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Abstract: This paper considers the class of control systems containing so-called split-path
nonlinear (SPAN) filters, which are designed to overcome some of the well-known fundamental
limitations in linear time-invariant (LTI) control. In this work, we are interested in developing
tools for the stability analysis of such systems using frequency-domain techniques. Hereto,
we explicitly show the equivalence between a set of linear matrix inequalities (LMIs) with
S-procedure terms, guaranteeing stability of the closed-loop (SPAN) system, and a frequency-
domain condition. We also provide a systematic procedure for verifying the frequency-domain
condition in a graphical manner. The results are illustrated through a nummerical case study.

1. INTRODUCTION

Over the past decades, the desire of many researchers and
practitioners to break away from the fundamental limita-
tions of LTI control systems imposed by, e.g., Bode’s gain-
phase relationship (Middleton et al., 1990), has led to the
development of many nonlinear control strategies, includ-
ing various reset and switching type controllers (Clegg ,
1958; Beker et al., 2001; Feuer et al., 1997; van den Eijnden
et al., 2020; Deenen et al., 2021). A particularly interesting
strategy that was proposed in the late sixties by W.C.
Foster and co-workers is the so-called split-path nonlinear
(SPAN) filter (Foster et al., 1996). The key philosophy
underlying this filter is to “split” the magnitude and phase
characteristics of a linear filter as to design these sepa-
rately with the intention to circumvent Bode’s gain-phase
relationship, thereby facilitating an additional degree-of-
freedom in the controller design. Revived interest in this
approach has recently led to an extension of the SPAN
filter that includes integral action (van Loon et al., 2016;
Sharif et al., 2022). This so-called filtered SPAN integrator
(F-SPANI) aims for an improved integrator design, with
all the benefits of an LTI integrator in terms of achieving
zero steady-state tracking error, but without introducing
phase lag. It was shown in (Sharif et al., 2022) that using
a F-SPANI filter in an otherwise linear feedback controller
can significantly improve transient performance properties
of the closed-loop controlled system.

For asserting stability of a closed-loop system including a
SPAN(I) filter, conditions have been proposed recently in
Sharif et al. (2022) in the form of linear matrix inequalities
(LMIs). Although such conditions can be verified by means
of numerical methods, these require a parametric model of
the plant. In many high-tech industrial applications that
may benefit from the use of SPAN(I) filters, such as, e.g.,
wafer scanners, pick-and-place machines, and atomic force
microscopes, this sometimes is considered a drawback, as
⋆ The research leading to these results has received funding from
the European Research Council under the Advanced ERC Grant
Agreement PROACTHIS, no. 101055384.

accounting for machine-to-machine variation in the para-
metric model description is not an easy task. Instead, for
such applications frequency-domain-based tools may be
preferred as these provide several distinct advantages over
LMI-based methods. First, frequency-domain methods al-
low for exploiting non-parametric models obtained from
measured frequency-response-function (FRF) data, which
in many industrial contexts, is often easy to obtain. Sec-
ond, such tools can be extended toward a robust stability
analysis by including (un)structured plant uncertainty in
a much more straightforward manner as compared to LMI
methods, see, for instance, Tsypkin et al (1992). As a third
advantage, in sharp contrast to LMI methods, frequency-
domain conditions provide intuitive insight in how to re-
design the controller when the conditions are violated.
Moreover, these can be easily embedded into existing tools
for LTI controller tuning, such as, e.g., autotuners (Astrom
et al., 2001), that allows for an (automated) controller
tuning procedure. The latter interfaces well with current
industrial practice that is dominated by frequency-domain
loopshaping methods, and, therefore, frequency domain
tools can speed up the adoption of SPAN (and other type
of hybrid) controllers in practice.

Motivated by the numerous benefits of frequency-domain
tools, in this paper we contribute to the development of
such tools for the class of SPAN-controlled systems. In
particular, we present the equivalence between a set of LMI
conditions guaranteeing closed-loop stability, and a new
frequency-domain condition. The latter can be checked
entirely on the basis of experimentally obtained plant data
in the form of FRF measurements. We make use of a
result that was already published in the Russian control
literature in 1983, see Kamenetskiy (1983), and has only
recently been further exploited by the same author in
Kamenetskiy (2017). Surprisingly, this result appears to
be lesser known in the western literature.

In line with the above, the main contributions in this paper
are as follows. First, we generalize the LMI conditions
in Sharif et al. (2022) for stability analysis of SPAN-
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controlled systems by including S-procedure relaxation
terms. Second, we present the equivalence between feasibil-
ity of this set of LMIs and feasibility of a frequency-domain
inequality. Third, we provide a systematic sequential pro-
cedure for verifying the frequency-domain inequality by
using FRF data concerning the plant dynamics. As a
by-product, we hope to bring the result in Kamenetskiy
(1983) to the attention of the control community, as we
believe it can provide a useful step in further developing
“industry-friendly” tools for stability analysis of nonlin-
ear/hybrid systems in frequency-domain.

