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1.1

GENERAL INTRODUCTION

ADVERSE DRUG EVENTS
One of the primary responsibilities of physicians, pharmacists, and other healthcare 

professionals is to prevent harm to a patient: Primum non nocere.2 However, numerous 

studies have demonstrated that healthcare professionals are still unsuccessful in doing so.3,4 

Adverse events (AEs) are among the ten leading causes of death and disability worldwide.5 

They are defined as “any untoward medical occurrence in a patient or clinical investigation 

subject administered a pharmaceutical product and which does not necessarily have a 

causal relationship with this treatment.” In high-income countries, one in ten patients is 

harmed while hospitalized,6 and nearly half of these occurrences are preventable.7 Numbers 

are higher in low and middle-income countries,4,8 resulting in 2.6 million deaths annually.4 

Adverse drug events (ADEs) are estimated to account for 19% of all adverse events.9

FIGURE 1. Venn diagram illustrating the relationships between adverse events (circle with dotted line), 
medication errors (circle with dotted and dashed line), adverse drug events (circle with dashed line) and 
adverse drug reactions (circle with continuous line). Adopted and redacted from Morimoto et al., 2004.1

 
ADVERSE DRUG EVENTS
An ADE (dotted and striped circle with dashed line in figure 1) is any injury occurring during 

the use of a drug. It can be the result of a pharmacological or immunological adverse drug 

reaction (ADR) (intrinsic harm) (vertically striped circle segment, figure 1), unassociated with 

the use of the drug (dotted section, figure 1), or associated with a medication error (extrinsic 

harm) (horizontally striped circle segment, figure 1).1 Medication errors can occur at any 

stage of the medication use process, from therapy choice until monitoring of therapy.10 

Approximately 50% of ADEs are believed to be preventable10 (preventable ADEs), and for 
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a larger percentage, the risk or severity of harm could have been reduced (ameliorable 

ADEs).11 Figure 1 illustrates the relationship between the different terms. Dutch numbers 

are comparable to those in US, UK, and European studies.12 Implementing electronic health 

records (EHRs) integrating computerized physician order entry (CPOE) and clinical decision 

support (CDS) systems is considered one of the key interventions to lower the number of 

ADEs associated with medication errors.13,14

CLINICAL DECISION SUPPORT SYSTEMS
Since the report “To Err is Human” was released, billions have been spent implementing 

EHRs, often with integrated CPOE and basic CDS systems.15 Despite these efforts, 

however, high rates of ADEs persist.16,17 Many types of medication errors disappeared with 

the implementation of CPOEs with integrated CDS systems. However, introducing these 

systems also presented new types of medication errors.18,19 Although the number of 

medication errors and potential ADEs has decreased since implementing CPOEs, including 

basic CDS systems,20 the effect on actual ADEs has been variable.21 Therefore, CDS 

systems should be implemented10,13,17, and existing CDS systems should be considerably  

improved22,23 to solve this ongoing problem.

CDS systems can help alert healthcare professionals to potential ADEs. However, 

implementing such systems has led to alert fatigue, which causes critical alerts to be 

overridden along with insignificant events, impairing patient safety.24 CPOE override rates for 

hospitalized patients are high, ranging from 49–96% of cases.24-26 Pharmacist override rates 

are similar and equally alarming.27-30 It is important to note that the studied override rates 

are for traditional or basic medication-related CDS systems, which include checks for drug–

drug interactions (DDIs), duplicate therapy, drug doses, and drug allergies.31 DDI alerts are 

among the most frequently overridden26,32, with limited options to turn off some frequently 

generated alerts.33,34 Several medication-related CDS systems that consider individual 

patient characteristics, sometimes called advanced CDS systems, still perform poorly with 

positive predictive values (PPVs) below 20%.27 With overrides this high in basic and advanced 

CDS systems, it is easy to overlook the critical alert that could have prevented an ADE. Fewer 

alerts are required to prevent ADEs using current knowledge presented in the alerts.

The most significant reason for the high override rates is a lack of contextualization in 

CDS systems, both in prioritizing35,36 an alert and the information provided by the alert.37,38 

In computer science, context refers to the idea that a system is capable of sensing and 

reacting based on its environment. The definition of context provided by Dey is widely cited: 

“Context is any information that can be used to characterize the situation of an entity. An 

entity is a person, place, or object considered relevant to the interaction between a user and 

an application, including the user and applications themselves.” Based on this definition, 

a CDS system providing context attempts to make assumptions about the current 

situation’s relevance, depending on the user’s task.39 Ignoring the patient context can lead 
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to unimportant, frustrating alerts, causing alert fatigue. However, overlooking the context 

of the healthcare professional’s task leads to alert-workflow mismatches,24,40 also causing 

alert fatigue. Although the work of clinical pharmacists is less subject to alert-workflow 

mismatches than that of intensive care physicians or surgeons, alert-workflow mismatches 

are a major cause of frustration and alert fatigue.28

If a healthcare professional is expected to act on an alert, the CDS system must be 

aware of the context to provide the right alert to the right healthcare professional at the 

right moment. Structured development and validation are essential to ensure adequate 

context is incorporated into the rules used in CDS systems. Two key components of good 

development strategies are (1) using a multidisciplinary expert panel41 and (2) offline test 

and revision cycles.42 Validation should focus on showing alerts only when necessary and, 

when shown, providing detailed advice.42-45

Although many potential ADEs trigger alerts, many more situations do not trigger CDS 

alerts.15 A (potential) ADE is initially detected using a trigger. The start of each clinical rule 

has a trigger, which is one of the key functional dimensions of CDS systems. The most 

often used trigger in medication-related CDS systems is “medication order entered.”46 

While critical and at the core of basic medication-related CDS systems, it is also res

trictive, failing to consider all steps in the medication use process. For example, while 

ordering inappropriate medication to administer enterally can generate an alert in some 

CDS systems, registering an enteral feeding tube or nil per os (NPO) instruction does not 

trigger the system to check if prescribed oral medication is suitable to be given enterally or 

must be switched to intravenous administration. The same is true for actual ADEs; e.g., a 

patient with arrhythmia due to drug-induced hypokalemia does not trigger an alert to begin 

potassium supplementation, ameliorating the ADE.47 Using triggers other than “medication 

order entered” is necessary to close the gap between preventable ADEs and appropriate 

alerts to preclude them.22

If triggers other than medication orders are necessary to close the gap, it is essential 

that the CDS systems have access to additional information. If information is not available 

in a structured form it should be converted or translated into structured data. Furthermore, 

if structured data is available, it must be possible to exchange this data between systems 

and institutions in a structured way.48 One of the most notorious illustrations of inadequately 

structured information capture and exchange is the appearance of preventable repeat ADEs. 

A preventable repeat ADE is unintentional re-exposure to a drug known to harm a patient 

(e.g., a patient is administered a drug although known to be allergic to it).49 Although such 

incidents can seem exceptional and concerning, they are common; the prevalence of repeat 

ADEs is as high as 30%.48,50,51 If the first ADE is not registered correctly in the EHR or CPOE, 

the CDS system cannot generate an alert during represcription or administration. Since 

100% correct ADE registration and exchange is an illusion, it is crucial to develop systems to 

recognize previous ADEs in EHR records and free text and generate alerts to prevent them.
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THESIS OBJECTIVE

The objective of this thesis is to investigate whether incorporating context into clinical 

decision support systems can help improve the detection and prevention of adverse drug 

events.

THESIS OUTLINE

This thesis begins with a literature review of different CDS systems and their uses 

(Chapter 1.2). Chapter 2.1 investigates whether adding context to basic CDS systems can 

improve alerting quality for the most frequently overwritten medication alerts: drug–drug 

interactions. Chapter 2.2 investigates whether the context of free text (unstructured data) 

can help detect ADEs and prevent repeat ADEs. Chapter 3.1 focuses on adding context to 

medication-related CDS based on whether a patient has an enteral feeding tube, helping to 

choose the appropriate medication or medication management and potentially preventing 

feeding tube-related medication errors. Chapter 3.2 examines whether medication orders 

can serve as context to alert physicians to one of the most frequent and mortal electrolyte 

disturbances in hospitalized patients: hypokalemia.
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1.2CLINICAL DECISION SUPPORT SYSTEMS

WHAT IS A CLINICAL DECISION SUPPORT SYSTEM?
Clinical decision support includes a variety of tools and interventions computerized as well 

as non- computerized. Non-computerized tools include clinical guidelines or digital clinical 

decision support resources like ClinicalKey® or UpToDate®.1,2 Such clinical decision support 

(CDS) systems are characterized as tools for information management. Another category of 

CDS systems sometimes also called basic or simple CDS systems are tools to help focus 

attention. Examples of such CDS systems include laboratory information systems (LISs) 

highlighting critical care values or pharmacy information systems (PISs) presenting an alert 

ordering a new drug and proposing a possible drug-drug interaction.3,4 Most focus in the 

past few decades however has gone to tools to provide patient-specific recommendations 

frequently called advanced CDS or contextualized CDS. Advanced CDS may include, for 

example, checking drug disease interactions, individualized dosing support during renal 

impairment, or recommendations on laboratory testing during drug use.

WHY CLINICAL DECISION SUPPORT SYSTEMS?
The quantity and quality of clinical data are rapidly expanding, including electronic health 

records (EHRs), disease registries, patient surveys and information exchanges. Big data and 

digitalization however, does not automatically mean better patient care. Several studies 

have shown that only implementing an EHR and computerized physician order entry 

(CPOE) has rapidly decreased certain errors, introducing however many more.5-7 Therefore, 

high-quality clinical decision support is essential if healthcare organizations are to achieve 

the full benefits of electronic health records and CPOE. In the current healthcare setting 

when facing a decision, healthcare providers often do not know that certain patient data 

are available in the EHR, do not always know how to access the data, do not have the time 

to search for the data or are not fully informed on the most current medical insights. It is 

said the healthcare providers often drown in the midst of plenty.8-10 

Moreover, decisions by healthcare professionals are often made during direct patient 

contact, ward rounds or multidisciplinary meetings. This means that many decisions are 

made in a matter of seconds or minutes. Making the decision dependent on the healthcare 

provider having all patient parameters and medical knowledge readily available at that time 

of the decision. Consequently, current decisions are still strongly determined by experience 

and knowledge of the professional. Also, subtle changes in a patients’ condition taking 

place before hospital- or ward admission are often overlooked because clinicians regularly 

perceive a patient in his current state without taking into account changes within normal 

range. A computer however, takes into account all data available making it also possible to 

notice changes outside the scope of the professional and notices changes specific for a 

certain patient, within normal limits.
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TYPES OF CLINICAL DECISION SUPPORT SYSTEMS
To understand literature on the topic of CDS systems and familiarize oneself on the subject 

it is important to categorize the vast array of CDS systems. Categorization of CDS systems is 

often based on the following characteristics: system function, model for giving advice, style 

of communication, underlying decision making process and human computer interaction 

which are briefly explained below.11

The characteristic ‘System function’ distinguishes two types of functions. Systems 

determining: what is true?: These include purely diagnostic CDS systems like many popular 

differential diagnosis websites like Diagnosaurus® or WebMD®.12,13 These CDS systems base 

their advice on a fixed set of data that is user inputted or readily available. The other type 

of CDS systems determine: what to do?, advising which test to order purposing further 

differential diagnosis or which drug to prescribe for the patients’ current condition. However, 

this distinction is of limited value as most current integrated CDS systems almost always 

do both: first determine what is true about a patient and then suggest what to do.

Another characteristic of CDS systems are the way the give advice, being passive or 

active. Passive CDS systems require the user to do something to receive advice, for example 

clicking a button or opening a tab. These passive types however, have been abandoned for 

most part because of their lack of efficacy and dependence of human involvement.14,15 A 

challenge of active systems is to avoid the generation of excessive amount of alerts, causing 

alert fatigue with the user. This topic is discussed further on in the paragraph on alert fatigue. 

A closely related characteristic commonly used to categorize CDS systems is the style of 

communication, distinguishing a consulting and critiquing model. In a consulting model 

the system is an advisor, asking questions and proposes subsequent actions. For example, 

when entering a medication order, the computer asks for the diagnosis and advises the 

right dose or an alternative treatment. A critiquing system lets the user decide the right 

dose for itself and only afterwards alerts the user that the dose prescribed for this therapy 

is too low.

Human computer interaction is another clinical decision support system characteristic. 

How does a user interact with the computer? Historically CDS systems were slow, difficult 

to access and difficult to use. However, modern day computing power, electronic health 

record integration and computer mobility have made these problems of the past. However, 

human computer interaction is still a good way to categorize CDS systems describing EHR 

integration or overlay, keyboard or voice recognition and advice by means of pop-ups, 

acoustic alarms or messaging systems. 

The last commonly used characterization of CDS systems, and perhaps the most 

interesting, is the underlying decision-making process or model. The simplest models are 

problem-specific flowcharts encoded for computerized use, these are discussed further 

on. With the availability of additional statistical models, mathematical techniques and 

increasing computing power, much more complex models have been researched and used 
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since, like Bayesian models16,17, artificial neural networks18, support vector machines19 and 

artificial intelligence20. Many of these systems are used to improve prediction of outcome, 

prioritize treatment or help choosing the best course of action. Use of such systems in 

practice however is delayed mainly because of trust issues towards ‘black box’ systems. If 

a computer tells you to start drug A for a patient based solely on a mathematical model, 

without a guideline to back it up, are you convinced to do it? Linked to the major trust 

issue towards ‘black box’ systems is the current model of evidence based medicine and 

concurrent guidelines based on these studies. Are you willing to ignore an international 

guideline saying you should start a patient on drug A only because your CDS system says 

you should start the patient on drug B? 

Decision tree models are the oldest but still most used models in clinical practice today. 

CDS systems using such models use a tree-like model of decisions consisting of multiple 

steps of ‘if then else’ logic. Figure 2 shows an example of such a decision tree model. These 

models have the advantage of being interpretable by humans and follow logical steps 

based on conventional clinical practice guidelines. Such decision tree models are also 

called clinical rules (CRs), computer-interpretable guidelines (CIGs) or decision support 

algorithms.15 Instead of predicting outcome or best therapy, a CDS system only automatizes 

information gathering and provides advice in accordance with a guideline.

FIGURE 2. Part of the clinical rule gastric protection, represented in GLIF, created in CDS system Gaston 
Pharma®. Picture adopted from Scheepers et al. 200914
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MEDICATION RELATED CLINICAL DECISION SUPPORT SYSTEMS
From a historical point of view, medication related CDS system seem to go the farthest 

back and are likely to have the largest potential for benefit.21 They date back as long as 

the 1960s.22 They supported pharmacists with drug allergy checking, dose guidance, drug-

drug interaction checking and duplicate therapy checking. Medication related CDS system 

took further shape when directly linked to computerized physician order entry (CPOE).23 

CPOE being the system that enabled physicians to prescribe medication using electronic 

entry. The combination of CPOE and CDS system helped physicians choose the right drug 

in the right dose and alert the physician during prescribing if for example the patient is 

allergic. Combining CPOE with basic medication related CDS system meant a giant leap in 

safer medication prescribing.24,25 However, all of the checks mentioned above follow simple 

‘if then else’ logic and do not combine multiple patient characteristics when producing 

alerts. This addition came with the introduction of contextualized medication related CDS 

systems. In older literature there are also references to the use of advanced CDS systems, 

referring to contextualized CDS systems using one specific contextual modulator being for 

example renal insufficiency.

Complexity of contextualized medication related CDS systems can vary widely from 

only including one contextual modulator such as renal function to including dozens of 

modulators such as multiple medication dependent modulators(dose, co-medication, 

chronology, lag-time etc.), multiple patient characteristics and multiple dynamic patient 

parameters (vital signs, lab results etc.). Such contextualized CDS systems follow and 

combine multiple decision tree based models and can assist the physician in dosing 

medication for patients with renal insufficiency and drug disease interactions for example, 

provide guidance for medication-related laboratory testing and perform drug–disease 

contraindication checking.23,26 Contextual modulators incorporated into medication related 

CDS systems rose steadily in the past few decades including pharmacogenetics and more 

and more drug disease interactions. 

Many current EHRs with integrated CDS system however, still fail to provide guidance 

relevant to the specific patient receiving care, poorly presenting data and causing alert 

fatigue to health care providers.27 One of the main issues with these systems is that they 

combine only one or two contextual modulators to provide alerts, thereby only increasing 

the number of alerts. For example, prescribing nortriptyline to a patient with hepatorenal 

syndrome and being an intermediate metabolizer of CYP2D6 will generate a total of three 

alerts with three different advices. An advice on how to dose nortriptyline in a patient 

with renal insufficiency, another alert with an advice how to dose nortriptyline in patients 

with liver failure and last but not least an advice how to start treatment in a patient 

being an CYP2D6 intermediate metabolizer. So which advice should we follow? Therefore, 

effort should be made into combining multiple contextual modulators and clinical rules 

to provide one correct advice to the healthcare provider. Designs should incorporate the 
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engagement of all clinicians involved in the delivery of health care and combine multiple 

patient characteristics and context simultaneously, to ensure that CDS system are actually 

helpful to clinicians, rather than interrupt health care delivery.

CHALLENGES IMPLEMENTING CDS SYSTEMS

CDS systems are an evolving technology with potential for wide applicability, to indivi

dualize and improve patient outcome and health care resource utilization.24,28 However, to 

make CDS system more helpful it requires thoughtful design, implementation and critical 

evaluation.29

As mentioned earlier the promise of CDS systems has been around since the 1960s. In 

2008, Simon et al. still found that the vast majority of EHRs across the U.S.A. implemented 

little or any decision support.30 A recent survey send out to all Dutch hospital pharmacies 

showed similar disappointing results, only 48% of them using some kind of contextualized 

CDS system.31

Such alarming results were one of the main reasons the American Medical Informatics 

Association (AMIA) published the Roadmap for National Action on Clinical Decision Support. 

The paper acknowledged six strategic objectives, divided into three main pillars, for 

achieving widespread adoption of effective clinical decision support system capabilities.32 

The three main pillars being: 1. High Adoption and Effective Use. 2. Best Knowledge Available 

When Needed. 3. Continuous Improvement of Knowledge and CDS system Methods.32 In 

the following paragraphs these three pillars will be highlighted to give an overview of tasks 

and challenges that lay ahead. 

HIGH ADOPTION AND EFFECTIVE USE
To ensure high adoption and effective use, it is important to fine-tune the CDS system in 

order to suit end-users wishes. Only then alert fatigue can be minimized. 

Alert fatigue
Alert fatigue is the concept of poor signal to noise ratio caused by CDS system with an 

active alerting mechanism. Alert fatigue is defined as the “Mental fatigue experienced by 

health care providers who encounter numerous alerts and reminders from the use of CDS 

system.”33 Alert fatigue causes physicians to override 49-96% of the current medication 

safety alerts from basic CDS system as well as advanced medication related CDS system. 

The main reasons for overriding alerts are: low specificity, unnecessary workflow disruption 

and unclear information.34,35 Many of these aspects are caused by lack of user- and patient 

context. More on the subject of context can be read in the paragraph on context factors, 

later on. 
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Because CDS systems are offering more and more options characterization of the 

CDS system itself is not enough. Characterization of the clinical rules used by decision tree 

CDS systems is also key to understand the background of alert fatigue. In the upcoming 

paragraphs the taxonomy of clinical rules is explained using two fundamental concepts, 

being triggers and contextual factors. 

Triggers
In an effort to characterize clinical rules, Wright et al. used four functional categories: 

triggers, input data, interventions and offered choices. Triggers were identified as one of 

the key functional dimensions of CDS system and are the start of each clinical rule. Wright 

and colleagues reviewed and analyzed their own extensive rule repository, using these four 

functional dimensions to identify and quantify the use of different taxonomic groups. They 

identified nine different triggers. However, by far the trigger most often used is the ‘order 

entered’ trigger, accounting for 94% of all the studied clinical rules and 38% of all clinical 

rule types. Combined with the knowledge that a patients’ drug list is also the most used 

‘input data element’ in all of the studied rules, medication orders (MOs) and drug lists seem 

to play a key role in CDS system currently used.36,37 

Contextual modulators
‘Context’, in computer science, refers to the idea that a system, in our case a clinical decision 

support system, is both capable of sensing and reacting, based on its environment. An 

often provided definition of the term ‘context’ is the one set by Dey, being: “Context is 

any information that can be used to characterize the situation of an entity. An entity is a 

person, place, or object that is considered relevant to the interaction between a user and an 

application, including the user and applications themselves”. Using this definition a system 

providing ‘context’ also tries to make assumptions about the current situation in relevance, 

dependent on the user’s task or patient’s-status.38

Riedmann et al. performed a review of literature and subsequently performed an 

international Delphi study to identify the most important context modulators to medication 

related CDS system.39,40 The most important context factors found were ‘severity of the 

effect’, ‘clinical status of the patient’, ‘complexity of the case’ and ‘risk factors of the patient’. 

All of these context factors are gained from input data elements such as diagnosis, prior 

disease history, laboratory results and hospital unit.36

Another study group of Berlin et al. found that the most targeted clinical tasks of 

clinicians were associated with drug dosing (46%) and drug treatment (22%).41,42 These 

findings are in agreement with the study of Wright et al. although using a completely 

different taxonomy.41

When combining the results from the studies performed by Wright et al. and Berlin 

et al., the most CDS system targeted clinical tasks were ‘start of treatment’ and ‘dose 
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adjustment’. As stated earlier, medication ordering was the most frequently used trigger to 

a clinical rule and a patient’s drug list was the utmost used and most easily available input 

element. Therefore, providing the right context to medication orders using the drug list 

should be an important priority. Context factors like ‘severity of the effect’, ‘clinical status of 

the patient’, ‘complexity of the case’ and ‘risk factors of the patient’ found by Riedmann et 

al. are logical context factors from a physician’s point of view. However, adding such context 

only adds value when trigger related contexts like ‘start of treatment’ and ‘dose adjustment’ 

are also included. Moreover, data input like those described by Riedmann et al. is not always 

distinct and readily available in the EHR.36,39,41 

In our own experience, gained in the Netherlands, integrated medication related CDS 

system are still unable to correctly interpret the simple contextual modulators of medi

cation orders. During development and validation of clinical rules, basic contexts like start 

of new treatment or dose adjustment proved to be elusive and are a frequent cause of 

suboptimal positive predictive value (PPV) and sometimes suboptimal negative predictive 

value (NPV). Experts also frequently disagree upon the definitions and clinical relevance of 

these contextual modulators.43,44 Is a medication order a dose adjustment or start of new 

treatment? An example is a digoxin order. If the clinical task would be starting a patient on 

digoxin therapy, the CDS system should advice the prescriber on ordering serum potassium 

levels, perform therapeutic drug monitoring and review new drug-drug interactions. 

However, entering the same digoxin order to change drug administration time or change 

drug form, the above monitoring is not applicable. Providing the physician or pharmacist 

with notifications during this process would cause frustration and alert fatigue.45

BEST KNOWLEDGE AVAILABLE WHEN NEEDED
The second pillar in the Roadmap provided by the AMIA is best knowledge available when 

needed. The pillar contains three key challenges:

-	 When needed: Integration in clinical workflow 

-	 Knowledge is available: so it has to be written, stored and transmitted in a format that 

makes it easy to build and deploy CDS system interventions

-	 Best knowledge: Only CDS system which provides current and additional information 

has potential

When needed: Integration in clinical workflow 
A key success factor of CDS system is that they are integrated into the clinical workflow. CDS 

system not integrated into clinical workflow will have no beneficial effect and will not be 

used.46 Messages should be presented at the moment of decision-making, though with as 

less disturbance for the physician as possible. Therefore, different alert mechanisms (pop-

up, automatic lab order, prescription order, emails, etc.) should be developed, suitable for 

different alerting priorities.47 Understanding how to prompt physicians successfully at the 
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point of care is a complex problem, and requires consideration of technological, clinical, and 

socio-technical issues. As mentioned earlier, interruptive (active) alerts show significantly 

higher effectiveness than non-interruptive (passive) reminders.48 Additionally, a greater 

positive impact was observed when recommendations prompted an action and could not 

be ignored.49 Thoroughly understanding the clinical workflow and users’ wishes strongly 

increases the probability for success.49 One of the more recent attempts to incorporate 

CDS system into clinical workflow was to incorporate CDS system advice into checklists 

often used in ward rounds.50 An example of such a particular system is Tracebook. This is a 

process-oriented and context-aware dynamic checklist, showing great promise and good 

user acceptability.51

Knowledge is available
One of the other major challenges of effective CDS system adaptation is keeping the 

clinical rules up to date.49 However, keeping these clinical rules up to date is a massive 

time and money-consuming task. Therefore, sharing clinical rules seems to be a sensible 

and financially attractive choice. One of the strategic objectives described in the roadmap 

was to create a way to easily distribute, share and incorporate clinical knowledge and CDS 

system interventions into own information systems and processes. With this concept 

clinical rules could be externally maintained, making a huge leap in efficacy of development 

and maintenance. A healthcare provider could then just subscribe to certain clinical rules. 

This should work in “such a way that healthcare organizations and practices can implement 

new state of the art clinical decision support interventions with little or no extra effort on their 

part”.32

Today many clinical rule repositories exist, however none of them are fully functioning. 

They rely on software vendors to rebuild them into their own CDS system modules. Progress 

on this objective has been especially problematic when attempting to make or share 

clinical rules outside an ecosystem of the software vendor.52 The progress being made using 

integrated EHR systems, also called second phase CDS system, is commendable however; 

it strictly limits sharing clinical rules outside of the EHR ecosystem. Newer standards-based 

systems, third phase and service model systems like the Arden syntax, GLIF, SAGE and 

SEBASTIAN solve many issues concerning sharing clinical rules.53,54 Although all very good 

initiatives, none of the architectures have really found use in clinical practice. 

One of the issues in sharing fully functioning clinical rules are the difference in clinical 

terms as well as language. Clinicians starting to program clinical rules should keep in mind 

using standardized terms to make exchange of their CDS system modules possible. Using 

standardized clinical health terminologies like SNOMED CT would resolve a lot of issues 

surrounding sharing CDS system content.55 

One of the other challenges however is to standardize definitions of context, as these 

are essential to minimize signal to noise ratio. To study the obstacles left to make sharing a 
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reality, an initiative was started to develop clinical rules which would work across different 

EHRs, CPOEs, PISs and institutions using the GASTON framework.56 The framework, derived 

from GLIF architecture, facilitates sharing guidelines and facilitates integration with 

institution specific medical knowledge sources and information systems such as EHRs 

and CPOEs without changing the clinical rules themselves. The most important lesson 

learned from this project was that despite consensus on the content of a clinical rule, local 

adaptation was always necessary to achieve sufficient specificity of the alerts. 

BEST KNOWLEDGE & CONTINUOUS IMPROVEMENT 
OF KNOWLEDGE AND CDS SYSTEM METHODS

To ensure the best knowledge and retain continuous improvement, validation and 

verification is indispensable. Much research has been done on the validation of clinical 

rules itself and focuses on clinical relevance of the recommendations produced by the CDS 

system. However, to assure correct clinical rules and recommendations we depend on data 

from the EHR and the correct functioning of the CDS system. The next few paragraphs will 

give an overview over the levels of validation and verification of CDS systems. 

CDS SYSTEMS VERIFICATION AND VALIDATION
Successful adaptation and functioning of clinical rules vastly depends on the CDS system 

used. Tendering, choosing or implementing a new CDS system requires a comprehensive 

user requirement specification (URS) or user requirement documentation (URD). A URS 

specifies what the users of the software expect the software to do. It is often seen as the 

contract between the user and the software supplier. Not explicitly or correctly stating 

user requirements for a software system is the major factor contributing to failed software 

implementations and massive budget overruns. Maybe not a very appealing job for 

clinicians, we cannot stress enough the importance of working together with IT personnel 

to write an all-encompassing URS. Adding or improving functionality afterwards is difficult 

and costly. 

