝑅,𝑔

𝑡 + 𝑃 𝑏,𝑅,𝑟
𝑡 , ∀𝑡 ∈ 𝑇 (16)

̂ 𝑢
𝑡 = 𝑃 𝑃𝑉 ,𝑢

𝑡 + 𝑃𝐸𝑉 ,𝑢
𝑡 , ∀𝑡 ∈ 𝑇 (17)

̂ 𝑠
𝑡 = 𝑃 𝑠,𝑃2𝑃 ,𝑔

𝑡 + 𝑃 𝑠,𝑃2𝑃 ,𝑟
𝑡 + 𝑃 𝑠,𝑅,𝑟

𝑡 , ∀𝑡 ∈ 𝑇 (18)
̂ 𝑠,𝑃 2𝑃 ,𝑔
𝑡 = 𝑃 𝑃𝑉 ,𝑠,𝑔

𝑡 , ∀𝑡 ∈ 𝑇 (19)
̂ 𝑠,𝑃 2𝑃 ,𝑟
𝑡 + 𝑃 𝑠,𝑅,𝑟

𝑡 = 𝑃 𝑃𝑉 ,𝑠,𝑟
𝑡 + 𝑃𝐸𝑉 ,𝑠

𝑡 , ∀𝑡 ∈ 𝑇 (20)

̂ 𝑏
𝑡 ≤ �̂�ℎ𝑡 𝑃

ℎ
, ∀𝑡 ∈ 𝑇 (21)

𝑃 𝑠
𝑡 ≤ (1 − �̂�ℎ𝑡 )𝑃

ℎ
, ∀𝑡 ∈ 𝑇 (22)

𝑃 𝑃𝑉
𝑡 = 𝑃 𝑃𝑉 ,𝑢

𝑡 + 𝑃 𝑃𝑉 ,𝑠,𝑔
𝑡 + 𝑃 𝑃𝑉 ,𝑠,𝑟

𝑡 , ∀𝑡 ∈ 𝑇 (23)
̂𝑃𝑉
𝑡 ≤ 𝑚𝑎𝑥𝑠∈𝑆𝑃

𝑃𝑉
𝑡,𝑠 , ∀𝑡 ∈ 𝑇 (24)

̂𝐿
𝑡 ≤ 𝑚𝑎𝑥𝑠∈𝑆𝑃

𝐿
𝑡,𝑠, ∀𝑡 ∈ 𝑇 (25)

The (dis)charging of the EV vehicle is divided into two cycles during
he day, before the time of departure in the morning 𝑇 𝑑 and after
rrival in the evening 𝑇 𝑎, which define two intervals: when the EV is
vailable 𝑇𝐸𝑉 ,𝑎𝑣 = [0, 𝑇 𝑑 ) ∪ [𝑇 𝑎, 𝑇 ] and when the EV is not available
𝐸𝑉 ,𝑛𝑎𝑣 = 𝑇 ⧵ 𝑇𝐸𝑉 ,𝑎𝑣. Based on these intervals the limits for the
on-negative charging and discharging variables of the EV (26) are
nforced by (27)–(30). The end use of the power discharged by the EV is
cheduled in (31). The state of energy of the battery is defined in (32)–
34), depending on the time interval. Its allowable operational limits
re imposed in (35), whereas the desired charging levels at departure
ime or end of the day is imposed in (36) and (37)

̂𝐸𝑉 ,𝑐ℎ
𝑡 , 𝑃𝐸𝑉 ,𝑑𝑐

𝑡 ≥ 0,∀𝑡 ∈ 𝑇 (26)

̂𝐸𝑉 ,𝑐ℎ
𝑡 ≤ �̂�𝐸𝑉

𝑡 𝑃
𝐸𝑉

,∀𝑡 ∈ 𝑇𝐸𝑉 ,𝑎𝑣 (27)

𝑃𝐸𝑉 ,𝑐ℎ
𝑡 = 0, ∀𝑡 ∈ 𝑇𝐸𝑉 ,𝑛𝑎𝑣 (28)

𝑃𝐸𝑉 ,𝑑𝑐
𝑡 ≤ (1 − �̂�𝐸𝑉

𝑡 )𝑃
𝐸𝑉

,∀𝑡 ∈ 𝑇𝐸𝑉 ,𝑎𝑣 (29)

𝑃𝐸𝑉 ,𝑑𝑐
𝑡 = 0, ∀𝑡 ∈ 𝑇𝐸𝑉 ,𝑛𝑎𝑣 (30)

𝑃𝐸𝑉 ,𝑢
𝑡 + 𝑃𝐸𝑉 ,𝑠

𝑡 = 𝑃𝐸𝑉 ,𝑑𝑐
𝑡 𝜂𝐸𝑉 ,𝑑𝑐 , ∀𝑡 ∈ 𝑇𝐸𝑉 ,𝑎𝑣 (31)