The remaining part of this paper is outlined as follows. In
Section 2 the SPAN filter, closed-loop system, and problem
formulation are discussed. Section 3 presents the main
results of this paper, which establishes a frequency-domain
condition for proving stability of a SPAN-controlled sys-
tem. Applicability and verification of this condition is
demonstrated through a numerical example In Section 4.
Finally, Section 5 presents the main conclusions.

Notation

A single-input single-output (SISO) transfer function is
said to be stable if all its poles are located in the open
left-half complex plane. The real and imaginary parts of
a complex matrix W ∈ Cn×n are denoted by Re {W} ∈
Rn×n and Im {W} ∈ Rn×n, respectively, and thus W =
Re {W} + iIm {W}, and the Hermitian transpose is indi-
cated by W ∗. The set of complex Hermitian matrices in
Cn×n is denoted by Sn×n. A symmetric matrix P ∈ Sn×n

is positive (negative) definite, denoted by P ≻ 0 (P ≺ 0),
if x∗Px > 0 (x∗Px < 0) for all x ∈ Cn \{0}. We also make
use of the notation He(P ) = P + P⊤.

2. SYSTEM DESCRIPTION

2.1 Split-path nonlinear (SPAN) filter

The class of nonlinear controllers considered in this work
belong to the class of SPAN filters as shown in Fig. 1 and
introduced in Foster et al. (1996) to facilitate independent
tuning of gain and phase characteristics of a signal. As
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Fig. 1. SPAN filter.

shown in Fig. 1, the input signal e of a SPAN filter is split
into two branches. The output of the filter is formed by
multiplying the output of the two branches. The upper
branch, referred to as the magnitude branch, retains all
magnitude information and removes all sign information,
i.e., it outputs |v1|. The lower branch on the other hand,
referred to as the sign branch, retains all sign information
and removes all magnitude information, i.e., it outputs ±1
depending on the sign of its input. Moreover, each branch
has a linear filter Fi, i ∈ {1, 2}, which can be used to shape
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Fig. 2. SPAN-controlled closed-loop system.

the amplitude and phase characteristics of the overall
SPAN filter independently. The SPAN integrator as in
Sharif et al. (2022); van Loon et al. (2016), being a specific
type of the generic SPAN filter in Foster et al. (1996) can
for example be constructed by choosing F1(s) = 1/s and
F2(s) = 1. The generic SPAN filter is described by

S :




Fi :


ẋi(t) = Aixi(t) + Bie(t),

vi(t) = Cixi(t) +Die(t),

u(t) =


v1(t), if φ(t) ≥ 0,

−v1(t), if φ(t) ≤ 0

(1)

with xi(t) ∈ Rni , e(t) ∈ R, vi(t) ∈ R, i ∈ {1, 2},
denoting the state, input and output of Filter Fi at time
t ∈ R≥0, respectively, and where φ(t) := v1(t)(v2(t) +
ϵv1(t)). Moreover, u(t) ∈ R denotes the output of the
SPAN filter at time t ∈ R≥0 and Ai,Bi, Ci,Di, i ∈ {1, 2},
are all real matrices of appropriate dimensions. Lastly,
ϵ > 0 is a tuning parameter. As described in (1), the output
of the SPAN filter is determined based on the sign of φ(t).
In particular, the filter outputs v1(t) when φ(t) ≥ 0 and
−v1(t) when φ(t) ≤ 0. We refer to the system (1) as being
in mode 1 when u(t) = v1(t), and as being in mode 2 when
u(t) = −v1(t). The parameter ϵ has been included for
robustness purposes with respect to slight perturbations
around desired equilibrium of the system satisfying e = 0,
see van Loon et al. (2016); Sharif et al. (2022) for details.

2.2 Closed-loop system description

In this paper, we consider the closed-loop system as in
Fig. 2 consisting of an LTI system G and a SPAN filter S,
the latter as described in (1). Here, G contains the linear
part of the loop consisting of the plant to be controlled
and, possibly, linear control elements and is described by

G :


ẋg(t) = Agxg(t) +Bgvu(t) +Bgww(t)

yg(t) = Cgxg(t),
(2)

where xg(t) ∈ Rn are the plant states, w(t) ∈ Rm are the
external inputs (e.g., set-points or disturbances), u(t) ∈ R
is the output of the SPAN filter, and yg(t) ∈ R is the
output of the plant at time t ∈ R≥0. Combining (2) and
(1), we obtain the switched linear description

ẋ(t) =


A1x(t) +Bw(t), if φ(t) ≥ 0,

A2x(t) +Bw(t), if φ(t) ≤ 0
(3)

with x = [x⊤
g x⊤

1 x⊤
2 ]

⊤, where x1, x2 denote the states of
the filters F1 and F2 in (1), respectively, and

A1 =


Ag −BgvD1Cg −BgvC1 0

B1Cg A1 0
B2Cg 0 A2


,

A2 =


Ag +BgvD1Cg BgvC1 0

B1Cg A1 0
B2Cg 0 A2


, B =


Bgw

0
0


.