It is important to test all functions of software products such as CDS system. 

Deepening the topic of software verification and validation requires a book on its own. 

However, to prevent running into issues during clinical rule development and use of the 

CDS system in practice it is key to perform software verification and validation using the 

URS and lower level specifications. Software validation and verification can be performed 

at many levels using many tools. If your hospital does not have IT personal qualified to plan 

and perform software verification and validation it is highly recommended to hire external 

help. Thorough verification and validation of the CDS system software can save expenses 

and spare frustration later on or even failure of implementation. 
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When using a CDS system we should keep in mind that a CDS system relies on high 

quality data to work. Assuring the correct collection of data and their quality is vital before 

starting to program the clinical rules themselves. A part of the requirements should therefore 

be a thorough description and testing of items to be used in the clinical rules. If you state: 

“the system must present the age of a patient” for example; the CDS system probably will 

present the age of the patient in years. Designing clinical rules using this parameter however 

for a neonatal care unit could be unwanted and unspecific. Testing if items used in clinical 

rules result in the expected answer requires clinical knowledge, often scares IT personnel. 

Clinicians eager to program clinical rules themselves are therefore encouraged to assist in 

this stage of CDS system validation. 

After the successful implementation of the CDS system itself we are ready to start 

building our own clinical rules. 

DEVELOPMENT AND VALIDATION STRATEGY
Key to preventing alert fatigue in active CDS system is structured development and 

validation of clinical rules. Much has been published on the validation of these clinical rules 

focusing on providing maximal clinical relevance of the recommendations outputted by the 

CDS system.47,57-59

Two key components of a good validation strategy described in most studies are: (1) 

the use of a multidisciplinary expert panel as well as (2) offline test and revision cycles.58 

A framework was published by McCoy et al., describing a potentially effective method for 

assessing clinical appropriateness of medication alerts. A key attribute of this framework is 

that it determines appropriateness at the time of a triggered alert and by applying expert 

knowledge.60 Weingart et al. examined a subset of all displayed alerts to determine alert 

validity and expert agreement with overrides, although no measures of unintended adverse 

consequences were reported.58 Sucher mentions factors that need to be tested, such 

as verification, validation and worst case testing, but these factors are not explained in 

detail.59 A practical validation approach is described by Osherhoff et al., using cases and 

testing scenarios to validate clinical rules.47 This method however has limited usefulness 

due to lack of a detailed description of the method and outcome. To prevent alert fatigue, 

CDS system implementers must monitor and identify situations that frequently trigger 

inappropriate alerts and take well-defined steps to improve alert appropriateness.60 Studies 

examining CDS system content validation often lack a complete and reproducible method 

that is demonstrably leading to appropriate alerts. 

Strategy for development and validation of clinical rules
Below we describe a four-step strategy to develop and implement clinical rules, which we 

ourselves use as part of development.57,61
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Step 1: Technical validation

The objective of this step is to determine whether a clinical rule functions as we expect 

it to do. Are the parameters in the CDS system linked correctly to the EHR and are we 

using technically valid definitions. Of course the first step starts by designing a clinical rule. 

Most often such a clinical rule is based on an evidence-based medicine (EBM) guideline. The 

EBM guideline is first translated into a computer-interpretable format with measurable and 

specific parameters. This regularly requires translating clinical terms used in guidelines to 

standardized clinical terms before use. For example, how to define diarrhea? Is it enough a 

patient has watery stool or should it also be more than three times a day? Such definitions 

are not solved using only standardized terms. After definitions are clear and build into the 

clinical rule the clinical rule is tested on a historical EMR database. Subsequently, results are 

analyzed to determine the amount of true positives (TPs) and true negatives (TNs). These 

results are discussed in a plenary meeting together with an expert team. Here possible 

improvements are identified, which could later on be implemented. When the objectives 

are met (positive predictive value (PPV) > 90% and negative predictive value (NPV) >95%), 

the second step of the development strategy is started. 

Step 2: Therapeutic retrospective validation

The second step is intended to check whether the alerts produced by the CDS system are 

clinically relevant, useful and actionable. This step of therapeutic validation is of greatest 

importance for user acceptance further on. Although alerts at this stage are technically 

valid and based on evidence-based guidelines, health care professionals may not always 

consider them useful or relevant. This step starts with a meeting between the building 

team and the expert team to discuss the therapeutic value of the alerts. The expert team 

should include experts on the subject at hand from different medical disciplines. Moreover, 

opinion leaders from the clinic should also be included. The expert team reviews all of the 

alerts generated and classifies them as being relevant or not. Differences between theory 

and practice are discussed and the expert team formulates modifications to the clinical 

rule. After modifications are implemented, the clinical rule is tested in the same manner 

as in step 1 using the same set of patients from historical EHR database. After this test, 

outcome is once again evaluated by the technical team and expert team together in order 

to maximize therapeutic PPV and NPV. 

Step 3: Pre-implementation prospective validation

The third step is used to prepare the CDS system and clinical rule for implementation in 

practice. The CDS system is linked to a real live EHR, allowing to generate alerts of actually 

admitted patients. Adaptations are made to assure timely alerting and integration into 

clinical workflow. The expert team is consulted once again however now focusing on the 

content of the message (e.g., proposal, command), the recipient of the message (e.g., nurse, 
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physician, pharmacist), the frequency (e.g., once daily, continuously) and the alerting method 

(e.g., on-demand, automatic). When the rule is refined on these issues, it once again returns 

to step 1 to proceed through the validation cycle. After completing step one and two again, 

the rule is implemented into operation and made accessible to a selected group of users to 

do the final validation. Based on user feedback some final minor technical adjustments are 

mostly directed to optimize user satisfaction. Frequently, the issues requiring adjustment 

are the result of only testing the clinical rule in a retrospective setting on a static database 

instead of prospective on a dynamic real live EHR database. Depending on the frequency of 

alerting, usually after two months, the results from the prospective testing are evaluated by 

the technical and expert team together to calculate the final positive predictive value. Now 

the clinical rule is ready for implementation in daily practice. 

Step 4: Post-implementation prospective validation

The fourth step, after implementation of the clinical rule in daily practice, is continuous 

maintenance. This step corresponds to the third pillar of effective CDS system imple

mentation suggested by Osherhof and colleagues in their Roadmap.32 In this step the 

clinical rule is monitored while operational. Monitoring consists on reviewing performance, 

follow-up and PPV. The step also encompasses technical and therapeutic maintenance 

to ensure continuous accuracy of the alerts. We found that every clinical rule needs 

adjustments after implementation in practice, which were not foreseen during the develop

ment phase (step 1-3). First, technical adjustments may be necessary due to updates or 

new functionalities in the CDS system or EHR. These technical adjustments are developed, 

validated and implemented by the technical team. When the changes also had therapeutic 

consequences, the expert team was consulted. Secondly, the content of the clinical rule 

should be updated regularly, due to changes in the underlying evidence-based medicine 

or end-users preferences. For example when a new version of the clinical guideline was 

available, clinical rules were checked and differences reviewed. This step finalizes the 

strategy, through continuously optimizing suitability of the rule in practice. 

Adaptation in practice
The adaptation of a CDS system in practice is a key component to success. The validation 

strategy described above especially benefits from including experts in all of its development 

cycles. These experts and opinion leaders help support the adaptation of clinical rules in 

practice and are the main success factor of this strategy.
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1.2FUTURE PERSPECTIVES

This chapter shows that clinical decision support systems can definitely support the use of 

clinical data science in daily clinical practice. However, adoption in practice remains a slow 

process and many are still reinventing the wheel instead of supporting national initiatives. 

Decision support systems today mainly use the ‘if then else’ logic. And even using this 

method, validation is already very time-consuming and complex. 

We are very curious to see combinations of systems using tree-based logic using 

current EBM guidelines and suggestions made using machine learning models or even deep 

learning models. It is a great and promising challenge to make healthcare really benefit more 

from big data, draw conclusions humans haven’t drawn themselves. However, validation, 

acceptance and adaptation of ‘black box’ systems will require a paradigm shift, challenging 

the basic principles of current day EBM practice. Nevertheless, believe in decision support 

keeps attracting health care professionals to work with these powerful and promising 

systems. 
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ABSTRACT

INTRODUCTION AND OBJECTIVE
Drug-drug interactions (DDIs) frequently trigger adverse drug events or reduced efficacy. 

Most DDI alerts, however, are overridden because of irrelevance for the specific patient. 

Basic DDI clinical decision support (CDS) systems offer limited possibilities for decreasing 

the number of irrelevant DDI alerts without missing relevant ones. Computerized decision 

tree rules were designed to context dependently suppress irrelevant DDI alerts. 

METHODS
A crossover study was performed to compare the clinical utility of contextualized and 

basic DDI management in hospitalized patients. First, a basic DDI-CDS system was used in 

clinical practice while contextualized DDI alerts were collected in the background. Next, this 

process was reversed. All medication orders (MOs) from hospitalized patients with at least 

one DDI alert were included. The following outcome measures were used to assess clinical 

utility: positive predictive value (PPV), negative predictive value (NPV), number of pharmacy 

interventions (PIs)/1,000 MOs and the median time spent on DDI management/1,000 MOs. 

RESULTS
During the basic DDI management phase 1,919 MO/day were included, triggering 220 

DDI alerts/1,000 MOs; showing 57 basic DDI alert/1,000 MOs to pharmacy staff; PPV 

was 2.8% with 1.6 PIs/1,000 MOs costing 37.2 min/1,000 MOs. No DDIs were missed by 

the contextualized CDS system (NPV 100%). During the contextualized DDI management 

phase 1,853 MO/day were included, triggering 244 basic DDI alerts/1,000 MOs, showing 

9.6 contextualized DDIs/1,000 MOs to pharmacy staff; PPV was 41.4% (p<0.01) with 4.0 

PIs/1,000 MOs (p<0.01) and 13.7 min/1,000 MOs.

CONCLUSION
The clinical utility of contextualized DDI management exceeds that of basic DDI manage

ment.
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INTRODUCTION

Drug-drug interactions (DDIs) frequently occur in hospitalized patients: 65-90% of these 

patients are exposed to one or more potential DDIs.1-3 Mismanagement of DDIs can lead to 

adverse drug events or reduce the efficacy of drugs involved.4 Healthcare providers cannot 

be expected to memorize the thousands of known DDIs and the management thereof5-7 

Clinical decision support (CDS) systems have been added to computerized physician order 

entry (CPOE) and pharmacy information systems to assist healthcare professionals in 

alerting and managing the risks of potentially harmful medication combinations. Such DDI-

CDS systems, also called basic medication-related CDS systems8, trigger alerts for the pair-

wise combination of the drugs involved. In practice, however, such DDI alerts are frequently 

overridden as most alerts are considered to be irrelevant for that specific patient.9-13 

Too many irrelevant alerts can lead to alert fatigue9,13-15, described as a ‘mental state 

being the result of too many irrelevant alerts consuming time and mental energy, which can 

cause important alerts to be ignored along with clinically unimportant ones’16. Basic DDI-

CDS systems have limited options for suppressing irrelevant DDI alerts; other than turning 

DDI alerts off for specific drug combinations. This approach has limited opportunities 

for improving specificity without compromising sensitivity.17-24 Recent studies concluded 

that CDS systems should have greater flexibility to customize DDI alerting especially by 

adding contextual modulation, also called specificity modulation.25-27 The term contextual 

modulation comes from neurobiology; being the change in the neurons responsiveness to a 

stimulus caused by context.28 In the setting of medication related CDS alerting, contextual 

modulation changes whether or not a triggered alert is displayed and how, based on context. 

Contextualized CDS systems, also known as advanced CDS systems, offer more 

possibilities for suppression of irrelevant alerts since these systems incorporate context. 

The most important forms of context are workflow context and clinical context which, 

can by using information available in the electronic health records (EHRs) prioritize alerts 

and/or suppress them.29-32 Improving the specificity of DDI alerts has been studied using 

different types of clinical contexts: admission wards or treating medical specialties33,34 (e.g. 

not showing QT prolongation DDI alerts for intensive care patients); patient parameters 

such as age, blood pressure and or laboratory results12,33,35-37 (e.g. not showing DDI alerts 

for potassium + potassium/sparing diuretics in patients with hypokalemia); only showing 

alerts above a specific dose (e.g. fluconazole > 100 mg + immunosuppressant) 38; and co-

administered drugs38,39. Clinical decision support systems using the workflow context can 

be programmed to better fit workflow and usability32,33,40,41, improve DDI alert triggering42 

and stop or reduce the repetition of already presented alerts33,43. Overall, these studies 

showed reductions of 50-92% of the DDI alert burden.33,35 

Most studies have focused on reducing the number of irrelevant DDI alerts in either  

using clinical or workflow contexts.22,23,39 Only two studies investigate the effects of  
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combining these two.33,35 Moreover, only two studies have explored the impact of such 

optimizations on the sensitivity or negative predictive value.17,18 Therefore, a set of 

computerized decision tree rules (algorithms) was designed to combine clinical and work

flow contexts to suppress irrelevant DDI alerts. These rules were programmed on top a of 

regular DDI knowledge base. The contextualized DDI-CDS management system utilizes 

different patient parameters, laboratory values, drug doses and previous evaluations to 

contextualize and assess triggered DDI alerts. This study aimed to compare the clinical 

utility of contextualized DDI management to that of basic DDI management in hospitalized 

patients.

METHODS

STUDY DESIGN
A single-center prospective crossover study was performed to compare basic DDI-CDS 

management to contextualized DDI-CDS management in a clinical pharmacy setting. The 

first phase was the basic DDI phase, the second phase being the contextualized DDI phase. 

The basic DDI phase included basic DDI alerts used in clinical practice, while contextualized 

DDI alerts were gathered in the background, referred to as background data collection. In 

the contextualized DDI phase, this process was reversed. The basic DDI management phase 

lasted from the 10th of August 2020 to the 13th of September 2020 (35 days), followed 

directly by the contextualized DDI management phase from the 14th of September 2020 

to the 2nd of November 2020 (50 days); this last phase was longer to perform an adequate 

number of time measurements of the pharmacy interventions. Prescribers were not 

informed about the change in the clinical pharmacy DDI management process. The study 

was declared not subject to Research Involving Human Subjects Act (non-WMO) by the 

ethics committee of the Catharina Hospital.

STUDY SETTING
The study was performed in the clinical pharmacy at the Catharina Hospital Eindhoven, a 

700-bed teaching hospital in the Netherlands. The hospital used HiX® (version 6.1 HF105 

and HF108, Chipsoft BV, Amsterdam) as its electronic health record (EHR) system. All 

relevant medical data are ordered and stored in this system, including CPOE for inpatient 

and outpatient settings. Smart CPOE ordering, which uses predefined orders and order 

sets, prevents the occurrence of predominantly time-dependent DDIs. The integrated CDS 

system offered by the CPOE was used as the basic DDI-CDS system. The basic DDI-CDS 

system had one type of alert-suppression possibility: turning specific DDI alerts off. Before 

the start of the study, a set of DDI alerts was already suppressed, having been considered 

irrelevant by a team of prescribers and hospital pharmacists, included in table S1.
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Gaston Pharma® (version 2.8.2.100, Gaston Medical®, Eindhoven) was used to develop 

and generate the contextualized DDI alerts. Before the start of the study, as a technical 

validation, two weeks of DDI alerts were matched assuring that without contextualization 

both systems triggered the same alerts. Followed by three months of technical validation 

of the developed meta-rules. Gaston Pharma® has been used to provide medication-related 

CDS in addition to G-standard knowledge base in the Catharina Hospital content since 

2006. However, it has not been previously used for DDI management. Costs and return on 

investment analysis of this system have been published previously.33 Previously developed 

clinical rules partially overlapped basic DDI alerts, included as italic type in table S1. The 

contextualized CDS system can suppress DDI alerts based on the clinical context, including 

laboratory values, medication order details, outpatient drug-drug combinations and patient 

demographics. The CDS system could also suppress alerts based on previous evaluations of 

the DDI, cluster alerts based on advice, medication type or other characteristics.

Hospital pharmacy staff consisted of twelve (senior) hospital pharmacists (HPs), 

four hospital pharmacists in training and around fourty pharmacy technicians. Daily 

pharmaceutical services, including DDI management, were performed by four x 0.3 full-

term equivalent (FTE) hospital pharmacists and twelve FTE pharmacy technicians on a 

ward basis. All of the pharmacy staff were already trained to use the contextualized CDS 

system before the start of the study. 

STUDY INCLUSION
The study included all medication orders (MOs) of patients hospitalized with at least one 

DDI alert triggered by the basic DDI-CDS system during basic as well as contextualized DDI 

management phase. A MO was defined as a new prescription or any change to an existing 

prescription (i.e. a dose adjustment). 

BASIC DRUG-DRUG INTERACTION MANAGEMENT PROCESS
Table 1 (lefthand side), shows the key system and process details for the basic DDI manage

ment process. Figure S1 panel A, B and C give an overview of DDI alert presentation in the 

basic DDI-CDS system. If the MO for one or both interacting drugs was changed, the DDI 

alert was shown for each MO during evaluation. Therefore, in most cases, the same DDI alert 

was shown twice.
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TABLE 1. Similarities and differences between drug-drug interaction clinical decision support management 
process and system for both phases

Basic DDI management phase Contextualized DDI management phase

Same for both phases

Basic DDI-CDS system in use for physicians

G-standard knowledge base a

Pharmacy technicians adjusted administration times of drugs without consulting physician or hospital 
pharmacist

Different for both phases for clinical pharmacy staff

Basic DDI-CDS system integrated into EHR system Contextualized DDI-CDS system on top of EHR system

‘Real-time’ DDI alert generation ‘Batch-wise’ DDI alert generation

DDI alerts were shown to prescriber, pharmacy 
technician and hospital pharmacist in that order

DDI alerts were shown only to pharmacy technician or 
only to hospital pharmacist depending on applicability

Communication possible between physician and 
clinical pharmacy staff in the DDI alert note

No communication possible between physician and 
clinical pharmacy staff

Workflow context suppression

DDI alerts were shown paired to MOs c DDI alerts were shown independent of MOs d

With each type of MO change (prescriber, 
administration time; route of administration etc.) the 
DDI alert was shown 

DDI alerts were shown once to pharmacy staff and 
thereafter only if daily dose of one of the interactions 
drugs was changed e

MOs of actionable absorption time-dependent 
DDIs alerts were changed by pharmacy technician; 
changes checked by second and thereafter by hospital 
pharmacist

MOs of actionable absorption time-dependent DDIs 
alerts were changed by pharmacy technician and then 
checked by contextualized DDI-CDS system

Clinical context suppression b

DDI alerts could be turned off DDI alerts could be suppressed depending on specific 
clinical context (Table 2)

DDI alerts were shown if one of the interacting drugs 
was already stopped in last 24 hours

DDI alerts were not structurally shown when one of 
the interacting drugs was already stopped; only if 
applicable f

Clinical rule alerts overlapping part of DDIs were partly 
shown g

Clinical rules alerts overlapping part of DDIs were not 
shown g

a G-standard knowledge base which amongst others includes drug-drug interaction (DDI) assessments used 
nationally in the Netherlands 44

b contextualization included suppressing DDI alert not applicable within the given context and also adding 
additional information form the electronic health record (EHR) to manage the DDI alert if shown. All general as well 
as specific clinical contextualization is shown in Table 2 and Table S1.
c Evaluation of medication alerts including DDI alerts was shown paired to an medication order (MO). (e.g. DDI alert 
is shown when evaluating metoprolol MO and DDI alert is shown when evaluating paroxetine MO)
d The contextualized system showed DDI alerts not paired to MOs (e.g. DDI alert for metoprolol + paroxetine was 
shown once) as general suppression was done based on the Anatomical Therapeutic Chemical (ATC) codes of 
drugs appearing in multiple MOs and DDI alerts were only shown ‘again’ if daily dose of one of the interactions 
drugs was changed
e DDI alerts only reappeared if medication and daily dose were changed, changing from ‘if necessary use’ to regular 
use or from ‘one time use’ to regular use were defined as dose changes. Multiple MOs for the same drug were 
always clustered to show one alert; e.g. haloperidol 10 mg + 1 mg + amiodarone 200 mg clustered to show a single 
alert for haloperidol with amiodarone 
f DDIs found to be clinical relevant when one of the drugs was stopped (perpetrator) included cytochrome 
P450 (CYP) inhibitors with long half-life: hydroxychloroquine (100 days), chloroquine (28 days), fluoxetine (15 
days) and amiodarone (150 days) and CYP inducers (28 days): rifampicin, primidone, phenytoin, phenobarbital, 
carbamazepine, efavirenz, hypericum and ritonavir. 
g Full list of clinical rules used and the overlap with DDI alerts is included at the bottom of Table S1 in italic type
DDI: drug-drug interaction; CDS: Clinical decision support; EHR: electronic health record; MOs: medication orders

Contextualized drug-drug interaction management process
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The basic DDI-CDS system offered the option to add text to the alert using the alert 

comment box. Alerts, including comments, were shown to the prescriber, pharmacy 

technician and hospital pharmacist, in that order. The alerts themselves were the same 

for each healthcare professional, text was differentiated. The alert text presented to the 

prescriber and hospital pharmacist were those included in the G-standard knowledge 

base. Pharmacy technicians were presented a locally written alert text. The local alert text 

contained instructions regarding which specific parameters should be checked in the EHR 

and added to the alert comment box. If instructed in the local text, the pharmacy technician 

could forward the DDI alert to a hospital pharmacist. Based on all gathered information, the 

hospital pharmacist could then decide whether to contact the prescriber. 

Drug-drug interactions affecting drug absorption are called absorption time-dependent 

DDIs alerts (e.g. oral ciprofloxacin binding calcium). If administration times needed to be 

changed to prevent this type of DDI, a pharmacy technician would change administration 

times without contacting the prescriber. A different pharmacy technician and thereafter 

the hospital pharmacist evaluated if administration times were changed correctly. The 

process of DDI evaluation was continuous between 08:00 and 17:30, however medication 

orders triggering DDI alerts prescribed after 14:00 were evaluated by clinical pharmacy staff 

the next day.

Table 1 (righthand side), shows the key system and process details for the contextua

lized DDI management process. In contrast to the basic DDI process, the contextualized DDI 

alerts were triggered in batches at 06:00, 09:00, 11:00 and 15:00 and evaluated between 

08:00 and 17:30. For the prescribers the MO process was not changed during the study 

i.e. basic DDI alerts were also directly presented to the prescriber. DDI alerts triggered 

using the contextualized DDI-CDS system were evaluated by the hospital pharmacist. 

Preliminary alert evaluation by a pharmacy technician was omitted and mostly replaced by 

the contextualized DDI-CDS system. Table S1 provides a complete list of CDS evaluations 

replacing pharmacy technician evaluations. Absorption time-dependent DDI alerts were 

shown only to the pharmacy technician; the correctness of the adjustments made by 

the pharmacy technician was checked by the contextualized DDI-CDS system in the first 

following batch.
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CONTEXTUALIZED DDI SPECIFICS: ALERT CONTEXTUALIZATION AND SUPPRESSION
Basic as well as contextualized DDI-CDS systems used the Dutch G-standard knowledge 

base content, which includes DDI assessments used nationally in the Netherlands.44 During 

the study, the knowledge base was updated monthly, following a regular schedule. As of 

November 2020, G-standard knowledge base contained 1058 DDIs, incorporating a total of 

32,676 drug pairs. A drug pair was defined as Anatomical Therapeutic Chemical code (ATC) 

A + ATC B. 

In addition to basic suppression (turning a specific alert off), the contextualized DDI-CDS 

system combined two overarching types of alert contextualization and alert suppression. 

The first type being suppression based on the workflow context, the second being 

suppression based on the clinical context. Workflow suppression included 1) suppression 

based on previous DDI alert evaluation (i.e. DDI alerts only reappeared if medication and 

daily dose were changed, changing from ‘if necessary use’ to regular use or from ‘one time 

use’ to regular use were defined as dose changes), 2) suppression based on previously 

unevaluated DDI alerts and 3) suppression based on the ATC codes of drugs appearing in 

multiple MOs (e.g. haloperidol 10 mg + 1 mg + amiodarone 200 mg clustered to show a single 

alert for haloperidol with amiodarone). 

General clinical context suppression, performed on all DDI alerts, included suppressing 

DDI alerts where one of the drugs was already stopped at the time of showing the DDI alert. 

DDI alerts including stopped cytochrome P450 (CYP) inhibitors with long half-life and CYP 

inducers however were shown; full list of included inhibitors and inducers is included at the 

bottom of table 2.

Table 2 shows the contextual modulators used for suppression based on clinical con

text. In total 15 different types of contextual modulators were used for specific suppression 

of DDI alerts, grouped into five major contextual modulators.27 Specific clinical context 

suppression spanned out over 93 out of the total 1058 DDIs, including a total of 8,739 drug 

pairs using 11,627 modulators. This included basic DDIs previously overlapping clinical rules 

which could be turned off for pharmacy staff in its entirety. Table S1 provides details on all 

meta-rules applied.

Contextualized DDI alerts presented additional contextual information to pharmacy 

staff. The information provided was based on recommendations by Payne et al.40 Figure S1 

panel D gives an example of a contextualized DDI alert. 
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TABLE 2. The types of clinical context suppression, including examples, applied in this study.