�̂�𝐸𝐸𝑉
𝑡 = 𝑆𝑂𝐸𝐸𝑉 ,𝑚 + (𝜂𝐸𝑉 ,𝑐ℎ𝑃𝐸𝑉 ,𝑐ℎ

𝑡 − 𝑃𝐸𝑉 ,𝑑𝑐
𝑡 )𝛥𝑡, 𝑡 = 0 (32)

�̂�𝐸𝐸𝑉
𝑡 = 𝑆𝑂𝐸𝐸𝑉 ,𝑎 + (𝜂𝐸𝑉 ,𝑐ℎ𝑃𝐸𝑉 ,𝑐ℎ

𝑡 − 𝑃𝐸𝑉 ,𝑑𝑐
𝑡 )𝛥𝑡, 𝑡 = 𝑇 𝑎 (33)

�̂�𝐸𝐸𝑉
𝑡 = ̂𝑆𝑂𝐸𝐸𝑉

𝑡−1 + (𝜂𝐸𝑉 ,𝑐ℎ𝑃𝐸𝑉 ,𝑐ℎ
𝑡 − 𝑃𝐸𝑉 ,𝑑𝑐

𝑡 )𝛥𝑡,∀𝑡 ∈ 𝑇𝐸𝑉 ,𝑎𝑣 (34)

𝑂𝐸𝐸𝑉 ≤ ̂𝑆𝑂𝐸𝐸𝑉
𝑡 ≤ 𝑆𝑂𝐸

𝐸𝑉
, ∀𝑡 ∈ 𝑇𝐸𝑉 ,𝑎𝑣 (35)

̂𝑆𝑂𝐸𝐸𝑉
𝑡 ≥ 𝐸𝐸𝑉 ,𝑒𝑜𝑚, 𝑡 = 𝑇 𝑑 ∨ 𝑡 ∈ 𝑇𝐸𝑉 ,𝑛𝑎𝑣 (36)

̂𝑆𝑂𝐸𝐸𝑉
𝑡 ≥ 𝐸𝐸𝑉 ,𝑒𝑜𝑑 , 𝑡 = 𝑇 (37)

2. Second stage constraints. The balance for the power that is bought
or sold has to be maintained for each scenario as in (38) and (39).
The power that can be bought or sold by a household is limited by the
allowed limit and these actions cannot be performed simultaneously as
in (40) and (41). The decomposition of the power produced by the PV
per scenario is given in (42).

𝑃𝐿
𝑡,𝑠 + 𝑃𝐸𝑉 ,𝑐ℎ

𝑡,𝑠 = 𝑃 𝑏
𝑡,𝑠 + 𝑃 𝑃𝑉 ,𝑢

𝑡,𝑠 + 𝑃𝐸𝑉 ,𝑢
𝑡,𝑠 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (38)

𝑃 𝑠
𝑡,𝑠 = 𝑃 𝑃𝑉 ,𝑠

𝑡,𝑠 + 𝑃𝐸𝑉 ,𝑠
𝑡,𝑠 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (39)

𝑃 𝑏
𝑡,𝑠 ≤ 𝑢ℎ𝑡,𝑠𝑃

ℎ
, ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (40)

𝑠 ≤ (1 − 𝑢ℎ )𝑃
ℎ
, ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (41)
𝑡,𝑠 𝑡,𝑠
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𝑃 𝑃𝑉
𝑡,𝑠 = 𝑃 𝑃𝑉 ,𝑢

𝑡,𝑠 + 𝑃 𝑃𝑉 ,𝑠
𝑡,𝑠 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (42)

The scheduling of the EV in each scenario is done in the same man-
er as in the first stage. Hence, the desired charging levels at departure
ime and end of optimization are always maintained. Constraints (26)–
37) are also implemented for the second stage variables as stated in
43).

ariables: {𝑃𝐸𝑉 ,𝑐ℎ
𝑡 , 𝑃𝐸𝑉 ,𝑑𝑐

𝑡 , 𝑢𝐸𝑉
𝑡,𝑠 , 𝑃𝐸𝑉 ,𝑢

𝑡 , 𝑃𝐸𝑉 ,𝑠
𝑡 , ̂𝑆𝑂𝐸𝐸𝑉

𝑡 , ∀𝑡 ∈ 𝑇 }

from (26)–(37) are replaced with

𝑃𝐸𝑉 ,𝑐ℎ
𝑡,𝑠 , 𝑃𝐸𝑉 ,𝑑𝑐

𝑡,𝑠 , 𝑢𝐸𝑉
𝑡,𝑠 , 𝑃𝐸𝑉 ,𝑢

𝑡,𝑠 , 𝑃𝐸𝑉 ,𝑠
𝑡,𝑠 , 𝑆𝑂𝐸𝐸𝑉

𝑡,𝑠 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆} (43)

. Linking constraints. Constraints (44) and (45) relate the scheduled
uantities with the actual power that is bought or sold per scenario.
lus adjustments of power are considered those that result in increased
elling of power or increased consumption, whereas minus adjustments
f power result in the opposite, i.e. decreased selling of power or
ecreased consumption. The minus adjustments for the bought power
𝛥𝑃 𝑏,−

𝑡,𝑠 ) and the minus adjustment for the sold power (𝛥𝑃 𝑠,−
𝑡,𝑠 ) are limited

y the scheduled quantities in (46) and (48). The plus adjustment
or bought power and (𝛥𝑃 𝑏,+

𝑡,𝑠 ) and the plus adjustment for the sold
ower (𝛥𝑃 𝑠,+

𝑡,𝑠 ) are then limited by the remaining capacity between
he household limit and the scheduled quantities in (47) and (49),
espectively.

𝑃 𝑏
𝑡,𝑠 =𝑃

𝑏
𝑡 + 𝛥𝑃 𝑏,+

𝑡,𝑠 − 𝛥𝑃 𝑏,−
𝑡,𝑠 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (44)

𝑃 𝑠
𝑡,𝑠 =𝑃

𝑠
𝑡 + 𝛥𝑃 𝑠,+

𝑡,𝑠 − 𝛥𝑃 𝑠,−
𝑡,𝑠 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (45)

𝛥𝑃 𝑏,−
𝑡,𝑠 ≤ 𝑃 𝑏

𝑡 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (46)

𝛥𝑃 𝑏,+
𝑡,𝑠 ≤ 𝑃

ℎ
− 𝑃 𝑏

𝑡 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (47)

𝛥𝑃 𝑠,−
𝑡,𝑠 ≤ 𝑃 𝑠

𝑡 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (48)

𝛥𝑃 𝑠,+
𝑡,𝑠 ≤ 𝑃

ℎ
− 𝑃 𝑠

𝑡 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (49)

The relation between the scheduled power and the possible real-
izations per scenario is enabled through the adjustments for power in
(50) for charging and (51) for discharging. The minus charging ad-
justment (𝛥𝑃𝐸𝑉 ,𝑐ℎ,−

𝑡,𝑠 ) and the minus discharging adjustment (𝛥𝑃𝐸𝑉 ,𝑑𝑐,−
𝑡,𝑠 )

re limited by the scheduled power in (53) and (56). Then, the plus
harging adjustment (𝛥𝑃𝐸𝑉 ,𝑐ℎ,+

𝑡,𝑠 ) and the plus discharging adjustment
𝛥𝑃𝐸𝑉 ,𝑑𝑐,+

𝑡,𝑠 ) are limited by the remaining available capacity as in (52)
nd (55). It is not possible to simultaneously adjust the power upwards
nd downwards, as stated in (54) for charging and (57) for discharging.

𝐸𝑉 ,𝑐ℎ
𝑡,𝑠 = 𝑃𝐸𝑉 ,𝑐ℎ

𝑡 + 𝛥𝑃𝐸𝑉 ,𝑐ℎ,+
𝑡,𝑠 − 𝛥𝑃𝐸𝑉 ,𝑐ℎ,−

𝑡,𝑠 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (50)
𝐸𝑉 ,𝑑𝑐
𝑡,𝑠 = 𝑃𝐸𝑉 ,𝑑𝑐

𝑡 + 𝛥𝑃𝐸𝑉 ,𝑑𝑐,+
𝑡,𝑠 − 𝛥𝑃𝐸𝑉 ,𝑑𝑐,−

𝑡,𝑠 ,∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (51)

≤ 𝛥𝑃𝐸𝑉 ,𝑐ℎ,+
𝑡,𝑠 ≤ (𝑃

𝐸𝑉
− 𝑃𝐸𝑉 ,𝑐ℎ

𝑡 )𝑢𝐸𝑉 ,𝑐ℎ,+
𝑡,𝑠 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (52)

0 ≤ 𝛥𝑃𝐸𝑉 ,𝑐ℎ,−
𝑡,𝑠 ≤ 𝑃𝐸𝑉 ,𝑐ℎ

𝑡 𝑢𝐸𝑉 ,𝑐ℎ,−
𝑡,𝑠 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (53)

𝑢𝐸𝑉 ,𝑐ℎ,−
𝑡,𝑠 + 𝑢𝐸𝑉 ,𝑐ℎ,+

𝑡,𝑠 ≤ 1,∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (54)

≤ 𝛥𝑃𝐸𝑉 ,𝑑𝑐,+
𝑡,𝑠 ≤ (𝑃

𝐸𝑉
− 𝑃𝐸𝑉 ,𝑑𝑐

𝑡 )𝑢𝐸𝑉 ,𝑑𝑐,+
𝑡,𝑠 , ∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (55)

0 ≤ 𝛥𝑃𝐸𝑉 ,𝑑𝑐,−
𝑡,𝑠 ≤ 𝑃𝐸𝑉 ,𝑑𝑐

𝑡 𝑢𝐸𝑉 ,𝑑𝑐,−
𝑡,𝑠 ,∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (56)

