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a b s t r a c t

Fluid dynamics turbulence refers to the chaotic and unpredictable dynamics of flows.
Despite the fact that the equations governing the motion of fluids are known since
more than two centuries, a comprehensive theory of turbulence is still a challenge
for the scientific community. Rather recently a number of important breakthroughs
have clarified many relevant, fascinating, and largely unexpected, statistical features of
turbulent fluctuations. In these lectures, we discuss recent advances in the field with
the aim of highlighting the physical meaning and implication of these new ideas and
their role in contributing to disentangling different parts of our understanding of the
turbulence problem. The lectures aim at introducing non-experts to the subject and no
previous knowledge of the field is required.
©2023 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
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Introduction

Turbulence can be considered as the most outstanding and classical prototype of complex system and the fascinating
omplex behaviour of turbulent flows inspired artists like for instance Van Gogh or Hokusai. Understanding the physics
f turbulent flows is often considered as the ‘‘last grand challenge’’ of classical physics: we know the equation of motion
or a Newtonian fluid since 200 years and we are still facing fundamental challenges to achieve a quantitative description
f the statistical and geometrical properties characterising turbulent flows.
The goal of this review is to collect the most basic knowledge and recent advances in the understanding the physics

f turbulent flows. The review is addressed to any student, graduate and undergraduate, and researcher that wishes a
roader view on the topic. Most of the focus is devoted to homogeneous and isotropic turbulence, as this is usually a good
epresentation of any turbulent flow at small enough scales and far enough from boundaries. The case of most complex
lows, where anisotropies and non homogeneities prevail is also shortly discussed towards the end of the review.

Although there exist a number of excellent textbooks on fluid dynamics turbulence, we feel that there is a need for a
ather pedagogical introduction to the subject including the recent theoretical and conceptual developments. We assume
hat the reader does know the basic tools of the theory of dynamical systems and fluid mechanics. The required level of
2
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nowledge is at any rate elementary as it can be easily achieved during undergraduate and graduate courses in scientific
isciplines. Starting from this knowledge, we introduced the basic ideas on the subject with no further mathematical
nd/or physical requirements. We intend to introduce the non-expert reader to these findings focusing on their physical
eaning.
The review is divided in 8 Lectures. The first two Lectures deal with the basic features of turbulent flows, namely the

iscous anomaly in three-dimensional turbulent flows and Kolmogorov theory. In Lecture 2 we discuss the difference
etween three and two-dimensional turbulence, while we only consider the case of three-dimensional turbulence in
ll other Lectures. The Kolmogorov theory plays an important role in turbulence by combining two fundamental ideas:
a) the existence of viscous anomaly, that is to say, the experimental observation that energy dissipation is constant for
arge Re number; (b) the self-similarity of the statistical properties of turbulent fluctuations. It turns out that point (b)
s not strictly true and this opens the problem of intermittency in turbulence. Although deviations from self-similarity
ay be considered small, the existence of intermittency opens a non-trivial problem and it has been considered a
ajor conceptual challenge in the field. This question is detailed in Lecture 3 and a possible solution to the problem

s presented in Lecture 4, based on the so-called multifractal theory of turbulence. One basic feature of the multifractal
heory is the possibility to explain the observed scaling properties of small-scale fluctuations for both inertial and dissipative
ynamics. There is evidence from existing experimental and numerical data that anomalous scaling, i.e. deviations from
elf-similarity, is independent of both large-scale forcing and the detailed dissipation mechanism, i.e. anomalous scaling
s universal. In Lecture 5, we introduce the reader to simplified models of intermittency, namely the shell models.
lthough shell models cannot provide any information on the geometrical features of turbulence, yet they show interesting
imilarities with the observed intermittency properties of real 3d turbulence and we think they can be used to clarify
ather general questions about scaling properties of turbulence fluctuations. Lecture 6 is devoted to a rather non-trivial
xtension of the multifractal theory for Lagrangian turbulence and it reviews recent developments on the subject.
ecture 7 and Lecture 8 discuss more advanced topics. In Lecture 7 we review the solution of the so-called Kraichnan
odel for the passive scalar. This particular topic is reviewed in details in [1]. Here we present a simplified version of

he results to illustrate the basic physical ideas. Although the Kraichnan model represents a simplified version of the real
roblem of passive scalar turbulence, its solution highlights the importance of new conceptual ideas like the zero modes
nd the statistical preserved structures and demonstrates the universality, with respect to forcing and dissipation, of the
mall-scale statistical properties of the passive scalar fluctuations. We simplify as much as possible the mathematical
reatment of the problem by using shell model version of the full problem. Finally, in Lecture 8 we discuss the effect of
on-isotropic forcing, including some implications for turbulence modelling, and more generally how to properly discuss
he issue of anisotropic fluctuations.

Lectures 1 to 6 can be used as a trace for teaching turbulence in advanced courses. It is important that, besides the
heoretical discussion presented in the Lectures, the students can use numerical and/or experimental data to perform
heir own statistical analysis and assessment following the guidelines presented in the theoretical Lectures. Whenever
ossible we made use of the original figures from the original works.

ecture 1. The very basic law of turbulence

Chaos and turbulence
The word turbulence is derived from latin ‘‘turba’’, which means disorder or confusion, and ‘‘ulentus’’ which means

‘in abundance’’. It was used in the last period of the Roman empire to mean political or crowd turmoils. Although its
riginal meaning is preserved today, one often uses the word turbulence during commercial flights to describe sudden
hakes of the aircraft induced by the atmospheric wind. In physics, the word ‘‘turbulence’’ refers to the space and time
haotic behaviour of a fluid. As we shall see in the following, this definition is somehow obscure since we should first
efine what we mean by chaotic behaviour (assuming we all agree on the definition of fluid). It is the aim of this lecture
o introduce the reader to the basic features which characterise turbulent flows and to provide a definition of turbulence
n the simplest possible way.

Let us start with our knowledge of fluids. We do know the equation of the motion of a fluid since two hundred years
ue to the work of Claude–Louis Navier [2] and Gabriel Stokes [3] developed in the period 1822–1850. Upon defining
(x, t) the flow velocity depending on the space position, x, and the time, t , the Newton law for a fluid is described by

the equation:
dv
dt

≡
∂v

∂t
+ v · ∇v = −

1
ρ

∇p + ν∆v (1)

where ρ is the fluid density. Mass conservation requires the continuity equation
dρ
dt

≡
∂ρ

∂t
+ ∇ · (ρv) = 0 (2)

As in the rest of this review, we consider an incompressible fluid with ρ = const , then mass conservation implies ∇·v = 0.
Eq. (1) is nothing else nothing more than Newton’s equation: the l.h.s is the acceleration dv/dt while the r.h.s are the
internal forces acting in the fluid. The latter is divided into two parts: the effect of the internal pressure, p, which should
3
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atisfy the equation of state, and the effect of the forces acting between the fluid atoms which lead to the viscous effect
roportional to the kinematic viscosity ν. For incompressible flow, the equation of state is simply ρ = const and the
ressure is derived by imposing the condition ∇ ·v = 0. Eq. (1), referred to as the Navier–Stokes equations (NSE), describes

a Newtonian fluid, i.e. a fluid where the internal forces due to atom interactions produce a stress proportional to the shear
rate. In the following, we assume that the reader is familiar with the basic knowledge of fluid dynamics acquired during
undergraduate courses.

The Navier–Stokes equation is our definition of an incompressible Newtonian fluid. The dynamical behaviour of water,
air, and other common fluids at constant room temperature is described by Eq. (1) with very good accuracy. We can
now use this knowledge to make a first and non-trivial step in the definition of turbulence. To this aim, we consider the
following experiment: let us take a cylinder of radius L and height H and let us look at the dynamical behaviour of a
fluid that flows around the cylinder. This experiment is easily performed in a wind tunnel and Fig. 1 shows schematically
typical flow visualisations looking from the top, assuming that the fluid flows initially at a constant velocity U0 (left side of
the images). We can now exploit an important property of the NSE, i.e. we can use the variables L and U0 to measure space
and time using units L and L/U0 respectively. Then, in terms of dimensionless variables v → v/U0, x → x/L, t → tU0/L,
/ρ → p/(ρU2

0 ), Eq. (1) can be written as

∂v

∂t
+ v · ∇v = −

1
ρ

∇p +
1
Re
∆v (3)

where the number Re = U0L/ν, called the Reynolds number, is the only dimensionless variable describing the viscous
effect. Upon increasing U0, in our simple experiment, we are increasing Re. Thus in Fig. 1 the different flow visualisations
efer to different incoming flow velocity U0. The striking result is that the qualitative behaviour of the fluid is changing
pon increasing Re. For small Re the fluid is flowing smoothly around the cylinder. Then for some Re greater than a critical
alue, Rec , two vortices appear downstream and, upon further increasing of Re, the vortices detach from the fluid surface
nd the flow becomes non-stationary. For very large Re we cannot easily detect any structure in the fluid and the flow
ppears fully disordered and very complex both in space and in time. It is a remarkable experimental fact, due to Osborne
eynolds [4], that by changing U0, L or ν the fluid behaves exactly in the same way for the same Re number.
Fig. 1 can be used to define turbulence as the dynamical behaviour of a fluid for Re → ∞, which, for all practical

urpose, means Re ≫ Rec . The question is now to understand the nature of the dynamical behaviour of a fluid for Re → ∞.
he problem is highly non-trivial because the Navier–Stokes Eqs. (1) are non-linear equations for the velocity field, v. At
ery small Re, when the flow is smooth, we can assume that the non-linear contribution to the velocity acceleration v ·∇v
an be neglected. If this is correct, then we can solve Eq. (1) almost exactly. However, we cannot use this solution as the
tarting point of any perturbative expansion in Re. Thus we cannot even dream to obtain an analytical solution of the
on-linear problem using any perturbative scheme. The qualitative change in flow behaviour when increasing Re is the
ignal of a rather non-trivial mechanism in the system. Physically it means that the smooth solution at small Re becomes
‘unstable’’.

It is also not obvious how we should describe the flow when Re → ∞ where no clear pattern emerges in the system
both in space and time). One can imagine that this kind of ‘‘complex’’ behaviour can be obtained by some superposition
f different patterns in the form:

v =

∑
α

wα(x, t) (4)

Then, if wα are periodic or quasiperiodic functions of time and if there is a large number of possible ‘‘patterns’’ then
he resulting velocity field may look very ‘‘complex’’. It was a remarkable achievement in the seventies to show that,
n fact, the chaotic behaviour of a fluid can be described by Eq. (4) for moderate Re. Here chaotic means that wα are no
onger a periodic or quasiperiodic function of time: the behaviour is characterised by a positive Lyapunov number λ which
uantitatively describes the sensitivity to the initial conditions. Let us consider two solutions of Eq. (1) which starts with
xtremely small but finite difference E(0) of the initial conditions. For Re large enough, E(t) grows exponentially as exp(λt)
here the growing rate λ > 0 is the Lyapunov number or exponent. For time longer than 1/λ, i.e. the predictability time,
e can predict the system behaviour only probabilistically. Chaotic behaviour is found in a number of different physical
ystems and it properly describes non stationary fluid flows for moderate Re. The case Re → ∞ is just more complicated
han chaotic behaviour.

One simple but rather non trivial question is whether or not the Navier–Stokes equations properly describe the
omplexity of the flow behaviour for Re → ∞. To reach any conclusion on this question, we need to solve Eq. (1)
umerically. Due to technological achievement, our ability to perform numerical simulations of the Navier–Stokes
quations has been growing exponentially during the last forty years. In Fig. 2 we show the value of Re for the largest
umerical simulations obtained as a function of the year when it was performed. Actually in the figure we show
eλ = Re1/2. The scientific outcome of this non-trivial effort is that Eq. (1) properly describes the complex (space/time)
ehaviour of turbulent flows in the limit Re → ∞. Does it mean we solve the problem? From a naive point of view,
e may say that, since we have the equation of motion, we know the solution to the ‘‘turbulence’’ problem based on the
umerical simulations. This is really ‘‘naive’’: although numerical simulations provide accurate information on turbulence,
e are left with the non-trivial problem to understand physically the nature of turbulence at large Re and its statistical
roperties.
4
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Fig. 1. The picture describes the dynamics of the flow around a cylinder (top view) for different Re numbers. Upon increasing the value of Re one
observes many different qualitative changes in the solution. Eventually, at large Re the flow becomes turbulent and no clear pattern is detectable.

Lecture 1.1. The zero-th law of turbulence

To make a first step, let us consider the energy balance in turbulent flows at large Re. We assume that the flow is
onfined in a closed geometry and we generate the flow by using an external forcing F acting on the r.h.s of Eq. (1). For
nstance, this can be achieved by considering a flow in a Couette geometry, i.e. the flow between two cylinders separated
y a distance L, the smaller one at rest and the largest one rotating at velocity U0.
Then we can look at the kinetic energy E = v2/2 obtained as the space average ⟨. . . ⟩ over the fluid:

dE
dt

= ⟨F · v⟩ − ϵ (5)

where

ϵ = −ν⟨v ·∆v⟩ (6)

Note that the rate of the energy dissipation ϵ is expressed in m2/sec3 and it is given by:

ϵ = ν

∫
d3x

∑
i,j

S2ij ; Sij ≡
1
2
(∂ivj + ∂jvi) (7)

where Sij is the shear rate tensor. To understand the problem we are facing, let us now make use of the previous
transformation leading to the definition of the Re number. The idea is that the velocity field v can be written as

v = U0w

[
x
L
,
tU0

L

]
(8)

Then, dimensional analysis give (where C is a numerical constant) :

ϵ ∼ νC
U2
0

L2
∼

C
Re

U3
0

L
(9)

Thus, our first and simple expectation is that the rate of energy dissipation ϵ decreases with Re. In fact this is badly wrong:
the remarkable and fundamental experimental and numerical evidence is that the rate of energy dissipation ϵ is
independent of Re in the limit Re → ∞. This result is sometime referred to as the zero law of turbulence.

To provide an interpretation of the zero law of turbulence, we can assume that the velocity gradients in the flow are
proportional to U0/λ where now λ is some length scale to be defined. It follows that our estimate of ϵ is given by

ϵ ∼ ν
U2
0

λ2
=

1
Re

L2

λ2

U3
0

L
(10)

he zero law of turbulence implies λ = Re−1/2L, i.e. it implies that, for large Re, λ goes to zero (with respect to L) and
hat the velocity gradients becomes infinite for Re → ∞! The quantity λ is known as the Taylor scale and beside Re, one
sually consider a ‘‘reduced’’ Reynolds number Re = U λ/ν = Re1/2.
λ 0

5
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Fig. 2. The value of the Reλ = Re1/2 which has been achieved in the numerical simulations over the last four decades. At Reλ order 103 the numerical
simulations become comparable with standard laboratory experiments for turbulent flows.

The above result is very surprising. We start with a system defined by a set of partial differential equations (the N.S.
equation) and we study the case of relatively large Re or, equivalently, small ν. In this limit, we discover that the velocity
gradients go to infinity, i.e. the velocity field becomes very ‘‘rough’’ over space with strong variations in a relatively
small (order λ) distance. This feature is rather unique in physics. We are used to considering large spatial gradients of
a physical observable whenever external noise acts as perturbations (due to temperature or quantum fluctuations) on
the system. Turbulence is the only case where internal non-linear dynamics generate strong gradients for large external
forcing (or small viscous effects) without any external small-scale perturbations. In second-order phase transition, the
powerful method based on Renormalisation Group enables us to understand the macroscopic behaviour of the system
once we average over small scales ‘‘strong’’ fluctuations, i.e. knowing the small-scale dynamics we obtain the ‘‘universal’’
macroscopic behaviour of the large-scale variables. In turbulence we face the opposite problem: we know the large scale
behaviour (i.e. the N.S. equation) and we are interested to understand why does the system develop large gradients at
small scales and why the rate of energy dissipation is Re independent.

In a very general and somehow abstract way, we can state that the turbulence problem is how to derive from the N.S.
equation the zeroth law of turbulence. Right now we have some hints on why the zeroth law is true as we will discuss in
the following lectures. For the time being we focus on two different issues related to the zeroth law of turbulence: namely
(1) whether we do observe the zeroth law in numerical simulations and (2) what are some macroscopic consequences of
the zeroth law. The first question tries to answer how much we can trust the N.S. equation when Re is very large. After
ll there may be some physical mechanisms that modify energy dissipation at large Re. Remember that we are not able
o obtain experimentally the whole velocity field in any point of space and at any time. We are now able to measure
elocity gradients (i.e. velocity difference in space) with high accuracy in one point or we are able to obtain the overall
nergy balance with high precision. However, if the N.S. equations can develop large gradients, then one should observe
his phenomenon very clearly in numerical simulations.

In Fig. 3 we show rather recent numerical results showing the rate of normalised energy dissipation ϵL/U3
0 as a function

f Reλ. It is quite clear that, once Reλ is large enough, the rate of energy dissipation becomes constant.

ecture 1.2. Consequences of the zero-th law of turbulence

There exist very simple and practical implications from the zero law of turbulence. For instance, let us consider the
rag force acting on a body of size L moving at constant velocity U0. Based on dimensional analysis, the drag force can be
ritten as

F = AρL3
νU0

L2
f (Re) (11)

here A is a constant and AρL3 is proportional to the body mass. The function f (x) is constant for small x so that the drag
s proportional to the viscosity and to the velocity. At very large Re, however, f (Re) is no longer constant since we must
6
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Fig. 3. The normalised energy dissipation rate, ε (indicated as D on the y-axis), versus Rλ . Results from direct numerical simulations Gotoh et al.
(2002), Ishihara & Kaneda (2002), and Kaneda et al. (2003), together with the ones compiled by Sreenivasan (1998), i.e., the data from Cao et al.
(1999), Jimenez et al. (1993), Wang et al. (1996), and Yeung & Zhou (1997).
Source: Figure reproduced from [5].

satisfy the zero law of turbulence. Using Eq. (11) we can estimate the rate of energy dissipation as FU0 and we should
require that it is independent of Re. This is possible only if f (Re) ∼ Re for large Re:

F ∼ ρL3
νU0

L2
Re = CDρL2U2

0 (12)

he quantity CD is called the drag coefficient. Eq. (12) tells us that the drag force for large Re is proportional to U2
0 .

ecture 1.3. Boundary layer turbulence

The above example is just one of many. Two interesting consequences of the zeroth law of turbulence are the boundary
ayer flow and the Richardson diffusion. Let us start with the boundary layer flow: we consider a channel in three
imensions or the flow around two cylinders at some distance 2H. The flow is forced by a pressure gradient in the x-
irection and we denote y the transverse direction. We assume that the flow is turbulent and we are interested to obtain
he velocity profile of U(y) which is the ‘‘average’’ flow in the channel. Furthermore, we assume for theoretical purpose
hat the channel is so extended that at any point x we can observe the same statistical properties of the turbulent flows.
t follows than any average quantity is independent on x. This also implies that any time average should also corresponds
o the space average on x (they are supposed to be the same!). Finally, we assume periodic boundary conditions in z.

We consider each velocity component as the sum of an average part and a ‘‘turbulent’’ fluctuating part and we write

v = ⟨v⟩ + v′ (13)

here ⟨..⟩ denotes average. Since the average cannot depend on both x and z (because of the periodic boundary
onditions), ⟨v⟩ = U(y)i where i is the versor in the x direction. Hereafter, we often use the notation ai, with i = 1, 2, 3, to
denote the component of the vector a and the notation on repeated indices, i.e. Σiaibi is written as aibi. Note that in this
notation ∇ · v = ∂ivi. Finally, we assume that the pressure, as any other quantities, can be decomposed as p = ⟨p⟩ + p′.

Using the above notation we can rewrite the N.S. Eq. (1) as:

∂tv
′

i + ∂tUδi,1 + v′

j∂jv
′

i + U∂1v′

i + v′

2∂2Uδi,1 = −
∂ip′

ρ
+ ν∆(v′

i + Uδi1) (14)

pon average, we obtain:

∂tU + ∂y⟨v
′ v′

⟩ =
v2

∗
+ ν∂2 U (15)
y x H yy

7
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here we denote −∂x⟨p/ρ⟩ ≡ v2
∗
/H , 2H being the channel wide, i.e. 0 ≤ y ≤ 2H . Subtracting Eq. (15) from Eq. (14), we

obtain an equation for the so called turbulent fluctuations v′

i . For our purpose, it is convenient to consider the turbulent
kinetic energy E ′

t = (1/2)Σiv
2
i and in particular its average quantity Et = ⟨E ′

t⟩. A straightforward but lengthy computation
gives:

∂tEt + ∂y

⟨[
v′

yE
′

t +
v′
yp

′

ρ

]⟩
= −⟨v′

yv
′

x⟩∂yU − ϵt (16)

where ϵt is the turbulent energy dissipation defined as ν⟨Σij(∂iv′

j )
2
⟩. Upon multiplying Eq. (15) for U we can also obtain

the equation for the kinetic energy of the mean flow Em ≡ (1/2)U2:

∂tEm = −U∂y⟨v′

yv
′

x⟩ +
v2

∗

H
U − ϵm (17)

here now ϵm is the energy dissipation due to the mean flow ϵm = ν⟨(∂yU)2⟩. Hereafter we denote by W (y) ≡ −⟨v′
yv

′
x⟩.

ext we integrate Eqs. (16) (17) in y from y = 0 to y = 2H and use the notation .̄... to denote the integral:

∂t Ēt =

∫ 2H

0
W∂yUdy − ϵ̄t (18)

∂t Ēm =

∫ 2H

0
U∂yWdy +

v2
∗

H
Ū − ϵ̄m (19)

he first term on the r.h.s of Eq. (19) can be integrated by part and, using the boundary condition v = 0 in y = 0 and
= 2H , we write

∂t Ēm = −

∫ 2H

0
W∂yUdy +

v2
∗

H
Ū − ϵ̄m (20)

ooking at Eqs. (18) and (20) we get a quite clear physical picture: the second term on the r.h.s of (20) is the power input
er unit length in the system and energy can be transferred from the mean flow to turbulence only if W∂yU is positive.
his implies that the momentum flux ⟨v′

yv
′
x⟩ should be directed towards the wall of the channel, i.e. it is negative when

yU > 0 and positive when ∂yU < 0.
The above discussion is just a preliminary analysis of the problem and does not say anything about U(y). We notice

hat, from a mathematical point of view, Eqs. (15) and (16) do not form a closed system of equations. To make progress
e should use some other informations. First, we can safely neglect all the time derivates since we are looking at average
uantities. Then we can integrate Eq. (15) in y and, using the boundary conditions, we obtain:

ν

[
dU
dy

]
+ W = v2

∗
(1 −

y
H
) (21)

ext we discuss the behaviour of the system when y is small so that the last term y/H can be neglected. Then, close to
he wall region y = 0, using boundary conditions and the continuity equations, it is easy to show that W (y) = O(y3). Thus
q. (21) implies, in the limit y ≪ H:

U(y) =
v2

∗
y
ν

+ O(y4) (22)

he key observation is now to introduce the scale δ ≡ ν/v∗. Then close to the boundary y = 0 means assuming that y is
rder of few δ which is the length scale to take into account. Furthermore, we can evaluate the Re of the flow by using
e = v∗H/ν = H/δ. Fully developed turbulence is achieved for large value of H/δ. Then, for y ≪ H and Re ≫ 1 we can
ssume that:

U(y) = v∗f
(y
δ

)
. (23)

his implies that we do not need to take into account finite size effects due to H which of course appear when y/H cannot
be neglected. Notice that ξ = y/δ can be interpreted as a local Reynolds number. For 1 ≪ ξ ≪ Re we may expect that
the term proportional to ν in Eq. (21) can be neglected and W = v2

∗
.

We now consider Eq. (16). For the time being, we neglect the second term on the l.h.s: it represents a transport of
turbulent kinetic energy and we know that it is irrelevant to the overall energy budget. The first term on the r.h.s is a
source of energy and it is proportional to W∂yU while the second term is the energy dissipation. Then ξ ≫ 1 we know
that energy dissipation is independent on ν. Using Eq. (23) we obtain:

W∂yU = v2
∗

v∗

δ

df
dξ

(24)

ince, on average, energy production W∂yU and energy dissipation must balance, we should require that W∂yU should
e independent on ν. This implies that the function f (ξ ) should be of the form Alog(ξ )+ B, with A and B being constants,
8
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Fig. 4. Comparison of the theoretical mean velocity profiles for a channel flow (red solid lines) at different values of Reτ against the velocity profiles
rom a Direct Numerical Simulation (DNS). (Left panel, grey squares; model with lbuf = 49, κ = 0.415, ls = 0.311) and with the experimental
uper-Pipe data (Right panel, grey circles; model with lbuf = 46, κ = 0.405, ls = 0.275). In orange dashed line we plot the viscous solution
+

= z+ . In green dashed–dotted line the von-Karman log-law. Plots are shifted vertically for readability.
ource: Reproduced from [7].

hich gives W∂yU = v3
∗
/y independently on ν. We reach the conclusion that, for ξ ≫ 1 and y ≪ H , we should observe

velocity profile

U(y) = B + Av∗ log(yv∗/ν) (25)

The above expression is due to von Karman [6]. The derivation we did is not the usual way to introduce the von Karman
ogarithm profile. It has the advantage to highlight the link between this result and the zeroth law of turbulence caveat
he assumption on the local balance between energy production and energy dissipation.

The von Karman result work quite well on data from both experiments and Direct Numerical Simulation (DNS), see
ig. 4 and Ref. [7]. Yet, the constants A and B cannot be derived analytically. In the original derivation of von Karman,
here is no argument about energy production and energy dissipation. The basic idea is simply that dU/dy should be
ndependent on ν at large enough y (but not too large). We see, however, that this requirement is also equivalent to
ssuming that the local rate of turbulent energy production is Re independent (for each y) which is echoing the zeroth
aw of turbulence.

ecture 1.4. Richardson diffusion

The next problem we are interested to discuss is the so-called Richardson diffusion [8]. We consider an initial spot of
ny passive substance. Passive means that the substance is advected by the flow without changing the flow dynamics. A
imple example is to consider a smoke cloud in a turbulent flow. The problem we want to solve is the following: given an
nitial drop of size R(0) we want to compute at time t the value of R(t). Obviously, the initial shape of the drop changes
t each time but we assume to make an average over several realisations so that, on average, the shape of the passive
ubstance is well defined by R(t). In principle we can solve our problem by considering the equation for our passive
ubstance C(x, y, z, t) advected by the turbulent flow:

∂tC + u · ∇C = D∇C (26)

The problem pointed out by Richardson was very clear: without advection, the diffusion Eq. (26) predicts that an initial
pot of a passive tracer of radius R(0) increase its size R(t) in time according to the equation

R(t)2 = R(0)2 + Dt (27)

n a turbulent flow, we can imagine that D is different from the one due to molecular effects. However, if we compute
using (27) from available data, we find values that differ by nine orders of magnitude! Clearly, something should be

hanged in our view of diffusion. Even if we do not expect D to be given by molecular effect, nevertheless 9 orders of
agnitude mean that we do not capture the physics. Richardson realised that the correct way to look at the problem is
ompletely different. What we are interested in is not how C is changing in time but the distance among different regions
f the drop.
The basic idea by Richardson was that what we call diffusion in turbulent flows cannot be parametrises as a simple

onstant and D should depend in a way or another on the statistical property of the turbulence. At this point, Richardson
9
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Fig. 5. Figure from the original Richardson’s paper [8] representing the experimental results of the diffusivity D measured as a function of l, i.e. the
istance separation between two particles. Starting from these data, Richardson proposed his famous 4/3 law drawn in the figure.
ource: Reproduced from [8].

ad a brilliant and deep intuition and assumed D to be a function of R. Then, he considered two particles at a distance R
nd considered the probability distribution P(R, t) to find the particles at distance R at time t . Because the integral of P
ver the domain should be constant and equal to 1, the equation of P should be of the form:

∂tP =
1

Rd−1

∂

∂R

[
D(R)Rd−1 ∂

∂R
P(R)

]
(28)

ssuming isotropy in a d dimensional space. Eq. (28) follows by the continuity equation

∂tP + ∇ · J = 0 (29)

ith the ‘‘current’’ J given by the Fickian law J = −D∇P .
Next, looking at observations and available data, Richardson found that

D(R) = σR4/3 (30)

see Fig. 5. The constant σ was changing only by a factor 10 instead of nine order of magnitude: clearly a big improvement.
It is possible to solve Eqs. (28)–(30) analytically. For our purpose, however, it is simple to get the basic information

by using a simple trick. Upon rescaling R → λR and t → λat , Eq. (28) remains invariant if a = 3/2. This implies that the
solution of Eq. (28) should be of the form P(R, t) = Z(t)P(ξ ) with ξ ≡ R/t3/2, with Z(t) a suitable normalisation factor.
Using this observation we obtain

R2(t) ∼ t3
10
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Richardson’s finding can be discussed in a different way [9]: let us consider two particle in x and y. The two-particle
ove according to the equations:

dx
dt

= v(x) (31)

dy
dt

= v(y) (32)

Then the relative vector R ≡ x − y satisfies the equation:
dR
dt

= v(x) − v(y) ≡ δv(R) (33)

The quantity we are interested to compute is

d
⟨
R2
⟩

dt
= 2 ⟨R · δv(R)⟩ (34)

hat Richardson discovered is that the r.h.s of (34) is well approximated by the function

⟨R · δv(R)⟩ = σR4/3 (35)

here

R2
≡ R · R (36)

Richardson’s result implies something weird, namely that

δv(R) ∼ R1/3. (37)

From the Richardson result we obtain something not trivial

R(t)2/3 ∼ R(0)2/3 + σ t (38)

ow we must look at this expression very carefully: even when R(0) = 0 (two coinciding particles at t=0) Richardson
esult implies that R(t) becomes different from 0 in a finite time [1]. This is completely at variance with our intuition
hat two coinciding particles will stay stuck together no matter what. In other words, there is the breakdown of the
agrangian trajectories, i.e. we are not able to distinguish one trajectory from another one. Notice that our argument can
e applied for normal diffusion Eq. (27). However, in the case of normal diffusion, we know, thanks to Einstein’s work,
hat diffusion is induced by molecular collision and two different particles are subjected to different collisions. In the
ase of Richardson diffusion, there is no molecular diffusion and the effect is entirely due to turbulent fluctuations. We
emark that the breakdown of the lagrangian trajectories can occur both forward and backward in time, i.e. two lagrangian
articles can meet at the same point even if they start from separate positions.
Next if δV (R) ∼ R1/3 we expect that for the velocity gradients Γ

Γ ∼ lim
R→0

δV (R)
R

= lim
R→0

R−2/3
→ ∞ (39)

This can explain why the energy dissipation

ε = νΓ 2 (40)

ecomes finite for ν → 0. Although very rough and qualitative, it looks like the breakdown of the lagrangian trajectories,
s implied by the Richardson law, can eventually explain the zeroth law of turbulence
As a mathematical remark, we notice that the solution of the equation dx

dt = f (x) is unique if f (x) satisfies the Lipschitz
ondition f (x) ∼ O(x).
For the Richardson law, f (x) = xα with α = 1/3, i.e. f (x) is not Lipschitz but Hölder continuous and multiple solutions

can arise. For instance for α < 1, the equation dx/dt = f (x) has two possible solutions for x(0) = 0

x(t) = 0 (41)

x(t) = [(1 − α)t]1/(1−α) (42)

Obviously, the situation is more complicated than what we shortly discussed so far. For any finite ν (no matter how
small it is) we expect that viscous effects eventually dominate the dynamic of turbulent fluctuations in a way similar to
what happens in the boundary layer near to the walls. Then we also expect that the velocity gradient Γ is finite and it
can be estimated as (ε/ν)1/2. This implies that for a small value of R, we have δV (R) = Γ R. Then R(t) for two particles
nitially separated by a distance R(0) goes as R(t) = R(0) exp(t/τη) where τη ≡

(
ν
ε

)1/2.
The point is that τη goes to 0 for ν → 0 if ε is independent on ν. Then R(t) becomes large enough for δV (R) to be

‘‘rough’’ i.e. proportional to the Richardson finding R1/3. On the contrary, if ε is proportional to ν, then τ is constant
η

11
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nd the breakdown of lagrangian trajectories cannot occur in the limit ν → 0. This highlight why the breakdown of the
agrangian trajectories can explain the zeroth law of turbulence in the limit of large Reynolds number. Notice that the
xponential increases of R(t) is just what we expect from the chaotic behaviour of the lagrangian particles. It is natural
o associate 1/τη to the maximum Lyapunov number Λ of the Lagrangian flow. Then, we understand that turbulence, at
arge Reynolds number, is not just chaotic because of the breakdown of the Lagrangian trajectories in the limit ν → 0.

It remains to clarify what it means small enough R(0) for the exponential growth to be observed. As we already said,
e expect that at small interparticle separation R(0) viscosity (or it is better to say molecular diffusivity for tracers) is
ominant. Leaving aside for the time being the difference between viscosity and molecular diffusivity, we know that ‘‘on
verage’’ the root mean square distance l(t) between two particles grows as

l(t) ∼
√
νt (43)

sing this idea, we can identify the scale η at which the viscous or diffusivity effects are dominant:

η ∼
√
ντη ∼

(
ν3

ε

)1/4

(44)

For R(0) < η we expect exponential growth of the inter-particle separation R(t) while for R(0) > η we expect the
ichardson law to be valid. Since η → 0 for ν → 0, we can conjecture (at this stage) that the zeroth law of turbulence
olds for ν → 0 because of the breakdown of Lagrangian trajectories. Just to fix some numbers, consider a pipe of 10 m
adius where air is flowing at 10 m/s. Knowing ν = 10−5 m2/s we have Re = 107, τη = 0.0003sec, η ∼ 0.5mm

The connection between the Richardson law and the breakdown of the Lagrangian trajectories are due to the
reakthrough work done about 20 years ago by Gawedzky and collaborators [1]. Richardson himself did not recognise how
is findings may eventually implies the zeroth law of turbulence (not known at his time) or the effect on the Lagrangian
rajectories [10]. However, in his 1926 paper on diffusion, Richardson wrote a rather astonishing and remarkable section
ith the title ‘‘Does the wind possess a velocity?’’. The idea of the breakdown in the Lagrangian trajectories (in a very

ntuitive way) was there.

ecture 1.5. Summary of Lecture 1

In this first lecture we started to discuss the peculiar properties of three-dimensional turbulence. First of all, we have
tated that turbulence is described by the Navier–Stokes equations and we do not need to discover new equations for
urbulence. In the following lectures, we will compare theoretical findings against both experimental and numerical
esults which support our statements. The second important statement is the zeroth law of turbulence, namely that
nergy dissipation is independent of the Re number for Re → ∞. This is observed both in numerical simulations and
xperiments and it is one of the peculiar properties of turbulence. We have exploited two important consequences of
he zeroth law: boundary layer turbulence and Richardson diffusion. In particular, Richardson diffusion shows that in the
imit of Re → ∞ lagrangian trajectories breakdown, a phenomenon whose consequences we need to understand better.
he interested reader is referred to the review by Falkovich, Gawedzki and Vergassola [1], for a detailed discussion of the
onsequence of the Richardson diffusion. For a basic introduction to fluid mechanics and turbulence, we refer to the books
f Landau and Lifschitz [11], Uriel Frisch [12] and Tennekes and Lumley [13]. Although relatively old the book by Landau
nd Lifshitz is still one of the best books on fluid dynamics where the basic features of laminar and turbulent flows are
iscussed. A recent review on our knowledge of boundary layer turbulence can be found in [7] whereas it is worthwhile
o read the original paper by Richardson [8]. For a historical review of the work by von Karman and Richardson we refer
o [10]. Finally, an in-depth analysis of chaotic behaviour can be found in [14].

ecture 2. The Kolmogorov 1941 theory of turbulence

Neither von Karman nor Richardson said anything about the zeroth law of turbulence in their work. In 1941 A.N.
olmogorov [15], one of the scientific giants of the last century, pointed out the fundamental issue of fully developed
urbulence, namely that energy dissipation is independent on the Reynolds Re number in the limit Re → ∞. The
olmogorov 1941 theory (K41) is the topic of this lecture.

ecture 2.1. Homogeneous and isotropic turbulence

Following Kolmogorov, we consider the case of homogeneous and isotropic turbulence (HIT) at a very large Re number
fully developed). Obviously, in all experiments and in many numerical simulations, it is difficult to achieve the case under
onsideration. The idea is that deviation from homogeneity and isotropy can be considered perturbations. Whether these
erturbations are ‘‘weak’’ or ‘‘strong’’ is a matter to be discussed (see in particular Lecture 8).
A rather non-trivial issue is to understand what are the proper quantities to use for describing fully developed

omogeneous and isotropic turbulence. The basic idea is that we look at a ‘‘random’’ flow field continuously changing in
ime as experienced in experiments and numerical simulations. Thus, it seems reasonable to look at the relevant statistical
12
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uantities to describe random fields, namely correlation functions. In our case, we look at the correlation functions of the
elocity field. For instance, we consider objects like

Ci1,i2...in (x1, x2, . . . , xn) ≡ ⟨vi1 (x1)vi2 (x2) . . . vin (xn)⟩ (45)

ere the average ⟨. . .⟩ should be considered as the average over many (infinite!) realisations which, for the statistically
tationary case, should be equivalent to time average.
The next step is to use the assumption of homogeneity and isotropy to reduce the complexity of the function (45).

o understand the previous statement, let us consider the case n = 2 in Eq. (45), i.e we study Ci,j(x1, x2). Because of
omogeneity, it is simpler to consider the quantity

Bi,j(r) ≡ ⟨[vi(x + r) − vi(x)][vj(x + r) − vj(x)]⟩ (46)

ow we can use the assumption of isotropy to write the most general form of Eq. (46):

Bi,j(r) = A(r)δij + B(r)rirj (47)

sing the notation x1 = x and x2 = x + r , we can also rewrite Eq. (46) in the form

Bi,j = ⟨vi(x2)vj(x2) − vi(x2)vj(x1) − vi(x1)vj(x2) + vi(x1)vj(x1)⟩ (48)

otice that the first and last term on the r.h.s of (48) are equal upon averaging (for homogeneity) whereas the second
nd third the term should be equal because of homogeneity and isotropy. Thus we obtain

Bi,j = 2⟨vi(x1)vj(x1)⟩ − 2⟨vi(x1)vj(x2)⟩ (49)

t this point we can use the information that ∇ · v = ∂jvj = 0, i.e. the fluid is incompressible. This means that

∂Bi,j(r)
∂x2j

=
∂Bi,j(r)
∂rj

= 0 (50)

ince ∂r/∂ri = ri/r , applying Eq. (50) to Eq. (47) we obtain:

dA
dr

rjδij
r

+
dB
dr

rirjrj
r

+ Bδijrj + 3Bri = 0 (51)

here summation over j is understood and ∂rj/∂rj = 3. Eq. (51) implies

dA
dr

+ r2
dB
dr

+ 4rB = 0 (52)

e now introduce two quantities

Brr = A + Br2 (53)
Btt = A (54)

rr is the longitudinal correlation functions, i.e. is the correlation function of the velocity field v parallel to the vector r
nd Btt is the transverse correlation function. Then, Eq. (52) leads to the relation

Btt =
1
2r

d
dr

[r2Brr ] (55)

ecause of isotropy and incompressibility, the two-point correlation function depends only on one function namely the
ongitudinal one. In the jargon of turbulence, we define Brr as the second order longitudinal structure function while Btt
is referred to as the second order transverse structure function. Eq. (55) can be used to verify in numerical simulations
whether isotropy holds in turbulent flows.

