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Abstract: In this paper we consider stability of large scale interconnected nonlinear systems
that satisfy a strict dissipativity property in terms of local storage and supply functions. Existing
compositional stability criteria certify global stability by constructing a global Lyapunov
function as the (weighted) sum of local storage functions. We generalize these results by unifying
spatial composition, i.e., (weighted) sum of local supply functions is neutral, with temporal
composition, i.e., (weighted) sum of supply functions over a time cycle is neutral. Two benchmark
examples illustrate the benefits of the developed compositional stability criteria in terms of
reducing conservatism and constrained distributed stabilization.
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1. INTRODUCTION

Dissipative dynamical systems and dissipation inequalities
formulated in terms of a storage function V and a supply
function s were originally introduced in (Willems, 1972),
as a generalization of Lyapunov’s inequality for open and
interconnected systems, i.e.,

V (x(k + 1))− V (x(k)) ≤ s(y(k), u(k), x(k)), k ∈ N.
Indeed, Lyapunov’s inequality corresponds to a specific
dissipation inequality, i.e.,

V (x(k + 1))− V (x(k)) ≤ −α(∥x(k)∥), k ∈ N,
for a positive definite storage function V and a class
K∞ real–valued function α. Initially, there has been some
interest in developing more general conditions than Lya-
punov’s inequality under which dissipativity or dissipation
inequalities imply asymptotic stability. One such condition
in terms of strongly passive supply functions was presented
in (Hill and Moylan, 1976), which can be reformulated as

V (x(k+1))−V (x(k)) ≤ −α(∥x(k)∥)+u(k)⊤y(k), k ∈ N,
and corresponds to a strictly passive system. For more
recent results we refer for example to (Arcak, 2007), the
survey on dissipation inequalities (Ebenbauer et al., 2009),
the overview of various dissipativity properties (Kotten-
stette and Antsaklis, 2010) and the books (Brogliato et al.,
2007) and (van der Schaft, 2017).

One of the most important application of dissipation
inequalities is structured stability analysis of large scale
interconnected systems, see, e.g., (Willems, 1976; Moylan
and Hill, 1978). The main idea around this approach,
which is still largely adopted, is to construct a global
Lyapunov function for interconnected systems by summing
up over local storage functions that satisfy local dissipation
inequalities. To illustrate this construction consider a finite
number of interconnected systems with local state xi and
global state x, which satisfy a local dissipation inequality
for all i:

Vi(xi(k + 1))− Vi(xi(k)) ≤ si(yi(k), ui(k), x(k)), k ∈ N.
By defining the global storage V =

∑
i Vi and supply s =∑

i si and by requiring that s(y(k), u(k), x(k)) ≤ 0 (i.e.,
global neutral supply) or s(y(k), u(k), x(k)) ≤ −α(∥x(k)∥)
(i.e., global negative definite supply) stability and asymp-
totic stability, respectively, of the interconnected systems
can be established from Lyapunov’s theorem with V as
a global Lyapunov function (see, e.g., (Jokic and Lazar,
2009) for results in discrete–time). More recently, in (Ar-
cak et al., 2016), a generalization of this stability criterion
was derived, by defining the global storage as a weighted
sum of local storage functions, i.e., V =

∑
i µiVi, µi > 0

for all i, which yields a less conservative global neutral
supply condition, since s =

∑
i µisi.

In (Gielen and Lazar, 2015), a simple example of a glob-
ally exponentially stable linear interconnected system was
given, which does not admit a set of structured dissipation
inequalities/supply functions that satisfy Willem’s global
neutral supply condition. This is the case, for example, if
all local systems have a positive supply for certain initial
conditions. Hence, there is still room for less conservative
stability criteria for interconnected dissipative systems.

To reduce conservatism, (Gielen and Lazar, 2015) intro-
duced a new type of dissipation inequalities, i.e.,

V (x(k +M))− ρV (x(k)) ≤ s(x(k)), k ∈ N,
where ρ < 1 is a strictly positive real number and
the integer M ≥ 1 is referred to as a finite–step. If
the supply function is non–positive, then V becomes a
non–monotonic, finite–step Lyapunov function from which
asymptotic stability can be inferred. Structured finite–
step dissipation inequalities together with a global neutral
supply condition were used in (Gielen and Lazar, 2015)
to obtain less conservative global stability criteria for
interconnected nonlinear systems.

In (Lazar, 2021), it was proven that for a positive definite
(storage) function V , finite–step Lyapunov inequalities,
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and Hill, 1978). The main idea around this approach,
which is still largely adopted, is to construct a global
Lyapunov function for interconnected systems by summing
up over local storage functions that satisfy local dissipation
inequalities. To illustrate this construction consider a finite
number of interconnected systems with local state xi and
global state x, which satisfy a local dissipation inequality
for all i:

Vi(xi(k + 1))− Vi(xi(k)) ≤ si(yi(k), ui(k), x(k)), k ∈ N.
By defining the global storage V =

∑
i Vi and supply s =∑

i si and by requiring that s(y(k), u(k), x(k)) ≤ 0 (i.e.,
global neutral supply) or s(y(k), u(k), x(k)) ≤ −α(∥x(k)∥)
(i.e., global negative definite supply) stability and asymp-
totic stability, respectively, of the interconnected systems
can be established from Lyapunov’s theorem with V as
a global Lyapunov function (see, e.g., (Jokic and Lazar,
2009) for results in discrete–time). More recently, in (Ar-
cak et al., 2016), a generalization of this stability criterion
was derived, by defining the global storage as a weighted
sum of local storage functions, i.e., V =

∑
i µiVi, µi > 0

for all i, which yields a less conservative global neutral
supply condition, since s =

∑
i µisi.

