EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

On the distinct differences in autonomic regulation between
pregnant and non-pregnant women

Citation for published version (APA):

Bester, M., Joshi, R., Mischi, M., van Laar, J., & Vullings, R. (2023). On the distinct differences in autonomic
regulation between pregnant and non-pregnant women: a heart rate variability analysis. Physiological
Measurement, 44(5), Article 055001. https://doi.org/10.1088/1361-6579/accele

Document license:
cCcBY

DOI:
10.1088/1361-6579/accele

Document status and date:
Published: 01/05/2023

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.1088/1361-6579/acce1e
https://doi.org/10.1088/1361-6579/acce1e
https://research.tue.nl/en/publications/2c9dd768-767e-4124-ab5d-7cccc03f85ae

Physiological Measurement

IPEM

Institute of Physics and
Engineering in Medicine

PAPER « OPEN ACCESS

On the distinct differences in autonomic regulation
between pregnant and non-pregnant women - a
heart rate variability analysis

To cite this article: M Bester et al 2023 Physiol. Meas. 44 055001

View the article online for updates and enhancements.

You may also like

- An open source benchmarked toolbox for

cardiovascular waveform and interval
analysis

Adriana N Vest, Giulia Da Poian, Qiao Li
etal

- Detection rate of fetal distress using

contraction-dependent fetal heart rate
variability analysis

G J J Warmerdam, R Vullings, JO EH
Van Laar et al.

- Heart rate variability categories of

fluctuation amplitude and complexity:
diagnostic markers of fetal development
and its disturbances

Dirk Hoyer, Alexander Schmidt, Kathleen
M Gustafson et al.

This content was downloaded from IP address 131.155.78.87 on 07/07/2023 at 08:51


https://doi.org/10.1088/1361-6579/acce1e
https://iopscience.iop.org/article/10.1088/1361-6579/aae021
https://iopscience.iop.org/article/10.1088/1361-6579/aae021
https://iopscience.iop.org/article/10.1088/1361-6579/aae021
https://iopscience.iop.org/article/10.1088/1361-6579/aaa925
https://iopscience.iop.org/article/10.1088/1361-6579/aaa925
https://iopscience.iop.org/article/10.1088/1361-6579/aaa925
https://iopscience.iop.org/article/10.1088/1361-6579/ab205f
https://iopscience.iop.org/article/10.1088/1361-6579/ab205f
https://iopscience.iop.org/article/10.1088/1361-6579/ab205f
https://iopscience.iop.org/article/10.1088/1361-6579/ab205f

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
25 November 2022

REVISED
27 March 2023

ACCEPTED FOR PUBLICATION
18 April 2023

PUBLISHED
10 May 2023

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 4.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

Physiol. Meas. 44 (2023) 055001 https://doi.org/10.1088/1361-6579 /accele

IPEM

Institute of Physics and
Engineering in Medicine

Physiological Measurement

PAPER

On the distinct differences in autonomic regulation between
pregnant and non-pregnant women - a heart rate variability analysis

M Bester"**, R Joshi*®, M Mischi', JOEH van Laar"’ and R Vullings'

! Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands

* Patient Care and Monitoring, Philips Research, 5656 AE, Eindhoven, The Netherlands

* Department of Obstetrics and Gynecology, Maxima Medical Centrum, De Run 4600, 5504 DB, Veldhoven, The Netherlands
* Author to whom any correspondence should be addressed.

E-mail: m.bester@tue.nl

Keywords: pregnancy, heart rate variability, autonomic regulation, maternal health, ECG

Abstract

Objective. Appropriate adaptation of the maternal autonomic nervous system to progressing gestation
is essential to a healthy pregnancy. This is partly evidenced by the association between pregnancy
complications and autonomic dysfunction. Therefore, assessing maternal heart rate variability (HRV)
—a proxy measure for autonomic activity—may offer insights into maternal health, potentially
enabling the early detection of complications. However, identifying abnormal maternal HRV requires
athorough understanding of normal maternal HRV. While HRV in women of childbearing age has
been extensively investigated, less is known concerning HRV during pregnancy. Subsequently, we
investigate the differences in HRV between healthy pregnant women and their non-pregnant
counterparts. Approach. We use a comprehensive suite of HRV features (assessing sympathetic and
parasympathetic activity, heart rate (HR) complexity, HR fragmentation, and autonomic responsive-
ness) to quantify HRV in large groups of healthy pregnant (n = 258) and non-pregnant women
(n=252). We compare the statistical significance and effect size of the potential differences between
the groups. Main results. We find significantly increased sympathetic and decreased parasympathetic
activity during healthy pregnancy, along with significantly attenuated autonomic responsiveness,
which we hypothesize serves as a protective mechanism against sympathetic overactivity. HRV
differences between these groups typically had a large effect size (Cohen’s d > 0.8), with the largest
effect accompanying the significantly reduced HR complexity and altered sympathovagal balance
observed in pregnancy (Cohen’s d > 1.2). Significance. Healthy pregnant women are autonomically
distinct from their non-pregnant counterparts. Subsequently, assumptions based on HRV research in
non-pregnant women cannot be readily translated to pregnant women.