Lecture 2.2. A simpler problem: the Burgers equation

Now we can use the above results and the N.S. equations to write down the dynamical equation for Brr . Obviously,
because the N.S. equations are non-linear in the velocity field, we must consider the correlation function of three velocity
fields and the algebra become more complex. In order to understand our final goal, we consider the N.S. equation in one
dimension without pressure:

∂tv + v∂xv = ν∂2xxv (56)

q. (56) is known as the Burgers’ equation and it is relevant for many interesting applications [16] (see also next lecture
or a short discussion). Here we just want to use (56) as a tool to illustrate how to grasp physics from mathematical
anipulation in the simplest possible way. Since we are in one dimension we do not need to consider isotropy. Then we
13
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ake two points x1 and x2 = x1 + r and we write the equation of motion for the quantity ⟨v(x1)v(x2)⟩:

∂t⟨v(x1)v(x2)⟩ = −
1
2
[⟨v(x2)∂1v(x1)2⟩ + ⟨v(x1)∂2v(x2)2⟩] (57)

+ ν⟨[v(x2)∂211v(x1) + v(x1)∂222v(x2)]⟩ (58)

where ∂i means ∂xi for i = 1, 2. Let us now look at the r.h.s of (57). The quantities ⟨v(x2)v(x1)2⟩ and ⟨v(x1)v(x2)2⟩ are the
same quantities is we change x to −x. Notice under the transformation x → −x we also require v → −v and the Burgers
quation remains invariant. Next we observe that v(x1)2v(x2) should be a function only of r because of homogeneity. Then

we can state that ∂1 = −∂r and ∂2 = ∂r while ⟨v(x2)v(x1)2⟩ = −⟨v(x1)v(x2)2⟩. Using the above information we can write

∂t ⟨v(x1)v(x2)⟩ = ∂r⟨v(x1)2v(x2)⟩ + 2ν∂2rr⟨v(x1)v(x2)⟩ (59)

Finally we consider the following equalities:

Brr ≡ ⟨(v(x2) − v(x1))2⟩ = 2⟨v2⟩ − 2⟨v(x2)v(x1)⟩ (60)
Brrr ≡ ⟨(v(x2) − v(x1))3⟩ = 3⟨v(x2)v(x1)2⟩ − 3⟨v(x2)2v(x1)⟩ = 6⟨v(x1)2v(x2)⟩ (61)

where the last term on the r.h.s of Eq. (61) is derived upon using the symmetry x → −x, v → −v. Upon substituting the
above definitions in Eq. (59), we obtain:

∂v2

∂t
−

1
2
∂Brr

∂t
=

1
6
∂Brrr

∂r
− ν

∂2Brr

∂r2
(62)

t this point, from the Burgers’ equation, we know that ∂tv2 = −2ϵ where ϵ is the rate of energy dissipation. Then, upon
neglecting ∂tBrr and integrating once in r , we obtain:

Brrr = −12ϵr + 6ν
d
dr

Brr (63)

n deriving Eq. (63) we made the assumption that
∫
dr∂tBrr can be neglected compared to ϵr . This is justified if Brr ∼ rα

α > 0) and r small enough. At this stage, for ν → 0 and ϵ independent of ν, we obtain a very non trivial results namely
hat

Brrr = −12ϵr (64)

n other words, we obtain an exact expression for the third order longitudinal structure function.

ecture 2.3. Third order structure function and the Kolmogorov equation

Kolmogorov [15] derived an equation similar to Eq. (63) for three-dimensional homogeneous and isotropic turbulent
lows. Obviously, in 3d, the computation is much more complex algebraically. Here we sketch some information useful to
btain the final result. Again we consider two points x1 and x2 = x1 + r in three-dimensional space and we denote the
ector field at this location with v1 and v2. The first problem we need to understand is whether pressure plays any role.
he quantity we consider is ⟨∂1ip(x1)vj(x2)⟩. Because of homogeneity and isotropy, we can write:

⟨p(x1)vi(x2)⟩ = f (r)ri (65)

hen, because of compressibility, we have ∂j(f (r)rj) = 0 which leads:

df
dr

r + 3f =
1
r2

d
dr

[r3f (r)] = 0 (66)

q. (66) implies f (r) = Kr−3. Since f (r) should be finite for r = 0 we have K = 0. This implies that ⟨p(x1)vi(x2)⟩ = 0, thus
pressure terms can be neglected.

Next we need to consider the third order quantity Bijk(r) ≡ ⟨vi(x1)vj(x1)vk(x2)⟩. Note that all combinations of triple
roducts of v in two different points and their derivates can be obtained from Bijk using the invariance r → −r, v → −v
f the N.S. equations. Assuming isotropy and homogeneity, we can write:

Bijk(r) = A(r)rirjrk + B(r)(riδjk + rjδik) + C(r)δijrk (67)

ext we use the incompressibility condition ∂rkBijk(r) = 0 to obtain:[
5A + r

dA
dr

+
2
r
dB
dr

]
rirj +

[
2B + 3C + r

dC
dr

]
δij = 0 (68)

q. (68) implies that the two terms proportional to rirj and δij should vanish independently. This implies that we have two
equations in three unknowns. Thus only one function is needed to obtain all the possible combinations of triple products
of the velocities. The solutions of Eq. (68) are

A =
1 dC

(69)

r dr

14
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B = −
1
2

[
3C + r

dC
dr

]
(70)

s before we denote by Brrr the third-order longitudinal structure functions which can be computed by the knowledge
of Bijk(r) assuming all components are in the same direction of r , i.e. r3A + 2rB + Cr . Using Eqs. (69)–(70), the previous
xpression becomes −2C(r)r .
Although algebraically more complicated, only two functions Brr and Brrr are needed to solve the equations for ∂tBij(r).

he final result, after a rather long work, is

−
2
3
ϵ +

1
2
∂

∂t
Brr =

1
6r4

∂

∂r
[r4Brrr ] −

ν

r4
∂

∂r
[r4Brr ] (71)

pon multiplying all terms for r4 and integrating once in r , we obtain the celebrated Kolmogorov 4/5 equation:

Brrr = −
4
5
ϵr + 6ν

d
dr

Brr (72)

nce again, we have neglected the term ∂tBrr which is supposed to be small for small enough r .
Even if some of the details may be lost in deriving Eq. (72), what it is of interest here is the physical meaning of the

final result which we are now going to discuss. First of all, let us notice that there is no forcing in our derivation. Physically
we are considering a region of the turbulent flow far away from the one where turbulence is produced. For instance, in
the case of very large Re number, we can consider turbulence as produced by some obstacle (like a cylinder) and we are
looking at a region downstream of the obstacle at a distance far enough so that homogeneity and isotropy are locally
atisfied. By this, we mean that non-isotropic and non-homogeneity occur on some very large scale L in the system. Next,
he basic assumption, as we already notice for Eq. (63), is that ϵ should be independent on Re (i.e. on ν). Then for r ≪ L
and not too small we reach the conclusion that Brrr = −4ϵr/5. As we shall see, there is a range of value of r where this
conclusion should be true.

Lecture 2.4. Inertial range of turbulence

For r → 0 we must require Brr = G2r2 and Brrr = G3r3 where Gn ≡ ⟨(∂xv)n⟩. In other words, we expect that for very
small r the velocity difference δv(r) should be proportional to r∂xv. In this case, Eq. (72) reduces to

Brrr = G3r3 = −
4
5
ϵr + 12νG2r ≃ 0 (73)

.e. ϵ = 15ν⟨(∂xv)2⟩.
The physical meaning of (72) can be obtained by the following consideration. Let us consider the quantity Brrr =

[δv(r)]3⟩ where δv(r) is the velocity difference between two points x and x + r in the r direction. Since Brrr is negative,
there should be many situations where δv(r) is negative with respect to those where δv(r) is positive. A negative
alue of δv(r) means that two particles initially in x and x + r tend to become closer in time. This implies that the

kinetic energy carried by the two particles tends to be transferred from an initial distance r to a smaller scale. This
ascade process of energy transfer, from relatively larger to smaller scales, is the physical interpretation behind the 4/5
olmogorov equation. One can make a more phenomenological argument on the energy transfer as follows: a possible
easure of the kinetic energy at scale r can be estimated to be proportional to [δv(r)]2. Due to non-linear interaction,

he characteristic time scale τ (r) for the energy to be transferred from large to small scales should be of order r/[δv(r)].
e expect that the rate of energy transfer is on average equal to the rate of energy dissipation ϵ. Thus we should expect
δv(r)]2/τ (r) = [δv(r)]3/r ∼ ϵ or, equivalently, [δv(r)]3 ∼ ϵr . This kind of argument, as many others obtained in a similar
ay, is based upon the assumption that the probability distribution of δv(r) should depend, for small enough r , only on
and r . This immediately implies for the velocity structure functions Sn(r):

Sn(r) ≡ ⟨[δv(r)]n⟩ = An(ϵr)n/3 (74)

t variance with Eq. (72), the relation Eq. (74) can only be conjectured and it cannot be proved except for n = 3. However,
q. (72) is telling us that for small enough r the statistical properties of Brrr are controlled by ϵ and r in the limit ν → 0.
hen Eq. (74) follows from dimensional analysis. Nothing is known about the dimensionless quantities An except for n = 3.
An important consequence of Eq. (74) is that δv(r) ∼ ϵ1/3r1/3 which is precisely what Richardson found in his effective

iffusion for turbulent flows! Thus the K41 theory is consistent with Richardson’s data analysis for diffusion in turbulence:
very non-trivial achievement from the theoretical point of view. Moreover, we are now able to understand the window

n r for Eq. (74) to be valid. Using Eq. (74) into Eq. (73) we can estimate the value r = η at which the term proportional
to ν becomes relevant:

ϵη ∼ νϵ2/3η−1/3 (75)

his lead to the definition of the Kolmogorov scale η

η ∼ [ν3/ϵ]1/4 (76)
15
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Fig. 6. Normalised second-order (solid coloured lines) and third-order (dashed coloured lines) longitudinal structure functions versus r/η.
Source: Figure reproduced from [17].

Finally, assuming that ϵ ∼ v3/L, where v2 is the average kinetic energy and L some (large) scale, we have
η

L
∼ Re−3/4 (77)

ssociated with the space scale η there exists a time scale τη ∼ η/δv(η) = η/(ϵη)1/3 ∼ (ν/ϵ)1/2. Eq. (77) can be used
o estimate the computational cost to numerically simulate a turbulent flow: since we are in 4 dimensions (3 space
imension plus 1 time dimension) and since we need to resolve all scales up to r = η, the computational cost is order

Re3! At the present time the largest numerical simulation reaches L/η ∼ 12000 corresponding to an equivalent Reynolds
number Re ∼ 3 × 105.

In Fig. 6 we show the results obtained from recent numerical simulations [17]: the lower curve shows −Brrr/(ϵr) while
the upper curve reports Brr/(ϵr)2/3. The dashed horizontal line shows 4/5: the Kolmogorov 4/5 is well verified in the range
r ∈ [50, 500]η. Outside this range, finite size effects in Re are observed for small r while large scale effects are observed
for r ≥ 500η. The second curve Brr/(ϵr)2/3 seems to be not exactly flat in r , as expected from Eq. (74). This is an issue to
be discussed in the next lecture.

Eq. (72) tells us something non-trivial about the velocity gradient for ν = 0 and ϵ = 0. Using Brrr = G3r3 and Brr = G2r2

we obtain:
1
2
∂

∂t
G2r2 = −

1
6r4

∂

∂r
G3r7 = −

7
6
G3r2 →

dG2

dt
= −

7
3
G3 (78)

ince G2 > 0, Eq. (78) implies that G2 can grow if G3 is negative, that is to say, that large velocity longitudinal gradients
merge from the skewness of the probability distribution of the velocity gradients. In fully developed turbulence the
uantity K3 ≡ G3/G

3/2
2 (skewness of the velocity gradients) is negative and almost constant with Re. Using this information

n Eq. (78) we obtain:

G2(t) =
G2(0)

[1 −
7
6 |K3|G2(0)1/2t]2

(79)

he above equation means that G2 has a finite time singularity and it is consistent with the idea that ϵ is independent of
e for Re → ∞.
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ecture 2.5. Restricted Euler equation

A better investigation of the behaviour of the velocity gradients can be obtained using directly the N.S. equation. Upon
efining Aij = ∂jvi, it is easy to show that

dAij

dt
=
∂Aij

∂t
+ vk

∂Aij

∂xk
= −AikAkj −

∂2P
∂xi∂xj

+ ν∆Aij (80)

here now P ≡ p/ρ. Since the flow is incompressible, we must require that Aii = ∂ivi = 0. This implies that∆P = −AikAki.
hen Eq. (80) can be rewritten as

dAij

dt
= −

[
AikAkj −

1
3
AkmAmkδij

]
−

[
∂2P
∂xi∂xj

−
1
3
∆Pδij

]
+ ν∆Aij (81)

qs. (81) are still not closed and we need some information concerning the effect of pressure (beside imposing the
ncompressibility) and the effect of viscosity. Neglecting these terms (pressure and viscosity). Eq. (81) becomes

dAij

dt
= −

[
AikAkj −

1
3
AkmAmkδij

]
(82)

hich are a closed set of equations describing the evolution of the gradients Aij experienced from a lagrangian particle. This
s equivalent to say that (besides viscosity) we are neglecting the non-isotropic contribution of the pressure term (second
quare bracket on the r.h.s. of Eq. (81). Eqs. (82) are referred to as Restricted Euler (RE) system in the literature [18,19].
sing (82) we can get some insights into the dynamic evolution of the velocity gradients. To do that, we introduce the
uantities

Q ≡ −
1
2
AimAmi (83)

R ≡ −
1
3
AimAmkAki (84)

n terms of Q and R we are able to compute the eigenvalues λ of the matrix Aij. A long but straightforward direct
computation gives the equation:

λ3 + λQ + R = 0 (85)

Most important, multiplying Eq. (82) by Aji and by AjkAki we can derive (after some computation) a dynamical system for
Q and R:

dQ
dt

= −3R (86)

dR
dt

=
2
3
Q 2 (87)

sing Eqs. (86)–(87), one can easily show that the following condition should be satisfied:

F (Q , R) ≡
1
27

Q 3
+

1
4
R2

= const (88)

here the const depends on the initial value of Q and R. Finally, without lack of generality we can assume that the
eigenvalues of λ of Aij can be written as a couple of complex conjugate λR ± λI and a third eigenvalue equal −2λR since
he trace of Aij is zero. Then, in terms of λR and λI the value of Q and R are given by

Q = λ2I − 3λ2R (89)

R = 2λR(λ2I + λ2R) (90)

o better understand the physics behind the above mathematical formulas, as an example, we assume that Aij is given by
he sum of a diagonal matrix with elements A11 = α, A22 = β and A33 = γ (with α + β + γ = 0) and an antisymmetric
atrix with A12 = −ωγ /2, A13 = ωβ/2 and A23 = −ωα/2. For this example we have

Q = −
1
2
(α2

+ β2
+ γ 2) +

1
4
ω2 (91)

R = −αβγ −
1
4
(αω2

α + βω2
β + γω2

γ ) (92)

ith ω2
= ω2

α + ω2
β + ω2

γ . We are now ready to understand the physical meaning of the restricted Euler equation. For
his purpose we consider the Q − R plane 7.

In the first and fourth quadrant, we can draw the line F (Q , R) = 0. For values of Q which are below this line, there
re 3 real eigenvalues. For F (Q , R) > 0 the evolution on the Q − R diagram is quite simple: Q grows for R < 0 up to the
17
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Fig. 7. Phase-space portrait of the restricted Euler model in the R, Q plane, together with sketches of the local flow topology prevalent in each
quadrant.
Source: Figure courtesy of Charles Meneveau, adapted from [20] and [21].

point R = 0. Then, while R is still growing, Q starts to decreases and eventually becomes negative and the evolution tends
asymptotically to the line F (Q , R) = 0. In the region Q > 0 and R < 0, we must have 2 complex conjugate eigenvalues
with negative real part (because of (90)) and 1 real eigenvalue equal to −2λR. In this region the λ2I (the vorticity) increases
and it is bigger than the ‘‘dissipation’’ −3λ2R. The system experiences what is called vortex stretching in the jargon of fluid
dynamics. Thus the quadrant Q > 0 and R < 0 is dominated by the production of vorticity. In the region Q > 0 and R > 0
the matrix Aij has 2 complex conjugate eigenvalues with λR > 0 and 1 real and negative eigenvalues −2λR. Eventually
when Q becomes negative the effect of dissipation −3λ2R becomes dominant. The term dissipation means that for finite
ν the dissipation effects should be proportional to 3λ2R. More properly we should speak in this case of ‘‘strain dominated
region’’.

To summarise our findings we can say that the restricted Euler equation shows a quite non-trivial dynamical behaviour
of the velocity gradients with two different physical and topological properties: for λR < 0 the dynamics is characterised
by a growth of the vorticity induced by the vortex stretching dynamics while at a later time, the system becomes strain
dominated λR > 0 and vorticity tend to be negligible λI → 0. In a real turbulent flow, energy dissipation is due to the
strain of the velocity gradients. The restricted Euler equations tell us that large strain can be eventually reached after
he vortex stretching. It remains to understand whether this picture is correct given the approximation performed to
btain Eq. (82). For this purpose, we can use numerical simulations which can provide a sampling of Q and R in the
low. The result is shown in Fig. 8 where we plot on the Q − R diagram the probability density P(Q , R) obtained from
the numerical simulations. The figure agrees quite remarkably with our previous picture: most of the events occur in the
second quadrant [Q > 0 ; R] < 0 and in the fourth one [Q < 0 ; R > 0], whereas the third quadrant does not seem to be
much populated. Also, we remark that a substantial part of the probability density occurs in the region F (Q , R) < 0.

In Fig. 9 we show P(Q , R) conditioned to the region where vorticity grows and to the region where
⟨
(∂xv)3

⟩
< 0: it is

quite clear that the qualitative picture emerging from the restricted Euler equations agrees quite well with the numerical
simulations. Now let us recall that Eqs. (82) are supposed to describe the gradient matrix Aij of the velocity field experienced
by a Lagrangian particle. This implies that in a turbulent flow, there will be a mixture of ‘‘vorticity dominated regions’’
and ‘‘strain dominated regions’’ where energy dissipations mostly occur. Thus energy dissipation has its own fluctuations
which may depend on how turbulence has been generated and eventually on the Re number. This implies that in Eq. (74),
which defines moments of the longitudinal velocity difference δv(r), the coefficients An may depend on the statistical
properties of the energy dissipation. In other words, the probability distribution of δv(r) may not be universal with respect
o the flow characteristics although its dependence on r can still be the one fixed by the Kolmogorov 4/5 equation. This
bservation is reported in a famous footnote of the Landau & Lifshitz book [11] on Fluid Dynamics suggesting that a deeper
nvestigation is needed (see Fig. 10).
18
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Fig. 8. Enstrophy production density in R, Q plane from the DNS, Rλ = 85, at ρ/L = 0.125. The enstrophy production is normalised by
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olid lines correspond to positive values, dashed lines to negative values.
ource: Figure reproduced from [22].

ecture 2.6. Energy spectrum and scale invariance

Based on Eq. (74) we can also obtain a clear-cut prediction on the energy spectrum of turbulence. Let us define the
ourier transform of the velocity field v as

v̂(k) =

∫
v exp(ik · x)d3x (93)

e define the energy spectrum E(k) as

⟨v(x)2⟩ =

∫
E(k)dk ∼

∫
k2⟨|v̂(k)|2⟩dk (94)

rom the properties of the Fourier transform we know that
⟨
|v̂(k)|2

⟩
=
∫
r2
⟨
[δv(r)]2

⟩
exp(−ik · r)dr . Thus we obtain

|v̂(k)|2
⟩
∼ ϵ2/3k−3−2/3. Using this expression in (94) we have

E(k) ∼ k2ϵ2/3k−3−2/3
= k−5/3 (95)

et us remark that (95) can be obtained by dimensional analysis assuming that it depends only on ϵ and k. Eq. (95) is the
elebrated prediction of the Kolmogorov theory on the turbulence energy spectrum. In many cases, the scaling with k of
he energy spectrum is assumed to be evidence of the Kolmogorov-like behaviour. This is mostly due to historical reasons
ince, before the discovery of chaotic theory, turbulence was often considered as the superposition of Fourier modes with
ome complex (quasi-periodic) time behaviour. In fact, the k−5/3 spectrum is not evidence of the Kolmogorov theory: the
rucial evidence is the agreement with the 4/5 law and in particular the validity of the relation Brrr = −

4
5ϵr .

We can compare (95) against numerical simulation as shown in Fig. 11: the −5/3 slope in the energy spectrum is
uite clear and it is found in many laboratory experiments and numerical simulations.
Let us summarise our findings on the Kolmogorov theory:
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Fig. 9. Strain skewness density, −tr(S3) in R, Q plane from the DNS, Rλ = 85, ρ/L = 0.125. The strain skewness density is normalised by
⟨
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he same convention as in Fig. 8 is used.
ource: Figure reproduced from [22].

Fig. 10. Joint PDF of R and Q, measured turbulent flows in (a) a moderate Reynolds number experiment in a square pipe using 3D holographic
particle image velocimetry (Figure reproduced from [23]) and in (b) a high-Reynolds number atmospheric boundary layer using hot-wire anemometry
(Figure reproduced from [24]).

A - there is good evidence that for homogeneous and isotropic turbulence, ⟨[δv(r)]3⟩ = −
4
5ϵr which is based on the

idea that ϵ is Re independent;
B - the conjecture δv(r) ∼ (ϵr)1/3 is consistent with Richardson’s finding on diffusion in turbulent flows;
20
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Fig. 11. One-dimensional spectra of streamwise- and lateral-component velocity fluctuations for an axisymmetric jet; Re = 3.7 × 106 , x/d = 70,
r/d = 0.
Source: Figure reproduced from [25].

C - although the probability distribution P[δv(r)] may not be universal, the rescaled probability distribution P
[

δv(r)
⟨[δv(r)]2⟩1/2

]
should be independent of r .

Items (B) and (C) implies that we should observe scale invariance in the probability distribution of the velocity field.
The idea of scale invariance can be discussed in a more general way [26]. Let us consider the scale transformation:

r → λr (96)
v → λhv (97)
t → λh−1t (98)
ν → λ1+hν (99)
ϵ → λ3h−1ϵ (100)

otice that Eqs. (99) and (100) follow from dimensional analysis. It is easy to show that the scale transformation (96)–(99)
eaves the N.S. equation invariants. Then if we assume that ϵ is independent on Re, we should ask for ϵ to be invariant
nder the above scale transformation. This implies that 3h − 1 = 0, i.e. h = 1/3. This is a rather abstract way to obtain
he Kolmogorov–Richardson scaling δv(r) ∼ r1/3. In other words, we can think for λ < 1 the scale transformation is a
ay to investigate the statistical properties of the N.S. at smaller scales as implied by Eq. (96). Then, this is equivalent to
educe the characteristic velocity fluctuations by a factor λh. The requirement of ϵ to be independent on λ is equivalent
o say that in the limit ν → 0 (or λ → 0) we require that ϵ does not change. This immediately leads to h = 1/3. This is
nice argument a posteriori i.e. after we understand the physical meaning of the requirement of ϵ to be Re independent.

ecture 2.7. Passive scalar

The Kolmogorov K41 theory provides a quite clear and defined theoretical framework that we can use to investigate
ew problems. Among them, the first one we consider is the case of a passive scalar advected by a turbulent flow. The
21
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quation for the advection and diffusion of a passive scalar θ are:

∂tθ + v · ∇θ = κ∆θ (101)

here κ is the molecular diffusivity. We assume that v is a turbulent flow and we also assume that the statistical
properties of both v and θ are homogeneous and isotropic. One way to have a relative simple picture of Eq. (101) is
the following: we describe θ as the equivalent of a large number N of lagrangian particles (tracers) labelled by the index
i = 1, . . . ,N and each of one advected by the local velocity field. Each particle is carrying a value θi and the value of θ in x
s given by the local average of the values θi. This microscopic interpretation of Eq. (101) is exactly the case discussed by
ichardson in the previous lecture. Because the flow if turbulent, we expect that, for ν → 0, the considerations highlighted
or the Richardson’ diffusion can be applied. It follows that the passive gradient ∇θ tends to increase for κ and ν small.
Using Eq. (101) we can compute the average rate of passive dissipation as N ≡ κ⟨[∇θ ]2⟩. The above discussion implies
that we expect N to be independent of ν and κ for fully developed turbulence in analogy with our discussion on the zero
law of turbulence.

Having said that, we can now follow the Kolmogorov derivation of the 4/5 equation for the passive scalar. The
computations are similar to the ones already done and the final results read:⟨

δv(r)[δθ (r)]2
⟩
= −

4
3
Nr + 6κ

d
dr

⟨
[δθ (r)]2

⟩
(102)

here δθ (r) = θ (x+ r)− θ (x) which, due to homogeneity and isotropy, depends only on r . For κ → 0, Eq. (102) predicts
δv(r)[δθ (r)]2

⟩
∼ Nr . Since δv(r) ∼ (ϵr)1/3 we obtain (δθ (r))2 ∼ (Nϵ−1/3)r2/3. This expression can be used to identify the

egion in r where the scaling δθ (r) ∼ r1/3 should hold by computing the cutoff scale r = ηθ from the relation:

4
3
Nr ∼ 6κ

d
dr

(
ϵ−1/3Nr2/3

)
(103)

his identifies the cutoff scale ηθ by the relation:

ηθ =

[
κ3

ϵ

]1/4
= Pr−3/4η (104)

here Pr = ν/κ is called the Prandtl number or, in some cases, the Schimdt number. In analogy with the energy spectrum
(k), we can define the spectrum Eθ (k) such that

⟨
θ2
⟩
=
∫
Eθ (k)dk. The range of r or scales where δθ (r) ∼ r1/3 extends

rom the large scale to ηθ . For this range of scales we have that both δv(r) and δθ (r) are proportional to r1/3, i.e we
xpect that ⟨[δθ (r)]2n⟩ ∼ r2n/3 in analogy with Eq. (74) which also implies Eθ (k) ∼ k−5/3 in close analogy with the energy
pectrum. At large Pr number ηθ can be much smaller that η. Then for r ∈ [η; ηθ ] the velocity field should be smooth,
.e. δv(r) ∼ r , and from Eq. (104) we reach the conclusion that δθ (r) ∼ const . In this case, called the Batchelor regime, we
hould expect Eθ (k) ∼ k−1 [27]. In summary, the statistical properties of a passive scalar are similar to the one already
iscussed for the velocity field. The remark on the non-universality of P[δv(r)] also applies to the probability distribution
f δθ (r). Also in this case, we expect that P[δθ (r)/⟨[δθ (r)]2⟩1/2] is independent on r . A more detailed discussion on passive
calar is postponed to Lecture 7.

ecture 2.8. Two dimensional turbulence

An important non-trivial extension of the original Kolmogorov’s ideas is the case of two-dimensional turbulence.
hysically, we can think of two-dimensional turbulence as a turbulent flow in a region of space L×L×h where h ≪ L. This
s one way to look experimentally at the problem. Another way is to study turbulent flows on a thin two-dimensional film
ike, for instance, a soap film. The problem does not arise for numerical investigations where two-dimensional turbulence
an be studied in detail. The very large scale of atmospheric or oceanic circulations can be considered, in some cases, as
xamples of two-dimensional turbulence.
The major difference between three-dimensional turbulence and two dimensional one is that in d = 2 vorticity ω is a

calar quantity which satisfies the equation

∂tω + v · ∇ω = ν∆ω (105)

rom Eq. (105) we see that ω is a conserved quantity when ν = 0. At variance with the three-dimensional case, there
s no mechanism similar to vortex stretching in two dimensions and vorticity is bounded. Mathematically, it is possible
o show the existence and the unicity of the d = 2 Euler equation and that the velocity field is smooth, i.e. δv(r) ∼ r .
n two dimensions, there is no breaking of lagrangian trajectories as discussed in the previous lecture. This behaviour
mplies that the velocity gradients are bounded in the limit ν → 0 and that the rate of energy dissipation, ϵ, goes to zero.
oreover, from Eq. (105) we obtain the equivalent of the Kolmogorov equation for the vorticity in the very same way we
id for a passive scalar (although ω is not at all passive!). The results is

⟨δv(r)[δω(r)]2⟩ = −2Zr + 6ν
d

⟨[δω(r)]2⟩ (106)

dr
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Fig. 12. Compensated third order longitudinal structure function S3L (r)/(εr). The dotted line is the value 3/2..
Source: Figure reproduced from [28].

here δω(r) = ω(x+ r)−ω(x) and Z = ν⟨[∇ω]
2
⟩ is the rate of vorticity dissipation. For ∇ω, mathematically, we have no

priori bounds and Z can remain finite for ν → 0. What is the physical picture which emerges? In the three-dimensional
ase, the physical picture we obtained is that exists an energy flux towards small scales which eventually dissipates due to
he effect of viscosity. This is the reason why the average rate of energy dissipation ϵ is Re independent. In two dimensions
there cannot be a flux of energy towards small scales: if we force the system at some characteristic scale, lf , then ϵ → 0
for ν → 0 and ∂t⟨v2⟩ should be proportional to the rate of energy input W in the system. Then, for homogeneous and
isotropic turbulence, in Eq. (71) and Eq. (72) we should substitute ϵ with −W , i.e. the kinetic energy is growing. This
leads to the equation:

Brrr =
3
2
Wr + 6ν

d
dr

Brr (107)

In other words, Brrr changes sign and becomes positive. A positive value of Brrr means that two particles at distance r tend
o separate which is consistent with an energy flux towards large scales. Obviously, stationarity cannot be obtained unless
we assume some dissipation effects (not due to viscosity) at very large scales. For instance, in laboratory experiments,
where d = 2 turbulence is observed, using a thin layer of fluid forced and confined in a L×L region, large-scale dissipation
s naturally introduced by the friction of the fluid on the confinement walls: the system tends to produce a large-scale,
rder L, turbulent circulation which dissipates energy due to the walls confining the fluid. Then Eq. (107) is valid for
∈ [lf : L]. In this range of scales, we should observe velocity fluctuations δv(r) ∼ r1/3. In this range, one usually speaks
f inverse energy cascade. For r ≪ lf the velocity fluctuations should be characterised, as already observed, by the scaling
v(r) ∼ r corresponding to an energy spectrum E(k) ∼ k−3. For this range of scales, Eq. (106) tells us that there is the

flux of the vorticity square, referred to as enstrophy, from large to small scales where enstrophy is dissipated.
The existence of an inverse cascade of energy is well documented in numerical simulations, see Fig. 12, as well as the

existence of a direct enstrophy cascade. However, the situation is somehow more complicated than we can initially think
of. Since the flow is incompressible, the velocity field v can be obtained by a stream function Ψ in the form vx = −∂yΨ
and vy = ∂xΨ . Then the equation for the vorticity ω = ∆Ψ can be written in the form:

∂t∆Ψ + ∂xΨ ∂y∆Ψ − ∂yΨ ∂x∆Ψ = ν∆∆Ψ (108)

The key observation is that, if in some space region we have Ψ = F (∆Ψ ) for some function F (x), then the non linear terms
are identical to zero (depletion of non-linearity) and there cannot be a flux of enstrophy towards small scales (for that
particular region). For instance, if we consider a circular vortex then upon defining r , the distance from the vortex centre,
both Ψ and ∆Ψ are function of r and Ψ = F (∆Ψ ) holds. This argument implies that any circular vortex in a turbulent
d = 2 flows, is a local stable structure of the fluid which eventually dissipated enstrophy on extremely long time scales
(order 1/ν).

To understand the relevance of the above observation, we consider the vorticity field shown in Fig. 13 obtained from
a numerical simulation [29,30]. The figure refers to a case of decaying turbulence in d = 2 with an initial condition
consistent with the energy spectrum E(k) ∼ k−3. After some time, most of the enstrophy is concentrated in relatively
few vortices that survive for a very long time. Strictly speaking, our considerations on enstrophy transfer are valid only
23
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Fig. 13. Colour plot of the vorticity field in a two-dimensional decaying turbulent flow. The velocity field has been initialised with an energy
pectrum proportional to k−3 . After a short transient regime, the system develops a number of well defined vortices that are stable solutions of the
Euler equations, see [29] for details.

outside vortices where the large shear rate (mostly due to the velocity field induced by the vortices themselves) are able to
stretch the residual vorticity and increase the vorticity gradients. Moreover, vortices are stable structures (except for the
large-scale forcing, see later) and their lifetimes is much longer than the characteristic eddy turnover time scale which
can be estimated as Ω2/Z where Ω2 is the overall enstrophy of the system. Eventually, strong enstrophy transfer can
occur when two vortices of equal sign merge and give rise to a larger vortex.

The situation becomes even more intriguing when we consider the case of forced two-dimensional turbulence where
the formation and stability of vortices (which form no matter what) depends on the time scale of the forcing [31]. In
Fig. 14 we consider three different numerical simulations performed by introducing a forcing at the same scale in three
different ways: constant forcing; random forcing and instability. The useful numbers to consider are the characteristic
time of the forcing, tf , and the eddy turnover time, ted = Ω2/Z . The dimensionless number ted/tf provides a measure
of how much the forcing mechanism influences dynamically the turbulent flows. It is quite clear from the figure that for
ted/tf → ∞ the system is characterised by long-lived coherent structures which dictate the statistical properties of the
system.

The above discussion leads to the following observations: in two-dimensional turbulence viscous anomaly can be
observed for the rate of enstrophy dissipation; energy is transferred from small to large scales at variance with three-
dimensional turbulence; coherent structures (vortices) play an important role depending on the forcing mechanism. When
the flow is dominated by vortices, the statistical properties of turbulence at small scales, as described by a Kolmogorov-like
theory, is almost irrelevant to the overall dynamics. In this case, vortex–vortex interactions are the leading contribution
to the turbulent field and the effect of the viscous anomaly in the statistical properties of turbulence may be marginal.

We will not investigate any longer the peculiar and interesting properties of two-dimensional turbulence discussed in
detail in [33] and [34] for ideas borrowed from conformal field theory.
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Fig. 14. Numerical simulations of forced two-dimensional turbulence. Three different forcing mechanisms are chosen: constant forcing (left panel);
random forcing (middle panel) and instability (right panel).
Source: Reproduced from [32], see the original paper for discussion.