In (Gielen and Lazar, 2015), a simple example of a glob-
ally exponentially stable linear interconnected system was
given, which does not admit a set of structured dissipation
inequalities/supply functions that satisfy Willem’s global
neutral supply condition. This is the case, for example, if
all local systems have a positive supply for certain initial
conditions. Hence, there is still room for less conservative
stability criteria for interconnected dissipative systems.

To reduce conservatism, (Gielen and Lazar, 2015) intro-
duced a new type of dissipation inequalities, i.e.,

V (x(k +M))− ρV (x(k)) ≤ s(x(k)), k ∈ N,
where ρ < 1 is a strictly positive real number and
the integer M ≥ 1 is referred to as a finite–step. If
the supply function is non–positive, then V becomes a
non–monotonic, finite–step Lyapunov function from which
asymptotic stability can be inferred. Structured finite–
step dissipation inequalities together with a global neutral
supply condition were used in (Gielen and Lazar, 2015)
to obtain less conservative global stability criteria for
interconnected nonlinear systems.

In (Lazar, 2021), it was proven that for a positive definite
(storage) function V , finite–step Lyapunov inequalities,

i.e.,

V (x(k +M))− V (x(k)) ≤ −α(∥x(k)∥), k ∈ N,
and dissipation inequalities, i.e.,

V (x(k + 1))− V (x(k)) ≤ s(x(k)), k ∈ N,
are equivalent if the supply function s satisfies

M−1∑
i=0

s(x(k + i)) ≤ −α(∥x(k)∥).

The above cyclic condition requires that the sum of the
supply function over a discrete–time cycle, i.e., the time
interval [k, k +M − 1], is negative definite.

Motivated by the need of less conservative stability cri-
teria, in this paper we exploit cyclically neutral supply
conditions to derive generalized compositional stability cri-
teria for large scale interconnected systems. The developed
stability criteria unify spatial composition, i.e., (weighted)
sum of local supply functions is neutral, with temporal
composition, i.e., (weighted) sum of supply functions over
a time cycle is neutral. Two benchmark examples illustrate
the benefits of the developed compositional stability cri-
teria, in terms of reducing conservatism and constrained
distributed stabilization.

2. PRELIMINARIES

Let R, R+, Z and N denote the set of real numbers, the set
of non-negative reals, the set of integer numbers and the
set of non-negative integers, respectively. For every c ∈ R
and Π ⊆ R define Π≥c := {k ∈ Π | k ≥ c}. For a vector
x ∈ Rn, ∥ · ∥ denotes an arbitrary p-norm, p ∈ Z≥1 ∪∞.

A function φ : R+ → R+ belongs to class K if it is
continuous, strictly increasing and φ(0) = 0. A function
φ : R+ → R+ belongs to class K∞ if φ ∈ K and
limz→∞ φ(z) = ∞. A function β : R+ × R+ → R+

belongs to class KL if for each fixed k ∈ R+, β(·, k) ∈ K
and for each fixed z ∈ R>0, β(z, ·) is decreasing and
limk→∞ β(z, k) = 0. For any N ∈ N≥1, let {ξ1, . . . , ξN} ∈
Rn1×. . .×RnN and define col(ξ1, . . . , ξN ) := [ξ⊤1 , . . . , ξ⊤N ]⊤.

Lemma 1. Let ξ := col(ξ1, . . . , ξN ) and α ∈ K∞. Then it
holds that

α

(
1

N
∥ξ∥

)
≤

N∑
i=1

α(∥ξi∥) ≤ Nα(∥ξ∥).

For a proof of Lemma 1 we refer to (Gielen and Lazar,
2015, proof of Theorem 10).

Consider a discrete–time dynamical system

x(k + 1) = f(x(k), u(k))

y(k) = h(x(k), u(k)),
(1)

where k ∈ N and f : Rn×Rm → Rn, h : Rn×Rm → Ro are
suitable functions that are zero at zero. We assume that
the origin is a stabilizable equilibrium for (1). The system
variables are constrained to some sets with the origin in
their interior, i.e. (y, x, u) ∈ Y×X×U. Since we consider
constraints, the following standing assumption is made to
simplify the presentation of the results.

Assumption 2. For all x ∈ X, there exists a u := κ(x) ∈ U
with κ(0) = 0 such that (h(x, u), f(x, u)) ∈ Y× X.

A control law u(x(k)) := κ(x(k)), k ∈ N is called
admissible if it satisfies the properties of Assumption 2.

Definition 3. We call system (1) KL–asymptotically sta-
ble in X ⊆ Rn, or shortly, AS(X), if there exists a KL-
function β(·, ·) such that for all x(0) ∈ X it holds that

∥x(k)∥ ≤ β(∥x(0)∥, k), ∀k ∈ N≥1.

Definition 4. A real–valued function V : X ⊆ Rn → R+ is
called positive definite (in X) if there exist α1, α2 ∈ K∞
such that

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), ∀x ∈ X. (2)

For system (1) in closed–loop with an admissible state–
feedback control law u(k) := κ(x(k)) consider the follow-
ing discrete–time dissipation inequality

V (x(k+1))−V (x(k)) ≤ −α3(∥x(k)∥)+s(y(k), u(k), x(k)),
(3)

where V : Rn → R+ is a storage function, s : Ro × Rm ×
Rn → R is a supply function and α3 ∈ K∞. In this paper
we assume that V is positive definite, s is bounded on
bounded sets and s(0, 0, 0) = 0.