(4)
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The class of nonlinear controllers considered in this work
belong to the class of SPAN filters as shown in Fig. 1 and
introduced in Foster et al. (1996) to facilitate independent
tuning of gain and phase characteristics of a signal. As

v1

u

F2

SPAN

e
F1

ϵ

v2

+ +

Fig. 1. SPAN filter.

shown in Fig. 1, the input signal e of a SPAN filter is split
into two branches. The output of the filter is formed by
multiplying the output of the two branches. The upper
branch, referred to as the magnitude branch, retains all
magnitude information and removes all sign information,
i.e., it outputs |v1|. The lower branch on the other hand,
referred to as the sign branch, retains all sign information
and removes all magnitude information, i.e., it outputs ±1
depending on the sign of its input. Moreover, each branch
has a linear filter Fi, i ∈ {1, 2}, which can be used to shape

Σ
G

S

u

w
yg

u

−

Fig. 2. SPAN-controlled closed-loop system.

the amplitude and phase characteristics of the overall
SPAN filter independently. The SPAN integrator as in
Sharif et al. (2022); van Loon et al. (2016), being a specific
type of the generic SPAN filter in Foster et al. (1996) can
for example be constructed by choosing F1(s) = 1/s and
F2(s) = 1. The generic SPAN filter is described by

S :




Fi :


ẋi(t) = Aixi(t) + Bie(t),

vi(t) = Cixi(t) +Die(t),

u(t) =


v1(t), if φ(t) ≥ 0,

−v1(t), if φ(t) ≤ 0

(1)

with xi(t) ∈ Rni , e(t) ∈ R, vi(t) ∈ R, i ∈ {1, 2},
denoting the state, input and output of Filter Fi at time
t ∈ R≥0, respectively, and where φ(t) := v1(t)(v2(t) +
ϵv1(t)). Moreover, u(t) ∈ R denotes the output of the
SPAN filter at time t ∈ R≥0 and Ai,Bi, Ci,Di, i ∈ {1, 2},
are all real matrices of appropriate dimensions. Lastly,
ϵ > 0 is a tuning parameter. As described in (1), the output
of the SPAN filter is determined based on the sign of φ(t).
In particular, the filter outputs v1(t) when φ(t) ≥ 0 and
−v1(t) when φ(t) ≤ 0. We refer to the system (1) as being
in mode 1 when u(t) = v1(t), and as being in mode 2 when
u(t) = −v1(t). The parameter ϵ has been included for
robustness purposes with respect to slight perturbations
around desired equilibrium of the system satisfying e = 0,
see van Loon et al. (2016); Sharif et al. (2022) for details.

2.2 Closed-loop system description

In this paper, we consider the closed-loop system as in
Fig. 2 consisting of an LTI system G and a SPAN filter S,
the latter as described in (1). Here, G contains the linear
part of the loop consisting of the plant to be controlled
and, possibly, linear control elements and is described by

G :


ẋg(t) = Agxg(t) +Bgvu(t) +Bgww(t)

yg(t) = Cgxg(t),
(2)

where xg(t) ∈ Rn are the plant states, w(t) ∈ Rm are the
external inputs (e.g., set-points or disturbances), u(t) ∈ R
is the output of the SPAN filter, and yg(t) ∈ R is the
output of the plant at time t ∈ R≥0. Combining (2) and
(1), we obtain the switched linear description

ẋ(t) =


A1x(t) +Bw(t), if φ(t) ≥ 0,

A2x(t) +Bw(t), if φ(t) ≤ 0
(3)

with x = [x⊤
g x⊤

1 x⊤
2 ]

⊤, where x1, x2 denote the states of
the filters F1 and F2 in (1), respectively, and

A1 =


Ag −BgvD1Cg −BgvC1 0

B1Cg A1 0
B2Cg 0 A2


,

A2 =


Ag +BgvD1Cg BgvC1 0

B1Cg A1 0
B2Cg 0 A2


, B =


Bgw

0
0


.

(4)

Note that the matrices A1 and A2 differ by a rank 1 matrix

according to A1 − A2 = −2bC1, with b =

B⊤

gv 0n1+n2

⊤
,

and C1 = [D1Cg C1 0]. This property of the closed-loop
system will be key for proving our main results.

Solutions to (3) will be considered in the sense of Fil-
ippov (Fillipov, 1998). In particular, we define solutions
as locally absolutely continuous functions satisfying the
differential inclusion

ẋ ∈ D(x) :=



{A1x+Bw} , if φ > 0,

co(A1x,A2x) +Bw, if φ = 0,

{A2x+Bw} , if φ < 0,

(5)

almost everywhere, as solutions to the closed-loop system.
Here, co(A1x,A2x) denotes the convex hull {λA1x+ (1−
λ)A2x, λ ∈ [0, 1]}. This Fillipov solution concept allows
for the convex combination of the vector fields in (3) to
be active in the region described by φ = v1(v2 + ϵv1) = 0,
and thus allows for possible sliding modes.

