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ABSTRACT
We present the RUPTURA code (https://github.com/iraspa/ruptura) as a free and open-source software
package (MIT license) for (1) the simulation of gas adsorption breakthrough curves, (2) mixture
prediction using methods like the Ideal Adsorption Solution Theory (IAST), segregated-IAST and explicit
isotherm models, and (3) fitting of isotherm models on computed or measured adsorption isotherm
data. The combination with the RASPA software enables computation of breakthrough curves directly
from adsorption simulations in the grand-canonical ensemble. RUPTURA and RASPA have similar input
styles. IAST is implemented near machine precision but we also provide several explicit mixture
prediction methods that are non-iterative and potentially faster than IAST. The code supports a wide
variety of isotherm models like Langmuir, Anti-Langmuir, BET, Henry, Freundlich, Sips, Langmuir-
Freundlich, Redlich-Peterson, Toth, Unilan, O’Brian & Myers, Asymptotic Temkin, and Bingel & Walton.
The isotherm model parameters can easily be obtained by the fitting module. Breakthrough plots and
animations of the column properties are automatically generated. In addition to highlighting the code,
we also review all the developed techniques from literature for mixture prediction, breakthrough
simulations, and isotherm model fitting, and provide a tutorial discussing the workflows.
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Nomenclature

T absolute temperature, K
R universal gas constant, 8.314464919 J mol−1 K−1

S entropy, J K−1

V volume, m3

L length of packed bed adsorber, m
m mass, kg
N number of molecules, –
NC number of components, –
n number of moles, –
p, pT total pressure in the bulk fluid phase, Pa
f fugacity, Pa
ϕ fugacity coefficient, –
mi chemical potential of component i, J mol−1

qi adsorbed loading of species i, mol (kg framework)−1

qi average molar loading of species i, mol (kg framework)−1

q∗i adsorbed loading of pure component i evaluated at the
mixture T and Ω, mol (kg framework)−1

qT total loading of the mixture, mol (kg framework)−1

q(f ) absolute loading of the adsorbed phase as a function of
fugacity, mol (kg framework)−1

q(p) absolute loading of the adsorbed phase as a function of
pressure, mol (kg framework)−1

qsat saturation loading, mol (kg framework)−1

qeq equilibrium loading, mol (kg framework)−1

b equilibrium constant, Pa−1

θ fractional loading, -
xi mole fraction of species i in the adsorbed phase, –

yi mole fraction of component i in the bulk fluid phase, –
t time, s
v interstitial gas velocity entering the packed bed, m s−1

1B packed bed void fraction, –
D axial dispersion coefficient, m2 s−1

Dm molecular diffusion coefficient, m2 s−1

DK Knudsen diffusion coefficient, m2 s−1

DS surface diffusion coefficient, m2 s−1

DMS Maxwell-Stefan diffusion coefficient, m2 s−1

DF Fick diffusion coefficient, m2 s−1

k mass transfer coefficient, s−1

r
B

bed density, kg m−3

particle density, kg m−3

r f fluid phase density, kg m−3

Ω grand potential (V = U − TS−∑i miNi),
J (kg framework)−1

ψ reduced grand potential (c = −V/(RT)),
mol (kg framework)−1

Γ thermodynamic correction factor, -
rp particle size, m
GCMC Grand-Canonical Monte Carlo
PSA Pressure swing adsorption
TSA Temperature swing adsorption
SSP-RK Strong-Stability Preserving Runge-Kutta

Subscripts

i refers to component i
T refers to total mixture or pressure
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∗ indicates a property of the pure component evaluated at the
mixture T and Ω

1. Introduction

The separation of mixtures are of extreme importance to che-
mists and chemical engineers [1]. Adsorption based methods
are often implemented for the separation of industrial pro-
cesses such as separation of hydrocarbons [2], CO2 capture
[3], water purification [4], refrigeration [5], etc. Adsorptive
separation processes are divided into two broad categories:
(a) continuous flow systems and (b) cyclic batch systems [6].
In a continuous flow system, the fluid phase passes through
a fixed bed of solid adsorbents. The capacity of the adsorbents
depends on the fluid phase velocity and residence time. To
maintain the counter-current contact, the adsorbent must be
circulated continuously or the circulation should be mimicked
through clever semi-continuous design, e.g. by switching pro-
cess streams [6]. Such requirements lead to a complex design
of the separation system and reduced operational flexibility
[6]. An example of such a system is the Simulated Moving
Bed (SMB) which is widely used for chromatographic appli-
cations [7]. Moving bed systems are designed to regenerate
adsorbents by another bed by displacement and this is not a
common large-scale industrial adsorption setup. In cyclic
batch systems, the bed is alternately saturated and regenerated
[6]. Based on the method of regenerating the adsorbent, the
cyclic systems can be categorised into: (a) Pressure Swing
Adsorption (PSA) and (b) Temperature Swing Adsorption
(TSA) [8]. In TSA, the adsorber column is regenerated by heat-
ing the bed using a hot stream of non-adsorbing gas. This
operation is performed at a temperature at which the adsorbed
species desorb from the bed and are carried away along with
the stream of hot gas. TSA has been widely used for gas drying
and volatile organic compound recovery [8]. In PSA, deso-
rption is achieved by lowering the pressure of the column at
a constant temperature which is followed by purging of a
non-adsorbing stream of gas to remove the desorbed species
[6]. Vacuum Pressure Swing Adsorption (VPSA) is a kind of
PSA which is used for hydrogen purification, CO2 capture,
and air separation [8].

PSA is a non-cryogenic gas separation technology that
achieves very high purity [9]. Pressure-swing adsorbers are
operated in cyclic steady-state consisting of a minimum of
two fixed beds with adsorbent, which continuously cycle
through four dynamic process steps (Skarstrom cycle [10]):
pressurisation, adsorption, blow-down, and desorption. The
use of more adsorbent columns improves the outlet gas purity
and recovery rate because of the possibility of accommodating
more pressure equalisation steps in each PSA cycle [11–13].
Pressure equalisation is a process where gas leaving the first
column being depressurised is used to partially pressurise
the second adsorbent column [13]. Apart from improving
the recovery and purity, this process also reduces the energy
consumption. The frequency of regeneration is high in case
of PSA adsorption systems [6] and it does not have much
impact on the adsorbent structures. These systems are
designed based on short cycles [6] (ca. seconds to minutes).

The frequency of regeneration is a crucial factor in designing
TSA-based systems. This is because, frequent thermal regener-
ation processes can adversely affect the adsorbent structure [6].
Therefore, TSA units are typically designed for longer cycles
[6] (ca. hours to days) of operation.

Important factors that determine the economics of PSA
units are [14]: (1) high selectivity for the adsorption of one com-
ponent over the other components present in the gas mixture,
(2) high working (adsorption) capacity between the conditions
of regeneration and adsorption, (3) mild conditions for regen-
eration (usually induced by pressure or temperature swings), (4)
high stability and resistance against impurities and moisture,
and (5) fast adsorption kinetics. These factors most often
exclude each other, and chemists and materials scientists
attempt to find and rationalise the ‘sweet spot’ for designing
adsorbents [14]. In particular, in addition to selectivity, working
capacity and recyclability (including the kinetics and energy of
regeneration) are also key performance parameters [15]. The
working capacity is the difference in loading of the preferen-
tially adsorbed component at the adsorption pressure minus
the loading at the purge pressure [16]. The adsorptive delivery
should be maximised considering the entire adsorption-deso-
rption cycle [17]. Based on this, an optimal enthalpy of adsorp-
tion change can be estimated. Experimental screening of
potential adsorbent materials for use in PSA services is time
consuming. Therefore, computational screening of possible
adsorbent materials for their performance factors is crucial.

Adsorption processes in fixed-bed columns are influenced
by first order factors (adsorption equilibrium isotherms) and
second order factors (kinetics of intra/inter-particle mass/
heat transfer, film/heat mass transfer, dispersion, nature of
fluid flow, wall heat transfer) [6,19,20]. The performance of
adsorbents in fixed-bed adsorbers can be evaluated by per-
forming ‘breakthrough’ simulations. A schematic diagram of
fixed-bed adsorber is shown in Figure 1. A fixed bed packed
with particles containing porous materials is pressurised and

Figure 1. (Colour online) Schematic diagram of fixed-bed adsorber. A peristaltic
compressor/pump is used to maintain a constant flow rate. In most gas-phase
adsorbers, the gas enters from the top and flows down through the bed, while
in a typical liquid system the column fills upwards [18]. The outlet of the bed
is connected to a sample collector.
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purged with a carrier gas. A fluid is added to the carrier gas and
the change of the component concentrations along the column
and at the outlet of the fixed bed are recorded. Depending
upon process objectives, a fixed-bed operation may be divided
into three types: saturation adsorption, elution, and chromato-
graphy [20]. For saturation adsorption, a feed solution is
passed through a column packed with adsorbents for the pur-
pose of removal of the preferentially adsorbed component.
This process continues until the adsorbents become
sufficiently saturated, and the solute removal rate diminishes
to the extent that termination of operation becomes necessary.
Elution (desorption) is a process in which a solvent is passed
through a column of adsorbents saturated with solutes. For
chromatographic applications, a pulse of the mixture is intro-
duced into a carrier fluid flowing through a column packed
with adsorbents [20]. Pulse breakthrough is affected by both
adsorption and desorption.

Despite the importance of breakthrough simulations,
there is a lack of open-source software to predict break-
through curves in fixed-bed adsorbers. In this article, we pre-
sent such a software package named ‘RUPTURA’. The code
is available under the MIT license and downloadable from
github (https://www.github.com/iraspa/ruptura). Mixture
prediction and breakthrough simulations rely on isotherm
models that can be obtained by fitting isotherm data.
RASPA [21,22] is a software package for simulating adsorp-
tion of molecules in nanoporous materials. The combination
with RASPA enables computation of breakthrough curves
directly from the pure component adsorption simulations
in the grand-canonical ensemble. RUPTURA and RASPA
have similar input styles. RUPTURA contains three modules
of workflow encountered in this field: (1) the computation of
step and pulse breakthrough, (2) the prediction of mixture
adsorption (used in the breakthrough equations) based on
pure component isotherms, and (3) the fitting of isotherm
models on raw (computed or measured) isotherm data.
Many isotherm models have been published in the literature
[20,23–27]. We included isotherm models like Langmuir,
BET, Henry, Freundlich, Sips, Langmuir-Freundlich, Red-
lich-Peterson, Toth, Unilan, O’Brien & Myers and Asymptotic
Temkin, as well as their multi-site versions or combinations of
those. The implemented mixture prediction methods are: Ideal
Adsorption Solution Theory (IAST) [28], segregated IAST
[29], Explicit Isotherm (EI) model [30] and Segregated Explicit
Isotherm (SIAST) model [31]. IAST is computed fast and near
machine precision. The breakthrough simulations include
axial dispersion and the Linear Driving Force (LDF) model
for mass-transfer [32], and use a numerically stable method
called Strong-Stability Preserving Runge-Kutta (SSP-RK) for
the numerical integration [33–37].

We foresee our code being used in (industrial) research
for screening adsorbents for separation processes based on
PSA, and TSA but also for teaching in chemistry and chemi-
cal engineering classes. Hence, in this article we combine the
presentation of our code with a review of the underlying the-
ory and methodologies, and a tutorial. The teaching aspect is
also the reason why the numerical schemes and fitting pro-
cedure are described in detail. The tutorial aspect also
implied that we aim to make our code as easy to use as

possible, and that the generation of breakthrough pictures
and movies is automatic. It is also vital that researchers
and students would be able to play around with examples
that run in the order of minutes. This is interactive enough
to investigate the effect of adsorption, axial dispersion, mass-
transfer coefficients, column void fraction, flow velocity, and
column length on the breakthrough and separation
efficiency. To achieve even higher computational speed, we
included isotherm models of explicit nature (EI and SEI)
that, although limited to Langmuir behaviour, work for any
number of components [30].

Our article is organised as follows. We begin by explaining
models for pure component isotherms (Section 2) and discuss
the methodology to predict mixture results from pure com-
ponent isotherm in Section 3. Such methodologies include
IAST and we detail our implementation and validate it by
comparing it to previous work. Section 4 contains the theory
on breakthrough simulations and our detailed numerical
implementation. In Section 5, we focus on our genetic-algor-
ithm implementation of isotherm fitting. We close our article
with a description of the installation instructions (Section 6),
the input format and options (Section 7), a tutorial (Section
8), and a troubleshooting section (Section 9). Our main
findings are summarised in Section 10.

2. Isotherm models

2.1. Introduction

Adsorption is a surface process that involves the transfer of a
molecule from a bulk fluid to a solid surface. Physical adsorp-
tion is caused by Van derWaals forces (includes dipole–dipole,
dipole-induced dipole, London forces, and possibly hydrogen
bonding) [38,39]. An adsorbate is a molecule adsorbed on
the surface of the solid material, and the solid material is
referred to as the adsorbent. An adsorption process is the
addition of adsorbate to the adsorbent by increasing the
adsorptive pressure, while desorption is the removal of adsor-
bate from the adsorbent by decreasing the adsorptive pressure
or/and increasing the temperature [39,40]. Experimental
adsorption data are routinely reported as net or excess amounts
adsorbed, while simulations such as molecular simulations
measure absolute adsorption. The excess adsorbed amount
refers to the difference between the actual (absolute) amount
adsorbed and the amount that would be present in the same
volume at the density of the fluid in the bulk phase [41,42].
The net adsorbed amount has a reference state that does not
require the knowledge of the adsorbent volume, and the
solid and adsorbed phase are being treated as an entity [43].
Statistical thermodynamic theories and molecular simulations
of adsorption of gases on porous solids are formulated in the
language of absolute thermodynamic variables [44].

The fundamental concept in adsorption science is the
adsorption isotherm, i.e. the equilibrium relation between
the quantity of the adsorbed material and the pressure or con-
centration in the bulk fluid phase at constant temperature [40].
Mathematically, we can describe absolute adsorption of an
adsorbate on an adsorbent with a smooth, continuous function
q(ci) that represents the dependency of the adsorbed phase
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concentration qi of a component i on the fluid phase concen-
trations ci

qi = q(c1, c2, . . . , cNC) at constant T (1)

Common units for the loading q include mol/(kg framework)
and mg/(mg framework) with q ≥ 0. For a single component
system, we generally have dq/dp ≥ 0. The adsorption of a
component depends not only on the concentration of this
component, ci, but also on the equilibrium concentrations of
all other components. Likewise, we could describe adsorption
from an ideal gas phase by substituting the fluid phase concen-
trations by partial pressures in the gas phase

qi = q(p1, p2, . . . , pNC
) at constant T (2)

The adsorption equilibrium of a single adsorbate can be
described by the adsorption isotherm

q = q(p) at constant T (3)

In general, an increase in the temperature will lead to a
decreased amount adsorbed at a given pressure. In case the
isotherm model has a well-defined saturation loading qsat, a
fractional loading θ can be defined

u p
( ) = q p

( )
qsat

(4)

The Henry coefficient HK for adsorption is defined as

HK = lim
p�0

q p
( )
p

= lim
p�0

dq
dp

(5)

The Henry coefficient is the slope of the isotherm at very low
pressure. In this infinite dilution regime, there are no adsor-
bate-adsorbate interactions, and adsorption is linearly related
to the affinity of the adsorbate. Note that the Henry coeffi-
cient depends on temperature.

2.2. Isotherm models

Isotherm models are well described in various resources
[20,23–27]. New isotherm models continue to be developed.
For example, the new Bingel-Walton isotherm model allows
for a continuous, mathematical description of general type V
isotherms, which appear in novel flexible MOFs or many
water adsorption cases [45]. We will describe some of the
isotherm models that are implemented in RUPTURA. The
mathematical description for the functional form, the
Henry coefficient, the saturation value, and the order of
input of the arguments in the code are summarised in
Table 1. The derived formulas for the inverse of the isotherm
are listed in Table 2.

2.2.1. Langmuir model
The Langmuir equation is the cornerstone of all theories of
adsorption. Langmuir (1918) was the first to propose a coher-
ent theory of adsorption onto a flat surface based on a kinetic
viewpoint [46]. The assumptions of the Langmuir model are:

(1) The surface is homogeneous: all adsorption sites are ener-
getically identical.

(2) The adsorption is localised: one molecule per adsorption
site (monolayer).

(3) There are no lateral interactions between adsorbed
molecules.

These assumptions are often true for chemisorption. Using
these assumptions, the Langmuir isotherm can be derived as:

q(p) = qsat
bp

1+ bp
qsat ≥ 0, b . 0 (6)

where qsat is the saturation capacity and b is the coefficient of
adsorption representing the affinity of the molecule. In the
limit of high pressure, the isotherm will approach qsat. At

Table 1. Isotherm models, Henry and saturation regime, and the order of input of the arguments in RUPTURA.

Model Equation Henry saturation b0 b1 b2
Langmuir [46] q(p) = qsat bp

1+bp
bqsat qsat qsat b

n-site Langmuir q(p) =∑
i q

sat
i

bip
1+bip

∑
i biq

sat ∑
i q

sat
i qsat b

BET [47] q(p/p0) = qsat b(p/p0)
(1−c(p/p0))(1−c+b(p/p0 ))

bqsat

1−c
bqsat

(1−c)(1−c+b)
qsat b c

Anti-Langmuir [24] q(p) = ap
1−bp a ✗ a b

Henry q(p) = ap a ✗ a
Freundlich [48] q(p) = ap1/n ✗ ✗ a ν
Sips [49] q(p) = qsat (bp)1/n

1+(bp)1/n
✗ qsat qsat b ν

n-site Sips q(p) =∑
i q

sat
i

(bip)
1/ni

1+(bip)
1/ni

✗
∑

i q
sat
i qsat b ν

Langmuir-Freundlich [50] q(p) = qsat bpn

1+bpn
✗ qsat qsat b ν

n-site Langmuir-Freundlich q(p) =∑
i q

sat
i

bipni
1+bipni

✗
∑

i q
sat
i qsat b ν

Redlich-Peterson [51] q(p) = ap
1+bpn a ✗ a b ν

Toth [52–54] q(p) = qsat bp
[1+(bp)n ]1/n

bqsat qsat qsat b ν

Unilan q(p) = qsat 1
2h ln

1+behp
1+be−hp

[ ]
bqsat qsat qsat b η

O’Brien & Myers [55] q(p) = qsat bp
1+bp + s2 bp(1−bp)

2(1+bp)3

[ ]
qsatb(1+ s2

2 ) qsat qsat b σ

Quadratic [56,57] q(p) = qsat bp+2cp2

1+bp+cp2
bqsat 2qsat qsat b c

Asymptotic Temkin [58,59]
q(p) = qsat bp

1+bp + qsatu bp
1+bp

( )2
bp

1+bp − 1
( ) bqsat qsat qsat b θ

Bingel & Walton [45] q(p) = qsat 1−exp [−(a+b)p]
1+(b/a) exp [−(a+b)p]

aqsat qsat qsat a b
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very low pressures, we obtain Henry’s law, with a Henry coeffi-
cient of bqsat.

The bi-Langmuir suggested by Graham [60] is the simplest
model for adsorption onto a non-homogeneous surface [24]

q(p) = qsat1
b1p

1+ b1p
+ qsat2

b2p
1+ b2p

(7)

in which the subscripts refer to the two adsorption sites. In
general, a heterogeneous surface with several distinct types
of homogeneous adsorption sites can be modeled with an
n-site model:

q(p) =
∑n
i=1

qsati
bip

1+ bip
(8)

with a saturation value
∑

i q
sat
i and Henry coefficient value∑

i biq
sat
i . Multi-site models are required to model isotherms

with inflections (‘kinks’). Molecular simulations were able to
explain themolecular origins of inflections in isothermsbyexam-
ining the locations ofmolecules as a function of pressure [61,62].

2.2.2. Anti-Langmuir model
The anti-Langmuir model describes the behaviour where
with increased concentration or pressure, the adsorbed load-
ing increases towards infinity [63]. At very low concentration
or pressure, this model obeys Henry’s law. The anti-Lang-
muir isotherm expression reads [24,63]:

q(p) = ap
1− bp

0 ≤ p ≤ 1/b, b ≥ 0 (9)

In Equation (9), a represents the Henry coefficient in mol
kg−1 Pa−1 and b is the equilibrium constant in Pa−1. The
anti-Langmuir model does not have a saturation loading as
the maximum loading can increase up to infinity at pressure
or concentration equal to 1/b.

2.2.3. Henry model
All isotherms should in principle converge to Henry’s law at
infinite dilution. In the Henry’s regime, the amount adsorbed
is proportional to the pressure. The Henry’s isotherm model is
described by

q(p) = ap (10)

where a is the energetic constant (Henry constant), and only
depends on temperature.

2.2.4. BET model
The Brunauer, Emmett, and Teller (BET) model extends
adsorption to multi-layers [47]:

q(p) = qsat
bs p
( )

1− bl p
( )( )

1− bl + bs p
( )( ) (11)

where bs and bl are the equilibrium constants of adsorption on
the bare surface and on a layer of previously adsorbed adsor-
bates, respectively. Similar to the Langmuir model, it is derived
from kinetic adsorption-desorption relations. The assump-
tions made in this model are:

(1) Each molecule in the first adsorbed layer provides an
adsorption site for the second layer, and so on.

(2) Molecules in the second and subsequent layers are assumed
to behave essentially as those in the bulk liquid.

2.2.5. Freundlich model
Boedeker proposed the following empirical isotherm equation
[48]

q(p) = ap1/n (12)

for the adsorption of polar compounds on polar adsorbents,
where the exponent 1/n is smaller than unity. It has been
popularised by Freundlich and therefore known as the
Freundlich isotherm. The Freundlich isotherm can be con-
sidered a composite of Langmuir isotherms with different
b values representing patches of adsorption sites with
different adsorption energies [64]. It was shown that sum-
ming up a number of Langmuir isotherms leads to Freun-
dlich-type isotherms [65]. The isotherm model can
describe adsorption on many heterogeneous surfaces well.
However, the model is unable to describe any plateauing
trend and also does not have a Henry’s regime (in fact,
the initial slope is infinite). As a result, some authors have
mentioned that this isotherm type is unsuitable for the cal-
culation of the reduced grand potential and other thermo-
dynamic properties [66].

2.2.6. Sips model
Sips proposed an equation similar in form to the Freundlich
equation, but it has a finite limit when the pressure is
sufficiently high [49]:

q(p) = qsat
bp
( )1/n

1+ bp
( )1/n (13)

Table 2. Isotherm models and their inverse.

Model inverse

Langmuir p(q) = q
b(qsat−q)

n-site Langmuir numerical
BET

p(q) = −bqsat+bq−cq+c2q+




























4bcq(q−cq)+(−bqsat+bq−cq+c2q)2

√
2bcq

Anti-Langmuir p(q) = q
(a+bq)

Henry p(q) = q/a
Freundlich p(q) = q

a

( )n
Sips p(q) = 1

b
q

qsat−q

( )n
n-site Sips numerical
Langmuir-Freundlich

p(q) = q
qsatb−qb

( )1/n
n-site Langmuir-
Freundlich

numerical

Redlich-Peterson numerical
Toth p(q) = q

(qsatb−qb))1/n

Unilan
p(q) = eh ( exp (2hq

qsat
)−1)

b(e2h−exp (2hq
qsat

))

O’Brien & Myers not shown here
Quadratic

p(q) = −bqsat+bq+






















(bqsat−bq)2+4q(2cqsat−cq)

√
2(2cqsat−cq)

Asymptotic Temkin not shown here
Bingel & Walton [45] numerical

Notes: The inverse of the O’Brien & Myers and Temkin model are too long to write
down here, but can easily be computed symbolically using Mathematica. Note
that multi-site combinations will always need to be computed numerically.
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In this model, the additional parameter ν is a parameter
characterising the heterogeneity of the system. The theoreti-
cal basis of the equation is described in the book of Do [23].
There also exists a multi-site form

q(p) =
∑
i

qsati

bip
( )1/ni

1+ bip
( )1/ni (14)

The Sips isotherm does not have the correct limiting behaviour
at low pressure, i.e. it does not have a Henry’s regime (Equation
(5) diverges), except when n = 1.

2.2.7. Langmuir-Freundlich model
The Langmuir-Freundlich model is given by [50]

q(p) = qsat
bpn

1+ bpn
(15)

and has the combined form of Langmuir and Freundlich
equations. The constant ν is often interpreted as the heterogen-
eity factor. Values of unity indicate a material with homo-
geneous binding sites and the isotherm model reduces to the
Langmuir model. There also exists a multi-site form

q(p) =
∑
i

qsati
bipni

1+ bipni
(16)

The Langmuir-Freundlich isotherm does not have the correct
limiting behaviour at low pressure, i.e. it does not have a
Henry’s regime, except when n = 1.

2.2.8. Redlich-Peterson model
The Redlich-Peterson isotherm is an empirical isothermmix of
the Langmuir and Freundlich isotherms. The numerator is the
same as the Langmuir isotherm and has the advantage of pos-
sessing a Henry region at infinite dilution [51]

q(p) = ap
1+ bpn

(17)

The parameter a can not be interpreted as the saturation load-
ing, except when n = 1 [64].

2.2.9. Toth model
The previous isotherm models have their limitations. The
Freundlich, Sips, and Langmuir-Freundlich equations are
not valid at very low pressures, while the Henry, Freundlich,
and Redlich-Peterson model do not have a finite saturation
value. One of the empirical equations that is popularly
used and satisfies the two end limits is the Toth equation
[52–54]:

q(p) = qsat
bp

1+ (bp)n
[ ]1/n (18)

The Toth equation has been used for fitting data of many
adsorbates such as hydrocarbons, carbon oxides, hydrogen
sulfide, alcohols on activated carbon, and zeolites [23].

2.2.10. Unilan model
The Unilan model owns its name from UNI, for Uniform dis-
tribution and LAN, for Langmuir local model [23]. The Unilan

model is described by

q(p) = qsat
1
2h

ln
1+ behp
1+ be−hp

[ ]
(19)

η is a measurement of the heterogeneity of the adsorbent. High
values indicate a highly heterogeneous system. Being a three-
parameter model, also the Unilan equation is very often used
to describe many data of hydrocarbons, carbon oxides on acti-
vated carbon and zeolites. The Unilan equation has the correct
behaviour at low and high pressures. In the limit of h = 0 the
Langmuir isotherm is recovered.

2.2.11. O’Brien & Myers
The O’Brien and Myers isotherm model is obtained as a trun-
cation to two terms of a series expansion of the adsorption
integral equation in terms of the central moments of the
adsorption energy distribution [23,55]

q(p) = qsat
bp

1+ bp
+ s2 bp 1− bp

( )
2 1+ bp
( )3

[ ]
(20)

where σ is a measure of the width of the adsorption energy
distribution.

2.2.12. Quadratic model
Statistical thermodynamics suggests that the general form of
an isotherm equation should be the ratio of two polynomials
of the same degree [57]. The polynomial Langmuir isotherm
model, derived from statistical mechanics, reads:

q(p) = qsat
bp+ cp2 + dp3 + · · ·

1+ bp+ cp2 + dp3 + · · · (21)

In practise, the second order isotherm is often used, called the
quadratic isotherm model [56,57]

q(p) = qsat
bp+ 2cp2

1+ bp+ cp2
(22)

The loading is convex at low pressures but changes concavity
as it saturates, yielding an S-shape, i.e. the isotherm exhibits an
inflection point.

2.2.13. Asymptotic approximation to the Temkin model
The Temkin isotherm is derived using a mean-field arguments
and asymptotic approximation [58,59]

q(p) = qsat
bp

1+ bp
+ qsatu

bp
1+ bp

( )2 bp
1+ bp

− 1

( )
(23)

Here, qsat and b have the same meaning as in the Langmuir iso-
therm, and θ describes the strength of adsorbate-adsorbate
interactions (u , 0 for attraction).

2.2.14. Bingel & Walton model
The Bingel and Walton isotherm model allows for a continu-
ous, mathematical description of general type V isotherms,
which appear in novel flexible MOFs or many water adsorp-
tion cases [45]. The model is based on the Bass model of inno-
vation diffusion developed in the late 1960s [67]. This model
describes the adoption and diffusion of an invention over
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time and has been widely used in market sales and technology
forecasting. Bingel and Walton applied the Bass model to
adsorption, where early-adopters can be seen as the intrinsic
high-affinity adsorption sites of the surface. The word-of-
mouth contribution of slower innovations refers to adsorption
mechanisms that are mainly driven by molecules of the same
species that are already adsorbed and thus present in the
adsorbed phase. The Bingel-Walton adsorption equation
reads [45]

q(p) = qsat
1− exp − a+ b( )p[ ]

1+ b/a
( )

exp − a+ b( )p[ ] (24)

where a>0 is the intrinsic adsorption affinity between the
adsorbate and the adsorbent, and b is the clustering coefficient
describing strong adsorbate–adsorbate interactions. The
simple model combines the effects of early-adopters and
word-of-mouth, resulting in curves that resemble either the
type I adsorption isotherm shape or S-shaped curves. The
location of the inflection point is log (b/a)/(a+ b). For small
values of a and large values of b the isotherm shape becomes
strongly step-wise. In the limit of b � 0 the isotherm becomes
an exponential function

q(p) = qsat 1− exp −ap
[ ]( )

(25)

while in the limit of a � 0 the adsorption becomes zero. In the
limit of b � −a, the isotherm reduces to the Langmuir model

q(p) = qsat
ap

1+ ap
(26)

The model has a Henry coefficient of aqsat and a saturation
loading of qsat.