Lecture 2.9. Eddy viscosity

We now turn to a very pragmatic question that may be addressed within the framework of Kolmogorov’s theory.
To fix the problem in the simplest possible way, let us assume we want to perform numerical simulations for a three-
dimensional flow at Re = 108 in a box or region of size L. Then we know that the number of ‘‘grid’’ points in any direction
should be L/η ∼ Re3/4 = 106. Just to understand the physical meaning of these numbers, let us consider the case of a
turbulent flow generated by an atmospheric wind at a speed U = 10 m/s flowing at height 100 m from the land. Then
Re = 108 and η = 0.1 mm. If one is interested to simulate turbulence for this problem, the numerical resolution is
prohibitive even with our present technology. Moreover, in many practical situations, it is likely that our interest is to
understand the statistical properties of turbulence at scales r order few centimetres, i.e. for r ≫ η. Does Kolmogorov’s
theory tell any computational trick to turn around the problem?

The basic physical idea is similar, but not equal, to the one discussed for Richardson’s turbulent diffusion. Kolmogorov’s
theory suggests that there exists an energy flux towards small scales which eventually leads to the dissipation of the
kinetic energy. We can imagine dividing the computational grid into two different parts the resolved part where numerical
simulations are performed using the N.S. equation and a subgrid part which is not computationally resolved and which
akes care of the energy dissipation. However, we should match the resolved and the subgrid part in some way. The
implest way to do that is to assume that for the resolved part Kolmogorov’s theory holds. Then, upon denoting ∆ the
mallest scale in the resolved computation, we should require that

⟨[δv(∆)]3⟩ = −ϵ∆ (109)

ince the subgrid takes care of dissipation, we can introduce an eddy viscosity νturb such that

ϵ = νturb
δv(∆)2

∆2 (110)

sing Eqs. (109) and (110) we reach the conclusion that

νturb = δv(∆)∆ (111)

owever this is not the end of the story, since ∆ is the smallest size we resolve computationally, for numerical stability
e must require δv(∆) = S∗ · ∆ where S∗ ≡

√
SijSij, i.e. S∗ is the characteristic strain of the velocity field. Obviously S∗

depends both on time and space. Using the definition of S∗ we finally get

νturb = S∗∆
2 (112)

and for the energy dissipation rate we obtain:

ϵ = νturbS2∗ = S3
∗
∆3 (113)

Using Eq. (113) it is easy to check that the value of η corresponding to νturb is [ν3turb/ϵ]
3/4

= ∆. This idea, originally due
o Smagorinsky, has been shown to be very powerful in many applications and it has been investigated and generalised
n many ways. It is a standard way to consider turbulence in atmospheric flows. Just to see how this approach works in
ifferent cases, let us consider turbulence in a boundary layer and let us assume to resolve turbulence up to a distance
from the boundary. Then in the boundary layer νturb = yv∗ since in this case, δv(r) is just the size of the turbulent

luctuations which, as we know, are of order v . Then the momentum conservation at y (i.e. at the scale ∆) implies
∗
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hat νturb∂yU = v2
∗
as we discussed in the previous lecture. From this relation, we immediately obtain that ∂yU = v∗/y

consistently with the von Karman theory. This is another way to say that the logarithmic profile is consistent with the
zeroth law of turbulence as already discussed. Obviously, this is the starting point of possible in-depth analysis and
refinement of the problem. A more detailed discussion is done in Lecture 8. Here we want just to point out that, starting
from Kolmogorov’s framework of homogeneous and isotropic turbulence, we can develop some non-trivial and useful
hints for numerical simulations at large Re.

Lecture 2.10. Summary of Lecture Lecture 2

The Kolmogorov theory is one of the most important achievements in the study of turbulence flows. Yet it is based
on a number of different assumptions (most important homogeneity and isotropy) which are not at all obvious. An in-
depth discussion on the subject and the possible outcomes can be found in several textbooks among which we refer to
[12,13,35]. The discussion of scale invariance of the NSE can be found in [26]. The possibility to perform high resolution
numerical simulations of the NSE opened a new way to understand turbulence. A review on the subject can be found
in [17] and in [36] for the passive scalar. The restricted Euler equations were investigated in a number of papers trying to
understand the role of flow topology in the dynamics of turbulent flows. A well-documented review on the subject can
be found in [19], see also [37,38]. The extension of the Kolmogorov theory for the passive scalar is reviewed in [39]. A
recent review on two-dimensional turbulence can be found in [33].

The Kolmogorov theory and, in particular, Eq. (74) is a scaling theory for the structure functions of velocity differences
in turbulence, Sn(r) = ⟨[δv(r)]n⟩. There is no reference in the theory to any pattern and/or space structures in the
statistical description of turbulence. At variance with this point of view, the Restricted Euler equations highlight non-
trivial topological features of turbulent flows. In particular, we understand that energy dissipation (the strain-dominated
region in the Q , R diagram, arises from the vortex stretching mechanism (region of positive Q and negative R). Thus one
an wonder whether there is no sign of the complex topological flow structures in a statistical description of turbulent
lows. In other words, the question of whether or not correlation functions are the quantities to study in turbulence is
ot so straightforward to disentangle. In fact, for two-dimensional turbulence numerical simulations clearly show the
elevance of coherent structures (vortices) to properly describe turbulence dynamics. For three-dimensional turbulence,
he question is less obvious and we will discuss this problem in more detail in the following lectures. An interesting issue,
t least theoretically, is to study turbulence between two and three dimensions [40,41].
Another non-trivial issue arises by a closer look to the Fig. 6. Even if Re is rather large, we do observe agreement with

he scaling ϵr for only less than one decade. Since we have a theory (the 4/5 Kolmogorov equation) that predicts the
caling, we can definitively state that the scaling is observed. However, for very small scales and very large scales, we
bserve deviations to the scaling. This is not a surprise and we can consider these deviations as finite size effects in Re,
.e. we argue these deviations become small for Re → ∞. This argument is supported by looking at the energy spectrum
btained from high Re number laboratory experiments, see for instance Fig. 11. However, we must be careful to properly
ake into account finite-size effects while investigating the scaling properties of turbulence.

ecture 3. Intermittency in 3D turbulent flows

ecture 3.1. Violation of the Kolmogorov theory

As we discussed in the previous section, Kolmogorov’s theory of homogeneous and isotropic turbulence is based
n two different assumptions. The first one is that the rate of energy dissipation ϵ is Re independent (zero-th law of
urbulence) which leads to 4/5 Kolmogorov’ equation which predicts Brrr ∼ −ϵr in the inertial range r ∈ [η; L]. The
econd assumption, or conjecture, is that any moments Sn(r) ≡ ⟨[δv(r)]n⟩ scales as [ϵr]n/3. This implies that the probability
istribution P[X(r)], with X(r) ≡ δv(r)/S2(r)1/2, although it may be not universal, is independent of r . Physically, this
s equivalent to, say, that the statistical properties of the velocity fields in turbulent flows are scale-invariant in the
imit Re → ∞. Scale invariance means that going from say r to r/10 we observe the same statistical fluctuations of
, i.e. the same physics. Given the complexity of the phenomenon (i.e. turbulence), scale invariance is a very interesting
nd powerful statement that is worthwhile to investigate in detail.
Let us consider moments of X(r). The first moment ⟨X(r)⟩ should be zero for homogeneity, ⟨X2(r)⟩ = 1 by definition.

hus we focus on ⟨X4(r)⟩ ≡ S4(r)/S2(r)2 which is also called kurtosis. This quantity can be computed with better precision
han the third moment which, at any rate, is controlled by the Kolmogorov 4/5 equation.

In Fig. 15 [42] (see also [13,35] for a more pedagogical discussion), we show two examples of how K (r) ≡ ⟨X4(r)⟩
epends on r: both numerical simulations and experimental measurements show quite clearly that K (r) is close to 3
t large r ∼ L and then increases all the way down for small r becoming flat and large for r ≤ η. Let us remark that
or a gaussian distribution of unit variance, the kurtosis is equal to 3. A large value of the kurtosis of P[X] means that
here is a relative small probability (compared to a gaussian) for X to be near 0 and a higher probability to be large. This
nterpretation is also supported by a direct measurements of P[X(r)] for different r in turbulent flows, as reported [43] in
ig. 16: at very large scale the probability distribution is close to be gaussian while at small scales we observe long tails

n P[X]. The qualitative picture we obtain is that the quantity δv(r) shows relatively small fluctuations near zero with
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Fig. 15. Flatness of the velocity increments in a homogeneous shear flow, solid line, and in homogeneous and isotropic turbulence, dotted line.
Source: Figure reproduced from [44].

intermittent bursts of large values: the smaller is r the larger the bursts in the velocity difference. For this reason, we
an say that the statistical properties of the velocity fluctuations in a turbulent flow show intermittency. This also means
hat scale invariance does not hold and that the second assumption, or conjecture, of Kolmogorov’s theory is wrong (see
ig. 16).

ecture 3.2. The statistics of lagrangian acceleration

The first question we ask is, why scale invariance is broken? Can we have any physical intuition on the phenomenon of
ntermittency? One can do many different analyses but, perhaps, the best way to address this question is to look in detail
t the probability distribution of the acceleration experienced by a lagrangian particle in a turbulent flows [43,47,48]. The
article is moving according to the equation:

dx
dt

= v(x, t) (114)

Thus the acceleration is given by d2x/dt2 which depends on the velocity gradients of the turbulent flow. We can compute
the acceleration using the estimate of the velocity gradients at scale r = η. Let us call the acceleration a(η), we can then
write

a(η) ∼
δv(η)
τη

∼
δv(η)2

η
(115)

Next, using the Kolmogorov theory we can write:

δv(r) = δv(L)
[ r
L

]1/3
(116)

here δv(L) is the velocity fluctuations at large scale. From the analysis of existent numerical and experimental data, we
an assume that the probability distribution of δv(L) is gaussian with some variance σ . Kolmogorov’s theory tells us that
is obtained by using the relation δv(η) · η ∼ ν. Using the definition of η and Eq. (115) we obtain

a(η) = ν−1/4L−3/4δv(L)9/4 (117)
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Fig. 16. Probability distribution function P of velocity increment δvr calculated for different values of r ∝ 2n , for n = 0, . . . , 9 (i.e. smaller values of
correspond to shorted distances r).

ource: Reproduced from [17], adapted from [45].

Fig. 17. Log-linear plot of the acceleration PDF. The crosses are the DNS data, the solid line is the multifractal prediction, and the dashed line is the
K41 prediction, Eq. (119). The DNS statistics were calculated along the trajectories of 2.0 × 106 particles amounting to 1.06 × 1010 events in total.
The statistical uncertainty in the PDF was quantified by assuming that fluctuations grow like the square root of the number of events. Inset: ã4P(ã)
for the DNS data (crosses) and the multifractal prediction.
Source: Figure reproduced from [46].
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This expression allows us to compute P[a(η)]:

P[a(η)] ∼ a(η)−5/9ν4/9 exp
[
−

a(η)8/9ν2/9L2/3

2σ 2

]
(118)

inally, after some algebra, we can compute the probability distribution of A ≡ a(η)/⟨a(η)2⟩1/2 which is

P[A] = ZA−5/9 exp
[
−

A8/9

2

]
(119)

ith Z a normalising factor. In Fig. 17 we show the probability distribution P[A] obtained from the numerical simulations
against the prediction given by Eq. (119): strong deviation at large A are observed. Once again the tail of the probability
distribution is much larger than expected.

In order to understand the reason for the large discrepancy between the observed P[A] and the prediction is given by
Eq. (119), we look at the time signal of the velocity reported in Figs. 18 and 19: it is quite clear that the large value of
the acceleration is due to the fast oscillations experienced by the lagrangian velocity.

In Fig. 18 we show the trajectory of a particle in the three-dimensional space: what happens is that from time to
time the particle enters in a region of high vorticity (probably a vortex tube). Then, since ω is large, the acceleration
experiences a large value for a relatively short time. Vortex tubes (or vortex filaments) are the coherent structure that
appears in any turbulent flow [52,53]. Vortex tubes cannot be described in terms of δv(r) and they do not appear in the
olmogorov theory. Vortex filaments or vortex tubes are unstable structures and do not dissipate energy which obviously
mplies that large shear rates should occur randomly outside the core of the vortex tube. In other words, the field of
nergy dissipation is spatially organised for the vortex tubes to appear. This is also in agreement with the discussion in
ecture 2 on the Restricted Euler equations. If the above arguments are correct, then the violations of the Kolmogorov
heory are due to structures and/or to some sort of spatial organisation (whatever it means) of the energy dissipation.
hen one can reasonably argue that all these effects depend both on the way we force turbulence and/or the detailed
echanism of viscous dissipation. Clearly, we need to understand in a better way what we mean by ‘‘space organisation’’.

ecture 3.3. Refined Kolmogorov similarity hypothesis

Let us suppose that, upon averaging many realisations, we can still assume that turbulent fluctuations are homogeneous
nd isotropic. After all, in the Navier–Stokes equations there are nowhere informations about breaking the space isotropy:
ny space anisotropy must come eventually from the forcing. Then whatever we mean by space organisation it should be
elated to the correlation properties of the energy dissipation. Numerical simulations are very helpful to clear the picture.
nergy dissipation does show non-trivial patterns in space (and in time) as we can see from Fig. 20. Next, we understand
rom Kolmogorov theory that the quantity ⟨[δv(r)]3⟩, at least in some average way, is related to the energy flux from large
o small scales which is dictated by the rate of energy dissipation ϵ. However, if the dissipation field is space correlated,
hen we should also take care of this correlation.

Kolmogorov himself addressed the previous question with a non-trivial first step [56]. The basic idea is to consider the
ield ϵ(x) and not just its average ϵ ≡ ⟨ϵ(x)⟩. It is quite clear, from the data analysis discussed so far, that the conjecture
v(r) ∼ (ϵr)1/3 is not true. Given the velocity difference δv(r) = v(x+ r)− v(x), Kolmogorov considered the local average
(r) defined as the space average of ϵ(x) in a box of size r , computed as:

ϵ(r) ≡
1
r3

∫
B(r,x0)

d3xϵ(x) (120)

here B(r, x0) is three dimensional box of size r around the point x0. Now, if the average energy dissipation ϵ is physically
nterpreted as the average flux of energy from large to small scales, then we can reasonably consider ϵ(r) as the local
nergy flux correlated to the velocity fluctuation δv(r). Then, under this assumption, we have

δv(r)3 ∼ ϵ(r)r (121)

n average Eq. (121) is exactly the 4/5 Kolmogorov’ equation. In general, Eq. (121) tells us that the correct quantity to
ook at is the probability distribution of Y (r) ≡ δv(r)/[ϵ(r)r]1/3. This is a major difference with respect to the quantity
(r) previously defined: now we need to look for any r to two different quantities namely δv(r) and ϵ(r). In Fig. 21 [57]
e show the results obtained from experimental data: it is now clear that P[Y (r)] is no longer dependent on r , i.e. Y (r) is
scale-independent quantity. Eq. (121) is referred to as Refined Kolmogorov Similarity Hypothesis or RKSH and it has been
bserved to hold in a number of numerical and experimental data of turbulence flows.

ecture 3.4. Intermittency and fractal dimension

Although the RKSH works very well, the bad news is that we do not know anything about the probability distribution
f ϵ(r) which implies that we have no guess about the probability distribution of the velocity field. We understand that,
esides the average rate of energy dissipation ϵ, we need to know something about the statistical properties of ϵ(r). A first
29
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Fig. 18. (top) Example of Eulerian and Lagrangian rendering. Both the intensity of the Eulerian enstrophy field at a given time (blue isosurface) and
the Lagrangian evolution of a bunch of particles with trajectories ending at the time of the Eulerian snapshots are shown. Notice that the Lagrangian
particles have an initially smooth evolution because we also show the initial transient time when the underlying Eulerian field was chosen smooth
and with low energy. The bunch of particles were chosen such as to encounter vortex filaments during their evolution. (bottom) A trajectory of a
fluid tracer in a small-scale vortex filament in a turbulent flow from a numerical simulation at Reλ ∼ 280. Colours and arrows indicate the magnitude
and direction of the velocity (see Biferale et al. 2004a, Toschi et al. 2005). (b) The trajectory of a high-acceleration event of a 46-µm-diameter tracer
particle in turbulence at Reλ = 970 recorded at a frame rate of 70,000 frames per second. The position of the particle at each of the 278 frames is
represented by a sphere. The colours represent the acceleration magnitude, as indicated by the scale.
Source: (top) Figure by courtesy of B. Gallagher, reproduce from [49]. (bottom) Figures reproduced from [43], adapted from [50].

step in this direction is to start by the evidence that energy dissipation does not occur uniformly in space, rather it occurs
on a subset of the three-dimensional space. One way to characterise a ‘‘complex’’ space pattern of a positive quantity is
to consider its ‘‘fractal dimension’’. In our case, we assume that the field ϵ(x) of energy dissipation is characterised by a
fractal dimension D < 3. Even if the concept of fractal dimension is rather well-known in many scientific investigations, it
is worthwhile to review it shortly. Let us consider an object embedded in a d dimensional space. In our case, the object is
he energy dissipation and d = 3. To obtain a measure of the dimension D of the object we proceed as follows: we divide
the space in boxes of size r and we measure the number of boxes N(r) where at least one point of our object is found.
pon changing r , the dimension D can be computed from the relation N(r) ∼ r−D. Since the total number of possible
oxes are r−d, we can also say that the probability to find a box where at least one point of our object is located goes as
(r)/r−d

∼ rd−D. Thus the concept of fractal dimension can also be considered in a probabilistic sense. Interestingly, this
efinition of fractal dimension is due to Richardson.
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Fig. 19. Trajectory and time series. Left panel: 3D the trajectory of a trapping event in the vortex filament. Acceleration and velocity fluctuations
here reach about 30 and 2 r.m.s. values, respectively (right panels).
Source: Reproduced from [51].

In applying the concept of fractal dimension to the field of turbulent energy dissipation, we should be aware that we
re making a very simple approximation to the real problem. Nevertheless, we can exploit whether this idea is going
n the right direction. We consider the energy dissipation an on–off field: only in a subset of dimension D < 3 there is
a non-zero energy dissipation. The space configuration of the energy dissipation changes realisation by realisation and
assuming that on average for each realisation we can take care of the random geometry of the energy dissipation by using
the fractal dimension D. The number of boxes where the energy dissipation is non-zero is r−D out of r−3 total number of
boxes. Since on average we still assume that the energy dissipation is constant and equal to ϵ, it follows that the value
of the energy dissipation in the boxes where it does not vanish is equal to ϵrD−3, i.e. the energy dissipation goes as rD−3

with probability r3−D. At this stage, we can use the RKSH to compute:

⟨δv(r)n⟩ ∼ r3−Dϵrn(D−3)/3rn/3 (122)

where the first term on the r.h.s is the probability to find a box with non-zero energy dissipation. We can write (122) in
the form

Sn(r) = ⟨δv(r)n⟩ ∼ rn(D−2)/3+3−D (123)

Then, from Eq. (123) we obtain:

K (r) ≡
S4(r)
S2(r)2

∼
r4(D−2)/3+3−D

[r2(D−2)/3+3−D]2
∼ rD−3 (124)

e immediately see that for D < 3 the kurtosis K (r) should increase going from large to small scales. Eq. (123) is
lso referred to as the β model [58]and it represents the first non-trivial attempt to take into account the non-trivial
andom geometry of energy dissipation. Numerical simulations and experimental data are consistent with D ∼ 2.88 using
Eq. (124), i.e. the fractal dimension is not far from 3. Note that the β model for D = 3 is equivalent to the Kolmogorov’
conjecture, δv(r) ∼ r1/3, as expected.

There is one special case [16] where we can assess the validity of the above ideas, namely the case of the Burgers’
equation already considered in the previous lecture:

∂ u + u∂ u = ν∂2 u (125)
t x xx
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Fig. 20. 2D snapshot of the local energy dissipation field from a 3D HIT flow.
Source: Data from a 10243 simulations (courtesy of M. Buzzicotti). Figure
reproduced from [54].

For the case ν = 0, Eq. (125) can be solved for any initial condition f (x) as the solution of the equation:

u(x, t) = f (x − u(x, t)t) (126)

In Fig. 22 we see that the solution of the Burgers’ equation develops a singularity in a finite time. However, for ν > 0
the singularity does not arise and we have the formation of shocks. The region η where the shock forms should balance
advection and dissipation which leads, not surprisingly, to the relation η ∼ U/ν, where U is the characteristic velocity on
he large scale due to the initial condition. The shock can be considered as regions with fractal dimension D = 0. Outside
the shocks, the velocity field is smooth with δv(r) ∼ r while inside the shock we have δv(r) ∼ U . Using the concept of
fractal dimension, we can say that the probability to observe a shock goes as p(r) ∼ (r/L)1−D. Therefore we obtain:

⟨[δv(r)]n⟩ ∼ Un
[(r/L)n(1 − p(r)) + p(r)] ∼ Un(r/L)n n ≤ 1 (127)

⟨[δv(r)]n⟩ ∼ Un
[(r/L)n(1 − p(r)) + p(r)] ∼ Un(r/L) n ≥ 1 (128)

lthough for the Burgers’ equation ⟨[δv(r)]3⟩ ∼ r as in the 4/5 Kolmogorov equation, intermittency is fully dominated by
he formation of shocks and the energy spectrum goes as k−2 since ⟨[δv(r)]2⟩ ∼ r . For the Burgers’ equation we can see
here intermittency comes from and why there is a strong violation of the Kolmogorov’ conjecture.
The example taken from Burgers’ equation suggests that intermittency is due to the formation of well-defined

tructures (shocks) where energy dissipation occurs. This effect shapes the scaling properties ⟨[δv(r)]n⟩ for large n and
xplain why the fractal dimension, D = 0, of these structures enters the game. In some way, although we did not consider

any structures, the β model attempts to relate the geometry of the energy dissipation in the case of three-dimensional
turbulence. Let us remark that the β model implies, as for the case of the Burgers’ equation, that Sn(r) ≡ ⟨[δv(r)]n⟩ exhibit
power law behaviour with r , i.e. Sn(r) ∼ rζ (n). For the β model we have from Eq. (123) ζ (n) = n(D − 2)/3 + (3 − D). To
ssess the validity of this approach we must:

1 - extract the values of ζ (n) from turbulent flows (either from laboratory measurements and/or from numerical
simulations);

2 - understand whether or not ζ (n) are independent of Re.

e highlight the relevance of the second bullet from the physical point of view. One can imagine, for instance, a
ompletely different situation where ζ (n) are weakly dependent quantities on Re and for Re → ∞ we have ζ (n) → n/3.
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Fig. 21. (a), (b) The logarithm of the PDF of V conditioned on (rεr )1/3 for different values of r . Each solid curve corresponds to a different value of
he conditional parameter (rεr )1/3 . The value of r , the number of curves, and the minimum and maximum values of α = (rεr )1/3/(L⟨ε⟩)1/3 considered
ere are (a) st50, 14, 0.024, and 0.24; (b) 100, 15, 0.03, and 0.29. The intermediate values of a are equally spaced linearly between the minimum
nd maximum values. The dashed curves correspond to a Gaussian of mean zero and unity variance. 1n (a), the three innermost curves (which are
istinct from the ones that collapse) correspond to the three lowermost values of (rεr )1/3 . (c) The logarithm of the mean value of |∆u| conditioned
n (rεr )1/3 as a function of the logarithm of (rεr )1/3 . The four coalescing solid curves correspond to r in the inertial range of 20, 50, 100, and 200.
he dashed line has a slope of I.
ource: Figure reproduced from [55].

n this scenario, the effect of intermittency as previously discussed can be considered as a finite size effect which vanishes
t very large Re.

ecture 3.5. Extended self similarity

At any rate we must take care of finite size effects. As already noted, scaling behaviour in physics is a rather general
eature found in many different problems. It is also quite general that scaling behaviour is never exactly true because
f finite size effects. In our case, the scaling properties of the structure functions Sn(r) ∼ rζ (n) are modified when r is
ery large, close to the large scale L, and r is very small, close to the dissipation scale η. One can understand the issue by
ooking at the behaviour in r of S3(r)/r [60] which, according to the 4/5 law, is constant in the scaling region η ≪ r ≪ L.
n Fig. 23 we show S3(r)/r for two cases at Reλ = 140 and Reλ = 800 respectively. Let us remember that Rλ is the Re
umber computed using the Taylor scale λ as the inner scale and it is related to a Re number by the scaling Re ∼ Re2λ. At
ower Re it is difficult to claim the existence of any scaling region whereas at relative larger Re one can detect a scaling
egion of about one decade. From the experimental data we see that the scaling region of S (r) starts at r ∼ 50η. In order
3
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Fig. 22. The development of a singularity in the evolution of Burgers equation. As time proceeds a steep front develop (shock solution) eventually
dissipated on scales controlled by the viscosity.

Fig. 23. Compensated structure functions Sp(r)/rζ (p) , for the case p = 3, as a function of r .
Source: Data taken from an experiment on a jet at Rλ = 800 (O). Data taken from the wake
behind a cylinder at Rλ = 140 (∇). Figure reproduced from [59].

to extract meaningful scaling values of ζ (n) we should be able to know, in principle, how Sn(r) depends on the ratio r/η.
nfortunately this information is not available. However, we can use the following simple idea [61]: instead of looking
t the scaling exponents of Sn(r) versus r we can investigate the scaling relation:

Sn(r) ∼ S3(r)ζ
∗(n) (129)

q. (129) highlights the fact that, for ζ ∗(n) ̸= n/3, the scaling of the structure functions Sn(r) does not follow dimensional
ounting. This is consistent with the prediction of the β model. For this reason the exponent ζ ∗(n) can be called anomalous
xponents. Moreover, in the range where S3(r) ∼ r we should have ζ ∗(n) = ζ (n). The idea is that, even if S3(r) does not
how an exact scaling S (r) ∼ r , the scaling (129) may still hold. If this is true, we can extend the scaling region. There is
3
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Table 1
Scaling exponents ζ (n) of the
velocity structure functions of
order n obtained applying the
ESS to experimental data. The
error on the exponents is
about ±1%.
Source: Reproduced from ta-
ble 2 in [60].
n ζ (p)

1 0.37
2 0.70
3 1.00
4 1.28
5 1.54
6 1.78
7 2.00
8 2.23

Fig. 24. Log–log plot of S6(r) =
⟨
∆V (r)6

⟩
against r/η for the cases Reλ = 800, Reλ = 342 and Reλ = 225 (from top to bottom respectively). The three

ases are referred as J , C18 and C6 in the following. The solid lines correspond to slopes 1.79.
ource: Figure reproduced from [60].

o reason for this idea to be true but we can try whether it improves or not our estimate of ζ (n) in particular at low Re
here S3(r) does not show any scaling at all.
Another small, although non-trivial, improvement is obtained upon using ⟨|δv(r)3|⟩ instead of S3(r) = ⟨δv(r)3⟩. The

dvantage is clear: δv(r) is fluctuating between positive and negative values with zero average (for homogeneity). Thus
o obtain a reliable value of S3(r) one needs a rather large statistical sample. This requirement is less demanding for
ny positive define structure functions S2n(r) and for ⟨|δv(r)3|⟩. A detailed analysis of experimental data [60] shows that
3(r) ∼ ⟨|δv(r)3|⟩ for all r . Thus, in practice, we use ⟨|δv(r)3|⟩ instead of S3(r) to extract the anomalous scaling exponents
(n).
In Fig. 24 we show S6(r) for three different Reλ from 225 to 800: not surprisingly only at large Re we observe a scaling

egion of about one decade whereas at lower Re there is little hope to make any good estimate of the scaling exponent.
n Fig. 25 we show the very same data set for S6(r) plotted against the measured values of ⟨|δv(r)3|⟩: now we can identify
very clear scaling region and we can estimate the scaling exponent using four decades. Moreover, one can show in this
ase that ζ ∗(6) = ζ (6). In Fig. 26 we show S (r) against S (r) obtained with a numerical simulation at a rather low Re [62]:
8 3
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Fig. 25. Log–log plot of S6(r) =
⟨
∆V (r)6

⟩
against S3(r) =

⟨
∆V (r)3

⟩
for the experiments J, C18 and C6 (same symbols as Fig. 24. The solid line

corresponds to a slope 1.78. In this figure the structure functions corresponding to J and C6 have been multiplied by 10 and 0.1, respectively.
Source: Figure reproduced from [60].

Fig. 26. Scaling of S8(r) versus S3(r) obtained with a numerical simulation at rather low Re. At small value of r , or equivalently of S3(r), we should
observe the scaling 8/3 as indicated in the figure by the dashed line. At large r one clearly detects the anomalous scaling with exponents close to
2.23 shown by the continuous line.
Source: Figure reproduced from [62].

at small value of r , or equivalently of S3(r), we should observe the scaling 8/3 as shown in the figure by the dashed line.
At large r we clearly detect the anomalous scaling with exponents close to 2.23 shown by the continuous line.

There has been extensive use of Eq. (129) in the literature to estimate the anomalous exponents from experimental
data and numerical simulations. Eq. (129) has been named Extended Self Similarity (ESS). Using this method a systematic
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Fig. 27. Log–log plot of
⟨
ε2r
⟩ ⟨
∆V (r)3

⟩2 against
⟨
∆V (r)6

⟩
using experimental data at Reλ = 450. The straight line refers to the slope 1.005.

Source: Figure reproduced from [60].

stimate of ζ (n) has been performed with Reλ in the range [25 : 5000] [63]: the important result is that ζ (n) are
ndependent of Re and are reported in Table 1. The relative error on ζ (n) is around a few percent and in most cases
ven below 1%. We remark two important points about (129): first of all, the anomalous scaling should break down for
mall enough r as shown in Fig. 24; secondly the use of (129) improves a lot at low Re when a clear region of scaling in r is
ot available and may not be extremely useful at large Re where a clear scaling is observed. Nevertheless, ESS enables us
o solve our previous question: we can now state that ζ (n), being independent of Re, characterise the statistical properties
f homogeneous and isotropic turbulence and the intermittency effect.
One can also improve the original form of RKSH using (129). In particular one can consider the following relation:

Sn(r) = ⟨ϵ(r)n/3⟩S3(r)n/3 (130)

n Fig. 27 we show the quality of the relation (130) for n = 6 which is extremely good (the slope is 1 with less the 1%
ccuracy. Therefore, the use of S3(r) instead of r improves both the estimate of the anomalous exponents and the validity
f the RKSH.
The next question to answer is why there is anomalous scaling? From the table of the exponent ζ (n) we can already

ee that the β model cannot be correct for large n: the situation is more complex than the one described by the β model.
oing back to the case of the Burgers’ equation, we understand that the anomalous exponent, in this case, are ζ (n) = 1
or n ≥ 1. In the Burgers’ case, anomalous exponents are dictated by the formation of shocks due to dissipative effects. In
hree dimensional turbulence, the situation seem to be more complex. Let us consider once again the kurtosis K4(r). At
ery small scales we expect S2(r) = G2r2 and S4(r) = G4r4 where Gn ≡ ⟨[∂xv]

n
⟩. Using the relation (129) we can write

G4

G2
2

= lim
r→η

S4(r)
S2(r)2

= lim
r→η

S2(r)ζ (4)/ζ (2)−2
= [G2η

2
]
ζ (4)/ζ (2)−2

∼ Re0.08 (131)

Using experimental data and numerical simulations [12] the observed behaviour is G4/G2
2 ∼ Re0.18: this result is

definitively in contrast with the prediction (131). In other words, the anomalous exponents by themselves are not able
to predict the statistical properties in the dissipation regions. This implies that we are not able to predict the statistical
properties of the lagrangian acceleration. We need to improve our theoretical framework.

Lecture 3.6. Summary of Lecture 3

Let us try to summarise some of our findings in this lecture:
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• there is a clear evidence of violations of the Kolmogorov scaling δv(r) ∼ r1/3; this implies that fully developed
turbulence cannot be described by a naive scale invariant theory;

• deviations seem to be related to the formation of vortex tubes and/or to structures in the field of energy dissipation;
• a refined form of the Kolmogorov conjecture, the RKSH, seems to properly describe the turbulence fluctuation in the

inertial range;
• it is not clear whether the correct description of the statistical properties of turbulence may be correctly understood

in terms of the moments of probability distribution of δv(r); however we do observe clear anomalous scaling in the
form Sn(r) ∼ S3(r)ζ (n) with ζ (n) ̸= n/3 for n ̸= 3;

• we have quite good evidence that ζ (n) are universal, i.e. the anomalous exponents ζ (n) seem to be independent
from Re and from the specific forcing mechanism;

• it is not clear how the anomalous exponents may eventually be related to the statistical properties in the dissipation
range.

• it is unclear which is a possible theoretical framework able to explain why there exists anomalous exponents and
why ζ (n) is a non linear function of n.

ecture 4. Multifractal theory of turbulence

ecture 4.1. The theory

This Lecture is one of the central conceptual points in this review: we introduce the theoretical framework known as
ultifractal theory of turbulence. Our starting point is the scaling transformation introduced in Lecture 2, namely

r → λr (132)
v → λhv (133)
t → λh−1t (134)
ν → λ1+hν (135)
ϵ → λ3h−1ϵ (136)

lthough somehow abstract, using the above scale transformation we are able to obtain the Kolmogorov’ conjecture
ssuming that ϵ is invariant with λ. This immediately gives h = 1/3 and the scaling δv(r) ∼ r1/3. Arguments like
his, based on dimensional analysis can be extremely powerful or very dangerous if we do not understand the physics
ehind them. For Kolmogorov’ theory, the physics is quite clear: ϵ represents the flux of energy from large to small scales
where it is dissipated). Then, for η ≪ r ≪ L, the statistical properties of the velocity fluctuations, as measured by δv(r),
hould depend only on r and ϵ. Using dimensional analysis we obtain δv(r) ∼ r1/3. Now, let us suppose that the scale
ransformation (132)–(136) are still valid but in a broader sense. Somehow this is what we already did when we discuss
he β model. In the β model we assumed that energy dissipation was an object of fractal dimension D. The concept of
ractal dimensional is a geometrical concept. Looking at boxes of volume r3, energy dissipation is defined on the subset
f r−D boxes out of r−3. Thus the space average ⟨ϵ(r)⟩ is proportional to ϵ(r)r3−D where ϵ(r) is defined in Eq. (120). Then,
rom the zeroth law of turbulence, we have ϵ(r)r3−D

∼ const . Finally using the Refined Kolmogorov Similarity Hypothesis
e obtained the scaling of the structure functions with exponents ζ (n) = n(D − 2)/3 + (3 − D). In other words, we can

ook at the β model in the following way: we require scale invariance as expressed by Eqs. (132)–(136) supplemented by
space average procedure ⟨. . . ⟩ which obeys the transformation

⟨. . . ⟩ → λ3−D (137)

is the fractal dimension. Then the value of h is fixed by the zeroth law of turbulence ⟨ϵ⟩ independent of λ.
Now, the basic idea is to generalise the above procedure and the concept of average as follows: let us suppose that

here exists a range of exponents h and that the scaling transformation is valid with probability Ph. For δv(r) → λhδv(r)
he scaling (133) holds with probability Ph[λ]. This is equivalent to saying that the scaling δv(r) ∼ rh is true with
robability Ph[r]. Notice that we use δv(r) instead of Eq. (133) because we want to discuss the statistical properties of
he velocity fluctuations which are obtained, for homogeneous and isotropic turbulence, from δv(r). Next, we require that
h[r] ∼ r3−D(h). It follows that the scaling of the structure functions is given by:

⟨[δv(r)]n⟩ ∼

∫
dhrnh+3−D(h) (138)

ince r is supposed to be small, we can perform the integral using the saddle point method and we obtain

⟨[δv(r)]n⟩ ∼

∫
dhrnh+3−D(h)

= rζ (n) ; ζ (n) = infh[nh + 3 − D(h)] (139)

f we know D(h) we can compute the anomalous exponent ζ (n). The zero law of turbulence and the 4/5 Kolmogorov’
quation implies that ζ (3) = 1 which is a constrain on D(h). Eq. (139) is the starting point of the multifractal framework

f turbulence [65,66].
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Fig. 28. Graphical representation of the dyadic cascade process for the αj,k coefficients, where j is the level index and k is the position index of the
orresponding wavelet.
ource: Reproduced from [64].

As it is written in Eq. (138), the multifractal formulation is rather obscure. We do not know D(h) and we do not know
the range of values of possible exponents h (i.e. the limit of the integral in (138). Our assumption is that there exists a
function D(h) and that the probability distribution Ph[r] is itself a scaling function of r . At first sight, taking advantage of
he previous discussion on the β model, we can think of D(h) as a set of fractal dimensions. It is not clear, however, what
re the geometrical properties we are looking at. Let us remark that relation Eq. (136) implies:

ϵ(r) ∼
δv(r)3

r
with probability Ph[r] (140)

From the above equation we can derive the validity of the RKSH, i.e.