𝑢𝐸𝑉 ,𝑑𝑐,−
𝑡,𝑠 + 𝑢𝐸𝑉 ,𝑑𝑐,+

𝑡,𝑠 ≤ 1,∀𝑡 ∈ 𝑇 ,∀𝑠 ∈ 𝑆 (57)

.2.3. Goal targets
An aspiration target value is set for each objective. It is set to a

inimum value for minimization objectives and a maximum obtainable
alue for maximization objectives. Therefore, the distance from the goal
12
argets can only be one-directional. The target for the cost-profit objec-
ive is determined by individually optimizing the cost-profit objective
n (2), as in (58).

E(𝑔𝑐𝑝) = min
𝑥

E(𝑓 𝑐𝑝(𝑥, ⋅))

.t.(14)–(57)
(58)

The targets for the goals for energy type and supplier are determined
sing the results of solving problem (58). The total expected electricity
hat the household schedules to buy can be determined from the
ptimization of the cost-profit objective in (59). This value is adopted
oth as the expected target value for the energy type objective 𝑓 𝑒 green

energy as well as for the supplier objective in (60) with the following
meaning. When optimizing the objective for the energy type 𝑓 𝑒, the
household aims to maximize electricity purchased from the desired
type, which in this case is green electricity for both clusters. Similarly,
when optimizing the objective for desired supplier 𝑓 𝑠, the household
aims to buy as much electricity as possible from the desired supplier,
which differs per cluster. Moreover, since the individual objective func-
tions differ in their units, the calculated targets also serve to normalize
the distances in the objective functions as in (61).

E(�̂�𝑏) =
∑

𝑡∈𝑇
𝑃 𝑏
𝑡 (59)

E(𝑔𝑒) = E(�̂�𝑏), E(𝑔𝑠) = E(�̂�𝑏) (60)

𝛿𝑐𝑝 = 𝛿𝑐𝑝

E(𝑔𝑐𝑝)
, 𝛿𝑒 = 𝛿𝑒

E(𝑔𝑒)
, 𝛿𝑠 = 𝛿𝑠

E(𝑔𝑠)
(61)

.2.4. Final SGP HEMS model
The final SGP model for the HEMS is outlined here. The main ob-

ective function is to minimize the normalized and weighted distances
r the deviations to the target levels set for each objective as given
n (62). The weights that are used in the SGP model are based on the
ttribute importance weights implicitly derived from the DCE analysis
n Section 3.4.3 and shown on Fig. 4. The weights for supplier 𝑤𝑠 and
nergy type 𝑤𝑒 are equal to the corresponding importance weights,
hereas the weights for monthly cost and selling price are combined

n a single weight for cost and profit 𝑤𝑐𝑝 = 𝑤𝑐 +𝑤𝑝.

min
𝑥

𝑤𝑐𝑝𝛿𝑐𝑝 +𝑤𝑒𝛿𝑒 +𝑤𝑠𝛿𝑠

s.t.(2)–(61)
(62)

4.3. P2P market-clearing model with double auction

The market-clearing mechanism that is adopted in this study is a
double-sided auction, which is cleared for every time interval. It is
a forward market that for the purpose of this study is cleared day-
ahead. However, the model can be adjusted and the market can be
cleared in near-real time in a rolling-horizon manner. The participating
peers submit bids and offers consisting of quantity and price (𝑞𝑏𝑡 , 𝑝

𝑏
𝑡 )

for bids, and (𝑞𝑜𝑡 , 𝑝
𝑜
𝑡 ) for offers, for each time interval, for each of the

roducts that are traded in the market. The quantity of the products
s determined by the SGP optimization for the HEMS. The price for
he products is determined using the WTP for each type of product
s determined by the DCE analysis. This price serves as the maximum
rice a participant is willing to pay for a specific product in the P2P
arket. To introduce variability in the submitted prices per customer

nd per time interval, it is assumed that the submitted prices are
ampled from a normal distribution with a mean equal to the WTP.
he objective of the market-clearing mechanism is to minimize the
osts for the energy exchange while maintaining a balance between the
xchange and respecting the limits imposed by the submitted prices, as
utlined in (63). The clearing mechanism is pay-as-clear, so there is a
ingle clearing price per time interval and product. The clearing price
s calculated as the average price of the last accepted bid in descending
rder and the last accepted offer in ascending order.

min
𝐨 𝐛

∑
(
∑

𝑞𝑜𝑡 𝑝
𝑜
𝑡 −

∑

𝑞𝑏𝑡 𝑝
𝑏
𝑡
)

(63a)

𝐪 ,𝐪 𝑡∈𝑇 𝑜∈𝑂 𝑏∈𝐵



Applied Energy 338 (2023) 120956I. Dukovska et al.