Definition 5. We call system (1) in closed–loop with the
state–feedback law u(k) = κ(x(k)) strictly dissipative in
X ⊆ Rn if there exists a pair of storage and supply
functions (V, s) such that the dissipation inequality (3)
holds for all x(0) ∈ X and all k ∈ N.

3. CYCLICALLY NEUTRAL SUPPLY CONDITIONS

In this section we will present a generalized condition on
the supply function s that implies asymptotic stability. To
this end, the following assumption is instrumental.

Assumption 6. Controlled K–boundedness: For the system
(1) dynamics f(·, ·) and any admissible state–feedback
control law u(k) = κ(x(k)) it holds that ∥f(x, κ(x))∥ ≤
σ(∥x∥) for all x ∈ X and some σ ∈ K∞.

Note that the above K–boundedness property is a neces-
sary condition for KL–asymptotic stability, as shown in
(Gielen and Lazar, 2015).

Theorem 7. Suppose that system (1) in closed–loop with
an admissible control law u(k) = κ(x(k)) satisfies Assump-
tion 6 and it is strictly dissipative in X with storage and
supply function (V, s), respectively. Suppose that there
exist M ∈ N≥1 and {µl}l∈N[0,M−1]

with µl > 0 for all
l ∈ N[0,M−1] such that

M−1∑
l=0

µls(y(k+l), u(k+l), x(k+l)) ≤ 0, ∀x(0) ∈ X, ∀k ∈ N.

(4)
Then system (3) is AS(X) in the sense of Definition 3.

Proof. For any x(k) ∈ X, k ∈ N, define the candidate
Lyapunov function

V̄ (x(k)) :=

M−1∑
l=0

µlV (x(k + l))

and observe that it satisfies

V̄ (x(k + 1))− V̄ (x(k)) ≤ −ᾱ3(∥x(k)∥),
where ᾱ3 := µ0α3 ∈ K∞. The above property is obtained
by multiplying the dissipation inequality (3) for x(k + l)
with µl for l = 0, . . . ,M−1, summing up and using (4) and

−
∑M−1

l=0 µlα3(∥x(k+ l)∥) ≤ −µ0α3(∥x(k)∥). By definition
it holds that V̄ (x(k)) ≥ ᾱ1(∥x(k)∥) with ᾱ1 := µ0α1. To
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i.e.,

V (x(k +M))− V (x(k)) ≤ −α(∥x(k)∥), k ∈ N,
and dissipation inequalities, i.e.,

V (x(k + 1))− V (x(k)) ≤ s(x(k)), k ∈ N,
are equivalent if the supply function s satisfies

M−1∑
i=0

s(x(k + i)) ≤ −α(∥x(k)∥).

The above cyclic condition requires that the sum of the
supply function over a discrete–time cycle, i.e., the time
interval [k, k +M − 1], is negative definite.

Motivated by the need of less conservative stability cri-
teria, in this paper we exploit cyclically neutral supply
conditions to derive generalized compositional stability cri-
teria for large scale interconnected systems. The developed
stability criteria unify spatial composition, i.e., (weighted)
sum of local supply functions is neutral, with temporal
composition, i.e., (weighted) sum of supply functions over
a time cycle is neutral. Two benchmark examples illustrate
the benefits of the developed compositional stability cri-
teria, in terms of reducing conservatism and constrained
distributed stabilization.

2. PRELIMINARIES

Let R, R+, Z and N denote the set of real numbers, the set
of non-negative reals, the set of integer numbers and the
set of non-negative integers, respectively. For every c ∈ R
and Π ⊆ R define Π≥c := {k ∈ Π | k ≥ c}. For a vector
x ∈ Rn, ∥ · ∥ denotes an arbitrary p-norm, p ∈ Z≥1 ∪∞.

A function φ : R+ → R+ belongs to class K if it is
continuous, strictly increasing and φ(0) = 0. A function
φ : R+ → R+ belongs to class K∞ if φ ∈ K and
limz→∞ φ(z) = ∞. A function β : R+ × R+ → R+

belongs to class KL if for each fixed k ∈ R+, β(·, k) ∈ K
and for each fixed z ∈ R>0, β(z, ·) is decreasing and
limk→∞ β(z, k) = 0. For any N ∈ N≥1, let {ξ1, . . . , ξN} ∈
Rn1×. . .×RnN and define col(ξ1, . . . , ξN ) := [ξ⊤1 , . . . , ξ⊤N ]⊤.

Lemma 1. Let ξ := col(ξ1, . . . , ξN ) and α ∈ K∞. Then it
holds that

α

(
1

N
∥ξ∥

)
≤

N∑
i=1

α(∥ξi∥) ≤ Nα(∥ξ∥).

For a proof of Lemma 1 we refer to (Gielen and Lazar,
2015, proof of Theorem 10).

Consider a discrete–time dynamical system

x(k + 1) = f(x(k), u(k))

y(k) = h(x(k), u(k)),
(1)

where k ∈ N and f : Rn×Rm → Rn, h : Rn×Rm → Ro are
suitable functions that are zero at zero. We assume that
the origin is a stabilizable equilibrium for (1). The system
variables are constrained to some sets with the origin in
their interior, i.e. (y, x, u) ∈ Y×X×U. Since we consider
constraints, the following standing assumption is made to
simplify the presentation of the results.