Clinical context suppression based on modulator: 
(number of drug pair combinations a to which the 
modulator was applied) b

Explanation (example)

Prescription of interaction drug pair (3,591)

Dose (152) Suppression when DDI was not applicable for a specific 
dose 
e.g. simvastatin ≤ 40 mg combined with ticagrelor

Route of administration (94) Suppression when DDI was not applicable for a 
combination of drugs using different routes of 
administration
e.g. midazolam nasal spray combined with verapamil

Chronology and lag time between administrations f 
(1318)

Suppression when drug administration times were 
sufficiently spaced to prevent absorption DDI
e.g. ciprofloxacin at 08:00 and 20:00 combined with 
calcium at 15:00

No alternative available (275) Suppression when no therapeutic alternative was 
available in the setting
e.g. labetalol intravenous combined with insulin 
intravenous

Course of therapy (1,752)

	 ‘Only’ If necessary use (127) Suppression when drug use was used once or only used 
if necessary
e.g. haloperidol if necessary < 5 mg combined with 
amiodarone

	 Short duration of administration (45) Suppression when drug combination was present only 
for a short duration, including once
e.g. verapamil 2.5 mg once during percutaneous coronary 
intervention combined with digoxin

	� Drug-drug combination existing prior to admission 
(1,580)

Suppression when DDI existed prior to admission
e.g. metoprolol combined with paroxetine

	 Drug pair combination stopped c (all) (General rule) Suppression when one of the drugs was already 
stopped c 
e.g. starting mirabegron while metoprolol was previously 
stopped

Co-medication (4,033)

Pharmacodynamic counter-DDI (828)c Suppression when DDI increased risk is mitigated by 
co-medication c

e.g. naproxen and dexamethasone when pantoprazole 
was co-administered

Pharmacodynamic risk modifiers (e.g. DDIs only relevant 
in case multiple drugs involved) (3205)

Suppression when only two of the three drugs 
increasing the risk of clinically significant DDI were 
present
e.g. perindopril combined with furosemide with ibuprofen 
already in use

Patient characteristics (1,663)

Patients age (835) Suppression when DDI was only applicable to a certain 
age category
e.g. ceftriaxone intravenously administered combined 
with calcium-containing intravenous fluid in patients > 1 
month old

Comorbidity (828) Suppression when DDI was only applicable combined 
with comorbidities
e.g. naproxen + dexamethasone in patient of 30 years 
with previous gastric ulcer

Dynamic patient information (2,311)
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Clinical context suppression based on modulator: 
(number of drug pair combinations a to which the 
modulator was applied) b

Explanation (example)

Lab results (1833) Suppression when laboratory value monitoring was 
ordered or result was known e.g. hydrochlorothiazide 
combined with citalopram when sodium was ordered

Vital signs (478)

	 Actual measurements (9) Suppression when vital signs where above or below 
certain values
e.g. metoprolol + fluoxetine and heart rate > 60 beats per 
minute

	 Routine monitoring f (469) Suppression when routine monitoring was performed
e.g. alpha-blocker combined with beta-blockers on all 
medical wards

Deemed not clinically relevant in all cases (2)

Clopidogrel + (es)omeprazole Suppression of a specific DDI rated not clinically 
relevant

Contextual modulators which were used for suppression as described by Seidling et al. 2014. were applied.27 
Grouping modulators are shown in grey rows. (sub)Modulators, presented in italic type in the left hand column, 
were added to an existing modulator or modulator group. Several contextual DDI alerts showed different content 
or advice dependent on contextual modulators. The number of contextual modulators includes modulators used 
in the clinical rules in use previous to the study.

a Definition of a single drug was done based on Anatomical Therapeutic Chemical (ATC) code. A drug pair was 
therefore defined as ATC A + ATC B; e.g. N06AB03 (fluoxetine) + C07AB02 (metoprolol)
b Multiple contextual modulators could be applied to a single drug pair. (e.g. N06AB03 (fluoxetine) + C07AB02 
(metoprolol) e.g. drug combination used prior to hospitalization and routine monitoring (continuous cardiac 
monitoring if admitted to ICU)
c A general rule applied to all drug pairs was used to suppress all DDI alerts where one of the drugs from the 
drug pair was already stopped excluding pharmacokinetic interactions d relevant after stopping (e.g. amiodarone 
stopped one day before starting digoxin)
d Drugs (perpetrators) included as relevant after stopping included cytochrome P450 (CYP) inhibitors with long 
half-life: hydroxychloroquine (100 days), chloroquine (28 days), fluoxetine (15 days) and amiodarone (150 days) and 
CYP inducers (28 days): rifampicin, primidone, phenytoin, phenobarbital, carbamazepine, efavirenz, hypericum and 
ritonavir. 
e Previous to the current study clinical rules were already in use monitoring ordering of timely therapeutic drug 
monitoring when applicable, drug induced electrolyte disorders or electrolyte disorders without proper drug 
management, International Normalized Ratio (INR) monitoring and use of gastric protection dependent of 
multiple risk factors including patients’ age, pharmacodynamic DDIs and monitoring including pharmacodynamic 
counter-DDI. Table S1 (bottom) includes a full list of drug-pairs included including contextual modulators used.
f Routine monitoring modulator included advice to monitor heart rate and blood pressure on regular wards and 
DDI alerts advising electrocardiography (ECG) on wards that performed continuous cardiac monitoring. These 
wards included intensive care unit (ICU), cardiac medium care unit (MCU) and cardiac lounge.
DDI: drug-drug interaction; ATC: Anatomical Therapeutic Chemical

 
CLINICAL UTILITY
Four outcome measures were used to determine clinical utility for both CDS management 

processes, namely:

1.	 Positive predictive value (PPV) of the DDI alerts shown

An alert was considered to be a true positive (TP) if found to be clinically relevant. Clinical 

relevance in context of this study was defined as an alert intervened upon by a pharmacy 

professional. DDI alerts not considered clinically relevant were counted as false positives 

(FPs). PPV was calculated as TPs / (TPs + FPs). PPV was calculated for the basic and con

textualized DDI phases.
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2.	 Negative predictive value (NPV) of the DDI alerts shown

Pharmacy interventions not shown in the background data collection were considered 

false negatives (FNs). The remaining DDI alerts not shown in the background data were 

considered true negatives (TNs). Hence, NPV was calculated as TNs / (FNs +TNs). The NPV 

was calculated only for the basic phase.

3.	 Number of pharmacy interventions (PIs) /1,000 medication orders

Pharmacy interventions (PIs)/1,000 medication orders was calculated using the total 

number of PIs in a phase dived by the total number of included MOs for that phase times 

a 1000. Pharmacy interventions were included if registered as such in the EHR or the CDS 

system. 

4.	 Time spent on DDI management /1,000 medication orders

The time measurements needed for all separate steps of the DDI management process in 

the basic as well as contextualized DDI phase was measured for MOs with DDI alert using 

a stopwatch. MOs with DDI alerts were measured. If multiple DDI alerts appeared on one 

MO, the total time spent evaluating the MO was measured, and the number of DDI alerts 

was noted and total time spent on the MO was divided by the number of DDI alerts noted. 

Total time spent on DDI management in basic and contextualized DDI phase was the 

addition of the median time of each step of the DDI management process multiplied by 

the frequency of occurrence. This was done separately for absorption time-dependent DDIs 

and remainder of the DDIs; irrelevant and relevant DDI management evaluation were also 

measured.

DATA ANALYSIS
Statistical tests were performed using SPSS v 27.0.0. A Mantel-Haenszel test to test for 

difference in frequency in the number of DDI alerts /1,000 MOs triggered and shown.45 An 

additional Bonferroni correction was used to test for the difference in DDI alerts shown 

for the different medical specialties. A general estimation of equations (GEE) was used to 

test the difference in PPV between both methods.46 A two proportion Z-test was used to 

test the difference in number of pharmacy interventions (PIs)/1,000 medication orders.47 

A p-value of <0.05 was considered statistically significant. No statistical comparison was 

done to compare time spent on DDI management per 1,000 medication orders. 

RESULTS

MEDICATION ORDER INCLUSION AND DDI ALERT CHARACTERISTICS
The basic DDI phase (35 days) included 67,188 MOs with 14,787 triggered basic DDI alerts 
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belonging to 1,528 patients, i.e. a mean of respectively 1,920 MOs/day and 423 triggered 

basic DDIs alerts/day. The contextualized DDI phase (50 days) included 92,659 MOs 

triggering 22,626 basic DDI alerts (in the background) belonging to 2,077 patients, i.e. a 

mean of respectively 1,853 MOs/day triggering 453 basic DDI alerts/day. Surgery patients 

accounted for most of the triggered DDI alerts, 4,764 (32%) and 6,647 (29%) of the basic 

and contextualized DDI phases, respectively. Table S2 shows DDI alert characteristics 

top 30 of both phases. Most triggered DDI alerts were of drugs increasing the risk of 

gastric ulcers (approx. 30%), DDIs involving CYP/P-glycoprotein/uridine diphosphate 

glucuronosyltransferase followed (approx. 18%) and time-dependent absorption DDIs 

(approx. 15%). There was no substantial difference in the number of triggered basic DDI 

alerts/1,000 MOs; 220 and 244 for the basic and contextualized DDI phase respectively. 

There were no statistical differences in respect to patients age, gender, treating specialty 

and number of drugs used at hospitalization between both phases.

CLINICAL UTILITY
Comparing basic DDI management process to contextualized DDI management  
in the basic DDI phase
The left-hand side of Table 3 presents the results of the basic DDI phase for both DDI-

CDS systems, including the differences. During this phase, 3,835 DDI alerts were shown to 

pharmacy staff using the basic DDI-CDS system, leading to 107 interventions, resulting in 

an overall PPV of 2.8%. Using the background data, the contextualized DDI-CDS system 

would have shown 498 DDI alerts, resulting in a reduction in displayed DDI alerts of 88.1%, 

compared to the basic DDI-CDS system, which would have resulted in a PPV of 23.5% 

(107/456). Seven of the 107 relevant alerts were not triggered by the contextualized DDI-

CDS system because they had been resolved before starting the batch run. Assuming these 

seven alerts would have been triggered without previous intervention, no relevant alerts 

were likely to have been missed in the contextualized DDI-CDS system, resulting in a 100% 

NPV. 

Comparing the contextualized DDI-CDS system to the basic DDI-CDS system  
in the contextualized DDI phase
The right-hand side of Table 3 presents the results of the contextualized DDI phase for both 

DDI-CDS systems. During this phase, 902 DDI alerts were shown to pharmacy staff using 

the contextualized DDI-CDS system, leading to 373 interventions, resulting in an overall 

PPV of 41.4%. The basic DDI-CDS system would have shown 5,824 DDI alerts of which 363 

could have led to an intervention, as 10 alerts were suppressed using basic suppression. 

Background data collection PPV was 6.3%. The difference in PPVs between both systems 

was 38.6%, p < 0.01.
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Comparing clinical practice between phases
A significantly higher PPV of 41.4% was achieved during the contextualized DDI phase, 

compared to 2.8% during the basic DDI phase, p < 0.01. The same was true for the number 

of PIs/1,000 MOs, 24.6 during contextualized DDI phase compared to 9.9 in basic DDI 

phase, p < 0.01. The number of PIs was higher for all types of DDIs. Total time spent on DDI 

management /1,000 MOs was reduced from 37.2 minutes in basic DDI management phase 

to 13.7 minutes in contextualized DDI management phase. For pharmacy technicians, the 

median time spent performing DDI management /1,000 MOs was reduced from 23.6 min 

in the basic DDI phase to 9.0 min in the contextualized DDI phase. For hospital pharmacists 

this was 13.7 min in the basic DDI phase and 4.7 min in contextualized DDI phase. Table 

S3 shows the median time spent on DDI management in both phases, based on actual 

practice and stratified according to healthcare professional.

Contribution of different suppression techniques during contextualized phase
During the contextualized DDI phase, workflow suppression made the most significant 

contribution to DDI alert suppression (38.9%, n = 42,766), the highest contribution (98.4%) 

of the previously evaluated DDI alerts. During the same phase, 10,686 unique DDI alerts were 

suppressed using clinical context suppression. Ignoring workflow suppression, pharmacy 

technician context suppression would have suppressed 67.9% (n = 36,402) of all triggered 

DDI alerts by the contextualized DDI-CDS system. The most significant contributions 

to suppressed alerts were 1) No alternative available in a hospital setting (30%), 2) 

pharmacodynamic risk modification; three-way DDIs involving only two drugs (24.6%) and 

3) lag time between administrations in absorption time-dependent DDIs (18.0%). 

DISCUSSION

PRINCIPAL FINDINGS
This study demonstrated that contextualized DDI management has greater clinical 

utility than basic DDI management regarding hospitalized patients in a clinical pharmacy 

setting. Clinical utility improved in all the outcome measures; PPV was 35.3% higher in the 

contextualized DDI management process, and NPV was 100% for the contextualized DDI-

CDS system. Furthermore, the number of PIs increased from 1.6/1,000 MOs with basic DDI 

management to 4.0/1,000 MOs with contextualized DDI management; suggesting a high 

degree of alert fatigue with basic CDS-DDI management. 

COMPARISON OF THIS RESEARCH TO OTHER STUDIES
Several previous studies have shown that adding clinical and or workflow context can 

significantly reduce the DDI alert burden. Helmons et al. and Daniels et al. reduced the 
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number of alerts by approximately 50%.12,33 Improvement in PPV was also demonstrated 

i.a. Eppenga et al. increasing from 9.9% to 14.8% after introducing a contextualized DDI-

CDS.32,35 While all previous studies find improvements in reduction of DDI alerts, the effect 

size in reduction of DDI alerts (93%) and achieved PPV (41.4%) achieved in this study have 

not been demonstrated before. Moreover, this study shows that this PPV improvement can 

be achieved without sacrificing NPV (100%). No previous studies were found showing that 

decreasing the number of DDI alerts shown to pharmacy staff actually increases the number 

of pharmacy interventions. Moreover, this was done concurrently with a considerable time 

reduction to pharmacy staff (37.2 to 13.7 min/1,000 MOs). 

STUDY LIMITATIONS
An obvious limitation of the study was the research design being non-randomized and 

open-label to pharmacy staff and only performed in clinical pharmacy setting. A cross-over 

design can be sensitive to seasonal and healthcare professional influences. However, in this 

case the crossover design provided data for both periods using both systems, making this 

possible influences insightful. The rate of DDIs triggered/1,000 MOs as well as the number 

of displayed DDIs/1,000 MOs was different between the two phases. However, the rate was 

higher in the contextualized DDI phase, making the measured difference in clinical utility 

an underestimation rather than an overestimation. Furthermore, the process change was 

studied in one hospital and used one EHR. Nonetheless, adopting a similar approach and 

using the same contextualized DDI-CDS system, researchers investigating different EHRs 

have obtained similar results33. The study could also be subject to researcher bias as three 

of the authors were also hospital pharmacists (in training) performing DDI management 

in both phases. Nevertheless, these were only three of the 16 members of the hospital 

pharmacy staff and none had any conflicts of intertest. 

A technical limitation was that the contextualized DDI process triggered DDI alerts in 

batches, which could, in theory, leave patients vulnerable to DDIs as pharmacy interventions 

are not timely performed. However, compared to basic DDI management practice, hospital 

pharmacists received DDI alerts sooner, as there was no delay in pharmacy technician 

evaluation. To enhance clinical utility for prescribers, it is necessary to perform this 

contextualized DDI alerting in real-time. Fortunately, this is currently possible and is already 

being used in several other hospitals across the Netherlands. Another limitation of the study 

was that there was no expert review of DDI alerts to assess NPV. In clinical practice, however, 

staff and time constraints inhibit the expert review of each DDI alert. Using PIs in clinical 

practice resulted in an NPV of 100% under the contextualized DDI management process.

CONSIDERATIONS FOR CURRENT PRACTICE AND FUTURE IMPROVEMENTS
This study shows that significant decrease in DDI burden can been achieved by using a 

simple contextual modulators. Based on this study additional more sophisticated contextual 
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modulators don’t seem to be a top priority for a general hospital setting. Analysis of the 

residual FPs also showed that many FPs could be traced back to workflow-related technical 

issues. Most of which were resolved by implementing an auto-refresh function and waiting 

for the CDS to display the alert after all meta-rules had been executed. Gaston Pharma® 

has been shown to be easily combined with different knowledge bases and providing 

contextualized CDS linked to several different CPOEs and/or EHRs.

The greatest benefit as it comes to time savings in the current study was removing 

the pharmacy technician from the primary DDI alert evaluation on non-absorption time 

dependent DDIs and replacing them by the contextualized CDS system and the other way 

around for absorption time dependent DDIs. 

Basic pair-wise DDI-CDS systems in hospital practice are common in Western 

countries.21,30,48 In the Netherlands, CPOE including basic pair wise DDI-CDS is mandatory 

in all medical settings as off the 1st of January 2014. No references have been found using 

a contextualized CDS-DDI system in clinical practice on a larger scale. Since October 2020, 

the Netherlands has however moved its DDI knowledge base from a pair-wise combination 

model to a decision tree model, comparable to the models used in this study. Thus, enabling 

all healthcare providers to benefit from contextualized DDI management in a clinical 

context. However, it is important to consider that the greatest percentage of suppression 

during this study was achieved by workflow context suppression. Therefore, consideration 

should also be given to if and how to deploy and implement workflow contextualization 

improvements.

CONCLUSION

Contextualized DDI management compared to basic DDI management in a clinical 

pharmacy setting can considerably decrease the number of irrelevant DDI alerts and 

thereby increase the time available to interpret relevant DDI alerts leading to more relevant 

interventions without missing relevant DDI alerts.
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SUPPLEMENTARY MATERIALS

Supplementary materials can be found at: 

https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fcpt.26

24&file=cpt2624-sup-0001-SupinfoS1.docx

Or by scanning the QR code:
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ABSTRACT

BACKGROUND
Adverse drug reactions (ADRs) are estimated to be the fifth cause of hospital death. Up to 

50% are potentially preventable, and a significant number are recurrent (reADRs). Clinical 

decision support systems have been used to prevent reADRs using structured reporting 

concerning the patient’s ADR experience, which in current clinical practice is poorly 

performed. Identifying ADRs directly from free-text in electronic health records (EHRs) 

could circumvent this. 

AIM
to develop strategies to identify ADRs from free-text notes in electronic hospital health 

records. 

METHODS
Stage I, the EHRs of ten patients were reviewed to establish strategies for identifying ADRs. 

Stage II, complete EHR histories of 45 patients were reviewed for ADRs and compared to 

the strategies programmed into a rule-based model. ADRs were classified using MedDRA 

and included into the study if the Naranjo causality score was ≥1. Seriousness was assessed 

using the European Medicine Agency’s important medical event list. 

RESULTS
Stage I, two main search strategies were identified: keywords indicating an ADR and specific 

prepositions followed by medication names. Stage II, EHRs contained a median of 7.4 (range 

0.01–18) year’s medical history covering over 35,000 notes. A total of 318 unique ADRs were 

identified of which 63 potentially serious; 179 (sensitivity 57%) of those were identified 

by the rule. The rule falsely identified 377 ADRs (PPV 32%). However, also identified an 

additional eight ADRs. 

CONCLUSION
Two key strategies were developed to identify ADRs from hospital EHRs using free-text 

notes. The results appear promising and warrant further study.
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INTRODUCTION

Adverse drug reactions (ADRs), including allergic responses, frequently occur and significantly 

influence morbidity, mortality, and medical costs1,2. About 3.6–6.5% of hospitalizations are 

related to an ADR.3-7 Furthermore, 10–15% of patients develop an ADR during hospitalization4,8 

resulting in death in 0.05–0.25% of cases4,9. Adverse drug reactions are the fifth cause of 

hospital deaths.4,10 Moreover, 28–56% of all ADRs are potentially preventable.5,7,11,12 Different 

approaches have been used to define preventability, and most of these presenting 

difficulties for translation into interventions. A significant number of potentially preventable 

ADRs are recurrent ADRs (reADRs) (10–30% of all ADRs13,14, 13–50% of medication-related 

hospitalizations14-17). Recurrent ADRs have a different form of preventability compared 

to first occurrence ADRs, introducing knowledge on a patient’s response to a drug in a 

certain dose in a certain context making them easier to prevent. Preventable reADRs have 

multiple origins. The most important cause is unintended represcription, defined as the 

represcription of medication previously intentionally stopped due to an adverse drug reaction 

(e.g., the represcription of hydrochlorothiazide stopped due to hyponatraemia in an elderly 

woman).15,18 To prevent unintended represcriptions and the risk of reADRs, clinical decision 

support systems (CDSSs) have been implemented to alert prescribers when a medication is 

represcribed after it was previously stopped due to an ADR.19 Currently, however, CDSSs only 

function when the ADR is registered as structured information at the level of the individual 

patient within an ADR module linked to or part of the computerized physician order entry 

(CPOE) system of the electronic health record (EHR). In current clinical practice, this is poorly 

performed due to time constraints, inadequate IT systems, a lack of peer support and failing 

to acknowledge the importance of structurally registering ADRs.20 Healthcare professionals 

frequently describe ADRs in clinical notes and discharge summaries, using free-text entries18, 

that are not effective in preventing unintended represcription.16,21,22

Identifying ADRs directly from free-text EHR notes could solve the issue of underreporting 

in a structured format by healthcare professionals. In recent years, progress has been made 

in identifying ADRs from free- text. Honingman et al. developed an algorithm to screen 

primary care records23. Iqbal et al. developed and validated an algorithm to detect specific 

ADRs related to antidepressants and antipsychotics in psychiatric hospital EHRs.24 Aramaki 

et al. developed and tested an ADR identification algorithm using Japanese discharge 

summaries.25 The sensitivity of the different algorithms was approximately 60% for general 

ADR identification23,25 and up to 90% for specific ADRs24.

Previous studies have focused on specific medication24,26, specific ADRs27,28, selected 

notes25,28-36, and specific settings23,24. No studies have been identified that use a general 

approach to detect ADRs from all free-text available in a hospital EHR system. Investigating 

specific notes may result in identifying only a fraction of the reported ADRs; focusing on 

specific ADRs automatically overlooks other ADRs. Moreover, previous studies have not 
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assessed causality and seriousness of the identified results. Therefore, the aim of this study 

was to develop strategies to identify ADRs from free-text notes in electronic hospital health 

records.

METHODS

DESIGN AND SETTING
The study was performed at the Catharina Hospital, Eindhoven, The Netherlands, a 696-

bed teaching hospital that used CS-EZIS® (version 5.2, Chipsoft B.V. Amsterdam) for its EHR 

system. This EHR system was implemented in stages, launching in 2008 and adopting 

paperless recording from 2015 onwards. Medical records before 2008 are available (as 

scanned PDF) as part of the multimedia module. Within the EHR system there are distinct 

modules. For example, a CPOE module, a module for structured ADR registration, a CDS 

system module and a module for free-text EHR notes. Inside the free-text EHR module, 

different types of EHR notes may be distinguished (e.g., physician notes, nursing notes, 

pathology notes, radiology notes and operation notes). An EHR note is registered at 

a specific time and could contain multiple entries such as medical history, physical 

examinations, additional findings, summaries, and therapeutic plans. Figure 1 provides a 

graphical representation of the EHR structure. To supply additional, medication-related, 

clinical decision support, the hospital uses Gaston Pharma® (Gaston Medical®, Eindhoven), 

which is linked to the EHR database.

FIGURE 1. On the left is a graphical representation of the EHR including the different modules. The free-text 
notes included from the different modules are marked grey. On the right is an example of a free-text EHR 
note with two potential ADRs.
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STAGE I - IDENTIFICATION OF SEARCH STRATEGIES 
To discover strategies for identifying ADRs, the EHRs of ten random patients from internal 

medicine and geriatric departments were manually screened and supplemented with 

strategies devised by the researchers. Adverse drug reactions retrieved from the manual 

review were categorized into key identification strategies. These were subsequently fine-

tuned by adding different words with the same meaning, commonly used abbreviations 

for these words, and typing and common spelling errors. Based on the false negatives, 

letter combinations or text strings were identified which were to be ignored, followed by 

variations, abbreviations, typing, and spelling errors. The strategies were programmed into 

a rule-based model using the available CDS system, Gaston Pharma®. The model output 

included a text string containing the identified keywords (determined by the strategy), the 

entire free-text EHR note, and the EHR notes without the disregarded text strings. One 

output could contain one or more ADRs. 

STAGE II - INCLUSION OF PATIENTS’ ELECTRONIC HEALTH RECORDS
Performance of the rule-based model was assessed using 45 additional EHRs, which were 

compared to a manual EHR review. The EHRs of 45 consecutive patients were included in 

the study when the patients were hospitalized for over 24 hours to either the department 

of geriatrics (15), internal medicine (15), or oncology (15). The inclusion order was based on 

reverse chronological discharges before June 1, 2018. A complete history of the free-text 

EHR notes was included. Scanned or imported (PDF) documents were excluded.

STAGE II – ELECTRONIC HEALTH RECORD REVIEWS, DEFINITIONS,  
AND CLASSIFICATION
The manual EHR review was performed independently by two assessors (a clinical pharmacist 

and a physician in training) using a predefined protocol, included in supplement I. The EHRs were 

searched for free-text notes containing potential ADRs. The ADRs were defined according to 

the World Health Organization (WHO): “a response to a drug which is noxious and unintended, 

and which occurs at doses normally used in man for the prophylaxis, diagnosis, or therapy 

of disease, or for the modifications of physiological function”.37 Type A-D potential ADRs 

were included; ADR type A): augmented pharmacological effects, type B): bizarre, including 

allergic and nonimmune drug sensitivities, type C ): chronic effects and type D): delayed 

effects, including carcinogenesis and teratogenesis.38 In cases where the two assessors did 

not reach a consensus, a third assessor (a member of the Dutch Pharmacovigilance Centre 

LAREB) gave the final decision. Symptoms or diseases with multifactorial causes, including 

medication, were included as potential ADRs (e.g., ‘hyponatraemia due to malnutrition 

and hydrochlorothiazide use.’) Duplicate entries (i.e., the same ADR occurring during the 

same hospitalization) were not included. Recurrent ADRs were scored separately. An ADR 

was considered recurrent if the medication was represcribed, or the ADR occurred during 
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a separate hospitalization. Free-text and CPOE were not searched to find out if special 

measures were taken to modify risk of recurrence when represcribed (e.g., dose reduction). 

Anatomical Therapeutic Chemical (ATC) classification was used to code the medication 

associated with the ADR. An ADR having more than one medication as the possible cause 

was included as a single ADR with all separately coded medications. In contradiction to 

pharmacovigilance requirements, ADRs without specific drug names mentioned however 

with a drug group mentioned (e.g., hyponatraemia due to antidepressant use), were included 

into the study, as these can still present important additions to the care process and 

medical history. The rule-based model used the Dutch G-standard database, including all 

generic medicine names, trade names, and group names registered in the Netherlands.39 

The ADRs were classified using the Medical Dictionary for Regulatory Activities (MedDRA® 

version 23.1). MedDRA® provides validated standardized hierarchical structure terminology, 

which is used by regulatory authorities, post-marketing pharmacovigilance institutes, and 

pharmaceutical manufacturers. The ADRs were classified using the lowest hierarchy, being 

the lower-level term, while the preferred term, used in the summary of product characteristics 

(SmPC), was matched to obtained references to ADRs. For example, the lower-level terms 

tingling of extremity, pins and needles, and peripheral neuropathy all fall within the preferred 

term paraesthesia. ADRs were categorized as potentially serious using the corresponding 

European Medicines Agency’s Important Medical Events list.40 The causality of the ADRs was 

assessed by a clinical pharmacist trained in pharmacovigilance using the Naranjo algorithm. 

Only ADRs with a Naranjo score of ≥ 1 were included.41

STAGE II - DATA COLLECTION
At the moment of hospitalization, characteristics such as gender, age, total medications 

(including over-the-counter medications), and treatment specialisms were collected from 

the patients’ EHRs. Medical history and laboratory results were collected to calculate 

Charlson Comorbidity Index. Moreover, the following information was collected to charac

terize the data: the number of hospitalizations (≥ 24 hours) and ambulant visits (including 

hospitalizations < 24 hours), medical specialisms, record history, the number of EHR notes, 

and the number of words (calculated using spaces) and characters used. The following 

data was collected for each EHR note containing ADRs: ADRs, medication involved, search 

strategy, surrounding paragraph or context (including the space between words, date, form, 

and type of healthcare professional). Research Manager® (Cloud9, Deventer) was used to 

record, edit, and save the anonymized data. Venn diagram plotter version 1.5.5 was used to 

construct the Venn diagram.

STAGE II - DATA ANALYSIS
If an alert generated by the rule contained multiple ADRs, they were all considered to be 

identified. True positives (TPs) were ADRs identified by the manual and rule-based EHR 
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reviews. False positives (FPs) were identifications by the rule-based EHR review but not the 

manual review. False negatives (FNs) were ADRs not identified by the rule-based EHR review. 

Sensitivity was calculated as TPs / (TPs + FNs). The positive predictive value (PPV) was 

calculated as TPs / (TPs + FPs). False negatives and FPs were further analyzed to improve the 

applied search strategies and search for additional strategies to improve future versions of 

the tool. False positives were also analyzed to provide recommendations for improving the 

list of disregarded text strings and context.

RESULTS

STAGE I - IDENTIFICATION OF SEARCH STRATEGIES
Based on the ten EHR records, five key strategies for identifying EHR notes containing ADRs 

were identified (Table 1). Table S1 provides a full overview, including disregarded text strings 

and original Dutch words. The first strategy (S1) used keywords implying one or multiple 

ADRs, including conjugations of a) drug-induced, b) allergy, c) side-effect, d) intolerance, e) 

reaction, and d) toxicity. The second strategy (S2) included a search of thirteen different 

prepositions followed by drug groups, names, therapies, or their abbreviations. An example 

could be “pins and needles after FOLFOX cycle.” Table S1 provides a full list of the added 

abbreviations used in S1 and S2. The third strategy (S3) used free-text entries titled allergy 

and anaphylaxis. Such free-text entries were used when the ADR module was introduced 

in 2015. The fourth strategy (S4) searched the complication registration module for drug-

related complications. The final strategy (S5) searched for ADRs registered in the ADR 

module, including coded and free-text entries.