Introduction

The autonomic nervous system (ANS) regulates involuntary physiological processes in the human body and
therefore plays a crucial role in maintaining and modulating heart rate (HR), blood pressure (BP), and
respiration (Shaffer and Ginsberg 2017). During pregnancy, all these involuntary processes need to adapt to the
continuously evolving demands of the maternal-fetal pair, necessitating changes in maternal autonomic
regulation (Fu 2018). Insufficient adaptation of the maternal ANS to pregnancy is associated with pregnancy
complications, such as hypertensive disorders of pregnancy and gestational diabetes, which affect over 10% of
pregnancies (Moors et al 2020, Reyes et al 2020). Consequently, assessing maternal autonomic activity during
pregnancy may offer insights into gestational health which are otherwise subclinical (Rang et al 2002, Pal et al
2009). However, to enable the identification of abnormal maternal autonomic regulation, an in-depth
understanding is first needed of the normal activity of the ANS during a healthy pregnancy.
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Our current understanding of healthy maternal autonomic regulation is based on conclusions drawn from
studies using a variety of methods. Researchers who tested maternal cardiovascular reflexes concluded that
activity from the parasympathetic branch of the ANS is reduced (Ekholm et al 1994). Concerning the
sympathetic branch, results from studies that directly measured electrical activity in sympathetic nerves in the
skeletal muscles indicated an increased sympathetic state (Reyes et al 2018). Additionally, results from
assessments of baroreflex sensitivity showed decreased autonomic regulation of BP toward the end of pregnancy
(Brooks etal 2020).

Still, while these methods offer valuable insights, they require controlled test setups and would be
impractical to use as part of standard parental care. A better-suited, unobtrusive method would consist of
assessing heart rate variability (HRV) since this can be monitored longitudinally with wearable devices such as
ECG-Holter monitors or wrist-worn photoplethysmography (Shaffer and Ginsberg 2017). Given that the ANS is
responsible for regulating HR, assessing the variation in HR offers insight into autonomic regulation (Shaffer
and Ginsberg 2017). Standard time- and frequency-domain HRYV features inform on the interplay of the
sympathetic and parasympathetic systems, while more recently developed features describe further aspects of
autonomic regulation such as HR complexity, HR responsiveness, and HR fragmentation (Bauer et al 20064,
Shaffer and Ginsberg 2017, Costa et al 2017a). HRV assessment is already used in the early detection of sepsis,
assessment of fetal health, and risk stratification of cardiac disease (Rajendra Acharya et al 2006, Ahmad et al
2009, Eick etal 2015, Ponsiglione et al 2021), to name but a few. Similarly, assessing when maternal HRV
(mHRV) deviates from the expected norm during pregnancy may aid in the stratification of high-risk
pregnancies.

However, while HRV in healthy women has been extensively studied (Koenig and Thayer 2016), less is
known about how pregnancy affects HRV. Additionally, published studies are limited both in sample size
(typically n < 30 per group, with the largest study still involving less than 100 participants per group (Carpenter
etal2015)) as well as in the type of HRV features investigated (Ekholm et al 1997, Speranza et al 1998, Voss et al
2000, Balajewicz-Nowak et al 2016, Kuo 2000). Results from these studies—typically using only standard time
and frequency domain HRV features—are at times conflicting and often fail to demonstrate clear findings
(Sharifiheris et al 2022), likely in part due to small sample sizes. A recent review on the potential of mHRYV for
assessing maternal health confirmed that an understanding of what constitutes healthy mHRYV remains lacking
(Sharifiheris et al 2022). Furthermore, these researchers advocate for mHRYV investigations using HRV features
outside of the standard time and frequency domain features, since features such as those capturing HR
complexity may be better suited to reflecting the intricate physiological changes which occur during pregnancy
(Sharifiheris et al 2022).

Subsequently, to understand the potential of mHRYV in detecting deteriorations in maternal health, a
definitive understanding is needed of how mHRV changes during a healthy pregnancy. To this end, we employ a
comprehensive set of HRV analyses to quantify the potential differences in autonomic regulation between
healthy, non-pregnant women and healthy women at mid-pregnancy (n > 250 per group). By analyzing the
largest dataset reported thus far in the literature, we aim to clarify how healthy pregnancy impacts standard time
and frequency domain features. Furthermore, we investigate HRV features that capture HR complexity, HR
responsiveness, and HR fragmentation, some of which are being compared between pregnant and non-pregnant
women for the first time. Additionally, we determine the effect size of the differences in HRV features between
these two groups to understand the magnitude of the impact of pregnancy on HRV as well as which features are
most altered during gestation. Finally, we discuss our results in the context of findings on maternal autonomic
regulation based on alternative methods of autonomic assessment. The work outlined in this paper represents
the most comprehensive assessment of mHRYV in healthy pregnancies to date and forms the basis for the
potential use of mHRV in assessing maternal health.