2.3. Reduced grand potential

Thermodynamics is the study of energy and its transform-
ations but more generally tries to establish relationships
between basic concepts like internal energy U, entropy S, num-
ber of particles N, volume V, temperature T, pressure p, and
chemical potential μ to describe the behavior of matter and
make predictions. For the mixture vapour-liquid equilibrium,
the Gibbs-Duhem equation [68]

SdT − Vdp+
∑
i

nidmi = 0 (27)

shows that the independent variables which define the stan-
dard states for the components of the mixture are T and p.
We can compare the Gibbs-Duhem equation to the differential
for a solid material [69]

SdT + dV+
∑
i

nidmi = 0 (28)

and see that the standard states for mixture adsorption will be
determined by T and Ω [69]. The grand potential Ω is the
characteristic state function for the grand-canonical ensemble
and the unit of Ω is J/(kg framework). At constant

temperature, we have

dV = −SdT −
∑
i

nidmi = −
∑
i

nidmi (29)

which is the ‘Gibbs adsorption’ equation. Replacing chemical
potential mi by the fugacity fi

dV = −RT
∑
i

nid ln
fi
f0

[ ]
(30)

where f0 is a reference fugacity to make the argument of the
logarithm dimensionless. Replacing fugacity by pressure and
integrating for pure-component adsorption from the unad-
sorbed state at zero pressure, we obtain the grand potential
Ω [6,44,70,71]

Vi = −RT
∫ p∗i

0
q∗i (p)d ln p

( )

or Vi = −RT
∫ p∗i

0

q∗i (p)
p

dp

(31)

where q∗i (p) is the loading of pure component i given as a
function of the pressure. Physically, the grand potential is
the free energy change associated with isothermal immersion
of fresh adsorbent in the bulk fluid. The absolute value of the
grand potential is the minimum isothermal work necessary
to clean the adsorbent [72]. In calculations, it is convenient
to introduce a reduced grand potential ψ [69]:

c p∗i
( )

; − Vi

RT
=
∫ p∗

0

q∗i (p)
p

dp (32)

The reduced grand potential has units of mol/kg. The inte-
gration limit p∗i is a property of the pure component prop-
erty, i.e. it is the pressure at a given reduced grand
potential. This quantity is known as the sorption pressure
(in analogy to the saturation pressure in vapour-liquid equi-
librium) and also as the hypothetical pressure. Importantly,
the reduced grand potential is defined in terms of absolute
adsorption and can be computed from the adsorption iso-
therm. In Tables 3 and 4 we list the derived expressions
for the reduced grand potential and the sorption pressure
(the inverse of the reduced grand potential), respectively,
for the various isotherm models.

3. Prediction of mixture isotherms

3.1. Introduction

A key point in adsorption process development is knowledge
on multi-component adsorption equilibria [19]. Experimental
methods for (mixture) gas adsorption are recently reviewed by
Shade et al. [81]. Direct measurement of mixture adsorption
equilibria remains complicated and time consuming, and mix-
ture adsorption prediction using theoretical models is still the
default tool [82]. These theoretical models can be validated by
explicit grand-canonical Monte Carlo simulations [83] for
mixture adsorption.

One of the commonly used model is the extended Langmuir
which was developed by Butler and Ockrent [84] to describe
competitive adsorption. For an NC component mixture, the
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adsorption of component i reads [84]

qi = qsati bipi

1+∑NC
j=1 bjpj

(33)

The extended Langmuir is only dynamically consistent when
all components have the same saturation value [85]. If not,
the extended Langmuir is only empirical in nature. Jain and
Snoeyink [86] proposed an extension of the Langmuir
equation for binary mixtures that is based on the assumption
that only a fraction of the adsorption sites that are available
for a component can also be occupied by the other component.

q1 =
qsat1 − qsat2

( )
b1p1

1+ b1p1
+ qsat2 b1p1

1+ b1p1 + b2p2
(34)

q2 = qsat2 b2p2
1+ b1p1 + b2p2

(35)

Many extensions of the Langmuir, Freundlich, Toth, and
Redlich-Peterson equations have been developed to model
mixture adsorption isotherms [64]. A thermodynamic frame-
work for computing the mixture adsorption is the Ideal
Adsorption Solution Theory (IAST) developed by Myers
and Prausnitz [28]. For systems following the Langmuir iso-
therm, IAST is identical to the extended Langmuir equation
for mixtures, if the saturated amounts are equal [87]. IAST is
a predictive model which uses only the pure component data
(it does not require any mixture data), is thermodynamically
consistent, and is independent of the actual model of phys-
ical adsorption [88]. Even after 50 years of its development,
IAST continues its role as a benchmark method in describing
mixture adsorption [82]. The applicability of IAST continues
to be evaluated on novel materials [89–91] and for special
circumstances, for example adsorption in the presence of fra-
mework deformations [92]. Gharagheizi and Sholl recently
evaluated IAST on more than 400 examples in which binary
adsorption data and single-component data are available in
the same publication [93]. Other implicit multi-component
adsorption models are [37]: Vacancy Solution Theory
(VST) [94], Real Adsorption Solution Theory (RAST)
[95,96], Spreading Pressure Dependent equation (SPD)
[97], Predictive Real Adsorption Solution Theory (PRAST)
[98], Multi-component Potential Adsorption Theory
(MPAT) [99], Segregated Ideal Adsorbed Solution Theory
(SIAST) [29], and Generalized Predictive Adsorbed Solution
Theory (GPAST) [100].

3.2. Ideal adsorption solution theory (IAST)

Myers and Monson applied solution thermodynamics to
adsorption in porous materials leading to equations similar
to those for vapour-liquid equilibria [69]. In IAST calculations,
the central quantity is the reduced grand potential ci:

ci f ∗i
( ) = ∫ f ∗

0

q∗i (f )
f

df (36)

The reduced grand potential has units of mol/kg. This quantity
is related to the spreading pressure (P) (or solid-fluid

Table 3. Reduced grand potential for isotherm models.

Model reduced grand potential c(p)

Langmuir [23] c(p) = qsat ln [1+ bp]
n-site Langmuir [23] c(p) =∑

i q
sat
i ln [1+ bip]

BET [63] c(p) = qsat ln 1+bp−cp
1−cp

[ ]
Anti-Langmuir [24] c(p) = − a

b ln [1− bp]
Henry c(p) = ap
Freundlich [23] c(p) = anp1/n

Sips [23] c(p) = qsatn ln [1+ (bp)1/n]
n-site Sips c(p) =∑

i q
sat
i n ln [1+ (bip)

1/ni ]
Langmuir-Freundlich [73] c(p) = qsat

n ln [1+ bpn]
n-site Langmuir-Freundlich c(p) =∑

i
qsati
ni
ln [1+ bipni ]

Redlich-Peterson [74,75] c(p) = ap 2F1(1, 1/n, 1+ 1/n, − bpn)

(bpn , 1)

= a
nb1/n

p

sin (p/n)
+
∑1
k=1

(− 1)k
( 1
bpn )

k−1/n

k − 1/n

[ ]

(bpn . 1)
Toth [73,76] c(p) = qsatbq 2F1(1/n, 1/n, 1+ 1/n, − (pb)n)

(bpn , 1)

= qsat u− u

n
ln [1− un]−

∑1
k=1

ukn+1

kn[kn+ 1]

( )

Unilan [73] c(p) = qsat 1
2h (Li2(− be−hp)− Li2(− behp))

O’Brien & Myers [23,74] c(p) = qsat ln [1+ bp]+ s2bp
2(1+bp)2

[ ]
Quadratic [63] c(p) = qsat ln [1+ bp+ cp2]
Asymptotic Temkin [77]

c(p) = qsat ln [1+ bp]− 1
2 u

bp
1+bp

( )2( )
Bingel & Walton [45] numerical

Notes: The potentials are additive for multi-site models. Note that our expression
for the Unilan is the same as Santori et al. [73] but several terms in their
expression actually cancel out. Note that the expression for Asymptotic Temkin
of Simon et al. [77] contains typos. The dilogarithm function (Li2) defined by the
power series Li2(z) =

∑1
n=1

zn
n2 |z| , 1. In RUPTURA, we use the freely

available implementation by Alexander Voigt [78]. The hypergeometric func-
tion 2F1 defined by the power series for |z| , 1 [79]

2F1(a, b; c; z) =
∑1

k=0
(a)k (b)k
(c)k

zk
k! where (q)k is the (rising) Pochhammer symbol.

The hypergeometric function can be computed by e.g. Gosper’s algorithm
[80]. Note that the computation of the reduced grand potential for Redlich-
Peterson and Toth isotherms is hence computationally much more expensive
than for the other isotherm models.

Table 4. Sorption pressures for isotherm models.

Model sorption pressure p∗(c)
Langmuir p∗(c) = 1

b ( exp [c/q
sat]− 1)

n-site Langmuir numerical
BET numerical
Anti-Langmuir p∗(c) = 1

b (1− exp [− cb/a])
Henry p∗(c) = c

a
Freundlich p∗(c) = c

an

( )n
Sips p∗(c) = 1

b exp c
nqsat

[ ]
− 1

( )n
n-site Sips numerical
Langmuir-Freundlich

p∗(c) = exp [nc/qsat ]−1
b

( )1/n
n-site Langmuir-Freundlich numerical
Redlich-Peterson numerical
Toth numerical
Unilan numerical
O’Brien & Myers numerical
Quadratic

p∗(c) = −b+


















b2−4c+3c exp [c/qsat ]

√
2c

Asymptotic Temkin numerical
Bingel & Walton numerical

Notes: Models with an analytical inverse for the reduced grand potential are an
order of magnitude faster than models that have to be numerically inverted.
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interfacial tension) which is analogous to pressure but in two
dimensions [77]. The relation between reduced grand poten-
tial and spreading pressure is as follows [77]:

c f ∗i
( ) = PA

RT
(37)

In Equation (37), A is the area of the adsorbent in m2. The
spreading pressure was used in early IAST work based on
quasi two-dimensional adsorption at a planar surface using
the Gibbs excess formalism [28], but is replaced with the
reduced grand potential in the more recent IAST work based
on thermodynamics of adsorption in a three-dimensional
pore network [69]. Equations written in the language of sol-
ution thermodynamics have been derived without any discus-
sion of a dividing surface, Gibbs excess, or spreading pressure
and lead to equations similar to those for vapour-liquid equi-
libria [69].

Following the excellent detailed descriptions of IAST by
Murthi and Snurr [70] and Myers and Monson [69], for a
fluid at constant temperature, we have [101]

dmi = RTd ln
fi
f 0

[ ]
(38)

In Equation (38), f 0 is the reference fugacity which is con-
sidered to be equal to 1 bar. Integrating this equation at con-
stant T and Ω from a state of pure i to a state at an arbitrary
mole fraction [70]

mi T, V, x( ) − m∗
i T, V, x( ) = RT ln

fi T, V, x( )
f ∗i T, V, x( ) (39)

where the superscript ∗ indicates a property of the pure com-
ponent evaluated at the mixture T and Ω, and fi is the fugacity
of component i in the adsorbed phase. The proposed definition
of an ideal solution for adsorption in porous materials is [69]:

mid
i T, V, x( ) − mid,∗

i T, V, x( ) ; RT ln xi (40)

Equation (40) is equivalent to the equation of the chemical
potential of an ideal solution in the bulk. It is the only assump-
tion needed in the Ideal Adsorption Solution Theory (IAST) of
Myers and Prausnitz [28]. Using m = mid + mex and subtract-
ing Equation (40) from Equation (39) yields

mex
i = RT ln

fi T, V, x( )
xif ∗i T, V( ) (41)

= RT ln gi (42)

since the argument of the logarithm is defined as the activity
coefficient (gi) of component i and we have [70]

fi T, V, x( ) = gixif
∗
i T, V( ) (43)

The phase equilibrium (iso-fugacity) condition is expressing

that the fugacity of a component in the gas phase (f (g)i ) is in
equilibrium with the mixture at the specified T and Ω

f
g( )

i T, P, y
( ) = gixif

∗
i T, V( ) (44)

This equation may be rewritten in terms of the pressure by
replacing the fugacity (fi) with yifiP

yifiP = gixif
∗
i (45)

where ϕ is the fugacity coefficient in the fluid phase. At equili-
brium, the reduced grand potentials of the individual species
are the same. The set of equations to be solved in terms of fuga-
cities, assuming an ideal adsorbed solution and gi set to unity, is

yifipT = xif
∗
i c
( )

(46)

where f ∗i (c) is the fugacity at which each pure component is at
the same reduced grand potential, ψ, and temperature of the
mixture. In Real Adsorbed Solution Theory (RAST) the non-
ideal behaviour of the adsorbed phase is accounted for by the
use of activity coefficients (gi) [95].

When gas-phase pressures are sufficiently low, the fugaci-
ties in the previous equations may be replaced by pressures.
For liquid systems the same set of equations applies with
pressure replaced by concentration [102]. For simplicity here
we will refer always to pressure, with the understanding that
all the results will apply to the corresponding liquid system.
We note also that using pressure implies the assumption of
an ideal gas (for gases) or ideal liquid mixture (for liquids)
and that fugacity should replace pressure in a rigorous exten-
sion to high-pressure gas systems or non-ideal liquid mixtures.

The 2NC + 1 basic equations for IAST are [23,28]:

yipT = pi = xip
∗
i c
( )

i = 1, 2, . . . , NC

(NC equations) (47)

∑NC

i=1

xi = 1 (1 equation) (48)

c = c1 = c2 = · · · = cNC
(NC equations) (49)

which can be solved for the 2NC + 1 unknowns which includes:
(1) NC values of mole fractions in the adsorbed phase xi, (2) 1
value of the reduced grand potential ψ, and (3) NC values of the
sorption pressure of the pure component p∗i that give the same
reduced grand potential as that of the mixture.

Equation (47) is analogous to Raoult’s law that states that
the partial pressure of each component of an ideal mixture of
liquids is equal to the vapour pressure of the pure com-
ponent multiplied by its mole fraction in the mixture. Note
that Equations (47)–(49) do not contain any information
on the vacancy and the amount that has been adsorbed.
The specific adsorption area of a given species is inversely
proportional to qi. The total amount adsorbed qT can be cal-
culated from the Gibbs adsorption isotherm Equation (29)
assuming zero mass or volume change upon adsorption,
and is given by [69]

1
qT

=
∑NC

i=1

xi
q∗i

(50)

where q∗i is the adsorbed amount of pure component i at the
sorption pressure p∗i

q∗i = q p∗i
( )

(51)
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Knowing the total amount adsorbed, the amount contributed
by component i is given by

qi = xiqT (52)

Equations (47)–(52) form a set of powerful equations for
the IAS theory. If the total pressure and the mole fractions
in the gas phase are given, then the unknowns can be
computed:

. NC mole fractions in the adsorbed phase (xi)

. NC sorption pressures (p∗i )

. the total amount adsorbed and the component amount
adsorbed

This is the most common use case and occurs for
example in computing mixture isotherms from pure com-
ponent isotherms, and the use of IAST in fixed-bed adsorbers.
However, the inverse problem can be posed as well. In that
case, the adsorbed mole fractions xi and the total adsorbed
amount qT are given and the following unknowns have to be
calculated:

. NC mole fractions in the gas phase (yi)

. NC sorption pressures (p∗i )

. the total pressure (pT )

or the adsorbed mole fractions xi and the total pressure are
given and the following unknowns have to be calculated:

. NC mole fractions in the gas phase (yi)

. NC sorption pressures (p∗i )

. the total amount adsorbed (qT )

Note that the correct fundamental thermodynamic variable
is the absolute adsorbed amount and there is only one possible
definition of the ideal adsorbed solution [71]. Another remark
is that, in IAST, the form of the adsorption isotherm equation
for pure components is arbitrary and can take any form which
fits the data best [103]. However, we note that, especially the
low pressure data needs to be accurately represented and
errors at low pressures lead to large errors in multi-component
calculations.

3.3. IAST numerical example

To illustrate the IAST algorithm, we consider two pure com-
ponent Langmuir-Freundlich isotherms

Component 1: qs,1
b1pn1

1.0+ b1pn1
(53)

Component 2: qs,2
b2pn2

1.0+ b2pn2
(54)

and we list code-snippets that can be directly copied-and-
pasted in Mathematica. We first define the parameters of the
isotherms

qs1 = 6.3; qs2 = 5.3;
b1 = 2.0; b2 = 1.0;
nu1 = 0.75; nu2 = 1.5;

where we assume that qs,i is in units of mol/(kg framework),
bi in units of 1/Pa, pressure in units of Pa, and ni dimensionless
(Note that bipni is dimensionless). Specifying the fluid-phase
mole fractions and total pressure

p = 5;
y1 = 0.4; y2 = 0.6;

we first have to find the reduced grand potential ψ that is
consistent with the adsorbed phase mole fractions adding up
to unity. Filling in (see Table 4)

p∗i c
( ) = 1

b1/nii

exp
nic

qsati

( )
− 1

[ ]1/ni
(55)

into Equation (129), and using Mathematica we can numeri-
cally solve for psi

FindRoot[y1*p/((1.0/(b1^(1.0/nu1)))
*(Exp[nu1 psi/qs1]-1.0)^(1.0/
nu1))+

y2*p/((1.0/(b2^(1.0/nu2)))*(Exp[nu2
psi/qs2]-1.0)^(1.0/nu2))-1.0,

{psi, 10}]
The root is psi=13.6755mol/(kg framework). This process

is illustrated in Figure 2(a). Note that the functional relation
between the sum of the adsorbed mole fractions and the
reduced grand potential is monotonic (which can be exploited
by bi-section algorithms). We can obtain the sorption press-
ures p1 and p2 (that correspond to the reduced grand potential
ψ) using

p1 = (1/(b1^(1.0/nu1)))*(Exp[nu1*13.6755/
qs1]-1.0)^(1.0/nu1)

p2 = (1/(b2^(1.0/nu2)))*(Exp[nu2*13.6755/
qs2]-1.0)^(1.0/nu2)

and we obtain p1=2.59899 and p2=13.0167 Pa. The
adsorbed-phase mole fractions x1 and x2 are

x1=y1*p/p1
x2=y2*p/p2
and we obtain x1 = 0.769531 and x2 = 0.230472, graphically

depicted in Figure 2(b). With psi and x1 and x2, the total
adsorbed amount, qT, can be calculated

qT = 1.0/(0.769531/(qs1*b1*p1^nu1/(1.0
+b1*p1^nu1))+

(0.230472/(qs2*b2*p2^nu2/(1.0
+b2*p2^nu2))))

leading to qT = 5.09176 mol/(kg framework).
q1 = x1*qT
q2 = x2*qT
and we have q1 = 3.91827 and q2 = 1.17351 mol/(kg

framework).
Using the following Mathematica code, we can generate the

IAST prediction as a function of pressure
pressurebegin = 10^(-4);
pressureend = 10^10;
numberpoints = 100;
For[i = 1, i <= numberpoints, i++,
p = 10^(((Log10[pressureend] - Log10

[pressurebegin])*
(i/(numberpoints - 1.0))) + Log10

[pressurebegin]);
root = psi /.

902 S. SHARMA ET AL.



FindRoot[
y1*p/((1.0/(b1^(1.0/nu1)))*(Exp

[nu1 psi/(qs1)] - 1.0)^(1.0/nu1)) +
y2*p/((1.0/(b2^(1.0/nu2)))*(Exp[nu2

psi/(qs2)] - 1.0)^(1.0/
nu2)) - 1.0, {psi, 10}];

p1 = (1.0/(b1^(1.0/nu1)))*(Exp[nu1*root/
qs1] - 1.0)^(1/nu1);

p2 = (1.0/(b2^(1.0/nu2)))*(Exp[nu2*root/
qs2] - 1.0)^(1/nu2);

x1 = y1*P/((1.0/(b1^(1.0/nu1)))*(Exp
[nu1*root/qs1] - 1.0)^(1.0/nu1));

x2 = y2*P/((1.0/(b2^(1.0/nu2)))*(Exp
[nu2*root/qs2] - 1.0)^(1.0/nu2));

qT = 1.0/(x1/(qs1*b1*p1^nu1/(1 +
b1*p1^nu1)) +

x2/(qs2*b2*p2^nu2/(1 + b2*p2^nu2)));
Print[p, “ ”, x1*qT, “ ”, x2*qT]]

The result is plotted in Figure 3 which shows pure com-
ponent and mixture isotherms for a binary mixture. Adsorp-
tion for the component with the highest saturation loading
dominates at high pressures.

3.4. Analytic mixture prediction methods

3.4.1. Multi-component Langmuir
In the book of Do [23], the multi-component Langmuir is
derived from the IAST equations. Equations (47) and (48)
can be combined to yield [104]

∑NC

i=1

pi
p∗i

=
∑NC

i=1

xi = 1 (56)

This closure equation can be used to reduce the problem to a
single nonlinear algebraic equation in ψ:

p1
p∗1 c
( )+ · · · + pNC

p∗NC
c
( ) = 1 (57)

We can then use the expressions for the pure component sorp-
tion pressure (p∗i ) and use these as input in Equation (57). For
the single component Langmuir isotherm

qi = qsat
bipi

1+ bipi
(58)

we obtain

c p∗
( ) = ∫ p

0

q(p)
p

dp = qsat
∫ p∗

0

b
1+ bp

dp

= qsat ln 1+ bp∗
[ ]

(59)

Inverting this equation, we have

p∗ c
( ) = exp c

qsat

[ ]
− 1

b
(60)

Figure 2. (Colour online) IAST algorithm: (a) adsorbed phase mole fraction as a function of the reduced grand potential (b) graphical representation of the basic IAST
relationship. The sum of the adsorbed phase mole fractions is unity at reduced grand potential c = 13.6755 mol/(kg framework). By using (

∑
i xi)− 1, a root-finding

algorithm can be used. Note that that
∑

i xi has a monotonic relation to the reduced grand potential, hence it is also amendable to bi-section methods.

Figure 3. (Colour online) Example of IAST prediction for a binary mixture
described by Langmuir-Freundlich isotherms. At 5 Pa total pressure and gas-
phase mole fractions y1 = 0.4 and y2 = 0.6, we find adsorbed absolute loadings
of q1 = 3.92 and q2 = 1.17 mol/kg. Typically in a mixture, a component with the
highest saturation loading will drive the other components out at high pressures.
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Filling this into Equation (57), we obtain

b1p1

exp c
qsat1

( )
− 1

+ b2p2

exp c
qsat2

( )
− 1

= 1 (61)

which can be analytically solved for ψ when the saturation
capacities qsat1 and qsat2 are equal.

exp
c

qsat

( )
= 1+ b1p1 + b2p2 (62)

Using this in Equation (60) we find the sorption pressures

p∗i c
( ) = b1p1 + b2p2

bi
(63)

Substituting the sorption pressures into Raoult’s law Equation
(47), we obtain the adsorbed phase mole fractions

xi = bipi
b1p1 + b2p2

(64)

The total amount adsorbed is obtained by substituting
Equation (58), (63), and (64) into Equation (50)

qT = qsat
b1p1 + b2p2

1+ b1p1 + b2p2
(65)

and the adsorbed amount contributed by the component i is

qi = qsat
bipi

1+ b1p1 + b2p2
i = 1, 2 (66)

which is the extended Langmuir equation (Equation (33)) with
equal saturation capacities.

3.4.2. Analytic Taylor series expansions of LeVan and
Vermeulen [105]
Le Van and Vermeulen [105] derived the explicit isotherms for
binary mixtures from the Gibbs adsorption isotherm. These
authors considered single site Langmuir andFreundlich isotherms
for the pure components. However, this method can be extended
to any kind of pure component isotherms, provided these iso-
therms have an explicit expression for the reduced grand potential
(c) in terms of pure component pressure (p∗i ). This method is
applicable for cases where the saturation capacities of the com-
ponents are close to each other [23]. The derivation is as follows:

According to IAST, the reduced grand potential for pure
component i is (ci) is expressed as

ci =
∫ p∗i

0

qi
pi
dpi (67)

Also, the reduced grand potential of the mixture (cmix) is con-
sidered to be equal to the pure-component grand potential (ci)
at pressure, p∗i for component i and the temperature of the
mixture, i.e.

ci = qsati ln 1+ bi,1p
∗
i + bi,2 p∗i

( )2( )
(68)

For the ideal adsorbed solution, the partial pressures and the
adsorbed phase composition are related by Raoult’s law
analogy.

pi = xip
∗
i c
( )

(69)

In Equation (69), p∗i is the pure component pressure in equili-
brium with an adsorbed phase of the component i at the
reduced grand potential (c) and temperature of the mixture.
pi is the partial pressure of component i and xi is the mole frac-

tion in the adsorbed phase. Using the relation
∑NC

i xi = 1 and
substituting xi using Equation (69) yields

p1
p∗1

+ p2
p∗2

= 1 (70)

The single component isotherms (Langmuir and Freun-
dlich) are substituted into Equation (67) which on inte-
gration yields expressions for pure component pressures
(p∗1, p∗2). These expressions are used to further substitute
p∗1 and p∗2 in Equation (70). The resulting expression,
which is a function of p1, p2 and ψ is expanded using Taylor
series to obtain an explicit expression. The reduced grand
potential ψ is differentiated to calculate the binary iso-
therms.

qi = pi
∂c

∂pi
(71)

Le Van and Vermeulen [105] derived the expressions for
binary mixtures where both components either obey Lang-
muir, or Freundlich isotherms in their pure form.

(1) Langmuir Isotherms
For pure component i, the reduced grand potential (ci)

equals:

c = qsati ln 1+ bip
∗
i

( )
(72)

p∗i =
1
bi

exp
c

qsati

( )
− 1

[ ]
(73)

p∗1 and p∗2 in Equation (70) are substituted using Equation
(73), which yields

b1p1

exp c
qsat1

( )
− 1

+ b2p2

exp c
qsat2

( )
− 1

= 1 (74)

Since the reduced grand potentials for the pure com-
ponents are equal to the mixture (Equation (68)), ψ will
be used as the grand potential for both the components.
To proceed with the derivation, the following parameters
are defined:

qsat = qsat1 + qsat2

2
(75)

e = qsat1 − qsat2

2qsat
(76)

Combining Equations (75) and (76) yields

qsat1 = qsat 1+ e( ) (77)

qsat2 = qsat 1− e( ) (78)
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Now, Equation (74) is expanded using the Taylor series
for ψ about e = 0.

c = c
∣∣
e=0+

e

1!
dc
de

∣∣∣∣
e=0

+e2

2!
d2c
de2

∣∣∣∣
e=0

+ · · · (79)

Le Van and Vermeulen obtained isotherms for the binary
mixture components using the Taylor expansion of
Equation (74). The isotherms are calculated using
Equation (71). The grand potential (c) is as follows

c = qsat ln 1+ b1p1 + b2p2
( )

(80)

In Equation (80), qsat is the average saturation loading
which depends on the nature of the Taylor expansion
(i.e. the number of terms considered in the expansion).
These authors have derived explict isotherms by consider-
ing two, and three terms Taylor series expansion of ψ.

(A) Two term expansion:

qsat = qsat1 b1p1 + qsat2 b2p2
b1p1 + b2p2

(81)

qsat1 = qsat
b1p1

1+ b1p1 + b2p2
+ DL2 (82)

where

DL2 = qsat1 − qsat2

( )
× b1b2p1p2

b1p1 + b2p2
( )2 ln 1+ b1p1 + b2p2

( )
(83)

(B) Three term expansion:

qsat = b1p1qsat1 + b2p2qsat2

b1p1 + b2p2
+ 2

qsat1 − qsat2

( )2
qsat1 + qsat2

b1b2p1p2

b1p1 + b2p2
( )2

× 1
b1p1 + b2p2

+ 1
2

( )
ln 1+ b1p1 + b2p2
( )− 1

[ ]
(84)

qsat1 = qsat
b1p1

1+ b1p1 + b2p2
+ DL2 1+ DL3( ) (85)

where

DL3=qsat1 −qsat2

qsat1 +qsat2

1
b1p1+b2p2

b2p2
( )2+2 b2p2

( )−4 b1p1
( )− b1p1

( )2
b1p1+b2p2

ln 1+b1p1+b2p2
( )[

+3 b1p1
( )2+4 b1p1

( )+b1b2p1p2−2 b2p2
( )−2 b2p2

( )2
1+b1p1+b2p2

]

(86)

The multi-component adsorption isotherm for com-
ponent 2 can be obtained by simply interchanging the
subscripts 1, and 2 in the above equations.