STAGE II – PATIENT AND DATA CHARACTERISTICS
Table 4 presents the patient and data characteristics included in the 45 EHRs. The mean 

age of the patients was 68 years (range 21–92), and 64.4% were female. During the most 

recent hospitalization, patients had a median Charlson Comorbidity Index score of five 

(range 0–13) and used a median of eight (range 0–20) different medications. Patients had 

a median of three hospitalizations (range 1–39) and 60 ambulant visits (i.e., hospital stay  

< 24 hours) (range 2–433), resulting in a median medical history of 7.4 years (range 0.01–18). 

The median number of free-text EHR notes per patient was 585 (range 41–2,820). These 

were formed of a median of 41,921 words (range 4,070–259,750) constructed by a median 

of 449,179 (22,027–2,594,750) characters. This resulted in approximately 35,000 free-text 

EHR notes for review.
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TABLE 1. Summary of ADR identification strategies used in the rule.

Nr. Search strategies
Included trigger 

words++

S1 Keywords implying an ADR conjugations of drug-induced
allergy

side-effect
intolerance

toxicity
reaction

S2a Prepositions followed closely* by a drug 
group*, a generic drug name, a drug brand, 
trade name or abbreviation a drug or drug 
therapy***

conjugations of by
with
after

of
on

since

S2b Abbreviations using the included 
prepositions

conjugations of a.r.
(as a result)

b.o.
(based on)

a.c.o.
(as a consequence of)

S3 Content of forms labeled+ conjugations of allergies:
anaphylaxis:

S4 Content of complication registration 
containing key field drug-induced

- -

S5 Content of ADR module - -

* The maximal number of characters between the preposition and the drug name was 16.
** The drug group names were based on the ATC therapeutic subgroup, pharmacological subgroup, chemical 
subgroup, or chemical substance (i.e., 2nd to 5th levels of ATC main groups classified by WHO).
The maximum number of characters (i.e., proximity, between a preposition and a drug name) was set at sixteen.
*** Examples being PPI (proton-pump inhibitor), HCTZ (hydrochlorothiazide), FOLFOX (combination therapy of 
fluorouracil and oxaliplatin). A full list of abbreviations is provided in Table S2.
+ Forms labeled allergy and anaphylaxis using free-text entries were employed prior to the introduction of the ADR 
module in 2015.
++ English translations of the trigger words are presented here; Dutch trigger words are presented in Table S1.

TABLE 2. Patient and data characteristics.

Variable Range

Mean age in years 68 21–92

Female (%) 29 (64.4) n/a

Variable Median Range

Charlson Comorbidity Index at last hospitalization 5 0–13

Unique medication used at last hospitalization (n) 8 0–20

Hospitalizations+ 3 1–39

Ambulant visits++ 60 2–433

Medical record history (years) 7.4 0.01–18

FT EHR notes per patient 585 41–2820

Words+++ per patient 41,921 4,070–259,750

Characters per patient 449,179 22,027–2,594,750
+ Hospitalizations were > 24 hours; hospitalizations < 24 hours were included as ambulant visits.
++ Ambulant visits included telephone and video consultations.
+++ The number of spaces was used to estimate the number of words.
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STAGE II - INCLUSION OF ADVERSE DRUG REACTIONS
Figure 2 provides a flowchart showing the inclusion of potential ADRs discovered during 

the manual EHR review. A total of 643 potential ADRs were identified. During matching, 39 

potential reADRs were detected, the remaining potential ADRs (n = 269) were identified as 

duplicates. Excluding the duplicates and reADRs resulted in 326 unique potential ADRs. After 

excluding eight (n = 8) potential ADRs with a Naranjo score < 1, 318 unique ADRs remained.

FIGURE 2. Inclusion and exclusion of potential ADRs.

pADRs: potential adverse drug reactions

STAGE II - TYPE OF ELECTRONIC HEALTH RECORD NOTES
Adverse drug reactions were found in different types of EHR notes. Most ADRs (68%, n = 216) 

were cited in physician notes, including ambulant, ER, and admission notes. However, 17% 

(n = 55) of the ADRs were only found in nursing notes. The remaining identified ADRs were 

only found in other types of EHR notes like dietician or pharmacist notes. ADRs included 

into the study were recorded by 206 individual healthcare professionals, dived over twelve 

medical specialisms.

STAGE II – ADVERSE DRUG REACTION CHARACTERISTICS
The median Naranjo score for the included ADRs was four (range 1–6). Fifteen ADRs were 

judged probable (score 5–8) and no ADRs were scored definite (score ≥ 9). Overall, patients 

had a median of four ADRs (range 0–32). The median number of ADRs was six (range 1–32) 

in the oncology EHRs and two (range 0–26) in the internal medicine and geriatric EHRs. 

Table S3 provides an overview of the number of ADRs per system organ class. A fifth (19.8%, 

n = 63) of all ADRs were classified as potentially serious, Table S4 provides an overview 

of all potentially serious ADRs and related medication. Twenty of those were related to 

chemotherapy, six to myelosuppression, seven to polyneuropathy, three to hepatotoxicity 

and one to a pulmonary embolism. Serious ADRs not related to chemotherapy were renal 
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failure (n = 6), myelosuppression (n = 5), hepatotoxicity (n = 4), and ileus (n = 2). Cardiac 

problems were frequently registered including bradycardia (n = 3), QT prolongation (n = 2), 

ventricular tachycardia (VT) (n = 1), and cardiovascular collapse (n = 1). One (n = 1) anaphylactic 

reaction and one (n = 1) case of allergic angioedema were also identified. 

Most ADRs (87%, n = 278) were stated in the summary product characteristics (SmPC) 

of a causative medicine. Five percent (n = 14) could have been related to the ADRs cited in 

the SmPC, albeit not at the preferred term level, 3% (n = 10) of symptoms had no specific 

drug mentioned in the ADR entry, so no match was possible, and 5% (n = 16) of symptoms 

had no reference in the SmPC. A few examples of ADRs without reference in the SmPC were 

paraesthesia due to exemestane, polyneuropathy due to oxycodone, and urine retention 

due to midazolam. Table S5 provides the full list of ADRs with no reference in the SmPC.

A total 39 of reADRs were identified, representing over 10% of the identified ADRs; 

distributed over 17 patients. Twelve of the 39 ADRs reADRs were potentially serious, seven of 

which were associated with chemotherapy. One reADR resulted in an acute hypersensitivity 

reaction due to represcription during hospitalization. 

STAGE II - COMPARISON OF RULE-BASED AND MANUAL EHR REVIEWS
The rule identified 556 potential ADRs; 179 unique identifications matched the ADRs 

obtained from the manual EHR review, and 377 potential ADRs were identified as FPs. Of 

the 318 ADRs identified in the manual EHR review, 179 were also identified by the rule-

based review, resulting in a sensitivity of 57% and a PPV of 32%. However, the rule identified 

eight additional ADRs with a Naranjo score ≥ 1, of which one ADR was classified as serious.  

Figure 3 presents a Venn diagram of the EHR review methods and the overlap therein.

FIGURE 3. Venn diagram presenting the unique Adverse drug reactions (ADRs).

The blue circle (n = 318), including the green portion, represents the total number of unique ADRs identified 
by the manual electronic health record (EHR) review. The red circle (n = 556), including the green and yellow 
portion, represents the total number of unique ADRs identified by the rule-based EHR review (true positives 
+ false positives). Red circle component (n = 377) represents the false positives. The green section (n = 179) 
represents the number of true positives. The yellow circle represents the ADRs found only by the rule-based 
EHR review.
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TABLE 3. True positives and false positives per search strategy identifying ADRs.

Nr. Search strategies Included trigger words TPs FPs PPV

n % n % %

S1 Keywords implying an ADR conjugations of drug-induced 20 10 5 1 80

allergy 17 8 80 21 18

side-effect 21 10 10 3 68

intolerance 0 0 0 0 n/a

reaction 1 0 2 1 33

toxicity 13 6 1 0 93

S1	 Total / overall ADRs found by keywords 72 35 98 26 42

S2a Prepositions followed 
closely* by a drug group*, 
a generic drug name, a 
drug brand, trade name or 
abbreviation a drug, or drug 
therapy***

conjugations of by 16 8 19 5 41

with 55 27 44 12 56

after 12 6 67 18 15

of 31 15 62 16 33

on 5 2 73 19 6

since 2 1 12 3 14

S2b Abbreviations using the 
included prepositions

conjugations of as a result of /
because of

0 0 1 0 0

based on 3 1 0 0 100

as a 
consequence of

4 2 1 0 80

S2	Total / overall ADRs found by a combination of predisposition and drug name 128 62 278 74 31

S3 Content of forms labeled+ conjugations of allergies: 0 0 0 0 n/a

conjugations of anaphylaxis: 0 0 0 0 n/a

S3	Total / overall ADRs found in labeled allergy and anaphylaxis forms 0 0 0 0 n/a

S4 Content of complication 
registration containing key 
field drug-induced

- - 0 0 0 0 n/a

S5 Content of ADR module - - 6 3 0 0 100

S5	Total / overall ADRs found in ADR module 6 3 0 0 100

Total ADRs identified 206 100 377 100 35

* The maximum number of characters (i.e., proximity between a preposition and drug name) was set at 16.
** Drug group names were based on the ATC therapeutic subgroup, pharmacological subgroup, chemical 
subgroup, or chemical substance (i.e., 2nd to 5th levels of ATC main groups classified by WHO).
*** Examples being PPI (proton-pump inhibitor), HCTZ (hydrochlorothiazide), FOLFOX (combination therapy of 
fluorouracil and oxaliplatin). A full list of abbreviations is provided in Table S2.
+ Forms labeled allergy and anaphylaxis using free-text entries were applied prior to the ADR module’s introduction 
in 2015.
PPV = positive predictive value, TPs = true positives, and FPs = false positives
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TABLE 4. Analysis of false negatives.

Nr. Search strategies (n = 139) n %

Missing conjugations of drug-induced 3 2.2

allergy 0 0.0

side-effect 3 2.2

intolerance 0 0.0

reaction 0 0.0

toxicity 0 0.0

S1 Potential improvement: using keywords implying ADRs 6 4.4

> 16 characters between the preposition and drug name 2 1.4

Missing synonyms for drug names 44 31.7

Missing abbreviations 6 4.3

Missing prepositions 2 1.4

DD 3 2.2

S2 Potential improvement: using prepositions followed closely* by a drug group*, a generic 
drug name, a drug brand, trade name or abbreviation a drug, or drug therapy***

57 41.0

S3  Potential improvement: in ADRs found in labeled allergy and anaphylaxis forms 0 0.0

Specific missing complication fields 3 2.2

S4 Potential improvement: Content of complication registration containing key field  
drug-induced

3 2.2

S5 Potential improvement: found in ADR module 0 0.0

MedDRA + drug name 3 2.2

Drug name + MedDRA 24 17.3

Missing synonym of MedDRA term 2 1.4

aS6 Opportunity for additional strategy: MedDRA term mentioned in text combined with 
drug name****

29 20.9

Cannot tolerate 2 1.6

aS7 Opportunity for additional strategy: Abbreviations of cannot tolerate 2 1.6

No obvious additional strategy + 42 30.2

* The maximum number of characters between the preposition and drug was 16.
** Drug group names used were based on the ATC therapeutic subgroup, pharmacological subgroup, chemical 
subgroup, or chemical substance (i.e., 2nd to 5th levels of ATC main groups classified by WHO)
The maximum number of characters, i.e., proximity, between a preposition and drug name was set at sixteen.
**** MedDRA term and drug name are mentioned within 16 characters of each other
+ No simple rule-based strategy was thought of to identify these ADRs
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STAGE II - ANALYSIS OF RULE-BASED EHR STRATEGIES
Table 5 presents the TPs, FPs, and PPVs for the different search strategies including their 

stratifications. The total TPs per strategy is higher than the number of unique ADRs that 

were correctly identified using multiple search strategies. The rule based-model correctly 

identified 179 unique ADRs. Of these 179 ADRs, 159 were identified using only one strategy, 

19 were identified using two strategies (S2 with + S1 drug-induced n = 7; S2 with + S2 various 

n = 7; S1 drug-induced + S2 of n = 2; S2 by + S2 of n = 2; ; S1 drug-induced + S1 allergy n = 1), 

and four were identified using three strategies (S1 drug-induced + S1 toxicity + S2 of n = 2; S1 

allergy + S1 reaction + S2 on n = 1; S2 by + S2 with + S2b a.c.o. n = 1), which adds-up to 206 

true positive identifications. 

Overall the search strategy using prepositions followed by a drug name or group (S2) 

accounted for 62% (n=125) of the identified ADRs, while using keywords (S1) accounted for 

35% (n=72), and only 3% (n=6) were identified using the ADR module (S5). Within S1 the 

most effective keyword was toxicity (PPV of 93%) which identified 6% (n = 13) of the ADRs. 

Less effective, although with a higher yield, were the keywords drug-induced (PPV 80%,  

n = 20) and side-effect (PPV 68%, n = 21). Within S2, the preposition with the highest yield 

was with (46 TPs, PPV 32%). The term based on had a PPV of 100%, although it identified 

only two ADRs. The FPs related to S2 were responsible for 74% of the total ADRs, followed 

by words forming abbreviations of allergy (21%, n = 80). Naranjo causality score and SmPC 

reference did not markedly increase or decrease the sensitivity of the rule-based review, 

nor did the system organ class on which the ADR had effect or the type of medication. 

However, ADR potential seriousness increased the sensitivity to 67% (41/66) compared to 

55% (138/252) for non-serious ADRs. 

STAGE II – FALSE-NEGATIVES ANALYSIS
Table 4 shows the analysis and categorization of the false negatives (n=139). S2 accounted 

for most the of the false negatives, 41% (n=57). Within S2, abbreviations of drug names 

(31.7%, n=44) were the most common cause, missing abbreviations (4.3%, n=6) were 

the second most common cause. Other search strategies used S1 and S3 respectively 

accounted for six (4.3%) and three (2.2%) false negatives. Two additional strategies were 

uncovered from the analysis of the false negatives. The most promising additional strategy 

(aS6), being usage of MedDRA terms combined with drug names in close proximity to each 

other (16 characters), which would identify an additional 29 ADRs. The second additional 

strategy would be adding abbreviations of ‘can not tolerate’, adding an additional two 

positively identified ADRs. For 30.2% (n=38) of false negative ADRs, no simple rule-based 

identification strategies were uncovered. ADRs not mentioned in physician notes were less 

likely to be identified and were responsible for 44% (54/122) of the FNs. 
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DISCUSSION

This study describes the first steps in the development of an automated tool for identifying 

ADRs using free-text in hospital EHRs. To our knowledge, this is the first study describing 

strategies to identify ADRs from a hospital EHR, using all types of free-text EHR notes 

and including all types of ADRs. Furthermore, it is the first to consider the causality of the 

potential ADRs. During stage I, the manual review of ten EHRs, two promising strategies 

were identified: keywords indicating an ADR and specific prepositions followed closely 

by medication names. In stage II, 45 complete EHR histories were manually reviewed and 

compared to strategies built into a rule-based model. Despite the early development stage, 

the rule-based model achieved a sensitivity of 57% and a PPV of 32%. Analysis of the FNs 

revealed that S1 as well as S2 could potentially be significantly further improved. 

Studies of previous ADRs involving hospitalizations have demonstrated that each 

patient handover is accompanied by information loss, particularly during handovers from 

hospitals to primary care 22,42. This study supports these findings within the same hospital 

and EHR setting. In 32% of cases, no reference was found in physician notes to ADRs 

recorded by nurses, pharmacy technicians, pharmacists, or other healthcare professionals. 

These findings also support the hypothesis that focusing on specific EHR notes only partially 

identifies previous ADRs. Moreover, only 2% of the ADRs had a structured registration, 

enabling CDS system alerting. Recurrency of ADRs was common: 17 of the 45 patients 

studied experienced a reADR, and one patient had three recurrences. One of these reADRs 

resulted in an acute hypersensitivity reaction due to unintended represcription, during 

hospitalization. While not formally assessed, at least 10% of the ADRs appeared to have 

been preventable, with a warning during represcription.

Analysis of the FNs revealed possibilities for fine-tuning discovered strategies, such as 

extending the library of synonyms and abbreviated medication names. However, the analysis 

also revealed that additional strategies are needed to achieve the desired sensitivity. An 

obvious strategy would be to include symptoms and side-effects followed or preceded 

by medication names. While powerful, this strategy may be prone to falsely identifying 

disease symptoms as an ADR. Moreover, although an extensive, coded database of ADRs 

was readily available, many of the ADRs were either misspelled, abbreviated, or described 

in such a way that they were not readily identified in the MedDRA database. As with the 

G-standard medication database used in the developed tool, the MedDRA database will 

require extension to include frequently used synonyms and abbreviations. The FP analysis 

demonstrated that natural language processing techniques are required to understand 

the context of trigger words, for example, recognizing when effects are considered positive 

(e.g., hypernatremia resolved after starting hydrochlorothiazide). However, several simple 

modifications could potentially significantly reduce FPs. The first would be to extend the 

library of disregarded text strings; this could reduce the number of FPs resulting from the 
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trigger word allergy in particular. Secondly, medicine names or abbreviations thereof must 

be screened to identify those having additional meanings.

One of the limitations of the study methodology was that the identification strategies 

were based on EHRs originating from a single hospital, using one EHR system, while language 

use may differ between hospitals and regions. Furthermore, only EHRs of patients were 

included recently hospitalized to a ward focusing on internal medicine. The language used 

by healthcare professionals may vary according to their specialisms. Scanned documents 

were discarded, thereby potentially missing ADRs, particularly since referral letters often 

contain ADR information. These limitations may have resulted in a failure to discover key 

identification strategies and an overestimation of the rule’s performance. Nevertheless, the 

EHR history contained notes from ambulant visits and hospitalizations related to several 

medical specialisms (n = 12), and the ADRs were recorded by a large number of diverse 

healthcare professionals (n = 206). The Naranjo algorithm was used to assess causality of 

the ADRs. There is however much debate on the reliability of this and other algorithms to 

assess causality, this because of problems with reproducibility and validity. However, ‘no 

method is universally accepted for causality assessment of ADRs’.43 The Naranjo algorithm 

was chosen as it is still the preferred method for causality assessment in the Netherlands 

by pharmacovigilance authorities and healthcare professionals. At least possible (equal 

or higher than zero) ADRs were included. It could be argued that only a score of equal or 

higher than five or even equal or higher than nine should be used for inclusion. However, 

the primary aim of the study was to discover strategies identifying EHR notes possibly 

containing ADRs, for this purpose it is useful to include all possible ADRs. Excluding type 

E-F ADRs could be seen as a limitation. Current CDS systems however, would not be able to 

generate alerts on E and F type ADRs. 

The first step to further develop the tool would be to translate the search strategies 

and logic to programming more suitable for natural language processing (e.g., Python or R). 

This process would also create the possibility to add fuzzy logic and use artificial intelligence 

techniques such as machine learning. The developed rule-based model retrieved items 

of text referring to ADRs. However, it did not extract and code the ADRs and associated 

medication, which would be required to avoid duplicating identified ADRs and essential 

before feeding ADRs back to the EHR for use in a CDS system. Therefore, the second step 

would be to automatically extract and code the ADRs from the identified text strings. Also, 

for a tool to fully utilize all available free-text in the EHR, optical character recognition 

software must be considered before processing the text. At the back end of the tool, a CDS 

system could be used to extract valuable information to contextualize the retrieved ADR. 

For example, if the tool returns hypernatremia due to diuretic, the CDS system can retrieve 

the specific medication and dose used from the CPOE. After such developments, the tool 

should be tested on a different hospital EHR to study the generalizability and usability of 

the tool.
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Using ADRs registered in free-text as input for CDS system to alert physicians would 

be a considerable advance to reduce the number unintended represcriptions. It is however 

important to consider that there is also an overall under-reporting of ADRs by healthcare 

professionals44, therefore the implementation of tools to detect ADRs from free-text will 

never solve the entire problem. Considerable attention should therefore also be given to 

directly improve ADR registration by patients as well as healthcare professionals. Education 

and electronic reminders can help to improve the feeling of support from social environment 

and recognition of the importance of correct ADR registration.45,46 Also, improving EHR 

systems in such a way to make it easier and less time consuming to properly register an 

ADR can markedly improve registration.47 Introducing patient self-reporting within the EHR 

patient portal would possibly also increase the number of ADRs registered.48

CONCLUSION

Two key strategies were developed to identify ADRs from free-text in a hospital EHR. These 

strategies show promise, warranting further study and the development of a tool to alert 

healthcare professionals to previously experienced ADRs. 

SUPPLEMENTARY MATERIALS

Supplementary materials can be found at: 

https://bpspubs.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fbcp.1

5068&file=bcp15068-sup-0001-supporting+information.docx 

Or by scanning the QR code:
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ABSTRACT 

BACKGROUND
Administering medication through an enteral feeding tube is a frequent cause of errors 

resulting in increased morbidity and cost. Studies on interventions to prevent these errors 

in hospitalized patients, however, are limited. Objective: To study the effect of a clinical 

decision support (CDS system) system assisted pharmacy intervention on the incidence of 

feeding tube-related medication errors (FTRMEs) in hospitalized patients. 

METHODS
A pre–post intervention study was conducted between October 2014 and May 2015 in the 

Catharina Hospital, the Netherlands. Patients admitted to the wards of bowel and liver 

disease, oncology, or neurology, using oral medication and had an enteral feeding tube were 

included. Pre-intervention patients were given care as usual. The intervention consisted of 

implementing a CDS system assisted pharmacy check while also implementing standard 

operating procedures and educating personnel. An FTRME was defined as the admini

stration of inappropriate medication through an enteral feeding tube. The incidence was 

expressed as the number of FTRME per medication administration. Multivariate Poisson 

regression was used to calculate the incidence ratio (IR) comparing both phases. 

RESULTS
Eighty-one patients were included, 38 during pre-intervention and 43 during intervention 

phase. Incidence of FTRMEs in the pre-intervention phase was 0.15 (95% confidence interval 

(CI) 0.07–0.23) versus 0.02 (CI 0.00–0.04) in the intervention phase, resulting in an adjusted 

IR of 0.13 (CI 0.10–0.18). Discussion: Incidence of FTRMEs as well as the IR are comparable to 

previous studies. 

CONCLUSION
The intervention resulted in a substantial reduction in the incidence of feeding tube-related 

medication errors.



Chapter 3.1

88

INTRODUCTION 

A substantial number of hospitalized patients are temporarily dependent on enteral feeding1  

and are unable to swallow medication.2 Liquid, transdermal, rectal, and even intravenous 

formulations are frequently unavailable or undesirable. As such, medication is frequently 

administered through the enteral feeding tube (FT). Previous studies demonstrated that 

incorrect administration of oral medication through a FT, like crushing formulations which 

may not be crushed, is a frequent cause of medication errors.2,3 Medication errors can 

result in obstruction of the FT3,4, resulting in increased morbidity5-7 and cost8. Such medi

cation errors can directly harm the patient 9-12 or constitute an health risk for medical 

personnel13,14.Various approaches have been studied to reduce the number of feeding tube-

related medication errors (FTRMEs). In one study performed in an institution for individuals 

with intellectual disability (n = 6; 245 administrations), introducing a nurse training program 

reduced the number of FTRMEs significantly by 70%.15 A comparable study performed in 

nursing home patients (n = 197; 681 administrations) added warning symbols on the unit 

dose for packaged and labelled medications, significantly reducing the number of FTRMEs 

by 85%.16 In hospitalized patients (n = 16; 183 administrations), adding standard operating 

procedures and daily ward visits by pharmacy technicians and alerting in the computerized 

physician order entry (CPOE) decreased the number of FTRMEs even further, by 93%.2

Using the Swiss cheese model17 to analyze the process of medication use in patients 

with a FT, it is striking to observe that in current practice, the nurse administrating the 

medication is often the only layer of security to prevent an FTRME, meaning that errors 

are symptoms of a flawed system. Welie et al. and Idzinga et al. focused on improving this 

security layer15,16, but this still preserves a single point of failure. Van den Bemt et al. added 

two additional layers of security; however, it was at the expense of an increase in staffing,  

which could provide difficulties in scaling up.2 Additionally, independently of the chosen 

approach, nurses and physicians were still responsible for choosing an appropriate alter

native while frequently unaware that altering formulation may require a dose adjustment, a 

change in frequency of administration, or therapeutic drug monitoring. 

A new security layer was developed, designed to be scalable and without the need 

for additional staffing. This extra layer was designated the ‘clinical decision support (CDS) 

system assisted pharmacy check.’ The pharmacy check consisted of a pharmacy techni

cian autonomously switching medication to a liquid formulation, changing the route of 

administration, or outlining the correct administration method in the electronic admini

stration instruction based on a tailored CDS alert, making it suitable for oral as well as 

enteral administration. Added to this new component were components already known to 

be effective, including implementation of standard operating procedures and training of 

staff. The aim of the study was to evaluate the effect of the CDS system assisted pharmacy 

intervention on the incidence of potential FTRMEs in hospitalized patients.
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METHODS

SETTING, STUDY POPULATION, AND DESIGN
This pre–post intervention study was performed on three wards of the Catharina Hospital 

Eindhoven, a 700-bed teaching hospital in the Netherlands. The three wards were bowel 

and liver disease with 32 beds, oncology with 28 beds, and neurology with 31 beds. The 

hospital used CS-EZIS® (version 5.2, Chipsoft BV, Amsterdam) as its electronic health 

record (EHR) system. All relevant medical data were ordered and stored in this system, 

including medication and usage of FT. To provide medication-related clinical decision 

support, including decision support during the study, the hospital used a separate CDS 

system, being Gaston Pharma® (version 2.8.2.100, Gaston Medical®, Eindhoven). To provide 

pharmaceutical services for these three wards, three pharmaceutical technicians were 

available on workdays. Pharmaceutical services included medication review, medication 

distribution, and medication preparation. There was also one pharmacist on duty dividing 

their attention amongst all wards. 

Pre-intervention inclusion started October 2014 and lasted until December 2014. This 

was followed by a three-month period of the implementation of the CDS system assisted 

pharmacy intervention. The intervention focused on improving the medication process for 

patients with FT and consisted of implementing standard operating procedures, training of 

personnel, and the CDS system assisted pharmacy check. The intervention is described in 

more detail in the section on implementing the intervention. Inclusion for the intervention 

phase started March 2015 and ended May 2015. All patients on the respective wards who 

had a FT for more than 24 hours and were prescribed oral medication were included. 

Patients could be included in only one of the phases. Re-hospitalizations of patients during 

the same phase were cumulated and calculated as a single inclusion. Information on enteral 

feeding tube status was based on the paper ward lists collected from the respective wards, 

FT status from the EHR was also collected, but was found to be incomplete. The ward 

list stated basic patient information such as name, patient number, reason of admission, 

comorbidities important for nursing, frequency of checking vital signs, mobility of the 

patient, enteral feeding tube type and amount of feeding, ‘Do Not Reanimate’ (DNR) code, 

particularities to medication. Figure S1 shows an example of such a ward list. The total of 

registered enteral feeding tube days was equal to the sum of days that the enteral feeding 

tube was mentioned on that ward list. General patient characteristics, tube characteristics, 

medication orders, and medication administrations were extracted from the EHR. When 

medication was listed as ‘when necessary’ or ‘pro re nata’ (p.r.n.). in the EHR and was not 

“checked” as being administered or “checked” to be unnecessary by a nurse, it was counted 

as a medication administration. The study was approved by the local medical ethics 

committee.
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PRE-INTERVENTION PHASE
During the pre-intervention phase, care was provided as usual. The medication process for 

patients with a FT during this phase is graphically represented in figure 1 on the left side. 

During the day, the nurse informed the pharmacy technician if a FT was placed. When in

formed, the pharmacy technician manually checked each medication order, using a local 

protocol, comparing the medication to a list of crushable medication. When the medication 

was not on the list of crushable medication, the pharmacy technician contacted the 

pharmacist. Subsequently, the pharmacist contacted the physician to discuss alternatives. 