⟨ϵn(r)⟩ ∼

∫
dhrn(3h−1)+3−D(h)

= rζ (3n)−n
∼

S3n
rn

(141)

So far everything is abstract and we should now disentangle the physics from the formalism. To do that we want
o answer a few questions, namely: (1) can we say something general on D(h)? (2) knowing ζ (n) can we compute D(h)?
3) are we able to build space dependent field showing multifractal behaviour given by (139)? After these initial questions,
e need to understand whether or not the multifractal approach has any predictive value and/or whether it can explain
he strong intermittency due to dissipative effects. This point is clearly more demanding and it can be investigated once
e understand the physical meaning of the multifractal framework.

ecture 4.2. From ζ (n) to D(h)

We start with the simplest question: knowing ζ (n) can we obtain D(h)? Using Eq. (139) we can compute the solution
f the equation

inf
h

[nh + 3 − D(h)] or n −
dD
dh

= 0 (142)

et us call h(n) the solution of (142). Then we have ζ (n) = nh(n) + 3 − D(h(n)). Now we compute
dζ (n)
dn

= n
dh
dn

+ h(n) −
dD
dh

dh
dn

= h(n) (143)

Thus from this equation we can compute, in principle, the function n = n(h). Next from (139) we have:

D(h) = n(h)h + 3 − ζ (n(h)) (144)

which is the result that we were looking for. Obviously the difficult part is to compute the function n(h). For any practical
urpose, one usually performs a fit on the exponents ζ (n) (the simplest one) and then compute D(h) using (144). The
ther relevant information about D(h) is that D(h) should be a concave function of h, as it is ζ (n) with respect to n.
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ecture 4.3. The log-normal case

We now provide a very simple example to build up something similar to a multifractal behaviour [56]. This example
hould be considered as an exercise to understand some more physics from the formal definition. A very simple way to
uild up a multifractal behaviour is the following: let us consider a one-dimensional cut of the three-dimensional field
ssociated with energy dissipation. Let L be the size of the signal and let us divide it in smaller pieces of length lm = 2−mL.
he smallest scale available in space is denoted by lN . We can construct a dyadic tree, see Fig. 28, with leaves of size lm.
or each lm we have 2m leaves of size lm. We denote the position in the level by the index i = 1, . . . , 2m. Let ϵi(lm) denote
he local average of the energy dissipation at position i and level m. We now build the model in the following way: going
rom the level m = 0 (i.e. at scale L) down to the level m at scale lm we consider one of the many possible path on the
yadic tree and, once chosen the path, we neglect for the time being the position i in each level. Along the path we can
rite the following equality:

ϵ(lm) =
ϵ(lm)
ϵ(lm−1)

. . .
ϵ(L/2)
ϵ(L)

ϵ(L) (145)

e assume ϵ(L) to be constant and, from dimensional analysis, equal to U3/L. This assumption is equivalent to considering
he limit L → ∞ with ϵ(L) constant. Let us define Rm = ϵ(lm)/ϵ(lm−1) so that ϵ(lm) = Πk=1,...,mRkϵ(L). We now assume that
k are uncorrelated random variables with ⟨RpRm⟩ = 0 for p ̸= m. This is a rather strong assumption that characterises
ur simplified model and we will discuss this point later on. Next, we can formally write

ΠkRk = exp

[∑
k

log(Rk)

]
= exp

[
m

(
1
m

∑
k

log(Rk)

)]
= exp[mξ (m)] (146)

ξ (m) =
1
m

∑
k

log(Rk) (147)

The quantity ξ (m) is the sum of independent random variables and we can use the central limit theorem to compute the
probability distribution of ξ (m). The theorem tells us that ξ (m) converges for large enough m to a gaussian distribution,
i.e.

P[ξ (m)] ∼ exp
[
−

m(ξ (m) − µ)2

2σ 2

]
(148)

et us recall that we are looking at a specific path on the dyadic tree. For this specific path, ξ (m) is just a realisation of
he probability distribution P[ξ (m)]. Next, it is reasonable to assume that the average over all possible paths and along
the space position at the level m is equivalent to the average over the probability distribution of ξ (m). Using the variable
ξ (m), Eq. (145) and the RKSH we can write

δv(lm) = U
[
lm
L

]1/3
exp

[
mξ (m)

3

]
(149)

hen, to compute the structure function Sn(lm) = ⟨δv(lm)n⟩, we need to compute the average over ξ (m). Since the integral
are gaussian, this is a simple computation and we obtain:

Sn(lm) ∼ Un
[
lm
L

]n/3
exp

{
m
[
n
3
µ+

n2σ 2

18

]}
(150)

inally we require that S3(lm) ∼ lm because of the 4/5 law. This implies that µ and σ 2 are not independent. This is the
nly point where we are using some information from the N.S. equations and in particular the Kolmogorov’ equation. It
s easy to see that the constrain with the 4/5 law implies µ = −σ 2/2. Then, Eq. (150) becomes:

Sn(lm) ∼ Un
[
lm
L

]n/3
exp

[
m
σ 2

6

(
n2

3
− n

)]
(151)

ince 2−m
= lm/L, we can rewrite (151) in the form:

Sn(lm) ∼ Un
[
lm
L

]ζ (n)
(152)

ζ (n) =
n
3

+ bn
(
1 −

n
3

)
(153)

ith b = σ 2/(6 log(2)). In the region n ∈ [2 : 4], Eq. (153) provides a reasonable fit with the experimental/numerical
results with b = 0.045 a quite small deviation (as it should) from the Kolmogorov’ scaling n/3. Expression (153) was
irst introduced by Kolmogorov himself. However, (153) fails to match the estimated values of the anomalous exponents
40
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t large enough n. Before discussing the validity of (153) let us compute from it the quantity 3 − D(h). Introducing
0 = 1/3 + b, we can write ζ (n) = nh0 − bn2/3. For each n, we can compute the value h(n) which solves Eq. (142):

h(n) = h0 −
2b
3
n → n =

3
2b

(h0 − h) (154)

ext we can compute 3 − D(h) by the knowledge of ζ (n):

3 − D(h) = ζ (n) − nh =
3
2b

(h0 − h)2 −
b
3

[
9

4b2

]
(h − h0)2 =

3
4b

(h − h0)2 (155)

The model leading to (153) is often referred to as log-normal model of intermittency. The reason for this name can be
nderstood by looking at the probability distribution of the variable z(lm) ≡ ϵ(lm)/ϵ(L). Using (148) we have:

P[z(lm)] ∼
1

z(lm)
exp

[
−

(log(z(lm)) − mµ)2

2σ 2m

]
(156)

rom (156) we see that, as we know, the variable log(z(lm)) is gaussian and this gives the name log-normal to the model.
ooking at the probability distribution of z(lm), we can easily compute the moments. In particular, we already know that
z(lm)⟩ = 1 because µ = −σ 2/2 or equivalently ζ (3) = 1. It is more interesting to compute the most probable value zmp
f z(lm). This value can be computed by looking at the maximum of P[z(lm)]. It is easy to show that:

zmp = exp(−mσ 2) =

[
lm
L

]6b
(157)

hus at small lm, zmp ≪ ⟨z⟩ = 1. This can be interpreted by saying that in most cases z(lm) acquires a rather small value
hereas in a few cases it becomes extremely large. This is the hallmark of any intermittent behaviour in physics.
We construct the random multiplicative process (145) and (146)–(147) on a dyadic tree. This geometrical feature is

undamental to providing non-trivial space correlations in the field of energy dissipation. At the smallest scale, lN the rate
f energy dissipation ϵ depends on the space position i, hereafter denoted by xi with lN ≡ xi+1 − xi. Let us now consider
he quantity ϵ(xi+r)ϵ(xi) and let s be defined as r = 2−sL. Then between ϵ(xi) and ϵ(xi+r) there are s ancestor in common
with Rk and N − s different values of the independent random variables Rk. Thus we can write

ϵ(xi)ϵ(xi + r) = [Πk=1,sRk]
2
[Πj=s,s+1,...,NRj][Πl=s,s+1,...,NRl]ϵ(L)2 (158)

pon averaging over xi and in the limit of large L we obtain

C(r) ≡
⟨ϵ(xi)ϵ(xi + r)⟩

ϵ(L)2
= ⟨R2

⟩
s
⟨R⟩2(N−s) (159)

Because ⟨R⟩ = 1 by construction, we obtain

C(r) ∼ ⟨R2
⟩
s
=

[
ls
L

]ζ (6)−2

(160)

n agreement with the RKSH (note that we use (151)–(153)). Eq. (160) is true no matter the detail of the probability
istribution ξ (m) previously discussed: it can be derived from the specific dyadic tree of the randommultiplicative process
nd from the statistical independence of the random variables Rk. Eq. (160) tells us that there is a well defined long-range
orrelation of the energy dissipation field. This is a feature embedded in the multifractal framework which is formulated
n agreement with the RKSH. In the log-normal model of intermittency, the one leading to (153), the dyadic tree is
he geometrical framework behind the multifractal statistics which is one possible, but not unique, way to obtain long
ange correlation in the energy dissipation field. We emphasise the fact that this is a general feature of the multifractal
ramework not necessarily due to the particular choice of a dyadic tree and a random multiplicative process.

ecture 4.4. Constrain in D(h) and ζ (n)

Let us now come back to the specific form of D(h) we obtain for the log-normal model: D(h) is a parabola with negative
urvature whose maximum value is 3 for h = h0. It is interesting to look at h(n) for different n: h(2) = 0.318, h(3) = 0.288
nd ζ (4) = 0.258. By increasing n the value of h(n) decreases linearly and eventually becomes negative. A negative value
f h(n) implies that for large enough n we should have, for example, ζ (2n + 2) < ζ (2n), i.e. the anomalous exponents
(n) decrease with n. Then, following [12], let us define Umax the maximum velocity of a turbulent flow. By definition we
hould have ⟨|δv(r)|⟩ ≤ 2Umax. From this expression, it follows that

S2n+2(r) ≤ 4U2
maxS2n(r) (161)

s we know, we can write the structure-function Sn(r) = AnUn(r/L)ζ (n), where U is the root mean square velocity of the
low at Reynolds number Re = UL/ν and An is a constant independent of Re. Then, using (161) we have:

U2
max

≥
1 A2n+2

[ r ]ζ (2n+2)−ζ (2n)
(162)
U2 4 A2n L
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f ζ (2n + 2) < ζ (2n), then from (162) we have Umax → ∞ in the limit r → 0. Moreover, from a physical point of view,
enoting with cs the sound speed of the fluid, Eq. (162) implies that the Mach number Umax/cs becomes bigger for small
nough r/L which violates the incompressibility requirement assumed in all our investigations. This argument, originally
ue to Frisch [12], shows that for the N.S. equation we expect ζ (n) to be a concave non-decreasing function of n which
ules out the results (153).

ecture 4.5. Multifractal and large deviations

The previous discussion suggests the obvious question: ‘‘where is the mistake in deriving the log-normal model’’? To
btain the log-normal model we use three different pieces of information: a) the definition of the energy dissipation on a
yadic tree; b) the assumption that the variables Rk are independent random variables and (c) the central limit theorem
o derive the log-normal probability distribution. Points (b) and (c) seem to be the most delicate ones. In particular, let
s consider again the quantity ξ (m) whose probability distribution was approximated to a gaussian in the limit m → ∞.
he central limit theorem is valid for small fluctuations of ξ (m) around its mean value µ. More generally, due to the large
eviation theory (see for example [67]), it is possible to show that the probability distribution P[ξ (m)] is given by

P[ξ (m)] ∼ exp[−mW (ξ (m) − µ)] (163)

here the function W (x) is a convex function with a minimum in ξ (m) = µ. If we approximate W (x) with a parabola we
ecover the central limit theorem. However, this approximation is not valid when |ξ (m) − µ| is large.

Eq. (163) can be rewritten in our case as:

P[ξ (m)] ∼

[
lm
L

]W (ξ (m)−µ)/ log(2)

(164)

Upon defining h = 1/3 − ξ (m)/ log(2) and 3 − D(h) = W (ξ (m) − µ)/ log(2) and using (149), we can finally write:

δv(lm) ∼

[
lm
L

]h
with probability Ph[lm/L] ∼

[
lm
L

]3−D(h)

(165)

hich is exactly the multifractal formulation (see [68] for the formulation at different times).
The above discussion implies that the multifractal framework may be interpreted as large deviation estimate for

he probability distribution of δv(r). This is certainly true if we assume that the multifractal is obtained by a random
ultiplicative process but its original formulation is not restricted to this particular case. At any rate, from the point of
iew of large deviations, the exponent h appearing in the statement δv(r) ∼ rh does not imply any form of local (in space
r time) scaling law which can be eventually observed in a turbulent flow. This also implies that given two scales r1 < r2
he most general formulation of the multifractal is given by the relation:

δv(r1) ∼

[
r1
r2

]h
δv(r2) with probability Ph[r1/r2] ∼

[
r1
r2

]3−D(h)

(166)

Eq. (166) gives the probability distribution of δv(r1) conditioned to δv(r2).
As we noticed we must require ζ (2n + 2) ≥ ζ (2n). Since ζ (n) is a concave function of n, for n → ∞ the anomalous

exponents ζ (n) should behave asymptotically as h0n + 3 − D0 where h0 ≥ 0 is the smallest possible value of h and
D0 = D(h0). This behaviour does correspond to a local (in space) scaling of δv(r) and it is related to the most singular
value of the velocity difference δv(r), i.e. h0 refers to some structure in the flow. Using this observation and assuming that
vortex filaments or tubes are responsible for h0 plus other assumptions and information from numerical simulations, She
and Lévêque [69] obtained the following estimate for the anomalous exponents

ζ (n) = nh0 + d0[1 − βn/3
] (167)

with d0 = 3 − D(h0) = 2, h0 = 1/9 and β = 2/3. Eq. (167) is a very good approximation to the observed
numerical/experimental values of the anomalous exponents and, hereafter, we assume (167) as a possible best fit of
the observed anomalous exponents, ζ (n). Using Eq. (167) one can compute the corresponding function D(h). After some
algebra we obtain:

D(h) = d0Z(h) + 3 − d0 − d0Z(h) log[Z(h)]; Z(h) ≡
h − h0

d0[log(β−1/3)]
(168)

Expression (167) can also be derived if we assume that the random multiplicative process in (146) are log-Poisson
istributed, i.e the probability distribution of log(Rk) is a Poisson distribution. For this case, one can compute exactly the
unction W (x) appearing in the large deviation estimate (163) and the probability distribution of ξ (m) is again a Poisson
istribution.
42



R. Benzi and F. Toschi Physics Reports 1021 (2023) 1–106

L

m
N

w

T
a

i
r
r

a
v

A

d

w

ecture 4.6. Multifractal fields

Using a random multiplicative process, we can provide examples of a synthetic turbulent signal which satisfies the
ultifractal scaling [70]. As before we consider a dyadic tree. Without lack of generality, we assume L = 1 and ϵ(L) = 1.
ow we label the level by j and the leaves in the level by k = 1 . . . 2j. Next, we consider the function

ψ(x) = −
d2

dx2
exp

[
−

x2

2σ 2

]
(169)

ith σ ≪ L. The function ψ(x) has zero average in x. Using ψ(x) we define for each level j and leave k the functions

ψj,k(x) ≡ 2j/2ψ(2jx − k) (170)

he function ψj,k(x) is different from zero on an interval of size 2−j near the point 2−jk and it is a simple way to obtain
function which has almost compact support in each leave of our dyadic tree. Moreover, it is possible to show that:∫

dxψj,k(x)ψp,q(x) = δjpδkq (171)

.e. the functions ψj,k(x) form an orthonormal basis on the dyadic tree and it represent a local in space and in scale
epresentation of the signal. There are several kinds of functions able to satisfy the above requirements and they are
eferred to as wavelets [71].

Next, we consider the following signal:

Φ(x) = ΣjΣkα(j, k)ψj,k(x) (172)

where the number α(j, k) are random variables defined on the nodes of the tree. Choosing α(0, 0) = 1 we set:

α(1, 0) = A(1, 0)η(1, 0)α(0, 0) ;α(1, 1) = A(1, 1)η(1, 1)α(0, 0) (173)
α(2, 0) = A(2, 0)η(2, 0)α(1, 0) ;α(2, 1) = A(2, 1)η(2, 1)α(1, 0)

nd so on, where A(i, j) are random variables with values ±1 equally distributed and η(j, k) are independent random
ariables taken from a given probability distribution P[η]. The scaling properties of our signal Φ(x) can now be computed

upon averaging in space or, equivalently, on the probability distribution P[η] and averaging over A(j, k). For the second
order structure functions we have:

S2(r) ≡ ⟨
[
Σj,kα(j, k)2j/2

[ψ(2jx + 2jr − k) − ψ(2jx − k)]
]2

⟩ (174)

= Σjk⟨α(j, k)2⟩2j
⟨
[
ψ(2jx + 2jr − k) − ψ(2jx − k)

]2
⟩ (175)

Next we define

⟨
[
ψ(2jx + 2jr − k) − ψ(2jx − k)

]2
⟩ = 2−jG2(r) (176)

and we obtain:

S2(r) = Σj⟨α(j, k)2⟩2jG2(2jr) (177)

Notice that the factor 2−j in (176) does not appear in (177) because of the sum in k: upon averaging the factors are
independent of k and the sum in k is a multiplication by a factor 2j. Using (177) we obtain:

S2(2r) = Σj⟨α(j, k)2⟩2jG2(2j+1r) = Σj2j[log2⟨η2⟩+1]G2(2j+1r) (178)

= 2−[log2⟨η2⟩+1]Σj2(j+1)[log2⟨η2⟩+1]G2(2j+1r)

= 2−[log2⟨η2⟩+1]S2(r)

Eq. (178) can be generalised for any structure functions showing that Φ(x) exhibits a multifractal scaling with anomalous
exponents expressed in terms of the probability distribution of η:

ζ (n) = −
n
2

− log2⟨η
n
⟩ (179)

snapshot of the field Φ(x) is shown in Fig. 29.
Almost the same procedure can be used to generate a synthetic one-dimensional signal for the rate of energy

issipation ϵ(x) [64]. In this case, we use the functions

ψj,k(x) = 2jψ(2jx − k) ; ψ(x) = exp
[
−

(x − 1/2)2

2σ 2

]
(180)

here x ∈ [0 : 1] and σ ≪ 1. Note that the functions ψj,k(x) are no longer orthogonal. Then we define Φ(x) as in (172)
and (173) with two important differences: the variables A(j, k) are taken constants and equal to 1 so that Φ(x) is positive
43
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Fig. 29. A typical realisation of the multiaffine signal. The multiplicators assume two values: 2−5/6 with probability 0.875 and 2−1/2 with probability
0.125.
Source: Reproduced from [70].

Fig. 30. A typical example of synthetic signal φ(x) generated in x ∈ [0, 1] with the one-dimensional model and log-Poisson generator with parameters
= 0.4 and c = 0.5. The integral of the signal from 0 to 1 is equal to unity.

ource: Figure reproduced from [64].

efined; we require that
∫
dxΦ(x) = const ≡ C0. The latter constrain implies that α(0, 0) is given by:

α(0, 0) =
C0

Σj2j⟨η⟩j
(181)

otice that to obtain a signal Φ(x) consistent with the observed features of the statistical properties of the energy
issipation ϵ(r), we must choose the probability distribution P[η] in a proper way, i.e. we need to use a definition of

P[η] different from the one used for the velocity signal in (173). In Fig. 30 we show an example of Φ(x) defined by the
above procedure (see Fig. 31).
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We think that the possibility to build, at least in one dimension, explicit examples of a multifractal field is relevant for
any reasons. The procedure is relatively easy to perform and does not require much computational power. Thus it can
e used to test the statistical analysis performed on real data and provide a possible way to obtain well-defined error bars
n the estimate of the scaling exponents. It can also be used to investigate the probability of extreme events either in the
elocity difference and in the energy dissipation and eventually to perform a comparison with numerical/experimental
ata.
So far we have investigated the statistical and physical meaning of the multifractal theoretical framework. We

ant to understand whether, using the multifractal approach, we can provide any possible prediction on the observed
ntermittency fluctuations of homogeneous and isotropic turbulence. We assume to know D(h) which can be obtained by
he knowledge of ζ (n). We expect that within the scaling region where Sn(r) ∼ rζ (n) the knowledge of D(h) is enough to
ompute the probability distribution of P[δv(r)]. To see how this can be done, we use (166) with r1 = r and r2 = L where
is the largest scale in the system. We know that for homogeneous and isotropic turbulence, the velocity fluctuations
v(L) are well approximated by a gaussian distribution:

P[δv(L)] ∼ exp
[
−
δv(L)2

2σ 2

]
(182)

hen, using (166) we obtain [72]:

P[δv(r)] ∼

∫
dh
[ r
L

]3−D(h)−1
exp

[
−

δv(r)2

2σ 2(r/L)2h

]
(183)

q. (183) shows that P[δv(r)] is the superposition of gaussian probabilities distributions with different variance 2σ 2(r/L)2h.
he overall effect is displayed in Fig. 31. In the figure we consider ln = 2−nL, with L = 1, and vn ≡ δv(ln): going from large
o small scales the probability distribution develops a higher tail (large values are more probable) which is the signature
f intermittency. Notice that everything goes as if the probability distribution P[δv(r)] exhibits a stretched exponential
orm, although from (183) this is not the correct interpretation.

ecture 4.7. The dissipation range

Now we must face the most complicated issue, namely understanding how the multifractal approach is consistent with
he observed statistical features near to the dissipation range, i.e. near the Kolmogorov scale. In the original Kolmogorov
heory, the dissipation scales or Kolmogorov scale η can be obtained in several ways and, in particular, by saying that the
eynolds number δv(r)r/ν corresponding to fluctuations δv(r) is order 1 at r = η. Using δv(r) = (r/L)1/3δv(L), we obtain
or the Kolmogorov theory[ r

L

]4/3
Lδv(L) ∼ ν →

η

L
∼ Re−3/4 (184)

here we define Re = δV (L)L/ν. We want to employ the same definition with the multifractal approach. However, in this
ase, the fluctuations δv(r) depend on h. Thus our condition becomes [73]:[ r

L

]h+1
Lδv(L) ∼ ν →

η

L
∼ Re−

1
1+h (185)

q. (185) holds with probability

Ph[Re] ∼

[η
L

]3−D(h)
∼ Re−

3−D(h)
1+h (186)

e discover that there are a number of dissipative scales each one depending on the value of h. Thus we write η(h) to
ighlight this fact. Moreover, we discover that each of the different dissipative scales enters in the statistical properties
f the velocity fluctuations with a probability depending on the Re number. This is a quite complicated scenario that
eserves a deeper investigation.
The first thing we need to check is whether (185) and (186) are consistent with the zeroth law of turbulence. This

mplies that the average gradient square should be proportional to Re. Using the above definitions we obtain:

⟨(∇v)2⟩ ∼

∫
dh
[
δv(η(h))2

η(h)2

][
η(h)
L

]3−D(h)

∼
U2

L2

∫
dhRe−

2h−2
1+h Re−

3−D(h)
1+h (187)

here U2
≡ ⟨δv(L)2⟩. To obtain the final result we need to look at the minimum value of the quantity [2h − 2 + 3 −

D(h)]/(1 + h). This leads to the equation for h = h∗ given by

1 + D(h∗) − (1 + h∗)
dD
dh

= 0 (188)

et h3 be the value of h corresponding to the scaling exponent ζ (3). This implies that 3 = dD/dh at h = h3 and
h3 + 3 − D(h3) = 1. It is easy to show that h∗ = h3 is a solution of Eq. (188). Finally, we obtain:

−
2h3 − 2 + 3 − D(h3)

= −
3h3 − 2 + 3 − D(h3) − h3

= −
−1 − h3

= 1 (189)

1 + h3 1 + h3 1 + h3
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hus using definitions (185) and (186) we are able to recover the zero law of turbulence. Note that the only assumption
e use is ζ (3) = 1 which is an exact value independent of the specific functional form of D(h). It seems that we are on a
ood way in our investigations.
We can go on and we can compute the dependence on Re for all the moments of the gradients [72]. This can be done

y computing the quantities:

⟨(∇v)q⟩ ∼
Uq

Lq

∫
dhRe−

qh−q
1+h Re−

3−D(h)
1+h (190)

ow the integration over h is more complicated. Let us define:

ξ (q) ≡ Suph

[
−

qh − q + 3 − D(h)
1 + h

]
(191)

he equation we need to solve is now:

2q − (1 + h)
dD
dh

− 3 + D = 0 (192)

To solve this equation we use the following trick [12]: we assume that the solution is given by h = hp where hp is the
alue of h corresponding to the exponents ζ (p). Thus p = dD/dh and ζ (p) = php + 3 − D(hp). Using this idea, we rewrite
he r.h.s of (192) in the form 2q − (1 − hp)p − 3 + D(hp) = 2q − p − ζ (p). Then Eq. (192) can be used to write

q =
p + ζ (p)

2
(193)

Finally, we compute ξ (q) from (191) and we obtain:

ξ (q) = −
qhp − q + 3 − D(hp)

1 + hp
= −

q(1 + hp) − 2q + 3 − D(hp)
1 + hp

= −q + p =
p − ζ (p)

2
(194)

Although it looks a little complex, expression (193) and (194) provides us the information we need in terms of the scaling
exponents ζ (n). For instance, we obtain ξ (4) ∼ 2.18 which implies that the kurtosis of the gradients goes as Re0.18, i.e. it
increases faster than the prediction based by extrapolating the kurtosis from the inertial range down to the Kolmogorov
scale (see previous lecture). This is consistent with the observation that close to the dissipation range, intermittency
seems to grow faster than what we can naively predict by the scaling exponents. We are now able to understand why
this happens: Eq. (185) tells us that large fluctuations (with relatively small h) dissipate at relatively small scales with
respect to relatively small fluctuation which dissipates at a larger scale. The fluctuations of the dissipation scale are
responsible of the increased intermittency in the dissipation range. The fluctuations of the dissipation scale are predicted
by the knowledge of D(h) through Eq. (186). Thus the knowledge of the scaling exponents ζ (n) is enough to predict or
compute the most intermittent fluctuations in the dissipative range.

We are now able to compute the probability distribution of the velocity gradients s ≡ δv(η(h))/η(h). Using U = L = 1
and performing the same computation as before, after some simple algebraic work, we obtain:

P[s] ∼

∫
dh
[ν
s

]2− h+D(h)
2

exp
[
−
ν1−hs1+h

2σ 2

]
(195)

otice that now Eq. (195) can no longer be solved by using a saddle point technique and we need a functional form of
(h) consistent with the scaling exponents ζ (n). We can compare (195) against numerical simulations and the result is
n agreement with numerical simulations excellent, see [72] for details.

At this stage, we can perform another non-trivial computation, namely the computation of the probability distribution
[a] of a lagrangian acceleration [74]. As in the previous section we assume that a ∼ δv(η(h))/τη . Here the quantity τη
epends on h as well since we can define τη = η(h)/δv(η(h)). Thus we obtain:

a ∼
U2

L
Re−

2h−1
1+h (196)

We assume U to be gaussian distributed with Re = UL/ν. Then (196) provides a link between a and U . Finally, we assume
that the fluctuation of h are controlled, as before, by the dissipation scale. Putting everything together, after some work,
we obtain:

P[a] ∼

∫
dha

h−5+D(h)
3 ν

7−2h−2D(h)
3 exp

[
−

a
2(1+h)

3 ν
2(1−2h)

3 L2h

2σ 2

]
(197)

nce again we cannot compute the integral on h but we can compare P[a] against numerical simulations as done in
ig. 17, the agreement is excellent.
Let us summarise our findings. At the beginning of this lecture, we introduced the multifractal framework of

urbulence. The basic idea is that there exists a function D(h) which shapes the probability distribution to observe a
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Fig. 31. Log-linear plot of the probability distribution P(vn) of the velocity increments vn vs vn/σn , where σ 2
n = ⟨v2n⟩, for n = 2, 5, 10, 15 (solid lines).

or n = 0 one has a Gaussian corresponding to a parabola (dashed line). In the figure we consider ln = 2−nL, with L = 1, and vn ≡ δv(ln): going from
arge to small scales the probability distribution develops a higher tail (large values are more probable) which is the signature of intermittency. We
ssume D(h) given by the She–Lévêque formula (167) and P(vn) by Eq. (183).
ource: Figure reproduced from [72].

luctuation of size δv(r) ∼ rh at scale r . We have provided examples of (one-dimensional) multifractal field based on
random multiplicative process where D(h) plays the role of large deviation estimate for the probability distribution
f h. Our examples are constrained to (independent) random multiplicative processes while the original formulation of
he multifractal framework is more general. A non-linear concave function D(h) implies a non-linear behaviour of the
nomalous exponent ζ (n) characterising the inertial range η ≪ r ≪ L scaling of the structure functions. Next, we look
t the effect of dissipation and we assume that for any h the dissipation scale η(h) satisfies the relation δv(η(h))η(h) ∼ ν.
he fluctuations of the dissipative scale η(h) are again determined by D(h) and are consistent with the zero law of
urbulence. The most striking results of our analysis concern the computation of the probability distributions of the
elocity gradients (195) P[s] and acceleration of a lagrangian particle P[a] (197). The latter quantity shows very strong
ntermittent fluctuations and it is probably one of the most intermittent features in a turbulent flow. In the previous
ecture, we understood that intermittency in the acceleration is related to the existence of vortex filaments or tubes
hich are the source of large fluctuations in the lagrangian velocity. P[a], from (197) shows excellent agreement with
xperimental/numerical results although in (197) there is no information on the existence of vortex filaments: Eq. (197) is
erived assuming the existence of D(h) and the fluctuation of the dissipative scale η(h). Thus, in a way or another, whatever
s the effect of vortices or any other coherent structures, their statistical significance is embedded in D(h). When we look
t the structure functions ⟨[δv(r)]n⟩ we average over different fluctuation sizes δv(r) ∼ rh with the probability r3−D(h).
hen we look at the acceleration or at the velocity gradients we perform the same computation taking into account

inite size effects induced by the viscosity. We think that this is a remarkable result because it implies that D(h) unifies
ur theoretical approach in understanding intermittency fluctuations both in the inertial range η ≪ r ≪ L and near
he dissipation range r ∼ η where intermittency is enhanced. One may be tempted to say that from the knowledge of
nertial range fluctuations we can predict the statistical properties of the fluctuations in the dissipative region. However,
his statement may be interpreted as a cause–effect relation, which, at this stage, we cannot state. The good news is that
iven D(h) we can provide a complete description of intermittency in the N.S. equation: a rather strong and non-trivial
tatement.

ecture 4.8. Constrain in ESS and finite size effects in Re

Our next step is to understand how finite size effect in Re can be taken into account looking at the structure functions
n(r) ≡ ⟨[δv(r)]n⟩. As a first approximation, we start neglecting the fluctuation in the dissipative scale, η, which is assumed
o be the Kolmogorov scale. Then, following the analysis in our previous lecture, we can take into account finite size effects
n Sn(r) by writing [59,75,76]:

δv(r) = U0g1

(
r
)
g2

(
r
)h

(198)

η η
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here the functions g1(x) and g2(x) satisfy the following constrains: for x ≫ 1 we assume g1(x) ∼ const and g2(x) ∼ r/L
while for x ≪ 1 g1(x) ∼ r/η and g2(x) ∼ const . We also assume that (198) is true with probability:

Ph[r/η] ∼ g2(r/η)3−D(h) (199)

In the region g1(x) ∼ const , we recover from (197)–(198) the scaling properties discussed in the previous lecture, namely
the Extended Self Similarity. To simplify the computation we rewrite ((198), (199)) as follows

δv(r) = U0

(
H(r/η)

1 + H(r/η)

)1/3 (η
L

)h
(1 + H(r/η))h (200)

Ph[r/η] =

[(η
L

)
(1 + H(r/η))

]3−D(h)
(201)

here H(x) = x3/(1 + x2). Using the expression (198), Eqs. (200)–(201) are equivalent to write:

g1(r/η) =

(
H(r/η)

1 + H(r/η)

)1/3

(202)

g2(r/η) =

(η
L

)
(1 + H(r/η)) (203)

Then from (201) we can obtain the structure functions:

Sn(r) = Un
0

(
H(r/η)

1 + H(r/η)

)n/3 (η
L

)ζ (n)
(1 + H(r/η))ζ (n) (204)

Obviously this expression cannot be correct because it does not predict the correct scaling of the velocity gradients with
Re. At r ≪ η we obtain from (204) Sn(r) ∼ Un

0 (rη)
n(η/L)ζ (n) ∼ rnRe3(n−ζ (n))/4 while we know that the correct scaling should

be Sn(r) ∼ rnReχ (n) where χ (n) is given by Eq. (194). The simplest way to obtain the correct result is to assume that Sn(r)
depends on the ratio r/ηn where ηn is the effective dissipation scale for the structure function Sn(r). Then we write:

Sn(r) = Un
0

(
H(r/ηn)

1 + H(r/ηn)

)n/3 (ηn
L

)ζ (n)
(1 + H(r/ηn))ζ (n) (205)

o obtain the correct scaling of the velocity gradients with Re we need to chose
ηn

L
∼ Re−

χ (n)
n−ζ (n) (206)

q. (206) takes into account the fluctuations of the dissipative scale η(h) and Eq. (205) quantifies finite size effects in Re
or the structure functions. Just to understand the effect of ηn, we can look at ratio ηn/ηk where ηk is the Kolmogorov
cale. Then the quantity ηn/ηk ∼ Reα(n) gives us the effect of fluctuations of η(h) in the structure functions. Using the
xperimental/numerical values of ζ (n) we obtain: α(2) = −0.0168; α(3) = −0.04; α(4) = −0.0512; α(6) = −0.0789.
Using (205) we can now compute the local slope d log[Sn(r)]/d log[S3(r)] which can be used to measure from

xperimental/numerical simulations the scaling exponents ζ (n) within the ESS procedure. A direct computation gives:

d log[Sn(r)]
d log[S3(r)]

=

[
ζ (n) −

ζ (n) − n/3
1 + H(r/ηn)

] 1 +
2

1+(r/ηn)2

1 +
2

1+(r/η3)2
(207)

t is worth while to compare (207) against the local slope:

d log[Sn(r)]
d log[r]

=

[
ζ (n) −

ζ (n) − n/3
1 + H(r/ηn)

](
1 +

2
1 + (r/ηn)2

)
(208)

he first term in the square bracket on the r.h.s of (207) goes from ζ (n), for r ≫ ηn, to n/3, for r ≪ ηn: it depends on
e rather smoothly through the quantity H(r/ηn). The second term on the r.h.s of (207) goes from 1, for r ≫ ηn, to 1,
or r ≪ ηn, while in the region r ∼ ηn: it shows a dip. A detailed computation shows that the location of the dip is
∼ (η3/ηn)1/2 and its magnitude depends on Reα(n)−α(3). Thus at relatively small Re the ESS scaling (the first term on the
.h.s of (207)) are the dominant contribution and this result explains why a good estimate of ζ (n) can be achieved even
t relatively low Re. This is also clear from the local slope (208) which change from ζ (n), for r ≫ ηn, to n, at small r ,
ee Figs. 32. On the contrary, upon increasing Re we should observe the formation of a pronounced dip in the local slope
log[Sn(r)]/d log[S3(r)] which is the hallmark of intermittency increases due to the fluctuation of the dissipation scale η(h)
n the system. This is a clear prediction whose validity we can investigate using experimental/numerical data in Lecture 6.

ecture 4.9. Fusion rules

Another non-trivial prediction of the multifractal framework can be obtained using Eq. (166). Let us consider the
ongitudinal structure functions computed using three different points x, x + r and x + R with R > r . In particular let
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Fig. 32. In violet we show the first term in d log(S6)/d log(S3), in red the full ESS slope while in yellow the local slope d log(S6)/d log(r). There is
ittle doubt that ESS is very good at low Re while its validity becomes less relevant at large Re (where however the inertial range is better defined).

s consider δv(r) and δv(R) and the combined structure functions [77]:

Fpq(r, R) ≡ ⟨δv(r)pδv(R)q⟩ (209)

sing (166) we can write:

Fpq(r, R) = U0

[ r
R

]ζ (p)
⟨[δv(R)]p+q

⟩ ∼
Sp(r)
Sp(R)

Sp+q(R) (210)

Eq. (210) is the multifractal prediction on Fpq(r, R). Actually, the prediction cannot be true for all p, q. For instance, for
= q = 1 the prediction is wrong since S1(r) = S1(R) = 0 for homogeneity. For this particular case, we can use the

dentity:

S2(R − r) = ⟨[v(x + R) − v(x) − v(x + r) + v(x)]2⟩ = S2(R) + S2(r) − 2F11(r, R) (211)

Similarly, we can write

S3(R − r) = S3(R) − S3(r) + 3
S2(r)
S2(R)

S3(R) − 3F12(r, R) (212)

which can be used to compute F12(r, R). From the above examples, we can say that (210) is valid for even values of p, q
whereas the case of odd values can be obtained from a proper generalisation of (210)–(211).