Assumption 2. For all x ∈ X, there exists a u := κ(x) ∈ U
with κ(0) = 0 such that (h(x, u), f(x, u)) ∈ Y× X.

A control law u(x(k)) := κ(x(k)), k ∈ N is called
admissible if it satisfies the properties of Assumption 2.

Definition 3. We call system (1) KL–asymptotically sta-
ble in X ⊆ Rn, or shortly, AS(X), if there exists a KL-
function β(·, ·) such that for all x(0) ∈ X it holds that

∥x(k)∥ ≤ β(∥x(0)∥, k), ∀k ∈ N≥1.

Definition 4. A real–valued function V : X ⊆ Rn → R+ is
called positive definite (in X) if there exist α1, α2 ∈ K∞
such that

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), ∀x ∈ X. (2)

For system (1) in closed–loop with an admissible state–
feedback control law u(k) := κ(x(k)) consider the follow-
ing discrete–time dissipation inequality

V (x(k+1))−V (x(k)) ≤ −α3(∥x(k)∥)+s(y(k), u(k), x(k)),
(3)

where V : Rn → R+ is a storage function, s : Ro × Rm ×
Rn → R is a supply function and α3 ∈ K∞. In this paper
we assume that V is positive definite, s is bounded on
bounded sets and s(0, 0, 0) = 0.

Definition 5. We call system (1) in closed–loop with the
state–feedback law u(k) = κ(x(k)) strictly dissipative in
X ⊆ Rn if there exists a pair of storage and supply
functions (V, s) such that the dissipation inequality (3)
holds for all x(0) ∈ X and all k ∈ N.

3. CYCLICALLY NEUTRAL SUPPLY CONDITIONS

In this section we will present a generalized condition on
the supply function s that implies asymptotic stability. To
this end, the following assumption is instrumental.

Assumption 6. Controlled K–boundedness: For the system
(1) dynamics f(·, ·) and any admissible state–feedback
control law u(k) = κ(x(k)) it holds that ∥f(x, κ(x))∥ ≤
σ(∥x∥) for all x ∈ X and some σ ∈ K∞.

Note that the above K–boundedness property is a neces-
sary condition for KL–asymptotic stability, as shown in
(Gielen and Lazar, 2015).

Theorem 7. Suppose that system (1) in closed–loop with
an admissible control law u(k) = κ(x(k)) satisfies Assump-
tion 6 and it is strictly dissipative in X with storage and
supply function (V, s), respectively. Suppose that there
exist M ∈ N≥1 and {µl}l∈N[0,M−1]

with µl > 0 for all
l ∈ N[0,M−1] such that

M−1∑
l=0

µls(y(k+l), u(k+l), x(k+l)) ≤ 0, ∀x(0) ∈ X, ∀k ∈ N.

(4)
Then system (3) is AS(X) in the sense of Definition 3.

Proof. For any x(k) ∈ X, k ∈ N, define the candidate
Lyapunov function

V̄ (x(k)) :=

M−1∑
l=0

µlV (x(k + l))

and observe that it satisfies

V̄ (x(k + 1))− V̄ (x(k)) ≤ −ᾱ3(∥x(k)∥),
where ᾱ3 := µ0α3 ∈ K∞. The above property is obtained
by multiplying the dissipation inequality (3) for x(k + l)
with µl for l = 0, . . . ,M−1, summing up and using (4) and

−
∑M−1

l=0 µlα3(∥x(k+ l)∥) ≤ −µ0α3(∥x(k)∥). By definition
it holds that V̄ (x(k)) ≥ ᾱ1(∥x(k)∥) with ᾱ1 := µ0α1. To
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establish an upper bound on V̄ , first notice that due to
Assumption 6, for any x ∈ X it holds that

V (f(x, κ(x))) ≤ α2(∥f(x, κ(x))∥) ≤ α2 ◦ σ(∥x∥),
where α2◦σ ∈ K∞. By exploiting this property repetitively
for all x(k + l), l = 1, . . . ,M − 1 and since the weighted
finite sum of K∞ functions is a K∞ function (for positive
weights) we obtain that there exists a ᾱ2 ∈ K∞ such that
V̄ (x(k)) ≤ ᾱ2(∥x(k)∥). The claim then follows via the
standard KL–stability and Lyapunov arguments. �

Remark 8. For the particular weights µl = 1 for all l =
0, . . . ,M − 1, the cyclically neutral condition (4) becomes

M−1∑
l=0

s(y(k + l), u(k + l), x(k + l)) ≤ 0, k ∈ N, (5)

which implies that the storage V is a finite–step Lyapunov
function, as shown in (Lazar, 2021). The generalized
cyclically neutral supply condition (4) no longer implies
that the storage V is a finite–step Lyapunov function,
which results in a significant decrease of conservatism, as
shown in Section 5. Also, the fact that V̄ defined in the
proof of Theorem 7 is a Lyapunov function does not imply
that the storage function V is a Lyapunov function, except
for the particular case when (4) holds with M = 1, i.e.,
V̄ = µ0V . Since µ0 > 0 suffices for positive definiteness of
V̄ , condition (4) can be further relaxed by allowing µl ≥ 0
for l = 1, . . . ,M − 1.