2.3 Problem formulation

This paper is concerned with formulating conditions for
stability of the closed-loop system in (5). Stability is stud-
ied through the notion of input-to-state stability (ISS), as
presented in, e.g., Khalil (2002).

The next theorem presents sufficient conditions in the form
of LMIs for guaranteeing ISS of (5). It essentially provides
a generalization of the LMI-based conditions presented in
Sharif et al. (2022) by including S-procedure terms.
Theorem 1. The differential inclusion in (5) is ISS if
there exist a positive definite matrix P = P⊤ ≻ 0 and a
number τ ≥ 0 satisfying

A⊤
1 P + PA1 +

�
S + S⊤ ≺ 0, (6)

A⊤
2 P + PA2 − τ

�
S + S⊤ ≺ 0, (7)

in which S = C⊤
1 (ϵC1 + C2) with C1 = [D1Cg C1 0], and

C2 = [D2Cg 0 C2].

Proof. The proof largely proceeds along the steps of the
proof of (Sharif et al., 2022, Theorem 1), with the addition
of S-procedure terms. Regarding the convex combination
of the dynamics in (5), note that these happen on a lower-
dimensional region satisfying v1(v2 + ϵv1) = 0, which
on the level of the state x, translates to x⊤C⊤

1 (ϵC1 +
C2)x = x⊤Sx = 0. Finsler’s lemma is used to show that

He
�
x⊤P (λA1 + (1− λ)A2)x


≺ 0, (8)

for all x satisfying x⊤(S+S⊤)x = 0 and all λ ∈ [0, 1].

Although the LMIs in (6), (7) are numerically tractable,
solving them requires a state-space model, which may be
hard to obtain in practical applications if one desires an
accurate, machine-specific, model description. Moreover,
the conditions provide limited insight in the (re)design of
controllers for guaranteed stability when the LMIs turn
out to be infeasible. Motivated by these concerns, the
main objective in this paper is to establish the equivalence
between feasibility of the LMIs in (6), (7), and frequency-
domain conditions that exploit non-parametric models,
thereby allowing a transition from time- to frequency-
domain conditions for guaranteeing ISS of (5), and aban-
doning the need for parametric models.

3. FREQUENCY-DOMAIN CONDITIONS

To derive new frequency-domain conditions for ISS, we will
start with some preparatory results.

3.1 Preliminary results

Typical frequency-domain conditions for guaranteeing the
existence of a Lyapunov function for a piecewise linear
system such as in (5) make use of the Kalman-Yakubovich-
Popov (KYP) lemma and require the evaluation of some
stable transfer function, see, e.g., Khalil (2002). However,
due to the use of the S-procedure relaxation terms in
Theorem 1, the system matrices A1 and A2 as in (4), and
thus the associated transfer functions do not need to be
stable. For our results, the following lemma is essential.
Lemma 1. Feasibility of the LMIs in (6), (7) for some
P = P⊤ ≻ 0, and τ ≥ 0 imply feasibility of the inequality

A⊤
0 P + PA0 ≺ 0, with A0 = A2 + 2αbC1, (9)

b =

B⊤

gv 0n1+n2

⊤
, C1 = [D1Cg C1 0], and α = τ/(1+τ).

Proof. When (6) and (7) are satisfied, their convex com-
bination satisfies for all α ∈ [0, 1]

He {P (αA1 + (1− α)A2)}+ (α− τ(1− α))(S + S⊤) ≺ 0.

Since the matricesA1 and A2 in (3) satisfy A1 = A2+2bC1,
the result follows for α = τ/(1 + τ) ∈ [0, 1).

The next lemma recalls the key result from Kamenetskiy
(2017), that is instrumental in proving the main result.
Lemma 2 (Kamenetskiy (2017)). To satisfy a system of
two matrix inequalities

I1 ≺ 0, I2 ≺ 0, (10)

for which the difference satisfies I2 − I1 = pq⊤ + qp⊤ with
vectors p, q ∈ Rn, it is necessary and sufficient that there
exists a number ε > 0 such that the inequality

I1 +Q+(ε) = I2 +Q−(ε) ≺ 0, (11)

with

Q±(ε) =


ε√
2
p± 1

ε
√
2
q


ε√
2
p± 1

ε
√
2
q

⊤

(12)

is satisfied.

It has been shown in Kamenetskiy (1983) that a system
of N inequalities can be reduced into a single (equivalent)
inequality by applying Lemma 2 repeatedly to each pair
of inequalities from the original system whose difference
is of the form pq⊤ + qp⊤, see Kamenetskiy (1983) for
more details regarding this statement. This principle will
be applied in proving the main theorem of the next section.