The physician was eventually responsible for changing the medication order. After hours, 

the nurses themselves were responsible for manually checking each medication order, 

using the list of crushable medication, before administering medication. If the medication 

was not on the list, the nurse could consult the pharmacist.

 

FIGURE 1. Graphical representation of the daytime medication process in the pre-intervention and 
intervention phases. The four steps correspond to the EN use process as presented in Boullata et al. and 
the medication use process.18 On the right side in grey the components of the intervention. The icon of a 
document represents a manual check of medication using local protocol. The icon of a monitor with an 
alert icon and turning gears represents the CDS system with specific alerts. The telephone icon represents 
a telephonic consultation. 

IMPLEMENTATION OF THE INTERVENTION
The intervention comprised implementing standard operating procedures on medication 

administration through a FT, training of pharmacy technicians and nurses on the subject, 

and implementing a CDS system assisted pharmacy check. The standard operating pro

cedures and training were based on ASPEN recommendations and results from previous 

studies2,15,16,18. The input and recommendations for the CDS system were based on local 

guidelines and the Dutch Oralia VTGM database19. The recommendation on medication 

formulation was, if relevant to the recommendation, tailored to type, material and position 
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of distal tip of enteral feeding tube. Additionally, an expert team evaluated the medication 

orders of the included patients in the pre-intervention phase to identify common FTRMEs 

and formulate specific recommendations. These were used to improve the CDS system 

content and alerts. Details on the expert team are provided further on. 

INTERVENTION PHASE
The process during the intervention phase is graphically represented at the right side of 

figure 1. The CDS system assisted pharmacy check consisted of the CDS system generating 

tailored alerts for each patient and the pharmacy technician evaluating these alerts and 

acting accordingly. The CDS system generated alerts if one of two following conditions were 

met: (1) an enteral feeding tube was electronically ordered in the previous 24 hours and non-

crushable medication was used or if the medication used was not part of the CDS system 

database, (2) when inappropriate medication was ordered in the previous 24 hours for a 

patient with a enteral feeding tube. The CDS system alert text started with information on 

type, position of distal tip and date and time of placement of the FT. This was followed by 

a table with tailored recommendations for the most encountered incorrectly prescribed 

medication. Moreover, the alert consisted of a list of medications with no specific 

recommendation, so the pharmacy technician had to check these medication orders 

manually making use of the Oralia VTGM database.19 An example of a CDS system alert is 

shown in figure S2. Alerts were generated once daily between 06:00 and 06:30. Between 

09:00 and 13:00 of the same day, the alerts were evaluated by the pharmacy technicians. The 

pharmacy technicians autonomously adjusted medication orders according to the alerts 

generated by the CDS system. All adjustments were double checked by another pharmacy 

technician and later by a pharmacist. If the medication order other than formulation and/

or frequency of administration needed to be adjusted, the pharmacy technician contacted 

the pharmacist. The pharmacist called the physician and advised on alternatives and/or 

necessary therapeutic drug monitoring. 

PRIMARY OUTCOME MEASURE
The primary outcome measure of the study was the number of FTRMEs per medication 

administration. 

FEEDING TUBE-RELATED MEDICATION ERRORS
An FTRME was defined as the administration of unsuitable medication through a FT. Un

suitable being all medication formulations, according to Dutch Oralia VTGM database, which 

cannot be safely administered through a FT with or without modification of medication 

formulation, taking into account FT diameter, FT material and position of distal tip. 

Medication prescribed orally, given enterally was not considered a FTRME as the CPOE 

does not provide a possibility to choose enteral administration route. The FTRMEs were 
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categorized in three groups: errors leading to increased toxicity or decreased effectivity, 

errors leading to increased risk to medical personnel, or errors leading to increased risk 

of tube obstruction. Medication with an enteric-coated formulation, a modified-release 

formulation, or a liquid-filled hard capsule formulation were categorized as errors leading to 

increased toxicity or decreased effectivity. Hazardous medication that led to increased risk 

for medical personnel were subcategorized into one of four categories: immunosuppressing, 

cytotoxic, sensitizing, and a residual category for otherwise harmful medicine. Medication 

described or known to increase risk of FT obstruction, not falling in the previous categories 

was classified as: errors leading to increased risk of tube obstruction.

In addition to groups based on risk, FTRMEs were also classified as being easily pre

ventable or hard to prevent. Easily preventable errors were FTRMEs that had one of the 

following alternatives: liquid or dispersible formulation suitable for enteral administration, 

normal release formulations without coating known to be suitable for enteral administration, 

alternate route of administration (rectal or transdermal), or an available therapeutic 

alternative. Medication lists for all included patients were evaluated by an expert team to 

determine to presence and category of an FTRME based on the aforementioned criteria, 

no observations of medication preparation or enteral administration were performed 

as part of the study. The expert team consisted of two senior hospital pharmacists, a 

nurse specializing in enteral tube feeding and a dietician specializing in enteral nutrition. 

Evaluation of the medication lists was done independently by each expert. Differences in 

evaluation were discussed in a plenary meeting were consensus was required to mark an 

administration as FTRME.

DATA ANALYSIS
Patient characteristics were compared using the χ2 test for differences in proportions, 

a t-test for differences in means, and a Mann–Whitney U test to compare medians. 

The incidence was calculated as the number of FTRMEs per medication administration. 

A multivariate Poisson regression was used to compare the incidence ratios (IRs) of the 

FTRMEs between both phases. Poisson distribution assumes that the number of events 

has a fixed time interval, occur at random, occur independently in time, and occur at a 

constant rate. Because these assumptions were not necessarily true for this study, the 

number of administrations, the number of days at risk, feeding tube days, and the number 

of unique drugs were tested as covariates to compensate for possible distortions in Poisson 

distribution. Forward selection was used to include variables in the multivariate model. If 

a covariate had p < 0.05 in the forward selection and final model, it was included in the 

multivariate analysis. Statistical analyses were performed using SPSS (IBM SPSS® statistics 

version 25).
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RESULTS

Eighty-one patients were included in the study, 38 during pre-intervention and 43 in the 

intervention phase. Overall, of the included patients, 25 were admitted to the bowel and 

liver disease ward, 29 to the oncology ward, and 27 to the neurology ward. Table 1 shows 

the patient characteristics. There were no significant differences in any of the patient 

characteristics between the two phases. Patients included into the study had a mean age 

of 67.5 years. They were hospitalized for a median of 13 days (interquartile range (IQR) 15 

days) and used a mean of 10.8 unique medications (standard deviation (SD) 5.8) with a 

median of 36.5 oral medication administrations (IQR 70). It is worth mentioning that the 

ward list did not specify were the enteral feeding tube ended in the gastro-intestinal (GI) 

tract in more than 50% of the patients. 

TABLE 1. Comparison of patient characteristics before and after intervention.

Variable
Pre-intervention 

n = 38
Intervention 

n = 43 p-value

	 Mean age in years (SD) 68.7 (13.8) 66.4 (15.0) 0.47b

	 Median hospitalization in days (IQR) 15 (12) 12 (18) 0.87c

Gender (%)

	 Male 26 (68.4) 26 (60.5) 0.56a

	 Female 12 (31.6) 17 (39.6)

Ward (%)

	 Bowel and liver disease 11 (28.9) 14 (32.6) 0.81a

	 Oncology 15 (39.5) 14 (32.6)

	 Neurology 12 (31.6) 15 (34.9)

Medication

	 Mean number of unique oral medication used (SD) 11.1 (5.7) 10.6 (5.9) 0.70b

	� Median number of oral medication administrations per patient 
(IQR)*

36.5 (56) 31 (74) 0.63C

Enteral feeding tube

	 Median number of enteral feeding tube days (IQR) 4 (5) 4  (6) 0.71c

Type of enteral feeding tube, n** (%)

	 Nasogastric 8 (21.1) 6 (14.0) 0.26a

	 Nasoduodenal 5 (13.2) 2 (4.7)

	 PEG gastric/duodenal 2 (5.3) 4 (9.3)

	 PEG-J 3 (7.9) 5 (11.6)

	 Triple lumen*** 0 (0.0) 4 (9.3)

	 Unspecified 20 (52.6) 22 (51.2)

Patient characteristics are shown for unique patients, hospitalized to the ward of bowel and liver diseases, 
oncology, or neurology in the period 27-10-2014 to 15-05-2015 with a least one day of enteral tube feeding as 
registered by the nursing staff on the ward list. 
 a Chi-square test; b Unpaired two-sample t-test; c Mann–Whitney U-test
SD, standard deviation; M, median; IQR, interquartile range. 
* Median number of oral medication administrations per patient included after hours administrations
**As stated on ward list
*** Three lumen dual-purpose air-vented assisted gastric aspiration and post–ligament of Treitz enteral
feeding tube20 
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In the pre-intervention phase, there were 274 FTRMEs in 209 person days with 2,232 

administrations, IR was 0.153 FTMREs per administration (95% confidence interval (CI) 

0.07–0.23). In the intervention phase, there were 39 FTRMEs in 233 person days with 2,273 

administrations, IR 0.02 FTMRE per administration (CI 0.00–0.04). Univariate comparison 

of both IRs shows a significant difference in the number of FTRMEs. At least one FTRME 

occurred in 66% of the included patients pre-intervention compared to 12% in the 

intervention phase. Of the 39 FTRMEs in the intervention phase, 37 were due to human error 

by the pharmacy technician overlooking a part of the CDS system recommendation. The 

remaining two FTRMEs were due a technical error in which the CDS system did not generate 

a new alert when a patient with an enteral feeding tube in situ was transferred from a ward 

not participating in the study to one of the study wards. 

Table 2 shows the results from the multivariate Poisson regression comparing the 

incidence ratios. There was a clear and significant reduction comparing the two phases, 

the incidence ratio (IR) being 0.128 (0.092–0.179), using pre-intervention phase as reference 

group, p < 0.001. The three covariates identified to contribute to the model are also shown 

in table 2. It is interesting to observe that the number of administrations and number 

of unique medications used were independently associated with the risk of a FTRME. 

Univariate Poisson analysis and single covariates are shown in table S1.

TABLE 2. Multivariate Poisson regression comparing FTRMEs in the intervention phase to pre-intervention.

Variable
IRR*
EXP(B)

95% CI
(lower–upper) p-value

Number of feeding tube-related medication errors 0.143 (0.102–0.200) <0.001

Covariates

	 Number of administrations 1.006 (1.005–1.008) <0.001

	 Number of unique medications used 1.076 (1.051–1.101) <0.001

	 Ward 1.865 (1.583–2.198) <0.001

Multivariate Poisson regression is shown comparing feeding tube-related medication errors in the intervention 
phase compared to the pre-intervention, which is the reference population. The bottom part shows all included 
covariates including their part in the calculated incidence ratio. Covariates were included into the analysis having 
a p < 0.05 when separately tested and p < 0.05 when tested in a single model.

* Pre-intervention being the reference population
IR: incidence ratio; 95% CI: 95% confidence interval; Exp: expected count
FTRME: feeding tube-related medication errors
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Table 3 shows the distribution of the different types of feeding tube-related medica

tion errors. Most errors, 70% pre-intervention and 90% during the intervention phase, were 

those that led directly to increased toxicity or decreased effectivity. Within this group, the 

most common types of errors were crushing medication with an enteric coating, 32% pre-

intervention and 8% during intervention phase, and crushing medication with a modified-

release formulation, at 31% percent pre-intervention and 69% during the intervention phase. 

Errors leading to increased risk to medical personnel were the cause of FTRMEs comprised 

18% of pre-intervention errors and were nonexistent during the intervention phase. 

TABLE 3. Type of feeding tube-related medication errors.

Distribution in categories of FTRMEs
Pre-intervention 
(patients = 38) 

Post-intervention 
(patients = 43)

n % n %

Total FTRMEs 274 (100) 39 (100)

Errors leading to increased toxicity or decreased effectivity 191 (70) 35 (90)

	 Enteric-coated formulation 88 (32) 8 (21)

	 Modified-release formulation 83b (31)b 27a (69)a

	 Liquid-filled hard capsule formulation+ 20 (7) 0 (0)

Errors leading to increased risk for medical personnel 49 (18) 0 (0)

	 Oral chemotherapy 12 (4) 0 (0)

	 Immunosuppressants 0 (0) 0a (0)a

	 Sensitizing medication 35 (13) 0 (0)

	 Other 2b (1)b 0 (0)

Errors leading to increased risk of tube obstruction 34 (12) 4 (10)

The table shows the different categories of feeding tube-related medication errors for both phases.  
Major categories are shown as rows with grey filling and bold font and together sum to 100%. Subcategories are 
shown in white rows and together count up to the major categories. 
+ Liquid-filled hard capsule formulation not suitable for administration through an enteral feeding tube, not falling 
apart in water, and having considerable loss when sucked up with a needle.
a There were six administrations of immunosuppressant, modified-release tacrolimus, which were included into 
the category errors leading to increase toxicity or decreased effectivity and subcategory modified-release instead 
of errors leading to increased risk for medical personnel and subcategory immunosuppressants. 
b There was one administration of dutasteride/tamsulosin modified-release that was included into the category 
errors leading to increase toxicity or decreased effectivity and subcategory modified-release instead of errors 
leading to increased risk for medical personnel and subcategory other. 
FTRME: feeding tube-related medication errors

During the pre-intervention phase, 91% of the of the FTRMEs were easily preventable; 

during the intervention phase it was 90%. Forty-two percent (42%) of the FTRME were 

preventable because of the availability of a liquid or dispersible alternative; during the 

intervention phase, this was 76%. In 32% of the cases pre-intervention, choosing a 

therapeutic alternative, such as switching pantoprazol to esomeprazole, would have 

prevented an FTRME; during intervention, this was 20%. Another 14% was preventable by 

switching modified-release preparations to regular tablets given more frequently. In 3% of 

the cases, a transdermal alternative was available. 
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DISCUSSION

PRINCIPAL FINDINGS
This study demonstrated that a CDS system assisted pharmacy intervention resulted in an 

87.2% reduction of FTRMEs in hospitalized patients. This FTRME reduction was achieved 

without additional staffing and is thought to be sustainable because of the additional layer 

of security provided by active alerting using an automated system. The pre-intervention 

incidence in the study was 1.34 FTMREs/person day showing that nurses are insufficiently 

aware that much medication may not be crushed whilst in over 90% of the cases alternatives 

were readily available. Seventy percent of the errors had the potential to directly harm the 

patient because of increased toxicity; crushing of short-acting beta-blockers, short-acting 

calcium antagonists, nitrates, opioids, and anti-epileptics; or loss of effectivity. 

IMPLICATIONS
The results from this study combined with previous research indicates the necessity for 

each hospital to have a program to reduce the number of feeding tube-related medication 

errors. Computerized support could provide an answer for staffing issues as well as relieve 

pressure on nurses to find correct ways of administering medicine through an enteral 

feeding tube. 

COMPARISON TO OTHER STUDIES
The baseline IR of 0.15 FTRMEs per medication administration is comparable to previous 

studies, 0.26 in hospitalized patients and 0.04 in nursing home patients2,16. The reduction 

of 87.2% in FTRME is also in line with previous studies having reported reductions of 70%15, 

85%16, and 93%2. Although a comparable IR and reduction were found, it is important to 

consider that these results were purely based on a reduction of unsuitable medication 

choice and did not take into account administration errors such as not flushing the 

enteral feeding tube before and after administration, thus making it likely that there was 

an underestimation of true FTRME incidence in this study. Van den Bemt et al. added two 

additional layers of security; however, it was at the expense of an increase in staffing, which 

could provide difficulties in scaling up.2

LIMITATIONS
One of the limitations of the study is the chosen design. An RCT design or a time series analysis 

would have ruled out bias due to different patient characteristics and time trends. However, 

no differences were identified in respect to patient characteristics, making selection bias 

unlikely. Moreover, pre-intervention and intervention period were in short succession, 

making a time trend also unlikely. Additionally, the measured effect was very substantial and 

in line with the effect measured in previous studies2,3,15,16. In over half the patients, FT entry 
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point, position of distal tip and diameter of the FT was not recorded on the ward list or in 

the EHR. While this made FTRME estimation more difficult, if an administration was judged 

to be an FTRME the chosen medication formulation was unsuitable for types and endings 

of FT. In contradiction to ASPEN recommendations, all medication was prescribed orally 

and physician was not alerted during prescribing that medication might be administered 

through a FT. Another limitation of the study was that it was performed in a single center 

with a specific CDS system, which may restrict the generalizability of the results. Current 

intervention also did not change the enteral use process starting after hours. 

CURRENT PRACTICE AND FUTURE CONSIDERATIONS
Despite the sizable reduction in FTRMEs, 37 errors were made during the intervention phase. 

All of these were attributable to human error, such as a pharmacy technician overlooking a 

suggested substitution and the nurse not being alarmed by crushing a modified-release or 

enteric-coated formulation. To overcome these errors, a second evaluation of all alerts by a 

second pharmacy technician has become part of the standard operating procedures. Since 

study ending the CDS system assisted pharmacy intervention has become part of routine 

care for all wards, seven days a week. To aid nurses after hours, a nurse and mobile friendly 

version of the Dutch Oralia VTGM database has been made available. During the study, 

in over half the patients FT registration in the EHR and on the ward list lacked important 

aspects of the FT. Knowing all aspects of the FT however is crucial to safely choose, prepare 

and administer medication enterally. Moreover, it is also vital to generate the correct CDS 

system recommendations. Therefore, additional attention should be given during training 

to record all FT aspects correctly. Analysis of alerts and comments revealed that further 

improvements to the FT clinical rule were possible, such as extending the number of specific 

recommendations, which would reduce the time needed to handle the alerts.

CONCLUSION

The incidence of feeding tube-related medication errors can be substantially reduced by 

a CDS system assisted pharmacy intervention, consisting of implementation of standard 

operating procedures, training of personnel, and a CDS system assisted pharmacy check. 
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SUPPLEMENTARY MATERIALS

Supplementary materials can be found at: 

https://aspenjournals.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%

2Fjpen.1869&file=jpen1869-sup-0001-SuppMat.docx 

Or by scanning the QR code:
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ABSTRACT

WHAT IS KNOWN AND OBJECTIVE
Physicians’ response to moderate and severe hypokalemia in hospitalized patients is 

frequently suboptimal, leading to increased risk of cardiac arrhythmias and sudden death. 

While actively alerting physicians on all critical care values using telephone or electronic 

pop-ups can improve response, it can also lead to alert fatigue and frustration due to 

nonspecific and overdue alerts. Therefore, a new method was tested. A clinical rule built 

into a clinical decision support (CDS) system generated alerts for patients with a serum 

potassium level (SPL) <2.9 mmol/L without a prescription for potassium supplementation. 

If the alert was deemed clinically relevant, a pharmacist contacted the physician. The aim of 

this study was to evaluate the impact of the clinical rule-guided pharmacists’ intervention 

compared to showing passive alerts in the electronic health records on outcome in patients 

who developed hypokalemia (<2.9 mmol/L) during hospitalization.

METHODS
A before (2007-2009) and after (2010-2017) study with time series design was performed. 

Pre-intervention, physicians were shown passive alerts for hypokalemia in the electronic 

health records. During the intervention period, in addition to these passive alerts, a 

pharmacist provided the physician with a specific advice on patients with untreated 

hypokalemia, guided by the generated alerts. Unique patients >18 years with SPL <2.9 mmol/L 

measured at least 24 h after hospitalization in whom no potassium supplementation 

was initiated within 4 h after measurement and normalization of SPL was not achieved 

within these 4 h, were included. Hemodialysis patients were excluded. The percentage of 

hypokalemic patients with a subsequent prescription for potassium supplementation, 

time to subsequent potassium supplementation prescription, the percentage of patients 

who achieved normokalemia (SPL ≥3.0 mmol/L), time to achieve normokalemia, and total 

duration of hospitalization were compared.

RESULTS AND DISCUSSION
Six hundred ninety-three patients were included, of whom 278 participated in the inter

vention phase. The percentage of patients prescribed supplementation as well as time to 

prescription improved from 76.0% in 31.1 h to 92.0% in 11.3 h (p <0.01). Time to achieve 

SPL ≥3.0 mmol/L improved, p <0.009. No changes, however, were observed in percentage 

of patients who achieved normokalemia or time to reach normokalemia, 87.5% in 65.2 h 

pre-intervention compared to 90.2%, (p =0.69) in 64.0 h (p =0.71) in the intervention group. 

A non-significant decrease of 8.2 days was observed in duration of hospitalization: 25.4 

compared to 17.2 days (p =0.29).
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WHAT IS NEW AND CONCLUSION
Combining CDS system alerting with a pharmacist evaluation is an effective method to 

improve response rate, time to supplementation, and time to initial improvement, defined 

as SPL ≥3.0 mmol/L. However, it showed no significant effect on percentage of patients 

achieving normokalemia, time to normokalemia, or hospitalization. The discrepancy 

between rapid supplementation and improvement on the one hand and failure to improve 

time to normokalemia on the other warrants further study.
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BACKGROUND AND SIGNIFICANCE

Hypokalemia is one of the most frequently occurring electrolyte disturbances in hospitalized 

patients, with a reported prevalence as high as 20%.1-4 In contrast to milder hypokalemias 

(3.4-2.9 mmol/L) which do not always require immediate treatment, hypokalemias below 

2.9 mmol/L are independently associated with an increased mortality5, requiring immediate 

action, especially in patients with pre-existing cardiac disease.6-13 Initial corrective action 

is simple, consisting of potassium supplementation. Thereafter, treatment of underlying 

causes is indicated, including cessation of drugs contributing to the hypokalemia.4,7,14,15

Several studies have shown suboptimal response to moderate and severe hypokalemia 

in hospitalized patients.1,10,16,17 A retrospective study performed in a population of 866 

hospitalized patients with hypokalemia <3.0 mmol/L reported that in 24% of the patients, no 

potassium supplementation was administered. Moreover, in 33% of these cases, no follow-

up testing of serum potassium level (SPL) was performed. Failure to initiate appropriate 

treatment led to failure in achieving normokalemia, prolonged hospital stay, and increased 

in-hospital mortality.17 A retrospective study that investigated prevalence and symptoms 

of hypokalemia in emergency department patients found that 45% of the 54 patients with 

SPL <2.5 mmol/L received no treatment during their stay in the emergency department.1

Several approaches have been studied to improve physicians’ response to critical 

laboratory values such as severe hypokalemia, including alerting physicians to critical 

laboratory values by phone18,19, by SMS20,21, and by computerized reminders or pop-ups 

within the electronic health record (EHR).22-24 Such interventions have been shown to 

improve physicians’ response time to prescribe potassium supplementation18,19,24, increase 

the percentage of patients on whom follow-up SPL measurement was performed17, 

decrease time to mild hypokalemia or normal potassium status22, increase percentage of 

patients reaching normokalemia during hospitalization17, and even decrease the duration of 

hospitalization.22 

While computerized active alerting of physicians on all critical laboratory results of 

hospitalized patients has been shown to be effective in improving physicians response, 

there is also a downside to solely using automated alerts. Most alerts do not provide 

tailored advice, and can frequently lead to inadequate follow-up action.17,25 One study even 

found a delay in time to normalization of critical care results.23 Also, the increasing number 

of active alerts causes alert fatigue and frustration.20,26,27 Additionally, most studies showing 

a positive effect of active alerting using automated reminders on patient outcome were 

conducted before the introduction of fully operational and widely accessible EHRs17,18,22, 

making these results difficult to extrapolate to current practice. An EHR integrating real-

time laboratory results enables physicians to easily and quickly access all results. Using a 

basic laboratory-assisting clinical decision support (CDS) system allows for passive alerting 

on critical laboratory results by highlighting them or placing them on a physicians’ worklist, 
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potentially increasing response rate and time without an active alerting method. Since 

2008, this was also the case in the Catharina Hospital. Introduction of the fully operational 

EHR however also led to an increased automated alerting and frustration to calls on 

critical care values that have already been acted upon. For that reason at the end of 2008, 

the medical board decided to cancel all forms of active automated alerts or telephonic 

consultations for critical care values of hospitalized patients. This decision, however, led to 

a significant delay in response time to critical care results for individual patients. Therefore, 

a new combination of CDS system and human evaluation was implemented. An EHR-

based clinical rule alert was evaluated on clinical relevance by a pharmacist. If the alert was 

deemed relevant, the pharmacist consulted the physician with specific advice. To test this 

approach, a series of clinical rules were designed and implemented to monitor response to 

critical care values. Hypokalemia was among the first in the series to be implemented and 

was chosen to be studied in further detail because reaction time and clinical impact could 

be measured directly. The aim of this study was to evaluate the effect of a clinical rule-

guided pharmacists’ intervention compared to passive alerts shown in the EHR on patient 

and process outcomes in hospitalized patients with untreated hypokalemia <2.9 mmol/L. 

METHODS

SETTING AND STUDY POPULATION
This before and after study with a time series design was performed in the Catharina 

Hospital Eindhoven (CZE), a 700-bed teaching hospital in the Netherlands. Patients over 

18 years of age who met the following criteria were included: hospitalized during the period 

of January 2007 to December 2016, having a reported SPL <2.9 mmol/L measured at least 

24 h after hospital admittance, no potassium supplementation initiated within 4 h after 

sampling, and normalization of SPL not established within 4 h. Patients, as well as instances 

of hypokalemia <2.9 mmol/L, were included only once. Hemodialysis patients were excluded. 

The hospital used CS-EZIS® (Chipsoft BV, Amsterdam) as its EHR and pharmacy information 

system; CS-EZIS® also provided basic decision support. Critically low laboratory values, 

including a SPL <2.9 mmol/L, were marked with a “–“ in bold red font next to the result. Online 

Appendix A shows an example of a critically low laboratory value displayed in the EHR. No 

other method to report critical laboratory values of hospitalized patients was operational. 

To generate the clinical rule-based alerts, the CDS system Gaston® (Gaston Medical BV, 

Eindhoven) was used. The CDS system was purchased in 2006 to develop and study a wide 

range of advanced decision support interventions including, but not limited to medication 

related interventions. Other clinical rules were already in use by the clinical pharmacy before 

implementing the hypokalemia rule, including renal function, opioid-laxative, and gastric 

protection. No additional training, standard operating procedures, or staffing were required 
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to implement the intervention, also there was no additional reimbursement to provide 

additional duties. Staff consisted of six to eight clinical pharmacists and three clinical 

pharmacists in training. Each day there was one pharmacist on clinical duty responsible 

for checking medication orders, decision support alerts and telephonic consultations for all 

hospitalized patients. Approval by the Institutional Review Board was not required for this 

retrospective study. 

DESIGN
The pre-intervention phase ran from January 2007 to December 2009, and the intervention 

phase ran from January 2010 to December 2016. Figure 1 shows a schematic representation 

of the study phases. During the pre-intervention phase, only passive alerts were shown in 

the laboratory section of the EHR. During the intervention phase, the hypokalemia clinical 

rule generated active alerts, shown to a pharmacist, on all hospitalized patients with 

hypokalemia <2.9 mmol/L in whom no potassium supplementation had been started in 

any form.

FIGURE 1. Schematic representation of the chronology of the study design including the alerts generated 
in both phases of the study.

SPL: serum potassium level, CDS: computerized decision support, EHR: electronic health record

*Alerts were reviewed by a pharmacist. If an alert was found to be potentially clinically relevant, the 
pharmacist consulted the physician and provided him or her with treatment advice.