Methods

Datasets

We retrospectively analyzed two datasets. The pregnant group is comprised of abdominal ECG measurements
(NEMO Healthcare BV, the Netherlands) of approximately 30 min collected from 492 women with singleton
pregnancies between 18 and 24 weeks of gestation (Verdurmen et al 2016). Recordings (500 Hz) were taken
while women were lying in a semi-recumbent position. The institutional review board at the Maxima Medical
Center, Veldhoven, the Netherlands, approved the original study (NL48535.015.14) and all participants
provided written informed consent. A waiver was granted for this secondary analysis by the same review board
per the Dutch law on medical research with humans (reference number N21.008). The study protocol for the
original study, which ran from 2014 to 2017, is described elsewhere (Verdurmen et al 2016).
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Table 1. Characteristics of the datasets. Data on age, BMI, and measurement length are presented as mean and standard deviation.

Characteristic Pregnant group Non-pregnant group
Number of included participants 258 252

Age 30.8 (4.1) years 24.6 (4.8) years
BMI (before pregnancy) 23.9(4.3) kgm 2 21.9(2.3) kgm 2
GA at measurement 20 weeks 4d (9d)

Nulliparous 53.1%

Fetal CHD 68 cases (26.4%)

Measurement length 29.9(5.0) min 22.4 (4.2) min

Women with a body mass index (BMI) over 30 kg m > were excluded (n = 67), as well as those who were
recorded outside of the gestational age of 18—24 weeks of pregnancy (n = 53), as specified in the original protocol
(Verdurmen et al 2016). Furthermore, maternal HRV is known to vary across pregnancy (Balajewicz-Nowak
etal 2016, Gargetal 2020, Bester et al 2022), hence the gestational age is limited to within this range. Thereafter,
those with pre-existing health conditions such as diabetes, maternal pregnancy complications such as
hypertensive disorders of pregnancy, or those who were taking medications other than vitamins (n = 106), were
also excluded from our analysis. A further two women are excluded owing to known atrial fibrillation.
Furthermore, eight were excluded during data preprocessing (see next section). In total, we included 252
participants. Of these, 68 had fetuses with fetal congenital heart disease (CHD). However, it has been
demonstrated that fetal CHD does not affect mHRYV Bester et al (2022) and, therefore, they are not excluded
here. Patient characteristics are presented in table 1. For a few patients information on age (1 = 17) or BMI
(n=5) is missing; these women are assigned the mean age and BMI.

The non-pregnant control group consists of participants from the Autonomic Aging dataset which is openly
available from Physionet (Goldberger et al 2000, Schumann and Bar 2022). ECG data were collected from 1121
participants in a resting, supine position. Participants were screened for any medical condition, use of illegal
drugs or any medications potentially influencing cardiovascular function. All participants were at least 18 years
old. Recordings were done at a sampling frequency of 1000 Hz using either a MP150 (ECG100C, BIOPAC
systems inc., Golata, CA, USA) or a Task Force Monitor system (CNSystems Medizintechnik GmbH, Graz,
AUT). These recordings varied considerably in length; subsequently, recordings of lengths between 20 and
40 min were included (n = 468). We excluded all men (1 = 165) and women 45 years old or older (n = 27).
Furthermore, we excluded women with a BMI over 30 kg m ™2 (n = 15). Ten women were excluded during data
preprocessing (see next section), finally resulting in the inclusion of 252 non-pregnant women. Participant
characteristics are outlined in table 1. The ages of the non-pregnant group are only available as grouped data, e.g.
participant 1 is between 20 and 24 years old, participant 2 is between 40 and 44 years old, etc. For seven
participants, no age data was available. While precise values are not available, we can estimate the mean and
standard deviation of such grouped data. Subsequently, all data in table 1 are reported as mean and standard
deviation, where applicable.

Preprocessing

While abdominal ECG measurements are typically acquired to obtain fetal ECG information, the amplitude of
the maternal ECG signal far exceeds that of the fetal ECG. In fact, extracting fetal information from abdominal
ECG measurements is a persistent challenge (Jaros et al 2018, Fotiadou et al 2021). While preprocessing of these
abdominal ECG measurements is done to improve the quality of the measurement, as detailed below, it is
important to note that the fetal information does not pose an obstacle in detecting maternal R-peaks, as can be
seen in figure 1. Figure 1(A) is a representation of a typical abdominal ECG measurement; the fetal information
is not visible. Figure 1(B) is a rarer example, where fetal peaks are visible. Still, the amplitude of the maternal
R-peak dwarfs that of the fetal peak.

The multichannel abdominal ECG measurements from the pregnant group are filtered by applying a 4th
order Butterworth bandpass filter of 1-70 Hz to suppress out-of-band noise and artifacts. Next, a notch filter is
applied at 50 Hz to suppress powerline interference and a fixed linear combination of the various abdominal
channels is applied to enhance maternal QRS peaks (Rooijakkers et al 2014).

The processing of maternal RR intervals from fetal ECG measurements was done in MATLAB (MathWorks,
USA). All further processing, analyses, and generating of figures were done in Python (PSF, USA).