3.2 Main result

Equipped with the above results and definitions, we are
now ready to provide the main result of this paper.
Theorem 2. Consider the closed-loop system in (5). The
following statements are equivalent:

• The set of LMIs in (6), (7) is feasible for some
P = P⊤ ≻ 0, and τ ≥ 0;
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• There exist numbers τ ≥ 0, γ ∈ (−1, 1), and εi > 0,
i = 1, 2, such that the matrix A0 := A2 + 2 τ

1+τ bC1 is
Hurwitz, and the frequency-domain inequality

2Γ−1 − (W (jω)M +MW ∗(jω)) ≻ 0, (13)

with W (jω) = diag {[W1(jω),W2(jω)]} ∈ C2×2, in
which

W1(jω) =


H − 1

ε21
C1


(jωI −A0)

−1b (14)

W2(jω) =


H +

1

ε22
C1


(jωI −A0)

−1b, (15)

and where

M =
1

1 + τ


ε21 ε1ε2

√
τ

ε1ε2
√
τ ε22τ


, Γ−1 =


1 γ
γ 1


,

H = ϵC1 + C2, is satisfied for all ω ∈ R ∪ {∞}.

Proof. By virtue of Lemma 1, one finds that feasibility
of (6), (7) is equivalent to feasibility of (6), (7), and (9).
Note that we do not directly apply Lemma 2 to (6) and
(7). In fact, the application of Lemma 1 is crucial in the
construction below as it allows to obtain LMI conditions
in terms of the Hurwitz matrix A0 which can in turn be
translated to frequency-domain conditions by virtue of the
KYP Lemma. Next, observe that the difference between
the inequalities in (9) (which will be denoted by I0 ≺ 0)
and (6) (which will be denoted by I1 ≺ 0) reads as

I1 − I0 =
�
2kPb+H⊤C1 + C⊤

1

�
2kPb+H⊤⊤ (16)

with k = 1/(1+ τ) and H = ϵC1+C2. Applying Lemma 2
to I0 and I1 with p = 2kPb + H⊤ and q = C⊤

1 shows
that feasibility of these two inequalities is equivalent to
feasibility of the single inequality

A⊤
0 P + PA0 + U1U

⊤
1 ≺ 0 (17)

with

U1 =


ε1√
2

�
2kPb+H⊤− 1

ε1
√
2
C⊤

1


(18)

for some ε1 > 0. Through similar steps, one finds that
feasibility of (9) (denoted by I0 ≺ 0) and (7) (denoted by
I2 ≺ 0) is equivalent to feasibility of the single inequality

A⊤
0 P + PA0 + U2U

⊤
2 ≺ 0 (19)

with

U2 =
√
τ2


ε2√
2

�
2kPb+H⊤+ 1

ε2
√
2
C⊤

1


(20)

for some ε2 > 0. At this point, we have only shown
that feasibility of the LMIs in (6) and (7) is equivalent
to feasibility of the inequalities in (17) and (19). The
reason for taking this intermediate step is that (17) and
(19) now contain the Hurwitz matrix A0, which allows
directly for converting the inequalities into frequency-
domain conditions. In order to proceed, we apply Lemma 2
one more time to the inequalities in (17) (denoted by
I ′1 ≺ 0) and (19) (denoted by I ′2 ≺ 0). The difference
between I ′2 and I ′1 can be written as

I ′2 − I ′1 = U2U
⊤
2 − U1U

⊤
1 = uv⊤ + vu⊤

with

u =
1√
2
(U2 + U1) , and v =

1√
2
(U2 − U1) . (21)

By Lemma 2, feasibility of (17), (19) is then equivalent to
feasibility of the single inequality

A⊤
0 P + PA0 + U2U

⊤
2 + U3U

⊤
3 ≺ 0 (22)

with

U3 =


ε3√
2
u− 1

ε3
√
2
v


, (23)

for some ε3 > 0. Note that we can write U2U
⊤
2 +U3U

⊤
3 =

UΓU⊤ with U = [U1 U2], and

Γ =
1

4



2 + ε23 +

1

ε23
ε23 −

1

ε23

ε23 −
1

ε23
2 + ε23 +

1

ε23


 (24)

such that (22) can be written compactly as

A⊤
0 P + PA0 + UΓU⊤ ≺ 0. (25)

A simple calculation reveals that det (Γ) = 2+ε23+
1
ε23

> 0,

and thus the matrix Γ is non-singular, and, therefore,
invertible. Applying Schur’s Lemma to (25) yields

A⊤
0 P + PA0

√
2PY√

2Y ⊤P 0


+Q ≺ 0, (26)

in which Y =

kε1b kε2

√
τb

, and where

Q =




0
1√
2
F

1√
2
F⊤ −Γ−1


 , F⊤ =




ε1H − 1

ε1
C1

√
τε2H +

√
τ

ε2
C1


 .

From the KYP lemma (Rantzer., 1996, Theorem 1), and
the fact that A0 is Hurwitz, (26) is equivalent to

(jωI −A0)
−1Y

I

∗
Q


(jωI −A0)

−1Y
I


≺ 0 (27)

for all ω ∈ R ∪ {∞}, which evaluates to

2Γ−1 − (W (jω)M +MW ∗(jω)) ≻ 0, (28)

with W (jω)M = F⊤(jωI −A0)
−1Y ∈ C2×2. Note that

Γ−1 =


1 γ
γ 1


with γ =

1− ε23
1 + ε23

. (29)

and clearly γ ∈ (−1, 1). Hence, in summary, feasibility of
(28) is equivalent to feasibility of (26), which, in turn, is
equivalent to feasibility of (6), (7).

