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Monolithically integrated InP optical 90° hybrid 
H. O. Çirkinoglu, R. Santos, K. Williams, and X. Leijtens 

Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands  
 

An optical 90°hybrid is used for demodulating the information encoded in the phase and 
amplitude of an incoming optical signal by interfering it either with a local oscillator or 
with itself. Such 90° hybrids are essential for retrieving the amplitude of both orthogonal 
quadratures of the received signal in applications such as coherent communications, or 
continuous-variable quantum key distribution. In this work, we report on the design and 
the results from a monolithically integrated optical 90° hybrid, based on a 4×4 multi-
mode interference coupler fabricated in the generic InP platform of Smart Photonics. We 
investigated the performance of the hybrid in terms of its common-mode rejection ratio, 
and phase mismatch across the full C-band. 

Introduction 
Optical communication systems where information is encoded in both quadratures of 
light offer improved spectral efficiency compared to conventional methods relying on 
intensity modulation/direct detection [1,2]. At the receiver side of such systems, the 
amplitude and phase of the incoming signal is required to be converted into the electrical 
domain with high sensitivity [3]. The key components that enable this functionality 
include high-performance optical components such as narrow linewidth lasers, balanced 
photodetectors, and optical 90 hybrids [4]. 
A variety of methods and technologies have been used to develop optical 90° hybrids 
including free space optics [5], LiNbO3 material platforms [6,7], as well as monolithically 
integrated Si based [8, 9, 10] and InP based [11, 12] photonic integrated circuits (PICs). 
In this work, we report on the characterization results from an InP based monolithically 
integrated multi-mode interference (MMI) coupler-based 90° hybrid, fabricated in a 
generic multi-project-wafer (MPW) run of Smart Photonics.  

 

Figure 1 – The layout of the 90° hybrid test structure 

90° Hybrid and the test structure 
The fabricated 90° hybrid is based on a 4×4 MMI structure, where only two of the MMI 
inputs are used for either the signal or the local oscillator. The MMI input-output 
interfaces are tapered to match the width of the integrated waveguides, which carry the 
signal across and in/out of the chip. The characterization of the MMI is performed using 
an interference-based test structure as shown in Figure 1, where a single input signal is 
first split in two with a 1×2 MMI splitter. One of the two signals is then transferred 



through an additional delay-line with a known length. The two signals are then used as 
the two inputs of the 90° hybrid, resulting in the signal amplitudes at the output arms as,  
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where 𝐸𝐸0 is the input signal and 𝑒𝑒−𝑖𝑖∆𝜃𝜃 is the phase acquired by the signal travelling 
through the delay line. 𝐸𝐸i denotes the signal at the 𝑖𝑖th output. The MMI transfer matrix 
above assumes the ideal operation where each s-parameter shares the same complex 
amplitude factor of  1

𝐶𝐶
, together with their corresponding phase relations. For the 

fabricated devices, each parameter of the transfer matrix 𝑠𝑠𝑖𝑖𝑗𝑗 have amplitude and phase 
deviation, deteriorating the performance of the hybrid. In the following section, extraction 
and analysis of such parameters from the measurement data is explained and presented.  

Measurements and analysis 
The measurements are performed by using a monochromatic tunable laser source as the 
input signal. The optical input/output coupling is realized through lensed fibers, and 
angled/tapered waveguides to ensure good coupling and minimize reflections. Before the 
input fiber, the light is transmitted through a polarizer which, together with polarization 
maintaining fibers, ensures linearly polarized input light. The output light from each 
output port of the test structure is measured and recorded while the wavelength of the 
input laser is swept between 1520nm-1570 nm. 
Considering the transfer matrix of the MMI in equation (1), the measured current through 
the photodetectors at each output port is given by,  