For both datasets, a previously published peak detector is used to detect the R-peaks (Rooijakkers et al 2012,
Bester et al 2022) and generate the corresponding tachograms. RR-intervals that are physiologically improbable
(shorter than 0.4 s or longer than 2 s) or that differ from the preceding interval by more than 20% are rejected
(Campana et al 2010, Peters et al 2008, 2011). Furthermore, missing RR-values are interpolated using cubic

3



10P Publishing

Physiol. Meas. 44 (2023) 055001 M Bester et al
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Figure 1. Examples of filtered abdominal ECG measurements. In panel A, no fetal information is visible, as is typically the case. In
panel B, fetal R-peaks can be observed but with a substantially lower amplitude than that of the maternal R-peaks.

spline in cases where the HRV features require a continual time series (specifically, frequency domain and
complexity HRV features). Since interpolation is known to influence HRV results, signals which required more
than 1% interpolation across the entire recording are excluded when calculating these HRV features. This results
in a comparison between 163 non-pregnant and 182 pregnant participants. For the remaining HRV features, all
signals for which less than 15% of RR-intervals needed to be removed are included in the analysis. Subsequently,
data from 258 pregnant and 252 non-pregnant women are used.

HRYV features
Standard time- and frequency-domain features
The mean HR is calculated in beats per minute along with the standard deviation of the RR-intervals (SDNN) to
represent overall variability. The root mean square of the successive differences of the RR-intervals (RMSSD)
and the percentage of consecutive RR-intervals that differ by more than 50 ms (pNN50) are calculated as a
measure of parasympathetic activity since such short-term variations are mediated by the vagus nerve. To study
the spectral activity linked to the parasympathetic system, the power in the high frequency (HF) band of
0.15-0.40 Hz s calculated. Furthermore, the power in the low frequency (LF) band 0f 0.04-0.15 Hz (influenced
by both branches of the ANS), as well as the LF/HF ratio, are calculated (Task Force of The European Society of
Cardiology and The North American Society of Pacing and Electrophysiology 1996, Shaffer and Ginsberg 2017).
For calculating these spectral features, Welch’s method is used. Recordings are divided into five-minute
segments with 50% overlap; the features are calculated for each five-minute segment and subsequently, the
mean of all segments is presented as the final feature value for each recording. For the time-domain features as
well as all the following HRV features, the feature is calculated across the entire recording.

Nonlinear and complexity features

We use a Poincaré plot—a popular geometrical method to evaluate HRV dynamics—in which each RR-interval
is plotted against its predecessor to form a scatter plot that is fitted with an elliptical shape. From this ellipse,
three parameters are calculated: the short- and long-term RR variability (SD1 and SD2), as well as the ratio
between them (SD1/SD2) (Khandoker et al 2013). Furthermore, we assess complexity in the tachograms with
two features: sample entropy (SampEn) and detrended fluctuation analysis (DFA) (Peng et al 1995, Richman and
Moorman 2000). SampEn quantifies the conditional probability that two epochs which are similar within a
tolerance r for a window length m will remain similar when including the next data point (i.e. the next RR
interval) (Richman and Moorman 2000, Bakhchina ef al 2018). The parameters m and rare set to 2 and 0.2 times
the standard deviation of the RR-intervals (Richman and Moorman 2000). Lower SampEn indicates a more
regular and predictable time series (Shaffer and Ginsberg 2017). Additionally, DFA is used to quantify the fractal
scaling properties of the time series to give an estimation of its long-range correlations. We calculate the short-
term fractal scaling exponent «;, which represents the correlation over 4-16 heartbeats (Peng et al 1995). A
result of &« = 0.5 and o = 1.5 represent no correlation (i.e. white noise) or a random walk process (i.e. Brownian
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noise), respectively. Positive correlations exist when 0.5 < o < 1.5, with o /& 1 suggesting a high level of
complexity. Values above 1 suggest that the system becomes increasingly regular (Peng et al 1995, Yeh et al 2009).

Heart rate fragmentation

Opverall, the presence of variability in the tachogram suggests healthy autonomic control. However, situations in
which there is a breakdown in the controlled physiological variation of the HR (such as aging) may also result in
higher levels of short-term variability (Costa et al 2017a). Heart rate fragmentation (HRF) features capture this
jagged type of variability which is likely a result of inadequate autonomic control, but rather of a breakdown in
the neuroautonomic-electrophysiological control systems that regulate HR (Costa eral 2017a).

Four indices were developed by Costa et al to capture this fragmentation in the HR (Costa et al 2017a):
percentage inflection points (PIP), inverse of accelerating or decelerating long segments (IALS); percentage short
segments (PSS); and percentage alternating segments (PAS). PIP captures how often the acceleration sign of the
HRis changing. IALS represents the inverse of the average length of sustained accelerating or decelerating RR-
intervals. PSS is the complement of the percentage of RR-intervals with a sustained acceleration or deceleration
in HR for at least three intervals. Finally, PAS is the percentage of the RR-intervals which are continuously
alternating between accelerations and decelerations (starting from a minimum of four intervals). Note that
increases in these indices reflect increased HR fragmentation.