t
t
o
o
e
p
c
g
i
t
c
F

4

4

d
s
t
p
e
d

s
t
m
o
d
v
n

Fig. 6. Flowchart for separate and sequential market clearing.

s.t.
∑

𝑜∈𝑂
𝑞𝑜𝑡 =

∑

𝑏∈𝐵
𝑞𝑏𝑡 , ∀𝑡 ∈ 𝑇 (63b)

0 ≤ 𝑞𝑜 ≤ 𝑞𝑜, ∀𝑜 ∈ 𝑂,∀𝑡 ∈ 𝑇 (63c)

0 ≤ 𝑞𝑏𝑡 ≤ 𝑞𝑏𝑡 , ∀𝑏 ∈ 𝐵,∀𝑡 ∈ 𝑇 (63d)

Since bids and offers are submitted for each product present in
he market, they can be cleared separately. However, some products
hat have differentiating properties can also be considered to be part
f a more general product. For example, green electricity is a subset
f regular electricity, with the origin of production being its differ-
ntiating property. If some of the offers or bids for the specialized
roducts are not (completely) cleared in their dedicated market, they
an be added, with updated prices, to the bids and offers of the more
eneral product. This represents a sequential clearing of the products
n the market, starting from the more specific products and going to
he general product categories. In this study, the sequence goes from
learing first green electricity and then regular electricity, as shown in
ig. 6.

.4. Case study

.4.1. Description of case study and input data
Several sources from the Netherlands are used to source the input

ata used for the case study, including the data from the conducted
urvey. Based on the survey results, 48% of the respondents, belong
o Cluster 2, whereas the remaining 52% are from Cluster 1. These
ercentages are used to determine the number of participants from
ach cluster, according to the total number of market participants for
ifferent simulations.

For the electricity consumption and production of the households,
mart meter measurements from August provided by a Dutch distribu-
ion system operator are used. The range between the minimum and
aximum values and the mean value for the considered smart meters,

ver a single day, are shown in Fig. 8. The input data for the inflexible
emand and PV generation and the scenario sets related to these two
ariables are created from this data. To generate load and PV scenarios,
oise that follows a normal probability density function with standard
13
Fig. 7. Price scenarios for the P2P market.

Fig. 8. Range and mean values for input data.

Table 7
EV parameter values.
Parameter Parameter

𝐸
𝐸𝑉

= 57 kWh 𝑆𝑂𝐸𝐸𝑉 = 0.2𝐸
𝐸𝑉

𝑃
𝐸𝑉

= 3.7 kW 𝑆𝑂𝐸
𝐸𝑉

= 0.95𝐸
𝐸𝑉

𝜂𝐸𝑉 ,𝑐ℎ = 95% 𝑇 𝑑 ∼ Beta(23.6, 62.36) ⋅ 𝑇
𝜂𝐸𝑉 ,𝑑𝑐 = 95% 𝑇 𝑎 ∼ Beta(76.42, 33.40) ⋅ 𝑇

deviation 𝜎 = 0.2 is added to the actual measurements to generate 100
scenarios for load and PV per household.

Moreover, it is assumed that all the EVs have similar specifications
to a Tesla Model 3, as this is the model with the highest share in
the Dutch market [60]. The energy required for charging on daily
basis is set at 8.2 kWh, based on data about 75% of the charging
events in private stations from ElaadNL [61]. The estimated arrival and
departure times for the EVs are also derived using data from ElaanNL.

The parameters for the EV are given in Table 7.
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Table 8
Electricity price data [€/kWh].

Tariff Regular Low Max. price Cluster 1 Cluster 2

𝑐𝑏,𝐺 0.46 0.38 𝑐𝑏,𝑃2𝑃𝑔 0.47 0.31
𝑐𝑏,𝑅 0.34 0.28 𝑐𝑏,𝑃2𝑃𝑟 0.28 0.25
𝑐𝑠,𝑅 0.08 / 𝑐𝑠,𝑃2𝑃𝑔∕𝑃 2𝑃𝑟 0.10 0.09

The average values for electricity prices for regular and renewable
lectricity from energy providers in the Netherlands are used as in-
uts [47]. The values are given in Table 8. The low tariff period is active
rom 21:00 until 7:00. The WTP for different attributes of electricity
s provided by the survey analysis has been converted to a price per
Wh of electricity, using the average consumption of electricity in the
etherlands of 3500 kWh/year for the provided monthly cost in the

urvey [62,63]. A reference value of 0.25 [€/kWh] is added to form the
maximum price for buying electricity in the P2P market. This value is
based on the low tariffs of the retailers. The resulting prices per product
(𝑐𝑏,𝑃2𝑃 ,𝑔 or 𝑐𝑏,𝑃2𝑃 ,𝑟) for the two clusters serve to generate electricity bid
rices. Since the highest utility is derived from selling at the highest
rice, according to Table 4, the WTP for selling electricity at 10 €/kWh