Remark 9. For a smooth storage function V , a continuous–
time version of (3) is provided by:

V̇ (x(t)) ≤ −α3(∥x(t)∥)+s(y(t), u(t), x(t)), t ∈ R+, (6)

which further implies

V (x(t2))− V (x(t1))

≤ −α3(∥x(t1)∥) +
∫ t2

t1

s(y(τ), u(τ), x(τ))dτ (7)

for all t2 > t1 ≥ 0 in R+. Then the cyclically neutral
supply condition (5) translates into∫ t+M

t

s(y(τ), u(τ), x(τ))dτ ≤ 0, t ∈ R+, (8)

for some M ∈ R>0. Checking condition (8) requires
knowledge of the system solution for a finite time, which
can be computed based on linearized dynamics see, e.g.,
(Doban and Lazar, 2018, Section IV).

4. COMPOSITIONAL STABILITY CRITERIA BASED
ON CYCLICALLY NEUTRAL SUPPLY CONDITIONS

Next we consider interconnected discrete–time systems

xi(k + 1) = fi(xi(k), ui(k), pi(k))

yi(k) = hi(xi(k), ui(k)),
(9)

where k ∈ N, fi : Rni × Rmi × Rqi → Rni , hi :
Rni × Rmi → Roi are suitable functions that are zero
at zero. Here i ∈ Nnet := {1, . . . , Nnet} is the index of
a local dynamical system which is interconnected with
other dynamical systems within a network described by
an arbitrary connected graph, see, e.g., (Jokic and Lazar,
2009). Nnet ∈ N≥1 represents the total number of systems
in the network.

The vector pi(k) that collects all the interconnection
variables for system i, i.e., all the variables shared with

other systems in the network. For simplicity of exposition
in this paper we assume that systems are interconnected
via shared state variables. Then, if we define Ni as the set
of indexes that correspond to the neighbors of system i,
i.e., systems which share variables with system i, we obtain

pi(k) := col({xj(k)}j∈Ni
).

We consider suitable local sets that constrain the variables
of system i, i.e. (y, x, u) ∈ Yi × Xi × Ui and admissible
feedback laws ui(k) := κi(xi(k), pi(k)) with κi(0, 0) = 0.
The complete network of dynamical systems can be repre-
sented as a global nonlinear system of the form (1), where
x(k) = col({xi(k)}i∈Nnet

), y(k) = col({yi(k)}i∈Nnet
) and

u(k) = κ(x(k)) = col({ui(k)}i∈Nnet
), with κ(x(k)) :=

col({κi(·, ·)}i∈Nnet
), and the functions fi, hi are appropri-

ately merged into the functions f, h.

For each system (9) in closed–loop with an admissible
state–feedback control law ui(k) := κi(xi(k), pi(k)) con-
sider the following discrete–time dissipation inequality

Vi(xi(k + 1))− Vi(xi(k))

≤ −αi,3(∥xi(k)∥) + si(yi(k), ui(k), pi(k)),
(10)

where Vi : Rni → R+ is a local positive definite storage
function with corresponding αi,1, αi,2 ∈ K∞ bounds, si :
Roi × Rmi × Rqi → R is a local supply function and
αi,3 ∈ K∞.

Definition 10. We call system (9) in closed–loop with
the state–feedback law ui(k) = κi(xi(k), pi(k)) strictly
dissipative in Xi ⊆ Rni with storage and supply function
(Vi, si), respectively, if the dissipation inequality (10) holds
for all xi(0) ∈ Xi, all xj(0) ∈ Xj , j ∈ Ni and all k ∈ N.

Next, we are ready to state the first main result for
inferring global stability of interconnected system from
local dissipation inequalities.

Theorem 11. Weighted–temporal–spatial composition Sup-
pose that: (a) for all i ∈ Nnet, local systems (9) in closed–
loop with admissible control laws ui(k) = κi(xi(k), pi(k))
are strictly dissipative in Xi with storage and supply
(Vi, si), respectively; (b) the corresponding closed–loop
global dynamics (1) satisfy Assumption 6 and (c) there
exist M ∈ N≥1, {µl}l∈N[0,M−1]

with µl > 0 for all l ∈
N[0,M−1], {ηi}i∈Nnet

with ηi > 0 for all i ∈ Nnet such that

M−1∑
l=0

µl

∑
i∈Nnet

ηisi(yi(k + l), ui(k + l), pi(k + l)) =

=
∑

i∈Nnet

ηi

M−1∑
l=0

µlsi(yi(k + l), ui(k + l), pi(k + l)) ≤ 0

(11)

for all xi(0), i ∈ Nnet, and all k ∈ N. Then the correspond-
ing closed–loop global system (3) is AS(X) in the sense of
Definition 3, with X := X1 × . . .× XNnet

.

Proof. Define V (x) :=
∑

i∈Nnet
ηiVi(x). By multiplying

(10) with ηi > 0, summing up over i ∈ Nnet and utilizing
Lemma 1 to construct a suitable α3 ∈ K∞ function, we
obtain

V (x(k+1))−V (x(k)) ≤ −α3(∥x(k)∥)+s(y(k), u(k), x(k)),

where

s(y(k), u(k), x(k)) :=
∑

i∈Nnet

ηisi(yi(k), ui(k), pi(k)).