For even p, q we can test the validity of (210) using numerical/experimental data [78]. For this purpose we consider
the quantity

F̃pq(r, R) ≡
Fpq(r, R)Sp(R)
Sp(r)Sp+q(R)

(213)

First, we fix r = 5ηk and change R. In Fig. 33 we plot F̃2,2(r, R) and F̃24(r, R) as a function of R: we do observe that for
oth cases F̃pq(r, R) reaches a plateau as expected from (210). In Fig. 34 we plot the same quantity for fixed R and as a
unction of 1/r: again for small enough r we observe a plateau as expected from (210). Both figures show that the plateau
of F̃pq(r, R) is reached when the ratio R/r is large enough. This behaviour has to be expected. In Fig. 35 we show F̃pq(r, R)
for both experimental data and the case of a synthetic turbulent signal obtained with a random multiplicative process:
the behaviour is quite similar although the value of the plateau is slightly different.

We now generalise the previous discussion to study the quantities

An(R) ≡ ⟨∆v(x)δv(R)n⟩ (214)

The proper behaviour of An(R) can be obtained by computing

An(R) = lim
r→0

[(
v(x + r) + v(x − r) − 2v(x)

r2

)
(v(x + R) − v(x))n

]
(215)
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Fig. 33. Compensated F̃pq(r, R) at fixed r = 5η and changing the large scale R for p = 2, q = 2 (+) and p = 2, q = 4 (×). Data analysis from
xperimental measurements at Reλ = 2000 and Reλ = 800 as discussed in [78] where the original figure is published.
ource: Figure reproduced from [78].

Fig. 34. Same as in Fig. 33 with R fixed and r changing. For better understanding the behaviour, data are plotted versus 1/r .
Source: Figure reproduced from [78].

The simplest case is n = 1 for which we need to evaluate quantities like F11(r, R) before performing the limit r → 0.
Using (211) we obtain

A1(R) = lim
r→0

1
2r2

[2S2(R) + 2S2(r) − S2(R − r) − S2(R + r)] (216)

= lim
r→0

1
r2

[
S2(r) −

1
2
r2

d2

dR2 S2(R) + O(r3)
]

= ⟨(∂xv)2⟩ −
1
2

d2

dR2 S2(R)

For n = 3 we obtain:

A3(R) = lim
r→0

1
4r2

[2S4(R) + 2S4(r) + 12F22(r, R) (217)

− 4F31(r, R) − 4F31(−r, R) − S4(R − r) − S4(R + r)]

= lim[3F22(r, R) −
r2 d2

S4(R) + O(r3)]

r→0 4 dR2
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Fig. 35. Comparison of experimental data for the compensated F̃pq(r, R) shown in Fig. 33 with a synthetic one dimensional multifractal signal build
with a random multiplicative process and ζ (n) fitted by the She–Lévêque (167) formula. Fixed r and changing R: p = 2, q = 2 (+) synthetic and
×) experimental; p = 2, q = 4 (∗) synthetic and (□).
ource: Figure reproduced from [78].

ow we need a little care in performing the first limit, i.e.

lim
r→0

1
r2

⟨δv(r)2δv(R)2⟩ (218)

n (218) we are computing δv(r) conditioned to δv(R) and after that we perform the average. This implies that
limr→0 δv(r)2/r2 is the gradient of the velocity field which we know is proportional to Re (zeroth law of turbulence).
The crucial point is that the Reynolds number for this gradient is Rδv(R)/ν since we are conditioning on δv(R). Then we
an write

lim
r→0

1
r2

⟨δv(r)2δv(R)2⟩ = ⟨

[
Rδv(R)
ν

δv(R)2

R2 δv(R)2
]
⟩ (219)

his gives:

A3(R) ∼
1
ν

S5(R)
R

−
1
4

d2

dR2 S4(R) (220)

e can now understand how to compute the general case An(R). The key observation is that the first term in Eq. (220)
an be computed by looking at the quantity ⟨[ν∆v(x)|δv(R)]⟩. Assuming that R is in the inertial range we can estimate
his quantity using dimensional analysis i.e. ⟨[ν∆v(x)|δv(R)]⟩ ∼ δv(R)2/R. Then we arrive to the general formula

An(R) =
Cn

ν

Sn+2(R)
R

−
1

n + 1
d2

dR2 Sn+1(R) (221)

We remark that it is not possible to compute the constant Cn in general (only scaling properties can be obtained!) and
that it is extremely difficult (so far) to perform any experimental/numerical comparison against the prediction (221). The
theory behind Eq. (221) will be used in Lecture 7 in discussing intermittency in a particular model of passive scalar.

Lecture 4.10. Summary of Lecture 4

The Multifractal theory of turbulence was introduced by Parisi and Frisch in 1983 during the Varenna Summer School
on Turbulence and Predictability in Geophysical Flows and Climate Dynamics. The basic idea is very simple and it is a
natural generalisation of the concept of fractal dimension in disordered media. Besides turbulence, multifractals have
been investigated in a countless number of different problems, see also [79].

Concerning turbulence, the multifractal approach can be considered a general theoretical framework based on a
probabilistic interpretation of the scaling properties of the Navier–Stokes equations. The very non-trivial point is that the
multifractal framework does provide well-defined predictions on relevant quantities like the probability distribution of the
lagrangian acceleration a. In the previous lecture, we argued that vortex tubes and filaments are responsible for the large
fluctuations of a observed in numerical and/or experimental data. We now understand that these large fluctuations can
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e predicted if we know the anomalous exponents ζ (n) observed in inertial range fluctuations of the velocity fields. This
result is not a mathematical trick as one may think of it: physically we are speaking of very different physical properties
of turbulent flows. It took a rather non-trivial effort performed over more than two decades by many research groups to
reach the above conclusions.

To state it more clearly, there is no dichotomy between the statistical properties of turbulence as described by the
multifractal framework and the description of turbulence flows in terms of coherent structures like vortex tubes and
filaments. Even in the multifractal framework, the asymptotic scaling of the anomalous exponents is constrained to a well-
defined, although rare, structure with exponent h0, as we discussed at the beginning of this lecture. We can always choose
one way or another to describe turbulent flows. The key point is whether the way we choose can be used to provide any
quantitative predictions which can be verified using experimental or numerical data. The multifractal framework provides
well-defined predictions, all of them in agreement with available data. Obviously, the quantity we should consider must
satisfy the symmetry properties of the Navier–Stokes equation. Interesting one can employ the multifractal framework
for possible turbulence model [80,81].

Finally, an important point concerns the universality of the anomalous scaling ζ (n) or equivalently D(h). More properly,
he question is whether the anomalous exponents are independent of the forcing and dissipation mechanism. In particular,
or the time being, we consider forces that are statistically homogeneous and isotropic, whereas for the dissipation
echanism, we consider any possible mechanism of energy dissipation acting at small scales. The multifractal framework
oes not tell us anything about the universality of D(h) with respect to forcing and dissipation. Experimental and numerical
ata support the statement of universality of the anomalous scaling. We will come back to this point in Lectures 7 and 8.

ecture 5. Shell models

ecture 5.1. A simplified approach to turbulence

In the previous lecture, we introduce and discuss in some detail the multifractal theoretical framework for turbulence.
ven if the function D(h) is not specified, we were able to obtain many non-trivial predictions or consequences. In
articular, we were able to reach a unified description of intermittency in homogeneous and isotropic turbulence both in
he inertial range and in the dissipation range where intermittency is observed to be stronger. The multifractal approach
xploits the scale invariance of the N.S. equations r → λr with v → λhv having to constrain the zero law of turbulence.
he question we want to address in this lecture is whether there exists any model (possibly a simple one) which displays
he same scale invariance of the N.S. and where intermittency can be observed in a qualitative or even quantitative way
imilar to the N.S. one. We have already discussed the Burgers equation where intermittency and anomalous scaling
s observed. However, as we noticed, the Burgers equation shows two possible values of h namely h = 0 and h = 1
nd it corresponds to a bifractal situations. The unique signature in the N.S., according to the multifractal approach, is a
ontinuous range of possible values of h. Thus, it would be interesting to investigate a simple model (much simpler than
he N.S. equations) where something similar is happening, i.e. we have both the scale invariance of the N.S. equations and
nomalous scaling are described with the multifractal framework. It turns out that there exists a class of models which
atisfy the above requirement: the shell models.
Usually, shell models are introduced by assuming that they represent a very simplified version of the N.S. in the Fourier

pace. We prefer to think of shell models as a dynamical system where we artificially introduce velocity fluctuations at
ifferent scales whose dynamics are similar to real turbulence [82]. The basic idea is to build a dynamic system (with
relatively small number of degrees of freedom) that satisfies the scaling properties of the N.S. and displays chaotic
ehaviour in time.
To be concrete we consider the scales ln ≡ 1/kn exponentially distributed in n, i.e. kn = k0λ−n where λ > 1. To each

cale kn we associate a complex variable un. Next, we need to write the equation for un. The last step is not unique and,
s we shall see, there exist different proposals.
The most general formulation of the model is in the form:

dun

dt
= Cn + Fn + Dn (222)

here Fn is the forcing term to be specified, Dn is the dissipation term and Cn is the term containing non-linear interactions.
e assume Dn = −νk2nun to mimic the effect of dissipation in N.S. We also assume that the term Cn satisfies the Liouville

quation ∂Cn/∂un = 0 as in the case of the N.S. [26].

ecture 5.2. The GOY model

Having identified the general requirement, the term Cn is still undetermined. A well studied case is the so-called GOY
odel [83–85] whose equations are:

dun
= i[knu∗ u∗

+ bkn−1u∗ u∗
+ ckn−2u∗ u∗

] − νk2un + fn (223)

dt n+2 n+1 n+1 n−1 n−1 n−2 n
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here usually the forcing term fn acts on the shells corresponding to the very large scales n = 0 and n = 1. The constrain
Cn/∂un = 0 is obviously satisfied for Eq. (223).
The first thing we notice is that (223), for fn = 0, are invariant for the scale transformation

kn → Λ−1kn (224)
un → Λhun

ν → Λ1+hν

hich is one of our requirements. Notice that we now use Λ because we used the symbol λ for the ratio kn+1/kn. Let we
lso notice that the equation of motions are invariant for un → un exp(iθn) provided that θn+2 + θn+1 + θn = 0. Next we
ssume fn = 0 and ν = 0 and we look at the quantities W ≡ Σn|un|

2zn assuming that (223) is studied for an infinite
umber of shells. It is easy to show that W is conserved if:

1 + bz + cz2 = 0 (225)

f we want energy to be conserved we must require that 1 + b + c = 0 or c = −b − 1. Thus the model is specified with
ne free parameter b. It is useful to define ϵ ≡ −b [86] Using c = ϵ−1 we can look at the equation for the energy |un|

2/2.
e introduce the quantity ∆n = kn−1un−1unun+1. Then we obtain:

d
dt

|un|
2

2
=

1
2
[i∆∗

n+1 − iϵ∆∗

n + i(ϵ − 1)∆∗

n−1 + c.c.] + . . . (226)

here c.c. stands for complex conjugate and the dots stand for forcing and dissipative terms. Next, we introduce the
uantity Jn = ℑ[−∆n+1 − (1 − ϵ)∆n] so that the above equation becomes

d
dt

|un|
2

2
= Jn−1 − Jn + . . . (227)

e can see from (227) that Jn can be interpreted as the rate of energy transfer for large scales (i.e. kn−1 and kn−2) to the
maller scale kn+1 and kn+2. Thus, Jn > 0 represents a positive energy transfer from large to small scales. Numerically,
this is the case for ϵ > 0. In the limit ν = 0 and no forcing, Eq. (227) and energy conservation implies Jn ∼ const and
therefore:

ℑ[un−1unun+1] ∼ k−1
n (228)

We can look at Eq. (228) or (227) as the analogous of the 4/5 Kolmogorov equation for N.S.
Next, we consider the case of forcing and finite dissipation ν. We choose kn+1/kn = λ = 2, k0 = 2−4, ϵ = 1/2. The

orcing is applied to k0 and is equal to 5(1+ i)10−3. The total number of shells is N = 22. For these parameters, the model
223) displays a quite clear chaotic behaviour and we are interested to estimate the scaling properties of the velocity
ields. There are different and equivalent ways to estimate the analogous of the structure functions [86]:

snq =
⟨
|un|

q⟩ (229)

Snq =
⟨
|ℑ(un−1unun+1)|q/3

⟩
(230)

Σnq =

⟨⏐⏐⏐⏐ Jnkn
⏐⏐⏐⏐q/3
⟩

(231)

he reason why there may be different definitions of the structure functions is clearly due to the fact that un does not
ecessarily represent the analogous of δv(r) in turbulence. The definition (230) and in particular (231) are based on the

Eq. (228): both definitions are based on the amount of energy transfer from large to small scales and they should be the
physical analogous of δv(r)3. In Fig. 36 we show q = 6 the scaling properties of snq, Snq and Σnq: while both Snq and Σnq
show quite good scaling this is not true for snq which exhibits some oscillations. Thus we can assume that (230) and (231)
are the correct quantities to estimate the scaling exponents ζ (q).

In Fig. 37 we show the functions Snq for q = 4 and q = 6 down to the dissipation range. For ϵ = 1/2 and kn+1/kn = 2
we obtain two interesting results: (1) the scaling exponents of the velocity fields are anomalous i.e. ζ (q) is a non-linear
function of q with ζ (3) = 1; (2) the values of ζ (q) are quite close (within the error bars) to the one observed from N.S.
Both results are interesting and non-trivial: Eq. (223) exhibits the multifractal scaling induced by the non-linear chaotic
dynamics of the system.

Going back to Eq. (225), the second possible invariant, hereafter referred to as H , corresponds to the solution z =

1/(ϵ − 1):

H = Σn|un|
2(ϵ − 1)−n (232)

It turns out that also the Euler equations have two invariants: the energy and the helicity, namely the integral over
the volume of ω · v. Thus, at least dimensionally, the second invariant H in (232) becomes analogous to helicity if
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Fig. 36. Different kinds of scaling analyses with increasing accuracy: s, which is the magnitude of the velocity, S which is a cube root of the
maginary part of a product of three velocities, and X, which is the cube root of the energy flux. The upper part shows curves drawn for q = 1;
he lower part for q = 6. In both cases, Z gives the longest scaling range, and hence probably the best estimates for scaling exponents. All curves
re drawn for the standard parameter values. For comparison, K41 scaling is also shown.
ource: Reproduced from [86].

ϵ − 1)−n
= (−1)nkn i.e. if:

λ =
1

1 − ϵ
(233)

This is the case, for instance, if λ = 2 and ϵ = 1/2 used for the numerical simulations shown in Figs. 36 and 37.
In general, the values of the anomalous exponents depend on both ϵ and λ ≡ kn+1/kn as shown in Fig. 38. However,

following [86] one may conjecture that, if λ and ϵ satisfy (233) the scaling exponents are independent (or at least weakly
dependent) of the particular choice λ, ϵ. Fig. 38 supports this view.

The existence of anomalous scaling in the GOY model Eq. (223) is associated to other well-known features of
intermittency observed in the N.S. equations. In Fig. 39 we show the probability distribution of Re(un)/⟨Re(un)2⟩1/2 for
different values of n: for small n (large scale) the probability distribution is close to a gaussian while, upon increasing n
(small scales), we observe the development of long tails. In Fig. 40 we show the energy dissipation ϵ(t) ≡ νΣnk2n|un|

2 as
function of time which shows many intermittent bursts in qualitative agreement with similar features observed in the
nergy dissipation of turbulent flows.

ecture 5.3. The Sabra model

To avoid the oscillations observed in the scaling properties of snq, a different version of the shell model has been
ntroduced referred to as Sabra model [87]:

dun

dt
= i[kn+1un+2u∗

n+1 − δknu∗

n−1un+1 + (1 − δ)kn−1un−1un−2] − νk2n + . . . (234)

q. (234) are invariant under the transformation un → un exp(iθn) for θn+2 − θn+1 − θn = 0. This implies that
⟨unu∗

m⟩ = δnm⟨|un|
2
⟩ while for the GOY model ⟨unu∗

n+3⟩ ̸= 0. The Sabra model significantly improves the estimate of the
anomalous exponents from numerical simulations. For r = 2 and δ = 0.5 the Sabra and the GOY model gives anomalous
similar exponents.

Lecture 5.4. Helicity in shell models

As we already noticed, the GOY model is characterised by two inviscid invariants. The second invariant is not positive
defined and for ϵ − 1 = λ−1 looks like, at least dimensionally, the helicity H = ω · v. For the Euler equation H is a local
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Fig. 37. Example of scaling for structure functions of 4th order (+) and 6th order (×) for the GOY shell model of turbulence. The straight lines are
he best fit in the inertial range and correspond to the slopes, respectively, ζ (4) ∼ 1.26 and ζ (6) ∼ 1.76. Numerical simulations employed a total
umber of shells N = 25, viscosity ν = 5e − 7, and forcing fn = 0.1(1 + i)δn,0 , while k0 = 0.05.

Fig. 38. δζq versus q for four sets of parameter values. Three parameter pairs (ϵ, λ) lie on the curve (233) which defines the right value of the
elicity. These have λ = 10/3 and λ = 10/7 paired with their corresponding ϵ’s. The last value lies off the curve and has ϵ = 0.7 with λ = 2. Note
ow the values on the curve stand grouped together in comparison with the other one.
ource: Reproduced from [86].

nvariant on any volume Ω whose surface S(t) satisfies ω · n̂ = 0, where ω is the vorticity and n̂ is the outward normal to
he surface S(t). This results is obtained in two steps: (1) from the Kelvin circulation theorem [88] it is possible to show
hat the surface S(t), while evolving in time, satisfies the condition ω · n̂ = 0 at any time t; (2) using the equation for the
orticity:

∂ω
+ v · ∇ω = ω · ∇v (235)
∂t
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1

Fig. 39. Normalised PDFs of the real part of the velocity variables, Re(un), in the GOY shell model for turbulence, for wave numbers kn with n = 5,
0, 15. The pdf corresponding to the largest scale, n = 5, is represented by the solid line, the one corresponding to the intermediate scale, n = 10,

is the long-dashed line while the smallest scale, n = 15 is the short-dashed line. Notice the moving to smaller and smaller scales the pdf becomes
departs more and more from a Gaussian distribution.

Fig. 40. Typical time evolution of the energy dissipation, ϵ(t) =
∑

n k
2
n|un|

2 in a GOY shell model of turbulence. Intermittency is well visible by the
presence of extremely high peaks.

we can obtain the equation for H , given by

dH
≡
∂H

+ v · ∇H = ∇ ·

[
ω

(
1
v2 −

p
)]

(236)

dt ∂t 2 ρ
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herefore, the integral of dH/dt in the region Ω vanishes and H is a local inviscid invariant of the Euler equations [89].
or periodic boundary conditions H is also a global invariant, i.e. ⟨dH/dt⟩ = 0 where ⟨. . . ⟩ stands for space average.
The helicity changes sign under parity transformation r → −r while the Euler and the N.S. equation are invariant

under a parity transformation. For a turbulent flow, if the forcing mechanism is invariant for parity transformation,
the average helicity should be zero and it plays no role in the statistical properties of turbulence. However, since H
is a local inviscid invariants, as we previously noticed, helicity fluctuations may play some effects. From the identity
v · ∇v = ∇(v2/2)− v × ω, relatively large (positive or negative) value of the helicity implies a decrease in the non-linear
term. This may eventually produce some non-vanishing effect in the turbulent intermittency. In summary, it would be
important to generalise the GOY model so that both energy and helicity are conserved by non-linear interactions and it
turns out that this generalisation is possible. The basic idea is to introduce for each kn two complex variables u+

n and
−
n corresponding to positive and negative helicity modes respectively. Then at the same scale we can assume that the
orticity is proportional to kn(u+

n − u−
n ) and the helicity corresponds to kn(|u+

n |
2
− |u−

n |
2). Following this idea, the proper

eneralisation of Eq. (223) is given by the following equations:

du+
n

dt
= ikn

[
u−

n+2u
+

n+1 + bu−

n+1u
+

n−1 + cu−

n−1u
−

n−2

]∗
− νk2nu

+

n + f +

n (237)

du−
n

dt
= ikn

[
u+

n+2u
−

n+1 + bu+

n+1u
−

n−1 + cu+

n−1u
+

n−2

]∗
− νk2nu

−

n + f −

n (238)

here f ±
n are the forcing terms. It is possible to show that Eqs. (237)–(238) with no forcing and dissipation conserve the

wo quantities

E =
1
2
Σn

[
|u+

n |
2
+ |u−

n |
2
]

; H =
1
2
Σnkn

[
|u+

n |
2
− |u−

n |
2
]

(239)

f we choose the parameters b and c as follows:

b = −
λ−1

+ λ

λ2 + λ
; c =

−λ−1
+ λ−2

λ2 + λ
(240)

sing Eqs. (237)–(238), the anomalous exponents are not different from the ones computed from the GOY model,
.e. helicity fluctuations do not change the overall picture [90,91].

Overall shell models seem to reproduce many non-trivial features observed in real turbulence. Moreover, numerical
imulations show that anomalous scaling is independent of the forcing mechanism and/or the detailed feature of the
issipation mechanism. One can read this result in two ways:

(a) it is a non-trivial check that anomalous scaling arises from the non-linear dynamics in the system characterising
energy transfer in the inertial range;

(b) because in shell models there is no topological and/or geometrical features which characterises real turbulence,
anomalous scaling does not capture the very essence of turbulent flows.

We feel that both statement are somehow sloppy: shell models are models where it is possible to check very
eneral ideas on anomalous scaling. In particular, the scaling exponents depend on the parameters choices (ϵ or δ and
depending on the model). Thus, if one has a general approach on how to compute the anomalous exponents and/or
(h), shell models are good candidates to make a validity test because, using numerical simulations, we can estimate the
nomalous exponents with high accuracy. We remark that the comment (b) on topological and/or geometrical properties
f turbulence should be specified in terms of well-defined measurable quantities whose scaling properties (if any) cannot
e obtained using the multifractal model.

ecture 5.5. Restricted Euler equation for shell model

As discussed in Lecture 2, one simple way to explore the topological properties of turbulent flows is to look at
he Q , R obtained by the invariants of the matrix Aij = ∂iuj. On the left panel of Fig. 41 we show sampling of Q , R
sing direct numerical simulations at Reλ = 180 with a clear pronounced number of events in the vortex-stretching
egion (second quadrant) and in the dissipative region (fourth quadrant), see also the discussion in Lecture 2. Another
nteresting feature of Aij is the probability distributions of the cosine between the vorticity and the eigenvectors associated
ith the intermediate, maximum and smallest eigenvalues of Aij, shown on the left panel of Fig. 42 obtained for the
ame simulations used in Fig. 41. Altogether, both figures indicate, as already noticed in Lecture 2, that fully developed
urbulence cannot be considered a kind of random superposition of fluctuations: structures (i.e. strong vorticity) and their
pace organisation plays a role. Obviously the Restricted Euler Equations (REE) do not provide any insight on this issue:
EE do predict the general shape of the Q , R diagram and provide their topological interpretations but, obviously, there
s no information in the REE on the energy transfer from large to small scales and the zeroth law of turbulence. Now the
dea is to couple the physics described by the REE with a shell model, the results are shown on the left panels of Figs. 41
nd 42. Let us highlight that, as we understood from the previous lecture, the multifractal theory takes care, statistically,
f the space organisation of energy dissipation and vorticity in turbulence: using anomalous scaling exponents in the
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Fig. 41. Isolines of P(R,Q ) (normalised to have unit variance) for DNS and model data. Right-hand panel: DNS data at Reλ ∼ 180. Left-hand panel:
odel data at Reλ = 130, evaluated at the dissipative scale kd(Re). The continuous line in all diagrams corresponds to the Vieillefosse zero-discriminant
urve Q 3

+ 27/4R2
= 0.

ource: Reproduced from [92].

nertial range energy transfer we can predict the probability density in the lagrangian acceleration which is dominated
y the effect of vortex filaments. However for a shell model, although anomalous scaling is observed, there is no way to
hink of any space organisation.

Following [92], we consider the 3 × 3 matrix An as the coarse grained value of Aij. For simplicity, we can think of An
s the Fourier components of Aij. Next, taking inspiration from the Sabra model, we assume that An satisfies the equation

dAn

dt
= α

[
−An

2
+ Tr(An

2)
I
3

]
+ (1 − α)[F̃ n − νk2nAn] (241)

F n = An+2AT
n+1 + 4bAT

n−1An+1 + 16(1 − b)An−2An−1 (242)

where F̃ n ≡ F n − ITr(F n)/3. In Eq. (241) kn = 2nk0 and the parameter α = 0.5. Also we assume An = 0 for large scales
n = −1, n = −2 and small scales n = N + 1, n = N + 2, with N = 22. For ν = 0, Eq. (241)–(242) conserve the energy
Σnk−2

n Tr[AnAT
n]. To obtain a stationary probability distribution, the system is forced with a white noise in time gaussian

matrix G at the largest scale n = 0 with variance ⟨GijGml⟩ = 2δimjl− 0.5δijδml − 0.5δilδjm [92]. To compare the results from
Eq. (241)-5.16 against numerical and/or experimental data, we should look at An at the dissipative scale kd, i.e. where we
observe the maximum of the energy dissipation ⟨T r(AnAT

n )⟩. Then from Ad we can compute both Q and R as well as the
anomalous scaling in the inertial range.

On the right panel of Fig. 41 we show the probability distribution P(Q , R) obtained using the shell model (241)–(242).
The two probability distributions show remarkable agreement. On the right panel of Fig. 42 we show the probability
distribution of the cosine between the vorticity and intermediate, maximum and smallest eigenvalue of A. In summary
we can say that the topological properties of a turbulent flows as quantified by the probability distribution P(Q , R) are
in qualitative and quantitative agreement with the dynamics of the shell model (241)–(242). In particular, the model
provides a realistic dynamics for coupling among different scales which is the driving mechanism in shaping P(Q , R).

Lecture 5.6. Shell model on a tree and the refined Kolmogorov similarity hypothesis

One of the basic feature of three dimensional fully developed turbulence is the validity of the RKSH, i.e. δv(r)3 ∼

ϵ(r)r where ϵ(r) = r−3
∫
B(r) d

3xϵ(x) and B(r) is a box of side r . RKSH is assumed to hold within the multifractal
framework on the basis of the scaling properties of the NS equations and is observed to hold with high accuracy using
experimental/numerical results. To investigate the shell models we must introduce a space dependency [93]. To this
purpose, we can get a useful hint using the example of a one-dimensional multifractal field discussed in the previous
lecture. In particular we can consider a dyadic tree with nodes j, nwhere n = 1, . . . is the level in the tree and j = 1 . . . 2(n)

are the nodes at level n. To each node j, n we can introduce the complex variables u±

jn with positive and negative helicity.
Finally, we must define the interactions among the variables using the same general rules so far employed in the shell
model Eqs. (237)–(238). There are several ways to do that and we consider two possible situations which are described
in Figs. 44 and 45:
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Fig. 42. PDF of the cosine between the vorticity and the eigenvectors associated with the intermediate (•), maximum (◦), and smallest (□) eigenvalues
f the strain-rate matrix. Notice the good agreement between the DNS (right) data and the model data (left).
ource: Reproduced from [92].

Model A which is described by the equations:

du+
n

dt
= ikn

[
1
4
u+

n+1,2j−1(u
−

n+2,4j−3 + u−

n+2,4j−2) + u+

n+1,2j(u
−

n+2,4j−1 + u−

n+2,4j)
]∗

(243)

+ ikn

[
b
2
u+

n−1,j(u
−

n+1,2j−1 + u−

n+1,2j) + cu−

n−1,ju
−

n−2,j

]∗

− νk2nu
+

n + f +

n

nd Model B which is described by the equations:

du+
n

dt
= ikn

[
1
4
u+

n+1,2j−1(u
−

n+2,4j−3 + u−

n+2,4j−2) + u+

n+1,2j(u
−

n+2,4j−1 + u−

n+2,4j)
]∗

(244)

+ ikn

[
b
2
u+

n−1,j(u
−

n+1,2j−1 + u−

n+1,2j) + cu−

n−1,ju
−

n−2,j

]∗

+ iknd
[
−u−

n+1,2ju
+

n+1,2j + e1u−

n,j̄
u+

n−1,j̄
+ e2u−

n,j̄
u−

n−1,j̄

]∗

+ iknf
[
u+

n,j−1u
−

n,j+2 − u+

n,j−1u
−

n,j+1 − u−

n,j−1u
+

n,j+1 + u−

n,j−2u
+

n,j−1

]∗
− νk2nu

+

n,j + f +

n

For both models, similar equations hold by the transformations + → −, − → +. For model B, j̄ is the integer part of
(j + 1)/2. For models A and B, we chose b and c as before while for model B we set d = f = 1 and e1 = 3/4, e2 = 1/4.
With these choices, we can obtain in the inviscid limits that both energy and helicity are invariants, see Eq. (240).

Both models A and B display anomalous scaling in the structure functions of the variables u±

n,j. Note that for any level n
the structure functions are build upon averaging |u+

n,j|
2
+ |u−

n,j|
2 over j and on time, i.e. S2p(n) = ⟨[|u+

n,j|
2
+ |u−

n,j|
2
]
p
⟩ where

⟨. . . ⟩ is the average over j and time. Model A is more intermittent than model B: for instance ζ6 = 1.48 for model A while
it is 1.86 for model B. We remark that the variables u±

nj can be used to build a multifractal one dimensional field following
the idea of previous lecture u(x, t) = Σnjvnj(t)ψnj(x) where vnj are supposed to be one of the two possible dynamical
variables u±

nj. This implies that both models A and B provide a way to build a multifractal a one-dimensional field without
employing any random multiplicative processes: randomness is supplied by the chaotic behaviour of the models.

Using both models we are able to identify the analogous of ϵ(r) for the system: at each level n we can compute
the rate of energy dissipation ηnj ≡ νk2n(|u

+

n,j|
2

+ |u−

n,j|
2). Next, given the length 2−n+1 at the position j we need to

sum all contributions at different levels n which provide a contribution to the energy dissipation rate. This procedure
is represented in Fig. 43 and mathematically expressed by the following equation:

ϵn,j = ηn,j +Σm<nηm,k(m) +Σm>n⟨ηm,k(m)⟩I(m) (245)

where ϵn,j represents the energy dissipation averaged at the scale 2−n at the position j. The index k(m) in the second term
of rhs of (245) labels the location of larger-scale structures containing the region under consideration. In the third term,
an average is performed over k(m) ∈ I(m), where I(m) labels the set of structures containing the region for any m > n. The

−n+1 p
rate of energy dissipation is expressed as 2 Σj=1...2n−1ϵnj. From ϵnj we can build the quantities Dp(n) ≡ ⟨ϵnj⟩. Finally,
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Fig. 43. A picture of the hierarchical system, covering the one-dimensional interval [0,ΛT ].
Source: Figure reproduced from [93].

e can check the validity of the RKSH looking at the validity of the scaling relation:

S3p(n) ∼ Dp(n)S
p
3 (n) (246)

Eq. (246) is the ESS version of the RKSH discussed in the previous lecture. In Figs. 46 we show (246) for model A
espectively and for p = 4, 5, 6 and the same result, not shown, holds for model B: in all cases, there is a clear scaling
ith slope 1± 0.01 which implies that RKSH is extremely well verified independently of the model. The basic conclusion
e reach from this analysis is that RKSH is valid for shell models, i.e. the non-linear dynamics in the cascade process is
onsistent with the RKSH, in agreement with the scaling properties of the equation of motions. Moreover, it seems that
he RKSH is independent on the horizontal interaction. If we consider the random multiplicative the process has a way
o understand the geometrical structure of multifractal fields or signals, then our analysis shows that there can be other
ays to generate a multifractal measure/fields which cannot be disentangled by looking at the scaling properties of the
nergy dissipation.
We can improve our previous analysis by looking at the correlations of the energy dissipation field at different points

n space [94]. In particular, we consider the one-dimensional case i.e. the energy dissipation ϵ as a function of one space
ariable x and we consider ϵr (x) as the average of the energy dissipation on a segment of size r at the point x. Next
e consider the correlation ⟨ϵr (x)qϵr (x + s)p⟩ with s > r . Now let us assume that ϵr (x) is consistent with a random
ultiplicative process as described in the previous section or, alternatively, with the value of ϵr (x) obtained in the tree
hell model A discussed above. Then the quantities ϵr (x)/ϵs(x) and ϵr (x + s)/ϵs(x + s) are statistically independent. It is
lways possible to write:

⟨ϵr (x)qϵr (x + s)p⟩ = ⟨

[
ϵr (x)
ϵs(x)

]q
⟩⟨

[
ϵr (x + s)
ϵs(x + s)

]p
⟩⟨ϵs(x)qϵs(x + s)p⟩ (247)

pon defining τ (q) ≡ ζ (3q)−q we can write ⟨[ϵr (x)/ϵs(x)]q⟩ ∼ (r/s)τ (q) and, similarly, ⟨[ϵr (x + s)/ϵs(x + s)]p⟩ ∼ (r/s)τ (p). It
emains to compute the last term in (247). To do that we need to consider the common ancestor at scale l of the quantities
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Fig. 44. Model A.
Source: Figure reproduced from [93].

ϵs(x) and ϵs(x + s). Given l (common ancestor) then we can write:[ ]q [ ]p

⟨ϵs(x)qϵs(x + s)p⟩ = ⟨

ϵs(x)
ϵl(x)

⟩⟨
ϵs(x + s)
ϵl(x + s)

⟩⟨ϵl(x)q+p
⟩ (248)
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a

Fig. 45. Model B.
Source: Figure reproduced from [93].

Now we need to consider the probability that the points x and x + s have a common ancestor of size l and we need to
verage (248) over this probability. Looking at Fig. 47 we understand that the probability we are looking for is simply s/l
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Fig. 46. Log–log plot of the velocity field structure functions, Sp(n) (p = 4, 5, 6), against the RKSH estimate (246).
Source: Figure reproduced from [93].

Fig. 47. Sketch of ‘‘eddies’’ of sizes being close together, but exhibiting no correlation because they are located at the boundary of their predecessor
egments.
ource: Reproduced from [94].
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Fig. 48. Numerical results for the scaling exponent Φ(q) obtained from simulating model A (left panel) and model B (right panel). The white circles
in the figure represent the quantity −τ (q) − τ (−q).
Source: Reproduced from [95].

Fig. 49. Experimental and theoretical mixed scaling exponent φ(q). Circles and error bars represent the measurements and the solid line is the
prediction based on the p model [96] plus the scaling transition at 1. The dashed line is the result from the p model if no scaling transition was
resent.
ource: Reproduced from [94].

nd we must average (248) for l = s to the largest scale L. This gives:

⟨ϵs(x)qϵs(x + s)p⟩ ∼ Σl=s...L

[ s
l

]τ (q)+τ (p) s
l

[
l
L

]τ (q+p)

(249)

∼

[ s
L

]τ (q)+τ (p)+1
Σl=s...L

[
l
L

]τ (q+p)−τ (q)−τ (p)−1

We now recall that l/L in the dyadic tree can be written as 2−n, i.e. the sum on the r.h.s of (249) is geometric
with s ≪ L [94]. Although somehow trivial, the last observation enables us to reach the following conclusion: if the
quantity τ (q + p) − τ (q) − τ (p) − 1 is negative then the sum is dominated by l = s whereas for a positive value of
τ (q + p) − τ (q) − τ (p) − 1 the sum does not scale with s (it is just a number). Putting everything together we can write
(247) as:

⟨ϵr (x)qϵr (x + s)p⟩ ∼

[ r
L

]τ (q) [ r
L

]τ (p) [ s
L

]Φ(q,p)
(250)

here Φ(q, p) = min[τ (q + p) − τ (q) − τ (p), 1]. Now we consider the case q = −p for which τ (q + p) = 0. Then as a
unction of q the quantity Φ(q) = min[−τ (q)− τ (−q), 1] as sharp transition for some values of q. For instance, using the
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he–Lévêque fit for the scaling exponents ζ (q), we obtain −τ (q)−τ (−q) = 2βq
+2β−q

−4 which is a positive quantity for
> 0. Then Φ(q) shows a sharp transition occurs around q = 1.7. The crucial point is that this transition (similar to a kind
f thermodynamic transition) occurs if we assume that the energy dissipation is consistent with a random multiplicative
rocess and/or the dynamics arising from model A: it is mandatory to assume a dyadic interaction on the tree for the
bove computations. Thus we have a way to verify our insight by computing the scaling exponents of ⟨ϵr (x)qϵs(x + s)−q

⟩

as a function of s for model A and model B. The results are displayed in Fig. 49: for model A we observe an excellent
agreement with our theoretical insight (250) whereas model B does not show any sharp transition. Notes that the white
circles in the figure represent the quantity −τ (q) − τ (−q) [95].