Phase rectified signal averaging
Phase rectified signal averaging (PRSA) is a method that quantifies how the tachogram responds to accelerations
and deceleration in the HR as a proxy measure for autonomic responsiveness. We briefly describe the method
here; for a more detailed description and visualization of this technique, please refer to the original publication
(Bauer et al 2006a). This method allows us to capture the quasi-periodicities in the tachogram, which can often
be obscured by noise and non-stationarities. This is done by identifying a phase of interest, placing anchor points
(APs) everywhere this phase occurs, isolating a signal segment of length 2 L around each AP, aligning segments
by their phase, and finally averaging these segments. We specify two sets of APs, namely each HR deceleration
and HR acceleration. Furthermore, we define L as 50 RR values, as is also done in the literature (Joshi et al 2018).
The resulting PRSA waveform visualizes the behavior of HR in response to accelerations and decelerations.
The magnitude and speed of the response observed in the waveform give an estimate of the robustness of the
autonomic response (Bauer et al 2006a). (Note that the PRSA waveform’s relationship to the time domain is
units of RR values (specified here as RR;) and not in seconds.) Features are calculated to quantify the PRSA
waveform (X). The most established feature, deceleration capacity (DC), is calculated as follows:

DC = [X(0) + X (1) — X(—1) — X(—2)]1/4, 1)

with X(0) representing the AP, X(1) is the value following the AP, while X(—1) and X(—2) precede the AP (Bauer
etal 2006a). The acceleration capacity (AC) is similarly calculated. Additionally, the difference between the
maximum and minimum RR; within the neighborhood of five RR; preceding the AP and five after, including the
AP, is calculated to determine the immediate deceleration response (IDR) and immediate acceleration response
(IAR). The rates corresponding to these responses are also calculated with the slope of the deceleration and
acceleration responses (SDR and SAR) (Joshi et al 2018).

Statistical analysis and data representation

The normality of data was tested with D’Agostino’s K* test. Only mean HR was normally distributed for both
groups; subsequently, a Student t-test was used to test for significance (p < 0.05) of the difference in HR, while a
non-parametric test (the Mann-Whitney U test) was performed for all other features. Corresponding effect sizes
were calculated with Cohen’s d, where 0.2 amounts to a small effect, 0.5 to a medium effect, and 0.8 to alarge
effect. However, since Cohen’s d assumes a normal distribution for the data, we perform a bootstrapping
procedure (10 000 iterations) and report the subsequent mean d-value along with the 95% confidence intervals
(CI), as is appropriate in non-parametric analyses (Kelley 2005). Note that d-values may also be negative and that
the magnitude of the change is inferred from the absolute d-value. To further contextualize the effect sizes of the
differences between our two groups, we additionally calculated to effect sizes of the differences in HRV between
women (i.e. our non-pregnant control group) and men. These two groups are known to have differences in their
autonomic regulation (Koenig and Thayer 2016). The details and results of this analysis can be found in the
appendix.

Results

We graphically present our results along with the appropriate statistics. For the mean HR (the only feature with a
normal distribution), we plot the distribution of each group; all other features are presented as boxplots. Figure 2

5



10P Publishing

Physiol. Meas. 44 (2023) 055001 M Bester et al

—— Pregnant
0.06 4 —— Control

p < 0.001
0.05 - d=1.27
(1.09 - 1.47)

0.04

density

0.02

0.01

0.00 = T T T T T T T
40 50 60 70 80 90 100 110

Mean HR (bpm)

Figure 2. Distribution of the mean HR values of pregnant and control groups, with peaks at approximately 70 bpm and 80 bpm for
pregnant and non-pregnant women, respectively.
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Figure 3. Boxplots of time-domain HRV features with corresponding statistical significance (p-value) and effect sizes (d-value)
reported with 95% confidence intervals.

shows the distribution of the mean HR for each group, clearly demonstrating a significantly increased HR in
pregnant women (d = 1.27 (1.09-1.47). Additionally, features of HRV (figure 3) that are linked to short-term
variation (RMSSD and pNN50) are significantly reduced (d = —1.1 (—1.28 - —0.93) and —1.15(—1.34 - —0.98),
respectively). SDNN shows a statistically significant yet small change between groups (d = —0.35 (—0.55
-—0.16)).

In the frequency domain (figure 4) we see a similar statistically significant reduction in HF, the feature linked
to vagal activity (d = —1.03 (—1.23 to —0.83)). Low frequency (LF) is significantly elevated, while LF/HF
increases significantly with a large effect size (d = 1.2 (0.96-1.44)).

Most nonlinear features (figure 5) show large changes. SD1/SD2 is significantly decreased (d = —1.39
(—1.58 to —1.21) during pregnancy, which is driven by alarge change in SD1 (d = —1.1 (—1.27 to —0.93) ). The
latter is also linked to vagal activity. DFA («;) is increased in pregnancy with a remarkably large effect size
(d=1.74(1.47-2.03)), a change that signals a decrease in the complexity of the HR. Additionally, the statistically
significant and large decrease in SampEn (d = —0.89 (—1.11 to —0.68)) suggests the same.

One of the HRF features in figure 6 (JALS and PSS) similarly has a large effect size between the two groups
(d=—0.87 (—1.07 to —0.67)). This feature represents the absence of sustained HR accelerations and
decelerations and is significantly decreased in pregnancy. Furthermore, PIP and IALS are also significantly
decreased during pregnancy with small effect sizes, while PAS is significantly increased, also with a small
effect size.