(2) Freundlich Isotherm
An approach similar to the above case is applied to a

binary mixture where the pure components obey the

Freundlich isotherm which is shown below

qsati = bip
ni (87)

The reduced grand potential (c) equation in terms of the
partial pressure is

b1
n1

( )1/n1

p1 exp − 1
n1

lnc

( )

+ b2
n2

( )1/n2

p2 exp − 2
n2

lnc

( )
= 1 (88)

For unequal Freundlich exponents (ni) but very close
to each other, the value of ψ can be computed using
the Taylor series expansion. The expression for
the adsorbed loadings for the components in the
mixture are derived using the Taylor series expansion
of ψ about e (Equation (79)). For Freundlich iso-
therms, e is

e = n1 − n2
n1 + n2

(89)

In Equation (89), n1 and n2 are the Freundlich
exponents for component 1 and 2 respectively. The
expression for the adsorbed loading for component
1 (q1) is shown below, a detailed derivation for
which can be found in Ref. [105].

q1 =
n b1

n1

( )1/n1
p1

b1
n1

( )1/n1
p1 + b2

n2

( )1/n2
p2

[ ]1−n
+ DF2 (90)

where

DF2 = n1 − n2( )
b1
n1

( )1/n1
p1

b2
n2

( )1/n2
p2

b1
n1

( )1/n1
p1 + b2

n2

( )1/n2
p2

[ ]2−n

× ln
b1
n1

( )1/n1

p1 + b2
n2

( )1/n2

p2

[ ]
(91)

n =
n1

b1
n1

( )1/n1
p1 + n2

b2
n2

( )1/n2
p2

b1
n1

( )1/n1
p1 + b2

n2

( )1/n2
p2

(92)

3.4.3. Analytic approach of Ilic et al. [106]
Ilic et al. [106] derived an explicit competitive isotherm model
for binary mixtures, where the pure components obey quadra-
tic isotherms. For pure components, the reduced grand poten-
tial is

ci = qsati ln 1+ bi,1p
∗
i + bi,2 p∗i

( )2( )
(93)

The grand potential of the mixture is considered to be equal to
the pure-component grand potential (ci) at pressure, p

∗
i for
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component i and the temperature of the mixture, i.e.

c = c1 = c2 (94)

Using Equations (93), and (94) and considering the saturation
capacities of the components to be equal (qsat1 = qsat2 ), we obtain

ln 1+ b1,1p
∗
1 + b1,2 p∗1

( )2( )
= ln 1+ b2,1p

∗
1 + b2,2 p∗1

( )2( )
(95)

In Equation (95), bi,j represents equilibrium constant. This
equation can be reformulated using a cubic polynomial which
is defined as a function of the adsorbed mole fraction of com-
ponent 1 (x1).

F(p1, p2, x1) = A p1, p2
( )

x31 + B p1, p2
( )

x21

+ C p1, p2
( )

x1 + D p1, p2
( )

(96)

where

A p1, p2
( ) = ap1 + p1 . 0 (97)

B p1, p2
( ) = p1 bp1 − 2a

( )− p2 1+ gp2
( )

(98)

C p1, p2
( ) = p1 a− 2bp1

( )
(99)

D p1
( ) = bp21 (100)

a = b1,1
b2,1

. 0 (101)

b = b1,2
b2,1

≥ 0 (102)

g = b2,2
b2,1

≥ 0 (103)

bi,1 . 0, i = 1, 2 (104)

bi,2 ≥ 0, i = 1, 2 (105)

The root (x1) of this cubic polynomial (Equation (96)) can be
derived analytically by applying the formulae of Cardano [107].
The problem is solved by selecting the physically meaningful
root out of the three obtained roots. Once the value of x1 is
computed, the adsorbed loading for component i (qi) is calcu-
lated using the following expression [77]:

qi = x1
q∗1 p∗1
( )+ 1− x1

q∗2 p∗2
( )

[ ]
xi (106)

In Equation (106), xi is the adsorbed mole fraction of com-
ponent i, q∗i is the adsorbed loading for pure component i,
and p∗i is the corresponding gas phase pressure.

3.4.4. Analytic approach of Tarafder and Mazzotti [63]
Tarafder and Mazzotti obtained explicit isotherms for binary
mixtures using IAST, where the pure components obey Lang-
muir-, anti-Langmuir- [24], Brunauer-Emmett-Teller (BET)-,
and quadratic-type adsorption isotherms. These mixture iso-
therms are valid only when the saturation capacities of the
components are identical (qsat1 = qsat2 = qsat).

Assuming both the fluid and the adsorbed phase as ideal

pi = p∗i xi i = 1, 2( ) (107)

pi is the concentration of component i in the mixture, p∗i is the
pure component concentration, and qsati is the saturation load-
ing in Equation (107). Explicit solutions for the adsorbed
phase mole fractions (x1 and x2) are derived from

c
p1
x1

( )
= c

p1
x2

( )
(108)

x1 + x2 = 1 (109)

The reduced grand potentials (c) for component i, computed
based on the above mentioned single component isotherms are
as follows:

. Langmuir

ci = qsati ln 1+ bip
∗
i

( )
(110)

. Anti-Langmuir

ci = −qsati ln 1− bip
∗
i

( )
(111)

. BET

ci = qsati ln
1− bi,1p∗i + bi,2p∗i

( )
1− bi,2p∗i

( )
(112)

. Quadratic

ci = qsati ln 1+ bi,1p
∗
i + bi,2 p

∗
i
2( )

(113)

In Equations (110) and (111), bi is the equilibrium constant.
Similarly, in Equations (112) and (113), bi,j (j = 1, 2) rep-
resents the equilibrium constants. The adsorbed mole fraction
of component 1 (x1), and the total adsorbed loading
(qT = q1 + q2) are calculated for different cases depending
on the type of single component isotherms followed by each
component in the mixture.

(1) Quadratic isotherm (component 1) and BET isotherm (component 2)

x1
p1

= b1,1 1− b2,2p1
( )− b1,2p1

( )+ 


































































b1,1 1− b2,2p1
( )− b1,2p1

( )2+4b1,2 b1,1p1 + b2,1p1
( )

1− b2,2p1
( )√

2 b1,1p1 + b2,1p1
( ) (114)
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qT = qsat
x1 x21 + b1,1p1x1 + b1,2p21
( )
b1,1x1 + 2b1,2p1
( )

p1
+ x2 − b2,2p1
( )

x2 − b2,2p1 + b2,1p1
( )
b2,1p1

[ ]−1

(115)

(2) Quadratic isotherm (component 1) and Langmuir iso-
therm (component 2)

x1
p1
=

b1,1−b1,2p1
( )+ 







































b1,1−b1,2p1
( )2+4b1,2 b1,1p1+b2p1

( )√
2 b1,1p1+b2p1
( )

(116)

qT =qsat
x1 x21+b1,1p1x1+b1,2p21
( )
b1,1x1+2b1,2p1
( )

p1
+x2 x2+b2p1

( )
b2p1

[ ]−1

(117)

(3) Quadratic isotherm (component 1) and anti-Langmuir
isotherm (component 2)

x1
p1

=
b1,1 1− b2p1
( )− b1,2p1

( )+ 






























































b1,1 1− b2p1
( )− b1,2p1

( )2+4b1,2 b1,1p1 + b2p1
( )

1− b2p1
( )√

2 b1,1p1 + b2p1
( )

(118)

qT = qsat
x1 x21 + b1,1p1x1 + b1,2p21
( )
b1,1x1 + 2b1,2p1
( )

p1
+ x2 x2 − b2p1

( )
b2p1

[ ]−1

(119)

3.4.5. Analytic approach of Van Assche et al. [30]
(Implemented in RUPTURA)
Van Assche et al. [30] derived an explicit multi-component
adsorption model for arbitrary number of components. This
model accounts for the effects of the size of the adsorbing

components. The explicit isotherms (EI) are derived using
the concepts of statistical mechanics. In this model, the com-
ponents are arranged based on their saturation capacities as
shown below.

qsatNC
≥ qsatNC−1 ≥ · · · ≥ qsat2 ≥ qsat1 (120)

The largest component or the one with the smallest saturation
capacity is considered to adsorb first. The adsorbent is con-
sidered to be a lattice divided into grids of uniform size.
Once, the adsorption of the 1st component takes place, the
remaining lattice is further subdivided such that the com-

ponent with the next smallest saturation capacity adsorbs.
The process continues until the last component adsorbs.
While dividing the lattice each time into uniform grids, the
grid size is taken to be the ratio of the saturation capacities
of the corresponding component and its preceding counter-
part (qsati /qsati−1). The adsorption isotherm for component i in
a mixture of NC components is [30]:

qi = qsati bipi
( ) 1

b

∏i
k=1

ak (121)

where

a1 = 1 (122)

ai = · · · 1+ bNC
pNC

( ) qsat
NC

qsat
NC−1+bNC−1pNC−1

⎛
⎜⎝

⎞
⎟⎠

qsat
NC−1

qsat
NC−2

+bNC−2pNC−2

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

qsat
NC−2

qsat
NC−3

· · · + bi+1pi+1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

qsat
i+1
qsat
i

+bipi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

qsat
i

qsat
i−1

−1

(123)

b = · · · 1+ bNC
pNC

( ) qsat
NC

qsat
NC−1+bNC−1pNC−1

⎛
⎜⎝

⎞
⎟⎠

qsat
NC−1

qsat
NC−2

+bNC−2pNC−2

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

qsat
NC−2

qsat
NC−3

· · · + b2p2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

qsat
2
qsat
1

+b1p1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(124)
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For a binary model, the equations read

q1 = qsat1
b1p1

1+ b2p2
( )qsat2

qsat
1 +b1p1

(125)

q2 = qsat2

b2p2 1+ b2p2
( )qsat2

qsat
1
−1

1+ b2p2
( )qsat2

qsat
1 +b1p1

(126)

The procedure to calculate the explicit adsorption iso-
therms is shown in Algorithm 1. This model reduces to the
classical Langmuir equation for pure component isotherms.
The proposed model was found to offer a very reasonable
approximation of the IAST for adsorbates obeying the Lang-
muir equation, even with very differing saturation capacities.
The model was also demonstrated to show excellent perform-
ance in a process simulator case study [108].

3.4.6. Segregated explicit isotherm (SEI) [31]
(Implemented in RUPTURA)
The Segregated Explicit Isotherm (SEI) is the modified version
of the multicomponent explicit isotherm discussed above [31].
The explicit isotherm is modified to incorporate the effects of a
heterogeneous adsorption surface. This extended model is

applicable when the adsorbent is composed of distinct adsorp-
tion sites and the preferred adsorption sites varies for the com-
ponents in the mixture. The concept of Swisher et al. [29] used
for developing the Segregated Ideal Adsorbed Solution Theory
(SIAST) model is adopted in this model. Separate thermodyn-
amic equilibrium between the gas phase and the adsorbed
phase is considered at each type of adsorption site. Swisher
et al. [29] computed equilibrium loadings for the mixture com-
ponents using IAST at each type of adsorption site (Section
3.5.8). For this purpose, unary isotherm parameters are
required as input which are obtained by fitting these isotherms
to pure component adsorbed loading data. These data can be
obtained using grand-canonical Monte Carlo (GCMC) simu-
lations or experiments. However, GCMC is more conveniently
used than performing experiments because collecting isotherm
data using experiments can be time consuming [109]. Differ-
ent isotherms can be used for each type of adsorption sites.
The mixture loadings computed at each adsorption site are
summed up to estimate the overall equilibrium loadings for
each components. Similarly, in the SEI model, the adsorption
isotherms developed by Van Asche et al. [30] are solved at each
type of adsorption sites (Figure 4) and the overall adsorbed
loading for each component is obtained by summing up
these loadings. The adsorption isotherm of the ith component
at the jth adsorption site is shown below.

qi,j = qsati,j ki,jpi
( ) ∏i

m=1 am,j
[ ]

bj
(127)

In Equation (127), am,j, and b j are computed as shown in
Equations (122)–(124). The overall equilibrium loading for
each component in an adsorbent with Nsites types of distinct
adsorption sites is calculated as follows:

qi =
∑Nsites

j=1

qi,j (128)

If the adsorbent is composed of single type of adsorption sites,
then both SEI and EI are essentially identical. Unlike IAST and
SIAST, these models (EI and SEI) do not involve any iterative
procedure to compute the equilibrium loadings. This increases
the speed of calculations significantly. This is advantageous
when SEI and EI are incorporated into another model (such
as breakthrough curve model) [31,108]. The simulation run
time drops significantly compared to the models with IAST
implementation [31].

3.5. Numerical methods to solve the IAST

3.5.1. The ‘nested loop algorithm’ [104]
Myers and Valenzuela presented a simple method for solving
the IAST [104] that is iterative in nature exploiting the New-
ton-Raphson method [23,28,110]. Tien et al. extendeded and
improved the algorithm in order to reduce the computation
time [110,111]. The method is conceptually elegant, but has
slower convergence and is dependent on a good first guess
for convergence. This algorithm consists of the calculation
of the reduced grand potential (c) and then an analytic

Figure 4. (Colour online) Schematic representation of the Segregated Explicit Iso-
therm (SEI) model which accounts for the separate thermodynamic equilibrium of
the adsorbed phases with the gas phase at different adsorption sites. Each
adsorbed phase is separately in thermodynamic equilibrium with the gas
phase and it is represented by the adsorption isotherm proposed by Van Assche
et al. [30]. The gas phase has a total pressure of pT and the gas phase mole frac-
tions of the components in the mixture are represented by y. In the adsorbed
phase j, the loading of the component i is qi,j .

Algorithm 1 Procedure for calculating the equilibrium loadings for components
in mixtures using the analytic approach of Van Assche et al. [30].

Arrange the components in ascending order based on the value of the saturation
loadings (qsat).

qsat1 ≤ qsat2 · · · ≤ qsatNC−1 ≤ qsatNC

Calculate the ratios of qsati (ni) for each component

ni = qsati
qsati−1

n1 = 1

ai = (ai+1 + kipi)
ni

aNC+1 = 1

Equilibrium loading for each component at the jth site
qi = qsati kipi 1

a1

∏i
m=1

am,

am+1+kmpm

Rearrange the adsorbed loadings in the original order as provided in the input.

return qi
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inversion of the reduced grand potential to obtain
expressions for the pure component sorption pressure (p∗i )
as a function of the reduced grand potential.

Generalizing the procedure to solve IAST, named the
‘nested loop’ algorithm by Mangano et al. [112], the total
pressure and gas phase composition are specified and a
nested problem of a highly nonlinear system of equations
is solved [23,104,110]. Equations (47) and (48) can be com-
bined to yield

F c
( ) =∑NC

i=1

xi − 1 =
∑NC

i=1

yip

p∗i c
( )− 1 = 0 (129)

which is a function of only the reduced grand potential (c).
In the nested loop approach, a single implicit equation
determines the solution of the IAST. To solve Equation (129)
for the reduced grand potential, an iterative method like the
Newton-Raphson method can be used [23]. In Newton’s
method, the derivative of the reduced grand potential can
be computed for any isotherm from [112]

dci

dp∗i
= q∗i p∗i

( )
p∗i

i = 1, 2, . . . , NC

( )
(130)

and

dF c
( )
dc

= −
∑NC

i=1

yip

p∗i c
( )

q∗i p∗i
( ) (131)

p∗i (c) can be calculated using Equation (36), either analyti-
cally or numerically depending on the pure component iso-
therm equation. The resulting procedure is described in the
book of Do [23].

ck+1 = ck − F c(k)
( )

F′ c(k)
( ) (132)

F c(k)
( ) =∑NC

i=1

yip

p∗i c(k)
( )− 1 (133)

F′ c(k)( ) = −
∑NC

i=1

yip

p∗i c
( )[ ]

q∗i

[ ]
c=c(k)

(134)

An appropriate selection of the initial condition guarantees
convergence [112]:

c = min ci(p
∗
i )

[ ]
(135)

The initial guess for ψ from Myers and Valenzuela [104] and
Do [23]

c =
∑NC

i=1

yic(p
∗
i ) (136)

does not guarantee convergence strictly [112]. Convergence
can be improved by combining Newton with a line search
due to the monotonous nature of F(c). The nested loop is
a very fast numerical method if there exist explicit
expressions for the sorption pressures.

3.5.2. FastIAS [88]
The FastIAS approach by O’Brien andMyers expresses the sys-
tem of NC − 1 equalities as [74,88]

c1 p∗1
( ) = c2 p∗2

( )
c2 p∗2
( ) = c3 p∗3

( )
. . .

c
NC

−1 p∗
NC−1

( )
= c

NC
p∗NC

( )
∑NC

i=1

pi
p∗i

= 1

(137)

This system constitute NC nonlinear algebraic equations

G p∗
( ) = 0 (138)

and equates the reduced grand potentials of successive com-
ponents. The elements of the vector G are:

Gi p∗
( ) = ci p∗i

( )− ci+1 p∗i+1

( )
i = 1, . . . , NC − 1 (139)

GNC
p∗
( ) =∑NC

i=1

pi
p∗i

− 1 (140)

The NC-variable Newton-Raphson method may be expressed
as for the kth iteration

p∗ k+1( ) � p∗ k( ) − d k( ) (141)

where δ is determined from the following linear equation

F · d = G (142)

O’Brien and Myers added the following update rule to δ [113]

p∗i
k+1( ) = 1

2
p∗i

k( ) if p∗i
k( ) + d k( ) , 0 (143)

to ensure that the sorption pressures are always positive. The
matrix Φ is the Jacobian matrix obtained by differentiating
the vector G with respect to vector p∗.

F k( )
i,j = ∂Gi p∗ k( )( )

∂ p∗j
k( )

( )
p∗ i=j

(144)

Due to the properties of the reduced grand potential Equation
(36) we have

∂c p∗i
( )
∂p∗i

= q p∗i
( )
p∗i

(145)

and the elements of Φ are

Fi,i =
q p∗i
( )
p∗i

i = 1, . . . , NC − 1 (146)

Fi,i+1 = − q p∗i+1

( )
p∗i+1

i = 1, . . . , NC − 1 (147)

FNC ,i
= − pi

p∗i
( )2 i = 1, . . . , NC (148)
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This results in a Jacobian that has non-zero elements on the
diagonal, the elements just above the diagonal and the last
row [23,88]:

F =

× ×
× ×

× ×
. .
. . .

.

× ×
× × × · · · × ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(149)

Thus suitable starting values, p∗,start, as well as the Jacobian
matrix of G with respect to the arguments p∗ are needed.
The convergence criteria is a relative test of the form

∑NC

i=1

d k( )
i

p∗i
k+1( )

∣∣∣∣∣
∣∣∣∣∣ , 1 (150)

The Fast IAS procedure is to solve firstly for the variable p∗i
rather than the reduced spreading pressure in the traditional
IAS theory [23]. Solving directly for the sorption pressures of
the pure components results in faster computation using the
Fast IAS than the IAS theory. Once the spreading pressure is
known in the IAS theory, the pure component sorption press-
ures are computed as the inverse of the integral Equation (36).

3.5.3. Modified fast IAS [113] (Implemented in RUPTURA)
The modified Fast IAS improves the original version by
exploiting the peculiar structure of the equation set [113]:

c1 p∗1
( ) = cNC

p∗NC

( )
c2 p∗2
( ) = cNC

p∗NC

( )
. . .

cNC−1 p∗NC−1

( )
= cNC

p∗NC

( )
∑NC

i=1

pi
p∗i

= 1

(151)

The elements of the vector G are:

Gi p∗
( ) = ci p∗i

( )− cNC
p∗NC

( )
i = 1, . . . , NC − 1 (152)

GNC
p∗
( ) =∑NC

i=1

pi
p∗i

− 1 (153)

The elements of Φ are

Fi,i =
q p∗i
( )
p∗i

i = 1, . . . , NC − 1 (154)

Fi,NC
= −

q p∗NC

( )
p∗NC

i = 1, . . . , NC − 1 (155)

FNC ,i
= − pi

p∗i
( )2 i = 1, . . . , NC (156)

In this modified method, the Jacobian matrix Φ is zero every-
where, except the diagonal terms, the last column and the last
row.

F =

× ×
× ×

× ×
. .
. ..

.

× ×
× × × · · · × ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(157)

With the peculiar structure of the Jacobian matrix of the above
form, it can be reduced to a form such that all the last row of
the reduced matrix contains zero elements, except the last
element of that row. After the transformation

Fnew
NC ,NC

= Fold
NC ,NC

−
∑NC−1

j=1

FNC ,j

F j,j
F j,NC

(158)

Gnew
NC

= Gold
NC

−
∑NC−1

j=1

FNC ,j

F j,j
G j (159)

and replacing the last term of the last row withFnew
NC ,NC

(denoted
by a star), we end up with a Jacobian matrix that now has a
simple sparse structure

Fnew =

× ×
× ×

× ×
. .
. ..

.

× ×
∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(160)

The result is a coefficient matrix having only a main diagonal
and a last column. This system may be solved trivially by back-
substitution. The back-substitution is rendered even simpler
since each row has only two entries. The solution for δ is
simply [23]

dNC
=

Gnew
NC

Fnew
NC ,NC

(161)

dNC−1 =
GNC−1 − dNC

FNC−1,NC

FNC−1,NC−1
(162)

dNC−2 =
GNC−2 − dNC

FNC−2,NC

FNC−2,NC−2
(163)

. . . (164)

d1 =
G1 − dNC

F1,NC

F1,1
(165)

The FastIAS algorithm is very fast, intrinsically robust, and will
converge unless physically unrealistic (negative) values of the
sorption pressures p∗i are obtained [112].

3.5.4. Approach of Choy et al. [114]
Choy et al. [114] developed a numerical method in which
by specifying the adsorption amount (qi) on the adsorbent
in a multi-component system, the corresponding bulk
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phase concentrations or partial pressures (pi) can be
obtained. This method was developed for binary mixtures
and is useful when an analytic expression for the reduced
grand potential (c) cannot be obtained (e.g. pure com-
ponents obeying Redlich-Peterson isotherm). However,
this method is also applicable to cases where pure com-
ponents obey other types of isotherms such as Langmuir,
Freundlich, Sips, etc. In addition, the value of the bulk
phase concentration of component 2 in pure form (p∗2)
should be determined using numerical procedures, such
as the Newton-Raphson method based on the guessed
value for the bulk phase concentration of component 1
in pure form (p∗1). The guessing parameter in the numeri-
cal solution (p∗1) changes in the iterative procedure until
the criteria (c1 = c2) is met. Therefore, this procedure
requires tremendous effort to find the equilibrium con-
centrations. The numerical integration scheme is shown
below. Redlich-Peterson isotherm is considered for the
pure components.

c =
∫ p

0

q
p
dp =

∫ p

0

kR
1+ aRpb

dp (166)

For pure components 1 and 2, the expressions for ψ are:

c1 =
∫ p∗i

0

k∗R,1
1+ a∗R,1pb

∗
1
dp (167)

c2 =
∫ p∗2

0

k∗R,2
1+ a∗R,2pb

∗
2
dp (168)

1
qT

= x1
q∗1

+ x2
q∗2

(169)

In Equation (169), qT is the total loading, and x1 and x2
are the mole fractions of the components 1 and 2 respect-
ively. q∗1 and q∗2 are the pure component loadings. Using
the values for q1, and q2, x1, x2, and qT can be obtained
as follows:

qT = q1 + q2 (170)

x1 = q1
qT

(171)

x2 = q2
qT

(172)

Applying the Redlich-Peterson equation in Equation (169)
yields

1
qT

= x1
k∗R,1p

∗
i

1+a∗R,1p
∗b∗

1
i

+ x2
k∗R,2p

∗
2

1+a∗R,2p
∗b∗

2
2

(173)

Another numerical method such as Newton-Raphson is
required to solve Equation (173). In this approach, is
computed from a given value of p∗1. Then the values of
c1 and c2 are obtained by applying the numerical inte-
gration scheme for Equations (167) and (168). The
value of p∗1 is optimised till c1 = c2. The values of the

bulk phase concentration (p1 and p2) are obtained using
Raoult’s law analogy as shown below.

p1 = x1p
∗
1 (174)

p2 = x2p
∗
2 (175)

3.5.5. Padé approximants of Frey and Rodrigues [115]
In this study, an explicit solution for IAS theory is developed. It
involves fitting the relation between the reduced grand poten-
tial (c) and the pure component gas phase pressure (p∗i ) to a
three parameter Padé approximation [115]. This method can
be applied to a variety of single component isotherms [115].
A Padé approximant can be used to represent the pure com-
ponent pressure (p∗i = f−1(c)). The accuracy of the expression
depends on the kind of approximant employed. An important
idea presented in this publication is to fit the equivalent Padé
representation directly to the experimental equilibrium data.
One pitfall that can be quickly identified with this method is
the inability of the Padé approximation to represent the equi-
librium data accurately over sufficiently wide concentration
ranges, as required for IAST calculations. The steps involved
in this approach are as follows:

(1) Determine the functions c(p∗i ) and p∗i (c) for each com-
ponents form the single component isotherms. For pure
component i obeying Langmuir isotherm, c(p∗i ) equals

c p∗i
( ) = qsati ln 1+ bip

∗
i

( )
(176)

For different values of p∗i , ψ can be obtained using
Equation (176). The expression for the pure component
pressure (p∗i (c)) is

p∗i c
( ) = 1

ki
exp

c

qsati

( )
− 1

( )
(177)

(2) Fit the function p∗i (c) to a three-parameter half Padé
approximation

p∗i =
c

ai + fic+ cic2 (178)

In Equation (178), ai, fi and pi are the coefficients of the
three parameter half Padé approximation.

(3) Substitute Equation (178) into
∑NC

i=1 xi =
∑NC

i=1 pi/p
∗
i = 1

which leads to a quadratic formula for ψ:

0 = c2
∑NC

i=1

cipi + c
∑NC

i=1

fipi − c+
∑NC

i=1

aipi (179)

(4) Determine the explicit multi-component isotherms by
combining Equation (179) and qi = pi

∂c
∂pi

as shown below.

qi = pi
c2ci + cfi + ai

1−∑NC
i=1 fipi − 2c

∑NC
i=1 cipi

(180)

3.5.6. Surface B-splines fitting [116]
In this method, the IAST calculations are performed once for
obtaining the multi-component adsorption data for each species
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[116]. These datasets are fitted with B-splines to determine the set
of coefficients involved in the equations for the splines. Once the
coefficients are obtained, interpolation methods can be used to
obtain the equilibrium loadings at any concentration.

B-splines are also known as the basis splines. They are con-
structed using polynomial functions joined at nodes. For a set
of knots or nodes, lj (with j = 0 to g + 1), g−k independent B-
splines (Ni,k+1(x)) of degree k can be constructed [116]. Each
spline function (s) is evaluated at x [ [l0, lg+1] as follows

s(x) =
∑g
i=−k

aiNi,k+1 x( ) (181)

In Equation (181), ai are known as B-spline coefficients.
Ni,k+1(x) is obtained recursively using the following equation.

Ni,k+1 x( ) = x− li
li+k − li

Ni,k x( ) + li+k+1 − x
li+k+1 − li+1

Ni+1,k x( ) (182)

Ni,1 = 1, x [ li, li+1[ ]0, x � li, li+1[ ]{
(183)

B-splines can be applied to surface approximation using tensor
products [116]. Considering a data point (x, y) belonging to
[li, li+1] ×[mj, m j+1], the spline (s) of degree, k in x, and l in
y is as follows

s(x, y) =
∑g
i=−k

∑h
j=−l

ai,jNi,k+1 x( )Mj,l+1 y
( )

(184)

where Ni,k+1(x) and Mj,l+1(y) are the normalised B-splines
defined on the knots, λ and μ respectively. This surface
approximation can be used to calculate the equilibrium load-
ings in case of multi-component adsorption. For a binary mix-
ture, the adsorption loadings (q1(p1, p2), q2(p1, p2)) can be
calculated using Equation (184). The B-spline coefficients
(ai,j) are obtained by fitting the surface spline to the data points
of the equilibrium loadings as a function of the bulk phase con-
centrations (p1 and p1). This reduces the amount of iterative
calculations involved in IAST.

3.5.7. Approach of Landa et al. [74]
The approach of Landa et al. is based on transforming the alge-
braic system of IAST equations to a system of ODEs with one
specified initial value [74]. Starting with

c p∗1
( ) = ci p∗i

( )
i = 1, 2, . . . , N( ) (185)

which after differentiation reads

dc p∗1
( )
dp∗1

= dci p∗i
( )
dp∗i

dp∗i
dp∗1

i = 2, . . . , N( ) (186)

Equation (186) can be transformed in an integration of a sys-
tem of N−1 decoupled ordinary differential equations

dp∗i
dp∗1

= q∗1 p∗1( )
p∗1

p∗i
q∗i p∗i( ) , p∗i 0( ) = 0 i = 2, . . . , N( )

dp∗i
dp∗1

= 1, p∗i 0( ) = 0 i = 1( )
(187)

The integration proceeds until the equilibrium condition
Equation (129) is met.

The calculation of the reduced grand potential is avoided, as
well as the inversion of . The approach does not need a suitable
vector of starting values to compute the desired adsorption
equilibria.