It is now tempting to look at what happens in the experimental/numerical data. Here we consider the results discussed
in [94] for a turbulent flow at high Re monitoring the velocity field as a function of time. The result is shown in Fig. 48
which shows a quite clear and sharp transition in qualitative and almost quantitative agreement with the dynamics
given by model A. Notice that in the figure the theoretical prediction is obtained using the so-called p model [96] one
f the possible models able to fit anomalous exponents. Regardless of the particular model, the main point here is that
xperimental data do show the transition as predicted by (250). We think that this is a non-trivial result which implies
hat our simplified view of multifractal field captures rather non-trivial physics of the real turbulence. Finally, let us remark
hat Eq. (250) and the experimental results were derived before the ones obtained using the space-dependent shell model.

ecture 5.7. Summary of Lecture 5

Let us summarise our findings on shell models. Shell models demonstrate that non-linear dynamics on different scales
an support anomalous scaling consistent with the multifractal framework of turbulent flows and the scale invariance of
he equation of motions. This is a non-trivial result since it allows many theoretical investigations in simplified models.
hell models also show that anomalous scaling (i.e. multifractal) does not depend on topological/geometrical features
f the energy dissipation field. Analytical computation of anomalous exponents for shell model is a the challenging
heoretical problem we will discuss in the following lectures. Finally, shell models are useful tools in understanding how
ew general properties of turbulent flows can be described and/or analysed: if one has a new idea, shell models is a way
o test this idea [97,98].

ecture 6. Lagrangian point of view

So far we have discussed the statistical properties of turbulence discussing the Eulerian variables at a fixed position in
pace with the notable exception of particle acceleration analysed in Lecture 3. We want now to understand whether our
pproach can be extended to the statistical properties of Lagrangian turbulence when all variables are measured and/or
omputed (statistically) along a particle trajectory. For this purpose, the very first thing to understand is the more general
orm of lagrangian turbulence we want to describe.

ecture 6.1. Motion of a lagrangian particle

To study Lagrangian turbulence we shall consider particles whose diameter a is finite and much smaller than any scale
characterising turbulent fluctuations. The particle mass mp can be equal to the mass of an equivalent volume of fluid mf
tracer particles) or different. Since the particle is moving in a fluid we should also consider the effect of drag force on
he particle velocity. A complete formulation of the equation of motions to study particle dynamics was introduced some
ears ago by Maxey and Riley [99]. Here we will use a simpler formulation that is enough accurate for our purpose [100].
e introduce the dimensionless numbers:

β ≡
3mf

mf + 2mp
St ≡

a2U
3βνL

(251)

he quantity St is called Stokes number and it takes into account the drag force and the finite size a of the particle. In
erms of β and St the equation of motion are:

dX
dt

= βu(X, t) + V (252)

dV
dt

=
1
St

[(1 − β)u(X, t) − V ] (253)

where u it the fluid velocity and V is the covelocity defined in Eq. (252). For β = 1 the first term on the r.h.s of (253)
vanishes and V becomes zero on a time scale that depends on the drag effect parametrised by the Stokes number. In this
case, i.e. for tracers, particle distribution is uniformly spread in space by turbulence. Then we can apply the Richardson
‘‘eddy’’ diffusion to describe the system. The situation is different for β ̸= 1.

Let us consider the phase space Ψ ≡ (X,V) of Eqs. (252)–(253). Then it is easy to see that
∂ dΨi

< 0 (254)

∂Ψi dt
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Fig. 50. Solution of Eq. (261) referring to a stationary vortex in two dimensions.

Thus we expect that Ψ (in the 2d phase space) will be asymptotic to some subset of the phase space (attractors) with
a (fractal) dimension Df usually smaller than 2d. To fix the idea, we assume that the motion is in a closed basin or with
periodic boundary conditions. To understand what may happen, let us consider some simple cases and let us assume that
the velocity field u is a two-dimensional flow with vorticity ω, u = (−ωy, ωx). Then, using (252)–(253) we obtain:

dX
dt

= −βωY + Vx ;
dVx

dt
=

1
St

[−(1 − β)ωY − Vx] (255)

dY
dt

= βωX + Vy ;
dVy

dt
=

1
St

[(1 − β)ωX − Vy] (256)

o solve these equations we use the variables Z ≡ X + iY and W ≡ Vx + iVy. Then the equations of motion become

dZ
dt

= iβωZ + W (257)

dW
dt

=
1
St

[i(1 − β)ωZ − W ] (258)

he eigenvalues λ for the above equations are given by:

Stλ2 − λ[iβωSt − 1] − iω = 0 (259)

ow we look at the real part of λ which can be solved as a function of ω, St and β . In Fig. 50 we show ℜ(λ) as a function
f β for different values of St and for ω = 1. For β < 1 we look at heavy particles (mp > mf from (251)) while for
> 1 we look at light particles. The information we obtain from Fig. 50 is that heavy particles tend to move out of the

ortex while light particles tend to concentrate in the vortex region. Next, we look to a simple strain flow (still in two
imensions) with velocity (γ x,−γ y). Following the same approach we can compute the eigenvalues of the systems from
he equation:

Stλ2 + (1 − βSt(±γ ))λ− (±γ ) = 0 (260)

here ±γ are the eigenvalues of the flow. In this case, the particle follows the instability of the flow associated to the
igenvalue γ > 0.
In general [100] for both two and three-dimensional flows, if χ is an eigenvalue of the flow field, the local stability

nalysis for the equation in the space (X,V ) can be discussed in terms of the eigenvalue λ satisfying the equation

Stλ2 + (1 − βStχ )λ− χ = 0 (261)

hus, heavy particles tend to concentrate outside the vorticity regions while light particles tend to concentrate inside the
orticity regions.
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Fig. 51. Phase diagrams in the parameter space St, β for d = 2 (a) and d = 3 (b) representing the different regimes of the dynamics corresponding
o different behaviours of the Lyapunov exponents.
ource: Reproduced from [100].

If the flow is non-stationary, Eq. (261) become meaningless. In principle, to understand the dynamics of particles in
on-stationary or turbulent flows, we must compute all the Lyapunov exponents of the dynamical system (252)–(253),
ee [100,101] for details. Upon denoting by d the space dimension, there are 2d Lyapunov exponents of (255)–(256)
hich we denote by λi with i = 1, 2, . . . , 2d and λ1 > λ2 > . . . . The values of the Lyapunov exponents λi is obtained
umerically using well-established procedure. Because of (255), we know that Σi=1,...,2dλi < 0 and the particle motion
symptotically occurs on an attractor whose dimensionality dH is smaller than 2d. Now the quantity Λd ≡ Σi=1,...,dλi is
he rate of expansion (Λd > 0) or contraction (Λd < 0) of a volume of d dimension in the 2d phase space. If Λd > 0 then
articles should uniformly spread in the physical d-dimensional space whereas for Λd < 0 particles form fractal clusters.
complete analysis of the solutions for Eq. (261) give the results shown in Fig. 51: both in two and three dimension
epending on the possible Lyapunov exponents, particles tend to spread differently depending on St and β . In particular
here exists regions in the parameter space where particle distribution (heavy or light) is not uniform and, eventually,
how fractal clusters in space [101]. In Fig. 52 we show examples from direct numerical simulations for different values
f St and β = 0.
We want to stress the importance of the above discussion. The non-uniformity in the particle distribution of light/heavy

articles is relevant for many reasons. First of all, there exist a number of physical problems where clustering is providing
he key information to understanding the physics. For instance, rain formation in clouds occurs because water vapour
olecules (heavy particles) tend to cluster which provides an efficient mechanism to drop formation on a relative short

ime scale: tracer particles need a much longer time scale for aggregation to occur. Secondly, the statistical properties of
ight/heavy particles are important to probe the relevance of vortex dynamics in turbulent flows as we shall discuss later
n in this lecture.

ecture 6.2. Scaling properties of lagrangian velocity fluctuations

We now turn our attention to the velocity of a lagrangian particle and in particular of a tracer. We expect to find
ntermittent fluctuations in the velocity difference δv(τ ) = v(t + τ ) − v(t) where v(t) is the velocity of the tracer [102].
n Fig. 53 [43,46] we show the probability distribution of δv(τ )/⟨[δv(τ )]2⟩1/2 for different values of τ : as expected
ntermittency is observed quite clearly. Can we provide any predictions on the statistical properties of δv(τ )? According
o the multifractal framework we should be able to obtain a quantitative prediction on intermittency for the lagrangian
racers using the scaling relation r → λr , v → λhv. It follows that τ ∼ r/δv(r) ∼ r1−h. Thus, the lagrangian velocity
tructure functions should be obtained by the relation

δv(τ ) ∼ τ
h

1−h with probability Ph(τ ) ∼ τ
3−D(h)
1−h (262)

hen it follows that

SLn(τ ) ≡ ⟨[δv(τ )]n⟩ ∼ U0

[ τ
T

]ζL(n)
(263)

ζL(n) = infh

[
nh + 3 − D(h)

]
(264)
1 − h
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Fig. 52. Snapshots of the positions of N = 105 heavy particles (β = 0) associated to four different Stokes numbers. (a) St = 10−3 , (b) 10−2 , (c) 10−1 ,
d) 1. (a), (b) and (c) correspond to values smaller than the threshold, so that particles form fractal clusters. (d) corresponds to a Stokes number
arger than the critical value, so that the particles fill the whole domain.
ource: Reproduced from [100].

e highlight that Eq. (264) is a simple, remarkable and non-trivial prediction of the multifractal framework. For n = 2,
264) gives:(

2 −
dD
dh

)
(1 − h) + (2h + 3 − D) = 0 (265)

hich is easily solved by using the value of h = h3 for which ζ (3) = 1 for the Eulerian structure-function: dD/dh = 3
nd 3h3 + 3 − D(h3) = 1. Thus we immediately obtain ζL(2) = 1 which is the equivalent in the lagrangian case of the

scaling S3(r) ∼ r of Kolmogorov equation. At variance with the 4/5 equation, we cannot predict the coefficient of SL2(τ ),
i.e. we can write

SL2(τ ) ∼ ϵτ (266)

Can we show that the prediction (264) is correct? This is a rather non-trivial issue both numerically and experimentally
[49]. The point is that we must know the value of D(h) and from there we compute ζL(n) to be compared against the scaling
xponents observed for SLn(τ ). Thus we have two different source of errors which sum together: the first one corresponds
o the uncertainty in D(h) and the second one to the scaling exponent ζL(n). The error on D(h) is not easy to be computed
n this case and an extensive study on this problem can be accurately performed using numerical simulations where the
agrangian structure functions can be computed using order 108 different particles [49].

The main problem comes from the isotropy condition. In Eulerian framework, isotropy can be checked on the structure
unctions and, upon increasing the order n of the structure-function, non-isotropic contribution can be observed for finite
e even if one uses random isotropic forcing. This has to be expected and we discuss the issue in Lecture 8. Here we
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Fig. 53. Lagrangian p.d.f. for a single component velocity increments along particle trajectories, over different time increments, τ ∈ [2 : 400]τη .
Curves are shifted along the y-axis for presentation purposes.
Source: Reproduced from [49].

use a rather pragmatic procedure: we can define two sets of scaling exponents: ζl(n) which refer to the longitudinal
structure functions and ζt (n) which refer to the transversal structure functions. They should be the same for isotropic
turbulence. However, at large n there is some difference induced by the error in estimating the scaling exponents and the
non-isotropic contribution which cannot be avoided at finite Re. This is shown in Fig. 54 using the numerical simulations
escribed in [49]: notice that up to n = 6 the difference between ζl(n) and ζt (n) is inside error bars whereas this is not
he case for n = 8, 10. Starting from the two different sets of the exponents, we can define DL(h) and DT (h) obtained
rom ζl(n) and ζt (n) respectively. This requires some fitting procedure which introduces other errors anyway [49]. From
L(h) and DT (h) we can compute two possible estimates of the lagrangian exponents ζL(n): the two values represent the
heoretical prediction with the uncertainty (error) due to finite Re and statistical errors. To estimate ζL(n) we use the
agrangian version of the ESS already discussed in Lecture 3: we compute the exponent χ (n)

≡ ζL(n)/ζL(2) as a proper
stimate of ζL(n) because of the scaling ansatz (266). The final result is shown in Fig. 55: up to n = 8 and within the error
ars, there is a quite good agreement between ζL(n) computed from (264) and the observed scaling exponents (the error
n estimating ζL(10) is too large for any possible comparison). The final outcome of this rather complex data analysis is
hat Eq. (264), with the same function D(h) used for Eulerian intermittency, is consistent with the anomalous scaling of
agrangian structure functions.
As a final remark let us note that this is a clear example where the computation of known uncertainty should be taken

nto account to obtain a fair comparison between a quantitative prediction and the experimental/numerical data.

ecture 6.3. Dissipation range in lagrangian turbulence

There is another important point to explore using lagrangian turbulence. The Kolmogorov theory as well as the mul-
ifractal framework predicts that viscous effect becomes relevant at the Kolmogorov scale plus multifractal fluctuations.
n the time domain, which is the one we use for the lagrangian structure functions SLn(τ ), the proper quantity to consider
s the Kolmogorov time τk. We observe that τk/T ∼ Re−1/2 whereas in the space domain the viscous effect depends on Re
hrough the ratio ηk/L ∼ Re−3/4. The observation is that viscous effect is more pronounced for the lagrangian structure
unctions SLn(τ ) with respect to the Eulerian ones. This implies that the lagrangian turbulence is most suited to study the
ultifractal predictions on the fluctuations of the viscous scale.
We expect that the dissipation time scale τη depends on h in analogy to the Eulerian case. The dissipative scale τη(h)

an be computed using the same approach followed in Lecture 4 on the intermittency in the dissipation range. Using
q. (262) the condition for the dissipative time scale reads:

U
( τ )h/(1−h) ( τ )h/(1−h)

L ∼ ν →

(
τη(h)

)
∼ Re−(1−h)/(1+h) (267)
T T T
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Fig. 54. Comparison between Eulerian scaling exponents for longitudinal, ζl(p), and transverse, ζt (p) Structure Function together with two different
multifractal predictions (MF) obtained with two different choices of D(h).
Source: Reproduced from [76].

Fig. 55. Summary of the Lagrangian scaling exponents, ξ (p) = ζ (p)/ζ (2) (circles), as measured in the inertial range in our numerics, together with
the prediction obtained from the Eulerian statistics by using the bridge relation either with the longitudinal Eulerian statistics (upper limit of the
shadowed area) or with the transverse one (lower limit of the shadowed area). The previous measurement of Lagrangian scaling exponents are also
shown (see Table 2).
Source: Reproduced from [49].

where U = L/T is the characteristic large scale velocity. Eq. (267) is valid with probability

Ph[Re] ∼

(
τη(h)
T

)(3−D(h))/(1−h)

= Re−(3−D(h))/(1+h) (268)

Actually, we use the above equations to compute the probability distribution of the acceleration of Lagrangian particles.
As a first check for the validity of (267) and (268), we can compute the average of δ(τ )2/τ in the dissipation time scale:⟨

δv(τ )2

τ

⟩
∼

∫
h
dhRe−(3h−1)(1−h)/(1+h)(1−h)Re−(3−D(h))/(1+h) (269)

=

∫
h
dhRe−(3h−1+3−D(h))/(1+h)

= const

The above result follows from the constrain ζE(3) = 1 and it is consistent with the fact that

ϵ =

⟨
δv(τ )2

τ

⟩
Following the analysis done in Lecture 4 we already know that the quantities

an(τ ) ≡
d log[SLn(τ )]

L (270)

d log[S2(τ )]
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Fig. 56. Comparison of local scaling exponents for the 4th order Lagrangian Flatness between: (i) tracers particles at two different Reynolds numbers
ii) one light and (iii) one heavy particle. Notice the enhancement (depletion) of the bottleneck around τ/τη ∼ 1 for light (heavy) particles with
espect to the tracers’ statistics. The horizontal line corresponds to the K41 non-intermittent prediction = 2.
ource: Figure reproduced from [76].

hould show, for n > 2, a dip in the dissipative region. In Fig. 56 we show a4(τ ) for three kinds of particles: heavy,
racers and light particles [103,104]. As we previously discussed, heavy particles move outside vortex filaments and light
articles inside. From the figure, we see that a clear dip is observed for both tracers and light particles, the latter shows
more pronounced dip while we do not observe any dip for the heavy particles. From this observation we can naively
educe that vortex filaments are responsible for the intermittency increase (dip) in the dissipation range. This conclusion
s however misleading. In fact, we have already shown that the probability distribution of particle accelerations is well
xplained by the multifractal framework, Eqs. (267)–(268), even if we do observe strong fluctuations of the velocity when
articles are inside a vortex filament. In other words, the information about vortex filaments are statistically embedded
n the multifractal framework. This is not something strange since, physically, it is simply a consequence of the zeroth
aw of turbulence and the NS invariance under the transformation r → λr , v → λhv with the multifractal probability
istribution λ3−D(h). Light and heavy particles sample different region of the turbulent flows and the effective advection
ield is compressible. This implies that their lagrangian velocity fluctuations are subject to different cutoff time scales in
he dissipation range.

Next, using the same reasoning of Lecture 4, we can now employ our knowledge of D(h) coming from the scaling
xponents of the Eulerian structure functions to predict the dip observed for tracers in the figure. The idea is to assume the
elocity increments δv(τ ) can be expressed as G(τ , τη)F (τ , τη)h/1−h with probability F (τ , τη)(3−D(h))/(1−h) where G ∼ const ,
∼ τ for large τ while G ∼ τ and F ∼ const for small τ . Obviously, some best fit over the functions F and G is needed

aking into account the known uncertainty on the estimate for D(h). For this case [105], a good result is obtained using:

δv(τ ) ∼ U
[

K (x)
1 + K (x)

]1/β (τη
T

)h/(1−h) [
(1 + K (x))1/β

]h/(1−h)
(271)

Ph
( τ
T

)
∼

[(τη
T

)
(1 + K (x))1/β

](3−D(h))/(1−h)
(272)

x ≡
τ

τη
(273)

K (x) ≡ xβ (274)

where τη is a function of h from (267) and β = 4. Although different from what we did in Lecture 4, the above choices
in Eqs. (271)–(274) provides similar results. In particular, an(τ ) given by (270) shows a minimum (dip) in the dissipation
region. In Fig. 57 we show the final result for a4(τ ) [105]: several experimental and numerical data are plotted in the
same figure together with the coloured area which represents the theoretical predictions with their uncertainty. One
observes a clear collapse of all data on the same curve within the error bars as well as the agreement with the theoretical
prediction using the above fitting procedure. Note that the data comes from different values of Reλ ∼ Re1/2 and one can
wonder whether the dip is somehow independent of Re. According to our discussion in Lecture 4 there should be a very
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Fig. 57. The quantity a4(τ ) obtained from different numerical simulations and experimental data (see symbols). The coloured area shows the
heoretical prediction with the error bars, see [105] for details from which this figure is reproduced.
ource: Figure reproduced from [105].

Fig. 58. The quantity a4(r) = d log S4(r)/d log S2(r) computed using the Sabra shell model for different Re. Here r is taken as k−1
n .

weak dependence on Re which cannot be observed in the range of Re shown in the figure. Fig. 57 refers to many different
experimental/numerical cases and highlight the statement of universality in anomalous scaling.

We want to remark that the increase of intermittency (dip) within the dissipation range can also be studied in shell
models. In Fig. 58 we show a4(r) computed for the Eulerian structure functions for a Sabra model at different Re with
r ∼ k−1

n . Note that r ∼ k−1
n in the figure. The dip is clearly observed and it becomes deeper upon increasing Re although

the Re dependence is extremely weak. We also notice that in the shell model there is no vortex structure whereas the
dip in the dissipation range is clearly similar to the one previously observed.

Lecture 6.4. Large eddy simulations

As we have seen, using lagrangian trajectories we can test the prediction of the multifractal framework in the
dissipation range with a rather good accuracy and we can validate, within error bars, the ‘‘strong’’ statement that all the
statistical properties, i.e. scaling, of turbulence can be derived from the knowledge of D(h). Although vortex filaments or
other fluid structures are present in any turbulent flow, their relevance in the statistical picture of turbulence is embedded
in D(h). One important question to answer is whether D(h) is dependent or not on the dissipation mechanism [106]. Let
us recall that we can compute D(h) from the anomalous scaling exponents ζ (n) in the inertial range. Can we show that,
upon changing the way turbulence is dissipated, D(h) is unchanged? This is a question that can be investigated using
numerical simulations.

We consider homogeneous and isotropic turbulence at two different resolutions 1024 and 8192 grid points corre-
sponding to Re = 2×104 and Re = 3×105 respectively. We refer to these cases as DNSx1 and DNSx8. For each simulation
72
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e compute the scaling exponents in the inertial range and we look at the quantities an(r) ≡ d log S4(r)/d log S2(r) ≡

n(r)/ξ2(r) for all numerical simulations and for n = 4, 6, where ξn(r) refers to the local scaling exponents of Sn(r) defined
s ξn(r) = d log Sn(r)/d log(r). We use an(r) as a proper measure of the intermittency. Next, we consider a completely
ifferent set of simulations based on the following idea. We solve the NS equations in the spectral domain at resolution
024 corresponding to a maximum wave number km = 512 and we neglect the dissipation term −νk2 in the dynamics.
ext, we assume that the turbulent energy E(k) for k > kc follows the inertial range dynamics. This can be done by
mposing that E(k), for k > kc , follows the same dynamics of E(kc):

dEk(t)
dt

=

(
kc
k

)5/3 dEkc (t)
dt

(275)

et us define by T̂k(t) the Fourier projection of the non-linear terms (including pressure) of the NS equations and by
k(t) = Σ|k|=ku∗

k(t)T̂k(t) where uk(t) is the Fourier projection of the velocity field. Then we solve the dynamics of uk(t)
sing the equations:

∂tuk(t) = T̂k(t) − γkλk(t)uk(t) + . . . (276)

λk(t) =
1
2
Tk(t) − (kc/k)5/3Tkc (t)

Ek(t)
(277)

ith γk = 0 for k < kc and γk = 1 for km > k > kc and the dots in (276) represent the forcing term acting on the
arge scale. Upon multiplying by u∗

k(t) Eq. (276) and summing over all wave numbers with |k| = k and recalling that
k(t) = 1/2Σ|k|=kuk(t)u∗

k(t) we obtain:

dEk
dt

= Tk(t) − [Tk(t) − (kc/k)5/3Tkc (t)] =

(
kc
k

)5/3 dEkc (t)
dt

(278)

hich is the desired result. We call this simulation SGSM-sharp where sharp refers to the change form 0 to 1 of γk. We
an also smooth the sharpness of γk by assuming some smoothing function, whose details are irrelevant in this discussion,
nd we refer to this case as SGSM-smooth. Here SGSM refers to sub-grid scale modelling. Using this idea we can achieve

with a resolution of 1024 points the value Re = 2 × 105 for SGSM-sharp and Re = 4 × 105 for SGSM-smooth.
In Fig. 59 we show the value of an(r) ≡ d log S4(r)/d log S2(r) ≡ ξn(r)/ξ2(r) for all numerical simulations and for

n = 4, 6. For DNSx1 and DNSx8 we observe a rather clear plateau of an(r) in the inertial range followed by a dip which
s increasing (very weakly) upon increasing the value of Re. In the same figure we show an(r) for SGSM-sharp and SGSM-
mooth: again we can see the plateau for almost the same values observed in the DNSx1 and DNSx8 but now there is
o dip because the viscous range is suppressed in the system. Finally in the insets we show Fn(r) ≡ Sn(r)/Sn(r)n/2 for
= 4, 6. Note that, using the known anomalous exponents discussed in Lecture 3 or the She–Lévêque fit (167), we have

n the inertial range Fr (r) ∼ r−0.11 and F6(r) ∼ r−0.31. Obviously, for SGSM either sharp or smooth, Fn(r) are not defined
n the dissipation range, although their scaling behaviour is consistent with the known experimental/numerical results in
he inertial range. This is clear-cut evidence that the anomalous scaling in the inertial range is independent on the detail
ynamics of the dissipation range. In other words, the function D(h) is independent of the dissipation mechanism, a very
on-trivial statement.

ecture 6.5. Summary of Lecture 6

There is a lot of interesting physics which we can understand by looking at the properties of lagrangian particles in fully
eveloped flows. In this lecture, we have discussed some (but not all) of them. We consider an important achievement
hat, within the experimental/numerical uncertainties, the multifractal theoretical framework is able to give well-defined
redictions. In particular, we have shown how lagrangian turbulence can be considered a magnifying glass to understand
luctuations in the dissipation range. In general, intermittency is enhanced for lagrangian velocity fluctuations and this
ffect is even stronger in the dissipation range. Our analysis shows that intermittency in the dissipation range can be
xplained using the very same D(h) obtained from Eulerian inertial range scaling of the structure functions, at least within
error bars. This is an important achievement in understanding turbulent flows and it is important to increase the quality
f numerical simulations and experimental results to enhance the overall accuracy. A related question we were able
o answer is whether intermittency is driven by strong fluctuations in the dissipation range or the other way round
trong intermittency in the dissipation range are generated by fluctuations in the energy transfer within the inertial range.
umerical simulations show that inertial range intermittency is the mechanism driving the fluctuations in the dissipation
ange. From the physical point of view, this implies that scale invariance properties of the Euler equations, supplemented
y the zeroth law of turbulence, are acting behind the intermittent fluctuations independently of the formation of vortex
ilaments and/or tubes characterising the dissipation range.
73



R. Benzi and F. Toschi Physics Reports 1021 (2023) 1–106

W
v

a
d

Fig. 59. Log-lin plot of ξ4(r)/ξ2(r) for (a) n = 4 and (b) n = 6 for SGSM and DNS data. The dashed line is the Kolmogorov scaling while the solid
line refers to the anomalous scaling. In grey, we indicate the range of scales where the closure is applied. Inset: log–log plot of Fn(r) ≡ Sn(r)/S2(r)n/2
versus r .
Source: Reproduced from [106].

Lecture 7. Passive scalar turbulence

Lecture 7.1. Scaling and intermittency in the advection of a passive scalar

We already introduced the equation for a passive scalar θ (x + r) advected by a flow v:

∂tθ + v · ∇θ = κ∆θ + fθ (279)

e are interested in understanding the statistical properties of the ‘‘passive turbulence’’ described by θ assuming that
is a homogeneous and isotropic turbulent velocity field. This implies that we assume the forcing fθ in Eq. (279) to be
large-scale homogeneous and isotropic forcing. We meanly focus on three-dimensional flows. In analogy to the study
eveloped for homogeneous and isotropic velocity fluctuations in turbulence, we consider the quantities

F (r) ≡ ⟨[δθ (r)]p⟩ (280)
p
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Fig. 60. Approach to the 4/5 and 4/3 laws at the increasing of Rλ . Left: The 4/5 law, Right: the 4/3 law. G1: Rλ = 174, G2: Rλ = 263, G3: Rλ = 468,
4: Rλ = 586.
ource: Figure reproduced from [107].

ith δθ (r) = θ (x + r) − θ (x). We expect that δθ (r) shows intermittency fluctuations. We first notice that Eq. (279) is
nvariant under the transformation

r → λr (281)
v → λhv (282)
t → λ1−ht (283)
θ → λh1θ (284)
κ → λh+1κ (285)

n other words, the scaling of θ is not linked to the one of the velocity fields. For Eq. (279) there exists the analogous of
he 4/5 law for the passive scalar, namely;

⟨δv(r)δθ (r)2⟩ ∼ −Nr (286)

here N is the rate of ‘‘passive scalar dissipation’’ in the system, see Fig. 60 [36]. We are assuming, in analogy to the
elocity field, that N is independent of Re and κ , which is well documented in experimental/numerical data. Let us remark
hat under the transformation (281), we have N → λ2h1+h−1N . Thus, assuming Kolmogorov scaling h = 1/3, we expect
hat h1 = 1/3 as well. However, according to the multifractal framework, the constraint 2h1 +h−1 = 0 is true on average
nd it does not imply any well-defined relation between h1 and h.
The above discussion has several consequences:

• The passive scalar may show intermittent fluctuations with anomalous exponent for F2p(r); however, there is no
simple link between the anomalous scaling for the passive scalar and the one characterising the velocity field.

• Intermittency for the passive scalar may be described by the multifractal framework, i.e. assuming that δθ (r) ∼ rh1
with Ph1 [r] ∼ r3−D(h1); however we do not know how D(h1) is linked with the analogous function D(h) for the velocity
field.

• The passive scalar may be intermittent even if the velocity field is not.
• In general we need to know the joint probability distribution Ph,h1 [r] for δv(r) and δθ (r).

As we can see, intermittency for the passive scalar may be more complex than the one observed in the N.S. equation.
For three-dimensional turbulence, intermittency in the passive scalar fluctuations is well documented from both

xperimental and numerical data (see Fig. 63) [36,39,109]. Upon defining

F2p(r) ∼ rξ (2p) (287)

e observe that ξ (2p) are smaller than the corresponding scaling exponents of the velocity field [109] (see Fig. 61 and
able 2).
For p = 1 we can obtain a lower bound to the exponent ξ (2) by assuming that the fluctuations ϵ(r) of energy dissipation

t scale r and the fluctuations of passive dissipation N(r) are uncorrelated, where

N(r) =
1
r3

∫
B(r)
κ(∇θ )2d3r (288)

hen, following [110], we obtain

F (r) ∼ r2/3ϵ(r)−1//3N(r) ∼ r1+ζ (−1) (289)
2
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Fig. 61. (Left) The scaling exponent ζn for the scalar structure function ⟨[∆θ (r)]n⟩ within the inertial subrange as a function of n. Different symbols
orrespond to different experiments and fully resolved numerical simulations. The long-dashed line is the white-noise estimate from Kraichnan (1994)
hile the short-dashed line is for the velocity field from Anselmet (1984). The solid line is the Kolmogorov–Obukhov–Corrsin (KOC) prediction. (Right)
caling exponents ζ Lq , ζ

T
q and ζ θq for q = 1, . . . , 10. The straight line shows the Obkhov–Corrsin scaling.

ource: (Left) Figure reproduced from [39]. (Right) Figure reproduced from [107].

Fig. 62. The open circles show the scaling exponent of the GOY shell model while the dots represent the scaling exponents for the shell model of
the passive scalar Eq. (290). The continuous line is the K41 theory while the dashed line shows a possible best fit of the anomalous exponents for
the shell model. The vertical bars correspond to the experimental values of the anomalous exponents for the passive scalar. The shell model of the
passive scalar seems to reproduce qualitatively and almost quantitatively the behaviour observed for the 3d case.
Source: Figure reproduced from [108].

Using the She–Lévêque fit for the exponents ζ (p) we obtain F2(r) ∼ r0.6, not far from the experimental estimates. The
above argument provides a simple hint on why we should expect ξ (2p) to be smaller than ζ (2p).

Lecture 7.2. Passive scalar for shell model

An interesting point is to consider the same problem within the context of shell models [111]. It is possible to define
an analogous of the passive scalar for shell model by using the equations:

dθn
= i[hn(un+1θn+2 + un+2θn+1) + en(un−1θn+1 − un+1θn−1) + gn(un−2θn−1 + un−1θn−2)]∗ (290)
dt
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Table 2
Exponents of the temperature and velocity structure
functions.
Source: Values reproduced from [109].
Order ξ (n) ζ (n)

1 0.37 ± 0.003 0.37 ± 0.003
2 0.62 ± 0.005 0.70 ± 0.005
3 0.80 ± 0.008 1.00 ± 0.010
4 0.94 ± 0.010 1.28 ± 0.020
5 1.04 ± 0.010 1.54 ± 0.030
6 1.12 ± 0.020 1.78 ± 0.050
7 1.20 ± 0.020 2.00 ± 0.070
8 1.29 ± 0.020 2.23 ± 0.080

where hn, en and gn are chosen in such a way that, for κ = 0, the quantity Σn|θn|
2 is conserved. For instance, assuming

we choose un obtained from the GOY model with b = 1/2, then the proper choice is hn = 1/2 = en = −gn. The
caling exponents for the passive scalar in the shell models seems to reproduce qualitatively and almost quantitatively
he behaviour observed for the three-dimensional case (see Fig. 62).

ecture 7.3. The Kraichnan model

A deep insight in the study of passive scalar turbulence and more generally in understanding the physical properties
f intermittency can be achieved working on the so-called Kraichnan model [112]. As already noted, there is no reason to
elieve that anomalous scaling for the passive scalar should be observed if and only if the velocity field shows intermittent
ehaviour. Kraichnan had the very bright and non-trivial idea to consider a velocity field v⃗ in Eq. (279) as a gaussian
andom variable δ-correlated in time supplemented with some known scaling behaviour for the two-point correlation
unction. In particular, following Kraichnan, let us assume to be in d ≥ 2 dimensions and let us consider the velocity
correlation:

Sij(r) =

∫
∞

0

⟨
[vi(x + r, s) − vi(x, s)][vj(x + r, 0) − vj(x, 0)]

⟩
ds (291)

Assuming isotropy, Sij(r) is consistent with a divergence-free velocity field if:

Sij ∼ Drξ
[
(d − 1 + ξ )δi,j − ξ

rirj
r2

]
(292)

ith ξ ∈ [0 : 2]. Then, upon assuming a large-scale isotropic forcing, it is possible to show that the structure functions
F2p(r) satisfy, in a statistically stationary state, the following equations:

−
2

rd−1

∂

∂r

(
rd−1+ξ ∂F2p(r)

∂r

)
= κ J2p(r) (293)

where

J2p(r) = 2p⟨[δθ (r)]2p−1H[δθ (r)]⟩ (294)

H[δθ (r)] ≡ ⟨[∆x +∆x′ ]δθ (r)|δθ (r)⟩ (295)

The last expression means that given δθ (r) we compute the fusion rules with ∆θ in a way similar to what we already
discussed in the previous lecture for the multifractal approach. Then Kraichnan provided an ansatz on the function J2p(r)
from which he derived the scaling exponents of F2p(r). The remarkable point, assuming the Kraichnan ansatz, is that F2p(r)
show anomalous scaling. The existence of anomalous scaling is supported by numerical integration of the Kraichnan model
and is shown in Fig. 63.

It turns out that the Kraichnan ansatz is not correct but something new was discovered: there exists anomalous scaling
in the Kraichnan model due to some new mechanism. A detailed account of this important result is discussed in [1] where
the proper and elegant mathematical techniques are presented and reviewed. Here we limit ourselves to an overview of
the most important outcomes using a very simplified model to decrease the mathematical difficulties.

Before discussing the physics behind the Kraichnan ansatz and its validity, let us comment on the final results. Was it
true, the Kraichnan’s model is the first (and only) case where we can understand physically how anomalous scaling arises
in a turbulent-like flow. However, we need to understand how eq. (293) has been obtained and explained in detail the
Kraichnan ansatz on J2p(r). This requires some non-trivial mathematics which, as we already said, we develop for a simple
(but non-trivial) case. We consider an extremely simplified version of the Kraichnan model given by a shell model [114]:

dθn
= i[kn+1θn+1un − knθn−1un−1]

∗
− κk2θn + f (t)δ1,n (296)
dt n
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Fig. 63. (a) The probability density function (pdf) of the passive scalar difference ∆θ (r)/ < [∆θ (r)]2 >1/2 as a function of r within the inertial
ubrange. The solid curve is the derivative pdf (r ∼ η) and as r increases the curves tend towards Gaussian. (b) The kurtosis, K , of the scalar
ifference as a function of r for the same data as for (a). For the smallest r this is the derivative kurtosis. (For this figure r is normalised by the
ntegral scale.) Both (a) and (b) are from the direct numerical simulations of Chen & Kraichnan (1998) using a white-noise velocity field. [For these
tatistics white-noise computations compare well with laboratory measurements, reproducing similar values of K at the same Rλ (see for example
ydlarski & Warhaft 1998a).
ource: Figure reproduced from [113].

First of all, let us show that in the limit κ → 0 and f (t) → 0 the system conserves energy. We have
d
dt

⟨θnθ
∗

n ⟩ = kn+1Πn,n+1 − knΠn−1,n (297)

with

Πn,n+1 = i⟨u∗

nθ
∗

n θ
∗

n+1⟩ − i⟨unθnθn+1⟩

Note that for ⟨θnθ
∗
n ⟩ to be stationary we need kn+1Πn,n+1 ∼ const , i.e. Πn,n+1 ∼ k−1

n+1 which is equivalent to Eq. (286). Now
we assume that un are random variables δ-correlated in time and with Dn ≡ ⟨|un|

2
⟩ = k−ξ

n . This implies that, in Eq. (296),
the ‘‘noise’’ (i.e. un) acts as a multiplicative noise in the system.