Figure 1 provides a graphical representation of the clinical rule flow. The alerts genera

ted by the CDS system contained information on: time and result of last SPL, any drugs in 

use that might contribute to hypokalemia, advice to start oral or intravenous potassium 

supplementation depending on severity and symptoms, and advice to stop or decrease 

the dose of the potassium-lowering drugs if applicable. Online appendix C provides a 

screenshot of an alert provided by the clinical rule in the CDS system module. Alerts were 

generated once daily between 12:30 and 13:00. Between 13:00 and 17:00 on the same day, 

all of these alerts were reviewed for clinical relevance by a pharmacist. This review consisted 

of checking whether potassium supplementation had been prescribed in the meantime, 

whether SPL had improved in the meantime, additional SPL measurement was ordered in 
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the meantime and if treatment had been withdrawn in an end-of-life care situation. The 

advice given by the pharmacist consisted of one or more of the following: advice to start 

oral or intravenous potassium supplementation, advice to stop or decrease the dose of the 

potassium-lowering drugs, start or increase dose of potassium sparing diuretic, performing 

additional SPL measurement, performing an electrocardiogram (EKG) or switching IV fluid 

suppletion. A recommendation on potassium supplementation dose was only given on 

request. 

ENDPOINTS
The following endpoints included in earlier studies17-19,22,24 were included as endpoints in 

the current study: percentage of patients for whom treatment was started22, time until 

treatment start18,19,24, percentage of patients achieving normokalemia17,18,22, time until 

normokalemia18, and duration of hospitalization22. Percentage of patients achieving mild 

hypokalemia, defined as SPL ≥ 3.0 mmol/L, and time to achieve it were added as additional 

endpoints. These endpoints were added because they most directly reflect response to 

the intervention. In addition, supplementation of patients with an SPL ≥ 3.0 mmol/L is not 

directly associated with improved clinical outcomes. Response rate is calculated as the 

percentage of patients achieving a certain endpoint, and response time as the time until 

that endpoint is achieved. Taken together, these led to the following four primary endpoints, 

which were compared to assess the effect of the intervention:

1.	 prescription for potassium supplementation (a. percentage of patients and b. time to 

prescription);

2.	 mild hypokalemia, SPL ≥3.0 mmol/L (a. percentage of patients and b. time to achieve it);

3.	 normokalemia, SPL ≥3.5 mmol/L (a. percentage of patients and b. time to achieve it);

4.	 duration of hospitalization.

DATA ANALYSIS
To compare endpoints, a time series analysis was performed using segmented regression 

with inverse variance-weighted ratios per 12-month period.28,29 Only the first occurring 

instance of SPL <2.9 mmol/L was used for each patient. Regressions of the pre-intervention 

and intervention phases were also compared to the inverse variance-weighted ratios per 

12-month period of hospitalization duration of a control population consisting of patients 

admitted to the hospital in the same period without hypokalemia <2.9 mmol/L. Additional 

analysis was done to visualize the number datapoints throughout the study. A Durbin–

Watson test was performed to check for first-order auto-correlation on all regressions.30 

If first-order auto-correlation was detected, the Prais–Winsten method was used.31 

Statistical analyses were performed using SPSS for Windows, version 25.0.0 (SPSS, IBM, 

New York). Acceptance rate of the alerts was calculated dividing the number of potassium 



Clinical rule-guided pharmacists’ intervention in patients with hypokalemia

109

3.2

supplementation started after telephonic consultation the same day by the total number 

of telephonic consultations based on generated alerts.

RESULTS

INCLUSION AND EXCLUSION
During the study period there were 295,945 hospitalizations. Including only hospitaliza

tions of adult patients with a SPL <2.9 mmol/L left 3,622 (1,321 pre-intervention versus 

2,301 in the intervention phase) hospitalizations. Of these, 2,398 (924 pre-intervention 

versus 1,474 in the intervention phase) developed hypokalemia <2.9 mmol/L at least 24 h 

after hospitalization. Sixty-five (25 pre-intervention versus 40 in the intervention phase) 

patients were excluded based on hemodialysis. Potassium supplementation was already 

prescribed at the time of SPL sampling in 672 patients (262 pre-intervention versus 410 in 

the intervention phase) and within 4 h after sampling in 647 patients (189 pre-intervention 

versus 458 in the intervention phase); these patients were excluded as well. Another 55 

patients (20 pre-intervention versus 35 in the intervention phase) were excluded because 

normal SPL was measured within 4 h after initial sampling. Finally, including only unique 

patients left 913 eligible for inclusion: 415 patients from the pre-intervention phase and 278 

patients during the intervention phase. 

PATIENT CHARACTERISTICS
Table 1 shows the patient characteristics of participants included in the analysis. No 

differences were found in general patient characteristics between the two phases. Median 

time until first SPL measurement was significantly shorter in the intervention phase, 1.0 h 

compared to 3.1 h pre-intervention, p =0.003. Related to this, significantly fewer patients 

had no SPL measured within the first 24 h of hospitalization, 27.0% pre-intervention versus 

16.5% in the intervention phase, p =0.004. There was no statistical difference in drug related 

hypokalemia, 48.7% pre-intervention and 51.8% in the intervention phase, p =0.42. Loop 

diuretics accounted for the most instances of drug-related hypokalemia, 34.7% and 39.6% 

respectively also without a statistical difference between the two groups, p =0.19. 



Chapter 3.2

110

TABLE 1. Comparison of patient characteristics before and after intervention.

Variable Pre-intervention phase (n =415) Intervention phase (n = 278) P value

Mean age in years (sd) 67.9 (14.3) 69.0 (14.9) 0.20

Gender (%)

	 Male 161 (39) 106 (38) 0.86

	 Female 254 (61) 172 (62)

Treating specialty (%)

	 Cardiology 35 (8.4) 35 (12.6) 0.64$

	 Internal Medicine++ 122 (29.4) 87 (31.3)

	 Surgery+ 157 (37.8) 71 (25.5)

	 Intensive care 11 (2.6) 4 (1.4)

	 OBGYNUR+++ 32 (7.9) 37 (13.3)

	 Neurology 31 (7.4) 26 (9.4)

	 Pulmonology 24 (5.7) 14 (5.0)

	 Psychiatry 3 (0.7) 4 (1.4)

Onset of initial hypokalemia (%) *

	 At admission** 71 (17.1) 51 (18.3) 0.004$

	 During hospitalization 223 (55.9) 181 (65.2)

	 Unknown (measurement SPL >24h) 112 (27.0) 46 (16.5)

Median time to first SPL 
measurement (h)

3.1 Range
1,037.0

IQR
18.3

0.96 Range
165.4

IQR
18.3

0.003

Median of first measured SPL 
(mmol/L) 

3.8 Range
6.1

IQR
0.6

3.8 Range
4.9

IQR
0.7

0.58

Potentially drug-related hypokalemia 

	 Potentially drug-related (%) 202 (48.7) 144 (51.8) 0.42$

		  One drug 175 (86.6) 126 (87.5)

		  Two or more drugs 27 (13.4) 18 (12.5)

Causative drugs in use at time of event (% of total population)

	 Loop diuretic 144 (34.7) 110 (39.6) 0.19

	 Thiazide diuretic 69 (16.6) 41 (14.7) 0.51

	 Laxative 13 (3.1) 9 (3.2) 0.94

	 Polystyrene sulfonate 5 (1.2) 2 (0.7) 0.53

Hazardous drugs (%)

	 Digoxin 12 (2.9) 11 (4.0) 0.44

Patient characteristics are shown for unique patients over 18 years of age hospitalized in the period between 
January 2007 and December 2016 with a serum potassium level (SPL) <2.9 mmol/L more than 24 h after 
hospitalization, no potassium supplementation at or within 4 h after sampling, and no normalization of SPL within 
4 h.

+ Surgery includes departments of general surgery, cardiothoracic surgery, lung surgery, and orthopedic surgery
++Internal medicine includes departments of nephrology, gastrointestinal-and liver diseases, geriatrics, hematology, 
and oncology
+++OBGYNUR includes obstetrics, gynecology, and urology
*patients with a SPL <2.9 mmol/L at admission where not included, therefore at admission SPL was 2.9-3.5 
mmol/L
** SPL 2.9-3.5 mmol/L measured within 24 h after hospitalization
$ Chi-square test was used to test for difference in proportions
sd: standard deviation; IQR: interquartile range; SPL: serum potassium level
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ANALYSIS
Figure 2-6 show the time series analyses of the primary endpoints, including intercepts and 

slopes of all regressions. A significant increase was observed in the percentage of patients 

subsequently prescribed potassium supplementation, from 76.0% (CI 65.8–86.3%) in the 

pre-intervention to 92.0% (CI 86.4–97.7%) in the intervention phase, p =0.002. Moreover, 

time to potassium supplementation was reduced to 11.3 h (CI 5.5–16.9 h) compared to 31.1 

h (CI 20.7–41.4 h), p =0.009. The percentage of patients reaching mild hypokalemia, SPL 

≥3.0 mmol/L, during hospitalization did not change, 94.1% (CI 84.1–104.2%) pre-intervention 

compared to 95.8% (CI 90.2–101.3%), p =0.74. No difference between the two was observed 

in intercepts on time to ≥3.0 mmol/L, 35.2 h (CI 29.1–41.3 h) and 34.2 h (CI 30.8–37.5 h) 

respectively, p =0.09. However, comparison of slopes shows a significant decrease in time 

to ≥3.0 mmol/L, from -0.2 (CI -2.9 to -2.5) pre-intervention to -1.7 (CI -2.8 to -0.6) in the 

intervention phase, p =0.009.

No significant changes were observed in percentage of patients reaching normoka

lemia or time to reach normokalemia; pre-intervention, 87.5% (CI 72.6–102.3%) reached 

normokalemia with a mean time intercept of 65.2 h, compared to 90.2% (CI 82.0–98.4%), 

with a mean time intercept of 64.0 h in the intervention phase, p =0.69 for percentage 

and p =0.71 for time. A non-significant decrease of 8.2 days was observed in duration of 

hospitalization, from 25.4 days (CI 11.4–39.2) pre-intervention to 17.2 days (CI 9.5–24.9), p 

=0.29. No significant change in level or slope was observed for hospitalization in patients 

without hypokalemia during the same period as the study. Figure 6 shows the number of 

data points during the entire study period, revealing a trend toward a smaller number of 

sub-optimally treated incidents of hypokalemia <2.9 mmol/L. 
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A. Percentage of patients prescribed potassium supplementation

B. Time to prescription of potassium supplementation

FIGURE 2. A-B Graphical representation of the data points and segmented regressions using inverse 
variance-weight per 12-month period for percentage of patients prescribed potassium supplementation 
(Panel A) and time to prescription of potassium supplementation (Panel B). On the X-axis, time is shown; 
on the Y- axis, the respective endpoints. Open circles represent the individual data points pre-intervention, 
and filled black squares represent the individual data points in the intervention phase. The striped line to 
the left of the vertical dotted-striped line represents the model for regression in the pre-intervention phase, 
and the striped line to the right represents the model in the intervention phase. The dotted lines represent 
the corresponding 95% confidence intervals for the levels, excluding uncertainty of the slope. Stars (*) and 
the succeeding numbers represent data points not meeting EPOC guideline for 20 observations per data 
point; the numbers provide the number of observations in the given data point.
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A. Percentage patients reaching mild hypokalemia, SPL ≥ 3.0 mmol/L

B. Time to reach mild hypokalemia SPL ≥ 3.0 mmol/L

FIGURE 3. A-B graphical representation of the data points and segmented regressions using inverse 
variance-weight per 12-month period for percentage of patients reaching mild hypokalemia, SPL ≥ 3.0 
mmol/L (Panel A), and time to reaching mild hypokalemia (Panel B). On the X-axis, time is shown; on the 
Y- axis, the respective endpoints. Open circles represent the individual data points pre-intervention, and 
filled black squares represent the individual data points in the intervention phase. The striped line to the 
left of the vertical dotted-striped line represents the model for regression in the pre-intervention phase, 
and the striped line to the right represents the model in the intervention phase. The dotted lines represent 
the corresponding 95% confidence intervals for the levels, excluding uncertainty of the slope. Stars (*) and 
the succeeding numbers represent data points not meeting the EPOC guideline for 20 observations per 
data point; the numbers provide the number of observations in the given data point. 
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A. Percentage patients reaching normokalemia during hospitalization

B. Time to normokalemia

FIGURE 4.A-B Graphical representation of the data points and segmented regressions using inverse 
variance-weight per 12-month period for percentage of patients reaching normokalemia (Panel A) and time 
to reach normokalemia (Panel B). On the X-axis is time; on the Y-axis, the respective endpoints. Open circles 
represent the individual data points pre-intervention, and filled black squares represent the individual data 
points in the intervention phase. The striped line to the left of the vertical dotted-striped line represents the 
model for regression in the pre-intervention phase, and the striped line to the right represents the model 
in the intervention phase. The dotted lines represent the corresponding 95% confidence intervals for the 
levels, excluding uncertainty of the slope. Stars (*) and the succeeding numbers represent data points 
not meeting the EPOC guideline for 20 observations per data point; the numbers provide the number of 
observations in the given data point. 
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Total duration of hospitalization

FIGURE 5. Graphical representation of the data points and segmented regressions using inverse variance-
weight per 12-month period for total duration of hospitalization. Open circles represent the individual data 
points pre-intervention, and filled black squares represent the individual data points in the intervention 
phase. The open rectangles represent the mean hospitalization times for control patients without SPL <2.9 
mmol/L during hospitalization. The striped line to the left of the vertical dotted-striped line represents the 
model for regression in the pre-intervention phase, and the striped line to the right represents the model 
in the intervention phase. The dotted lines represent the corresponding 95% confidence intervals for the 
levels, excluding uncertainty of the slope. Stars (*) and the succeeding numbers represent data points 
not meeting the EPOC guideline for 20 observations per data point; the numbers provide the number of 
observations in the given data point.

FIGURE 6. Graphical representation of the number of observations per data point included in the analysis. 
On the X-axis is time; on the Y- axis, the number of observations.
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DISCUSSION

This study demonstrated a positive effect of the clinical rule-based pharmacists’ inter

vention on the percentage of patients for whom potassium supplementation was initiated 

during hospitalization, time needed to initiate this treatment, and time to achieve mild 

hypokalemia. Nevertheless, this study did not demonstrate improvement in percentage of 

patients reaching normokalemia or time to reach normokalemia and only showed a trend 

toward shorter hospitalization. 

Failure to improve percentage of patients normalizing and time to normalize SPL is 

in contrast with the study performed by Paltiel et al..17 A possible explanation for these 

contrasting results could be the differences in baseline and approach to treating SPL <2.9 

mmol/L. In our study, a high percentage of patients—87.5%—already reached normokalemia 

during hospitalization at baseline compared to 70–75% in other studies.17,32 Baseline 

response rate and time could also have been underestimated in our study, as only electronic 

orders were used to measure them. Improvement in time to mild hypokalemia but not time 

to normokalemia suggests a different approach to treating hypokalemia compared to the 

study performed by Paltiel et al..17 It is also possible that the advice regarding potassium 

supplementation dose was too conservative to improve time to reach normokalemia. 

Total duration of hospitalization was not significantly reduced despite a clinically 

significant reduction of hospitalization by 8.1 days, or more than 32.0%. This result is in 

contrast to an earlier study by Tate et al., which found a significant decrease in hospita

lization duration.22 A possible explanation for this is the small number of data points in 

the pre-intervention phase, which creates a sizable confidence interval for duration of 

hospitalization. Additionally, the long mean hospitalization duration compared to the control 

population and the literature suggests that in our study population, severe hypokalemia is 

likely to be a symptom of severe illness instead of e.g. overdosing a loop diuretic. Therefore, 

hypokalemia probably only plays a partial role in total hospitalization time. 

To our knowledge, this is the longest study to evaluate the effect of a clinical rule-based 

intervention over time. It is also the first study to use a time series analysis to study the 

effect of such an intervention. Using a time series analysis corrects for non-stationary means, 

which could have led to false positive conclusions in earlier studies.33 The study did not fully 

meet the recommended criterion of at least 20 observations per data point to attain an 

acceptable level of variability.34 One data point, the year 2012, consisted of 15 observations. 

Nevertheless, no significant difference was observed in the regressions including or excluding 

this specific data point. Consequently, we assumed that an acceptable level of variability was 

achieved. The number of observations over time decreased, as seen in Figure 6, causing a 

large fluctuation in means during the intervention period. The decreasing number of patients 

could be explained as an effect of the intervention itself or as a sign of overall improvement 

in care, indicating that hypokalemia is noticed and treated at an earlier stage.



Clinical rule-guided pharmacists’ intervention in patients with hypokalemia

117

3.2

One of the limitations of this study was its retrospective design. While inferior to 

prospective design in respect to data collection, preventing bias and so on, ITS design has 

been accepted as one of the best alternatives in cases where trial design is not an option. 

Another limitation to this study is not including clinical findings, observed symptoms, 

EKG findings and cardiac events. Moreover, the current once daily approach can cause 

significant lag time if SPL is not routinely measured. One option to overcome this limitation 

is increasing the number of CDS system runs. However, the collected data suggest that the 

benefit would be minimal because, due to the urgency of the request, response rate and 

time to stat laboratory orders were already very rapid.

The aim of studying this intervention was to test if the approach could effectuate an 

improvement in response time to critical care values in individual patients while minimizing 

alert fatigue and frustration. While the latter two were not directly measured, a periodic 

evaluation was performed as part of the regular plan-do-check-act (PDCA) cycle.35 Among 

other reasons, physicians positively assessed the intervention because of the negligible 

number of times they were called. An average of 1.2 calls per week were placed to appro

ximately 20 resident physicians directly involved in clinical care. Acceptance rate was 88%. 

Based on these evaluations, the hypokalemia clinical rule was expanded and other clinical 

rules were added monitoring response to critical care values. 

CONCLUSION

Implementation of a clinical rule-guided pharmacists’ intervention is possible and produced 

improvement in response rate and time to prescription. Improvement in time to achieve 

mild hypokalemia suggests that improvement in response rate and time to prescription 

resulted in measurable improvement in correction of serum level potassium. However, 

no significant effect was found on percentage and time to normokalemia or duration of 

hospitalization.
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SUPPLEMENTARY MATERIALS

Supplementary materials can be found at: 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjcpt.13101&file

=jcpt13101-sup-0001-Appendix.docx 

Or by scanning the QR code:
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INTRODUCTION
Adverse events in healthcare are one of the ten leading causes of death and disability 

worldwide,1 and more than half of them are preventable.2 Adverse drug events (ADEs) 

are responsible for 19% of adverse events. In past decades much effort has been placed 

into digitizing healthcare. However, despite these efforts, high rates of preventable ADEs 

persist.3,4 Many types of medication errors disappeared following digitalization. However, 

digitalization also introduced new types of medication errors like alert fatigue.5,6 The most 

significant reason for the high override rate is the lack of contextualization in CDS systems.7-10 

This thesis aimed to investigate whether incorporating context into CDS systems could 

help improve the detection and prevention of ADEs.

This general discussion chapter places the thesis findings into the broader perspective 

of detecting or preventing adverse drug events by discussing the themes that emerged 

during the execution of this study. The following three main topics are discussed:

-	 Preventability of ADEs and knowledge implementation

-	 Using alerts to prevent ADEs

-	 Deep learning CDS models

The discussion includes recommendations based on the research findings. Directions for 

further research are also proposed.

PREVENTABILITY OF ADVERSE DRUG EVENTS AND KNOWLEDGE IMPLEMENTATION
The final part of Chapter 1.2 focused on translating knowledge into clinical rules, and 

implementing and validating them. However, as discussed in that chapter, a Plan-Do-Check-

Act cycle is necessary to monitor performance continuously and refine clinical rules, raising 

several questions, including why this is the case and whether new bugs are found in the 

software programming daily, healthcare professionals have started to use EHRs differently, 

or other factors are involved.

Shifting of what is known
Despite the widespread introduction of EHRs, CPOEs, and CDS systems in past decades, the 

preventable adverse drug event (ADE) rate has not declined.4 When analyzing this problem, 

it should be noted that the term preventable is constantly shifting. What seemed to be a 

previously unexplained or unknown adverse drug reaction (ADR) a decade ago may now 

have a known cause. An example of such a shift is the discovery of the significant role of the 

CYP2C19 phenotype in therapy failure of clopidogrel. Until a decade ago, recurrent strokes 

while taking clopidogrel were considered type F adverse drug reactions (failure of therapy). 

Currently, such an event has shifted toward being a preventable ADE.
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FIGURE 1. Multiple Venn diagrams illustrating shifts in categorizing adverse drug reactions (ADRs) as 
adverse drug events (ADEs) with an increasing body of knowledge. The black dot represents knowledge 
of the first unknown shift in time toward a preventable ADE. For example, the significant role of the 
CYP2C19 phenotype in therapy failure of clopidogrel was unknown during the drug’s introduction in 
1998. Clopidogrel therapy failure in patients with CYP2C19 PM and IM phenotypes slowly shifted toward 
implemented knowledge incorporated into more guidelines determining phenotypes before or during 
clopidogrel therapy.

Applying this fact to Morimoto et al.’s Venn diagram (Figure 1) reveals that the circle of 

previously unexplained or unknown ADRs (intrinsic harm) increasingly overlaps the circle of 

medication errors, becoming extrinsic harm. Several factors drive this shift. First, medical 

knowledge is increasing exponentially.11 In 1993, PubMed® counted approximately 8,000 

publications annually. By 2003, this figure had doubled, while in 2020, it rose to over 110,000 

publications annually, a 1,375% increase in 27 years. The expectation is that big data and 

artificial intelligence will increase this even further. For a neurologist, as used in the example, 

the number of newly published randomized clinical trials comes down to 16 daily. Second, 

the exponential increase in medical knowledge is accompanied by growing possibilities 

in medicine. Four decades ago, low dose of aspirin or a coumarin was the only option for 
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preventing a secondary stroke. Currently, physicians have half a dozen possible medication, 

dosage, and combination possibilities, depending on risk factors, comorbidities, and co-

medication. Third, before the introduction of EHRs and easy digital exchange of medical 

records and data, a healthcare provider could claim not to know part of a patient’s history 

or results; currently, most information is only a mouse click away.

Knowledge implementation
While medical knowledge grows exponentially, healthcare professionals struggle to keep 

up. Such a struggle is inevitable if healthcare professionals must read and maintain 16 

articles daily. Healthcare professionals are only expected to act on new knowledge when 

it is incorporated into clinical practice guidelines. An unknown ADE then directly shifts to 

also being a medication error because regulators and colleagues expect compliance with 

existing guidelines from that moment.

However, medical guidelines are only revised once every 3–10 years.12-14 Once such 

a guideline is revised, translating it to clinical practice can easily take another five years. 

Consequently, it can take up to 15 years for medical knowledge to be widely implemented.14

The fact that guidelines are updated only every 3–10 years is concerning. The process 

can be significantly accelerated only by using international clinical networks. An example of 

a CDS based on a commercial clinical network is the widely used UpToDate®, where experts 

constantly update and translate knowledge to clinical practice, making information on the 

best and most proven diagnostic tools and treatments readily accessible.

Recommendation: stop using traditional clinical practice guidelines and use dynamically 

updated clinical networks.

Accelerating knowledge use in practice
Freely available, dynamically updated clinical networks can accelerate knowledge imple

mentation substantially: in 3–10 years. However, this does not solve the problem of maintaining 

and using the knowledge from clinical networks in daily practice. It is still hard to imagine that 

a healthcare provider will read the relevant topic whenever they see a new patient. A solution 

would be to transfer such knowledge directly and dynamically into clinical rules as input for 

CDS systems, again reducing the time to implement new medical knowledge by five years.

Recommendation: make clinical network knowledge directly available during patient 

treatment.

The question is how to accomplish this. It requires, possibly automatically, programming 

clinical rules used in CDS systems advising the next step in diagnosis or treatment and 

warning practitioners when they deviate from this evidence-based medicine path.
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Recommendation: translate knowledge from clinical networks directly into clinical rules 

usable in clinical practice.

Designing clinical rules to be interoperable and sharable
As discussed in the general introduction, implementing, designing, and keeping clinical rules 

up to date for one hospital, or even one country, is a massive time and money-consuming 

task only the big few can undertake15 and is one of the reasons CDS system adaptation 

in hospitals proceeds very slowly. A survey sent to all Dutch hospital pharmacies in 2015 

revealed that only 48% use some form of CDS system.16 In 2007, Simon et al. observed 

the same trend across the U.S.A., where most EHR implementations employed little or no 

decision support.17 Therefore, it is vital that medical knowledge in the form of clinical rules 

is centrally maintained, interoperable, and sharable. This concept would allow clinical rules 

to be externally maintained, making a significant leap in the efficacy of development and 

maintenance, and should work in “such a way that healthcare organizations and practices 

can implement new state-of-the-art clinical rules with little or no extra effort on their part.”15

Recommendation: make clinical rules interoperable and sharable.

An example, the CRISP project
During our 2015 research (the CRISP project), we undertook a project to jointly develop a CDS 

system across three different hospitals using three different EHRs. This study resulted in, 

among others, a model for clinical rules to retain a high level of specificity while maintaining 

flexibility and interoperability.

The clinical rules were given three levels, so-called master levels, and an indefinite 

number of sublevels, in addition to the three-level approach used in the GuideLine 

Interchange Format (GLIF) architecture. Figure 2 presents a graphic representation of the 

three-level clinical rule model. All three master levels were designed to be readable and 

interpretable by clinicians and experts in the same way as a regular clinical practice guideline. 

The highest of the three levels is called the master rule level or level 1. All terminology at this 

level uses standardized clinical terms. For example, when asking the question, “Does the 

patient currently have heart failure?” ICD-10 I50 is used. ATC M01 selects patients taking 

nonsteroidal anti-inflammatory drugs (NSAIDs). Levels 2 and 3 translate system-specific 

or institution-specific terminology into standardized clinical terms usable in level 1. When 

possible, a thesaurus is used to translate terms. However, this was not possible in some 

cases because no translation was readily available or no scientific consensus had been 

reached regarding a clinical term. Moreover, information must be derived from other 

available data in some situations. For example, enteral feeding tube use could be derived 

from the current tube feeding product on the drug list and translated to the standardized 

clinical term for enteral feeding tube use. In another system, the free text entered into a 
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medication order instructing the nurse to crush a tablet and flush through the feeding tube 

was mined. In many cases, a combination of factors confirmed a patient’s state or disease 

not coded in standardized clinical terms.

The level 2 and level 3 sublevel rules are similar to the level 1 rules, with the exception 

that they use EHR or institution-specific terminology in addition to standardized clinical 

terms. For example, an exception is made in the master clinical rule for intensive care unit 

(ICU) patients. However, the source information system database does not mention an ICU 

ward because only geographical locations are entered. Therefore, the ICU was known as 

C4A because it was located in wing C, level 4, side A of the building. Moreover, beds 1–6 are 

critical care beds, and beds 7–14 are medium care beds, which are also not coded or labeled 

in the EHR database. The level 3 flowchart labels patients of the respective medical center, 

on ward C4A, in beds 1–6, as ICU patients.

FIGURE 2. A graphic representation of the model used to design and program clinical rules in the CRISP 
project. SIS: Source information systems; CRISP: Clinical rules in Santeon Project

Besides such simple translations, the institution-specific rules (level 3) are also 

designed to customize advice to the current ward or medical center. For example, the expert 

team agrees that patients should start a prophylactic proton pump inhibitor (PPI) dose in 

a particular situation. A list of accepted PPIs and doses is also added to the clinical rule. 
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However, the master rule does not specify which PPI should be used. Therefore, medical 

center A could decide to prescribe omeprazole and medical center B pantoprazole. The 

preset medication order in center A advises 20 mg of omeprazole once daily at 07:00, while 

the notification in center B displays the advice to order 20 mg of pantoprazole once daily 

at 18:00.

Recommendation: design layered clinical rules that are flexible and usable in multiple settings. 