3.5.8. Segregated IAST (SIAST) -- approach of Swisher
et al. [29] (Implemented in RUPTURA)
Instead of considering the available adsorption volume as a
continuous space, the adsorbent material is divided into sev-
eral distinct adsorption sites in SIAST. The competitive
adsorption at each type of site takes place separately which
are separately in thermodynamic equilibrium with the gas
phase [29], as shown in Figure 5. These sites are assumed to
be uniform and hence, IAST is applied individually to each
type of sites. Unary isotherm parameters are required as
input to this model which can be obtained by fitting isotherm
equations to equilibrium loading data of pure components. At
each type of sites, different isotherms can be used. It is easier to
obtain pure component loadings using grand-canonical Monte
Carlo simulations than experiments. This because the later
involves a time consuming procedure [109]. SIAST works bet-
ter than IAST when there are distinct adsorption sites and the
components in a mixture prefer certain adsorption sites over
the others [29]. When there is multi-site adsorption, the com-
petition experienced by different molecules vary at different
types of these sites. Since IAST assumes the entire adsorbent
as a uniform site, it cannot capture such variations.

In case of SIAST, the inverse of ψ is generally an explicit
expression at each adsorption site (multi-site expressions are
split up into their individual contributions per site). This
helps in avoiding the iterations involved in calculating the
pure component pressures (p∗i ) and makes the calculations
much faster than the original IAST approach. If the inverse
of ψ is not an explicit expression (e.g.Redlich-Peterson iso-
therm) [114], then SIAST will lose its advantage over IAST.
Also, for adsorbents with single type of adsorption sites,
IAST and SIAST are identical.

Figure 5. (Colour online) Equilibrium of each of the adsorbed phases with the gas
phase in the Segregated Ideal Adsorbed Solution Theory (SIAST) model [29]. Each
adsorbed phase is separately in equilibrium with the gas phase. The system is at a
constant temperature. The gas phase has a total pressure of ptot and the mole
fraction of component i equals yi . In the adsorbed phase j, the loading of com-
ponent i is qij .
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3.5.9. Direct search minimisation methods [73]
The method of Santori et al. [73] is based on the minimisation
of an objective function representing the iso-reduced grand
potential condition. The reduced grand potentials are
expressed in terms of molar fractions xi through a preliminary
change of variable from p∗i to xi substitution

d ln
pT yi
xi

[ ]
= − 1

xi
dxi (188)

For the dual-site Langmuir, this becomes

ci =
∫
−

qs1,ib1,i
pTyi
xi

( )
xi + xib1,i

pT yi
xi

( )+ qs2,ib2,i
pT yi
xi

( )
xi + xib2,i

pT yi
xi

( )
⎛
⎝

⎞
⎠dxi (189)

=
∫

− qs1,i + qs2,i
xi

+ qs1,i
xi + pTyib1,i

+ qs2,i
xi + pTyib2,i

( )
dxi (190)

= − qs1,i + qs2,i
( )

ln xi( ) + qs1,i ln b1,1yipT + xi
( )

+ qs2,i ln b2,1yipT + xi
( )

(191)

Santori et al. [73] derived similar expressions for the Toth,
Unilan, and O’Brien–Myers functional forms. Using the
derived reduced grand potentials ci, the iso-ci condition can
be set as a minimisation problem. For the binary case we have

fbinary xi( ) = c x1( ) − c x2( )∣∣ ∣∣ (192)

and ternary case we have

fternary xi, x2( ) = c x1( ) − c x2( )∣∣ ∣∣+ c x1( ) − c x3( )∣∣ ∣∣ (193)

For the more general ternary case, the optimisation problem is
stated as: Minimise the objective function fternary(xi, x2) subject
to constraints 0 , x1 , 1− x2 and 0 , x2 , 1− x1. Santari
et al. used Nelder-Mead minimisation algorithm [117] oper-
ated with a working precision of 10−8, which resulted in
final residuals ranging between 10−7 and 10−9. The approach
avoids pressure inversion and the initial guess, which are the
typical requirements of the previous approaches. For binary
systems, direct search minimisation approach was reported
to be faster than the classic IAST equations solution approach
up to 19.0 (dual-site Langmuir isotherm) and 22.7 times (Toth
isotherm). In ternary systems, this difference decreases to 10.4
(O’Brien andMyers isotherm) times. Compared to the FastIAS
approach [88], direct search minimisation is up to 4.2 times
slower in ternary systems.

3.5.10. Approach of Mirzaei et al. [118]
Mirzaei et al. [118] developed a numerical solution for IAST,
especially for cases where explicit expression for the reduced
grand potential (c) is not available. Numerical integration is
used to calculate ψ. In this approach, the guessing parameter
is the adsorbed mole fraction of component 1 (x1) which is
not directly involved in the integration to calculate ψ The
adsorbed mole fraction of component 2 is calculated using

∑NC

i=1

xi = 1 (194)

The values of the pure component equilibrium concentrations
are estimated as follows which are also the upper limit in the
integration to calculate the grand potential (c)

pi = xip
∗
i (195)

The grand potentials are calculated separately for both com-
ponents using

ci =
∫ p∗i

0

q∗i (p)
p

dp (196)

If the error (|c1 − c2|) is less than the predefined error value,
then the total loading is calculated as shown below. Otherwise,
the steps mentioned above are repeated with another guessed
value for the adsorbed mole-fraction of component 1.

1

qT =∑Nc
i=1

xi
q∗i

(197)

Once, the total equilibrium loading (qT ) is obtained, q1 and q2
are calculated as follows

qi = xiqT (198)

The procedure for the numerical method developed by Mirzaei
et al. [118] is shown in Figure 6.

3.6. Mixture prediction software

3.6.1. Benjamin [119]
M. Benjamin freely provided an Excel spreadsheet and a Java
program that carries out the IAST calculations that can be
used to calculate the equilibrium distribution of species in a
competitive adsorption system, based on the IAST Model. A
manuscript containing background information on the IAST
and the usefulness of these programs has been published in
ES&T [119].

3.6.2. pyIAST [77]
pyIAST [77] is an open-source Python package, pyIAST, to
perform IAST calculations for an arbitrary number of com-
ponents. pyIAST supports several common analytical models
to characterise the pure-component isotherms from exper-
imental or simulated data. Alternatively, pyIAST can use
numerical quadrature to compute the spreading pressure for
IAST calculations by interpolating the pure-component iso-
therm data. pyIAST can also perform reverse IAST calcu-
lations, where one seeks the required gas phase composition
to yield a desired adsorbed phase composition.

3.6.3. GAIAST [120]
GAIAST (Genetic Algorithm IAST) [120] is a Fortran 2008
+ standard compliant, free and open source project, aimed
at using IAST to predict the loading of the gas mixture
on the adsorbed phase, based only on the knowledge of
the pure adsorption isotherms of the individual
components.
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Figure 6. (Colour online) Numerical procedure to calculate equilibrium loadings for a binary mixture developed by Mirzaei et al. [118]. The bulk phase concentrations are the
input to this approach and the adsorbed mole fraction for component 1 (x1) is used as the guessed value. Based on x1, x2 is estimated. Further, the grand potentials for com-
ponents 1 and 2 are calculated separately and the difference between these two values are computed. If the difference is less than the predefined error value, then the total
equilibrium loadings and the loadings for each component are determined. Otherwise, a new guessed value for component 1 is considered and the steps (3–7) are repeated.

Algorithm 2 IAST calculation using bi-section. The tolerance value e can be set to 10−15.

function IAST(p, yi)
ψ � initial value∑

i xi �
∑

i yi × p/p∗i (c) ⊳ /* Equation (47) */
c	 � ψ ⊳ /* Initialize the top bracket with the inital ψ value */
c
 � ψ ⊳ /* Initialize the bottom bracket with the inital ψ value */
if
∑

i xi . 1 then ⊳ /* bottom bracket known, searching for top bracket */
repeat

c	 � 2×c	∑
i xi �

∑
i yi × p/p∗i (c	) ⊳ /* Equation (47) */

until
∑

i xi , 1
else ⊳ /* top bracket known, searching for bottom bracket */

repeat
c
 � c
/2∑

i xi �
∑

i yi × p/p∗i (c
) ⊳ /* Equation (47) */
until

∑
i xi . 1

end if
repeat

ψ � 1
2 (c	 + c
) ⊳ /* Use bisection to find the ψ within the interval */∑

i xi �
∑

i yi × p/p∗i (c) ⊳ /* Equation (47) */
if
∑

i xi . 1 then ⊳ /* New range is ψ to c	 */
c
 � ψ

else ⊳ /* New range is c
 to ψ */
c	 � ψ

end if
until |c	−c
|

|c	+c
| , e ⊳ /* Iterate until c	 and c
 are equal to within precision e */
ψ � 1

2 (c	 + c
) ⊳ /* Final computed value of the reduced grand potential ψ */∑
i xi �

∑
i yi × p/p∗i (c) ⊳ /* Mole fractions sum to unity (within precision e), Equation (48) */

for i [ {1, . . . , Nc} do
xi � yip

p(c) ⊳ /* Equation (47) */
end for
1/qT �∑

i
xi

f (p(c)) ⊳ /* Equation (50) */
for i [ {1, . . . , Nc} do

qi � xiqT ⊳ /* Equation (52) */
end for
return ψ, xi , qi

end function
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3.6.4. IAST++ [121]
IAST++ [121] is a user-friendly graphic user interface software
that can fit the adsorption data to various isothermmodels and
use the ideal adsorbed solution theory (IAST) to obtain mix-
ture isotherm data. The authors found FastIAS to be quite
unstable because it uses the Newton-Raphson method that is
highly sensitive to initial conditions and therefore solved the
system of equations by minimising the square of the each
equation and constraints using the downhill simplex
(Nelder-Mead) method [117].

3.6.5. pyGAPS [122]
pyGAPS (Python General Adsorption Processing Suite) frame-
work [122] is a versatile and extensible software package which
can be used for both routine material characterisation as well
as complex adsorption isotherm processing. It contains
many common characterisation methods such as: Brunauer-
Emmett-Teller and Langmuir surface area, t and α s plots,
pore size distribution calculations (Barrett-Joyner-Halenda,
Dollimore-Heal, Horvath-Kawazoe, DFT/NLDFT kernel
fitting), isosteric enthalpy calculations, ideal adsorbed solution
theory calculations, isotherm modelling and more, as well as
the ability to import and store data from Excel, CSV, JSON
and SQLite databases. pyGAPS includes the IAST implemen-
tation from pyIAST, which has been wrapped for interoper-
ability with pyGAPS isotherm models.

3.6.6. GraphIAST [123]
GraphIAST (Python General Adsorption Processing Suite)
framework [123] is a simple, user-friendly program for IAST
loading and selectivity predictions for binary gas mixtures
based on the Python module pyIAST. The authors developed
a graphical user interface resembling commonly known soft-
ware and made three-dimensional selectivity predictions easily
accessible within just a few clicks. The input and output data
structure relies on the widely used *.csv format and isotherm
data can be fitted with various established models.

3.7. IAST implementation in RUPTURA

3.7.1. FastIAS algorithm
The default IAS algorithm in RUPTURA is FastIAS. The
implementation follows the description in Section 3.5.3. The
original formulation of O’Brien and Myers is defined in
terms of a reduced pressure. As a generalisation, we use the
sorption pressures and a formulation that is isotherm model
agnostic. However, instead of using a convergence test criteria
like Equation (150), we use the standard deviation of the
obtained reduced grand potentials (using 10−13 as default
precision).

For efficiency reasons, we cache the computed sorption
pressures and reduced grand-potentials (for breakthroughs
for each grid point). Since the next computation is very likely
close to the current solution, the next solution is usually found
within only one or two FastIAS steps. However, the first com-
putation for IAST and breakthrough usually starts at con-
ditions where loadings, sorption pressures, and reduced
grand potentials can be very small. We found that at these

conditions using Equation (136) worked better than using
Equation (135) for initialisation.

3.7.2. Nested-loop algorithm using bisection
Our nested-loop implementation is based on

f c
( ) =∑N

i=1

yip

p∗i c
( ) = 1 (199)

Our experience agrees with See et al. [121] that methods like
Newton-Raphson do not seem able to numerically reduce
the error to machine precision. We note that c∗

i (p) is a con-
tinuous and importantly, monotonic function, and therefore
also is its inverse p∗i (c). We therefore use bi-section on the
reduced grand potential ψ. This automatically guarantees
there is a single reduced grand potential ψ that is equal for
all components. The decision to reduce or increase ψ is
based on whether the sum of the adsorbed mole fractions is
larger than unity or not. Additionally, we use the bi-section
algorithm to obtain p∗i (c) for the supported isotherm types
(see Table 1). The bisection algorithm is described in detail
in Algorithm 2 for IAST and in Algorithm 3 for inverse com-
putations. The algorithm of Hoseinpoori [124] is also based on
bisection, but on x1 + x2, which is therefore limited to binary
components.

For a function f on an interval [a, b], bisection iterates
through the following steps:

(1) Calculate the midpoint c = 1
2 (a+ b)

(2) Calculate the function value at the midpoint, f (c)
(3) If convergence criteria is no met, examine whether f (c) is

smaller or larger than unity and replace either (a, f (a)) or
(b, f (b)) with (c, f (c)) and continue with the new (smaller)
interval.

The method converges linearly with rate 1/2, i.e. the absol-
ute error is halved at each step.

The bisection method is insensitive to the starting values.
However, we also cache p∗i (c) for all components, so that sub-
sequent evaluations use efficient starting values. The bisection
method is slow, since (a) bisection itself is slow, (b) it needs the
inverse reduced grand potential (numerically), and (c) the
nested-loop algorithm requires many iterations. We have
implemented this method based on its robustness and accu-
racy, i.e. it is able to always converge to machine precision.
We use a relative tolerance of 10−15. For our use cases in
IAST and IAST in fixed-bed adsorption simulations, this was
achieved in under 50 steps, even for complex 10-component
mixtures.

The FastIAS method is much faster than the nested-loop
algorithm using bisection method. Therefore, it is used as
the default method in RUPTURA. We also plan to include
the false position method [125] in the next version of
RUPTURA.

3.8. Validation

Moon and Tien [110] and Landa et al. [74] considered a ten-
component mixture described by the O’Brien and Myers
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adsorption isotherm model

q(p) = qsat
bp

1+ bp
+ s2 bp 1− bp

( )
2 1+ bp
( )3

[ ]
(200)

with reduced grand potential [23,74]

c(p) = qsat ln 1+ bp
[ ]+ s2bp

2 1+ bp
( )2

[ ]
(201)

In Table 5, we compare our IAST results for a 10-component
mixture of Moon and Tien [110], also used in Landa et al. [74].
We obtain similar qualitative results, but quantitatively differ-
ent in the third digit. The tolerance for the results of Moon
et al. was 10−5. Our work uses a relative precision of 10−15.
Our computed total loading is qT = 2.26563527 mol/kg, and
the sum of the adsorbed phase mole fractions

∑
i xi = 1 is nor-

malised to machine precision, compared to qT = 2.3050 mol/
kg and

∑
i xi = 0.9912 for Moon and Tien. The component

reduced grand potentials for Moon and Tien are recomputed
from the reported partial pressures and adsorbed mole frac-
tions using Equation (201) and hence, the accuracy is limited

by the accuracy of the reported adsorbed mole fractions.
Nevertheless, the data illustrate a relative precision of 10−5

which is not enough to enforce identical reduced grand poten-
tials ci for all components.

In Table 6 we compare our IAST results for a 10-com-
ponent mixture of Landa et al. [74]. The relative and absolute
tolerances for the results of Landau et al. are 10−10 and 10−12,
respectively. This work uses a relative precision of 10−15. Our
computed total loading is qT = 2.117678mol/kg, compared an
absolute loading of qT = 2.1142 mol/kg by Landau et al. Note
the value of c = 3.76951 mol/kg of Landa et al., computed
from their reported loading data. The error in ψ is here due
to the limited precision of the reported loading q9 = 0.0010
mol/kg. Using our value of q9 = 0.001042 in the computation
yields c9 = 3.68052 mol/kg.

4. Fixed-bed adsorption simulations

4.1. Introduction

Most industrial separation processes take place at dynamic
conditions [126]. Apart from adsorption isotherms, it is also

Table 5. Parameters for the O’Brien and Myers adsorption isotherm model considered by Moon and Tien [110] for a 10-component mixture at 300 kPa, qT = 2.3050
mol/kg and

∑
i xi = 0.9912.

component qsati [mol/kg] bi [Pa−1] si [−] pi [kPa] yi [−] ci [mol/kg] (Ref. [110]) ci [mol/kg] (this work) xi [−] (Ref. [110]) xi [−] (this work)
1 5.0 1.0× 10−5 1.2 30.0 0.1 4.261 4.19182774500228 0.3129 0.321867
2 3.0 0.6× 10−5 1.1 30.0 0.1 4.191 4.19182774500229 0.0698 0.069755
3 4.0 0.09× 10−5 0.8 30.0 0.1 4.194 4.19182774500228 0.0164 0.016412
4 2.0 1.0× 10−5 1.2 60.0 0.2 4.191 4.19182774500229 0.0926 0.092559
5 3.5 0.3× 10−5 1.0 30.0 0.1 4.191 4.19182774500228 0.0459 0.045873
6 4.0 0.1× 10−5 1.1 15.0 0.05 4.201 4.19182774500229 0.0102 0.010241
7 2.0 1.5× 10−5 1.2 15.0 0.05 4.192 4.19182774500228 0.0347 0.034710
8 2.5 0.1× 10−5 1.15 15.0 0.05 4.170 4.19182774500228 0.0040 0.003953
9 4.0 0.01× 10−5 1.0 15.0 0.05 4.145 4.19182774500228 0.0010 0.000980
10 5.5 0.6× 10−5 1.0 60.0 0.2 4.192 4.19182774500228 0.4037 0.403652

Notes: The tolerance for the results of Moon et al. was 10−5. This work uses a relative precision of 10−15. Our computed total loading is qT = 2.26563527 mol/kg, and
the sum of the adsorbed phase mole fractions

∑
i xi = 1 is normalised to machine precision.

Algorithm 3 Inverse computation using bi-section. The tolerance value e can be set to 10–15.

function p(c)
p � initial value
p	 � p ⊳ /* Initialize the top bracket with the inital p value */
p
 � p ⊳ /* Initialize the bottom bracket with the inital p value */
if c((p) . 1 then ⊳ /* bottom bracket known, searching for top bracket */
repeat
p	 � 2× p	

until c(p	) , 1
else ⊳ /* top bracket known, searching for bottom bracket */
repeat
p
 � p
/2

until c(p
) . 1
end if
repeat
p � 1

2 (p	 + p
) ⊳ /* Use bisection to find the p within the interval */
if c(p) . 1 then ⊳ /* New range is p to p	 */
p
 � p

else ⊳ /* New range is p
 to p */
p	 � p

end if
until |p	−p
|

|p	+p
| , e ⊳ /* Iterate until p	 and p
 are equal to within precision e */

p � 1
2 (p	 + p
)

return p
end function
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important to evaluate properties like cyclic stability, long time
stability, competitive adsorption and mass transfer kinetics
[126]. Knowledge of these properties is vital for selecting an
appropriate adsorbent for a specific separation process.
These properties can be obtained using dynamic methods. In
most dynamic methods, adsorbents are arranged in fixed
beds [127] and the gas mixture is passed through them.
Adsorption in fixed beds is carried out in cylindrical columns
filled with particles of nanoporous materials. The nanoporous
particles are held fixed in place and do not move (Figure 7).
Adsorbers are commonly operated in a transient mode. Con-
sequently, the compositions of the gas phase, and of the
adsorbed molecules inside the adsorbent particles vary with
position and time. Transient breakthrough curves are crucial
for evaluating the performance of an adsorbent material to
separate certain compounds, or to encapsulate a single com-
ponent [128]. It is also important to acknowledge the fact
that the study of breakthrough curves cannot be the sole cri-
terion in designing an adsorption-based system. A full-scale
process simulation is required to serve the purpose
[129,130]. Measurements of breakthrough curves through
experiments involves several steps ranging from preparing
the samples to analyse the results [109]. This procedure can
be very time consuming especially, when breakthrough curves
are used to screen a large number of potential adsorbents for a
specific separation process [109]. Therefore, breakthrough
curve modelling can be very handy in designing adsorption
based separation columns and selecting the best adsorbent
material for the process.

The fluid containing the solute flows through the packed
bed of adsorbents, usually at a constant mass flow rate. The

breakthrough curve has mainly three segments: the unsatu-
rated zone, the mass transfer zone (MTZ) and the saturated
zone [126]. These segments are shown in Figure 8. The unsa-
turated zone is the region where the fluid phase and the
adsorbed phase are not in equilibrium. The majority of the
adsorption of the components take place in this zone. The
mass transfer zone (MTZ) is the range of the bed where the
adsorption process rapidly progresses towards equilibrium.
There is a rapid increase in the outlet concentration in this
zone which is influenced by the mass transfer between the
gas phase and the adsorbed phase [131], axial dispersion,
and heat transfer effects [126]. During operation, this zone
moves along the bed from the inlet point to the outlet point.
Inside the MTZ, the loading of absolute adsorbates varies
from the saturation limit to 0%. When the front edge of the
MTZ reaches the end point of the bed, the ‘breakthrough’
occurs (often defined as when the concentration at the outlet
reaches a predefined value, e.g. 1%, of the inlet concentration).
The saturated zone determines the adsorption capacity of the
components [126]. In this zone, the adsorbed phase is in

Figure 7. (Colour online) Schematic representation of a packed bed adsorber. The
packed bed adsorber is a cylindrical column filled with nanoporous adsorbent
material (crystalline or amorphous). When a fluid mixture is fed as input to the
column, adsorption of various components present in the mixture takes place
inside these nanoporous materials.

Figure 8. (Colour online) Different zones in a breakthrough curve at the exit of
the fixed bed column. Fluid phase concentration of an adsorbing component
as a function of time at the fixed bed column outlet. The profile is divided into
three zones: (a) the unsaturated zone: where the maximum adsorption takes
place, (b) mass transfer zone: where adsorption process progresses rapidly
towards equilibrium, (c) saturated zone: where no more adsorption takes place
as equilibrium between the fluid and the adsorbed phase is achieved.

Table 6. Parameters for the O’Brien and Myers adsorption isotherm model considered by Landau et al. [74] for a 10-component mixture, qT = 2.1142 mol/kg.

component
qsati

[mol/kg] bi [Pa−1] si [−] pi [kPa] yi [−]
ci [mol/kg]
(Ref. [110]) ci [mol/kg] (this work)

qi [mol/kg]
(Ref. [74])

qi [mol/kg]
(this work)

1 5.0 1.0× 10−5 1.2 30.0 0.1 3.68342 3.683573349491790 0.8443 0.845631
2 3.0 0.6× 10−5 1.1 3.0 0.01 3.68238 3.683573349491790 0.0192 0.019219
3 4.0 0.09× 10−5 0.8 3.0 0.01 3.69288 3.683573349491789 0.0043 0.004325
4 2.0 1.0× 10−5 1.2 15.0 0.05 3.68419 3.683573349491789 0.0677 0.067839
5 3.5 0.3× 10−5 1.0 60.0 0.2 3.68371 3.683573349491791 0.2467 0.247123
6 4.0 0.1× 10−5 1.1 60.0 0.2 3.68317 3.683573349491790 0.1093 0.109459
7 2.0 1.5× 10−5 1.2 30.0 0.1 3.68345 3.683573349491791 0.2032 0.203517
8 2.5 0.1× 10−5 1.15 60.0 0.2 3.68459 3.683573349491790 0.0446 0.044700
9 4.0 0.01× 10−5 1.0 6.0 0.02 3.76951 3.683573349491788 0.0010 0.001042
10 5.5 0.6× 10−5 1.0 33.0 0.11 3.68348 3.683573349491788 0.5739 0.574822

Notes: The relative and absolute tolerances for the results of Landau et al. are 10−10 and 10−12, respectively. This work uses a relative precision of 10−15. Our computed
total loading is qT = 2.117678 mol/kg.
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equilibrium with the fluid phase. Therefore, no net mass trans-
fer from the fluid phase to the adsorbed phase takes place.

When the fluid flows across the solid surface, a stagnant
film forms along that surface. Molecules from the bulk intersti-
tial phase are transported via axial convection onto the film.
Inside the film there is velocity gradient in the direction of
the flow but not in the perpendicular direction. Therefore,
advection does not occur in the film and molecules diffuse
across the stagnant film. The driving force of film diffusion
is the concentration gradient located at the interface region
between the exterior surface of the adsorbent particles and
the bulk solution. The stagnant film thickness is proportional
to the Reynolds number of the bulk fluid. The external mass
transfer resistance is strongly dependent on the flow con-
ditions, e.g. temperature, pressure, and superficial velocity
[132]. The adsorbate molecules transfer between the fluid
and adsorbent particles through several steps [132–134]:

(1) transport of adsorbate from bulk fluid to the localised
hydrodynamic boundary layer around the adsorbent,

(2) interface diffusion between fluid phase and the exterior
surface of the adsorbent (often called ‘external’, ‘inter-
phase’, or ‘film’ diffusion),

(3) intraparticle mass transfer involving pore diffusion and
surface diffusion,

(4) adsorption of molecules on the inner surface,
(5) if the solid is a catalyst: reactions taking place at specific

active sites inside the catalyst material,
(6) desorption of the molecules from the inner surface,
(7) diffusion of the products from the interior of the particle

to the pore mouth at the external surface,
(8) diffusion of the products from the external particle surface

to the bulk fluid (inter phase diffusion).

Molecules in the column can move in both axial and radial
directions. In case of plug flow behaviour, any variation in the
radial direction is absent so the velocity of the fluid, the con-
centration, and the porosity are assumed to be constant across
any cross-section of the bed perpendicular to the axis of the
bed. Variation of the velocity in the radial direction can be
neglected if the flow is not highly viscous and no considerable
boundary layer is formed in that direction. The assumption of
neglecting radial gradients is widely accepted [135–137]. The
effects of dispersion in all directions are included in the axial
dispersion term [6]. To account for the adsorption, we use
the Linear Driving Force (LDF) model [32]. In this model,
the adsorption of molecules from all directions into adsorbent
particles is lumped into a single entity, called average adsorbed
loading (qi). One can also model the adsorption process by
considering variation in the radial direction inside the zeolites.
This is possible using the Fick diffusion model. Sircar and Huf-
ton compared the LDF model with the rigorous Fick diffusion
model [138]. These authors found that the details regarding
the intra-pore diffusion are lost when breakthrough curves
are modelled [138]. Therefore, the authors concluded that in
most cases the LDF model is sufficient to account for the
effects of adsorption.

Various mathematical models can be derived from conser-
vation of mass, energy, and momentum and augmented by
appropriate transport rate equations and equilibrium iso-
therms [139]. Mathematical models of fixed-bed columns for
adsorption are reviewed by Tien [20,140], Worch [64,141],
Siahpoosh et al. [142], Xu et al. [134], Shafeeyan et al. [137],
Supian et al. [143], Unuabonah et al. [144], and many others.
These models differ mainly in the form of the mass transfer
rate, the form of the equilibrium isotherm, thermal effects,
and the pressure drop along the bed. Fixed-bed column
adsorption studies are reviewed by Patel [127] on removal of
various contaminants from wastewater.

Fixed-bed models are either zero-phase, one-phase, two-
phase or multi-phase resistance models [6,144]. A zero-phase
model ignores mass transfer and assumes instantaneous equi-
librium along the column. The one-phase resistance models
assume local equilibrium in any cross section along the bed.
These models take dispersion and/or diffusion into account
but neglect intra-particle diffusion resistance and intra-particle
axial dispersion. The one-phase models, known as chemical
kinetic models, assume that the mass transfer rate is the differ-
ence between two opposing second-order reactions with
different rate constants [145], and include [20,144]: the Tho-
mas model [146], Bohart-Adams model [147], Yoon-Nelson
models [148,149], and Clark model [150]. One-phase models
have direct nonlinear mathematical expressions but are not
very accurate in describing the breakthrough behaviour in a
column [151]. Two-phase resistance models take into account
both film and intra-particle diffusion. These models are more
accurate than one-phase resistance models but have to be
solved numerically. Multiphase resistance models take mul-
tiple types of diffusion (film diffusion, pore diffusion, and sur-
face diffusion) into account. In the diffusion models, the
particle is treated as a homogeneous phase [145]. Note that
often surface reaction rates are assumed to be much faster
than diffusion. Surface reactions should be considered when
it affects the adsorption rate or is the controlling step. Plazinski
et al. [152] reviewed sorption kinetic models including surface
reaction mechanism. Medved and Cerny [153] reviewed sur-
face diffusion of particles in porous media.

4.2. Theory

To model the fixed bed adsorber column, the following
assumptions are considered [142]:

. The fixed bed is tubular and the adsorbent particles are
spherical. The particles are packed uniformly into the
fixed bed (no channeling occurs).

. No chemical reaction occurs in the column. This aspect will
be considered in our future work.

. The fixed bed is initially filled with carrier gas.

. The gas phase behaves as an ideal gas mixture.

. The process is isothermal adsorption.

. The mass and velocity gradients are negligible in radial
direction of the bed.

. The pressure gradient (if any) is invariant with time and
column position and is not affected by the adsorption
process.
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. The fluid velocity is varying according to the total mass bal-
ance along the bed in multi-component systems. The fluid
velocity will vary along the length of the column because
of the variation in total pressure and/or adsorption of the
molecules from the fluid phase.