For the PRSA analysis, the average PRSA waveform for each group is plotted (figure 7) in addition to the
boxplots representing the feature values (figure 8). From figure 7, we can see that the autonomic response of
pregnant women is attenuated when compared to non-pregnant controls. This can be seen by noting the smaller
amplitude of the blue waveform. This is further confirmed by the statistically significant decreases in features
capturing the PRSA response for pregnant women in figure 8, overall, with medium to large effect sizes.
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Figure 4. Boxplots of frequency-domain HRV features with corresponding statistical significance (p-value) and effect sizes (d-value)
reported with 95% confidence intervals.
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Figure 5. Boxplots of nonlinear HRV features with corresponding statistical significance (p-value) and effect sizes (d-value) reported
with 95% confidence intervals.

Furthermore, a smoother response is observed in the PRSA waveform of pregnant women (figure 7). This
prompted a visualization of the frequency domain of these waveforms using power spectral density (PSD). From
the PSDs, we can approximately observe the spectral activity in the areas associated with the traditional LF and
HF areas of HRV. Increased activity in the LF region and decreased activity in the HF region is observed for
pregnant women, again suggesting increased sympathetic and decreased parasympathetic (or vagal) activity.

Finally, figure 9 presents the effect sizes with 95% CI for all features in descending absolute magnitude. Most
features show changes between pregnant and non-pregnant women with large effect sizes (d > 0.8). DFA
(ap)—linked to HR complexity—has the largest effect size. SD1/SD2 and LE/HF also have similarly large effect
sizes; both these features relate to the balance between the sympathetic and parasympathetic systems. All the
features closely linked to vagal activity (pNN50, SD1, RMSSD, and HF) show similar effect sizes around d = 1.1.

In the appendix, a similar graph (figure A.1) can be found which presents the effect sizes of the differences in
HRYV between women (i.e. the non-pregnant control group) and men. When comparing figures 9 to A.1, it
appears that there are larger changes in autonomic regulation between non-pregnant women and pregnant
women than there are between non-pregnant women and men.

Discussion

Dramatic changes occur in maternal physiology during pregnancy. Not only are there substantial adaptations in
most organ systems, but large shifts also occur in autonomic regulation. In this paper, we outline the differences
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Figure 6. Boxplots of HRF features with corresponding statistical significance (p-value) and effect sizes (d-value) reported with 95%
confidence intervals.

201 —— pregnant —— pregnant
= control = control
10 4 101
m
E
< 07 01
%]
o
a
~10 A —10 4
-0 . . . — —201, . ; | .
-20 -10 0 10 20 -20 -10 0 10 20
RRIi RRi
- pregnant 5004 ™ pregnant
200 == control = control
150 4 150 A
a
L 1004 100 A
N \/\ N \/\
o—T F HF N~ 0 LF HF N
102 107t 1072 107t
1/RRi 1/RRi

Figure 7. Top: PRSA waveforms with HR accelerations as anchor points (left) and HR decelerations as anchor points (right). Bottom:
PSD plots corresponding to the PRSA waveforms directly above.

in autonomic regulation as assessed with a comprehensive set of HRV between pregnant and non-pregnant
women in large cohorts. We compare features such as SampEn and those related to HRF for the first time
between pregnant and non-pregnant women, finding that lower HR complexity and HRF are present during
pregnancy. Furthermore, we demonstrate that pregnant women have significantly reduced autonomic
responsiveness, building on preliminary work by our group (based on only nine participants per group) which
indicated that only some PRSA features were affected by pregnancy (Bester et al 2022). Additionally, based on the
large groups assessed in this work, we find that mHRYV in pregnancy reflects reduced parasympathetic and
increased sympathetic activity, resolving the often conflicting findings of smaller studies (Sharifiheris et al 2022).
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Moreover, we investigated the effect sizes of differences between these groups; overall, we find that healthy
women at mid-pregnancy are autonomically distinct from their non-pregnant counterparts.

We find that HR complexity is remarkably reduced during pregnancy; the significantly lower SampEn in the
pregnant group suggests a large drop in complexity at mid-pregnancy (figure 5,d = —0.89 (—1.11 to —0.68)).
Furthermore, the feature «; from DFA, which captures short-term changes in HR over multiple timescales,
shows a large, significantly increased in the pregnant group as compared to the non-pregnant group (d = 1.74
(1.47-2.03)), which signals reduced self-similarity in the HR signal. The latter result confirms that of a smaller
study, which found significantly elevated «; in late pregnancy compared to non-pregnant controls (n = 16) (Yeh
etal2009). HR complexity and self-similarity have rarely been explored in pregnancy and, as such, there is no
known physiological explanation for this change.

However, recent studies have shown that v, is well-suited for capturing the fatigue of ultramarathon runners
(Gronwald etal 2021, Rogers et al 2021), even in cases where HR remains steady (Rogers et al 2021) or when
standard features such as SDNN and RMSSD show little relation to fatigue (Gronwald et al 2021). The
researchers who performed this work suggest that during a fatigued state, the integration between the
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physiological subsystems of the human body over different timescales starts to break down, manifesting as the
decoupling between systems (e.g. the cardiac and respiratory systems). This may act as a protective mechanism,
ensuring that interactions between systems fail before whole systems do (Rogers et al 2021). We hypothesize a
similar mechanism to be in place during pregnancy. The increased physiological stress of pregnancy, along with
the added burden of the placental-fetal unit on the maternal cardiovascular system, likely results in systems
functioning more independently, leading to a decrease in HR complexity. These results support previously
published work, which found that these nonlinear features are more sensitive to GA than standard HRV features
when tracked from 15 to 41 weeks of gestation (Bester et al 2022). Furthermore, these researchers found that
SampEn has a statistically significant relationship with GA even across the narrow range of 18-24 weeks of
gestation, while SDNN and RMSSD showed no relationship (Bester et al 2022).