is used to calculate the maximum price for selling either green or
regular electricity. This value is added to the average feed-in tariff
price, resulting in the price for selling electricity (𝑐𝑠,𝑃 2𝑃 ,𝑔 / 𝑐𝑠,𝑃 2𝑃 ,𝑟) in

able 8.
To provide some variability in the submitted bids in different time

ntervals and by different households, prices for the bids and offers
re sampled from a normal distribution. The mean of the probability
ensity function is equal to the prices from Table 8, whereas the
tandard deviation is assumed to be 𝜎 = 0.005. With this approach, it is

possible to have a situation in which the price that the households bid
for electricity bought in the P2P market is sometimes higher than the
retailer’s prices. From Table 8, it is evident that participants belonging
to Cluster 2 are more price-sensitive and are not willing to pay high
prices specifically for green electricity or electricity coming from the
P2P market.

The SGP model requires market-clearing prices from the P2P market
(𝑐𝑃2𝑃 ,𝑔𝑡 , 𝑐𝑃2𝑃 ,𝑟𝑡 ) as input. Since such data is not available, the following
procedure is done to generate scenarios for the prices. An initial set of
10 price scenarios, which is shown in Fig. 7, is used in combination with
100 (load, PV) scenarios to create a set of 1000 equiprobable scenarios
with the tuple (load, PV, 𝑐𝑃2𝑃 ,𝑔𝑡 , 𝑐𝑃2𝑃 ,𝑟𝑡 ) per household. It is considered
hat 100 households participate in the market. The SGP HEMS model
s solved for each household and then the bids and offers from the 100
ouseholds are sequentially cleared in the market. This procedure is
epeated for 100 different instances from the initial scenario set. The
ean and the standard deviation over the 100 market-clearing prices

re used to generate a new set of price scenarios for green and regular
lectricity that correspond to the actual market results.

The new set of price scenarios is combined with the scenarios for
load, PV) of each household. To reduce the scenario set to a smaller
et with representative scenarios, k-medoid clustering is performed for
ach household. A final set of 10 non-equiprobable scenarios of the
uple (load, PV, 𝑐𝑃2𝑃 ,𝑔𝑡 , 𝑐𝑃2𝑃 ,𝑟𝑡 ) are determined for each household. For
ifferent simulation cases, depending on the required number of partic-
pants, households are selected from the available dataset. Moreover,
or each case, 10 independent runs are performed and a summary of
he results is presented. The simulations are performed using Python
.8 environment, whereas the optimization models are modeled with
yomo [64] and are solved using Gurobi [65] as the solver.

.4.2. Simulation results
GP HEMS results. A case of a market with 100 participants, 52%
elonging to Cluster 1 and 48% to Cluster 2 is simulated for a single
ay. The first stage variables are shown in Fig. 9 for two households,
14

ach from a different cluster. The influence of the preferences is visible
Fig. 9. First stage variables for households from the two clusters.

Fig. 10. Normalized distance to goal targets.

Table 9
Expected costs for households per cluster over the simulated period [€].

Cluster min mean max SD

Cluster 1 1.84 3.44 7.68 1.21
Cluster 2 1.28 2.54 5.06 1 0.87

in the scheduled commitments for buying electricity from different
sources. The HEMS for a household from Cluster 1, attempts to schedule
and purchase green electricity for the majority of time intervals. When
it is possible, i.e. during the daytime, this energy is scheduled to be
bought from the P2P market. Otherwise, green energy is bought from
the conventional retailer. In the early hours of the day, the electric
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vehicle is scheduled to charge, taking advantage of the lower tariff
period for green electricity. The household from Cluster 2 demonstrates
different behavior. It schedules to buy regular electricity, which is
cheaper, and its purchase of green electricity is on a lower scale than
the household from Cluster 1. When it comes to selling electricity, both
households try to sell the electricity produced by the PV, as green
electricity in the P2P market, since its clearing price is the highest.
Consequently, they would get higher utility than selling it as regular
electricity. Moreover, it is evidently not attractive to sell some of the
electricity stored by the EV as regular electricity.

Distance to goal targets. A summary of the normalized distance to the
oal targets for 100 households over 10 simulation runs is presented
n Fig. 10. Since the source of electricity is the most important goal
or participants from Cluster 1, the optimization results in the smallest
istances to that aspiration level. This is followed by the distance to
he desired supplier, which for Cluster 1 is the P2P market. Finally,
he cost and profit goals do not carry a lot of weight resulting in the
argest distance to the target. The situation for the households from
luster 2 is the opposite. Since the weights for cost and profit are
elatively high, their distance to this target is very low. The distance
o the desired, green type of electricity is relatively large because this
ype of electricity is more expensive. However, the prices for green
lectricity from the P2P market can be lower than the retailer’s prices
llowing these households to simultaneously satisfy the two goals. The
istance to the target for the supplier is more widely spread because
ven though these participants prefer trading with a traditional retailer,
t is sometimes economically more profitable for them to buy and sell
nergy from the P2P market. This happens because the clearing prices
n the P2P market can be lower than the retailer’s prices and higher
han the FiT tariff and the importance of cost-profit outweighs the
mportance for the supplier. These results indicate that P2P markets can
e an alternative for both participants who explicitly want to join such
nitiatives and for participants who are looking to achieve cost savings.
he analysis of the expectation of the daily costs for the households
rom different clusters presented in Table 9 corresponds to these results.
n general, participants from Cluster 1 expect higher costs, since they
refer buying renewable energy which is priced higher than regular,
egardless if it comes from the retailer or the P2P market.