. The axial dispersion is considered in the bulk phase.

. The carrier gas does not adsorb.

. The physical properties of the gas phase (axial dispersion
coefficient and mass transfer coefficient) are those of the
feed gas. These properties along with the properties (par-
ticle density and bed porosity) of the adsorbent are constant
throughout the column.

For future versions of RUPTURA, we envision to include
non-ideal gas behaviour, liquid phase conditions, non-isother-
mal breakthroughs, and chemical reactions.

We follow Worch [64] to outline the establishment of the
material balance. Considering a differential volume element
dV = ARdz, it can be assumed that the amount of adsorbate
that is adsorbed onto the adsorbent or accumulated in the
void fraction of the volume element must equal the difference
between the input and the output of the volume element. Input
and output occurs by advection and axial dispersion. The gen-
eral mass balance equation is as follows [64]

Ṅaccu. + Ṅads. = Ṅadv. + Ṅdisp. (202)

where Ṅ represents the change of the amount of adsorbate
with time, and the indices indicate the processes accumulation,
adsorption, advection, and dispersion.

. The accumulation term is:

Ṅaccu = 1BdV
∂c t, z( )
∂t

(203)

where c represents the adsorbate concentration in the fluid
phase, z is the distance along the bed length, t denotes time,
and 1B is the bed void fraction.

. The adsorption term is expressed as:

Ṅads = r
B
dV

∂�q t, z( )
∂t

(204)

= 1− 1B
( )

r
P

∂�q t, z( )
∂t

(205)

where r
B
is the bed density, r

P
is the particle density. The

units of both r
B
and r

P
are [kg/m3]. q denotes the average

concentration in adsorbent particle in
[mol/(kg framework)], which forms a link between the
fluid and solid phase mass balance equations.

. Advection is the transport of substances due to the bulk
motion of the fluid in the axial direction and is the

difference between the input and output amount per unit
time.

Ṅadv = u t, z( )ARc t, z( ) − u t, z + dz( )ARc t, z + dz( ) (206)

= −AR

∂u t, z( )c t, z( )
∂z

dz (207)

= −dV
∂u t, z( )c t, z( )

∂z
(208)

= −1BdV
∂v t, z( )c t, z( )

∂z
(209)

where v is the interstitial velocity of the gas phase (related to
the superficial gas velocity u by v = u/1B).

. Assuming that the axial dispersion can be described by
Fick’s first law [154], the difference between input and out-
put caused by dispersion is as follows:

Ṅdisp = D1BAR

∂c t, z( )
∂z

[ ]
z+dz

−D1BAR

∂c t, z( )
∂z

[ ]
z

(210)

= D1BAR
∂c2 t, z( )
∂z2

dz (211)

= D1BdV
∂c2 t, z( )
∂z2

(212)

where D is the axial dispersion coefficient.

Introducing Equations (203), (205), (209), and (212) into
Equation (202), dividing by the control volume (dV) and the
bed void-fraction (1B), and applying the balance equation to
each component, we obtain the main governing equation for
the fixed-bed model [6,145].

∂ci t, z( )
∂t

= − ∂ v t, z( )ci t, z( )( )
∂z

+Di
∂2ci t, z( )

∂z2

− 1− 1B
1B

r
P

∂qi t, z( )
∂t

(213)

For the ith component, the component mass balance including
axial dispersion term, an advection flow term, accumulation in
the fluid phase, and source term caused by the adsorption pro-
cess on the adsorbent particles. If the system is non-isothermal,
an additional heat-balance is required [6].

4.3. Axial dispersion

Models that consider the dispersion are referred to as dis-
persed-flow models, whereas models that neglect dispersion
are termed plug-flow models. In practice, most experiments
are set up such that the plug flow assumption is valid. During
the fluid flow through the packed bed, axial mixing takes place,
which reduces the efficiency of the separation process by
broadening the mass transfer zone. Axial mixing is caused
by molecular diffusion, turbulent mixing, flow splitting, and
rejoining around particles, Taylor dispersion, channeling,
and wall effects [6,155]. These phenomena can be minimised
by choosing proper bed and flow conditions. Axial dispersion
does depend on the Reynolds number and therefore, changes
along the column when appreciable amounts are adsorbed.
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In particular, the Peclet number describes axial dispersion. The
effects of all mechanisms that contribute to axial mixing are
lumped into a single effective axial dispersion coefficient, Dz.
Generally, the contribution from molecular diffusion and
Eddy diffusion or turbulence is considered in the formulation
of dispersion coefficient. Coupling theory is used to add the
contribution of both the terms as shown in the equation stated
below [156].

Dz = gDm + ldpv

1+ CDm/(dpv)
(214)

When intra-particle mass-transfer is neglected (if the product
of Reynolds number and Schmidt number, (Re · Sc) ≫ 1,
advection dominates diffusion), Dz can be estimated using
Equation (214).

Table 7 shows various correlations to calculate axial dis-
persion coefficient,Dz.Dz is a function of molecular diffusivity
(Dm), particle radius (rP ), fluid phase velocity (v) and bed por-
osity (1B). The molecular diffusivity, Dm used in the expression
for axial dispersion coefficient can be calculated either using
Molecular Dynamics [83,161,162] or the Chapman-Enskog
theory [163,164]:

Dm = AT
3
2

ps2
12V

1
M1

+ 1
M2

( )0.5

(215)

In Equation (215), A is an empirical constant of magnitude
1.859 · 10−7. T is the temperature in [K] and p is the partial
pressure of the molecule in [atm]. M is the molar mass in
[g/mol]. s12 is the average collision diameter between mol-
ecules 1 and 2 in [Å] and Ω is the temperature dependent col-
lision integral. The expressions for s12 and Ω [142] are as
follows.

s12 = 1
2
s1 + s2( ) (216)

V = 44.54 kBT/ei,j
( )−4.909+1.911 kBT/ei,j

( )−1.575
( )0.1

(217)

si,j in Equation (216), and ei,j in Equation (217) are the effec-
tive Lennard-Jones parameters [165,166] for a mixture of mol-
ecules i and j. ei,j is defined by 





eiej
√ and kB is the Boltzmann

constant. The expressions for the Lennard-Jones parameters
for a molecule i can be estimated as follows.

si = 0.841V1/3
c (218)

ei = 0.75kBTc (219)

In Equations (218) and (219), Vc and Tc are the critical volume
and critical temperature of the molecule i respectively [142].
Vc is in [Å3] and Tc is in [K].

4.4. Mass transfer models

Inside nanoporous materials, molecules can diffuse into the
framework via pore diffusion and surface diffusion [24]. Diffu-
sion of the particles in the pores occurs through two transfer
processes depending on the pore size [6]: (1) molecular diffu-
sion, which results from collisions between molecules, domi-
nates in macro pores, (2) Knudsen diffusion occurs for
smaller pore sizes due to collisions between molecules and
the pore wall. In the surface diffusion mechanism, molecules
hop between adsorption sites. It is therefore strongly depen-
dent on concentration. For much more details on diffusion
in nanoporous materials, see Ref. [167] and references therein.

The term ∂q(t, z)/∂t in Equation (213) describes adsorption
and the overall rate of mass transfer from the fluid phase to the
solid phase at time t and column distance z. The adsorbate
molecules initially must cross the external film surrounding
each adsorbent particle and then diffuse through and along
the porous structure of the adsorbent. Many models are devel-
oped that differ in the rate-limiting mass transport step
[134,144,168,169]: the Linear Driving Force (LDF) model
[32], the homogeneous surface diffusion model [170], the
film-solid diffusion model with a constant diffusivity [171],
the branched pore kinetic-model [172], the pore diffusion
model [6,173], the film-pore diffusion model [174], the diffu-
sion flow-film particle diffusion model [175], the diffusion
flow-local equilibrium model [176], the film pore and surface
diffusion model [177–180], and the concentration-dependent
surface diffusivity model [181] to name but a few. The most
frequently applied approximate rate law to simplify the calcu-
lation is the LDF approximation [32]. In most cases, the LDF
model is a good approximation to the exact but much more
complicated surface and pore diffusion models [64].

Self-diffusion is a measure of the mobility of molecules due
to their thermal motions, while collective diffusion is a
dynamic process, involving many particles, due to their coop-
erative movements [182]. The collective diffusion is related to
the transport diffusion coefficient by the thermodynamic fac-
tor [183–185], which can be obtained from the adsorption iso-
therms. Transport diffusion, taking the thermodynamic effects
into account using a Fickian type of approach, can be incor-
porated in the equipment design equations. The differences

Table 7. Correlations for estimation of axial dispersion coefficient, Dz in fixed bed adsorbers.

Dispersion Model Conditions Authors

Dz = 2rP v1B
0.2+0.011 Re0.48

10−3 , Re , 103 Chung and Wen [157]

Dz = 0.7Dm + 5rP v
1+4.4Dm/(rP v)

valid for liquids De Ligny [156]

Dz = 0.7Dm + 2rP v1B
0.18+0.008 Re0.59/(rP v)

– Rastegar and Gu [158]

Dz = 0.73Dm + 0.5dpv1B
1+(9.7Dm )/(v1B dP )

0.008 , Re , 50, 0.0377 , dp , 0.60 cm Edwards and Richardson [159]

Dz = 20Dm
1B

+ 0.5DmScRe
1B

– Shafeeyan, da Silva [137,160]

Dz = (0.45+ 0.551B )Dm + rP v – Ruthven [6]

Notes: Dm is the molecular diffusivity, Sc is the Schmidt number and Re is the Reynolds number. rP and dP are the particle radius and particle diameter respectively. v
represents velocity and 1B is the bed porosity.
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between collective and transport diffusion show that there are
different viewpoints possible to study diffusion [184–186]:

. In the Fick approach, the fluxes N are taken to be linearly
dependent on the gradients of the loadings ∇ci of all species
with the ‘constants’ of proportionality being the Fick diffu-
sivity matrix.

. In the Onsager approach, the fluxes are postulated as linear
functions of the chemical potential gradients (∇mi), with
the proportionality constants being the Onsager coefficients
Lij.

. The Maxwell-Stefan formulation balances diffusive and
drag forces, while Fick and Onsager postulate phenomeno-
logical flux expressions. The Maxwell-Stefan diffusivity can
be related to Fick diffusivity as follows [183,187]

DF = DMSG (220)

In Equation (220), DMS is the Maxwell-Stefan diffusivity and
DF is the Fick diffusivity. Γ is the thermodynamic correction
factor which is derived using chemical potential as the driv-
ing force [187]. This factor can be determined from adsorp-
tion isotherms after differentiation as shown below [187].

G ;
∂ ln f
∂ ln q

(221)

In Equation (221), f is the fugacity and q is the adsorbed
loading. To understand the underlying principles behind
the diffusion process, it is more convenient to describe
this phenomenon using Maxwell-Stefan diffusivity [187].
This approach clearly distinguishes between self diffusivity,
diffusivity of a species inside an adsorbent, and diffusivity
describing interaction between different species [187].

The viewpoints differ in how to set up the flux-driving force
relationship for transport diffusion in nanoporous materials
under non-equilibrium conditions [184,188–190].

In Onsager linear theory, the driving force of diffusion is
the gradient of the chemical potential, μ, of the adsorbed par-
ticles. The diffusion flux J is [191]

J = −L∇ m

T

( )
= − L

T
∂m

∂q
∇q (222)

where L is the Onsager coefficient and q is the adsorption load-
ing. From the practical point of view, the flux J is usually
related to the gradient diffusion coefficient D that depends
on adsorption [191]

J = −D∇q, D = D0
1

kBT
∂m

∂ ln q
(223)

where D0 = kL/q does not depend on adsorption and has the
meaning of the diffusivity at zero loading. The driving force for
diffusion is more correctly expressed in terms of chemical
potentials, but Fick’s law provides a qualitatively and quanti-
tatively correct representation of adsorption systems as long
as the diffusivity is allowed to be a function of the adsorbate
concentration [192]. However, for convenience, the diffusivity
is often taken as the self-diffusivity and assumed to be a

constant. In the limit of zero loading, the self-, collective-,
and transport diffusivities become equal.

Film diffusion comprises the transport of the adsorbate
from the bulk fluid to the external surface of the adsorbent par-
ticle. As long as the state of equilibrium is not reached, the
concentration at the external adsorbent surface is always
lower than in the bulk fluid due to the continuing adsorption
process. As a consequence, a concentration gradient results
that extends over a boundary layer of thickness δ (schemati-
cally shown in Figure 9). The difference between the concen-
tration in the bulk solution, c, and the concentration at the
external surface, cs, acts as a driving force for the mass transfer
through the boundary layer. The mass transfer flux ṅF for the
film diffusion can be derived from Fick’s law

ṅF = DL
dc
dd

(224)

leading to a film mass transfer equation [64]

d�q
dt

= kF
aVR
r
B

c− cS
( )

(225)

where kF is the film mass transfer coefficient in [ms−1], cS the
concentration at the external surface, and the external surface

Figure 9. (Colour online) Loading and concentration profiles according to the
pore diffusion model with external mass transfer resistance. The external mass
transfer resistance is modeled using the film flux ṅF (t) = KF (c(t)− cS (t)), which
is the linear difference of the concentration c(t) in the bulk solution, and the con-
centration cs(t) at the surface of the crystallite. The flux ṅT = ṅP + ṅS is the sum of
the pore diffusion and surface diffusion: ṅT = DP∂cp/∂r + r

P
DS∂q/∂r. The continu-

ity of the materials fluxes requires ṅF = ṅT . The surface is considered to be in
equilibrium and the adsorbent loading q(rp , t) = q(p(t)) is calculated from the iso-
therm with functional form q, where the pressure p is related to the surface con-
centration cS via the ideal gas law as p = RTcS .
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related to the column (aVR) is

aVR = AS/VB (226)

where AS is the external adsorbent surface area and VB is the
fixed-bed volume. For spherical particles, aVR = (1− 1B)3/rP .
In most practical cases, the film diffusion influences only at
the beginning of the adsorption process. At later stages of
the process, the intra-particle diffusion becomes more
important.

The local equilibrium model ignores the mass transfer
resistance, and assumes that the mass transfer between solid
adsorbent particles and external gas is instantaneous.

∂qi
∂t

= ∂q∗i
∂t

(227)

where qi is the average amount of component i adsorbed, q∗i is
the amount adsorbed at equilibrium given by the selected
adsorption isotherm model. Because of neglecting the mass
transfer resistance, the model has accepted limitation in the
practical applications.

In the Homogeneous Surface Diffusion Model (HSDM)
[170,193], the main diffusion mechanism is the surface diffu-
sion. The HSDM assumptions are the following [194]:

. mass balance around a spherical shell element.

. internal mass transfer is only governed by surface diffusion.

. external mass transfer is governed by a linear driving force.

. at the solid/fluid interface, there is continuity between
external mass transfer and internal diffusion.

. at the solid/fluid interface, there is equilibrium between
adsorbate concentration in the fluid and adsorbate load
on the surface.

. the adsorbent particle is assumed to be spherical and
homogeneous.

The adsorbent is assumed to be a uniformmedium in which
the solute adsorbs on the surface and diffuses inwards with an
effective diffusivity in accordance with Fick’s law. For surface
diffusion, the mass transfer rate per unit of surface area, ṅS ,
is obtained using Fick’s law as

ṅS = r
P
DS

∂q
∂r

(228)

where DS is the surface diffusion coefficient and r is the radial
coordinate. Imposing a material balance and assumingDs to be
constant leads to the basic mathematical form of the HSDM
for a spherical particle [64,140,195]:

∂q
∂t

= DS

r2
∂

∂r
r2
∂q
∂r

( )
= DS

∂2q
∂r2

+ 2
r
∂q
∂r

( )
(229)

The homogeneous surface diffusion model is closely related to
the homogeneous solid diffusion model and the film-solid
diffusion model [196]. In the homogeneous solid diffusion
model, all solute within the particle, whether it is in pore
fluid or adsorbed by particle skeleton is lumped into a single
quantity, q [195].

In the Pore Diffusion Model (PDM) [6], the adsorbate
transport within the adsorbent particles takes place in the
pore fluid, instead of on the surface. For pore diffusion, the
mass transfer rate per unit of surface area, ṅs, is again obtained
using Fick’s law as

ṅP = DP

∂cP
∂r

(230)

where DP is the pore diffusion coefficient and r is the radial
coordinate. In the surface diffusion model, the adsorbent is
considered to be homogeneous, and the adsorption equili-
brium is assumed to exist only at the outer surface of the
adsorbent particle. In the case of pore diffusion, however,
the adsorption equilibrium has to be considered at each
point of the pore system. In general, it is assumed that there
is a local equilibrium between the pore fluid concentration
and the solid-phase concentration. Imposing a material bal-
ance leads to a more complicated description [64,195]

r
P

∂q
∂t

+ 1P
∂cP
∂t

= DP

∂2cP
∂r2

+ 2
r
∂cP
∂r

( )
(231)

In the Pore and Surface Diffusion Model (PSDM) [177], the

Figure 10. (Colour online) Loading and concentration profiles according to the
Linear Driving Force (LDF) model with external mass transfer resistance. The
LDF model assumes that there is linear gradient within the solution-side film
and within a comparable fictive solid film. The film flux ṅF (t) = KF (c(t)− cS (t)) is
the linear difference of the concentration c(t) in the bulk solution, and the con-
centration cS (t) at the surface of the crystallite. The solid flux ṅS is the linear differ-
ence between the equilibrium loading qS at the surface and the average loading
�q: ṅS (t) = r

P
kS (qS (t)− �q(t)), where r

P
is the particle density, kS is the intra-particle

mass transfer coefficient. The continuity of the materials fluxes requires ṅF = ṅS .
The surface is considered to be in equilibrium and the adsorbent loading
q(rP , t) = q(p(t)) is calculated from the isotherm with functional form q, where
the pressure p is related to the surface concentration cS via the ideal gas law
as p = RTcS .
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adsorbate transport within the adsorbent particles takes place
via surface and pore diffusion. The total flux is then given as
the sum of the fluxes caused by surface diffusion and by
pore diffusion [64,195]

ṅT = ṅS + ṅP = r
P
DS

∂q
∂r

+ DP

∂cP
∂r

(232)

∂q
∂t

= DS

∂2q
∂r2

+ 2
r
∂q
∂r

( )
+ DP

r
P

∂2cP
∂r2

+ 2
r
∂cP
∂r

( )
(233)

The concentration profiles for film and pore/surface diffusion
are schematically shown in Figure 9.

The intra-particle diffusion models discussed so far include
partial derivatives with respect to time and radial coordinate,
which causes an increased effort for the numerical solution.
The Linear Driving Force (LDF) model states that the rate of
adsorption is proportional to the amount of adsorbate still
required to achieve equilibrium [195]. The equation for the
flux is approximated by

ṅS = r
P
k qS − �q
( )

(234)

where r
P
is the particle density, k is the mass transfer coeffi-

cient, qS is the adsorbent loading at the external surface of
the adsorbent (which is a function of the bulk composition),
and �q is the mean loading in the particle. The following
mass transfer equation can be derived

d�q
dt

= k qS − �q
( )

(235)

The uptake rate of a species into adsorbent particles is pro-
portional to the linear difference between the concentration
of that species at the outer surface of the particle qS (equili-
brium adsorption amount) and its average concentration
within the particle q. rP is the crystallite particle radius.

The LDF model can be derived from a model with a con-
centration profile within the particle. Assuming a quadratic
concentration profile leads directly to the LDF form [197].
Glueckauf [32] derived a general expression to account for
the mass transfer of the molecules from the fluid phase into
the adsorbent [197]. This expression is valid for arbitrary vari-
ation of surface concentration of the adsorbates inside the solid
particles [32]. Glueckauf also showed that for larger values of
the product of mass transfer coefficient (k) and time (t), the
expression is identical to the LDF model [32]. The volume-
averaged adsorption amount q is given by

q t( ) =
'rP
0 q r, t( )4pr2 dr

4
3pr

3
P

= 3
r3
P

∫rP
0
q r, t( )r2 dr (236)

Taking the derivative we get

∂q
∂t

= 3
rP

∫rP
0

∂q
∂t

r2dr (237)

Substituting the diffusion equation for spherical geometry
[170,177]

∂q r, t( )
∂t

= D∇2q r, t( ) = D
r2

∂

∂r
r2
∂q
∂t

[ ]
(238)

into this equation we get

∂q
∂t

= 3D
rP

∫rP
0

∂

∂r
r2
∂q
∂r

( )
dr = 3D

rP

∂q
∂r

[ ]
r=rP

(239)

In Equations (238) and (239), D is the Fickian diffusivity. Next,
we consider a generalised concentration profile

q t, r( ) = A t( ) + B t( )rn (240)

The linear term has been left out on account of spherical sym-
metry [197]. A(t) and B(t) can be solved from the two bound-
ary conditions

∂q
∂r

( )
r=0

= 0 (241)

q r = rP
( ) = q t, rP

( )
(242)

A general solution for the concentration profiles is

q t, r( ) =
q t, rP
( )− n+3

n q t, rP
( )− q

[ ]
+ n+3

n
1
rn
P
q t, rP
( )− q

[ ]
rn 0 ≤ r ≤ rP

q t, rP
( )

r = rP

⎧⎪⎨
⎪⎩ (243)

Taking the derivative of the concentration profiles

∂q
∂r

[ ]
r=rP

= n+ 3
rP

q t, rP
( )− q

[ ]
(244)

Finally, substituting the result for n = 2 into Equation (239)
leads to the LDF equation

∂q
∂t

= 15D
r2
P

qS − q
( )

(245)

Therefore, the LDF model can be deduced from assuming a
quadratic concentration profile [195,197]. The precision of
the LDF models can be improved by using higher order
models [198]. The LDF concentration profiles are schematic
shown in Figure 10.

Although the LDF model was originally developed as a sim-
plified version of the surface diffusion model [64], it can also
be related to the pore diffusion model. As shown for the com-
bined surface and pore diffusion mechanism, an effective sur-
face diffusion coefficient can be defined as

DS = DS +
DP

r
P

∂cP
∂q

≈ DS +
DP

r
P

c0
q0

(246)

In Equation (246), c0 and q0 represent initial (t = 0) fluid phase
concentration and adsorbed loading of the component. It is
also possible to link the mass transfer coefficient (kS) used in
the LDF model with the effective surface diffusion coefficient
(DS) by [197]

kS =
15Deff

r2
P

= 15DS

r2
P

+ 15DP

r2
P

c0
r
P
q0

(247)

Surface diffusion as well as pore diffusion can be approxi-
mated by the LDF model. In fact, the LDF model can be
viewed as a diffusion model where the overall kinetic con-
stant in Equation (235) is a combination of all types of diffu-
sivities such as the film diffusivity and the intra-particle pore
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and surface diffusivities. The LDF model can also be
extended to include coupled diffusion effects by using the
Maxwell-Stefan diffusion formulation [199]. This model
reduces the computational time significantly and is the
most widely used model to describe the mass transfer kin-
etics. We have also incorporated this model in our code to
account for the mass transfer kinetics. The LDF model
includes competitive adsorption processes by combining it
with a mixture adsorption prediction model that determines
the relation between the concentrations and adsorbed
amounts at the external surface.

4.5. Mixture loading prediction

In the multi-component breakthrough computation, the load-
ing qi of species i depends on the concentrations ci of all N
species

qi = q(c1, c2, . . . , cNC
) (248)

This would require mixture isotherms over all possible ranges
of mole fraction. The equilibrium loadings qi for the com-
ponents in the mixture are therefore computed from mixture
prediction models like IAST using single-component adsorp-
tion isotherms. The total average molar loadings of the mix-
ture (q

T
) within the crystallite is obtained by a summation

over all NC components.

q
T
t, z( ) =

∑NC

i=1

qi t, z( ). (249)

There are three possibilities to couple IAST equations in
adsorptive bed dynamics [73]:

(1) The reduced grand potential can be treated as a dependent
variable of time and space and added to the system of
differential equations, describing the bed dynamics [200].

(2) Computation of the adsorption equilibrium separately at
each time step.

(3) A B-spline approach to pre-compute the equilibrium
states [116]. B-splines are also known as the basis splines.
These are constructed using polynomial functions joined
at nodes. For a set of knots or nodes, lj, with j = 0 to g
+ 1, g−k independent B-splines can be constructed. The
summation of such independent splines leads to a spline
function. Equilibrium loadings are calculated using IAST
for the first time and then the coefficients involved in
the B-spline functions are fitted to the data obtained.
Further, interpolations are performed to calculate the
equilibrium loadings. This helps in avoiding the iterative
calculations involved in IAST when called inside the
breakthrough code [116].

This first option results in a strongly non-linear system of
differential-algebraic equations which is difficult to solve,
computationally expensive and time consuming [73]. For
more than two components, the B-spline approach results
in additional multidimensional fitting issues, losing its
advantages and limiting the applicability to the binary case

[73]. The second option is computationally less expensive
than the first one as the IAST equations are solved separately
to the bed dynamics. Unlike the B-spline approach,
this method does not have limitations regarding the number
of components present in the system. These
advantages make the second method a popular approach
for calculating equilibrium loading in fixed bed adsorption
problems [73]. Therefore, we have also adopted this
approach in our code.

In this work, the IAST equations are solved using the FastIAS
and the Nested-Loop bisection method. The latter has the
advantage of calculating equilibrium loadings up to machine
precision (ca. 10−15). A typical working precision considered
by current IAST methods is ca. 10−8 [73]. Moreover, we have
also incorporated the explicit isotherms mentioned in Section
3.4.5. These isotherms can account for the size-effects of the
components on the adsorption behaviour. Originally, these
equations were developed for adsorbents having single sites.
We have extended this model to tackle multi sites adsorption
[31]. We have used a segregated approach where the adsorbed
phase is in equilibrium with the gas phase at each site. This
method calculates equilibrium loadings with similar accuracy
to the segregated IAST approach by Swisher et al [29]. The seg-
regated approaches are useful in case of non-uniform adsorp-
tion surfaces, where IAST can be inadequate in calculating the
correct equilibrium loadings [29].

The explicit isotherms do not require any iterations to cal-
culate the loadings. For integration with the breakthrough
model, this method makes the code about 3 times faster than
using IAST [31]. Explicit isotherms are similar in speed as
using FastIAS using caching, but are not iterative and hence
always converging.

4.6. Existing breakthrough software

Different software is currently available for predicting break-
through curves:

. Fixed-bed Adsorption Simulation Tool (FAST) [201]: It is a
windows based software which is free of charge for aca-
demic or any other non-commercial purposes. It is licensed
under a Creative Commons Attribution-Noncommercial-
No Derivative Works 3.0 Unported License. FAST predicts
the breakthrough curves for fixed bed type filters used in
water treatment. The solid phase mass transfer can be mod-
elled using a homogeneous surface diffusion model or LDF
model.

. Multi-Flow Inversion of Tracer (MFIT) [202]: It is also a
Windows based open-source software package for calculat-
ing breakthrough curves for tracer components present in
ground water. This software is distributed under the Crea-
tive Commons Attribution 4.0 License.

. ProSim Dynamic Adsorption Column Simulation (ProSim
DAC) [203]: It is a commercial software used for adsorption
and regeneration steps in temperature swing adsorption
(TSA), pressure swing adsorption (PSA), vacuum and
temperature swing adsorption, etc. It finds its application
in hydrogen refining, isotopic separation, emission control
of volatile organic compounds and solvent recovery.
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. 3P Sim [204]: It is a commercial software. 3P Sim is a part of
the dynamic sorption analyser instrument, mixSorb L. It
can calculate mixture isotherms from pure component iso-
therms and also evaluate breakthrough curves based on
mass and energy balances.

. Aspen Adsorption [205]: Aspen Adsorption is a commer-
cial flowsheet simulator. It is used to design, analysis, simu-
lation, and optimisation of gas and liquid adsorption
systems. It is used for both PSA and TSA processes.

Various commercial numerical platforms have been applied
for the modeling of the PSA process [206], such as gPROMS
[207], MATLAB [208] and FLUENT [209]. Many research
groups have their own in-house breakthrough codes which
are not released as open source codes. These include the
work of Krishna and Baur [187], Rodriguez [19,160], Worch
[64], Chung et al. [210], etc. Instead of the LDFmodel, Krishna
and Baur solved a partial differential equation along the crystal
diffusion path. The diffusive flux used in the model is provided
by Maxwell-Stefan equations [187]. Maxwell-Stefan diffusivity
formulation involves a thermodynamic correction factor and
binary diffusivities correlating different species. These par-
ameters are evaluated locally along the crystal diffusion path
[187]. Chung et al. [210] used breakthrough curve modelling
to screen nanoporous materials for hexane and heptane isomer
separations. It is an isothermal model with LDF approxi-
mation for the mass transfer kinetics of the isomers and
Darcy’s equation [211] for the pressure drop along the length
of the column.

4.7. Breakthrough model implementation

4.7.1. Model
The ideal gas law reads

ci = yipT

RT
= pi

RT
(250)

where yi is the mole fraction of component i in the gas phase,
pT is the total pressure, pi is the partial pressure, T is the gas
temperature, and R the universal gas constant. Assuming
ideal gas behaviour for the gas phase and isothermal con-
ditions, the partial pressures in the gas phase at position z
and time t are obtained by solving the material balance for
each component i = 1, . . . , NC [6,145]. Here, the material bal-
ance shown in Equation (213) is modified in terms of the par-
tial pressures as shown below.