From CDS systems and clinical rules to humans handling alerts and advice
Implementing a state-of-the-art CDS system with clinical rules dynamically updated using 

clinical networks does not guarantee a reduction in preventable ADEs. Gordo et al. 2021 

demonstrated that most ADEs are caused by medication errors due to human failure to 

follow guidelines and or CDS advice.18 Thus, many clinical rules can be built, but if the advice 

given in them is ignored, there is still no guarantee of implementing new medical knowledge 

in practice and preventing many ADEs. If CDS advice helps practitioners adhere to clinical 

guidelines or manage, for example, drug–drug interactions, why is it ignored? 

USING CDS ALERTS TO PREVENT ADES
Chapter 1.2 provided an overview of different CDS systems, examining the different types 

of communications, such as passive or active alerting and consulting or critiquing. Since 

most current CDS systems use active critiquing alerting, this section focuses on alerts 

issued by such CDS systems. More sophisticated artificial intelligence models are discussed 

in the third topic of this chapter.

Introduction to alerts
From a human–computer interaction perspective, an alert, error, warning, or alarm is “a 

way of a system to attract the user’s attention to significant, abnormal or threatening 

situations to ongoing pending or future tasks.”19 In healthcare, the term alert has emerged 

in computer use since the move from passive to active CDS systems. Following attention to 

adverse events and the introduction of EHRs and CPOEs, the number of alerts received by 

healthcare professionals has increased exponentially.20,21 Although alerts can help prevent 

healthcare professionals from making mistakes, such as prescribing a drug to a patient who 

is allergic to it, such alerts have also introduced several new problems.5,6

The problem with alerts
Independent of the field of application, aviation, naval, or consumer mobile use all seem to 

have been burdened with the ills of alerts. Within the healthcare domain, the alert burden 

has one of three different origins:
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-	 Wrong timing: interruptions from alerts often cause errors.

-	 Wrong messages: routines for handling multiple simultaneous alerts are inadequate.

-	 Irrelevant messages: false alarms or known alerts create a “cry-wolf” effect or alert 

fatigue.

The subsequent part of this general discussion topic is dedicated to alert fatigue.

Psychology and physiology of alert fatigue
Habituation

Alert fatigue is one of the top ten safety concerns in hospitals.22 The sheer number of 

alerts causes healthcare professionals to mentally shut out overwhelming alerts, leading 

to override rates as high as 49–95%.23-29 The reason for these override rates is habituation, 

also called normalization or desensitization.30 Habituation occurs when individuals begin 

to tolerate, normalize, and ignore stimuli the more they are exposed to them, “just like 

the endless beeps on your smartphone.”31 Habituation is promoted when a reward or 

punishment is associated with a stimulus, as with medication alerts. Habituation is a 

form of non-associative learning, defined as “a process in which an organism’s behavior 

toward a specific stimulus changes over time without any evident link to (association with) 

consequences or other stimuli that would induce such change.”32

Why habituation occurs

Several theories explain why habituation occurs. The main two are comparator theory 

and dual-factor theory. Comparator theory suggests that the brain creates a model of 

the expected stimulus, as in machine or deep learning. With frequent presentations, the 

stimulus is compared to the model, and if it matches, the response is inhibited. Dual-factor 

theory suggests that the brain compares the stimulus to other stimuli to choose where to 

focus attention.

Factors influencing habituation

Several factors influence how quickly individuals become habituated to a stimulus. The 

key habituation factors are change, duration, intensity, and frequency.33 Although the first 

two cannot be changed in medication alerting, the last two can be changed. For example, 

intensity can be changed by highlighting alert levels in different colors. However, the colored 

alerts are eventually overwhelmed by the frequency of alerts. Medication alert response 

drops 30% for each repetition generated.30 Therefore, it seems that the only solution to 

overcoming alert fatigue is reducing the number of alerts.

Recommendation/statement: reducing the number of medication alerts is the only way to 

reduce alert fatigue.
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Reducing the number of alerts using context

Previous studies have demonstrated that there is little or no room and consensus to safely 

turn off drug–drug interaction alerts, using conventional suppression.34,35 When evaluating 

attempts to reduce medication alerts, it becomes evident that the most significant unused 

factor is the alert’s context. As discussed in the introduction, a lack of contextualization 

in CDS systems is one of the most significant reasons for high override rates. In computer 

science, context refers to the idea that a system is capable of sensing and reacting based 

on its environment. Dey’s definition of context is frequently cited in the wider literature: 

“Context is any information that can be used to characterize the situation of an entity. 

An entity is a person, place, or object considered relevant to the interaction between a 

user and an application, including the user and applications themselves.” Based on this 

definition, a CDS system providing context attempts to make assumptions about the 

current situation’s relevance, depending on the user’s task.36 Reducing medication alerts 

from the habituation perspective implies that alerts should only be presented if they are 

actionable. Moreover, they should only be presented when they match the healthcare 

provider’s workflow; otherwise, interruptions from alerts frequently cause errors. In other 

words, the patient’s status and the healthcare provider’s task should be considered. These 

two contexts are described and applied in Chapter 3.1 as clinical context and workflow 

context. Other studies also concluded that CDS systems should have greater flexibility 

to customize alerting, notably by adding contextual modulation, also called specificity 

modulation.37-39 The term contextual modulation derives from neurobiology: the change 

in the neurons’ responsiveness to a stimulus caused by context, denoting a decrease in 

habituation if used correctly.40

Recommendation: Make CDS systems and clinical rules more context-aware.

Recommendation: Use contextual modulators only to show alerts when actionable in a 

specific case.

Recommendation: Show alerts depending on the workflow context; in other words, when 

the healthcare provider is open to receiving the advice and acting accordingly.

Types of context

Clinical context

Chapter 3.1 describes two forms of context studied to reduce the number of DDI alerts for 

pharmacists and pharmacy technicians in a hospital setting. Based on the results, most 

DDI alerts are easy to suppress by incorporating clinical contextual modulators without 

losing essential alerts. Furthermore, the intelligence and data required to suppress most 

alerts are easily accessible, and concepts are easily extrapolated to other clinical settings. 

The same is true for alerts concerning laboratory results, such as hypokalemia. Chapter 3.1 
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demonstrates that hypokalemia alerting can be very specific, reducing the number of alerts 

or calls on this subject by more than 95%.

Recommendation: Use clinical context to improve alert actionability.

Workflow context

Presenting advice to the right healthcare professional. Following the dual-factor theory 

of habituation, some DDI alerts should not be presented to prescribers because, at that 

moment, they consider them a second-order problem. The best example of this is absorption 

time-dependent DDIs. Most physicians consider the timing of drug use a second-order 

problem. Similarly, most hospital pharmacists consider this a problem that can or should 

be solved by a pharmacy technician and a nurse together.29,41 Hence, it is not only the timing 

of an alert that is important. Perhaps more important is who receives the alert, specifically 

a healthcare professional tasked with managing such alerts.

Recommendation: Make DDI alerts visible only to healthcare professionals that act on 

them.

Incorporating previous actions – alert management. Current decision tree-based CDS mo

dels do not remember previous alert management as learning models would. Therefore, 

healthcare professionals are frequently presented with DDI alerts multiple times, virtually 

illustrating Einstein’s definition of insanity. Chapter 3.1 also considers this aspect. If a DDI 

was previously managed and deemed irrelevant, the CDS system could remember this. 

Medication orders can be changed at many different points. However, if no changes are 

made in the dose of one of both drugs, no change in the DDI result is expected. In addition 

to medication order changes, contextual factors can change. Both were considered. Adding 

this type of workflow context proved to be the biggest contribution to suppressing irrelevant 

DDI alerts, decreasing the number of alerts by almost 40%. This study demonstrates the 

importance of incorporating alert management into CDS systems, ensuring no unnecessary 

alerts are shown again and monitoring the result. The CDS system can also monitor 

intervention follow-up.41,42

Recommendation: Allow the CDS system to check the follow-up of alert advice.

Recommendation: Software suppliers should be encouraged to make DDI alerts visible only 

when changing doses OR if important clinical context changes have occurred.

Critiquing model versus advising model. So far, the alert part of the general discussion has 

focused on the critiquing model using alerts, including the pitfalls of alert fatigue. However, 

another possible solution to overcoming the problem of alert fatigue is moving some of 
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the clinical rules to an advising model for prescribers. This model is much less studied.43 

Possibly the best-known examples are integrated CDS system dosing guidance.44,45 For 

example, Cox et al. compared a CDS system guiding prescribers regarding the correct dose 

of aminoglycoside versus close monitoring (CDS-assisted) by clinical pharmacists and 

obtained improved results using the advising CDS.45 Therefore, instead of a CDS system 

raising an alert stating, “BEEP. You are possibly doing it wrong,” the alert could state, “Based 

on the patient’s diagnosis, weight, renal function, and pharmacogenetic profile, we propose 

prescribing dose X. Click here to accept. ” However, much simpler decision support can also 

be provided using smart or standardized order sets within the CPOE incorporating common 

situations.46 For example,

-	 Ciprofloxacin 1x day 500 mg oral; ordinary infection (restricted-use antibiotic);  

eGFR < 30 ml/min

-	 Ciprofloxacin 2x day 500 mg oral; ordinary infection (restricted-use antibiotic);  

eGFR > 30 ml/min

-	 Ciprofloxacin 2x day 750 mg oral; diabetic foot (first-choice antibiotic);  

eGFR > 30 ml/min

-	 Ciprofloxacin 1x day 750 mg oral; diabetic foot (first-choice antibiotic);  

eGFR < 30 ml/min

Such relatively simple standardized order sets can effectively decrease mortality and cost 

by allowing prescribers to choose the correct drug or drug set easily, preventing common 

dosing errors and time-dependent drug–drug interactions.47 The greatest disadvantage 

of using simple, standardized order sets is that only a certain number of contextual 

modulators can be incorporated. The higher the number of contextual modulators the more 

combinations and standardized order sets are needed, making the correct standardized 

order much harder to find, with the risk of choosing the wrong drug or dose. Therefore, 

it would be advantageous to directly guide a prescriber toward the correct dose based 

on all contextual modulators45 and, possibly better still, to directly incorporate these in 

pharmacokinetic and dynamic models (PKPD) predicting exposure, as in Roggeveen et al. 

2020.48

Recommendation: more research should be devoted to developing and testing advising CDS 

models. Until then, healthcare providers should invest time in implementing standardized 

order sets.

Incorporating CDS systems into clinical workflows. As discussed in the previous paragraph, 

using advisory models in straightforward triggers, starting medication, is relatively simple. The 

question is how to incorporate alerts triggered by changes in dynamic patient parameters 

or laboratory results. Adapting a CDS system to clinical workflows significantly increases the 
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probability that alert advice will be read and followed.49 For clinical pharmacists, a dynamic 

to-do list usually suffices. However, for clinicians such as intensivists, such outputs do not 

fit into clinical workflows. Therefore, other ways of raising the alert should be explored. One 

of the more recent attempts to incorporate CDS systems into clinical workflows was to 

include CDS system advice in checklists frequently used in ward rounds.50 An example of 

such a system is Tracebook. This dynamic checklist is process-oriented and context-aware, 

demonstrating great promise and user acceptability.51

Recommendation: more research and efforts by software vendors should be devoted to 

better fitting alerts into the clinical workflows of healthcare professionals.

However, not all types of alerts can or should wait until the next ward round. For 

example, severe hypokalemia, as discussed in Chapter 3.2, should be treated immediately. 

In cases where immediate treatment is required and has not been started, a pop-up or 

text message would be the preferred alert method. The same is true for several types of 

DDIs. For example, starting meropenem in a patient using valproic acid should generate an 

immediate stop. While combining a RAASi with a potassium-sparing diuretic would only 

require a critiquing alert should serum potassium not be ordered within a week.

Recommendation: when designing clinical rules, careful thought should be given to the 

moment when action is required by the healthcare professional, depending on contextual 

modulators and the severity of the situation.

DEEP LEARNING CDS MODELS
Chapter 1.2 discussed several fundamental CDS system characteristics. However, the 

models used within a CDS were not discussed within the domain of artificial intelligence (AI). 

All the chapters of this thesis describe rule-based models. While rule-based CDS systems 

are becoming more common, adapting and using machine learning models, such as those 

described and predicted by Maxmen in 1976 in his book, The Post-physician Era: Medicine in 

the 21st Century, still seem remote.52 This final section of the general discussion is dedicated 

to positing rule-based CDS systems compared to the upcoming and highly anticipated 

deep-learning CDS systems.
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FIGURE 3. Venn diagram illustrating the relationship between artificial intelligence (AI), machine learning, 
and deep learning.

Introduction to artificial intelligence (AI)
Before diving deeper into the topic of deep learning, it is crucial to understand the definitions 

of different types of AI and their underlying techniques. Figure 3 presents a Venn diagram 

depicting the relationship between different AI techniques. AI is the collective name for 

all techniques and models that enable computers to mimic human intelligence, including 

rule-based models to automate parts of healthcare professionals’ clinical reasoning. 

Machine learning goes a step further; it uses complicated statistical models to refine its 

programming, improving the alert-to-noise ratio by, for example, automatically hiding alerts 

based on the previous management of alerts with similar metadata characteristics. An 

example is not showing oxycodone and citalopram drug–drug interaction alerts because 

most previous alerts in similar situations were overridden within seconds.
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Deep learning is a subset of machine learning which extends beyond machine learning; 

it uses multilayered artificial neural networks (ANNs), which can be used to model multiway 

interactions. Artificial neural networks (ANNs) are algorithms inspired by the biological 

neural networks that constitute animal, including human, brains. An ANN is based on a 

collection of connected nodes called artificial neurons. An artificial neuron receives a signal, 

processes it, and can signal neurons connected to it. Multilayered ANNs are aggregated 

into layers. Increasing connections between neurons is largely based on previous data, also 

called training sets, allowing the algorithm to make decisions or predictions for future cases. 

For example, patient A is likely to develop an ADR to drug X if factors one, two, three and four 

are present, based on the occurrence of factors one to four in previous sets.

Deep learning
The most studied and applied deep learning model uses supervised learning. Compared to 

unsupervised learning, supervised learning requires tagged data as a training set. Although 

common in gaming reinforcement, learning in healthcare is in its infancy. It is a model that 

can virtually mimic a healthcare professional and make decisions based on previous data, 

order tests, and start treatments to improve treatment prognoses.

In previous years, ANNs have proven themselves in image-intensive fields.53,54 Rapid 

development in this field of medicine can be explained by two significant factors. The first is 

that ANNs, like the human brain, are perfectly capable of processing visual data. The second 

is that image-intensive medical fields have fewer inputs. For example, to diagnose a specific 

area of the skin, the ANN input is one or multiple pictures of the skin, after which the model 

will decide if that specific area of the skin is benign or malignant. Pathology images can be 

added to make the model more complex. Training such an ANN is also relatively easy, using 

outcomes as the gold standard (supervised learning).

Other fields of medicine, such as internal medicine, currently base a significant part of 

the input on untagged data, including the patient’s medical history, an impression of the 

patient, and a physical examination. Such data can be partially tagged, for example, for a 

stomach ache, localization, the type of pain, pain duration, and pain score. However, current 

EHRs do not support such extensive tagging possibilities, and physicians are reluctant to 

spend time tagging all the variables. What stands out is that thousands of inputs exist when 

examining such a case for ANNs. Hence the number of connections to be trained is billions.

Placing deep learning into an example

This section examines the possibilities in pharmacotherapy using drug–drug interactions as 

an example. A deep learning model could be tasked with discovering new DDIs or improving 

alerting and managing known DDIs.

Each DDI has several characteristics to consider during evaluation. An example is drugs 

that increase the risk of serotonin syndrome, an ADR with a presumed incidence somewhere 
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between 0.09–0.17% when combining high-risk drugs. Training an ANN to identify patients at 

risk of developing serotonin syndrome would require thousands or hundreds of thousands 

of cases and millions of negative cases. Since little is known regarding which factors increase 

the risk of serotonin syndrome, it is also difficult to predict whether the ANN is provided 

with the required tagged information to correctly identify the patient at risk. However, it is 

not impossible. Improvements in training ANNs, such as federated learning and systems, 

which automatically tag free text during input in EHRs, can solve the abovementioned 

issues in the future.

Trust issues regarding (deep) learning models

Perhaps one of the most significant reasons for the relatively slow acceptance and 

implementation of deep learning models concerns the trust issues regarding such ANNs. 

Trusting an ANN is problematic if the data or science on which its conclusion is based is 

unknown, prompting the question of whether it can be easily explained or visualized. Deep 

neural networks use (hidden) “layers of learned nonlinear features to model a huge number 

of complicated but weak regularities within the data.” It would be unimaginable for a human 

being to understand the different interactions between all the features of such a complex 

ANN, prompting the question of how this is different from trusting, for example, self-driving 

cars placing human lives in the hands of an ANN. In my opinion, it is at least possible to see 

how the car is driving itself based on the same visual data. The ANN’s performance can 

therefore be rated based on how it performs in a given situation slowly earning trust. In 

medicine, decisions and consequences are far removed, sometimes by years. Therefore, it is 

more challenging to begin trusting an ANN to, for example, choose and dose neo-adjuvant 

chemotherapy in patients, only to assess recurrence rates years later.

Accepting black box technology

As discussed in the previous paragraph, it is impossible for a human to interpret all the 

features of deep learning ANNs. Consequently, why the system suggests a particular 

diagnosis or therapy will never be understood. Therefore, it is vital to prove that an AI 

system outperforms the experts as in image-intensive fields of medicine such as radiology, 

radiotherapy, pathology, ophthalmology, and dermatology. In other fields of medicine, 

randomized clinical trials will be necessary to prove that the algorithm outperforms 

humans, presenting a new problem: deep learning algorithms are not static. A potential 

solution is a three-step model proposed by Price et al. 2018. Step one is procedural: proving 

that the algorithm is developed according to well-vetted techniques and trained using 

high-quality data. In medicine, there is no need for a ChatGPT to tell confabulated stories. 

Step two determines whether the algorithm can reliably detect patterns. This process is 

easier for patterns already known to exist. However, it can be far more challenging to detect 

unknown patterns. Step three of the validation process continuously monitors failures 
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and successes. Therefore, continuously feeding the algorithm diverse, high-quality data is 

crucial.55 However, obtaining diverse data is proving challenging; most currently developed 

algorithms are based solely on U.S. and European data, making outcomes inherently worse 

for non-Caucasians.56 Diseases are expressed differently in other parts of the world, and 

individuals respond to therapies differently. Thus, context is key.

A pertinent question is whether ANN-based models will outperform and replace 

rule-based models over time. The likelihood is that they will do so in the future. However, 

research still requires several decades to conceive ways of using such models in medicine 

in an evidence-based manner, accept this black box technology, and devise regulations for 

using it. Until then, research should aim to apply as much context to current CDS systems 

as possible, optimally using evidence and technology to prevent harm or even save patients.

Statement: it will take several more decades for deep learning to be accepted and broadly 

used in healthcare to partially replace human decision-making.

CONCLUSION
This thesis aimed to investigate whether incorporating context into CDS systems could 

improve the detection and prevention of ADEs. It was demonstrated that adding context 

can help detect otherwise undetected potential ADEs. Moreover, it was demonstrated 

that context plays a pivotal role in decreasing the number of irrelevant alerts, making it 

much easier to prevent potential ADEs using the remaining relevant alerts. Healthcare 

professionals cannot make appropriate decisions purely based on a few facts; adequate 

context is needed. Consequently, a computer cannot be expected to provide suitable 

decision support without adequate context.
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5.1

SUMMARY

Since the report “To Err is Human” was released, billions have been spent implementing 

electronic health records (EHRs), including often integrated computerized physician order 

entry (CPOE) and clinical decision support (CDS) systems. However, despite these efforts, 

high rates of preventable adverse drug events (ADEs) persist, leading to over 200,000 deaths 

annually in the European Union alone. Although CPOE and CDS systems help prevent many 

types of adverse drug events, many more remain undetected, unrecognized, or ill-managed. 

Moreover, EHRs, CPOEs, and CDS systems have introduced new errors due to the daily 

overflow of alerts raised, causing alert fatigue among healthcare professionals.

The first part of this thesis focused on clinical decision support systems in relation to 

(potential) adverse drug events. Chapter 1.1 presented the thesis problem, objective, and 

outline. Chapter 1.2 reviewed the variability and use of CDS systems. The following questions 

were investigated: What is a clinical decision support system? Why are CDS systems 

needed in pharmacotherapeutic healthcare? Why are results on the efficacy and successful 

implementation of such systems highly variable? The characteristics of such systems 

were studied to help understand and interpret the body of knowledge on CDS systems. 

The following characteristics were discussed: system function, models for giving advice, 

communication style, human–computer interaction, and the underlying decision-making 

process. These characteristics play a crucial role in determining the success of CDS system 

implementation. The review further explored the most widely implemented and accepted 

CDS systems in pharmacotherapeutic healthcare: CDS systems using decision tree models, 

also known as clinical rules, for decision-making and active alerts to give critiquing advice. 

Implementing such CDS systems has led to new challenges, such as alert fatigue, while 

failing to prevent frequent potential ADEs. From a model standpoint which characteristics 

within a decision tree model cause these problems, and how can they be solved? Triggers 

are the starting point in such models. For over 90% of all clinical rules, the medication order 

is the model’s starting point, while by far, most potential ADEs are not related to starting 

a drug. Therefore, other triggers should be explored to detect potential ADEs unrelated to 

starting a drug. The next factor studied was the circumstances influencing a decision model 

or advice. Such circumstances are called contextual modulators, or context, and refer to any 

information that could influence the decision or advice. Previous studies have demonstrated 

that a lack of contextualization in CDS systems is the most significant factor contributing 

to alert overrides. Crucial types of context influencing decisions are workflow context (user 

context) and clinical context (patient context). The question is which context is needed 

and when. The review continued by describing proven methods leading to successful 

clinical rule implementations, from identifying a problem to programming decisions while 

incorporating the context required to provide the correct advice at the appropriate time.
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The second part of the thesis focused on adding context to current medication-related CDS 

systems to better detect potential ADEs. We investigated whether adding context to a basic 

CDS system could improve alerting quality for the most frequently overwritten medication 

alerts: drug–drug interaction (DDI) alerts (Chapter 2.1). A crossover study was performed in a 

clinical pharmacy setting to investigate this hypothesis. First, a basic DDI-CDS system was 

used in clinical practice while contextualized DDI alerts were collected in the background. 

Afterward, this process was reversed. Clinical utility was assessed by measuring the following 

parameters: positive predictive value (PPV), negative predictive value (NPV), the number 

of pharmacy interventions (PIs) per 1,000 medication orders (MOs), and the median time 

spent on DDI management per 1,000 MOs. The study demonstrated that contextualized 

DDI management has far greater clinical utility than basic DDI management. Clinical utility 

improved for all the outcome measures; PPV was 35.3% higher in the contextualized DDI 

management process while maintaining an NPV of 100%. In addition, the number of PIs 

increased from 1.6/1,000 MOs to 4.0/1,000 MOs with contextualized DDI management, 

suggesting a high degree of alert fatigue with basic CDS-DDI management. Furthermore, 

time spent on DDI management per 1,000 MOs decreased from 37.2 min per 1,000 MOs to 

13.7 min per 1,000 MOs.

We also investigated whether free-text electronic hospital health record notes can be 

used as context to help detect ADRs (Chapter 2.2). To prevent unintended represcriptions 

and the risk of recurrent ADRs (reADRs), CDS systems were implemented to alert prescribers 

when medication is represcribed after having been previously stopped due to an ADR. 

Currently, however, CDS systems only function when an ADR is registered as structured 

information at the level of the individual patient within an ADR module linked to or part 

of the computerized physician order entry (CPOE) system in the electronic health record 

(EHR). In current clinical practice, registration is poorly performed due to time constraints, 

inadequate IT systems, a lack of peer support, and failure to acknowledge the importance 

of structurally registering ADRs. Healthcare professionals frequently describe ADRs only 

in clinical notes and discharge summaries, using free-text entries, which are ineffective in 

preventing unintended represcriptions. This study aimed to develop strategies to identify 

ADRs from free-text notes in electronic hospital health records. The study was performed in 

two stages. Stage I reviewed the EHRs of ten patients to establish strategies for identifying 

ADRs. Stage II reviewed the complete EHR histories of forty-five patients for ADRs and 

compared them to the strategies programmed into a rule-based model. ADRs were 

classified using MedDRA and included in the study if the Naranjo causality score was ≥1. 

Seriousness was assessed using the European Medicine Agency’s important medical event 

list. Two main search strategies were identified: keywords indicating an ADR and specific 

prepositions followed by medication names. The 45 patient EHRs contained a median of 7.4 

(range 0.01–18) years of medical history, covering over 35,000 notes. Of these 35,000 notes, 

318 unique ADRs were identified, of which 63 were potentially serious; 179 (sensitivity 57%) 
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of these were identified by the rule. The rule falsely identified 377 ADRs (PPV 32%). However, 

it also identified an additional eight ADRs. We concluded that these two key strategies show 

promise and warrant further study.

The third part of the thesis focused on preventing potential ADRs in the monitoring phase 

of the medication process. We investigated the matter of medication administration via an 

enteral feeding tube (Chapter 3.1), a frequent cause of errors resulting in increased morbidity 

and cost. However, studies on interventions to prevent these errors in hospitalized patients 

are limited. This study aimed to investigate the effect of contextualized CDS system-

assisted pharmacy intervention on the incidence of feeding tube-related medication 

errors (FTRMEs) in hospitalized patients. Therefore, we performed a pre–post intervention 

study. All patients admitted to bowel and liver disease, oncology, or neurology wards and 

taking oral medication via an enteral feeding tube were included for a given period. Pre-

intervention patients were given care as usual. The intervention consisted of implementing 

a CDS system-assisted pharmacy check while applying standard operating procedures and 

educating personnel. An FTRME was defined as administering inappropriate medication 

through an enteral feeding tube. The incidence was expressed as the number of FTRMEs per 

medication administration. Multivariate Poisson regression calculated the incidence ratio 

(IR), comparing both phases. Eighty-one patients were included, 38 during pre-intervention 

and 43 during the intervention phase. The incidence of FTRMEs in the pre-intervention 

phase was 0.15 (95% confidence interval [CI] 0.07–0.23) versus 0.02 (CI 0.00–0.04) during 

the intervention phase, resulting in an adjusted IR of 0.13 (CI 0.10–0.18), demonstrating that 

the use of contextualized CDS pharmacy interventions can result in a substantial reduction 

in the incidence of feeding tube-related medication errors.

The medication context and pharmacist interpretation were added to alert physicians 

to severe hypokalemia (Chapter 3.2). Actively alerting physicians about all critical care 

values using telephone or electronic pop-ups can improve response. However, it can 

also lead to alert fatigue and frustration due to nonspecific and overdue alerts. A clinical 

rule built into a clinical decision support (CDS) system only generated alerts for patients 

with a serum potassium level (SPL) <2.9 mmol/L without a prescription for potassium 

supplementation. If the alert was deemed clinically relevant, a pharmacist contacted the 

physician. This study evaluated the impact of clinical rule-guided pharmacist intervention 

compared to displaying passive alerts in electronic health records for outcomes in patients 

who developed hypokalemia (<2.9 mmol/L) during hospitalization. A before (2007–2009) 

and after (2010–2017) study with a time-series design was performed. The percentage of 

hypokalemic patients with a subsequent prescription for potassium supplementation, 

time to subsequent potassium supplementation prescription, the percentage of patients 

who achieved normokalemia (SPL ≥3.0 mmol/L), time to achieve normokalemia, and total 

hospitalization duration were compared. Six hundred and ninety-three patients were 
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included, of whom 278 participated in the intervention phase. The percentage of patients 

prescribed supplementation and the time to prescription improved from 76.0% in 31.1 h to 

92.0% in 11.3 h (p < 0.01). The time to achieve SPL ≥3.0 mmol/L improved (p < 0.009). However, 

no changes were observed in the percentage of patients who achieved normokalemia or 

the time to reach it: 87.5% in 65.2 h pre-intervention compared to 90.2%, (p = 0.69) in 64.0 

h (p = 0.71) in the intervention group. An non-significant decrease in hospitalization duration 

of 8.2 days was observed: 25.4 compared to 17.2 days (p = 0.29). Adding further context 

can vastly reduce the number of active alerts and still be an effective method of improving 

response rates, the time to supplementation, and the time to initial improvement.