Additionally, we investigated the effect of pregnancy on HREF for the first time. Three HRF features are
significantly reduced in pregnant women (figure 6), with PSS showing a large change (d = —0.87 (—1.07 to
—0.67)). This finding is somewhat surprising as it suggests that pregnancy reduces HR fragmentation.
Alternatively, an increase in HR fragmentation would suggest a breakdown in the hierarchy of the physiological
systems regulating HR, as is the case in older populations and those with coronary artery disease (Costa et al
2017a,2017b). Since participants in the pregnant group are healthy, we would not expect increased
fragmentation. However, it is quite remarkable that HR fragmentation seems to reduce. We should note here
that HRF is not yet as well established as the other HRV features assessed in this study and that the basic
mechanisms underlying fragmentation still need to be fully explored (Costa et al 2018). However, a large
decrease in PSS in pregnant women suggests an increase in sustained accelerations and decelerations of the heart
rhythm (or conversely, a decrease in RR-intervals quickly alternating between acceleration and deceleration).

This may be at least partially ascribed to a state of decreased vagal activity, which regulates beat-to-beat HR
variation, in conjunction with the increased sympathetic activity, which is responsible for changing the HR over
longer time scales. The mHRYV study with the largest sample size in the literature (99 pregnant women and 63
controls) found this autonomic state to be present in the first trimester (Carpenter et al 2015), however, other
researchers found increased vagal activity (Alam et al 2018) and decreased sympathetic activity in early
pregnancy (Stein et al 1999, Alam et al 2018). Considering analyses done on women in mid-pregnancy, as is also
the case for our study group, Ekholm et al found in 1992 that pregnant women have decreased parasympathetic
activity and increased sympathetic activity at mid-pregnancy (Ekholm et al 1992). These findings are also
supported by further investigations (Balajewicz-Nowak et al 2016, Garg et al 2020). However, other studies have
found sympathetic activity, as assessed with LF, to be decreased (Ekholm et al 1997, Voss et al 2000) or not
significantly altered during pregnancy (Eneroth-Grimfors et al 1994), rather than increased. However, these
studies were performed using small sample sizes (1 < 30). Furthermore, LF is known to be a sensitive metric that
should be interpreted with caution (Heathers 2014). Still, the results of our standard HRV features reaffirm those
of (Ekholm et al 1992, Balajewicz-Nowak et al 2016, Garg et al 2020) in that vagal activity (as assessed by RMSSD,
pNN50, and HF, figures 3 and 4) is reduced in pregnant women, while sympathetic activity—in so far as we can
infer sympathetic activity from changes in LF and LF/HF (figure 4)—is increased. The increased HR (figure 2),
which we expect based on the literature (Loerup et al 2019, Green et al 2020), as well as the decreased SD1,/SD2,
further suggest increased sympathetic and decreased parasympathetic activity. Furthermore, the overall findings
on vagal and sympathetic activity also align with the conclusions drawn from investigations using
microneurography (i.e. direct measurement of sympathetic activity in the skeletal muscles) and cardiovascular
reflex tests to assess maternal autonomic tone (Rang et al 2002, Reyes et al 2018).

Results from the PRSA analysis also suggest reduced vagal activity (AC and DC are significantly reduced in
pregnancy; figure 8). This is further confirmed by the clear reduction in HF activity observed in the
corresponding PSDs in figure 7. Looking at the magnitude and rate of the responses (IAR, IDR, SAR, and SDR),
we can further conclude that autonomic responsiveness is diminished in pregnant women. This is another
notable result since reduced responsiveness is typically associated with states such as cardiac disease and fetal
distress (Bauer et al 2006a, Weyrich et al 2020). Yet, from visual inspection of the PRSA waveforms, it appears
that the dampening seen in a healthy pregnancy is smaller than that seen in cases of cardiac disease (Bauer et al
2006b). However, since effect sizes are not reported for the latter, it is not possible to make a definitive
comparison. Still, this dampened autonomic responsiveness during healthy gestation is echoed in other areas of
research. Investigators have found attenuated baroreflex sensitivity (Brooks et al 2020), reduced physiological
responsiveness to stimuli such as pain and relaxation tests (DiPietro et al 2012), and—interestingly—reduced
neurocardiovascular transduction. The latter refers to a state where the amount of sympathetic activity in the
body has alower than expected effect on cardiovascular end-points, such as HR (Reyes et al 2018). The only prior
work comparing PRSA between pregnant (n = 9) and non-pregnant (1 = 9) women is a preliminary analysis
performed by our group (Bester et al 2022); here, AC, IAR, SAR, and SDR were significantly reduced in pregnant
women, while DC, IDR, ADR, and AAR showed no significant changes, potentially due to the small sample sizes.
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Opverall, we can infer from our results that healthy pregnancy is indeed a state of reduced vagal activity and
overactive sympathetic activity compared to non-pregnant controls. Such an autonomic state is likely necessary
to maintain a healthy pregnancy, for example, to ensure proper perfusion of the placenta. However, this altered
autonomic regulation is possibly dangerous, as it is similar to that found in cases of cardiac disease. To this end,
we hypothesize that the reduced autonomic responsiveness (which is reflected in our PRSA analyses as well as the
known reduced neurocardiovascular transduction in pregnancy) is a mechanism by which the mother is
protected against her autonomic state. This theory is further reflected in findings from Casati et al (2016), who
observed increased autonomic responsiveness in women with pregnancy complications (such as hypertensive
disorders of pregnancy) when compared to healthy pregnant controls. Subsequently, we believe PRSA analysis
may be particularly useful in assessing maternal health via mHRV.