1
RT

∂pi t, z( )
∂t

= − 1
RT

∂ v t, z( )pi t, z( )( )
∂z

+ 1
RT

Di
∂2pi t, z( )

∂z2
− 1− 1B

1B
r
P

∂qi t, z( )
∂t

(251)

Using the LDF approach yields

∂qi t, z( )
∂t

= ki qeq,i − qi
( )

(252)

Because of adsorption and dispersion, the interstitial velocity v
in fixed-bed adsorption is not constant. To calculate the vel-
ocity profile, the material balance for the overall mixture is

considered by summing Equation (251) over all components

∂pT

∂t
= − ∂ vpT

( )
∂z

+
∑NC

i=1

Di
∂2pi
∂z2

− RT
1− 1B
1B

r
P
ki qeq,i − qi
( )( )

(253)

The total pressure along the column is invariant with time and
has a constant gradient along the length of the column. There-
fore, Equation (253) is modified as shown below.

pT

∂v
∂z

=
∑NC

i=1

Di
∂2pi
∂z2

− RT
1− 1B
1B

r
P
ki qeq,i − qi
( )( )

− v
∂pT

∂z
(254)

The pressure gradient (∂pT/∂z = constant) can be calculated
using the Ergun equation as shown below [212]. The Ergun
equation considers both viscous and inertial effects. Apart
from the Ergun equation, the Darcy [211], and Carman-
Kozeny [213] equations could also be used but these equations
are valid only for viscous flows.

DP
L

= 150mL
d2
P

1− 1B
( )2

1B
( )3 v+

1.75Lr
f

dP

1− 1B
( )

1B
( )3 v v| | (255)

In Equation (255), DP/L is the pressure gradient inside the col-
umn of length L. μ is the dynamic viscosity in [Pas], dP is the
particle diameter in [m], 1B is the bed porosity. r

f
is the density

of the fluid in [kg/m3] and v is the superficial velocity in
[ms−1]. Equations (251), (252) and (254) are solved together
to obtain concentration profiles for all the components inside
the column.

. Initial Conditions
Initially, the column is filled with only carrier gas. The

carrier gas does not adsorb and hence, its equilibrium load-
ing is zero. At the start of the breakthrough simulation, the
pressure of the carrier gas is equal to the total pressure
inside the column (pcarrier gas = pt). Also, we have imposed
the condition that ∂pT/∂z = constant and the constant
can be computed from Equation (255). Therefore, at t = 0,
we have,

∑
i

Di
∂2pi t, z( )

∂z2
= Dcarrier−gas

∂2pcarrier−gas t, z( )
∂z2

(256)

= Dcarrier−gas
∂2pT t, z( )

∂z2
(257)

= 0 (258)

Using Equation (254), we obtain

∂v
∂z

= − 1
pT z( ) v

∂pT

∂z

[ ]
(259)

and

∂v
v
= − 1

pT z( )
∂pT

∂z

[ ]
∂z (260)
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Integrating both sides yields∫v
vin

dv
v
= − ∂pT

∂z

[ ] ∫z
0

1
pT z( ) dz (261)

ln
v
vin

( )
= − ∂pT

∂z

[ ] ∫z
0

1

pT + ∂pT
∂z z

( ) dz (262)

ln
v
vin

( )
= ln

pin
T

pin
T
+ ∂pT

∂z z

( )
(263)

v = vin
pin
T

pin
T
+ ∂pT

∂z z
(264)

pT (t, z) = pin
T
+ ∂pT

∂z
z (265)

Equation (264) shows that at t = 0, the velocity is inversely
proportional to the position inside the adsorber column.
Initially, the pressure of the carrier gas is equal the total
pressure as shown below

pcarrier gas(t = 0, z) = pT (t = 0, z) (266)

and the partial pressures for all other components are zero
inside the column except at the inlet. Also, the adsorption
loadings for the components are zero at the beginning.

pi(t = 0, z . 0) = 0 (267)

qi(t = 0, z) = 0 (268)

. Boundary Conditions
At the inlet of the column, the partial pressures for each

component is fixed. The velocity is also fixed at the inlet. At
the outlet, the spatial gradient of the partial pressures are
considered zero.

v(t, z = 0) = uin

1B
(269)

Dirichlet boundary condition,

pi(t, z = 0) = yini · pin
T

(270)

Neumann boundary condition,

∂pi t, z = L( )
∂z

= 0 (271)

Instead of using Dirichlet boundary conditions (Equation
(270)) [214], the Danckwerts boundary condition
(− Di

∂pi(t, z=0)
∂z + v(t, z = 0)pi(t, z = 0) = vinpini ) [215] can

also be used. If the values of the dispersion coefficients are
not very high, then Dirichlet and Danckwerts boundary con-
ditions should produce same results.

4.7.2. Numerical approach
Fixed bed adsorption involves mass transport equations for
the transport of the mixture in the fluid phase. Adsorption
of the components from the fluid phase to the adsorbent
is modelled using the Linear Driving Force (LDF) model

as shown in Equation (252). The LDF model states that
the rate of adsorption is proportional to the amount of
adsorbate still required to achieve equilibrium [195]. The
mass transfer rate is a function of the equilibrium loading
of the components which is obtained either using IAST or
explicit isotherm equations that account for the effects of
the size of the molecules [30].The expression for the velocity
is obtained using the equation for the total pressure as
shown in Equation (254). These equations form a system
of differential algebraic equations involving partial differen-
tial equations (PDEs) and non-linear algebraic equations.
Different methods can be used to solve this system of
equations. Finite difference [216], finite volume [217] or
finite element [218] methods are the common numerical
approaches used to solve such equations. The method of
lines [219] is a popular technique to solve such problems
involving PDEs [206]. In this method, the PDEs are con-
verted into ordinary differential equations (ODEs) and even-
tually, these equations can be solved using already available
integration schemes for ODEs [219]. Another approach is to
discretise both time and spatial domains simultaneously
[206]. Nilchan et al. used orthogonal collocation method
to discretise the time domain and finite element method
for the spatial domain for optimising pressure swing adsorp-
tion systems [220]. Finite Volume Method (FVM) [221] and
Finite Element Method (FEM) [222] are also used for discre-
tising the time and spatial domains. In this work, method of
lines will be used to solve the system of differential algebraic
equations.

4.7.3. Method of lines
The method of lines is a technique to solve the partial differen-
tial equations in which all dimensions except one are discre-
tised [219]. In this way, systems of PDEs can be converted
into ODEs and solved using the integration schemes available
for ODEs. The method of lines requires the system of PDEs to
be a well posed initial value problem. Elliptical partial differen-
tial equations can also be solved using this method but certain
special techniques needs to be introduced like the method of
false transients [219,223]. A common example encountered
in many scientific disciplines is a system of partial differential
equations with spatial and temporal derivatives. In the method
of lines, the spatial derivatives are discretised using numerical
discretisation schemes like the finite difference method
(FDM), the finite volume method (FVM) and the finite
element method (FEM). The time derivatives are kept in
their continuous form.

4.7.4. Spatial discretisation
As mentioned before spatial derivatives can be discretised
using FDM, FVM and FEM.

. Finite Volume Method (FVM) [217]: The Finite volume
method is based on the conservation of numerical fluxes
at each grid point and involves the integration over the
finite volume or the control volume (grid). Many physical
laws are conservation laws especially in the field of fluid
mechanics, heat and mass transfer etc [217]. This makes
the FVM a popular method in these disciplines. The values

926 S. SHARMA ET AL.



of the dependent variables are stored at center of the grids
or finite volumes.

. Finite Element Method (FEM) [218]: In this method, the
region of concern is subdivided into geometrically simple
finite sized elements. Within these elements, the derivatives
are approximated as simple functions such as linear or
quadratic polynomials. The data for the dependent variables
are stored on the nodes of the grids.

. Finite Difference Method (FDM) [216]: It is the most
direct method. It is easy to implement and efficient to
solve for regular geometries. For complex geometries,
the above two methods are preferred. The derivatives are
discretised in the form of finite differences which are
derived using a Taylor series expansion. Similar to FEM,
FDM also stores the data of the dependent variables at
the nodes of the grids.

For its ease of implementation, FDM is used for the dis-
cretisation of the spatial domain in this work. Discretisa-
tion depends on the order of the derivatives. Some
examples for first and second order derivatives are
shown below in Table 8.

4.7.5. Discretisation of the governing equations

. Mass Transport Equation: Before diving into the discreti-
sation of the entire governing equations, it is important to
explore the possibilities for discretising each physical
phenomena individually. The mass transport equation
consists of advective, dispersion and adsorption terms.

The advective term ( ∂vpi
∂z ) can be discretised either using

backward difference method or central difference method
[224]:

∂ vpi
( )
∂z

= − v(j)pi(j)− v(j− 1)pi(j− 1)
Dz

Upwind scheme
(272)

∂ vpi
( )
∂z

= − v(j+ 1)pi(j+ 1)− v(j− 1)pi(j− 1)
2Dz

Central difference scheme

(273)

Equations (272) and (273) show the two variations of dis-
cretisation for the advection term. Index j in these
equations represent grid points in the spatial direction.
In this case, the backward differencing method is also
known as the upwind scheme. Although it is first order
accurate, it is highly suitable for strong advective flows

[217,224]. The central differencing scheme is second
order accurate but leads to unstable solution or creates
non-physical oscillations in the solution [224]. The cen-
tral differencing scheme does not identify the directional-
ity of the flow [217]. It considers the influence of all the
neighbouring grid points at the current node. In an advec-
tion dominated flow, the directionality becomes impor-
tant. For example, in an unidirectional flow, the flux at
the current grid point is strongly influenced by the pre-
ceding grid point compared to the succeeding one. The
upwind scheme takes into account the directionality of
the flow [217]. Therefore, the upwind scheme is used
for the advective terms in this work. We have used the
1st order upwind scheme. The spatial accuracy can be
improved by using a 2nd order upwind scheme. However,
the 1st order upwind scheme is easier to converge than the
2nd order scheme. Therefore, we have used the 1st order
upwind scheme.

The mass transport equation (Equation (251) in Sec-
tion 4.7) is discretised as follows.

∂ pi
∂t

= − v(j)pi(j)− v(j− 1)pi(j− 1)
Dz

+ Di
pi(j+ 1)− 2pi(j)+ pi(j− 1)

(Dz)2

− RT
1− 1B
1B

( )
r
P
ki qeq,i(j)− qi(j)
( )

(274)

. Linear Driving Force (LDF): The LDF method is used to
calculate the amount of molecules adsorbed in the adsor-
bent. At each grid point, the rate of adsorption is a linear
function of the equilibrium loading and the actual adsorbed
loading at that grid point which is shown below.

∂qi
∂t

= ki qeq,i(j)− qi(j)
( )

(275)

In Equation (275), the component mass transfer coefficients
(ki) are considered to be constants.

. Velocity: To calculate the velocity at each grid point the gra-
dient of velocity in Equation (254) is discretised using the
1st order upwind scheme as shown below.

∂v
∂z

( )
j

= v(j)− v(j− 1)
Dz

(276)

The discretised version of Equation (254) equals:

v(j) = v(j− 1)

− Dz
1
pT

∑NC

i=1

(
− Di

pi(j+ 1)− 2pi(j)+ pi(j− 1)

(Dz)2

+ RT
1− 1B
1B

( )
r
P
ki qeq,i(j)− qi(j)
( ))

− Dz
1
pT

v(j− 1)
∂pT

∂z

( )
(277)

Table 8. First and second order derivatives disretised using the Finite Difference
Method (FDM) method [216].

Derivatives Discretisation Scheme

( ∂u
∂z )j

u(j+1)−u(j)
Dz + O(Dz) Forward difference

( ∂u
∂z )j

u(j)−u(j−1)
Dz + O(Dz) Backward difference

( ∂u
∂z )j

u(j+1)−u(j−1)
2Dz + O(Dz)2 Central difference

( ∂
2u
∂z2 )j

u(j+1)−2u(j)+u(j−1)
(Dz)2

+ O(Dz)2 Central difference
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4.7.6. Discretisation of initial and boundary conditions

. Initial Conditions
Below are the discretised versions of the initial con-

ditions (Equations (264)–(268)) mentioned in Section
4.7.

v(0, j) = v(0, 0)
pT (0, 0)

pT (0, 0)+ ∂ pT
∂z j · Dz

(278)

pT (0, j) = pT (0, 0)+
∂ pT

∂z
j · Dz (279)

pcarriergas(0, j) = pT (0, j) (280)

pi(0, j . 0) = 0 (281)

qi(0, j) = 0 (282)

. Boundary Conditions
Boundary conditions (Equations (269)–(271)) men-

tioned in Section 4.7 are discretised as follows.

v(t, 0) = uin

1B
(283)

pi(t, 0) = yini · pin
T

(284)

pi(t, Ngrid) = pi(t, Ngrid − 1) (285)

4.7.7. Time integration
Time integration in numerical analysis can be performed in
several ways. Explicit and implicit are the two major
methods to integrate the temporal derivatives. In explicit
methods, the value for the variable at the current step is cal-
culated as a function of the previous time steps [225]. In
implicit methods, the present value for the variable depends
on the current step. It is easier to implement an explicit
method but has constraints due to stability issues [216].
For very stiff differential equations, impractically smaller
time steps are required to achieve a stable solution. Implicit
methods are always stable and capable of waiving off the
smaller time step requirement. However, very large steps
are not recommended for the sake of accuracy. Implicit
methods can be difficult to implement especially when
equations involve non-linearity. In the breakthrough curve
model, the non-linearity occurs due to the calculation of
the equilibrium loadings using IAST. IAST itself involves a
system of non linear equations which are solved iteratively
(e.g. bisection or the Newton-Raphson method). Further,
when IAST is incorporated to the breakthrough curve
model, the system of differential equations needs to be
solved iteratively, if implicit method is used for discretisa-
tion. To explain the integration schemes (implicit and expli-
cit), let us consider the following differential equation

dY
dt

= F(Y , t) (286)

This equation can be solved using either implicit or explicit
methods as shown below.

Y t + Dt( ) = Y(t)+ Dt F Y(t)( ) Explicit method (287)

Y t + Dt( ) = Y(t)+ Dt F Y t + Dt( )( )
Implicit method

(288)

Y t + Dt( ) = Y(t)+ Dt
2

F Y t + Dt( )( ) + F Y(t)( )[ ] (289)

Trapezoidal method [226]

Various time integration schemes are available in both implicit
and explicit categories. Some common schemes are Forward
Euler, Backward Euler and Crank-Nicolson [227]. Forward
Euler is the simplest of all and is an explicit scheme (Equation
(287)). Backward Euler is a fully implicit scheme (Equation
(288)). The Cranck-Nicolson method is a combination of
both explicit and implicit scheme. It is the finite difference ver-
sion of the trapezoidal rule (Equation (289)). Another possi-
bility is to split F(Y , t) into stiff and non-stiff parts. The stiff
part can be solved using implicit methods and the non-stiff
part using explicit methods [228,229] as shown below

Y t + Dt( ) = Y(t)+ Dt F1 Y t + Dt( )( ) + F2 Y(t)( )[ ]
Implicit− Explicit method

(290)

In Equation (290), for the stiff function (F1(Y(t + Dt))),
implicit methods can be used. For the non-stiff function
(F2(Y(t))), explicit methods can be used.

There are several families of time integrator like the Linear
Multistep methods [227] and the Runge-Kutta family [225]. In
the multistep methods, the derivatives are treated as functions
of several timesteps from the past and the future. Examples are
Adams Bashfort [225] and Adams Moulton [225] which are
explicit schemes. The Backward Differencing Formula (BDF)
is another example of linear multistep methods [225]. The
BDF is implicit in nature and a popular method for solving
stiff differential equations. Unlike multistep methods, the
Runge-Kutta family involves only single time step methods.
Rather, the derivatives are solved in several stages or trial
steps to increase the order of accuracy. For the intermediate
stages, the value of the independent variable at the midpoint
of the interval is used. At each intermediate stage, half of the
dependent variable calculated at the previous stage is used
[227]. Both explicit and implicit Runge-Kutta methods are
available in literature [227,230]. One of the commonly used
Runge-Kutta method is the 4th order explicit method. Adap-
tive Runge-Kutta methods also exist where the error is calcu-
lated at each time step [231]. Based on this estimation, the
time step is varied.

There is a relatively new class of Runge-Kutta Methods
which are known as Strong Stability Preserving Runge-
Kutta (SSP-RK) [33,34,36,37]. Apart from the stability,
these methods also enforce positivity, boundness and
preserve montonicity of the differential equations [37].
These are explicit methods and are stable under Cour-
ant–Friedrichs–Lewy (CFL) condition as shown below
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[37].

uDt
Dz

≤ 1 (291)

In Equation (291), u is a magnitude of dimension,
length/time, Dt is the time step and Dz is the spatial grid
size. Dz/u is also known as forward Euler time (DtFE).
According the CFL criterion, Dt must be less than or equal
to DtFE There are several variations of SSP-RK (e.g. 3rd
order, 5th order) [36]. The SSP-RK(3,3) method is used in
RUPTURA which is shown below. It is a third order method
and involves three stages [37]:

Y t + Dt( )(1)= Y t( ) + DtF Y t( )( ) (292)

Y t + Dt( )(2)= 3
4
Y t( )

+ 1
4
Y t + Dt( )(1)+ 1

4
DtF(Y t + Dt( )(1)) (293)

Y t + Dt( ) = 1
3
Y t( )

+ 2
3
Y t + Dt( )(2)+ 2

3
DtF(Y t + Dt( )(2)) (294)

In Equations (292)–(294), Y(t) is the dependent variable and
F(Y(t)) is the derivative of Y(t). In the SSP-RK method, the
first step is always a forward Euler step. The derivatives of
the dependent variable are solved in several stages depending
on the variation of the SSP-RK method. The 3rd order
method is popular because it generates results almost as

accurate as its higher order counter parts and it involves
fewer number of stages [36].

4.7.8. Breakthrough algorithm
Figure 11 shows the schematic of the algorithm to calculate the
breakthrough curves. The first step in the algorithm is to
specify the initial conditions for partial pressures, total
pressure, adsorbed loadings and velocity. Based on the initial
conditions, equilibrium loadings at each grid point are calcu-
lated either using IAST or adsorbate size dependent explicit
isotherms [30]. Next, the variables (partial pressure, adsorbed
loading, total pressure, velocity) are determined at each time
step. The SSP-RK(3,3) method is used for the time integration.
This method involves three stages. At each stage, the temporal
derivatives of the partial pressures and the adsorption loadings
are calculated which are used to update the new values of par-
tial pressure and adsorbed loadings. Based on the newly esti-
mated partial pressures, the total pressure is calculated at
each grid point, after which, the equilibrium loading, and vel-
ocity are calculated. The values obtained at the third stage are
considered to be the final values at each time steps. The process
is repeated until the final time step is reached.

4.8. Pulse breakthrough

RUPTURA also includes pulse-style breakthrough curve model-
ling. Instead of using a step input for the adsorbing components
of the mixture, a pulse input is used. The pulse breakthrough
curve allows us to identify whether the adsorbent is able to frac-
tionate different components in a mixture [232]. The

Figure 11. (Colour online) Algorithm to calculate the breakthrough curve. It is based on the method of lines (MOL) technique to solve the system of differential alge-
braic equations. Time integration is done using an explicit method called Strong Stability preserving Runge-Kutta (SSP-RK(3,3)) as shown in Equations (292)–(294). We
first calculate the temporal derivatives of the partial pressures (pi) and the adsorbed loadings (qi). Until the final time step is reached, we update the values of pi , pT , qi ,
qeq,i and v at each time step.
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breakthrough curves are dome shaped. The inlet concentrations
for the adsorbing components become zero after the specified
time period.On reaching themaximumconcentration, the break-
through curve gradually falls back to zero concentration level. If
there is sufficient time gap between the peaks of the breakthrough
curves for the components in a mixture, then it indicates that the
adsorbent is suitable for the separation of the components.

All the equations and the conditions remain identical to the
step breakthrough model, except for the inlet boundary con-
ditions for the components in the mixture. The modified
boundary conditions are shown below.

pi t, z = 0( ) =
{
pini , 0 ≤ t , tpulse
0, t ≥ tpulse

(295)

pcarrier gas t, z = 0( ) =
{
pincarrier gas, 0 ≤ t , tpulse

pin
T
, t ≥ tpulse

(296)

InEquations (295) and (296), tpulse is the time period forwhich the
inlet concentrations of the adsorbing components are non-zero.

Figures 12(a,b) show examples of pulse-style breakthrough
curves for the mixture of C6 isomers: n-hexane (nC6), 3-methyl
pentane (3mC5), 2,2-dimethyl butane (22dmC5), and 2,3-
dimethyl butane (23dmC4) in BEA-type zeolite at 523K and
12 bar. The dome-shaped breakthrough curves of and
22dmC4 are very close to each otherwhichmeans the separation
of these two isomers is difficult. It is easier to separate nC6 and
(22dmC5) for the operating conditionsmentioned in Figure 12.
This is because the peaks of their breakthrough curves are sep-
arated by a considerable time gap. A longer column (Figure 12
(b)) enhances separation. However, the trade-off is that the
retention time inside the bed increases for the adsorbing com-
ponents. As a result, the amount of a specific component recov-
eredwill be lower for the longer column.This can be clearly seen
in Figure 12. The peaks of the breakthrough curves in Figure 12
(b) are shorter than those in Figure 12(a).

4.9. Validation

Jolimaitre et al. [233] considered the separation of
mono and di-branched hydrocarbons in MFI-type (silicalite)
zeolite. This study includes both experimental analysis and a
breakthrough curve model. To validate our model, we use
the experimental breakthrough curve data generated by Joli-
maitre et al. [233]. It involves the separation of 2-methyl
butane (2mC4) and 2-methyl pentane (2mC5). The exper-
iments are conducted at 473 K and 5 bar and Nitrogen
(N2) is used as the carrier gas.

Experimental breakthrough conditions for the separation of
2mC4 and 2mC5 in MFI-type zeolite are shown in Table 9
[233]. This includes the inlet concentrations of the com-
ponents in the mixture (cini ), their corresponding partial press-
ures (pini ) and mole fraction (yini ). The interstitial velocity (v) at
the inlet is 0.0197 [ms−1] [233] and the bed porosity (1B) is 0.4.

The axial dispersion coefficients (D) are calculated using
the following equation as shown in Table 7:

D = 0.45+ 0.551B
( )

Dm + 0.5dPv (297)

In Equation (297), Dm is the molecular diffusion coefficient in
[m2s−1], dP is the particle diameter in [m] and v is the velocity
of the fluid phase in .

The mass transfer coefficient (k) is calculated using
Equation (235). This equation shows that k is proportional
to the effective diffusion coefficient, (Deff ) which is obtained
as follows [6]:

Deff = 1
Dm

+ 1
DK

( )−1

(298)

In Equation (298), Dm is the molecular diffusion coefficient
and DK is the Knudsen diffusion coefficient. The units of
both the diffusivities are in [m2s−1]. Dm is obtained using
Equations (215). The expression for Knudsen diffusivity is

Figure 12. (Colour online) Examples of pulse-style breakthrough curve simulation for the mixture of C6 isomers: n-hexane (nC6), 3-methyl pentane (3mC5), 2,2-
dimethyl butane (22dmC4), and 2,3-dimethyl butane (23dmC4) in BEA-type zeolite at 523 K and 12 bar. Isothermal and isobaric conditions are imposed on the
fixed bed column of length (a) 0.1 m and (b) 0.5 m. The bed porosity (1B ) is 0.2. Helium is used as the carrier gas. The inlet mole fractions for the C6 isomers are con-
sidered to be 0.01975. The interstitial velocity (v) at the inlet is 0.019 ms−1. 5s is the pulse time (tpulse).
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shown below.

DK = dpore
3







8RT
pM

√
(299)

In Equation (299), dpore is the pore diameter, R is the universal
gas constant, T is the temperature and M is the molar mass of
the component. The values of dispersion coefficients (D) and
mass transfer coefficients (k) for 2mC4 and 2mC5 at 473K
and 5bar total pressure are shown in Table 10.

Pure component adsorption isotherms are modelled using
single site Langmuir isotherms. The parameters (qsat) and (b)
obtained from fitting the Langmuir isotherm to the adsorption
loading data are shown in Table 11. The adsorption loadings
for the pure components are obtained using grand-canonical
Monte Carlo (GCMC) simulations [83] .

Figure 13 shows the comparison between the breakthrough
curves at the column exit for the mixture of 2mC5 and 2mC4

obtained from our simulation and the experiment performed
by Jolimaitre et al. [233]. The breakthrough curves from the
simulation and experiment follow similar trends. The discre-
pancies between the experimental and simulated fronts can
occur because of several reasons such as errors in the pure
component isotherm data, assumptions involved in IAST/
SIAST model for equilibrium calculations, inaccurate esti-
mation of the dispersion or/and diffusion coefficients, use of
the LDF model, etc. Further, errors in conducting experiments
and quality of the adsorbent and fluid phase sample can also
cause these deviations.

The adsorption of 2mC4 is weaker compared to 2mC5.
Therefore, 2mC4 is the first component to exit the column
and shows a roll-up behaviour. The roll-up refers to the
hump that occurs in the breakthrough curve of the weekly
adsorbing component before the strongly adsorbing com-
ponent starts to breakthrough. This behaviour occurs because
the gas phase concentration of the strongly adsorbing com-
ponent is continuously decreasing due to its adsorption. As a
result, the partial pressure of the weakly adsorbing component
increases and at certain time, it exceeds the inlet partial
pressure (i.e. pi/pini . 1) [187]. The roll-up falls back to the
inlet partial pressure, once the strongly adsorbing component
starts to breakthrough and eventually reaches equilibrium.

4.10. Case study

In this section, we present a case study consisting of fitting of
pure component loading data, mixture isotherm prediction,
and breakthrough curve simulations. Here, we consider the
case of adsorption of CO2 and C3H8 mixture in MOR-type
zeolite at 300 K from Ref. [31]. Fitting of pure component
loading data and estimation of mixture isotherms, and simu-
lations of breakthrough curves were performed using RUP-
TURA. The pure component loading data were obtained
using the RASPA software [21,22]. In this study, we also com-
pare the influence of different mixture isotherm prediction
models on the adsorption isotherms, and the breakthrough
curves.

Figure 14(a) shows pure component isotherms (dual-site
Langmuir) fitted to the adsorbed loadings obtained using
Grand-Canonical Monte Carlo (GCMC) simulations. The
unary isotherms show dual-site behaviour because MOR-
type zeolite has two types of adsorption sites (pockets)
[29,31]. Dual-site Langmuir isotherms have two pairs of
fitted parameters (equilibrium constant and saturation load-
ing) which are shown in Table 12. The MOR-type zeolite has
a slightly higher loading of CO2 compared to C3H8. This indi-
cates that the affinity of the structure with CO2 is higher than
that of C3H8 and the preference for CO2 is energetic in nature
in this regime. At higher pressure, entropy (packing) effects
come into play. Here we see that also these effects are in favour
of CO2 since CO2 shows a higher adsorption and higher satur-
ation loading in the pure component isotherms.

We can examine what happens when CO2 and C3H8 com-
pete with each other by doing explicit grand-canonical Monte
Carlo mixture simulations. Indeed, as shown in Figure 14(b),
at low loading, CO2 is adsorbed significantly more than
C3H8. At high pressures, we note that competition can increase

Table 11. Pure component adsorption isotherm parameters.

qsat/ [mol/(kg framework)] b/ [Pa−1]

2mC4 0.717+ 4 · 10−3 2.835 · 10−5 + 7 · 10−7

2mC5 0.699+ 2 · 10−3 1.271 · 10−4 + 3 · 10−7

Notes: Single-site Langmuir isotherms are used to fit the pure component adsorp-
tion loading data obtained using GCMC simulations at 473 K. qsat is the satur-
ation loading and b is the equilibrium constant.

Figure 13. (Colour online) Validation of the breakthrough curve model with the
experimental results of Jolimaitre et al. [233]. This figure shows the separation of
2mC4 and 2mC5 in MFI-type zeolite at 473K and 5bar. The coloured squares rep-
resent the experimental data and the solid lines represent the results from our
simulations.

Table 9. Experimental conditions for separation of 2mC4, 2mC5.

cini / [mol m−3] pini / [bar] yini
2mC4 6.27 0.245 0.049
2mC5 6.60 0.260 0.052

Notes: It includes the inlet concentrations (cini ), corresponding partial pressures
(pini ) and the mole fractions (yini ).

Table 10. Values of dispersion coefficient (D) and mass transfer coefficient (k) for
2mC4 and 2mC5.