Chapter 4 places the studies we performed into a broader context. The first part of the 

chapter focuses on translating medical knowledge into clinical practice guidelines and, even

tually, clinical decision support guidelines. While reviewing this process, recommendations 

were made for how this process can and should be accelerated using clinical networks, 

directly incorporating this knowledge into existing CDS systems and designing clinical rules 

to be interoperable and sharable. 

The second part of the chapter focuses on CDS system outputs, predominantly 

alerts. How do alerts work? What is the problem with (too many) alerts? Moreover, how 

do humans handle many alerts? Subsequently, the leap was made toward a solution 

introducing context, types of context, and the use of context in CDS systems. The final part 

of the chapter zooms out and discusses the use of different artificial intelligence models, 

predominantly comparing the advantages and disadvantages of rule-based models versus 

machine or deep learning models.
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Sinds de publicatie van het rapport "To Err is Human" zijn er al duizenden miljarden euro's  

uitgegeven aan de implementaties van elektronische patiëntendossiers (EPD's), vaak 

met een geïntegreerd elektronisch voorschrijfsysteem (EVS) inclusief klinisch beslissings

ondersteunend systeem. Ondanks al deze inspanningen blijven de vermijdbare schadelijke 

bijwerkingen voortduren. Alleen al in de Europese Unie lijdt dit jaarlijks al tot meer dan 

200.000 sterfgevallen. Hoewel elektronische voorschrijfsystemen en klinische beslissings

ondersteunende systemen helpen bij het voorkomen van vele soorten potentiële bijwer

kingen, blijven nog vele meer nog steeds onopgemerkt, niet herkend of slecht behandeld. 

Ook heeft het implementeren van dergelijke systemen geleid tot signaalmoeheid. Dit 

betekend dat kritieke medicatiebewakingsmeldingen samen met onbelangrijke medicatie

bewakingsmeldingen worden genegeerd, waardoor de patiëntveiligheid juist negatief wordt 

beïnvloed.

Het eerste deel van dit proefschrift richtte zich op klinische beslissingsondersteunende 

systemen in relatie tot (potentiële) bijwerkingen van medicijnen in de ziekenhuispraktijk. 

In hoofdstuk 1.1 wordt het probleem, doel en overzicht van dit proefschrift gepresenteerd.  

In hoofdstuk 1.2 wordt de diversiteit van klinische beslissingsondersteunende systemen 

besproken. De volgende vragen werden onderzocht: Wat is een klinisch beslissings

ondersteunend systeem precies? Waarom zijn klinische beslissingsondersteunende 

systemen nodig in de klinische farmacotherapeutische zorg? Waarom zijn de resultaten over 

de effectiviteit en succesvolle implementatie van dergelijke systemen sterk variabel? Om 

de kennis die hierover beschikbaar is te kunnen interpreteren en analyseren werden eerst 

de belangrijkste kenmerken van dergelijke systemen besproken. De volgende kenmerken 

komen aan bod: systeemfunctie, modellen voor het geven van advies, communicatiestijl, 

mens-computer-interactie en het onderliggende besluitvormingsproces. Deze kenmerken 

spelen een cruciale rol bij het bepalen van het succes van de implementatie van klinische 

beslissingsondersteunende systemen. Dit hoofdstuk exploreerde verder de huidig meest 

geïmplementeerde en geaccepteerde klinische beslissingsondersteunende systemen 

in de farmacotherapeutische zorg: klinische beslissingsondersteunende systemen die 

besluitvorming ondersteunen met behulp van beslisboommodellen, ook wel bekend 

als klinische beslisregels welke actieve signalen genereren indien de handelingen van 

zorgverlener afwijken van een klinische beslisregelen (bekritiserende feedback). Het 

implementeren van dergelijke klinische beslissingsondersteunende systemen heeft geleid 

tot nieuwe uitdagingen, zoals signaalmoeheid, terwijl het nog steeds faalt om frequente 

potentiële bijwerkingen te voorkomen. Hoe komt dit? Bij een klinische beslisregel is er een 

startpunt nodig. Bij meer dan 90% van alle klinische beslisregels is de medicatieopdracht 

het startpunt van het model, terwijl veruit de meeste potentiële bijwerkingen helemaal 

niet gerelateerd zijn aan het starten van een medicijn. Daarom zouden andere startpunten 
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moeten worden onderzocht om potentiële bijwerkingen te detecteren die niet gerelateerd 

zijn aan het starten van een medicijn. De volgende factoren die werden bestudeerd, waren 

‘externe’ omstandigheden. Dergelijke omstandigheden worden contextuele modulatoren 

genoemd, ofwel context, en verwijzen naar alle informatie die de beslissing of het advies 

zouden kunnen beïnvloeden. Eerdere studies hebben aangetoond dat een gebrek aan 

context in meldingen gegenereerd door klinische beslissingsondersteunende systemen 

de belangrijkste reden zijn voor zorgverleners om signalen te negeren (zonder te lezen weg 

te klikken ofwel door te enteren). Zorgverleners noemen als belangrijkste reden hiervoor 

het ontbreken van workflow-context ofwel gebruikerscontext en klinische context ofwel 

patiëntcontext. Het hoofdstuk gaat verder met het beschrijven van bewezen methoden 

voor succesvolle implementaties van klinische beslisregels, van het identificeren van 

een probleem tot het programmeren van beslissingen waarbij de vereiste context wordt 

geïntegreerd om op het juiste moment het juiste advies te geven.

Het tweede deel van het proefschrift richtte zich op het toevoegen van context aan huidige 

klinische beslissingsondersteunende systemen die betrekking hebben op medicatie 

om potentiële bijwerkingen beter op te kunnen sporen. Hoofdstuk 2.1 bestudeerd de 

meest genegeerde medicatiebewakingssignalen in de klinische praktijk: geneesmiddel-

geneesmiddelinteracties. Met de huidige klinische beslissingsondersteunende systemen 

wordt altijd een signaal gegeneerd als geneesmiddel A wordt gecombineerd met interacterend 

geneesmiddel B. Er werd onderzocht of het toevoegen van context, zowel gebruikerscontext 

als klinische context, de bruikbaarheid van de interactiesignalen kon verbeteren. Hiervoor 

werd een cross-over studie uitgevoerd in een ziekenhuisapotheekomgeving. Eerst werd de 

contextloze variant van het klinische beslissingsondersteunend systeem in de klinische 

praktijk gebruikt voor behandeling van geneesmiddel-geneesmiddelinteracties, . gelijktijdig 

werden de van context voorziene interactiesignalen op de achtergrond verzameld. Daarna 

werd dit proces omgekeerd. De klinische bruikbaarheid van de twee varianten werd 

beoordeeld door de volgende parameters te meten: positieve voorspellende waarde 

(PVW), negatieve voorspellende waarde (NVW), het aantal apotheekinterventies per 1.000 

medicatieopdrachten en de mediane tijd besteed aan de behandeling van geneesmiddel-

geneesmiddelinteracties per 1.000 medicatieopdrachten. De studie toonde aan dat het 

klinische beslissingsondersteunende systeem welke de geneesmiddel-geneesmiddel 

interacties van context voorzag en waar nodig ook verborg, een veel grotere klinische 

bruikbaarheid had dan de contextloze klinische beslissingsondersteuning. De klinische 

bruikbaarheid verbeterde voor alle uitkomstmaten; PVW was 35,3% hoger in het van context 

voorziene geneesmiddel-geneesmiddel interactie beheer proces, terwijl een NVW van 

100% werd behouden. Bovendien nam het aantal apotheekinterventies toe van 1,6/1.000 

medicatieopdrachten naar 4,0/1.000 medicatieopdrachten met de van context voorziene 

klinische beslissingsondersteuning. Dit suggereert een hoge mate van signaalmoeheid met 
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de huidige gebruikte klinische beslissingsondersteuning. Bovendien nam de tijd die besteed 

werd aan geneesmiddel-geneesmiddelinteracties per 1.000 medicatieopdrachten af van 

37,2 minuten naar 13,7 minuten per 1.000 medicatieopdrachten. 

In hoofdstuk 2.2 werd onderzocht of de vrije tekst uit het elektronisch patiëntendossier 

kan worden gebruikt om potentieel geregistreerde bijwerkingen te detecteren. Een aanzienlijk 

deel (13-50%) van alle potentieel vermijdbare ziekenhuisopnames door bijwerkingen is 

toe te schrijven aan het onbedoeld opnieuw voorschrijven van medicatie waarvan al 

bekend is dat de patient hier eerder bijwerkingen op heeft ontwikkeld. Bijvoorbeeld het 

opnieuw voorschrijven van een geneesmiddel waar de patient eerder een allergische 

reactie op heeft ontwikkeld. Een van de eerste vormen van klinisch farmaceutische 

beslissingsondersteuning die werden geïmplementeerd waren systemen die voorschrijvers 

konden waarschuwen wanneer deze iets voorschreven waar de patient eerder bijwerkingen 

van had gehad. Deze klinisch beslissingsondersteuning functioneert echter alleen wanneer 

deze eerdere bijwerkingen in de hiervoor bestemde bijwerkingenmodule van het EVS of 

EPD zijn ingevoerd. In de huidige klinische praktijk wordt de registratie van een bijwerking in 

een dergelijke module echter niet of slecht uitgevoerd, vanwege tijdgebrek, ontoereikende 

ICT-systemen, een gebrek aan groepsdruk/ondersteuning en het niet erkennen van het 

belang van gestructureerde vastleggen hiervan. Zorgprofessionals in ziekenhuizen leggen 

bijwerkingen vaak alleen vast in de naslag (klinische notities) en ontslagbrieven, met behulp 

van vrije tekstnotities. Deze manier van vastleggen is echter niet effectief gebleken om 

onbedoeld opnieuw voorschrijven van medicatie te voorkomen. 

Het onderzoek had als doel strategieën te ontwikkelen om bijwerkingen te identificeren 

uit de naslag van een ziekenhuis EPD. Het onderzoek werd in twee fasen uitgevoerd. In 

fase I werden de elektronische patiëntendossiers van tien patiënten gelezen door twee 

zorgverleners om strategieën voor het identificeren van bijwerkingen uit vrije tekst vast 

te stellen. Deze strategieën voor identificatie werden vervolgens geprogrammeerd in 

het klinisch beslissingsondersteunende systeem. In fase II werd deze geprogrammeerde 

klinische beslisregel ingezet om de elektronische patiëntendossiers van vijfenveertig 

patiënten op bijwerkingen te screenen. Dit werd vergeleken met het handmatig screenen 

van deze dossiers. Bijwerkingen werden geclassificeerd met behulp van Medical Dictionary 

for Regulatory Activities (MedDRA) codes en geïncludeerd in de studie bij een Naranjo-

causaliteitsscore ≥1. Ernst van de bijwerkingen werd beoordeeld met behulp van de lijst van 

belangrijke medische gebeurtenissen van het Europees Geneesmiddelenbureau (EMA). Twee 

belangrijke zoekstrategieën werden geïdentificeerd n.a.v. fase I + II: trefwoorden die wijzen 

op bijwerkingen en specifieke voorzetsels gevolgd door medicijnnamen. De geïncludeerde 

elektronische patiëntendossiers hadden een mediane geschiedenis van 7,4 (bereik 0,01-18) 

jaar aan medische informatie, met meer dan 35.000 vrije tekstnotities. Binnen deze 35.000 

notities werden 318 unieke bijwerkingen geïdentificeerd, waarvan er 63 mogelijk ernstig 

waren; 179 (sensitiviteit 57%) hiervan werden geïdentificeerd door de klinische beslisregel. 
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De regel identificeerde 377 bijwerkingen ten onrechte (PVW 32%). De klinische beslisregel 

identificeerde echter ook acht aanvullende bijwerkingen. We concludeerden dat de twee 

belangrijkste strategieën die geïdentificeerd zijn veelbelovend zijn en verder onderzoek 

rechtvaardigen.

Het derde deel van dit proefschrift richtte zich op het voorkomen van mogelijke bij

werkingen in de monitoringsfase van het medicatieproces. Het probleem van toediening 

via een voedingssonde werd onderzocht (hoofdstuk 3.1), een veelvoorkomende oorzaak 

van medicatiefouten die leiden tot verhoogde morbiditeit en kosten. Er zijn weinig 

studies naar interventies om deze fouten bij in het ziekenhuis opgenomen patiënten 

te voorkomen. Deze studie had als doel om het effect van een apotheekinterventie 

ondersteunend door een context bewust klinische beslissingsondersteunend systeem 

op de incidentie van voedingssonde gerelateerde medicatiefouten bij gehospitaliseerde 

patiënten te onderzoeken. Om dit te onderzoeken werd een prospectieve pre-post 

interventiestudie uitgevoerd. Alle patiënten opgenomen op de afdelingen voor maag, darm- 

en leverziekten, oncologie of neurologie die orale medicatie via een voedingssonde kregen 

gedurende een bepaalde periode werden geïncludeerd. Voor de interventie kregen pre-

interventiepatiënten de gebruikelijke zorg. De interventie bestond uit het implementeren 

van een door een beslissingsondersteunende systeem ondersteunde apotheekinterventie 

i.c.m. implementatie van standaardwerkprocedures en het aanvullend opleiden van 

personeel (apothekersassistentes en verpleegkundigen). Een voedingssonde gerelateerde 

medicatiefout werd gedefinieerd als het toedienen van ongeschikte medicatie via een 

voedingssonde. De incidentie werd uitgedrukt als het aantal voedingssonde gerelateerde 

medicatiefouten per medicijntoediening. De incidentieratio (IR) werd berekend middels 

multivariate Poisson-regressie waarna beide fasen werden vergeleken. Een totaal van 81 

patiënten werd geïncludeerd, 38 in de pre-interventiefase en 43 in de interventiefase. De 

incidentie van voedingssonde gerelateerde medicatiefouten in de pre-interventiefase was 

0,15 (95% betrouwbaarheidsinterval [BI] 0,07-0,23) versus 0,02 (BI 0,00-0,04) tijdens de 

interventiefase (85% reductie), wat resulteerde in een aangepaste IR van 0,13 (BI 0,10-0,18), 

wat aantoont dat het gebruik van op de context gebaseerde beslissingsondersteunende 

systeem apotheekinterventies kan resulteren in een aanzienlijke vermindering van de inci

dentie van voedingssonde gerelateerde medicatiefouten. 

In hoofdstuk 3.2 werd aan de standaard passieve signalen over hypokaliëmieën die 

voorschrijvers in het ziekenhuis ontvangen, medicatiecontext en interpretatie van een 

apotheker toegevoegd. Uit voorgaande onderzoeken is gebleken dat de respons op ernstige 

hypokaliëmieën die alleen passief in het elektronisch patiënten dossier werden gemeld, 

ondermaats is. Waarschuwen van voorschrijvers middels telefonische of actieve elektronische 

waarschuwingen kan de respons significant verbeteren, maar leidt weer tot signaalmoeheid 

en frustratie door de toename van niet-specifieke en vaak onnodige waarschuwingen. 
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Een klinische beslisregel, ingebouwd in een klinisch beslissingsondersteunend systeem 

genereerde actieve signalen voor patiënten met een serumkaliumspiegel (SPS) <2,9 mmol/L 

zonder een voorschrift voor kaliumsuppletie. Indien hierbij een klinisch relevant signaal naar 

voren kwam, nam een apotheker contact op met de arts. De studie evalueerde de impact 

van deze door klinische beslisregel ondersteunde apothekersinterventie, in vergelijking met 

passieve waarschuwingen in het elektronische patiëntendossier voor patiënten die tijdens 

hun ziekenhuisopname hypokaliëmie (SPS <2,9 mmol/L) ontwikkelden. Er werd een voor- 

(2007-2009) en na-onderzoek (2010-2017) uitgevoerd met tijdsreeksanalyse. De eindpunten 

van deze studie waren het percentage hypokaliëmische patiënten waarbij een medicatie 

opdracht voor kaliumsuppletie werd voorgeschreven, de tijd tot het voorschrijven van deze 

kaliumsuppletie, het percentage patiënten dat normokaliëmie (SPS ≥3,0 mmol/L) bereikte, 

de tijd tot het bereiken van normokaliëmie en de totale duur van ziekenhuisopname. In totaal 

werden 693 patiënten opgenomen in de studie, waarvan er 278 werden geïncludeerd in de 

interventiefase. Het percentage patiënten dat kaliumsuppletie kreeg voorgeschreven en de 

tijd tot het voorschrijven hiervan verbeterden van 76,0% in 31,1 uur naar 92,0% in 11,3 uur (p 

<0,01). Ook de tijd tot het bereiken van milde hypokaliëmie (SPS ≥3,0 mmol/L) verbeterde 

(p<0.009). Er werden echter geen veranderingen waargenomen in het percentage patiënten 

dat normokaliëmie bereikte of de tijd om dit te bereiken: 87,5% in 65,2 uur vóór de interventie 

in vergelijking met 90,2%, (p = 0,69) in 64,0 uur (p = 0,71) in de interventiegroep. Wel werd er 

een niet-significante afname van de duur van de ziekenhuisopname waargenomen met 8,2 

dagen: van 25,4 naar 17,2 dagen (p = 0,29). Het toevoegen van verdere context kan het aantal 

actieve waarschuwingen aanzienlijk verminderen en tegelijkertijd een effectieve methode 

zijn om responspercentages, de tijd tot kaliumsuppletie en de tijd tot initiële verbetering te 

verbeteren. 

De algemene discussie (hoofdstuk 4) plaatst de studies die zijn uitgevoerd in een bredere 

context. Het eerste deel van het hoofdstuk richt zich op het vertalen van medische kennis 

naar klinische praktijkrichtlijnen en uiteindelijk klinische beslissingsondersteunende 

richtlijnen. Tijdens het bekijken van dit proces worden aanbevelingen gedaan over hoe dit 

proces kan en zou moeten worden versneld met behulp van klinische netwerken, door deze 

kennis direct in bestaande klinische beslissingsondersteunende systemen te incorporeren 

en klinische regels zo te ontwerpen dat ze interoperabel en deelbaar zijn.

Het tweede deel van het hoofdstuk richt zich op de uitvoer van klinische beslissings

ondersteunend systemen, voornamelijk meldingen. Hoe werken meldingen? Wat is het 

probleem met (te veel) meldingen? Bovendien, hoe gaan mensen om met veel meldingen? 

Vervolgens wordt de sprong gemaakt naar een oplossing voor dit probleem het gebruik van 

context. Het laatste deel van het hoofdstuk zoomt nog verder uit en bespreekt het gebruik van 

verschillende vormen van kunstmatige intelligentie-modellen. Voornamelijk de vergelijking 

tussen de op regels gebaseerde modellen versus machinaal- of diep-lerende modellen.
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“It does not matter how slowly you go as long as you do not stop.”

Confucius
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DANKWOORD

Deze ontdekkingstocht heeft niet het meest standaard karakter gehad. Maar dat zal elke 

promovendus mogelijk wel zo beleven. Het is je eigen unieke ontdekkingstocht met hoge 

pieken en diepere dalen. Met stilstand en vooruitgang, met uitzichtloosheid en enthousiasme.

Allereerst wil ik iedereen bedanken die een bijdrage heeft geleverd aan dit proefschrift: alle 

coauteurs, (ziekenhuis)apothekers (in opleiding), studenten farmacie en geneeskunde, artsen, 

apothekersassistenten en verpleegkundigen en vele meer die mogelijk ben vergeten in dit 

dankwoord. Maar vanzelfsprekend wil ik me tot een aantal mensen in het bijzonder richten. 

Allereerst mijn promotoren. 

Beste Erik, Zonder jouw unieke gaven om mensen te verbinden, je overtuigingskracht en 

eindeloze ideeën, zou dit onderzoek nooit van de grond zijn gekomen. Jouw eindeloze 

stroom van ideeën heeft vaak geleid tot heroriëntatie, maar uiteindelijk hebben we samen 

met anderen verbeteringen kunnen aanbrengen en vervolgstappen kunnen nemen. Ik zal de 

ongeplande overleggen met jou op de anesthesiekamer of preoperatieve screening kamer 

nooit vergeten, waar ik je probeerde bij te praten over de voortgang en gekozen richting, 

terwijl je vaak halverwege een verhaal werd weggepiept. Ik denk er met een glimlach aan 

terug. Erik, heel erg bedankt voor deze kans en de leerzame ervaring. 

Beste Toine, Dit proefschrift heeft vele obstakels en wendingen gekend. Door je kritische 

en soms strenge en maar ook weer heel menselijke en persoonlijke aanpak heeft dit 

proefschrift uiteindelijk deze vorm en inhoud gekregen. Het was ontzettend fijn om je erbij 

te hebben om de lijn helder te krijgen en op deze lijn te blijven. Ik heb even moeten wennen 

aan de spontane telefoontjes (vaak vanuit de auto) maar deze heb ik uiteindelijk als enorm 

waardevol en steunend ervaren in de afrondende fase, waar ik vaak soms tientallen ballen 

tegelijkertijd in de lucht probeerde te houden. Toine, ontzettend bedankt, en ik hoop dat we 

in de toekomst nog vele ideeën en onderzoeken samen verder mogen uitwerken. 

Beste René, “zullen we even een luchtje scheppen?” deze onvergetelijke woorden kondigden 

spontane overleggen aan waarin we onze gedachten de vrije loop konden laten en nieuwe 

ideeën konden ontwikkelen. Je was op dagelijkse basis betrokken bij alle onderzoeken, 

vraagstellingen en strubbelingen, je dacht over alle aspecten mee, van de techniek en 

redeneringen tot de bewoording in management samenvattingen richting Santeon bestuur. 

Ik wil je bedanken voor je vriendschap, betrokkenheid en vertrouwen. Ook zonder jou was 

dit proefschrift er niet geweest, maar was ik ook niet de ziekenhuisapotheker geweest die 

ik nu ben. Naast alle direct onderzoeksgerelateerde vaardigheden heb ik zo ontzettend veel 
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van je geleerd over het reilen en zeilen binnen ziekenhuizen, besturen en vakgroepen. Een 

van de leukste van de onderdelen van onze samenwerking was de begeleiding van de vele 

studenten farmacie bij hun onderzoeksprojecten. Ook daarvan heb ik weer ontzettend 

veel geleerd. Ontzettend bedankt voor de prachtige tijd waarin we samen hebben mogen 

werken. 

Dan wil ik graag mijn paranimfen in het bijzonder bedanken.

Lieve Anne-Marie, ik weet nog de eerste keer dat we elkaar spraken in 2009 bij een 

promotieposter voor je promotieonderzoek in Eindhoven, op de Universiteit Utrecht. Ik was 

direct ontzettend enthousiast; onderzoek met ICT en dan ook zo dicht op de directe klinisch 

farmaceutische praktijk, fantastisch dacht ik alleen maar. Het onderzoeksproject wat 

volgde was de basis voor zowel mijn opleiding tot ziekenhuisapotheker als dit proefschrift. 

Ik denk met ontzettend veel plezier terug aan deze tijd. Daarnaast heeft het voor mij deuren 

geopend die mogelijk anders gesloten waren gebleven of anders veel langer dicht waren 

geweest. Als kers op de taart mocht ik toen de eer hebben om de paranimf te zijn op je 

promotie. Ik vind het ontzettend fijn dat je mij deze dienst en eer wederzijds wil doen. 

Lieve Britt, onze gezamenlijke reis begon toen je je aanmeldde voor je onderzoeksstage 

waarin ik je begeleider mocht zijn. Ik moest in het begin wat wennen aan je spring in het 

veld mentaliteit gemixt met een grote plens ambitie en enthousiasme. Jouw enthousiasme 

en onze samenwerking aan de laatste delen van mijn proefschrift hebben me een spiegel 

voorgehouden die ik nodig had om dit tot een goed einde te brengen. Dank je wel hiervoor. 

Ook ben ik dankbaar dat we inmiddels een aantal zeer innovatieve en leuke onderzoeken 

samen hebben mogen doen. Ook voor jou was de onderzoeksstage met clinical rules 

de kickstart van je carrière en mocht je het stokje van me overnemen ten aanzien van 

de onderzoekslijn. Ook deze resulteert, net zoals voor mij, vast en zeker in een prachtig 

proefschrift en je specialisatie tot ziekenhuisapotheker. Ook hartstikke fijn dat je mijn 

paranimf wil zijn bij deze feestelijke gelegenheid.

Alle onderzoeken hebben plaatsgevonden in het Catharina Ziekenhuis Eindhoven. Ik 

wil alle apothekersassistenten en (ziekenhuis) apothekers (i.o.), farmaciestudenten, 

geneeskundestudenten, artsen, verpleegkundigen, HCI, ICMT en O&O medewerkers 

ontzettend bedanken voor hun hulp. Een aantal mensen wil ik in het bijzonder bedanken 

voor hun bijdrage. 

Beste Eric, samen met René hebben jullie zowel de onderzoekslijn als het financiële 

fundament gelegd voor dit proefschrift. Dank voor de steun en het vertrouwen. 
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Beste Wilma, een groot deel van dit onderzoek zou niet tot uitvoering gebracht kunnen 

zijn zonder jouw hulp. Je stond altijd klaar om mee te denken, te helpen programmeren en 

te sparren over oplossingen. Je nuchterheid en bereidheid tot hulp kenden geen grenzen 

(letterlijk), zelfs op de meest exotische reizen wilde je wel even je laptop erbij pakken om 

even in te loggen om iets op te lossen. Heel erg bedankt!

Beste Thomas, ontzettend bedankt voor alle hulp tijdens de interactie studie. Zonder jouw 

monnikenwerk bij deze studie was deze niet tot een goed resultaat gekomen. 

Beste Marieke, je hielp me tijdens deze promotie en de opleiding tot ziekenhuisapotheker 
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Beste Naomi, jouw werk en visie is ook een inspiratiebron geworden voor dit proefschrift. 
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software gebouwd hadden. Dit geeft echter wel aan hoe ontzettend flexibel en robuust de 
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overleggen (of bij het avondeten). Ik hoop dat we in de toekomst nog mooie projecten 

samen kunnen ontwikkelen. 

Beste Harold, lang was jij voor mij de stem van Gaston. Het was altijd een geruststelling 

om je aan de telefoon te hebben als er van alles in de soep liep. Dank voor je steun en lieve 
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LIST OF ABBREVIATIONS  
AS PRESENTED IN THIS THESIS 

All abbreviations are listed as singular

AE: 	 Adverse event

ADE:	 Adverse drug event

ADR:	 Adverse drug reaction

AI:	 Artificial intelligence

ANN:	 Artificial neural network

AMIA: 	 American Medical Informatics Association

ATC:	 Anatomical therapeutic chemical
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CIG: 	 Computer-interpretable guidelines
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CZE:	 Catharina Hospital Eindhoven

DDI: 	 Drug-drug interaction

EPOC:	 Effective Practice and Organization of Care Group

EBM:	 Evidence based medicine

EHR: 	 Electronic health record

EMA:	 European medicine agency

FP:	 False positive

FN:	 False negative

FT:	 Free-text (Chapter 2.2)

FT:	 Enteral feeding tube (Chapter 3.1)

FTE:	 Full-term equivalent

FTRME:	 Feeding tube-related medication error

FOLFOX:	 Combination therapy of fluorouracil and oxaliplatin

GLIF:	 Guideline interchange format
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ICD-10:	� International Statistical Classification of Diseases and Related Health Problems 

(10th ed.)

IR:	 Incidence ratio

ICU:	 Intensive care unit
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WHO:	 World Health Organization
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