4. VERIFYING THE CONDITIONS

At this point, verifying the frequency-domain inequality in
(13) may appear a cumbersome task due to the nonlinear
combination of the stability parameters τ, ε1, ε2, and γ. Of
course, one can make some simplifying assumptions. For
example, setting ε1 = ε2 = 1 could lead to more tangible
conditions, but at the cost of loosing necessity. To avoid
this, in this section we will propose a sequential procedure
for finding the parameters τ, ε1, ε2, γ (if they exist). We
will illustrate the use of each step in the procedure through
a numerical example, in which the plant is given by

G(s) =
1

s2 + 0.25s+ 8
, (30)

and the SPAN filter is described by

F1(s) =
2

s+ 0.7
, F2(s) = 1, and ϵ = 10−6. (31)

This SPAN filter has similar characteristics as a (weak)
integrator (or low-pass filter) but aims at reducing the
phase lag that is normally induced by its LTI counterpart.

Before presenting the steps in the procedure, however, we
first dissect the frequency-domain condition in (13) into
several more tangible sub-conditions.
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• There exist numbers τ ≥ 0, γ ∈ (−1, 1), and εi > 0,
i = 1, 2, such that the matrix A0 := A2 + 2 τ

1+τ bC1 is
Hurwitz, and the frequency-domain inequality

2Γ−1 − (W (jω)M +MW ∗(jω)) ≻ 0, (13)

with W (jω) = diag {[W1(jω),W2(jω)]} ∈ C2×2, in
which

W1(jω) =


H − 1

ε21
C1


(jωI −A0)

−1b (14)

W2(jω) =


H +

1

ε22
C1


(jωI −A0)

−1b, (15)

and where

M =
1

1 + τ


ε21 ε1ε2

√
τ

ε1ε2
√
τ ε22τ


, Γ−1 =


1 γ
γ 1


,

H = ϵC1 + C2, is satisfied for all ω ∈ R ∪ {∞}.

Proof. By virtue of Lemma 1, one finds that feasibility
of (6), (7) is equivalent to feasibility of (6), (7), and (9).
Note that we do not directly apply Lemma 2 to (6) and
(7). In fact, the application of Lemma 1 is crucial in the
construction below as it allows to obtain LMI conditions
in terms of the Hurwitz matrix A0 which can in turn be
translated to frequency-domain conditions by virtue of the
KYP Lemma. Next, observe that the difference between
the inequalities in (9) (which will be denoted by I0 ≺ 0)
and (6) (which will be denoted by I1 ≺ 0) reads as

I1 − I0 =
�
2kPb+H⊤C1 + C⊤

1

�
2kPb+H⊤⊤ (16)

with k = 1/(1+ τ) and H = ϵC1+C2. Applying Lemma 2
to I0 and I1 with p = 2kPb + H⊤ and q = C⊤

1 shows
that feasibility of these two inequalities is equivalent to
feasibility of the single inequality

A⊤
0 P + PA0 + U1U

⊤
1 ≺ 0 (17)

with

U1 =


ε1√
2

�
2kPb+H⊤− 1

ε1
√
2
C⊤

1


(18)

for some ε1 > 0. Through similar steps, one finds that
feasibility of (9) (denoted by I0 ≺ 0) and (7) (denoted by
I2 ≺ 0) is equivalent to feasibility of the single inequality

A⊤
0 P + PA0 + U2U

⊤
2 ≺ 0 (19)

with

U2 =
√
τ2


ε2√
2

�
2kPb+H⊤+ 1

ε2
√
2
C⊤

1


(20)

for some ε2 > 0. At this point, we have only shown
that feasibility of the LMIs in (6) and (7) is equivalent
to feasibility of the inequalities in (17) and (19). The
reason for taking this intermediate step is that (17) and
(19) now contain the Hurwitz matrix A0, which allows
directly for converting the inequalities into frequency-
domain conditions. In order to proceed, we apply Lemma 2
one more time to the inequalities in (17) (denoted by
I ′1 ≺ 0) and (19) (denoted by I ′2 ≺ 0). The difference
between I ′2 and I ′1 can be written as

I ′2 − I ′1 = U2U
⊤
2 − U1U

⊤
1 = uv⊤ + vu⊤

with

u =
1√
2
(U2 + U1) , and v =

1√
2
(U2 − U1) . (21)

By Lemma 2, feasibility of (17), (19) is then equivalent to
feasibility of the single inequality

A⊤
0 P + PA0 + U2U

⊤
2 + U3U

⊤
3 ≺ 0 (22)

with

U3 =


ε3√
2
u− 1

ε3
√
2
v


, (23)

for some ε3 > 0. Note that we can write U2U
⊤
2 +U3U

⊤
3 =

UΓU⊤ with U = [U1 U2], and

Γ =
1

4



2 + ε23 +

1

ε23
ε23 −

1

ε23

ε23 −
1

ε23
2 + ε23 +

1

ε23


 (24)

such that (22) can be written compactly as

A⊤
0 P + PA0 + UΓU⊤ ≺ 0. (25)

A simple calculation reveals that det (Γ) = 2+ε23+
1
ε23

> 0,

and thus the matrix Γ is non-singular, and, therefore,
invertible. Applying Schur’s Lemma to (25) yields

A⊤
0 P + PA0

√
2PY√

2Y ⊤P 0


+Q ≺ 0, (26)

in which Y =

kε1b kε2

√
τb

, and where

Q =




0
1√
2
F

1√
2
F⊤ −Γ−1


 , F⊤ =




ε1H − 1

ε1
C1

√
τε2H +

√
τ

ε2
C1


 .