D/ [m2 s−1] k/ [s−1]

2mC4 4.79 · 10−5 0.056
2mC5 3.91 · 10−5 0.051

Notes: The coefficients are calculated at 473 K and 5bar for the composition
shown in Table 9.
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the loading of one species at the expense of another. Thus, in a
mixture, the loading of a component can go down with
pressure, something that can not happen in single-component
isotherms (when the framework is kept rigid). In most scen-
arios, IAST does an excellent job predicting the mixture. How-
ever, the CO2 and C3H8 in MOR-type zeolite system is an
exception caused by segregation effects. In Figure 14(b), we
compare the mixture isotherms computed using IAST,
SIAST, and SEI models for an equimolar mixture of CO2

and C3H8 inside MOR-type zeolite. For this system, IAST
shows significant deviations from the GCMC data whereas
SIAST and SEI are in excellent agreement with these data.
IAST underpredicts the adsorbed loadings for C3H8 and over-
predicts for CO2 adsorption. The reason for the failure in this
system, is that IAST assumes a uniform adsorbent but MOR-
type zeolite has two distinct types of adsorption sites with
CO2 and C3H8 have very different affinities for the two types
of sites [29]. Consequently, the competition due to adsorption
will not be identical in both of these sites. IAST fails to capture
this effect and leads to incorrect predictions of adsorbed
loadings.

The segregation effect has a huge influence on the behav-
iour of the breakthrough curves. Figure 15 shows the break-
through curves for CO2, and C3H8 inside MOR-type zeolite
comparing the IAST, SIAST and SEI mixture predictions.
The simulations parameters are: column length (L) = 0.3 m,
particle density (r

P
) = 1711.06 kg/m3, bed void fraction

(1B) = 0.4, inlet velocity (vin) = 0.1m/s, total pressure

(pT ) = 1 bar, and the mass transfer coefficients (k) for CO2,
and C3H8 in MOR-type zeolite are taken as 0.06 s−1. The
difference in breakthrough behaviour between IAST and
SIAST is striking. Note that the prediction is based on the
same pure component isotherm models, but that the IAST
and SIAST differ in the adsorption physics. This example
serves as an example that mixture prediction should be vali-
dated by explicit grand-canonical Monte Carlo simulations
to verify the correct choice of the mixture prediction model.
Note that SIAST and SEI lead to almost identical breakthrough
curves. SEI is the non-iterative version, and hence has advan-
tages in terms of speed and stability.

RUPTURA provides various options (IAST, SIAST, EI, and
SEI) to estimate the mixture equilibrium loadings. One has to
know apriori whether the adsorbent is heterogeneous and the
adsorbing components prefer certain types of adsorption sites
over the others. Knowledge of such information is essential in
choosing the right mixture isotherm prediction model. If the
adsorbent has distinct adsorption sites, then one should use
SIAST [29], or SEI [31]. For uniform adsorbents, one can use
IAST or EI. Also, it is important to note that for adsorbents
with single type of adsorption sites, SIAST, and IAST are iden-
tical. Similarly, SEI, and EI are identical for uniform adsorbents.
One should also be aware that EI and SEI can only be used if the
pure component isotherms are Langmuir type.

Another important factor to consider is the effect of thenumber
of grid points. A grid independence test is vital to determine the
adequate number of grid points necessary for the breakthrough
simulation. Here, we present a grid independence test for this
case study. Three simulations are performed for this mixture
with a different number of spatial grid points
(Ngrid = 20, 50, and 100). In Figure 16, we can observe that the
breakthroughcurves generatedusingNgrid = 20 are slightlydiffer-
ent from those using Ngrid = 50. The differences in the break-
through curves becomes smaller for Ngrid = 50, and 100. This
indicates that the breakthrough curves undergo changes with
increasing Ngrid to a certain limit. Beyond this point, these curves
are invariant to an increase in the number of grid points.

Figure 14. (Colour online) Adsorption isotherms for CO2 and C3H8 in MOR-type zeolite at 300 K. (a) Unary isotherms (dual-site Langmuir) which are fitted to the pure
component loading data obtained using RASPA, (b) comparison between mixture isotherms for equimolar composition of CO2 and C3H8 computed using IAST, SIAST
and SEI.

Table 12. Fitted parameters for the adsorption of pure CO2 and C3 in MOR-type
zeolite at 300 K.

b1 qsat1 b2 qsat2
[1/Pa] [mol/(kg framework)] [1/Pa] [mol/(kg framework)]

CO2 2.617 · 10−4 1.60 4.859 · 10−7 3.62
+3 · 10−5 +5 · 10−2 +3 · 10−8 +5 · 10−2

C3 6.506 · 10−9 1.73 2.376 · 10−4 1.09
+3 · 10−10 +6 · 10−3 +8 · 10−6 +4 · 10−3

Notes: Adsorbed loadings obtained from the GCMC simulations for the pressure
range (100 − 5 · 1010) Pa are fitted using the dual-site Langmuir isotherm.
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5. Isotherm fitting

5.1. Introduction

Curve fitting methods play an important role in many fields
that involve system modelling and prediction techniques. Fit-
ting is frequently used when it is necessary to match a complex
model with (experimental) data [234,235]. The determination
of a suitable set of parameters for an analytical model (the
parametric function) can reveal insights into the underlying
physical phenomena. The aim of this work is to accurately fit
the pure component isotherm models (as described in Section
2) to isotherm data obtained from experiments or grand-cano-
nical Monte Carlo simulations. The most common procedure
in the literature is the use of analytical functions for model rep-
resentation. It is also possible to interpolate data in a model-
agnostic manner using e.g. cubic splines [236]. Simon et al.
provided an interesting discussion on this topic [77]. Both
simulation and experimental data have inherent noise, and
when using numerical quadrature, there is always the danger

of missing some physical information in an analytical model
owing to over-fitting or over-interpreting the physical behav-
iour that is actually caused by errors in the data. Recently,
Anderson and Gómez-Gualdróna [237] designed a method
to predict the single-component adsorption of various small
adsorbates (Xe, Kr, CH4, CH6, and N2) using machine learning
techniques (‘multipurpose’ multilayer perceptron (MLP)).
Using this method, these authors were able to predict thou-
sands of mixing isotherms using a hybrid implementation of
MLP-IAST. In RUPTURA, we developed our own implemen-
tation of a fitting tool for the isotherm models listed in Table 1.

5.2. Fitting methods

5.2.1. Linear fitting methods
Awidely used technique to fit models to isotherm data is to carry
out linear transformations on the isotherm data and then per-
form linear regression. Some isothermmodels, such as Langmuir
and Freundlich, can be estimated from linear regression, since
these models can be linearised. Four linear transformations can

be applied to the Langmuir isotherm (
q
qsat

= (
bp

1+ bp
)):

(1) Double Reciprocal or Lineweaver-Burk transformation

[238] (
1
q

vs.
1
p

plot, and
1
q
= 1

qsat
+ 1

qsatbp
transform-

ation): It is strongly biased towards fitting the data in
the low concentration range.

(2) Reciprocal or Langmuir transformation [239] (
p
q

vs. p

plot,
p
q
= 1

bqsat
+ 1

bp
) tends to amplify the deviations

from the fitted equation, highlighting outliers.
(3) Eadie-Hofstee transformation [240,241] (q vs.

q
p

plot,

q = qsat − q
bp

transformation). It has some bias toward

fitting the data in the low concentration range.
(4) Distribution Coefficient or Scatchard transformation

[242] (
q
p
vs. p plot,

q
p
= bqsat − bq). It is biased toward

fitting the data in the high concentration range.

Figure 15. (Colour online) Comparison between breakthrough curves obtained on
implementing IAST, SIAST, and SEI to the breakthrough curve model. A mixture of
CO2 and C3H8 in MOR-type zeolite at 300 K and 105 Pa is considered. Each of these
components constitutes 10% of the gas phase. Helium is used as the carrier gas.
The adsorption column is operated in isothermal and isobaric conditions.

Figure 16. (Colour online) Grid independence test on simulation of breakthrough curves for a mixture of CO2 and C3H8 in MOR-type zeolite at 300 K and 105 Pa is
performed. (a) Breakthrough curves simulated at different spatial grid points (Ngrid = 20, 50, and 100), (b) certain zoomed in parts of the curves showing discrepan-
cies due to the use of a different number of grid points. Each of these components constitutes 10% of the gas phase. Helium is used as the carrier gas. The adsorption
column is operated in isothermal and isobaric conditions. With increasing the number of grid points, the breakthrough curves slightly changes. The variation becomes
smaller between Ngrid = 50 and 100.
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Because the error distribution is modified and the weight of
each point in the fit is transformation dependent, the result of
the fit will depend on the choice of the linearisation method
[243]. For this reason, the best fit is not the one with the high-
est correlation coefficient, but the one that predicts an error
distribution that corresponds to to the original data. Single
Langmuir behaviour is rare, and in most cases multiple-site
isotherm models are needed. A more general approach is to
use nonlinear regression [235].

5.2.2. Nonlinear least-squares (NLLS) fitting methods
In nonlinear regression problems, the aim is to find a para-
metric function

y = f x; {ak}
M
k=1

( )
(300)

which best fits a certain reference data set of points (xi, yi)
N
i=1

by minimising an error measure in the fitting. A widely used
approach is to use the sum of squared residuals. The problem
is thus mathematically defined as follows:

WSSE =
∑N
i=1

ri x; {ak}
M
k=1

( )

=
∑N
i=1

wi yi − f (xi; {ak}
M
k=1)

( )2
(301)

f = arg{ak}Mk=1
min
x[x

WSSE( ) (302)

where WSSE stands for Weighted Sum of the Squared Error (or
cost function), ϕ is the value in the minimisation process, ri are
the residual functions, and wi are the weights associated with
each (xi, yi)–point.When the parametric function f is unknown,
we have to choose a suitable model with a convenient set of M
parameters (ak), and the error ϕ isminimised in an iterative way.

Gauss – Newton algorithm (GNA) [244]: In the Gauss-New-
ton method, the sum of squared errors is reduced by assuming
that the least squares function is locally quadratic, and the
minimum of the quadratic is obtained. The method is based
on Newton’s method to follow the curvature to the minimum,
but does not use the Hessian of the residual function (which is
computationally expensive), but the Jacobian of the residual
functions, r({ak}

M
k=1).

Steepest descent algorithm (SDA) [244]: In this method, also
known as Gradient Descent, the sum of the squared errors is
reduced by updating the parameters in the steepest-descent
direction. This direction is calculated using the gradient,
−∇r({ak}Mk=1), and is therefore computationally cheap.

Marquardt–Levenberg algorithm (MLA) [245–249]: Devel-
oped by Levenberg, Girard, Wynne, Morrison, Marquardt.
This method is actually a combination of two other NLLS
fitting methods (GNA and SDA): It acts more like a SDA
method when the parameters are far from their optimal value,
and acts more like the GNA method when the parameters are
close to their optimal values. This is the method used by the
Gnuplot program, among others. An updated version of this
method, which solves the problem of stacked solutions in
local minimum, is the Trust Region Reflective method [250].

There are other widely used gradient-, Jacobian-, or Hes-
sian-based algorithms to follow a path to find the minimum

(whose computational efficiencies depend on the nature of
the problem to be optimised): The Conjugate Gradient (CG)
method [251], Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [252–255], and updates (e.g. Limited-memory
BFGS [256]), the rational function optimisation algorithm
(RFO), etc. In general, NLLS fitting is not guaranteed to con-
verge to the global optimum from scratch (the solution with
the smallest sum of squared residuals, SSR), and often gets
stuck in a local minimum.

5.2.3. Heuristic fitting methods
Heuristic Search methods (Non-Math Optimisation algor-
ithms) are not based on finding optimal analytic paths, based
on gradients, Jacobians or Hessians, but explore the search
space stochastically, keeping track of the ‘best’ points along
the way. Two example approaches are discussed: the Nelder–
Mead algorithm and genetic algorithm.

The Nelder–Mead algorithm (NMA) [117,257] is also called the
downhill simplexmethodandwasfirst introducedbySpendley et al.
[257]. It is a heuristic searchmethod based on the construction of a
hypertetrahedron in M dimensions (a simplex) and how it adapts
itself iteratively (by minimising the WSSE value) to the local land-
scape of the M-dimensional surface for the {ak}

M
k=1 parameters.

Each vertex aM+1
j=1 of this simplex is a vector with as many dimen-

sions as there are parameters of the function f, i.e.
aj = (a1,j, a2,j, . . . , aM,j). This is a local method and does not
require derivatives.

The Genetic Algorithm (GA) [258,259] is a type of parallel
heuristic search method. This method was described for the
first time by De Jong [258] and Holland et al. [259]. The GA
belongs to Evolutionary Algorithms (EA), a family of algor-
ithms for global optimisation inspired by biological evolution,
and uses biological operators inspired by biological evolution,
such as reproduction, mutation, recombination, and selection.
It is based on the generation of a population of individuals
(each individual is a candidate for the optimisation solution)
that are ordered according to their fitness. During the process,
the population of solutions remains constant, and the worst
solutions are replaced (by ranking its goodness–of–fit) by
other solutions that are either mutation or recombination of
better solutions. Some EA are as follows: Genetic Program-
ming [260,261], Evolution Strategies [262], or Evolutionary
Programming [263]. Other nature-inspired algorithms (but
not part of the EA family) are: Particle Swarm Optimization
(PSO) [264,265], Ant Colony Optimization (ACO) [266],
Cuckoo Search (CS) [267], Grey Wolf Optimization (GWO)
and updates [268,269], or Elephant Herd Optimization
(EHO) [270,271].

GA is themost popular typeofEA. Inparticular,GArepresents
each individual of the GA population as a string of numbers,
usually a binary string called ”genotype”.Modifications in the gen-
otype imply changes in the fitness. For some problems, it is con-
venient to use non-binary representations of the genotype.

5.3. Evaluating isotherm goodness–of–fit

In RUPTURA, we have used two standard measures for eval-
uating the goodness-of-fit: the Residual Root Mean Square
Error (RMSE), and the correlation coefficient (r). We defined

934 S. SHARMA ET AL.



the RMSE as:

RMSE = WSSE
N −M

( )1
2 (303)

where WSSE is the Weighted Sum of the Squared Error
(Equation (301)), and N and M are the number of data points
and the number of parameters of the model, respectively. The
correlation coefficient r (usually r2) is defined as:

r =
∑N

i=1 (wiyi − y)(wif (xi)− f )







































∑N
i=1 (wiyi − y)2

∑N
i=1 (wif (xi)− f )2

√ (304)

For each optimisation iteration, RUPTURA monitors both
values.

5.4. Software for isotherm fitting

Here we list some software proposed in the literature for iso-
therm fitting, as well as other general fitting software used
for this purpose:

(1) ISOTHERM and FIT programs [243,272,273]:
This program is developed by Kinniburgh [272]. To the

best of our knowledge, ISOTHERM appears in the litera-
ture as one of the first publicly available programs for iso-
therm fitting. Unfortunately, we have not been able to
locate the code to test it.

(2) ISOFIT [274]:
ISOFIT was developed by Matott and Rabideau [274].

It is a program (executables available for Linux and Win-
dows) that utilises a hybrid optimisation procedure com-
bining Particle Swarm Optimization with Levenberg–
Marquardt nonlinear regression. Many tools are available
to check the quality of the fit. ISOFIT includes a wide col-
lection of isotherm models (BET, Freundlich, Freundlich
with Linear Partitioning, Langmuir-Freundlich, Lang-
muir, Langmuir with Linear Partitioning, Linear, Polanyi,
Polanyi with Linear Partitioning, and Toth isotherms).
However, it does not support fitting multisite isotherm
models.

(3) GAIAST [120]:
GAIAST is developed by Balestra et al. [120]. Written

in Fortran code (standard 2003), it has a module for iso-
therm fitting. The fitting module is coded using a con-
strained hybrid global optimisation procedure (NMA
and GA). GA uses a single-precision floating-point format
(binary32) to code the genotype. It presents a wide variety
of isotherm models, from one to three adsorption sites, as
well as some isobar models.

(4) IAST++ [121]:
IAST++ is developed by Lee et al. [121]. It is a Win-

dows user-friendly executable program with a graphical
user interface. It contains a module for suggesting iso-
therm models (among Langmuir, Langmuir-Freundlich,
Langmuir Dual Site, Langmuir Freunclich Dual Site,
BET, Quadratic, and Henry) based on the isotherm data
entered, as well as visualisation of the fitting procedure.

If the module does not find an acceptable isotherm
model (based on goodness-of-fit) it suggests a quadratic
interpolation. In practise, this module requires a fine-
tuned selection of ranges in the generation of initial par-
ameter values in order not to get stuck into local minima.
This is particularly important for the Langmuir dual-site
and Langmuir-Freundlich dual-site models.

(5) Non-dedicated software:
There is a large variety of open source tools, codes, and

libraries for general purposes with which non-linear fits
can be performed using different techniques. To mention
a few of these: the SciPy Python Library [275] or the GNU
Scientific Library (GSL) [276], or widely-used programs
like Gnuplot [277], Octave [278]/ MATLAB [208], Origin
[279] for NLLS methods, and the PIKAIA software [280]
for GA methods.

5.5. Implementation of the GA-NMA hybrid method

In RUPTURA, we have implemented a constrained GA-NMA
hybrid optimisation procedure that combines the GA (for an
initial global search for the minimum), with the NMA method
(to refine the founded best solutions). We employ the hybrid
global optimisation method that was also used in the GAIAST
code, but we have made significant improvements in speed and
efficiency. RUPTURA uses hashing tables to map the genes,
while GAIAST works with strings comparisons.

5.5.1. GA stage
We have used a concatenation of the 64-bit binary represen-
tation (double-precision floating-point format or just
binary64) of the M parameters of the Equation (300) to
codified the genotype. There is a one-to-one relationship
between the genotype and the sequence of parameters {aj}

M
j=1

that is called the ”phenotype”. The parameter values of the iso-
therm models are constrained to a range of values to prevent
nonphysical isotherm parameters (e.g. negative values for the
saturation loading are not allowed). These constraints are
hard-coded for each isotherm model.

The initial population is based on randomly generated iso-
therms from a range of initial values for each specified par-
ameter. For example, the saturation values, qsat, are
generated between 0.0 to 10.0 [mol/(kg framework)], the b par-
ameter between 1× 10−10 to 1× 10+10 [Pa−1], and the hetero-
geneity parameter, ν, anywhere between 0.1 to 2.1 [−]. If the
isotherm parameters specified in the input files are non-zero,
a refitting process is performed starting from these values.

In each optimisation step, k, we sort the population of indi-
viduals (called ”citizens”) according to its fitness and apply five
biological operators on their genotype: elitism, crossover,
mutation, replacement, and nuclear disaster. These GA oper-
ators are shown schematically in Figure 17.

(1) Elitism: We allow the best individuals (� 5%) of the cur-
rent generation, k, to pass on unchanged to the next gen-
eration. In this way, we ensure that the best individual
does not lose fitness in the optimisation process.
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(2) Replacement: The worst (� 5%) individuals are replaced
by new individuals.

(3) Crossover: We mate the population of the current gener-
ation (parents) to generate the next generation of individ-
uals (children). We have implemented one-point, two-
point, and uniform crossover, but using only the first
one is sufficient to converge to a high-quality result. We
perform a controlled mating between parents. Two types
of crossover were carried out: between elitists (the group
that ensures the goodness-of-fit) and between elitists
and non-elitists (which provides the global character of
the optimisation method).

(4) Mutation: Some of the children, depending on the
mutation rate value, do not pass unaltered to the next gen-
eration: We apply small changes in their genotype (see
Figure 17).

(5) Nuclear disaster: Only elitists are passed on to the next
generation. The rest of the individuals are replaced by
new individuals. This operator operates at a very
low rate and is designed to escape from local
minima. When this operator is activated, we break the
cycle of operators and jump directly to the next gener-
ation, j + 1.

At the end of the operator cycle, we update the children to
become parents and move on to the next generation, j + 1.
During the optimisation process, RUPTURA prints the values
of the genotype, phenotype (parameters), as well as the RMSE
and the squared correlation coefficient, r2, on the screen. As an
example, for a step j = 114 of a Langmuir-Freundlich isotherm
model fitting, it would look like:

mol: 0 step: 114 Fitness: 0.061057
R^2: 0.990488 Similarity: 2191/4096
Finishing: 80/100

number of parameters: 3
genotype:

0011111111110011000000000000000000000000-
000000000000000000101100 parameter:
1.1875

genotype:
0011111011111111111111111111111111111111-
111111111111111111111111 parameter:
3.05176e-05

genotype:

0011111111110110000110110010000110011011-
001110111001110001010000 parameter:
1.38162

When the GA reached an optimal genotype (r2 � 1 and
RMSE � 0 or RUPTURA has reached the maximum number
of steps allowed), the candidate for the global minimum is
refined during the NMA stage.

5.5.2. NMA (simplex) stage
We start with the parameter values corresponding to the phe-
notype of the best individual in the GA population. At each
iteration k, the M + 1 vertices of the simplex, Dk, are conver-
ging to the minimum, and we sort and label the vertices
according to Equation (302), such that:

f(a1) ≤ f(a2) ≤ · · · ≤ f(aM+1), (305)

being a1 the best, and aM+1 the worst. In addition, we also cal-
culate the centroid of the best M vertices, i.e.avoiding the
worst:

a =
∑M
i=1

ai
M

(306)

Following the version of Lagarias et al. [281] of the Nelder–
Mead algorithm, we updated the vertices by performing four
possible operations: reflection, expansion, contraction, and
shrinkage. Each of these operations are determined by a scalar:
a = 1, b = 2, g = 1

2
, and d = 1

2
, respectively. We have used a

version in which these scalars are constant, but there are mod-
ern implementations in which these parameters are adaptable
[282]. In Figure 18 we show the algorithm of a single iteration
step. In more detail, the four operations are

(1) Reflection: Once we have ordered the vertices according to
Equation (305), and we have calculated the centroid of
Equation (306), we proceed to calculate the reflected
point, ar:

ar = a+ a(a+ aM+1) (307)

We evaluate this point, f(ar). If f(ar) ≤ f(ar) , f(aM),
then we accept the reflection point: aM+1 = ar.

(2) Expansion: If f(ar) ≤ f(a1) then we calculate the expan-
sion point, ae:

ae = a+ b(ar − a) (308)

We evaluate this expansion point, f(ae). If f(ae) , f(ar)

Figure 17. (Colour online) Schematic representation of GA operators crossover, and mutation. The crossover operator is analogous to the crossover that happens
during sexual reproduction in biology, and it combines the genotype of two parents to generate new offspring. We implemented three types of crossover operator:
with one- and two points, and the uniform crossover. The mutation operator is activated before the children are added to the next generation.
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then we accept aM+1 = ae, otherwise we accept the reflec-
tion point: aM+1 = ar.

(3) Contraction.
(a) Outside: If f(aM) ≤ f(ar) , f(aM+1) we perform an

outside contraction:

aoc = a+ g(ar − a) (309)

and we evaluate the new point, f(aoc). If f(aoc) ≤ f(ar)
then we accept the outside contraction point:
aM+1 = aoc, else we perform a shrinkage operation.

(b) Inside: If f(ar) ≥ f(aM+1) we perform an inside con-
traction:

aic = a− g(ar − a) (310)

and we evaluate the new point, f(aic). If
f(aic) ≤ f(aM+1) then we accept the inside contraction
point: aM+1 = aic, elseweperform a shrinkage operation.

(4) Shrinkage: We generate the new vertices:

, p . vi = a1 + d(ai − a1),

∀i = 2, . . . , M + 1.
(311)

These will be the new vertices, aM+1
i=1 , in the next iteration.

5.6. Validation

To validate the RUPTURA fitting function and compare it
with other widely used codes (ISOFIT, IAST++, pyIAST,
GAIAST, and Gnuplot; see Subsection 5.4) we fit the adsorp-
tion isotherms of n-C7 in BEA zeolite at 552 K. The isotherm
exhibits a behaviour that can be modelled by many kinds of
models: Langmuir, Langmuir-Freundlich, Sips, Toth, etc. We
have chosen the Toth model of a single adsorption site
(three parameters: qsat, b, andn). For this relatively simple iso-
therm shape, all codes are able to accurately fit the isotherm

model to the data, as shown in Figure 19. The obtained good-
ness-of-fits were r2 . 0.998, and RMSE , 0.025 [mol/(kg fra-
mework)], even form scratch. ISOFIT++ does not have
incorporated the Toth model. The fitting of the isotherm
using the Langmuir model using the IAST++ code gave
reasonable results (RMSE = 0.025 [mol/(kg framework)]).
RUPTURA takes 1.1 s to do this fit using a single core Intel
Core i7-10700K CPU at 3.80 GHz.

A much more challenging case is the adsorption isotherm
of o-xylene in MAF-X8 at 300 K. The isotherm shows, see
Figure 20, two steep slopes at 1× 10−6 and 10 Pa around an
inflection (‘kink’). By adding a third site to the model, it fits
well to a third bend of the isotherm. Adding a fourth site
does not qualitatively improve the model. We have modelled
the isotherm using the Langmuir-Freundlich model with two
adsorption sites. The dual-site Langmuir-Freundlich model
has six parameters (qsat1 , b1, n1, qsat2 , b2, andn2). In general, for
an increased number of model parameters, it is more likely
that local minima will appear, and global optimisation algor-
ithms become necessary.

GAIAST and RUPTURA predict equivalent values (the
fitting algorithms are very similar), but RUPTURA is much
more optimised and performs the same fitting in ten times
less time, with goodness-of-fit values of RMSE ≤ 0.066
[mol/(kg framework)] and r2 = 0.998. However, the optimis-
ations from scratch using pyIAST (not shown in the Figure),
Gnuplot (from scratch), or IAST++, with RMSE ≥ 0.312
[mol/(kg framework)] were unable to accurately fit the
model. That is, the error is too large for the model to rep-
resent the isotherm data well and to be used in IAST or
breakthrough calculations). Only if the starting values are
chosen close to the solution is Gnuplot able to generate
models with high goodness of fit (see Table 13). RUPTURA
takes 2.6 s to do this fit, and GAIAST, 26 s. If we consider a
Langmuir-Freundlich with three sites (nine parameters) for
the model in the fitting procedure, RUPTURA takes 6.279

Figure 18. (Colour online) Flowchart of one step, k, in the Nelder-Mead algorithm [117] for a parametric function, f, with two parameters. In this way, the simplex is a
triangle, and the visualisation is easier. The four operations and the sorting stage are in green labels.
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s, obtaining RMSE = 0.0385 [mol/(kg framework)], and
r2 = 0.9993. However, erroneous results could be obtained
by overfitting a simple isotherm with an unnecessary com-
plex model. Regardless of this issue, RUPTURA is able to
quickly optimise difficult isotherms (with multiple minima)
as shown in Figure 21.

A particularly difficult test case is alkane C6 isomers in
MAF-6 at 298 K with a relatively small amount of points,
but with small error bars. Figure 22 shows that RUPTURA
produces excellent fits using dual- and triple-site Langmuir-
Freundlich models. The shape of the isotherms, combined
with smooth and sharply rising slopes over many orders
of magnitude of pressure, poses a challenge for the fit.
Note that using a small amount of points over a large

pressure range (equally distributed in log-scale) is a very
common scenario to explore the overall shape of the
isotherms.

Lastly, we used Python SciPy Library to test the RUPTURA
code (see Listing 1). Scipy (scipy.optimize.cur-
ve_fit) uses the Trust Region Reflective (TRR) method for
constrained problems [283,284]. The TRR method is an evol-
ution of the Levenberg-Marquardt algorithm, but with global
convergence. In Figures 19 and 20, as well as Table 13, you
can see that RUPTURA gives goodness-of-fit comparable to
TRR.

Listing 1. Python script used to fit isotherms with Toth and
dual-site Langmuir-Freundlich models using the SciPy
Library.]

Figure 19. (Colour online) (Left) Adsorption of n-C7 in BEA zeolite at 552 K and some fitted models using ISOFIT, Gnuplot, IAST++, and RUPTURA for a Toth model of a
single adsorption site. (Right) Predicted loading vale vs. observed loading values. The goodness-of-fit in colours (same code colour of the Left panel) for each code. The
RMSE values are in [mol/(kg framework)] units.

Figure 20. (Colour online) (Left) Adsorption of o-xylene in MAF-X8 zeolite at 300 K and some fitted models using IAST++, Gnuplot (from scratch), GAIAST, and RUP-
TURA for a dual-site Langmuir-Freundlich model. (Right) Predicted loading vale vs. observed loading values. The goodness-of-fit for each code in colours defined in the
left panel. The RMSE values are in [mol/(kg framework)] units.

Table 13. Fitted parameters for the adsorption isotherm (dual-site Langmuir-Freundlich) of o-xylene in MAF-x8-P1 zeolite at 433 K using different methods.

qsat1 /
b1/ n1/ qsat2 / b2/ n2/ RMSE/

[mol/(kg framework)] [Pa−1] [–] [mol/(kg framework)] [Pa−1] [–] [mol/(kg framework)]

RUPTURA 1.9377 1.1132 0.2476 1.5793 1.0485× 108 1.2963 0.062
SciPy 1.9583 1.1334 0.2439 1.5617 2.8218× 108 1.3654 0.062
Gnuplot 1.9554 1.1305 0.2438 1.5642 2.4394× 108 1.3553 0.064
GAIAST 2.0059 1.1785 0.2337 1.5215 3.2212× 109 1.5360 0.066

Notes: In this table, unlike in Figure 20, the Gnuplot fit has been performed using initial values close to the final solution, to avoid being stuck in a local minimum.
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6. RUPTURA installation

For the basic functionality, only a c++11 compiler is needed.
However, automatic picture generation is based on gnuplot
[277], and automatic movie generation is based on gnuplot
and ffmpeg [285]. FFmpeg needs to have support for HEVC/
H.265 and/or H.264 video encoding.