Lecture 7.4. Mathematical interlude

It is not trivial to work with multiplicative noise in physics and there are various prescriptions to follow which
correspond to different interpretations. Although there are several textbooks and review papers on the problem [115],
we think it is worthwhile to understand it using some simple examples. First, we recall some useful information when
the noise is addictive. We start by introducing the Itô-calculus. Let us consider the stochastic differential equations:

dx = h(x)dt +
√
ϵdW (298)

ollowing Itô we assume that dW (t) is a gaussian process with zero mean and variance dt (i.e. W (t) is nowhere a
ifferential). Eq. (298) can be numerically simulated by integrating the deterministic part over a time step dt and then
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dding a random number with gaussian distribution with variance ϵdt . The probability distribution P[x, t] associated to
qn. (298) is given by the solution of the Fokker–Planck equation:

∂tP +
∂

∂x
[hP] =

1
2
ϵ
∂2

∂x2
P (299)

Next we consider the quantity f (x, t) for which we want to write an equation. The Itô calculus says that

df (x, t) =

[
∂t f + ∂x(fh(x)) +

1
2
ϵ∂2xxf

]
dt + ∂xf

√
ϵdW (300)

otice that the third term on the r.h.s of (300) does not appear in ordinary calculus and it is called Itô term. For instance,
et us suppose that h(x) = −ax which implies that the stationary solution of the Fokker–Planck Eq. (299) is a gaussian
ith zero mean and variance ϵ/(2a). Now, let us consider f (x) = x2. Upon applying the Itô calculus (300) we have

dx2 = [−2ax2 + ϵ]dt + 2x
√
ϵdW

Upon averaging on the noise we obtain ⟨2x2⟩ − ϵ = 0, i.e. ⟨x2⟩ = ϵ/(2a) as expected.
In general, given the set of stochastic differential equations:

dxi = hidt +Σjbijdwj (301)

the Itô calculus for f (x1, x2, . . . , t) reads

df =

[
∂ f
∂t

+Σi
∂ f
∂xi

hi +
1
2
Σijσij

∂2f
∂xi∂xj

]
dt +Σijbij

∂ f
∂xi

dwj (302)

ith

σij = [bbT ]ij (303)

Now let us consider the equation

dx
dt

= −ax + xη(t) (304)

here η(t) is a gaussian noise. In physics, we usually think of noise as the outcome of some physical process whose time
cale is much shorter than the one characterising the macroscopic behaviour. Having this observation in mind, we want
o understand what does it mean for η(t) to be a noise with short correlation time with respect to 1/a (the macroscopic
ime scale of the system). So we write:

dη = −
1
τ
ηdt +

1
τ
dW (t) (305)

nd we consider the case τ → 0. Now we can integrate Eq. (304) and we obtain

x(t) = x(0) exp
[
−at +

∫ t

0
η(s)ds

]
(306)

hen we consider Eq. (305) in the limit τ → 0. Notice that ⟨η2⟩ = 1/2 (one can use the above example to derive it). Thus
dη is at most of order 1 and −ηdt + dW should be close to zero for τ → 0. Therefore we can write ηdt = dW + O(τ )
and we obtain

x(t) = x(0) exp
[
−at +

∫ t

0
dW (s)

]
(307)

The quantity
∫ t
0 dW (s) = W (t) − W (0) is a gaussian variable with zero mean and variance t , following the definition of

the Wiener process. Using gaussian integration we obtain

⟨x(t)n⟩ = x(0)n exp
[
−nat +

n2

2
t
]

(308)

ow we consider the stochastic differential equation:

dx =

[
−ax +

1
2
x
]
dt + xdW (309)

sing the Itô formula (300) we obtain

dxn =

[
−naxn +

n
xn +

1
n(n − 1)xn

]
dt + nxndW (310)
2 2
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pon averaging we obtain:

d⟨xn⟩
dt

= −na⟨xn⟩ +
n2

2
⟨xn⟩

which is the equivalent, in differential form, of Eq. (308) Thus Eq. (309) is the correct way to write (304) in the limit
τ → 0. The term x/2 is called the Stratonovich term and Eq. (309) is interpreted in the Itô sense as discussed before.

Let us now discuss a slightly more difficult case, namely
dx
dt

= −ax + yη (311)

dy
dt

= −ay − xη (312)

or a = 0 the system conserves the quantity x2 + y2. To deal with this equation, we introduce the quantity z = x+ iy and
we obtain:

dz
dt

= −az − izη

hen we can proceed exactly as before and we obtain:

z(t) = z(0)exp
[
−at − i

∫ t

0
η(s)ds

]
Notice that zz∗ is constant for a → 0. Using the same technique as before, it is easy to see that (311) is equivalent to

dx =

[
−ax −

1
2
x
]
dt + ydW (313)

dy =

[
−ay −

1
2
y
]
dt − xdW (314)

Let us understand how to obtain this result in a more general way. We consider the term yη in (311) and we want to
ompute how the Stratonovich term is obtained. What we need to do is to look to at the r.h.s of the equation dy/dt and
ake (with the sign) the term ∂dy/dt/∂η, i.e. the term proportional to the ‘‘noise’’ η which is correlated to the noise yη
n equation for dx/dt . This term is, for our simple case, −x. After that we divide by the factor 2. Using the Itô calculus in
q. (313) we get

dx2 =
[
−2ax2 − x2 + y2

]
dt + 2xydW

dy2 =
[
−2ay2 − y2 + x2

]
dt − 2xydW

So on the average, in the limit a → 0 the quantity ⟨x2 + y2⟩ is conserved as it should.
In general, we can define the Stratonovich terms for the equation:

dxi
dt

= hi(x) +Σjbij(x)ηj (315)

here x is a shorthand notation for x1, x2, . . . . Using our rules we obtain:

dxi =

[
hi(x) +

1
2
ΣkΣjbkj(x)

∂

∂xk
bij(x)

]
dt +Σjbij(x)dWj (316)

Lecture 7.5. Going back to physics

Now, at least for the shell model, we can understand what is the logic of our computations. Let us remember that the
only non vanishing correlation for un are ⟨unu∗

m⟩ = k−ξ
m δm,n. Let us do it for Eq. (296). We consider the multiplicative term

which are ikn+1θ
∗

n+1u
∗
n and −iknθ∗

n−1u
∗

n−1. Let us take the first term which is multiplied by u∗
n and look for the equation of

θ∗

n+1:

dθ∗

n+1

dt
= −i [kn+2θn+2un+1 − kn+1θnun] + . . . (317)

here the dots do not depend on un. The only term proportional to un (which correlates with un
∗) is given by +ikn+1θn.

hus the contribution due to the first term (Stratonovich contribution) is given by −k2n+1Dnθn/2. Analogously the
ontribution of the second term is given by −k2nDn−1θn/2. Thus, Eq. (296) should be written as

dθn =

[
−

k2n+1Dn

2
θn −

k2nDn−1

2
θn − κk2nθn

]
dt + i [kn+1θn+1DndWn − knθn−1Dn−1dWn−1]∗ (318)
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otice that the effect of Stratonovich is to introduce an effect of diffusion (proportional to k2n) due to the velocity. This,
n the language of the passive scalar equation, is usually referred to as effective diffusivity or eddy diffusivity.

We can now use Eq. (318) to compute the quantity En ≡ ⟨θnθ
∗
n ⟩. First we need to obtain the equation for θnθ∗

n using
he Itô calculus (302) and then we have to average over the noise. The Itô calculus contains two times the derivative with
espect to θn and θ∗

n . The computation is a little long but at the very end we obtain after averaging:

dEn
dt

= k2n+1Dn[En+1 − En] − k2nDn−1[En − En−1] + . . . (319)

where now the dots include a term proportional to κ . We immediately see that a stationary solution implies

[En − En−1]k2nDn−1 ∼ const → En − En−1 ∼ kξ−2
n

or equivalently

En ∼ k−ξ (2)
n ; ξ (2) = 2 − ξ (320)

This ends our computation in the so-called ‘‘simplified’’ case.
We can now go back to the Kraichnan model. We did not derive Eq. (293) but we now know which tools are needed to

derive it. In fact, not surprisingly, we find on the r.h.s of Eq. (293) the divergence in d dimensional space of Si,j multiplied by
the structure functions, in complete analogy with the term k2nDn−1 obtained in our simplified model. We rewrite Eq. (293):

−
2

rd−1

∂

∂r

(
rd−1+ξ ∂F2p(r)

∂r

)
= κ J2p(r) (321)

To solve the problem, we first consider the case p = 1. Then the term κ J2(r) is constant since it corresponds to the
nalogous of the viscous anomalies for the 3d N.S. equation. Integrating eqn. (293) from 0 to r we obtain

rd−1+ξ ∂F2(r)
∂r

∼ r

which gives F2(r) ∼ r2−ξ . This is in analogy with our extremely simplified shell model Eq. (319). We want now to compute
the scaling of F2p(r) for any p > 1. To do that, we need to know J2p(r). Let us remember that J2p(r) depends on the fusion
ules between δθ (r)2p−1 and ∆θ . Kraichnan made the ansatz

J2p(r) = nJ2(r)
F2p(r)
F2(r)

(322)

sing Eq. (322) into Eq. (321) we obtain:

ndξ (2) = ξ (2p)(ξ (2p) + d − ξ (2))

rom which we obtain

ξ (2p) =
1
2

[√
4ndξ (2) + (d − ξ (2))2 − (d − ξ (2))

]
(323)

he above expression means that F2p(r) shows anomalous scaling for ξ (2) > 0. As said, for the first time we have an explicit
omputation of the anomalous scaling obtained directly from the equation of motions. We now need to understand what
s the physics behind it and whether it is correct.

We observe that the anomalous scaling is obtained by balancing the inertial term dynamics (l.h.s of Eq. (321)) with
he fusion rules for J2p. The fusion rules should be evaluated in the ‘‘diffusion’’ range (analogous of the viscous range).
hus the way the diffusion affects the behaviour of δθ at small scales is crucial for the anomalous scaling to hold. We
lso notice that using the multifractal framework, we have computed fusion rules like ⟨δv(r)2n+1∆v⟩ for the velocity. The
omputations involve the effect of fluctuating viscous length in the system and we did not control exactly the constant
n front of the fusion rules.

We can take a different point of view and consider the correlation functions of 2p scalar fields in 2p different positions.
For instance, consider Fig. 64: fusion rules in the diffusion dominated regime are needed if we want to study the limit
∆ → 0 where ∆ is the separation between two points which eventually merge. However, we can more generally consider
the correlation function C4 = ⟨θ (x1)θ (x2)θ (x3)θ (x4)⟩ and, assuming homogeneity and isotropy, we can study the equation
of C4 and, in particular, the scaling properties of the correlation function as a function of rij = |xi − xj|.

It is in general non trivial to write the equations for the correlation functions and, more importantly, to solve them.
At the formal level, for the correlation C4, the general structure of the equation becomes:

∂tC4 + M4C4 = O(κ) + forcing (324)

where the r.h.s. takes care of the terms due to diffusivity κ and the effect of the forcing. The quantity M4 is a linear (in C4)
differential operator acting on the correlation functions (on all its argument) and it can be computed from the advection
term v · ∇θ using the Stratonovich–Itô rules. The solution of (324) is formally given by

C = Ψ + Ψ (κ, F ) (325)
4 4 4
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Fig. 64. Distribution of points and fields for the correlation of 2p scalars in 2p different positions.

where Ψ4 satisfies the equation M4Ψ4 = 0 and Ψ4(κ, F ) is the solution of (324) for non zero values of κ and the forcing
. Although this is all very formal and almost trivial, there is a clear physical interpretation: Ψ4 is independent both on

forcing and diffusion (in the limit κ → 0) and it is controlled by inertial term (i.e. terms derived from v ·∇θ ) whereas this
s not the case for Ψ4(κ, F ). Assuming the forcing to be statistically isotropic and homogeneous, we also expect Ψ4 to be
scaling function of it arguments rij in the inertial range (rij much smaller than the characteristic scale of the forcing and

much larger than the diffusive scale). If in the inertial range Ψ4 dominates over Ψ4(κ, F ) then the scaling properties and
intermittency of the passive scalar are not the one predicted by the Kraichnan ansatz. In a remarkable effort discussed
in [116–118], it was shown that this is exactly what happen: the function Ψ4 has anomalous scaling which differs from
he one obtained using the Kraichnan ansatz Eq. (322), it is independent on forcing and diffusion and dominates the
caling properties of the inertial range quantities. In other words, anomalous scaling in the Kraichnan model is not due
o balancing the diffusion term with the inertial dynamics but it is only due to the inertial dynamics!

The computation needed to obtain the above (exciting) results are highly non-trivial. Here we will show [114] how the
bove result can be reached in the much simpler case of the shell model introduced in Eq. (296). In particular we want
o compute the solution for the quantities

⟨
|θm|

2
|θq|

2⟩
≡ Pm,q. To do that we need to write the equations for Pm,q which

an be done using the same tools as we already employed to compute the equation for Em.
dPm,q
dt

= [ − Pm,qk2m+1Dm((1 + δq,m+1) + λξ−2(1 + δq,m−1)) + (326)

+ Pm+1,qk2m+1Dm(1 + δq,m) + Pm−1,qk2mDm−1(1 + δq,m) (327)

+ (q → m;m → q)] (328)
+ (δ1,mEm + δ1,qEq)F1 − κ(k2m + k2q)Pm,q (329)

he symbol (q → m;m → q) means that we write the same expression by exchanging m and q. For F1 and κ → 0,
q. (326) is an infinite set of linear equations which we are interested to solve.
Before discouraging, let us try to rewrite the equations in a simpler way. First, we introduce the quantities:

Pn,n+l = ClPn,n (330)

Pn,n−l = DlPn,n (331)

hen we observe that Pm,q is a symmetric function of m and q. So we can write

Pn+l,n = DlPn+l,n+l = Pn,n+l = ClPn,n
This implies that

Pn+l,n+l

Pn,n
=

Cl

Dl
(332)

sing the identity
Pn+l+1,n+l+1

Pn,n

Pn+l,n+l

Pn+l+1,n+l+1

Pn,n
Pn+l,n+l

= 1

We obtain:
Cl+1

ClC1
=

Dl+1

DlD1
(333)

pon denoting R = C1/D1 the scaling properties of Pn,n are controlled by R i.e. by C1 and D1. Let us notice that Cl and Dl
re nothing else than the fusion rules (in the inertial range) of the structure functions of θ within the shell model.
Now introduce the quantity x = λξ−2 and we can write the equations for Pm,m and Pm,m−1:

dPm,m
= 2Pm,mk2 Dm[1 + x − 2(C1 + D1x)] = 0 (334)
dt m+1
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Fig. 65. Analytical ansatz (continuous line) and numerical results (squares) for ζ4 are plotted for various values of ζ .
Source: Figure reproduced from [114].

dPm,m−1

dt
= 2Pm,m−1k2m+1Dm

[
−1 − 4x − x2 +

x
D1

+
x + C2 + x2C2/R

C1

]
= 0 (335)

rom Eqs. (334) we can easily see our problem: we have 2 equations for 3 unknown C1,D1 and C2.
To make progress, we consider the quantity γl = Dl+1/Dl and δl = Cl+1/Cl and we rewrite the Eqs. (326) in the form:

γl
(
R + xl+1)

+
1
γl−1

(
xl +

x
R

)
= 0 (336)

δl

(
1 +

xl+1

R

)
+

1
δl−1

(Rxl + x) − (1 + x)(1 + xl) = 0 (337)

Finally we observe that Eqs. (334) are maps which define the ‘‘evolution’’ of γl and δl by iterations. The two maps are
he same once we notice that δl = Rγl. Therefore, we focus only on γl.

Let us recall that γl = Dl+1/Dl and Dl is defined by the relation Pn,n−l = DlPn,n. So if we go from l−1 to l we are moving
from the diagonal part of the matrix Pn,n to the boundary at l = 0 hereafter referred to as infrared boundary or simply as
IR boundary. Similarly, we can use the map of γl as a map to move from l to l − 1 (remember we have an infinite set of
equations!) and in this case we are moving from the IR boundary to the diagonal. The same is true for the map δl: iterating
from l to l + 1 we move from the diagonal to the boundary which, in this case, is a boundary for large l i.e. an ultraviolet
boundary referred to as UV boundary and iterating from l to l − 1 we move from the UV boundary to the diagonal.

Next we consider the fixed points of the map for γl. One has two fixed points γ ∗

1 = x/R and γ ∗

2 = 1/R. It is easy to
show that γ ∗

1 is a stable fixed point for the iteration from l to l − 1, i.e. moving from the IR boundary to the diagonal.
Analogously, a stable fixed point is observed for δl iterating from l to l−1 i.e. moving from the UV boundary to the diagonal.

At this stage, it is clear how to proceed. We fix a value of R and we can iterate the maps in order to reach the fixed
points. This allows us to compute C2/C1 and D2/D1 near the fixed points. From Eqs. (334) we compute the new value of R
and we repeat the operation until we converge to the stable fixed point. In this way, we can solve the infinite equations.
Once we have R we can obtain the scaling of Pn,n ∼ Rn or equivalently R = λ−ξ (4).

In Fig. 65 we show the quantity ρ4 = ξ (4)− 2ξ (2), which is the part responsible for the anomalous scaling, computed
from our procedure with a continuous line against the numerical results obtained by directly simulating the model
(squares). The agreement is almost perfect.

Let us try to summarise what we found so far:

• anomalous scaling can be computed almost analytically;
• anomalous scaling does not require any balance between inertial range dynamics and diffusion; it is a property of

the inertial range dynamics alone;
• anomalous scaling is universal since it is stable for large and small scale perturbations.

The last point comes from the fact that our solution is UV and IR stable, i.e. it is stable by changing the boundary conditions.
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Fig. 66. The anomaly 2ζ2 − ζ4 for the fourth-order structure function in two dimensions stars, upper graph and three dimensions circles, lower
graph. Error bars in 2D shown only for ζ < 1.1. The dashed line is the three-dimensional linear ansatz prediction by Kraichnan [112].
Source: Figure reproduced from [119].

Our starting Eqs. (326) can be formally written as in (324), i.e. we can write

∂tPm,q + M (4)
n,m,p,qPn,p = O(κ) + Forcing (338)

Our solution correspond to find the solution of the equation

M (4)
n,m,p,qPn,p = 0 (339)

The solution of this equation are called zero modes.
It is much more difficult to find the zero modes for the original Kraichnan model [1]. However, this can be done

‘‘perturbatively’’ in ξ , near ξ = 0, and in 2 − ξ near ξ = 2. As already noted, the solution of Eq. (338) or (324) is
composed of two contributions: one is the zero mode and the other one depends on the forcing and dissipation. The zero
modes, however, are the leading terms in the inertial range behaviour of the correlation functions showing anomalous
scaling.

The above picture shows the results in d = 2 and d = 3 of the numerical simulations against the theoretical estimate
(dashed lines), see Fig. 66.

For the Kraichnan model, the basic idea to perform analytical computation and numerical simulations [119], is to use
lagrangian dynamics. We consider a (very large) ensemble of lagrangian particles moving in the velocity field:

dx⃗
dt

= u(x⃗) +
√
2κη(t) (340)

ach particle carries the passive scalar information θ which ‘‘feels’’ the forcing through the equation:

dθ
dt

= f (x⃗, t) (341)

hen the quantity we are in general interested to compute is ⟨θ (x⃗1)θ (x⃗2) . . . ⟩ which can be computed upon averaging on
different lagrangian trajectories.

Lecture 7.6. Zero modes in a realistic case

Even if interesting, all the above discussion refers to the Kraichnan model whose velocity field has little resemblance to
real turbulence. Does the same picture hold for a realistic case? To answer this question, following Celani and Vergassola
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Fig. 67. Contour lines in the ξ − w plane of the third order shape function f appearing in (5).
Source: Figure reproduced from [120].

[120], we consider a two-dimensional turbulent flow and we consider a passive scalar where an external non-vanishing
gradient g of the passive scalar is applied. Then we define θ as the solution of the equation

∂θ

∂t
+ v · ∇θ + v · g = κ∆θ + f (342)

here the external forcing f is a random gaussian field concentrated to large scale. In two dimensions, kinetic energy
s transferred from small to large scale, as we discussed in Lecture 2, the energy spectrum goes as E(k) ∼ k−5/3,
.e. δv(r) ∼ r1/3. For this particular case the quantity ⟨θ (r1)θ (r2)θ (r3)⟩ is not vanishing because of the term v · g . In
articular we consider three points forming a triangle which can be characterised by a length scale R2

= (r212+r223+r313)/3
nd two angles χ and ω so that ⟨θ (r1)θ (r2)θ (r3)⟩ ≡ C3(R, χ, ω). First, let us consider the Eulerian point of view, where
e fix the points and look how C3 changes, say, with R. A geometrical analysis of the possible triangular shapes shows
hat C3(R, χ, ω) = Rξ3 f (χ,ω)cos(φ) where φ is the orientation of the triangle with respect to the mean gradient g . The
igure shows the function f (χ,ω) and the corresponding triangular shapes, see Fig. 67.

From numerical simulations, we can obtain C3 as a function of R in the Eulerian case, shown in Fig. 68. We observe a
lear scaling law C3 ∼ Rξ3 and exponent ξ3 = 1.25.
Now we consider the lagrangian dynamics, i.e. we consider 3 particles and we evaluate ⟨θ (r1)θ (r2)θ (r3)⟩ ≡ C3(R, χ, ω)

veraging over the lagrangian realisations hereafter denoted by ⟨C3⟩Lag . Obviously R should grow (Richardson like diffusion),
ee Fig. 69. In particular, the Richardson diffusion predicts that R2

∼ t3. Thus we expect that Rξ3 ∼ t3ξ3/2 as shown in the
igure. This is not the case for ⟨C3⟩Lag .

What is the physical meaning of Fig. 69 ? While R is growing the quantity f (χ,ω) should decrease to compensate the
ncreasing value of R. This means that the shape of the triangles should change: the smaller is ξ3 the longer the triangles
emains degenerate, i.e. the longer the three points are closer to each other.

According to our previous discussion for the Kraichnan models, the scaling properties of the inertial range are controlled
y the zero modes. In this particular case, ⟨C3⟩Lag is the three point correlation. Since zero modes are steady solutions of
he equation of motions (with forcing and dissipation and in the limit of κ → 0), they are also constant during the system
volution. Thus we may argue that ⟨C3⟩Lag is a zero modes in our specific case and it is a distribution on the space of the
riangle configurations, that are statistically invariant to the turbulent dynamics. This is a very non trivial result because it
ives a numerical proof that the concept of zero modes is behind the anomalous scaling of passive scalar with realistic
urbulence flow.

ecture 7.7. Statistically preserved structures

We want now to extend the previous result and for this purpose we start considering the shell model introduced by
q. (296). Let us define with Ψ (n) the zero modes for the model. For the Kraichnan random velocity field, ⟨u u∗

⟩ = δ k−ξ ,
n m nm n
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Fig. 68. The Lagrangian average of the correlation function C3 compared against the average of Rζ3 ∼ |t|3/2ζ3 .
Source: Figure reproduced from [120].

Fig. 69. The dependence of the third-order correlation function C3 with respect to the size of the triangle R. The straight line is the power law
ehaviour R1.25 .
ource: Figure reproduced from [120].

e have computed Ψ (2) and Ψ (4) by solving the equations:

∂tΨ
(2)
m = M2

mnΨ
2
n = 0 (343)

∂tΨ
(4)
m,q = M (4)

n,m,p,qΨ
4
n,p = 0 (344)

he zero modes are eigenvector of eigenvalue 0 of the operator M (n). Let us now consider the Kraichnan random flow
with no forcing. The initial energy of the system Em(0) starts to decreases for small but finite κ . Formally the evolution
equation of Em(0) is given by Eq. (343) in the form

Em(t) = P (2)
mn(t)En(0) (345)

where P (2)
mn is a formal way to write [exp(tM (2))]mn. Then we can say that Ψ (n) are eigenvectors of eigenvalue 1 of the

operator P (n). In this case, the zero modes are both right and left eigenvectors of the evolution operators M (n). Using Ψ (2)
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e can easily show that:

ΣmEm(t)Ψ (2)
m = Σm,nP (2)

mnEn(0)Ψ
(2)
m = ΣnEn(0)Ψ (2)

n (346)

n other words, projecting the decaying function Em on the proper zero modes Ψ (2)
m , we obtain a conserved quantity. Obviously

his conservation holds up until some large time scale, of order 1/κ is reached. The same argument can be done for the
th order correlation functions ⟨|θn|

2
|θm|

2
⟩.

Let us try to summarise the previous argument: in the Kraichnan model the simultaneous Nth-order correlation
unction satisfies a linear differential equation, which is inhomogeneous in the presence of the forcing. The general solution
s the sum of the inhomogeneous and homogeneous parts. It turns out that the scaling exponent of the homogeneous
art (the zero modes) is the leading term (smaller scaling exponent) compared to the other. Let us now consider the
ecaying problem for the Kraichnan model. Then, upon projecting the time dependent decaying correlation functions on
he proper zero modes we obtain statistically conserved structures (in the limit κ → 0). It is crucial to remember that the
onservation occurs upon averaging over different initial conditions. This is the meaning of Eq. (346) and its generalisation
o the correlation of order N .

We can now consider the more general case of passive scalar advected by a turbulent flow. Then, based on the above
iscussion, following [121], we can make the following two conjectures:

• there exist a set of time independent special functions Zn which are left eigenvalue of the evolution operator (whatever
it is);

• Zn corresponds to the correlation functions of the forced dynamics of the passive scalar.

sing the two conjectures, the projection of the correlation functions on the Zn, averaged over the different initial
onditions, are statistically preserved structures. The reason why the above statements are conjectures is that for the generic
ase of a turbulent flow advecting a passive scalar, we have no analytical control of the time evolution operator as in the
raichnan model. We should consider the two conjectures as the physical synthesis of our investigations of the Kraichnan
odel.
Although we cannot prove the two conjectures, we can provide evidence (at least in the case of shell model) that they

re correct. For this purpose, we consider the Sabra shell model for un advecting the passive scalar θn:

dθn
dt

= i(kn+1un+1θn+1 + knθn−1u∗

n) − κk2nθn (347)

Let us remark that un is not a random flow. Next, we consider the forced case. The non-zero correlation functions up
o order 6 are

F2(m) = ⟨|θm|
2
⟩ (348)

F4a(m, n) = ⟨|θm|
2
|θn|

2
⟩; F4b(n) = ⟨θn+2θ

∗

n+1θ
∗

n+1θn−1⟩ (349)

F6(m, n, k) = ⟨|θm|
2
|θn|

2
|θk|

2
⟩ (350)

ccording to our second conjecture the Fl are the functions we need to use to construct the statistically preserved
tructures. Then, we consider the same problem in Eq. (347) without forcing and for the same κ and we define the
ime-dependent quantities:

C2(m, t) = ⟨|θ̃ (t)m|
2
⟩ (351)

C4a(m, n, t) = ⟨|θ̃ (t)m|
2
|θ̃ (t)n|

2
⟩; C4b(n, t) = ⟨θ̃ (t)n+2θ̃ (t)∗n+1θ̃ (t)

∗

n+1θn−1⟩

C6(m, n, k, t) = ⟨|θ̃ (t)m|
2
|θ̃ (t)n|

2
|θ̃ (t)k|

2
⟩

with θ̃ (t) the ‘‘decaying solutions’’. In (351) the averaging is done over different initial conditions.
If our conjectures are correct, we should observe that the quantities:

I2 ≡ ΣnC2(m, t)F2(m) (352)
I4 ≡ ΣnmC4a(m, n, t)F4a(m, n) +ΣnC4b(n, t)F4b(n) (353)
I6 ≡ ΣnmkC6(m, n, k, t)F6(m, n, k) (354)

are conserved quantities. The numerical simulations support this idea, see Fig. 70. The final result demonstrates that Il
as defined in (352)–(354) are conserved quantities (in the limit κ → 0) in agreement with our conjectures. This is an
important result because it provides evidence that for the generic case of a turbulent flow, the passive scalar intermittency
(anomalous scaling) is due to the same mechanism discussed for the Kraichnan model, namely the relevance of the zero
modes that dominate inertial range dynamics. This also implies that the anomalous scaling is universal, i.e. independent
of the large-scale forcing and dissipation.
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Fig. 70. Panel (A) time dependence of the decaying second order correlation functions, together with the time dependence of the statistically
onserved quantities I2 . The equations have been integrated with a total number of shells N = 33. Time in the horizontal axis is given in units of
he eddy turnover time TL . Panel (B): the same as panel (A) but for the fourth-order correlation function and with N = 25. Panel (C): the same as
anel (B) but for the sixth-order correlation function. Here we also present I6 when we replace the forced solution F6(n,m, k) with its dimensional

prediction.
Source: Figure reproduced from [121].

Lecture 7.8. The non-linear case

The previous results strongly point out that zero modes are the leading contribution to the (anomalous) scaling
properties of a passive scalar. Is there any way to extend this feature to the N.S. equations? Here we make the first
step in this direction [122]. Let us consider a vector field w subjected to the condition ∇ · w = 0 and satisfying the
equations

∂tw + v · ∇w + λw · ∇w = −∇π + ν∆w + fw (355)
∂v

∂t
+ v · ∇v + λw · ∇v = −∇p + ν∆v + fv

where we assume the density ρ = 1. Eq. (355), in the limit λ → 0, tends to the N.S. equations for v advecting a passive
ector w. For any λ > 0 we expect that the scaling properties of v and w are the same and we also expect that the limit
→ 0 is not singular. In other words, we expect that the scaling properties of a passive vector advected by a turbulent

low are the same as the scaling properties of the advection field. We can also reach the same conclusions by considering
he two fields u+ = v + λw and u− = v − λw. Then the equation for u+ are the N.S. equations with forcing f+ = fv + fw
hile the equations for u− are those of a passive vector with forcing f− = fv − fw . Provided we choose the forcing fv
nd fw such that f+ and f− to be uncorrelated, we end up from (355) with the equation of a passive vector advected by
turbulent flow. By construction, we know that the scaling of u+ and u− should be the same, as it is the case from the
umerical simulations, see Fig. 71.
Next, we can use our previous idea for the statistically preserved structures to show that the correlation functions of

he N.S. equations are zero modes for the passive vector. For this problem it is much simpler to work with a shell model.
e consider the following equations:

dun

dt
= −νk2n +

i
3
Φn(u, u) + f (u)n (356)

dwn
= −νk2 +

i
Φn(u, w) + f (w) (357)
dt n 3 n
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Fig. 71. Log–log plot of the sixth order structure functions of the fields u− and u+ (circles and squares, respectively), for µ = 1, as a function of
he third order structure functions. The dashed line corresponds to the best fit in the scaling region with slopes 1.77. Lower inset: the sixth-order
tructure function of the two fields as a function of r. Upper inset: zp = ζp/ζ3 − p/3 computed for the structures functions of u+ and u−(circles).
Source: Figure reproduced from [122].

Fig. 72. The sixth order structure function of the field wn for λ = 10−1 , 10−3 and 10−5 together with the sixth-order structure function for the
abra model and for the linear model, respectively. The structure functions of the field un for λ > 0 are not shown since they are indistinguishable
rom those of the wn . Inset: log–log plot of the fourth-order correlation function F2,2(kn, k7) vs k7 calculated for the linear field (+) and for the
onlinear field (solid line) at λ = 0.
ource: Figure reproduced from [122].

Φn(u, w) = kn+1[(1 + δ)un+2w
∗

n+1 + (2 − δ)u∗

n+1wn+2] (358)
+ kn[(1 − 2δ)u∗

n−1wn+1 − (1 + δ)un+1w
∗

n−1]

+ kn−1[(2 − δ)un−1wn−2 + (1 − 2δ)un−2wn−1]

Expression (358) is obtained by taking the antisymmetric part of the original Sabra model. It is easy to see that Σn|un|
2,

n|wn|
2 an Σnunw

∗
n +wnu∗

n +c.c are conserved quantities for ν = 0 and no forcing as for the passive vector, as in the case
of Eqs. (355). In Fig. 72 we show the sixth order structure functions for the non linear Sabra model and for the passive
vector at different value of λ: this is a clear check (at least for the shell model) that the limit λ → 0 is not singular and
that the anomalous exponents of the passive vector are the same of the non-linear Sabra model.

We can do more. Using the previous discussion on the statistical preserved quantities, we know that the same argument
applied to the passive vector, namely we can use the correlation functions of the forced case to build the statistically
preserved quantities for the decaying case. Instead of doing that, we now use the correlation function of the non-linear
forced Sabra model. More precisely, let us define

Z (2)(n) = ⟨|u |
2
⟩ (359)
n
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Fig. 73. We show in the figure with the symbols (+) the constants I (2) (bottom) and I (4) (top) constructed by projecting the decaying structure
function of the linear model on the forced structure function of the nonlinear model. To emphasise the importance of using the correct SPS, we also
show the result for I (4) using the dimensional Kolmogorov prediction for Z (4) (small dots) and Z (4)

= 1 corresponding to decaying behaviour (solid
line).
Source: Figure reproduced from [122].

Z (4a)(n,m) = ⟨|un|
2
|um|

2
⟩ (360)

Z (4b)(n) = ⟨unu2
n+1u

∗

n+3⟩ (361)

Z (4c)(n) = ⟨unun+1un+3u∗

n+4⟩ (362)

for the forced non linear Sabra model. Then, we now compute the same quantity for f (w)
= 0 so that the vector field is

decaying in time:

F2(n, t) = ⟨|wn|
2
⟩ (363)

F4a(n,m, t) = ⟨|wn|
2
|wm|

2
⟩ (364)

F4b(n, t) = ⟨wnw
2
n+1w

∗

n+3⟩ (365)

F4c(n, t) = ⟨wnwn+1un+3w
∗

n+4⟩ (366)

The last step is to evaluate the two quantities:

I2 = ΣnF2(n, t)Z (2)(n) (367)
I4 = ΣnmZ (4a)(m, n)F4a(m, n, t) +Σn[Z (4b)(n)F4b(n, t) + Z (4c)(n)F4c(n, t)] (368)

The crucial and non trivial observation is that if the non linear Sabra model has the same anomalous scaling of the
passive vector, then both I2 and I4 should be constant on average. Numerical simulations show that this is the case 73:
the correlation functions of the non linear Sabra model plays the role of the zero modes (that we know to exist) for the
passive vector. This result strongly points out that the non linear model exhibits the same class of properties (universality
with respect to forcing and dissipation mechanism) which characterise the existence of the zero modes and their role in
anomalous scaling. This result implies that the anomalous scaling of the non-linear Sabra model can be computed by
knowing the scaling properties of the zero modes of the passive vector. The last problem is mathematically difficult
although well-defined conceptually and one may try to employ different perturbation approaches to solve it.

Lecture 7.9. Summary of Lecture 7

In this lecture, we have seen a number of new concepts and results. It is quite clear that the Kraichnan model is an
important breakthrough to understanding intermittency in the passive scalar. Although the velocity field in the Kraichnan
model is rather unrealistic (gaussian and δ-correlated in time), it is rough in the sense that δv(r) does not scale as r .
Then, the arguments discussed in Lecture 1 for the Richardson diffusion can be applied and intermittency in the passive
scalar can be linked to the breaking of lagrangian trajectories. This is the physical reason behind the solution of the
Kraichnan model, namely the dominating role of zero modes in the anomalous scaling of the passive scalar correlation
functions in the inertial range dynamics. A proper mathematical framework for these ideas is reviewed in [1]. To simplify
the discussion, we decided to illustrate how to compute zero modes using a simplified shell model. However, all the
concepts we introduce are general and shell models are used just as a simple way to avoid mathematical difficulties. This
is also true for the discussion of statistically preserved structures which opens the way to extend the results obtained in
the Kraichnan model for the passive scalar turbulence advected in realistic flows. In [120] it is shown how statistically
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reserved structures arise in the case of two-dimensional passive scalar turbulence taking advantage of the lagrangian
ormulation for the dynamics. The same idea can be successfully applied in shell models for passive scalar and extended to
he non-linear case. One natural question is whether the results discussed in this chapter provide a physical interpretation
f intermittency that is different from the one discussed using the multifractal framework. We argue that, in fact, the
esults on passive scalar turbulence complement the multifractal framework showing that intermittency is a fundamental
roperty of inertial range dynamics whose statistical features are independent of large-scale forcing and small-scale
issipation. New concepts like zero modes and statistically preserved structures highlight the physical reason which
upports our claim of universality in the anomalous scaling.

ecture 8. Non isotropic turbulence

In many interesting problems turbulence is produced by an external non-isotropic forcing. This is the case, for instance,
n channel flow turbulence or in natural convection for Rayleigh–Bénard turbulence. How can we deal with non-isotropic
urbulence? In this lecture, we provide some answers to this question.