From the KYP lemma (Rantzer., 1996, Theorem 1), and
the fact that A0 is Hurwitz, (26) is equivalent to

(jωI −A0)
−1Y

I

∗
Q


(jωI −A0)

−1Y
I


≺ 0 (27)

for all ω ∈ R ∪ {∞}, which evaluates to

2Γ−1 − (W (jω)M +MW ∗(jω)) ≻ 0, (28)

with W (jω)M = F⊤(jωI −A0)
−1Y ∈ C2×2. Note that

Γ−1 =


1 γ
γ 1


with γ =

1− ε23
1 + ε23

. (29)

and clearly γ ∈ (−1, 1). Hence, in summary, feasibility of
(28) is equivalent to feasibility of (26), which, in turn, is
equivalent to feasibility of (6), (7).

4. VERIFYING THE CONDITIONS

At this point, verifying the frequency-domain inequality in
(13) may appear a cumbersome task due to the nonlinear
combination of the stability parameters τ, ε1, ε2, and γ. Of
course, one can make some simplifying assumptions. For
example, setting ε1 = ε2 = 1 could lead to more tangible
conditions, but at the cost of loosing necessity. To avoid
this, in this section we will propose a sequential procedure
for finding the parameters τ, ε1, ε2, γ (if they exist). We
will illustrate the use of each step in the procedure through
a numerical example, in which the plant is given by

G(s) =
1

s2 + 0.25s+ 8
, (30)

and the SPAN filter is described by

F1(s) =
2

s+ 0.7
, F2(s) = 1, and ϵ = 10−6. (31)

This SPAN filter has similar characteristics as a (weak)
integrator (or low-pass filter) but aims at reducing the
phase lag that is normally induced by its LTI counterpart.

Before presenting the steps in the procedure, however, we
first dissect the frequency-domain condition in (13) into
several more tangible sub-conditions.

4.1 Dissecting the conditions

For verifying the frequency-domain conditions in Theo-
rem 2 we essentially need to verify both stability of the
matrix A0, and positive definiteness of the 2×2 Hermitian
matrix 2Γ−1 − (W (jω)M +MW ∗(jω)). The latter can be
done by verifying if the diagonal elements and determinant
of this matrix are strictly positive. This results in the
following necessary and sufficient conditions to be satisfied:

(1) The existence of τ ≥ 0 such that the matrix A0 =
A2 + 2 τ

1+τ bC1 is Hurwitz;

(2) The existence of τ ≥ 0 and ε1 > 0 such that

M1 :=
1

k
−Re

{
(ε21H − C1)(jωI −A0)

−1b
}
> 0 (32)

is satisfied;
(3) The existence of τ ≥ 0 and ε2 > 0 such that

M2 :=
1

τk
− Re

{
(ε22H + C1)(jωI −A0)

−1b
}
> 0

(33)
is satisfied;

(4) The existence of τ ≥ 0, ε1 > 0, ε2 > 0, and γ ∈ (−1, 1)
such that

M1M2 − (γ −
√
τε1ε2Λ1)

2 −
(√

τε1ε2Λ2

)2
> 0, (34)

with

Λ1 = Re

{(
H +

(
1

ε22
− 1

ε21

)
C1

)
(jωI −A0)

−1b

}
,

Λ2 = Im

{(
1

ε22
+

1

ε21

)
C1(jωI −A0)

−1b

}
,

is satisfied.

The second and third item correspond to the diagonal
entries of the matrix 2Γ−1−(WM+MW ∗) being positive;
the fourth item shows its determinant to be positive.

We make the following essential observation. The above
items sequentially depend on the stability parameters, i.e.,
the first item only requires the value of τ , the second
item requires τ and ε1 and so on. This aspect allows for
formulating a sequential procedure.

4.2 Sequential procedure

The proposed sequential procedure consists of three steps.

Step 1. In the first step, the parameter τ ≥ 0 is searched
for that renders the matrix A0 = A2 − 2kbC1 with
k = τ/(1 + τ) Hurwitz. Note that this test essentially
requires the feedback interconnection of the LTI system
L(jω) = 2C1(jωI − A2)

−1b and a negative feedback gain
k to be stable. This can be verified graphically by means
of the well-known Nyquist stability test. The admissible
range for k, and thus for τ is limited by the gain-margin
of the system L. For the example in (30), (31) we need to
check stability through the loop characteristics 1

L(jω) =
2P (jω)F1(jω)

(1− F1(jω)P (jω))
.