Since by Lemma 1 we can construct class K∞ upper and
lower bounds on V (x) as a function of ∥x∥ with x the
global state vector, it follows that the storage and supply
pair (V, s) defined above satisfy the global dissipation
inequality (3). Since from (11) we have that

M−1∑
l=0

µl

∑
i∈Nnet

ηisi(yi(k + l), ui(k + l), pi(k + l))

=
M−1∑
l=0

µls(y(k + l), u(k + l), p(k + l)) ≤ 0,

and thus, the global supply s satisfies condition (4), the
claim then follows from Theorem 7. �

Corollary 12. Temporal–spatial composition Suppose that
the hypotheses (a) and (b) of Theorem 11 hold. Suppose
that there exists M ∈ N≥1 such that

M−1∑
l=0

∑
i∈Nnet

si(yi(k + l), ui(k + l), pi(k + l)) ≤ 0 (12)

for all xi(0), i ∈ Nnet and all k ∈ N. Then the correspond-
ing closed–loop global system (3) is AS(X) in the sense of
Definition 3, with X := X1 × . . .× XNnet

.

The above result directly follows from Theorem 11, for the
specific case of all weights equal to one. The merit of the
particular (with respect to (11)) condition (12) is that the
local dissipation inequalities (10) subject to (12) can be
verified using linear matrix inequalities (LMIs) for linear
interconnected systems and quadratic storage and supply.

4.1 Separable stability criteria for interconnected systems

In the linear case, verifying the stability conditions (10)–
(12) scales well due to the advances in semidefinite pro-
gramming solvers, such as MOSEK (ApS, 2019). However,
it is still of interest to obtain separable stability criteria,
because this allows for a modular design or reconfiguration
of networks. I.e., if a system is added or removed, it would
be of practical interest to certify global stability from
local neutral supply conditions rather than global neutral
supply conditions. To this end, we need to structure As-
sumption 6 for local dynamics.

Assumption 13. For the local system (9) dynamics fi(·, ·, ·)
and any admissible state–feedback control law ui(k) =
κi(xi(k), pi(k)) it holds that ∥fi(xi, κi(xi, pi), pi)∥ ≤
σi(∥x∥) with σi ∈ K∞, for all i ∈ Nnet and x ∈ X.
Theorem 14. Suppose that: (a) for all i ∈ Nnet, local
systems (9) in closed–loop with admissible control laws
ui(k) = κi(xi(k), pi(k)) are strictly dissipative in Xi

with storage and supply (Vi, si), respectively; (b) the
corresponding closed–loop local dynamics (9) and global
dynamics (1) satisfy Assumption 13 and Assumption 6,
respectively, and (c) there existMi ∈ N≥1, {µi,l}l∈N[0,Mi−1]

with µi,l > 0 for all l ∈ N[0,Mi−1], i ∈ Nnet, such that

Mi−1∑
l=0

µi,lsi(yi(k+l), ui(k+l), pi(k+l)) ≤ 0, k ∈ N, (13)

for all xi(0), i ∈ Nnet and all k ∈ N. Then the correspond-
ing closed–loop global system (1) is AS(X) in the sense of
Definition 3, with X := X1 × . . .× XNnet .

Proof. The proof relies on defining local candidate Lya-

punov functions V̄i(xi(k)) :=
∑Mi−1

l=0 µi,lVi(xi(k + l)) and
observing that they satisfy

V̄i(xi(k + 1))− V̄i(xi(k)) ≤ −µi,0αi,3(∥xi(k)∥),
via the same reasoning used in the proof of Theorem 7.
By definition, for all i ∈ Nnet it holds that V̄i(x(k)) ≥
ᾱi,1(∥xi(k)∥) with ᾱi,1 := µi,0αi,1, where the αi,1 ∈ K∞ is
the lower bound on the local storage Vi. To establish an
upper bound on V̄i, first notice that due to Assumption 13,
for any x ∈ X it holds that

Vi(fi(xi, κi(xi, pi), pi)) ≤ αi,2(∥fi(xi, κi(xi, pi), pi)∥)
≤ αi,2 ◦ σi(∥x∥),

where α2,i ◦ σi ∈ K∞ and α2,i ∈ K∞ is the upper bound
on the local storage Vi. For all i ∈ Nnet and all xi(k + l),
l = 0, . . . ,Mi − 2, the above property yields:

Vi(xi(k + l + 1)) ≤
αi,2(∥fi(xi(k + l), κi(xi(k + l), pi(k + l)), pi(k + l))∥)
≤ αi,2 ◦ σi(∥x(k + l)∥) ≤ αi,2 ◦ σi ◦ σl(∥x(k)∥),

where the last inequality follows from Assumption 6 and σl

denotes the l–times composition of the function σ. Since
αi,2 ◦ σi ◦ σl ∈ K∞ for any l = 0, . . . ,Mi − 2, we have

that V̄i(xi(k)) =
∑Mi−1

l=0 µi,lVi(xi(k+ l)) is upper bounded
by a finite sum of K∞ functions of ∥x∥, which in turn is
a K∞ function of ∥x∥. Then from Lemma 1 we obtain
that V (x(k)) :=

∑
i∈Nnet

V̄i(xi(k)) is a global Lyapunov

function for system (1) and the claim follows via standard
KL–stability and Lyapunov arguments. �

Corollary 15. Suppose that the hypotheses (a) and (b) of
Theorem 14 hold. Suppose that there exist Mi ∈ N≥1 such
that

Mi−1∑
l=0

si(yi(k + l), ui(k + l), pi(k + l)) ≤ 0 (14)

for all xi(0), i ∈ Nnet and all k ∈ N. Then the correspond-
ing closed–loop global system (1) is AS(X) in the sense of
Definition 3, with X := X1 × . . .× XNnet

.