rder of market clearing. The impact of the separate or sequential
arket-clearing on the quantity of electricity cleared is presented in

ig. 11(a). Green electricity is traded during the daytime since the only
enewable source of production are PV systems. Since green electricity
s the first product that is cleared, the outcome is not affected by the
learing order. However, for the regular type of electricity, the impact
s significant. The average energy that is cleared in a day changes
rom 0.277 kWh in the separate market-clearing to 29.146 kWh in
he sequential market clearing. This consequently influences the total
olume of energy traded in the P2P market. Nevertheless, the volume of
reen electricity that is cleared is always higher than regular electricity.
his is because purchasing green electricity is a goal that is favored by
ll market participants. In this regard, the P2P market may represent
n incentive for end-users to install renewable generation systems, as
he income from selling the electricity in these markets can reduce
he return on investment period, especially when there are no other
ubsidies in place.

The average price in the market for green electricity is also not
nfluenced by the order of clearing as seen in Fig. 11(b). It is noticeable
hat for some time periods the range between the maximum and
inimum prices achieved is wider, whereas it is relatively constant in

ther periods. Moreover, in the sequential market clearing for regular
lectricity, the average price is lower than in the separate market
learing, from 0.161 €/kWh to 0.177 €/kWh. This is a result of the
vailability of bids and offers and is a matter of matching supply and
emand. The higher volume that is matched can lead to slightly lower
arket-clearing prices. It can be noted that even though some market
15
Fig. 11. Separate and sequential market-clearing results.

participants may have higher WTP and submit bids that are higher than
the retailers’ prices for buying, the market-clearing prices for both prod-
ucts are lower than the retailers’ prices and higher than the FiT price
for selling. To summarize, since trading higher volumes brings benefits
to the participants, and there are no major drawbacks, the sequential
market-clearing represents an efficient method to operate such markets
with multiple products with partially overlapping characteristics.

Cluster representation. The effect of the preferences of the market par-
ticipants reflected in the two clusters on the market is shown in Fig. 12.
To demonstrate this, in addition to the base case with 52% participants
belonging to C1 and 48% to C2 as in the survey, two other cases in
which 100% of the participants come from the each of the two clusters
are performed. This is done for a market comprised of 100 households.
A box plot of the energy traded in a single day and the average values
are shown in Fig. 12(a). The highest amount of green energy is traded
when all participants belong to Cluster 1, who have strong preferences
for buying green energy and higher WTP. The least green energy is
traded when all participants belong to Cluster 2. The opposite is true
for regular electricity. Although the ratio of the energy traded for the
two products changes according to the preferences, the total energy
that is cleared in the market remains relatively the same.

Concerning the prices shown in Fig. 12(b), the highest prices for
the two products are achieved when all participants belong to Cluster
1, because they have a higher willingness to pay and as a result submit
higher bids to the market. Therefore, although the user preferences
do not influence significantly the total energy that is traded, they do
influence the quantity of the different products that are traded, as well
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Fig. 12. Market clearing results with participants from different clusters.

as the clearing prices. Thus, the desirability of a certain product or
attribute and the willingness to pay for it have an impact on both the
design and the outcomes of the market.

Varying number of market participants. User-centric markets can have a
varying number of participants. Therefore it is of interest to evaluate
the influence of the number of participants on the market outcomes
and its scalability. The results for a range of 50 to 300 households
are presented in Fig. 13. The average energy that is cleared for the
two products increases linearly with the number of participants as seen
in Fig. 13(a). The prices are not affected by the changing number of
participants in Fig. 13(b). Thus, markets with fewer participants will
have similar prices as markets with more participants, and they are not
negatively affected by the smaller size. This means that establishing a
P2P market is beneficial in terms of prices regardless of the number of
participants, although the volume of energy cleared will likely differ.

The average percentage of bids and offers that are cleared compared
to those that are submitted to the market for varying market sizes is
shown in Fig. 14. The average is calculated over all time intervals and
for 10 independent runs per market size. The percentage of bids for
green electricity that is cleared is between 45 and 50% regardless of
the market size, whereas the percentage of cleared bids for regular
electricity is consistently higher, between 60 and 75%. Since green
electricity is a more desired product for both clusters, there are more
submitted bids, so higher demand, for this product, compared with
regular electricity. When looking at the percentage of offers cleared
in Fig. 14(b), it is evident that for both products, the percentage of
offers that are cleared is very high. In principle, there is more demand
16

than supply in the market, which is expected since the electricity that
Fig. 13. Market clearing results for a varying number of market participants.