The Nyquist plot of L is shown in Fig. 3, and demonstrates
that the admissible feedback gain is given by k ∈ (0, 1.042).

1 Stability of L itself can be verified via a Nyquist plot of L̃(jω) =
P (jω)F1(jω). Note that P and F1 both are stable as well.

-1 0

0

Fig. 3. Nyquist test for finding k = τ/(1 + τ).

0

0

Fig. 4. Popov-like test for finding ε1, and ε2.

Step 2. Select an admissible value for τ as obtained in
Step 1. For the example, we pick k = 0.5, which yields
τ = 1. Next, the parameters ε1 > 0 and ε2 > 0 that satisfy
(32) and (33) are searched for. This can be done graphi-
cally as follows. Define X(jω) := Re

{
C1(jωI −A0)

−1b
}

and Y (jω) := Re
{
H(jωI −A0)

−1b
}
. Then, the inequality

in (32) is satisfied if the Nyquist plot of G := X + iY
remains to the right of a straight line that passes through
the point (−1/k, 0) and has a slope of 1/ε21. This graphical
test somewhat resembles the classical Popov-plot (Khalil,
2002, Section 7.1), and provides an admissible range for
ε1. The inequality in (33) can be verified in a similar
manner. That is, the Nyquist plot of G must remain to
the left of a straight line that passes through the point
(1/(τk), 0) and has a slope of −1/ε22, thereby providing an
admissible range for the values of ε2. Note that the Nyquist
plot of G should thus remain within the cone spanned
by the aforementioned straight lines. For the example in
(30), (31) we find X(jω) = Re {F1(jω)P (jω)S(jω)}, and
Y (jω) = Re {(1 + ϵF1(jω))P (jω)S(jω)}, where

S(jω) =
1

1 + kL(jω)
.

An illustration of this Popov-like test is shown for the
example in (30), (31) in Fig. 4 with ε1 = 1, and ε2 = 1.3.
Note that we allow a deliberate margin for the purpose of
satisfying the remaining conditions.

Step 3. Fix the values for τ, ε1, ε2 as obtained in the
previous steps. Recall that for the running example we
have τ = 1, ε1 = 1, and ε2 = 1.3. Next, the parameter
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0

0

Fig. 5. Conic test for finding γ.

γ ∈ (−1, 1) is searched for that satisfies (34). First
note that for (34) to be satisfied it is necessary that
M1M2−(

√
τε1ε2Λ2)

2 > 0. If this condition is not satisfied
for the chosen values of τ, ε1, ε2, then one should start
with different values. Otherwise, define x := −

√
τε1ε2Λ1

and y :=
√

M1M2 − (
√
τε1ε2Λ2)2 such that (34) can be

written more compactly as

y2 − (γ − x)2 > 0. (35)

The equation y2−(γ−x)2 = 0 partitions the (x, y)-plane in
four regions, spanned by the vectors ±[1,−1] and ±[1, 1].
In x-direction, these regions are shifted by γ. Hence, if
one can find a γ ∈ (−1, 1) such that the Nyquist plot of
g := x+ iy remains above (note that y = Im {g} > 0) the
conic region spanned by the vectors [1, 1], [1,−1] with the
apex located at the point (γ, 0), then (34) is satisfied. For
the running example, we find

M1 =
1

k
− ε21Re {(1 + ϵF1)PS}+Re {F1PS} ,

M2 =
1

τk
− ε22Re {(1 + ϵF1)PS} − Re {F1PS} ,

Λ1 = Re {(1 + ϵF1)PS}+
(

1

ε21
− 1

ε22

)
Re {F1PS} ,

Λ2 =

(
1

ε21
+

1

ε22

)
Im {F1PS} ,

where for brevity dependence on jω is omitted. The
“conic” test is depicted in Fig. 5, and is satisfied for
γ = 0.9. Since the last test is verified, we can conclude
that the SPAN-controlled system (30), (31) is ISS.

5. CONCLUSIONS

In this paper, we have derived frequency-domain condi-
tions for ISS of SPAN-controlled systems. Different from
LMI-based tools, frequency-domain tools offer the use of
non-parametric models. Moreover, such conditions easily
allow for robustness measures against (un)structured plant
uncertainty and can also be integrated in software solu-
tions that are available for LTI control tuning. All these
aspects are considered to be advantageous from an indus-
trial perspective. Moreover, such conditions can be veri-
fied by graphical tests. In deriving the frequency-domain
conditions, we started with sufficient LMI-based condi-
tions for ISS. Use is made of the result in Kamenetskiy
(1983) as well as KYP lemma by which the equivalence
between these LMIs and a frequency-domain condition is

shown, through a well-chosen intermediate step. We hope
to further bring Kamenetskiy (1983) to the attention of the
control community, as we believe it to be a valuable asset
in developing practically useful tools for stability analysis
of nonlinear/hybrid systems using frequency-domain tech-
niques as a basis.
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