The above result directly follows from Theorem 14, for the
specific case of all weights equal to one.

Remark 16. The separable cyclically neutral supply con-
ditions (13) can be verified as follows for linear intercon-
nected systems. First, for given linear local state–feedback
controllers (or for autonomous linear systems), quadratic
storage and supply, the local dissipation inequalities (10)
can be verified by solving an LMI. Then for any fixed Mi,
verifying (13) for the resulting local supply functions is
also an LMI. Condition (14) can be merged together with
(10) as a single local LMI, but using unitary weights is
conservative, as shown in the next section. In contrast,
conditions (13) are feasible for both examples tested in this
paper, which shows the importance of using non–unitary
weights in cyclically neutral supply conditions.

5. ILLUSTRATIVE EXAMPLES

Example 1 Consider first the simple, but insightful linear
system example put forward in (Gielen and Lazar, 2015):

x(k + 1) = Ax(k), k ∈ N, A =

(
1 −0.5
1 0

)
.
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Since by Lemma 1 we can construct class K∞ upper and
lower bounds on V (x) as a function of ∥x∥ with x the
global state vector, it follows that the storage and supply
pair (V, s) defined above satisfy the global dissipation
inequality (3). Since from (11) we have that

M−1∑
l=0

µl

∑
i∈Nnet

ηisi(yi(k + l), ui(k + l), pi(k + l))

=
M−1∑
l=0

µls(y(k + l), u(k + l), p(k + l)) ≤ 0,

and thus, the global supply s satisfies condition (4), the
claim then follows from Theorem 7. �

Corollary 12. Temporal–spatial composition Suppose that
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∑
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.
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Proof. The proof relies on defining local candidate Lya-
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observing that they satisfy
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via the same reasoning used in the proof of Theorem 7.
By definition, for all i ∈ Nnet it holds that V̄i(x(k)) ≥
ᾱi,1(∥xi(k)∥) with ᾱi,1 := µi,0αi,1, where the αi,1 ∈ K∞ is
the lower bound on the local storage Vi. To establish an
upper bound on V̄i, first notice that due to Assumption 13,
for any x ∈ X it holds that

Vi(fi(xi, κi(xi, pi), pi)) ≤ αi,2(∥fi(xi, κi(xi, pi), pi)∥)
≤ αi,2 ◦ σi(∥x∥),

where α2,i ◦ σi ∈ K∞ and α2,i ∈ K∞ is the upper bound
on the local storage Vi. For all i ∈ Nnet and all xi(k + l),
l = 0, . . . ,Mi − 2, the above property yields:
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where the last inequality follows from Assumption 6 and σl

denotes the l–times composition of the function σ. Since
αi,2 ◦ σi ◦ σl ∈ K∞ for any l = 0, . . . ,Mi − 2, we have

that V̄i(xi(k)) =
∑Mi−1

l=0 µi,lVi(xi(k+ l)) is upper bounded
by a finite sum of K∞ functions of ∥x∥, which in turn is
a K∞ function of ∥x∥. Then from Lemma 1 we obtain
that V (x(k)) :=

∑
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function for system (1) and the claim follows via standard
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for all xi(0), i ∈ Nnet and all k ∈ N. Then the correspond-
ing closed–loop global system (1) is AS(X) in the sense of
Definition 3, with X := X1 × . . .× XNnet

.

The above result directly follows from Theorem 14, for the
specific case of all weights equal to one.

Remark 16. The separable cyclically neutral supply con-
ditions (13) can be verified as follows for linear intercon-
nected systems. First, for given linear local state–feedback
controllers (or for autonomous linear systems), quadratic
storage and supply, the local dissipation inequalities (10)
can be verified by solving an LMI. Then for any fixed Mi,
verifying (13) for the resulting local supply functions is
also an LMI. Condition (14) can be merged together with
(10) as a single local LMI, but using unitary weights is
conservative, as shown in the next section. In contrast,
conditions (13) are feasible for both examples tested in this
paper, which shows the importance of using non–unitary
weights in cyclically neutral supply conditions.

5. ILLUSTRATIVE EXAMPLES

Example 1 Consider first the simple, but insightful linear
system example put forward in (Gielen and Lazar, 2015):

x(k + 1) = Ax(k), k ∈ N, A =

(
1 −0.5
1 0

)
.
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This stable linear system can be written as the intercon-
nection of an unstable and a stable linear system, i.e.,

x1(k + 1) = x1(k)− 0.5x2(k) = A1x(k), A1 := (1 −0.5)

x2(k + 1) = 0 ∗ x2(k) + x1(k) = A2x(k), A2 := (1 0) .

Next, we define

Vi(xi) = x⊤
i Pixi, Qi = 0.01, si(x) = x⊤Six, i = 1, 2.