It should be noted that our study is limited in terms of measurement length (25 min). Future studies
should aim at incorporating 24 h measurements, which may offer additional information on the underlying
slower processes influencing HRV. Additionally, as the mean age of the pregnant women is approximately five
years greater than that of the non-pregnant women, the results observed in this paper are potentially
exaggerated. However, based on reference ranges for HRV in the non-pregnant population as well as prior work
from our group on the impact of age on mHRV (Sammito and Bockelmann 2016, Bester et al 2022), it is unlikely
that the differences observed between the groups are predominantly a result of their age difference.
Furthermore, recordings were acquired in different positions for the respective groups. While the supine
position is typical for resting HRV assessments in non-pregnant women, a semi-recumbent position is preferred
in the case of pregnant women since aortocaval compression can occur in the supine position which is known to
affect autonomic regulation (Chen et al 1999). While the impact of this difference in positions on the results is
not known, both groups are in the preferred position for HRV measurements. Additionally, we could not
account for the potential impact of the different stages of the menstrual cycle which the non-pregnant women
may be in. However, the impact of these stages on HRV is small compared to the changes observed in this study
(Vallejo eral 2005, Tenan et al 2014).

Furthermore, this work is a secondary analysis of data collected to define normative fetal ECG ranges
between 18 and 24 weeks of gestation; as such, only data from mid-pregnancy are analyzed for the pregnant
group. Previous work has shown that HRV also changes significantly with progressing pregnancy (Bester et al
2022). Therefore, further studies are needed to definitively conclude how mHRYV differs between non-pregnant
women and those in early- and late pregnancy, respectively. However, the work presented here has several
advantages over the current state of the art in the literature, chiefly the variety of HRV features investigated
(instead of only the standard time- and frequency-domain features) as well as the large sample groups, which
allow us to confidently draw conclusions concerning mHRYV at mid-pregnancy.

Finally, to contextualize the magnitude of the changes we observe between pregnant and non-pregnant
women, we repeated our analysis to compare the group of non-pregnant women against men (see appendix).
We found that the effect sizes of the differences between pregnant and non-pregnant women (figure 9) are
overall larger than those of non-pregnant women compared to men (Appendix, figure A.1). While autonomic
regulation is known to differ between the sexes (Koenig and Thayer 2016), from our analysis it appears that
women are more autonomically different from their pregnant counterparts than they are from men.

Conclusion

Subsequently, we conclude that healthy mid-pregnant and non-pregnant women are two autonomically distinct
groups, and findings of HRV in non-pregnant women cannot be translated to pregnant women. Furthermore,
our findings on mHRYV not only align with results from other areas of autonomic investigation but also provide
additional information on the maternal autonomic state. These changes often have large effect sizes, the most
remarkable of which are for DFA («;), SD1/SD2, and LF/HF, suggesting that these may be particularly useful in
assessing maternal health.

Data availability statement

The data for the non-pregnant women are publicly available from Physionet (https://doi.org/10.1038 /s41597-
022-01202-y).The data for the pregnant women cannot be made publicly available upon publication because
they contain sensitive personal information. The data that support the findings of this study are available upon
reasonable request from the authors.
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Appendix

We repeated the analysis detailed in this paper to compare HRV between women and men. The women in this
comparison are the same as in the non-pregnant control group. Therefore, 252 women were included when
comparing HRV features that do not require interpolation of the RR-intervals, and 166 women were included in
comparisons that necessitate interpolation. These women were included from the Autonomic Aging dataset
(available at Physionet) which also contained ECG recordings of men. Subsequently, we also obtained our male
group from this Autonomic Aging dataset by applying similar inclusion and exclusion criteria. Subsequently,
131 men were included in the analyses which did not require interpolation, and 78 were included in the analyses
which did. Figure A.1 represents the effect sizes of the differences between each feature listed on the x-axis. Effect
sizes were calculated with Cohen’s d, where 0.2 amounts to a small effect, 0.5 to a medium effect,and 0.8 toa
large effect.
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Figure A.1. Cohen’s d effect sizes with 95% CI, plotted in order of descending absolute magnitude, for the HRV comparison between
women and men.
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