The default colour scheme of gnuplot has several issues: the
sequence of colours is hard to see for colour-blind people and
yellow is hardly visible against a white background. We there-
fore use the colour scheme published in the book ‘Gnuplot in
action’, stylesheet listing 12.7 [286]. All the required software
tools are available as open source software.

6.1. Mac

Some additional software tools need to be installed. First, the
Xcode Command Line Tools need to be installed. The
easiest way to install Xcode Command Line Tools is by instal-
ling Homebrew, the popular package manager for macOS.
When you install Homebrew, you will be offered the option
of installing Xcode Command Line Tools. Go to the website
https://brew.sh and copy and paste the installation command
into a terminal. The command line tools include git, a ver-
sion control system. Using homebrew, we can also install
gnuplot and ffmpeg.

brew install gnuplot
brew install ffmpeg
Next, download RUPTURA using git and compile the

code
git clone https://github.com/iraspa/

ruptura
cd ruptura
cd src
make

6.2. Linux

Some additional software tools need to be installed. For
Ubuntu-based systems

Figure 22. (Colour online) The C6-alkane-isomers adsorption isotherms in MAF-6
computed from grand-canonical Monte Carlo simulations fitted with dual- and
triple site Langmuir-Freundlich isotherm models. The peculiar shape of these iso-
therms in the low-pressure region makes this system challenging to preform
reliable fitting.

Figure 21. (Colour online) The adsorption isotherm prediction for two, three, and
four sites Langmuir-Freundlich isotherm models for o-xylene in MAF-X8. Without
the experimental error information for the loading data is difficult to establish
what kind of model is more realistic.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

def Toth(P, q, b, n):
return q * b * P / pow(1 + pow(b*P,n),(1.0/n))

def DSLangmuirFreundlich(P, q1, b1, n1, q2, b2, n2):
return q1 * b1 * pow(P,n1) / (1 + b1 * pow(P,n1)) +

q2 * b2 * pow(P,n2) / (1 + b2 * pow(P,n2))
df = pd.read_csv(’Results.dat-MAF-x8-P1-Repeat-433K-o-xylene’, sep=’ ’)
popt, pcov = curve_fit(DSLangmuirFreundlich,

df[’P’].values, df[’L’].values,
p0=(1.0,1.0,1.0,1.0,1.0,1.0),
bounds=([0,1.0E-20,0.1,0,1.0E-20,0.1],
[100,1.0E+20,10.0,100,1.0E+20,10.0]))

print(*popt)
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sudo apt install git build-essential gnu-
plot ffmpeg

Next, download RUPTURA using git and compile the
code

git clone https://github.com/iraspa/
ruptura

cd ruptura
cd src
make

6.3. Windows

Some additional software tools need to be installed.

. git
The most official build is available for download on the

Git website. Just go to https://git-scm.com/download/win
and the download will start automatically.

. gnuplot
Go to https://sourceforge.net/projects/gnuplot/files/

gnuplot/ to download gnuplot, and install it via the binary
installer. Preferably install gnuplot in C:\Program
Files\gnuplot, or alternatively add the directory C:
\Program Files\gnuplot\bin to the PATH variable.

. ffmpeg
Go to https://github.com/BtbN/FFmpeg-Builds/releases,

and download ffmpeg-master-latest-win64-
gpl.zip. Unzip, and preferably install ffmpeg in C:
\Program Files\ffmpeg-master-latest-
win64-gpl, or alternatively add the directory C:\Pro-
gram Files\ffmpeg-master-latest-win64-
gpl\bin to the PATH environment variable.

Next, download RUPTURA using git
git clone https://github.com/iraspa/

ruptura
A binary executable src/ruptura.exe for windows is

already provided.

7. RUPTURA input description

7.1. General

All input is case-insensitive and white space does not matter.
Font keyword means the literal text, [a|b] means the input
of either a or b, [real] means the expected number is a floating
point value, [int] means an integer is expected, and [string]
means a string is expected. Strings are not allowed to contain
spaces (replaces these by dashes or underscores). Numbering
of indices starts at zero.

7.2. Simulation types

. SimulationType [MixturePrediction | Break-
through | Fitting]

Selects the type of the simulation. MixturePredic-
tion selects the computation of a mixture based on pure
component isotherms, the pressure-range, and the fluid-
phase mole fractions. Breakthrough selects the

computation of a mixture adsorbing in a fixed-bed adsor-
ber. Fitting selects the computation of the best fit of
an analytic isotherm model to raw adsorption data.

7.3. Component information

. Component [int] MoleculeName [string]
The index of the component and the name of the com-

ponent. The component name is used in the automatically
generated plot-files and movies.

. Filename [string]
The name of a file associated with this component. Used

in fitting to specify the raw data of the isotherm.
. CarrierGas [yes|no]

Specifies whether this component is the carrier-gas in a
breakthrough simulation. There can be only one carrier-
gas and a breakthrough simulation must contain a carrier
gas. For the carrier gas there is no need to specify an iso-
therm model (the carrier gas is assumed to not adsorb).

. GasPhaseMolFraction [real]
The dimensionless gas-phase mole fraction of the com-

ponent. The values of all the components should sum up
to unity, but if not, the code gives a warning and continues
with the explicitly normalised mole fractions.

. MassTransferCoefficient [real]
The mass-transfer coefficient of this component used in

the Linear Driving Force (LDF) model. Units: 1/s.
. AxialDispersionCoefficient [real]

The coefficient of axial mixing attribute to a diffusion-
like process. Units: m2/s.

. NumberOfIsothermSites [int]
The number of isotherm sites associated with this com-

ponent. This keyword is followed by a list of isotherm
models and parameters chosen from (See Table 1 for
definition of the models):
Langmuir [real] [real]
b0 in mol kg−1, b1 in Pa−1.
Anti-Langmuir [real] [real]
b0 in mol kg−1 Pa−1, parameter b1 in Pa−1.
BET [real] [real] [real]
b0 in mol kg−1, b1 dimensionless, b2 dimensionless.
Henry [real]
b0 in mol kg−1 Pa−1.
Freundlich [real] [real]
b0 in mol kg−1 Pa−1, b1 dimensionless.
Sips [real] [real] [real]
b0 in mol kg−1, b1 in Pa−1.
Langmuir-Freundlich [real] [real] [real]
b0 in mol kg−1, b1 in Pa−1, b2 dimensionless.
Redlich-Peterson [real] [real] [real]
Parameter b0 in mol kg−1 Pa−1, parameter b1 in Pa−1, b2

dimensionless.
Toth [real] [real] [real]
Parameter b0 in mol kg−1, parameter b1 in Pa−1, b2

dimensionless.
Unilan [real] [real] [real]
Parameter b0 in mol kg−1, parameter b1 in Pa−1, parameter

b2 dimensionless.
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O’Brien&Myers [real] [real] [real]
Parameter b0 in mol kg−1, parameter b1 in Pa−1, parameter

b2 dimensionless.
Quadratic [real] [real] [real]
Parameter b0 in mol kg−1, parameter b1 in Pa−1, parameter

b2 in Pa−2.
Temkin [real] [real] [real]
Parameter b0 in mol kg−1, parameter b1 in Pa−1, parameter

b2 dimensionless.
Bingel&Walton [real] [real] [real]
Parameter b0 in mol kg−1, parameter b1 in Pa−1, parameter

b2 in Pa−1.

7.4. Mixture prediction

The mixture prediction module predicts, using various poss-
ible theoretical models, the adsorbed phase mole fractions
based on pure component isotherms only.

. MixturePredictionMethod [IAST | SIAST | EI
|SEI]

The method used to predict the mixture adsorption
based on pure component isotherm information. IAST
denotes the Ideal Adsorption Solution Theory (IAST)
[28], and SIAST is segregated IAST where IAST is applied
to sites individually [29]. EI is the explicit isotherm model
(not iterative and hence very fast) that is applicable to Lang-
muir models only [30,31]. SEI is the segregated explicit iso-
therm model. These models are explained in Sections 3.4
and 3.5 Default: IAST.

. IASTMethod [FastIAS | Bisection]
The method used to compute the IAST mixture predic-

tion. Default: FastIAS.
. PressureStart [real]

The lowest pressure of the range of pressures to be eval-
uated. Must be smaller than PressureEnd. Units: Pa.

. PressureEnd [real]
The highest pressure of the range of pressures to be eval-

uated. Must be larger than PressureStart. Units: Pa.
. NumberOfPressurePoints [int]

The number of points equally spaced in log-scale or lin-
ear scale.

. PressureScale [log|linear]
The scale of the range of pressures, either logarithmic

scale (log) or linear (linear).

7.5. Breakthrough

The breakthrough module allows the computation and evalu-
ation of the performance of a fixed bed adsorber. A fixed bed
packed with particles containing a porous material is pres-
surised and purged with a carrier gas. A (mixture-) fluid is
added to the carrier gas, resulting in a step-wise change of
the inlet concentration. In chromatographic separation pro-
cesses, a pulse-wise change of the inlet concentrations is
used. The change of the component concentrations along
the column and at the outlet of the fixed bed are recorded.

7.6. Simulation duration

. BreakthroughType [step| pulse]
Selects a step breakthrough initial condition at the inlet,

or a pulse condition as explained in Sections 4.7 and 4.8
. Pulselength [real]

The length in time of the pulse condition at the inlet.
Units: s, default: 10.0.

. NumberOfTimeSteps [int| auto]
Explicitly set the the number of time steps of the break-

through computation or (only for step-breakthrough) let
the program determine when the breakthrough compu-
tation is converged (auto).

. TimeStep [real]
The time step used in the numerical integration scheme.

Units: s, default: 0.0005.
. PrintEvery [int]

How frequently to write status information to the screen.
Default: 10,000.

. WriteEvery [int]
How frequently to write data to the output files. Default:

10,000.

7.7. Column properties

. DisplayName [string]
The name of the column, or material, that will be dis-

played in the output files (plots and movies).
. ColumnVoidFraction [real]

The typical value of the fixed-bed porosity or bulk void
fraction is 1B=0.38-0.40. Units: -, default: 0.4.

. ParticleDensity [real]
The particle density r

P
(density of the adsorbent grain)

includes the inner porosity, but excludes the void fraction
of the bed. Units: kg/m3, default 1000.0.

. TotalPressure [real]
The total pressure at which to compute the break-

through. Units: Pa, default: 1e6.
. PressureGradient [real]

The gradient of the pressure along the column. Units:
Pa/m, default: 0.

. ColumnEntranceVelocity [real]
The interstitial velocity of the fluid at the entrance of the

column. Units: m/s, default: 0.1.
. ColumnLength [real]

The length of the column. Units: m, default: 0.3.

7.8. Integration settings

. NumberOfGridPoints [int]
The number of grid points used in the spatial discretisa-

tion of the column. Default: 100.
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7.9. Fitting

The fitting module allows the fitting of isotherm models on
raw, computed or measured adsorption isotherms.

. ColumnPressure [int]
The index of the column in the raw-data file containing

the information on the pressure.
. ColumnLoading [int]

The index of the column in the raw-data file containing
the information on the absolute adsorption amount.

8. RUPTURA tutorial

8.1. Introduction

The tutorial examples are designed to be fast. The binary mix-
ture breakthrough example of CO2/N2 in silicalite runs in a
matter of seconds. This allows interactive computations for

teaching purposes, where students can easily play around
with the column properties and investigate how the separation
would be influenced by the gas-phase mole fractions, the bed-
void fraction, the length of the column, axial dispersion and
mass-transfer coefficients, etc. The second example of C6-iso-
mers in BEA-type zeolite is more advanced, but still runs in
one or two minutes. Both examples make use of the explicit
isotherm model developed by Van Assche et al. [30] (Section
3.4.6) for the prediction of the mixture isotherms.

8.2. Breakthrough of CO2/N2 in silicalite

The directory tutorial/Silicalite-CO2-N2/
breakthrough contains the input file
simulation.input:

The simulation-type is set to breakthrough, the col-
umn properties and run settings are specified, and lastly
the information on all the components. The component

SimulationType Breakthrough

// Column settings
DisplayName Silicalite
Temperature 313.0 // [K]
ColumnVoidFraction 0.4 // [-]
ParticleDensity 1144.03 // [kg/m^3]
TotalPressure 2.5e6 // [Pa]
PressureGradient 0.0 // [Pa/m]
ColumnEntranceVelocity 0.1 // [m/s]
ColumnLength 0.3 // [m]

// Run settings
NumberOfTimeSteps auto
PrintEvery 1000
WriteEvery 200
TimeStep 0.01 // [s]
NumberOfGridPoints 30
MixturePredictionMethod ExplicitIsotherm

Component 0 MoleculeName Helium
GasPhaseMolFraction 0.9 // [-]
CarrierGas yes

Component 1 MoleculeName CO2
GasPhaseMolFraction 0.05 // [-]
MassTransferCoefficient 0.06 // [1/s]
AxialDispersionCoefficient 0.0 // [m^2/s]
NumberOfIsothermSites 1
Langmuir 2.858 1.089e-5 // [mol/(kg framework)] [1/Pa]

Component 2 MoleculeName N2
GasPhaseMolFraction 0.05 // [-]
MassTransferCoefficient 0.06 // [1/s]
AxialDispersionCoefficient 0.0 // [m^2/s]
NumberOfIsothermSites 1
Langmuir 2.094 0.111e-5 // [mol/(kg framework)] [1/Pa]
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information starts with the keyword Component followed
by the component index (starting from zero) and the
name of the component. The properties set after this line
refer to the component denoted by the Component key-
word. A component requires isotherm information except
for the carrier gas. There must be a component labeled as
carrier-gas and there can be only one. The isotherm infor-
mation for the carrier has is implicitly a Langmuir isotherm
with affinity parameter set to zero. For a component that is
not the carrier gas, the number of isotherm sites need to be
specified, followed by a list of isotherm models along with its
parameters. A component also needs a gas-phase mol-frac-
tion and mass-transfer coefficient, while the axial dispersion
coefficient is optional.

The code is executed on mac/linux by typing in the terminal
./run
On windows you can run it from the windows console

using the run.bat batch script, or by double-clicking on it.
After a few seconds, the program is finished and many new
files have been created

The column.data and component files are the files
with the actual simulation data. make_movies creates
movies to visualise the variation of different quantities along
the length of the column. Dpdt and Dqdt represent time
derivatives of the partial pressures and the adsorbed loadings
of each component respectively. Movies are also created for
the variation of the partial pressures (P), normalised pressure
(ratio of partial pressure at the column exit to that at the inlet:
Pnorm), total pressure (Pt), adsorbed loadings (Q), equili-
brium loading (Qeq), and interstitial velocity (V) along the
length of the fixed bed column. The plot_column files are
used by the movie scripts to create figures for these measured
quantities (using gnuplot). On windows, the make_movies
and make_graphs scripts have the bat extension. By run-
ning these two scripts, the figures (breakthrough.pdf
and breakthrough_dimensionless.pdf) and movies
(files with .mp4 extension and file names starting with
column_movie) will be created:

You could also run the individual make-movie scripts if you
are interested only in some of them. The figures are in pdf
files, the movies are in h265 format for mac/linux and
h264 on windows, with resolution 1200x800 by default.
On mac/linux, command line options can be specified to mod-
ify the defaults

./make_movies -e 5 -w 1600 -h 1200 -q 18 -l
The -e option stands for ‘every’ and allows a periodic

sampling only using every 5 data -points in the example
case. The -w and -h changes the width and height of the
movie, while -q determines the quality of the movies. The
quality range is 0–51, where 0 is lossless and 51 is worst
quality possible. The default in RUPTURA is 18 which is
visually nearly lossless. The -l option stands for legacy
and changes the movie-format h265 to the older h264.
On windows, these options can be specified in the windows
console as

make_movies 5 1600 1200 18
Note the fixed order of the options, and the format on win-

dows is h264 as h265 is not supported out-of-the-box under
windows.

The output figures are shown in Figure 23(a). The
breakthrough graph plots the normalised concentration at
the exit of the column as a function of time. Two versions
of the plots are available: (1) as a function of time in
seconds, (2) as a function of dimensionless time. Figure
23(b) shows a single frame of the movie, here the loading
of the components adsorbed in the crystallites along the
column.

8.3. Mixture prediction of C6-isomers in BEA-type
zeolite

For the C6-isomers in BEA-type zeolite example, we can test
how well the explicit Langmuir models mixture adsorption
in comparison with IAST. The directory tutorial/BEA-
C6/mixture_prediction contains the input file simu-
lation.input:

column.data make_movie_Pnorm plot_column_P
component_0_Helium.data make_movie_Pt plot_column_Pnorm
component_1_CO2.data make_movie_Q plot_column_Pt
component_2_N2.data make_movie_Qeq plot_column_Q
make_graphs make_movie_V plot_column_Qeq
make_movie_Dpdt make_movies plot_column_V
make_movie_Dqdt plot_column_Dpdt plot_breakthrough
make_movie_P plot_column_Dqdt

breakthrough.pdf column_movie_Pnorm.mp4
breakthrough_dimensionless.pdf column_movie_Pt.mp4
column_movie_Dpdt.mp4 column_movie_Q.mp4
column_movie_Dqdt.mp4 column_movie_Qeq.mp4
column_movie_P.mp4 column_movie_V.mp4
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Note the input is very similar in structure. The major
difference is that the simulation-type is set to Mixture-
Prediction. Using the option MixturePrediction-
Method we can control the specific method used in the
mixture prediction. Minor difference are that the mass-trans-

fer and axial dispersion coefficients are not needed. To com-
pute the mixture isotherm some info on the pressure range,
i.e. begin and end-pressure and the number of pressure
points is required. These points can be spread equi-distant
in normal or in log-scale.

Figure 23. (Colour online) Breakthrough predictions of an equimolar mixture of CO2-N2 in silicalite at 313 K and 2.5 · 106 Pa: (a) breakthrough curve plot (file break-
through_dimensionless.pdf) (b) movie frame of the loading inside the column (file column_movie_Q.mp4).

SimulationType MixturePrediction
ColumnName BEA
Temperature 552.0 // [K]
PressureStart 1e3 // lowest pressure
PressureEnd 1e7 // highest pressure
NumberOfPressurePoints 100 // number of points equally spaced
PressureScale log // [log, or linear]
MixturePredictionMethod ExplicitLangmuir // [IAST, SIAST, or ExplicitLangmuir]

Component 0 MoleculeName Helium
GasPhaseMolFraction 0.96 // [-]
CarrierGas yes

Component 1 MoleculeName nC6
GasPhaseMolFraction 0.01 // [-]
NumberOfIsothermSites 1
Langmuir 1.393 3.307e-05 // [mol/(kg framework)] [1/Pa]

Component 2 MoleculeName C5m3
GasPhaseMolFraction 0.01 // [-]
NumberOfIsothermSites 1
Langmuir 1.559 1.809e-05 // [mol/(kg framework)] [1/Pa]

Component 3 MoleculeName C4m2m2
GasPhaseMolFraction 0.01 // [-]
NumberOfIsothermSites 1
Langmuir 1.714 5.451e-06 // [mol/(kg framework)] [1/Pa]

Component 4 MoleculeName C4m2m3
GasPhaseMolFraction 0.01 // [-]
NumberOfIsothermSites 1
Langmuir 1.678 1.522e-05 // [mol/(kg framework)] [1/Pa]

component_0_Helium.data component_4_C4m2m3.data plot_mixture_mol_fractions
component_1_nC6.data plot_mixture plot_pure_components
component_2_C5m3.data component_3_C4m2m2.data make_graphs
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After running, the output directory contains the following
plot-files.

Files with .data extension and file names starting with
component consists of equilibrium loading data for the
specified temperature, and the range of pressure. In windows,
the script make_graphs has the bat extension. After run-
ning that script we obtain the plots in pdf format

mixture_prediction.pdf
mixture_prediction_mol_fractions.pdf
pure_component_isotherms.pdf
mixture_prediction.pdf file consists of the plots

of mixture adsorption isotherms for all the components pre-

sent in the mixture in the same unit specified for saturation
loadings (q_sat) in the input file. mixture_predic-
tion_mol_fractions.pdf file consists of the same

plots in the form of mole fractions. pure_component_
isotherms.pdf shows the plots for the isotherms for
the pure components. In Figure 24, we can compare the
pure components isotherms with the mixture isotherm pre-
dictions. In the mixture, we can see the effect of competitive
adsorption.

8.4. Isotherm fitting

To obtain the isotherm model parameters we can use the
fitting module. The directory tutorial/MAF-X8-
xylenes contains the input file simulation.input:

File names starting with Results.dat consists of the
equilibrium loading data computed using grand-canonical
Monte Carlo simulations.

SimulationType Fitting
DisplayName MAF-X8
ColumnPressure 3
ColumnLoading 8
PressureScale log

Component 0 MoleculeName p-xylene
FileName Results.dat-MAF-x8-P1-Repeat-433K-p-xylene
NumberOfIsothermSites 2
Langmuir-Freundlich 0.0 0.0 0.0
Langmuir-Freundlich 0.0 0.0 0.0

The result of the fit is printed at the end of the output.

number of isotherm sites: 2
Langmuir-Freundlich isotherm

q_sat: 1.71616 // [mol/(kg framework)]
b: 3.54859e+09 // [1/Pa]
nu: 1.47094 // [-]

Langmuir-Freundlich isotherm
q_sat: 1.63797 // [mol/(kg framework)]
b: 12.3201 // [1/Pa]
nu: 0.515807 // [-]

Figure 24. (Colour online) Mixture predictions of a C6 isomer mixture in BEA- type zeolite at 552K using explicit isotherm model developed by Van Assche et al [30]: (a)
pure components (file pure component isotherms.pdf), (b) mixture prediction (file mixture prediction.pdf).
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Again, using the make_graphs script, we can create the
pdfs of the figures, e.g.

isotherms_fit_p-xylene.pdf

The result is plotted in Figure 25. It shows the initial
random starting isotherm, and the final fit result after GA
optimisation for adsorption of p-xylene in MAF-X8- type zeo-
lite at 433 K.

8.5. Examples

RUPTURA comes with many examples included. These
examples have three parts: (1) fitting the pure component iso-
therm data with different isotherm models to obtain isotherm
parameters (e.g. equilibrium constant (b), saturation loading ,
etc), (2) prediction of mixture isotherms with the fitted

parameters as input, (3) breakthrough curve simulations
with the fitted parameters as input. The examples range
from a simple binary mixture up to a 15-component C5-C6-
C7 alkane mixture. The xylene-examples have been selecting
for displaying qualitatively different adsorption behaviour.

The examples are listed in Table 14 along with typical run
times for breakthrough simulations, here on a mac-studio
using an M1-chip. Most examples run in a few minutes. How-
ever, keep in mind that run-times depend on the total pressure.
Increasing the pressure shifts the breakthrough to shorter
dimensionless times, decreasing the pressure shifts the break-
through to longer dimensionless times. Also, for lower
pressure or stiff systems, a smaller time-step might be in
order. This could significantly increase the computational
time needed for the breakthrough computation. Other factors
that influence the run times are the details of the isotherm
models and isotherm shapes.

9. RUPTURA troubleshooting

9.1. The curve fitting does not visually match well to the
isotherm data

Run the fitting several times to make sure the solution is stable.
If the problem remains, then it is the isotherm model and/or
the number of isotherm sites. Increase the number of sites if
inflections are not represented well.

9.2. Breakthrough error: pressure gradient is too large
(negative outlet pressure)

The given pressure and pressure gradient result in negative
pressure further down the column. This is nonphysical and
indicates that the pressure gradient is chosen too high, and/
or the pressure is too low.

Figure 25. (Colour online) Fitting a dual site Langmuir isothermmodel to the pure
component isotherm data for the adsorption of p-xylene in MAF-X8- type zeolite at
433 K. The pure component adsorbed loadings are computed using grand-canoni-
calMonteCarlo simulations. The fitting is performedusing genetic algorithmoptim-
isation which is shown in the file isotherms fit p− xylene.pdf.

Table 14. List of mixture prediction, breakthrough, and fitting examples provided with RUPTURA.

structure mixture NC Ngrid Dt [s] pi [kPa] t = tv/L [−] time pi [kPa] t = tv/L [−] time

MOR CO2-C3H8 2 100 0.0005 125.0 270.8 1m36 1250.0 53.2 0m25
JUC-77 xylenes 4 100 0.0005 25.0 201.8 4m02 250.0 43.5 0m58
MIL-125-NH2 xylenes 4 100 0.0005 25.0 355.5 7m34 250.0 77.2 2m07
CoBDP xylenes 4 100 0.0005 25.0 395.3 8m08 250.0 68.5 1m50
MFI xylenes 4 100 0.0005 25.0 1025.2 10m13 250.0 162.5 2m08
MIL-47 xylenes 4 100 0.0005 25.0 504.5 11m18 250.0 95.0 2m37
MAF-X8 xylenes 4 100 0.0005 25.0 643.2 13m28 250.0 99.0 2m37
CoBDP alkanes-C6 5 100 0.0005 20.0 489.3 13m33 200.0 86.2 2m51
BEA alkanes-C7 5 100 0.0005 1.2 873.24 17m10 12.0 331.7 6m57
fe2bdp3 alkanes-C6 5 100 0.0005 20.0 3520.0 105m58 200.0 376.7 12m41
ZIF-77 alkanes-C5-C6-C7 15 100 0.0005 20.0 269.3 28m03 200.0 52.8 5m44

Notes: For breakthrough simulations, in addition to the NC -components, there is a carrier-gas component present. The timings are done on a mac-studio using an M1-
chip.

Results.dat-MAF-x8-P1-Repeat-433K-benzene
Results.dat-MAF-x8-P1-Repeat-433K-ethylbenzene
Results.dat-MAF-x8-P1-Repeat-433K-m-xylene
Results.dat-MAF-x8-P1-Repeat-433K-o-xylene
Results.dat-MAF-x8-P1-Repeat-433K-p-xylene
Results.dat-MAF-x8-P1-Repeat-433K-toluene
make_graphs
plot_fit_component_0_p-xylene
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9.3. Instability or erratic breakthrough curves

The time step might be too high, reduce the time step and
check for improvement. Check the values of mass transfer
and axial dispersion coefficients for physical validity. Check
whether using the reference IAS method using bisection
(IASTMethod Bisection) makes a difference. Try this
first in a mixture prediction calculation, since this is fast. If
you find a difference, then there is a numerical instability in
the implemented FastIAS method.

9.4. Breakthrough curves with sharp transitions or
spikes

Use more grid points in the spatial discretisation of the
column.

9.5. The breakthrough curve depends on the time-step
and number of grid points

The breakthrough curves are correct in the limit of a very small
time-step and a large number of grid points. Generally, you
will have to chooses the time-step and number of grid points
such that a further decrease in time-step or increase in number
of grid points will not (visually) change the breakthrough
curves anymore. Note that always using a very small time-
step and a large amount of grid points is computationally
expensive.

9.6. No convergence or hangs

Use recommended units, like mol/kg for loading, and Pascal
for pressure. Other units could lead to very small or very
large numbers.

10. Conclusions

We presented the RUPTURA code (https://github.com/iraspa/
ruptura), which is a freely available, open-source package for
the computation of breakthrough curves, mixture adsorption,
and fitting of isotherm models to raw adsorption data. RUP-
TURA contains three modules of workflow encountered in
this field: (1) the computation of step/pulse breakthrough,
(2) the prediction of mixture adsorption (used in the break-
through equations) based on pure component isotherms,
and (3) the fitting of isotherm models on raw (computed or
measured) isotherm data. We included isotherm models like
Langmuir, BET, Henry, Freundlich, Sips, Langmuir-Freun-
dlich, Redlich-Peterson, Toth, Unilan, O’Brian & Myers,
Asymptotic Temkin, and Bingel & Walton including their
multi-site versions or combinations of that. The mixture pre-
diction methods implemented include Ideal Adsorption Sol-
ution Theory (IAST), segregated IAST, and explicit
Langmuir methods. IAST is computed fast and at machine
precision. The breakthrough simulations include axial dis-
persion and the Linear Driving Force (LDF) model for mass-
transfer, and have excellent numerical stability through the
use of Strong-Stability Preserving Runge-Kutta (SSP-RK) inte-
grators. RUPTURA is freely available (MIT license) and

should be viewed as a demonstration ‘code’ that could be use-
ful for researchers working in the field and for teaching in
chemistry and chemical engineering classes. For future ver-
sions of RUPTURA, we envision to include support for non-
ideal gas behaviour, liquid phase conditions, and chemical
reactions. Non-isothermal operation is an important aspect
that needs to be considered. Variation in temperature along
the column can be significant for certain cases such as adsorp-
tion of CO2. Therefore, in the next version of RUPTURA, we
plan to include non-isothermal operation. Also, the code will
be modified for simulating adsorption columns with more
than one type of adsorbent. This will be useful in separating
multiple components inside the column.
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