𝐼𝐼𝑖𝑖 =  𝑅𝑅 |𝐸𝐸0|2 |𝑠𝑠𝑖𝑖1 + 𝑠𝑠𝑖𝑖2 𝑒𝑒−𝑖𝑖(𝜑𝜑𝑖𝑖+∆𝜃𝜃)|2,    (2) 

where 𝜑𝜑𝑖𝑖 = arg{𝑠𝑠𝑖𝑖1} − arg{𝑠𝑠𝑖𝑖2}. The constant 𝑅𝑅 includes the optical insertion and 
transmission loss, together with the photodetector responsivity, and assumed to be equal 
for each channel. For the sake of simplicity, the imbalance of the 1×2 splitter, and the 
additional transmission loss through the delay line is assumed to be zero. The additional 
acquired phase due to the length difference is, 

∆𝜃𝜃 =  2𝑗𝑗
𝜆𝜆
∆𝐿𝐿 𝑁𝑁𝑒𝑒(𝜆𝜆),      (3) 

Where ∆𝐿𝐿 is the geometric length of the delay line, which is designed to be 1038 μm. 
𝑁𝑁𝑒𝑒 is the wavelength dependent effective refractive index, and 𝜆𝜆 is the wavelength. 
Figure 3(a) shows the measured power for an input power of 1mW across a 2nm 
wavelength range, normalized for 3dB loss per fiber-chip coupling. As the wavelength of 
the input laser shifts, the acquired phase through the delay line (∆𝜃𝜃) changes, resulting in 
the output power being a sinusoidal function of the wavelength. Through a non-linear 
least squares fit method, the parameters 𝑠𝑠𝑖𝑖𝑗𝑗  , 𝜑𝜑𝑖𝑖, and ∆𝜃𝜃 can be estimated. Based on the 
mean and the standard deviation of the measurement data, good starting values can be 
obtained to feed the recursive fitting algorithm, ensuring a proper convergence [13]. The 
|𝑠𝑠𝑖𝑖𝑗𝑗| values obtained using the fitting algorithm across 1520nm-1570 nm is given in 



Figure 3(b). The imbalance between |𝑠𝑠𝑖𝑖1| and |𝑠𝑠𝑖𝑖2| values could be attributed to the 
spitting imbalance of the 1×2 MMI splitter. 

 
Figure 3 – (a) Measured output powers and the resulting fit functions and (b) obtained values for 

s-parameter magnitudes 

The common mode rejection ratio (CMRR) is a measure for the power imbalance of 
different output channels when a single input of the MMI is used, and is defined by, 
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where 𝑗𝑗 is the input channel, and the letters 𝐼𝐼 and 𝑄𝑄 correspond to the output channel pairs 
for the measurement of in-phase (channels 1 and 4), and quadrature (channels 2 and 3) 
components. The resulting CMRR values calculated using the obtained s-parameters are 
shown in the Figure 4(a). All the four CMRR values are below -20dB across 
1542-1552 nm. 

 
Figure 4 – The calculated (a) CMRR and (b) phase mismatch values  

The relative phase offsets of different output channels 𝛷𝛷𝑖𝑖𝑗𝑗 =  𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑗𝑗 can be calculated 
from the relative position of the peaks in the transmission spectra of different channels. 
The phase deviation from an ideal MMI can be found from the difference between the 
calculated phase offset, and the theoretical phase offset between the output channels, 
which take the values in {𝑗𝑗

2
,𝜋𝜋, 3𝑗𝑗

2
}. The calculated phase mismatch values are shown in 

Figure 4(b). The phase deviation between the output channels are below 15 degrees across 



1549nm-1554nm. High phase deviation and low CMRR values are assigned to be due to 
width and etch depth variations between the designed and the fabricated devices. These 
will be investigated in more detail and optimized in the next iterations. 

Conclusion 
The results from an optical 90° hybrid, based on a 4×4 MMI device; together with the 
method for the extraction of the performance parameters associated with the hybrid is 
presented. The CMRR values are below -20dB across a wavelength span of 10 nm, and 
the phase deviation values are below 15 degrees across a wavelength span of 5 nm around 
a center wavelength of 1550 nm.  
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