Table 10
Out-of-sample analysis costs for households per cluster over the simulated period [€].

Cluster 𝐶𝑆𝑆𝐷 𝐶𝐴𝐶

mean SD mean SD

Cluster 1 3.13 1.07 5.59 1.54
Cluster 2 1.90 0.73 4.61 1 1.55

is offered for sale is generated by small PV installations and a limited
surplus of EV battery charge. Hence, there is room for more generation
installations in the market, regardless of the market size, according to
the balance of supply and demand. Finally, even though the percentage
of cleared bids seems to slightly decrease with the increase in the
number of participants, the same cannot be said for the percentage of
cleared offers, where there is no evident trend.

Out-of-sample analysis. Lastly, an out-of-sample analysis is done for the
10 independent runs of the case with 100 households and sequential
market clearing. To perform this, the actual smart meter measurements
are used as realizations for the inflexible load consumption and PV
production. The clearing prices from the sequential market-clearing are
used as realizations of the P2P market prices. The first stage variables,
i.e. the power that is scheduled to be bought or sold to different suppli-
ers are fixed. The deviations from the scheduled values from the actual
production, consumption, and price realizations in the second stage
are minimized to obtain the results. The resulting expected cost per
household per cluster is shown in Table 10, in the column 𝐶𝑆𝑆𝐷, where
𝑆𝑆𝐷 stands for second-stage deviations. Here it is assumed that all
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Fig. 14. Percentage of cleared bids and offers for a varying number of market
participants.

scheduled quantities can be cleared in the P2P market. Hence the total
costs are actually lower than the in-sample expected costs. However,
in reality, not all bids and offers are cleared in the market. If only
those quantities are charged at the P2P market-clearing prices and the
remaining uncleared quantity is actually traded with the retailer, in the
corresponding category of green or regular electricity, the actual costs
𝐶𝐴𝐶 are higher than the in-sample expected costs. This is expected since
the possibility of not matching is not considered in the optimization
model. Moreover, this refers to the need to improve the coordination
between the offers and bids in terms of time and quantity, to achieve a
higher percentage of cleared offers and prices. This will be the subject
of future work.

5. Conclusions

The design of P2P electricity markets that include desirable products
and enable the fulfillment of objectives that are relevant for end-users
is crucial for their development and successful deployment. To elicit
user preferences and attitudes toward participation in P2P electricity
markets specifically in the context of the focus country, a survey that
includes a discrete choice experiment was conducted in the Nether-
lands. In comparison to other studies, attributes that are directly related
to electricity as a product were the focus of the experiment, based on
which product differentiation in the P2P market is made possible. The
survey results indicate that the possibility to buy renewably generated
electricity and the resulting costs are more important factors for making
17
decisions regarding electricity trading, compared to whether exchanges
will be done within a P2P market or a conventional retailer or hav-
ing the possibility to set your own selling price for electricity. User
preferences and objectives derived from the discrete choice experiment
were incorporated into the multi-objective optimization model of a
home energy management system, as part of an integrated approach
of combining descriptive and prescriptive analytics. Uncertainty in the
realization of market prices and own production and demand was also
considered through stochastic optimization. The resulting stochastic
multi-objective optimization model is solved through stochastic goal
programming. A case study that combined the results from the sur-
vey and actual data from the Netherlands was presented. The results
demonstrate that the decision-support tool is able to reflect the user
preferences of different clusters of users automatically in the sched-
uled commitments in the P2P market. Moreover, the possibility for
a recourse action in the two-stage stochastic optimization provides a
method of how market participants can respond to changes to their
scheduled market commitments in real time, thus ensuring that the
scheduled trades will take place. A forward double-sided auction-based
P2P electricity market with product differentiation was proposed and
simulated. The product differentiation is based on the results of actual
choices made by respondents during the survey, rather than assump-
tions based on literature study or self-expressed intentions. The forward
auction provides sufficient time to plan ahead and coordinate with
other stakeholders if necessary, it encourages truthful bidding and
results in efficient market operation. However, the proposed decision
support for HEMS can also be used in other market-clearing mecha-
nisms. The results from the market clearing show that participants can
fulfill their objectives in the P2P electricity market. The percentage of
different types of users influences the proportion of different products
that are cleared whereas the total energy cleared in the market remains
relatively the same. Finally, it is shown that participation in P2P
electricity markets is beneficial for the users, regardless of the number
of total participants. In future work, methods to improve coordination
in the market from mechanism design will be investigated. In addition,
an analysis of the impact of the market on the distribution network will
be performed and potential coordination strategies will be considered.
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