The issue of non-isotropic fluctuations is in fact more general. Even in the numerical simulations, no matter how
ccurately we can design the large scale forcing, some degrees of non-isotropic fluctuations is always present in the
ystem. This is obviously true for experimental conditions like, for instance, turbulence in the wake of a solid body in
ind tunnel experiments. Thus the first question to answer is can we say anything from a theoretical point of view? The
asic idea, as pioneered in the original Kolmogorov’s theory of turbulence, is that for large enough Re and small enough
cale r , the statistical properties of turbulence are locally homogeneous and isotropic. However, this is a rather general
tatement that needs to be defined in a better way. Fortunately, we have at least one simple case where the statistical
roperties of turbulence are under some control, namely the case discussed in detail in the previous lecture concerning
he Kraichnan model of a passive scalar. We will use this model to make some general remarks and then we can apply
ur findings to discuss some specific cases.

ecture 8.1. The SO(3) decomposition

The equation of motions, both the N.S. and/or Kraichnan’s model, are invariants under rotations. This is true unless the
xternal forcing introduces a specific preferential direction as, for instance, in the case of a forcing induced by an external
radient in the velocity field. Thus we immediately understand we are facing two different problems: the first one is
ssociated to the case of a statistically isotropic forcing where invariance under rotation holds statistically; the second
ne deals specifically with the case of non-isotropic forcing like those previously mentioned, i.e. channel flow turbulence
r Rayleigh–Bénard system.
Let us focus on the first class of problems where rotational invariance holds statistically. The basic idea underlying our

pproach has been discussed in detail in [123,124] and it is hereafter shortly sketched. Let us consider a generic multipoint
orrelation function C (n)

α1,α2,...,αn
(x⃗1, x⃗2, . . . , x⃗n) = ⟨uα1 (x⃗1)uα2 (x⃗2) . . . uαn (x⃗n)⟩. Under rotation C (n)

α1,α2,...,αn
(x⃗1, x⃗2, . . . x⃗n) trans-

orms as the product of n vector, i.e. a tensor of order n. In general C (n)
α1,α2,...αn

(x⃗1, x⃗2, . . . x⃗n) depends on the size xi = |x⃗i|
nd the orientation x̂i of the vectors x⃗i. We are interested to understand how rotation can change the functional form of
(n)
α1,α2,...αn

(x⃗1, x⃗2, . . . x⃗n) on the orientations x̂i. This can be easily achieved if we can represent C (n)
α1,α2,...αn

(x⃗1, x⃗2, . . . x⃗n) in
ome general way as a function of the orientation x̂i. Now, the crucial observation is that rotations in a three-dimensional
pace forms a group, the SO(3) group. Then, mathematics tells us that the angular dependence of C (n)

α1,α2,...αn
(x⃗1, x⃗2, . . . x⃗n)

can be decomposed on a suitable orthogonal basis of functions that can be derived using spherical harmonics Yjm(r̂) (we
refer to [123] for the proper discussion). The index j in the decomposition of C (n)

α1,α2,αn
(x⃗1, x⃗2, . . . x⃗n) refers to the angular

momentum of the configuration x̂i. A this stage, mathematics becomes rather complex. However, the relevant and highly
non-trivial conclusion is that every j component of the representation satisfies equations which do not mix with different
values of j. This statement can be proved for the Kraichnan model and it is argued to hold for the N.S. equation. In other
words, the basic conclusion is that C (n)

α1,α2,...αn
(x⃗1, x⃗2, . . . x⃗n) can be represented as the sum of different correlation functions

with their own j. For our purpose, this implies that the general form of the scaling of structure functions can be represented
as:

S(n)(r⃗) =

∑
jm

S(n)jm (r)Yjm(r̂) (369)

The functions S(n)jm (r) have their own scaling exponents for small r referred to as ζ (n)j . The important result is that one can
show the following inequality:

ζ
(n)
0 < ζ

(n)
j>0 (370)

Besides their mathematical derivation, Eqs. (369) and (370) represent the solution to our first problem. Notice that
Eq. (370) holds in general, i.e. for ζ (n) not necessarily equal to Kolmogorov’s theory and its generalisation. Eq. (369) tells
us that the proper way to study non isotropic effects in turbulence is to decompose the structure functions in their
different j sector. Moreover, because of (370), we understand that for large enough Re and small enough scales r , the
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Fig. 74. The scalar second-order structure function measured in the x-direction, S2(r, 0), fixing σ and varying Lf . The inset shows the local slopes.
ote that the approach to the asymptotic scaling r0.22 is even slower than in the spectra.
ource: Figure reproduced from [125].

sotropic contribution is the dominant one. Thus Eqs. (369) and (370) should be considered as rather general and non-
rivial results derived from the invariant properties of the N.S. equations under SO(3) transformations. In general, however,
he computation of ζ (n)j cannot be done exactly and some results are available for a few specific cases (see again [123]).

One interesting outcome of Eqs. (369) and (370) concerns the effect of non-isotropy in the intermittent properties of
he passive scalar advected by turbulent flows. In the past, one quantity used to discuss the relevance of non-isotropic
ffects was to consider the quantity

S(r) ≡
⟨δθ (r)3⟩

(⟨δθ (r)2⟩)3/2
(371)

.e. the skewness of δθ (r), which can be easily computed from any experimental and/or numerical simulations. In some
ases, S(r) does not decrease for r → 0 and, in fact, it can even increase at small r . From Eqs. (369) and (370) we
nderstand that the behaviour of S(r) for small r does not tell us anything about isotropy versus non-isotropy. Assuming
hat the forcing can be considered statistically stationary, we should compute the quantity S(n)jm to assess the proper
elevance of the isotropic fluctuations. In other words, the statistical properties of δθ (r) are not suitable to study the
elevance of non-isotropic effects using expressions like Eq. (372). Eqs. (369) and (370) clarify this point in a clean and
legant way.

ecture 8.2. Shear effects in passive scalar

We now turn our attention to the second problem, namely, we do have a non-isotropic forcing in the system and
e would like to know if and how intermittency may depend on the effect of anisotropy. We start by analysing a
elatively simple problem for a passive scalar to understand how non-isotropic forcing can change the scaling properties
f S2(r) = ⟨δθ (r)2⟩ [125]. We assume that the velocity field advecting the scalar θ is given by:

v⃗ = Syx̂ + u⃗ (372)

he aim is to compute how the scaling properties of ⟨δθ (r)2⟩ depend on S knowing the scaling properties of u⃗. First of all
et us compute ⟨δθ (r)2⟩ for S = 0. We already did it in the previous lecture pointing out the difficulties in estimating
ntermittency corrections. Here we want to use a different approach which is particularly useful when u⃗ is the one
rescribed by Kraichnan’s model.
The quantity ⟨δθ (r)2⟩ is related to the correlation of C(r⃗) = ⟨θ (r⃗1)θ (r⃗2)⟩ which depends on r⃗ = r⃗2 − r⃗1. From the point

f view of lagrangian dynamics, the passive scalar is described in the limit κ → 0 by the equation:
dθ
dt

= f (r/L, t) (373)

here f (r/L, t) is a shorthand notation for the large-scale forcing applied to θ . Each particle carries on the value of θ
according to (373) while being advected by the velocity field u⃗. Then the correlation C(r⃗) depends on the probability for
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wo particles being at separation r ≡ r1 −r2. The latter quantity should be proportional to the time T (r) spent on average
y the two particles at a separation r . This intuitive result is discussed in [1,119], with the proper mathematical formalism,
nd it enables us to obtain the scaling of ⟨δθ (r)2⟩ using Richardson diffusion. To see how it works, let us consider the case
f a passive scalar advected by a velocity field satisfying the Kolmogorov scaling. We consider two particles separated by
distance R whose evolution is given by

dR
dt

= δu(R) ∼ R1/3 (374)

ow we assume R ∼ tα . According to our previous argument, the scaling of ⟨δθ (R)2⟩ ∼ t(R) ∼ R1/α . Thus we need to
ompute α. In this case, upon substituting R ∼ tα in Eq. (374) we obtain:

tα−1
∼ tα/3

rom which we obtain α = 3/2. Then ⟨δθ (R)2⟩ ∼ t ∼ R2/3 is in agreement with the known result.
Now, we want to apply the above procedure to the case (372) where u⃗ is the velocity field of Kraichnan’s model. For

he Kraichnan’s model δu(R) is a random velocity field δ-correlated in time. Then, from dR/dt = δu(R) we obtain:

R(t) =

∫
dsδu(R, s) → ⟨R2(t)⟩ =

⟨∫
ds2

∫
ds1δu(R, s1)δu(R, s2)

⟩
(375)

ext we use the identity ⟨δ(R, s1)δ(R, s2)⟩ = ⟨δu(R)2⟩δ(s2 − s1). From this expression we obtain:

⟨R2
⟩ =

∫
ds⟨δu(R)2⟩ →

d⟨R2
⟩

dt
=
⟨
δu(R)2

⟩
(376)

For the Kraichnan’s model we know that ⟨δu(R)2⟩ = Rξ . Then we assume R ∼ tα and using (376) we obtain α = 1/(2−ξ ).
This implies, according to our previous discussion, that ⟨δθ (R)2⟩ ∼ t ∼ R1/α

= R2−ξ as expected.
We are now ready to compute what happens for S ̸= 0. We introduce the equations:

Ṙx = SRy + δux(R) (377)

Ṙt = δut (R) (378)

where the subscript t (not to be confused with time) stands for the transversal direction with respect to x̂. We now assume
Rx ∼ tα and Rt ∼ tβ . Then from (377) the leading contribution for large S gives α − 1 = β while from (378) we have
2β − 1 = αξ . The latter equation comes from:

d⟨R2
t ⟩

dt
=
⟨
δut (R)2

⟩
∼ Rξx .

he final results is α = 3/(2− ξ ) and β = (1+ ξ )/(2− ξ ). Since Rx is dominating with respect to Rt , we can easily argue
that for large enough R the scaling of ⟨δθ (R)2⟩ goes as R(2−ξ )/3. For small enough R, we can neglect the first term on the
r.h.s. of (377) and we recover the scaling R2−ξ . Thus the effect of the external shear S introduces a scale LS above which
he scaling properties (and the intermittency as well) change because of the shear, S. For R < LS we expect to recover
he isotropic scaling. We expect LS to decrease for increasing values of S. This can be deduced using the balance equation
LS = δu(LS) from Eq. (377). For ξ = 4/3, equivalent to the Kolmogorov scaling ⟨δu(R)2⟩ ∼ R2/3, all the expectations from
377)–(378) are nicely confirmed by numerical simulations shown in Fig. 74. Notice that we expect δθ (R)2 ∼ R2/9 at large
nough R and R2/3 at small R.

ecture 8.3. Intermittency in shear flows and boundary layers

Now, we want to understand if something similar is happening in the case of N.S. equation. For this purpose, we
onsider the rather theoretical situation of a homogeneous shear flow (HS) in the direction x̂ described by the equation:

∂v

∂t
+ v · ∇v + Sy

∂v

∂y
+ vySx̂ = −

1
ρ

∇p + ν∆v (379)

lthough artificial, homogeneous shear flows can be simulated numerically by using a quite ingenious trick with periodic
oundary conditions [38]. It turns out that many physical features observed in HS are also observed in properly designed
aboratory experiments. In the following, we will discuss both cases.

Looking at Eq. (379) one immediately understands that the shear S plays a double role: on one hand it is the source
f turbulence in the system (as in boundary layer turbulence) and on the other hand it modifies the energy transfer from
arge to small scales because it modifies the Kolmogorov 4/5 equations. The last statement is quite complicated to discuss
ince for HS one cannot make any claim of isotropy. Here we refrain to discuss what is the proper mathematical objects
hich should be considered in the 4/5 equation for HS. The final result of this investigation is however important. For
S the 4/5 equation is modified as follows [126]:⟨

δv(r)3
⟩
+ αSr⟨δv(r)2⟩ ∼ ϵr (380)
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Fig. 75. The characteristic scale Ls(y+) as a function of y+ (continuous line). The dotted line is reported to enlighten the growth of Ls out of the
wall region.
Source: Figure reproduced from [128].

where α is a number order 1 independent on S. For boundary layer turbulence S should be replaced by a y-dependent local
shear rate S(y). Eq. (380) is a simplified version of the more cumbersome one obtained by (379) [127]. Even if simplified,
Eq. (380) tells us two important things: A) the energy dissipation ϵ plays some role already discussed in homogeneous
and isotropic turbulence; B) there exists some scale LS such that for r > LS the statistical properties of turbulence should
be modified by the presence of the shear S. To compute LS we can use the K41 estimate δv(r) ∼ ϵ1/3r1/3 and compute LS
y solving ⟨δv(LS)3⟩ ∼ αSr⟨δv(LS)2⟩. This gives [128]:

LS =

√
ϵ

S3
(381)

ctually, the presence of the shear S introduces a momentum flux q2 in the y direction as we already discussed in the
irst lecture for boundary layer turbulence. Then we can introduce the scale L0 ≡ q3/ϵ which is the large scale associated
o the forcing mechanism as if we consider the case of homogeneous and isotropic turbulence. Finally, upon defining
∗ = Sq2/ϵ, it is easy to see that

S∗ =

[
L0
LS

]2/3
(382)

he physical meaning of the dimensionless parameter S∗ is clear [129,130]: for large S∗ there exists a range of scale
∈ [LS, L0] where turbulence is modified by the effect of the shear whereas for small S∗ we should recover the case of
homogeneous and isotropic turbulence. In analogy with (382) we can introduce the parameter Sc ≡ (η/LS)2/3. Then for
large Re number we expect Sc to be very small: in the limit of small Sc and large S∗ one should observe two different kind
of turbulence: one dominated by the shear effect S and the other one close to the homogeneous and isotropic case. This
result is already non-trivial and is obtained essentially by dimensional analysis applied to Eq. (380) and it is qualitatively
in agreement with the case of passive scalar discussed above. In Fig. 75 we show LS as a function of wall distance y+ for
oundary layer turbulence while in Fig. 76 we show the velocity profile of the boundary layer turbulence. Upon increasing
+, LS increases and becomes larger than y+ and we can identify two possible regions in the system indicated by H for
omogeneous isotropic turbulence and B for shear-dominated turbulence.
We want now to understand what are the turbulence properties in the shear-dominated range. say the region B where

or boundary layer turbulence in Fig. 75 and/or for large shear values of S∗ in homogeneous shear flow. In particular, we are
nterested in understanding if and how intermittency is different when the (local) shear rate is large. We start by looking
t the most elementary measure of intermittency, namely the kurtosis. In Fig. 77 we show k(r) = ⟨δu(r)4⟩/⟨δu(r)2⟩2 at
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Fig. 76. Mean-velocity profiles (continuous line), symbols correspond to the ‘corrected’ data of Eckelmann (1974).
Source: Figure reproduced from [131].

Fig. 77. Flatness, F = ⟨δV 4
⟩/⟨δV 2

⟩
2 vs. log2(r+/D+

x ), D
+
x = 2.5, at y+

= 151 (open triangles) and at y+
= 31 (open circles), as evaluated using Fb

nd Fw , respectively, see Eqs. (385)–(386). For comparison, filled circles, Fb applied at y+
= 31. Correspondingly, the solid lines give the flatness as

valuated directly in terms of velocity.
ource: Figure reproduced from [130].

wo points in the boundary layer turbulence in regions H and B (continuous lines) while in Fig. 78 we show k(r) for
omogeneous shear flow as compared with the same result for homogeneous and isotropic turbulence. Quite clearly we
bserve an increase of intermittency in the system for large shear flow. The next question to answer is why intermittency
ncreases when S (local or not) becomes large enough.

To provide an answer to this question let us come back to Eq. (380). In the shear-dominated region, the second term
n the r.h.s should become the dominant one. Then we can wonder whether a new form of RKSH is working. Using the
otation Sn(r) ≡ ⟨δu(r)n⟩ and ϵ(r) = r−3

∫
B(r) ϵ(x)d

3x, the RKSH in its generalised form for homogeneous and isotropic
urbulence reads:

S3n(r) =
⟨ϵ(r)n⟩

S3(r)n (383)

⟨ϵ⟩n
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Fig. 78. ⟨ϵ3r ⟩ vs ⟨ϵ2r ⟩ in the homogeneous shear flow (circles) and in homogeneous isotropic turbulence (diamonds). In the inset ⟨ϵ2r ⟩ vs r/η for the
wo cases.
ource: Figure reproduced from [132].

he form of RKSH in (383) takes advantage of the ESS scaling discussed in Lecture 4 which mitigates the issue of finite
ize effects. In the shear-dominated region, we expect that the new form of RKSH should be

S2n(r) =
⟨ϵ(r)n⟩
⟨ϵ⟩n

S2(r)n (384)

Thus in the shear-dominated region we expect that the kurtosis is given by ⟨ϵ(r)2⟩/⟨ϵ⟩2 at variance with the
omogeneous and isotropic case where the kurtosis is given by ⟨ϵ(r)4/3⟩/⟨ϵ2/3⟩2. Using (383) and (384) we can write
ow the flatness F (r) changes when the shear is relatively weak or large. Upon denoting Fb(r) and Fw(r) the two different
ases, we obtain:

Fb(r) =
⟨ϵ(r)4/3⟩
⟨ϵ(r)2/3⟩2

(385)

Fw(r) =
⟨ϵ(r)4/2⟩
⟨ϵ(r)2/2⟩2

(386)

In Fig. 77 the open symbols refers to expression (385)–(386) for the boundary layer at y+
= 31 (open circles in shear-

ominated region using Fw(r)) and y+
= 151 (open triangles in the region of weak shear effects where Fb(r) is used). For

omparison we plot Fb(r) in the shear dominated region y+
= 31 in filled circles.

Now, if the scaling of ϵ(r) does not change in the shear-dominated region with respect to the homogeneous and isotropic
turbulence, we may think to explain the increase of the kurtosis as shown in the Figs. 77 and 15 To make progress, first, we
need to understand if the statistical properties of ϵ(r) are different in the two cases (shear dominated and homogeneous
isotropic case); second, we need to verify whether the new for of RKSH given by Eq. (384) is correct and finally whether
we can explain quantitatively the increase of intermittency in the shear dominate range.

Upon defining Πn ≡ ⟨ϵ(r)n⟩/⟨ϵ⟩n, in Fig. 78 we show Π3 versus Π2 for both homogeneous and isotropic turbulence
and shear flows whereas in the inset of Fig. 78 we show Π2 versus r/η or the two different cases. Altogether the figure
provides evidence that the statistical properties of ϵ(r) do not change for shear dominated turbulence. Next, in Figs. 79
we check the validity of the standard form of RKSH and in particular we look at S6(r) versus ⟨ϵ(r)2⟩S3(r)2 at two different
oints in the boundary layers, i.e. y+

= 151 (open triangles) and y+
= 31 (open circles). While in the region of weak

hear (y+
= 151) RKSH holds with very good precision, this is not true in the shear-dominated region at y+

= 31. We
ow look at the validity of the new form of RKSH and in Fig. 80 we look at the relation S4(r) versus ⟨ϵ(r)2⟩S2(r): while the
riginal RKSH (383) does not hold, the new version of RKSH seems to be extremely well verified in the shear-dominated
ase. The same result holds for turbulence in a homogeneous shear. In Figs. 81 we show the very same analysis for the
ew form of RKSH with an excellent agreement.
We are now able to provide another quantitative result demonstrating the validity of (384). Let us define, using ESS,

he anomalous scaling ζn by the relation:

Sn(r) ∼ S3(r)ζn (387)

n homogeneous isotropic turbulence, ζn are the numbers we discussed in the previous lectures. For shear-dominated
ˆ
lows, we still use (387) and refer to the anomalous exponents as ζn to highlight the difference with the isotropic case.
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= 151 (open triangles) and y+

= 31 (open circles).
Source: Figure reproduced from [130].

Fig. 80. Validity of the new form of RKHS in the shear dominated region of the boundary layer y+
= 31. The main figure shows S4(r) versus

ϵ(r)2⟩S2(r)2 . In the inset we plot S2(r)2⟨ϵ(r)2⟩/S4(r) (open circles) and S3(r)2⟨ϵ(r)2⟩/S6r as a function of r .
ource: Figure reproduced from [130].

e want to compute ζ̂n as a function of ζn. For this purpose we observe that, using (384), the following identity should
e true [132]:

ζ̂2n − nζ̂2 = ζ (3n) − n ≡ τ (n) (388)

ince ζ̂3 = 1 anyway, using (388) with n = 3/2 we obtain:

ζ̂2 =
2
3
[1 − τ (3/2)] (389)

hen from (388) we obtain:

ζ̂n = ζ3n/2 −
n
2

+
n
3
[1 − τ (3/2)] (390)

his equation is the result we were looking for. If our arguments (i.e. Eq. (384)) is correct), we should observe for large
∗ and large Re two different scaling regimes for the structure functions: at large scale r > LS the scaling is given by ζ̂n
in Eq. (390) while at the small scale we should recover the scaling ζ .
n
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Fig. 81. Validity of the new for of RKSH for homogeneous shear: on the left we show S4(r) versus ⟨ϵ(r)2⟩S2(r)2 while on the right we plot
S2(r)2⟨ϵ(r)2⟩/S4(r) (open circles) and S3(r)2⟨ϵ(r)2⟩/S6(r) as a function of r .
Source: Figures reproduced from [129].

Table 3
Scaling exponents of structure functions (DNS) above and below the shear
scale Ls . Data are compared with those of homogeneous and isotropic
turbulence and with the prediction of Eq. (390).
Source: Reproduced from [132].
p 1 2 3 4 5 6

r < Ls 0.36 0.69 1.00 1.28 1.54 1.78
r > Ls 0.38 0.72 1.00 1.23 1.42 1.56
hom.iso 0.36 0.69 1.00 1.28 1.54 1.78
Eq. (390) 0.39 0.73 1.00 1.23 1.42 1.58

In Table 3 we show the numerical values of the different ζn and ζn(S) computed using (390). We now consider the
caling and the local slopes for σp ≡ Sp(r)/S2(r)p/2 and ρp ≡ Sp(r)/S3(r)p/3 which, according to (390), should gives different
caling in different regions. In particular we have:

σn = S3(r)τ (n/2) for r ≫ LS (391)
σn = S3(r)τ (n/3)−nτ (2/3)/2 for r ≪ LS (392)

nd

ρn = S3(r)τ (n/2)−nτ (3/2)/3 for r ≫ LS (393)
ρn = S3(r)τ (n/3) for r ≪ LS (394)

In Fig. 82 we show the scaling behaviour of σn and ρn versus S3(r) with n = 6, while in the inset of the figures the
local slopes d log(σn)/d log S3 and d log(ρn)/d log S3 respectively [132]. Although the range of scaling is not large, there is
quite clear evidence that there are two different scaling regions depending on if r is larger or smaller than LS and that the
scaling exponent (within the ESS framework) are in agreement with Eqs. (391)–(394). Notice that the two sets of curves
shown in the figures refers to the homogeneous shear flow and boundary layer turbulence. Overall we can safely reach
the conclusion that in shear-dominated flows there is an increase of intermittency and that this increase can be explained
in terms of a new form of the RKSH. Physically this implies that the whole framework developed in the previous lectures
remains valid provided we do change the relation between δv(r) and ϵ(r) following Eq. (384). This is a quite non-trivial
esult and it is in complete analogy, from the physical point of view, to the discussion of a passive scalar in shear flow
or Kraichnan’s model.

We can wonder whether our previous discussion on SO(3) decomposition can add something to our findings. To this
urpose, we consider a numerical simulation of homogeneous shear performed at Re rather large using highly resolved
arge eddy simulations, that is an eddy viscosity at small scales aimed at increasing the inertial range resolution L/η [133].
n particular we consider three values of S∗, namely 2.2 (low), 5.4 (intermediate) and 7 (large). At variance with the
previous analysis, we now look at the scaling in r and we compute the S(0,0) in the isotropic sector. In Fig. 83 we show
n
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Fig. 82. The figure shows the scaling behaviour of σn and ρn versus S3(r) with n = 6, while in the inset of the figures the local slopes d log(σn)/d log S3
and d log(ρn)/d log S3 respectively [132]. Although the range of scaling is not large, there is quite clear evidence that there are two different scaling
regions above and below the shear length scale LS .
Source: Reproduced from [132].

Fig. 83. Isotropic component of the sixth order longitudinal structure function normalised by its dimensional scaling, S(6)00 /r
2 . High shear case: circles,

∗
= 7, Reλ = 150, ∆+

= ∆/η = 17. Low shear case: triangles, S∗
= 2.2, Reλ = 160 and ∆+

= ∆/η = 20. Intermediate shear case: diamonds,
∗

= 5.4, Reλ = 150 L+
x = 1320, ∆+

= ∆/η = 17. The slope of the solid lines is −0.42 corresponding to an anomalous exponents ζ (6) = 1.58±0.08
hile for the dashed line is −0.22 corresponding to an anomalous exponent ζ (6) = 1.78 ± 0.08.
ource: Reproduced from [133].

(0,0)
6 /r2 for the three cases. At low S∗ = 2.2 there is evidence of a scaling region of slope −0.22 corresponding to ζ6 = 1.78
onsistent with homogeneous and isotropic turbulence. At high S∗ = 7 we observe a much steeper slope around −0.42
hich gives ζ6 = 1.58 as predicted by Eq. (390). This result completes our assessment of shear-dominated turbulence.
e have shown that, besides the strong anisotropy induced by the shear, we can still investigate the statistical properties
f turbulence using the same conceptual framework introduced for homogeneous and isotropic turbulence. However, we
an do more.

ecture 8.4. Application to large eddy simulations in boundary layers

We want to investigate in more detail intermittency properties for boundary layer turbulence. In this case, the shear is
function of the distance y+ from the boundary at y+

= 0, where we recall that y+
= yv /ν and −v2 is the momentum
∗ ∗
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Fig. 84. From the boundary layer experiment, third-order structure function at various distances from the wall: z+
= 37 (◦), z+

= 124 (△) and
+

= 233 (□). The scaling properties of D3 (SF) do depend on the distance z+ . On the contrary, D̃3 (ISF) displays the same scaling behaviour for all
+ . The dashed line has a slope 1. The curves have been shifted vertically for convenience.
ource: Reproduced from [126].

lux towards the wall. Following our previous discussion we now introduce structure functions which depend on y+:

Dn(y+, r) ≡ ⟨[δv(y+, r)3 + αS(y+)δv(y+, r)2]n/3⟩ (395)

here S(y+) = ∂+
y U(y+) and U(y+) is the mean flow in the x direction [126]. We refer to the expression (395) as

SF (integral structure functions) to distinguish from the standard structure functions (SF). The parameter α in (395)
s an empirical factor order 1. We expect that for any y+ Dn(y+, r) show the same scaling properties of homogeneous
nd isotropic turbulence. This is a consequence of the fact that the statistical properties of ϵ(r) do not depend on the
hear as previously discussed. In Fig. 84 we show experimental data for turbulent boundary layers from [126]. Velocity
easurements are taken at various distances from the wall: on the right panel we show both the ISF D3(y+, r) and the
tandard SF S3(y+, r) while on the left panel, we focus on ISF D6(y+, r) and SF S6(y+, r). For any value of y+ we observe
or n = 3 the same scaling proportional to r . In Fig. 85 we show the quantity log[Dn(y+, r)/rζn ] versus log(r/LS) where
n are the anomalous exponents observed in homogeneous and isotropic turbulence. All the shown results are obtained
ith α = 0.2. The value of α, which may not be a universal number, can be fixed by the requirement D3(y+, r) ∼ r for all

+. From the two figures, we understand that the statistical properties of Dn(y+, r) are consistent with the ones observed
n homogeneous and isotropic turbulence. This non-trivial information can now be used to compute the eddy viscosity
ollowing the same arguments discussed in Lecture 2.

Let ∆ denote the smallest resolved scale in the computation. We can introduce the eddy viscosity νeddy using the
dentity [134]:

δU(∆)3 + A⟨S(y+)⟩∆δU(∆)2 = νeddy
δU(∆)2

∆2 ∆ (396)

here Sm(y+) ≡ ⟨S(y+)⟩ is the average (in the homogeneous direction or in time) shear rate. At the smallest scale ∆ we
ave δU(∆) = ∆S̃ where S̃ is the instantaneous local shear rate. The parameter A needs to be computed. From (396) we
ind:

νeddy = ∆2S̃(y+) + A∆2Sm(y+) = ∆2
[S̃(y+) + ASm(y+)] (397)

f there is no turbulence then we expect S̃ = Sm. In this case, we also expect the flow to be smooth and νeddy should be
zero (recall the overall viscosity is ν + νeddy). This requirement fixes the value of A = −1. Then we finally obtain

νeddy = ∆2
[S̃(y+) − Sm(y+)] (398)

xpression (398) is referred to as shear improved Smagorinsky model (SISM), its idea was originally proposed in [126] and
t was first tested on a backward-facing step in [135] and later also on channel flow turbulence [134]. The SISM model
equires the knowledge of the ‘‘instantaneous’’ average shear, something that can easily be estimated e.g. via adaptive
ow-pass Kalman filter [136]. The SISM model can be used in numerical simulations with excellent results. In Fig. 86 we
how the velocity profile obtained by using (398) a rather popular model for eddy viscosity and DNS. The agreement
s quite excellent. Overall one can obtain an accurate simulation of turbulent channel flows with a computational cost
educed by a factor 50.
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Fig. 85. In the experimental boundary layer at z+
= 102. SF and ISF, compensated by homogeneous and isotropic scalings, are displayed for p=1 . . . 6.

ource: Reproduced from [126].

Fig. 86. (•) mean-velocity profile (in wall units) at Reτ = 395. The computational domain (in outer units) is 4πH × 2H × 2πH with 64 × 65 × 64
rid points. In comparison with (-) the Dns data obtained in the domain 2πH × 2H ×πH with 256× 193× 192 grid points, and (△) a computation
f the dynamic Smagorinsky model carried out by Piomelli (private communication) in the domain 5πH/2 × 2H × πH/2 with 48 × 49 × 48 grid
oints (using a pseudo-spectral solver). (b) (•) mean-velocity profile at Reτ = 590 with 96 × 97 × 96 grid points. In comparison with (-) the DNS
ata with 384 × 257 × 384 grid points.
ource: Reproduced from [134].

ecture 8.5. Summary of Lecture 8

In this lecture, we have discussed two different cases concerning homogeneous non-isotropic turbulence:

A how to disentangle in the statistical properties of turbulence isotropic contribution from non-isotropic components;
B how to investigate scaling and intermittency in shear flows.

t is important to realise the basic difference between the two cases: at variance with (A), in case (B) the external shear
ntroduces a dynamical scale L and we focus on scaling and intermittency on scales larger than L for L small with
S S S

101



R. Benzi and F. Toschi Physics Reports 1021 (2023) 1–106

r
o
a
c
t

t
R
h
ϵ
i
t
i

o
t
a

C

t
p
c
i
s
a
s
i
h
o
b

t
p
o
e
w

w
m
s

r
i
s
K
T
r
e

m
o
d
(

w
3
d
t
f
f

espect to the domain size L0, i.e. in the shear dominated range of scales. This result is nicely supported by the study
f homogeneous shear flow in passive scalar turbulence using Kraichnan’s model. In case (A) we consider the effect of
nisotropy for small scales. The two cases are somehow complementary. Also, shear flows are just one, although important,
ase of non-isotropic turbulence, and the considerations developed in this lecture may be considered as a starting point
o consider different situations.

Having said that, we discussed many non-trivial results obtained in our analysis. First of all, we now understand
hat issue related to non-isotropic contributions to inertial range dynamics can be properly discussed for r → 0 and
e → ∞ using the SO(3) decomposition which provides well defined answers to the questions. Then we show that for
omogeneous shear flows and boundary layer turbulence, the statistical properties of coarse-grained energy dissipation
(r), in the shear dominated scales range, are the same of homogeneous and isotropic turbulence. We argue that this is an
mportant result that allows us to generalise the multifractal framework for these problems. As a side product, following
he original idea of Smagorinsky model for eddy viscosity, we discussed how to generalise the concept of eddy viscosity
n the shear dominated range of scales.

Altogether, the picture which emerge from our discussion, provided we take care of the proper generalisations, support
ur view of anomalous scaling and intermittency developed for homogeneous and isotropic turbulence and no new
heoretical framework is required. Whether this is always the case, i.e. for different classes of non-isotropic forcing, is
n open question.

onclusion

In this review, we mostly confine our discussions to the case of three-dimensional homogeneous and isotropic
urbulence. In this case, there is a general consensus and good experimental evidence that turbulence exhibits the
henomenon of the dissipative anomaly: by increasing the Reynolds (Re) number the rate of energy dissipation remains
onstant. This effect, also known by the name of zero-th law of turbulence or dissipative anomaly, implies that turbulence
s self-generating its own ultraviolet (small-scale) divergences: in the limit of large Re the velocity gradients become
ingular. Mathematically, it is not so strange that there is some singular behaviour when the viscosity goes to zero. After
ll, the viscous one is the only term that multiplies a second space derivative in the Navier–Stokes equations, and some
trange results in the limit of zero viscosity could be expected. In some sense, the most fundamental turbulence problem
s the explanation or the proof that the zeroth law of turbulence is exact. Actually, the problem of dissipative anomaly
as been solved for the passive scalar in Kraichnan’s model. Although far from the Navier–Stokes equations, the solution
f Kraichnan’s model tells us something interesting, and along this line, we can hope that some breakthrough results can
e obtained in the future.
We can also take a different point of view. We can start assuming that based on experimental and/or numerical results

he zeroth law of turbulence is exact. Then the question is whether there are still some problems to be solved. From this
oint of view, homogeneous and isotropic turbulence may be considered a rather narrow choice to investigate. Yet, one
bserves a rather rich and very non-trivial phenomenology in homogeneous isotropic turbulent flows which cannot be
xplained by the zeroth law: we must face the problem of intermittency. The first question we need to understand is
hether it is true or not that dissipative anomaly must be associated with intermittency for fluid phenomena.
No matter how one defines intermittency, the basic question (even for homogeneous and isotropic turbulence) is

hether intermittency is independent or not of the large-scale forcing and the detailed dissipation mechanism. In
ore abstract terms, we want to understand whether intermittency is independent of large-scale (infrared) forcing and
mall-scale (ultraviolet) cutoff. This is by far the most relevant and important question we need to solve.
Obviously, intermittency is observed and investigated in many different kinds of turbulent flows, for instance in

otating turbulence, magnetohydrodynamics, or two-phase flows. Yet we feel that only if we can answer this question
n the case of homogeneous and isotropic turbulence we can eventually approach the same problem in more complex
ituations. The case of passive scalar for Kraichnan’s model is illuminating. In fact, the original solution proposed by
raichnan is a balance between the effects due to inertial terms and those due to dissipation (in this case diffusivity).
his solution turns out to be wrong and the correct solution can be found in the anomalous scaling due to the inertial
ange dynamics. There are claims, suggestions, and/or speculations that something similar happens for the Navier–Stokes
quation.
Related to the above problem there is the problem to compute (at least in one case) the anomalous scaling exponents

easured in many laboratory experiments and numerical simulations. So far it is not very clear whether the computation
f anomalous exponents is a problem that needs radically new ideas in order to be solved. In other words, it strongly
epends on how the solution, if any, may be obtained, i.e. whether it opens a new approach to turbulence-like problems
e.g. as it has been for the renormalisation group) or not.

Although there may still be some debates, the multifractal description of turbulence had provided us, over the years,
ith a powerful tool to unify different results. We can now reasonably state that knowing the entropy-like function
− D(h) one may be able to compute all the scaling properties of turbulence variables, both in the inertial and in the
issipation range, for lagrangian as well as eulerian quantities. The only constraint in the multifractal approach is that
he quantities we are considering are invariant for the same group of transformations of the Navier–Stokes equation. So
ar, to our knowledge, there is no evidence of discrepancy with the above statement. At any rate, it is worth performing
urther investigation on this point.
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Obviously, there are still non-trivial questions that should be understood better. Among them, we would like to
ention two different issues. The first one is related to the spectacular agreement of the so-called Refined Kolmogorov
imilarity. In the multifractal approach, although never stated clearly, it is the basic assumption connecting the inertial
roperties and the dissipative phenomena in turbulence. For this problem, clearly observed in eulerian and lagrangian
ynamics, there is simply no explanation besides dimensional arguments.
The second problem, important in many applications, is related to the understanding of systems where large space non-

omogeneities lead to the presence of spatial fluxes, such as the heat flux in Rayleigh–Bénard convection, the momentum
lux and drag in turbulence boundary layers, and similar cases in MHD. In these systems, the zeroth law of turbulence
lone, may not be enough to quantitatively explain the observed phenomenology.
The homogeneous and isotropic case is the starting point to understand the complexity of turbulent flows. Assuming

hat we reached enough physical accuracy in understanding the statistical properties of homogeneous and isotropic
urbulence, we can now start from this basic knowledge to work on many other problems in turbulence. As an
xample, a few of the most relevant directions to be addressed include: thermally and density-driven flows [137–146],
agnetohydrodynamics (MHD) [147–151], combustion [152–154], plasma turbulence [155,156], geophysical and rotating

urbulence [157], superfluid turbulence [158,159], turbulence in complex and/or structured fluids [160–165], supersonic
urbulence [166].
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