The dissipation inequalities (10) yield the following LMIs:

A⊤
1 P1A1 −

(
P1 0
0 0

)
≤ −

(
Q1 0
0 0

)
+ S1, P1 ≥ 0.1, (15a)

A⊤
2 P2A2 −

(
0 0
0 P2

)
≤ −

(
0 0
0 Q2

)
+ S2, P2 ≥ 0.1. (15b)

For M = 3, the condition (12) yields the LMI:

(A2)⊤(S1 +S2)A
2 +A⊤(S1 +S2)A+(S1 +S2) ≤ 0. (16)

The LMIs (15)-(16) were solved using YALMIP (Lofberg,
2004) and MOSEK (ApS, 2019), yielding

P1 = 2.1028, S1 =

(
0.1561 −1.1394
−1.1394 0.6232

)
,

P2 = 1.5381, S2 =

(
1.6842 −0.0880
−0.0880 −1.4306

)
, (17)

which successfully certifies stability. In comparison, the
neutral supply condition corresponding to (Willems, 1976)
is S1 + S2 ≤ 0. Solving (15) with this condition yields an
LMI, which turned out infeasible. The weighted neutral
supply condition corresponding to (Arcak et al., 2016)
is η1S1 + η2S2 ≤ 0, η1 > 0, η2 > 0. Solving (15) with
this condition is a bilinear matrix inequality. Instead, we
searched for weights η1 > 0, η2 > 0 that satisfy η1S1 +
η2S2 ≤ 0 for the S1, S2 in (17), which turned out infeasible.

Next, we test the separable stability conditions (14),
which correspond to the case when the local storage Vi

is a finite–step Lyapunov function. This can be done by
solving the LMIs (15a) and (15b) separately, each with
the corresponding additional LMI:

(AM−1)⊤SiA
M−1 + . . .+A⊤SiA+ Si ≤ 0, i = 1, 2.

These conditions remained infeasible despite increasing
M . Next, we illustrate the effectiveness of the weighted
separable stability conditions (13) inspired by (Arcak
et al., 2016). For Mi = 3, i = 1, 2, these conditions yield
the BMIs:

µi,2(A
2)⊤SiA

2 + µi,1A
⊤SiA+ µi,0Si ≤ 0, (18)

µi,l ≥ 0.01 for l = 0, 1, 2. To avoid solving BMIs, we
first solve the LMIs (15a) and (15b) independently, while
minimizing trace(Si), respectively, which yields:

P1 = 0.1000, S1 =

(
0.0100 −0.0500
−0.0500 0.0250

)
,

P2 = 1.3071, S2 =

(
1.3071 0

0 −1.2971

)
.

Then we can fix Si with the above values in (18), which
results in LMIs, and yields the weights:

µ1,0 = 0.9943, µ1,1 = 0.8114, µ1,2 = 2.1454,

µ2,0 = 0.5698, µ2,1 = 0.7725, µ2,2 = 1.3695.

This successfully certifies stability in a separable way,
i.e., LMIs for each subsystem are solved independently,
without any coupling constraint.

The stability criteria (12) and (13) can be formulated via
LMIs for general interconnected linear systems by using
the approach in (Gielen and Lazar, 2015, Section 3.2);
the complete derivations will be included in an extended
version of this paper, due to space limitations.

Example 2 Consider next the simplified dynamics (Dörfler
et al., 2013), (Lazar, 2021), of angle (xi,1 = θi) and fre-
quency (xi,2 = ωi) deviations for 4 synchronous generators
interconnected within a ring network:

xi(k+1) = Aixi(k)+Biui(k)+Ei

∑
j∈Ni

sin(xi,1(k)−xj,1(k)),

(19)
where for all i = 1, . . . , 4,

Ai =

(
1 31.4159
0 0.9990

)
, Bi =

(
0

0.01

)
, Ei =

(
0

−0.005

)
,

N1 = N3 = {2, 4} and N2 = N4 = {1, 3}. The generator
dynamics are open–loop unstable.

Next, we consider the local storage functions Vi(xi) :=

x⊤
i Qxi with Q =

(
0.1 0
0 10

)
for all i and we construct

for each generator a nonlinear model predictive controller
(NMPC) that optimizes the achievable supply at each time
instant k ∈ N, while minimizing a cost function that sums
up its local storage over a prediction horizon N , i.e.,

min
ui(k)

N−1∑
j=0

Vi(xi(j|k)) + λisi(k) (20a)

subject to constraints:

Vi(xi(1|k))− Vi(xi(0|k)) ≤ −0.1x⊤
i (k)Qxi(k) + si(k)

(20b)

xi(0|k) = xi(k),

xi(j + 1|k) = fi(x(j|k), ui(j|k)), ∀j ∈ N[0,N−2], (20c)

(xi(j + 1|k), ui(j|k)) ∈ Xi × Ui, ∀j ∈ N[0,N−2]. (20d)

Above, ui(k) = {ui(0|k), . . . , ui(N − 2|k)} are the pre-
dicted control inputs and {xi(1|k), . . . , xi(N − 1|k)} are
the corresponding predicted states. As typically done in
distributed NMPC, we assume that at each time instant
k, each NMPC communicates with its neighbors and trans-
mits a shifted sequence based on the optimal state trajec-
tory computed at k − 1, i.e.,

{xi(k), x
∗
i (2|k), . . . , x∗

i (N − 1|k), x∗
i (N − 1|k)}.

This information is required in (20c), where fi(·, ·) corre-
sponds to the right–hand side in (19). Because the first
state in the shifted sequence is the actual measured state
at time k, the prediction xi(1|k) will be exact for each
NMPC and hence, constraint (20b) ensures local strict dis-
sipativity along closed–loop trajectories with the dynamic
supply si(k). Notice that the dynamic supply weighted
by λi = 10 for all i is minimized in the cost (20a). For
all i we use the sets Ui := {ui ∈ R : |ui| ≤ 5} and
Xi := {xi ∈ R2 : ∥xi∥∞ ≤ 10}. The initial conditions
are x1(0) = x3(0) = [0, −0.142]⊤ and x2(0) = x4(0) =
[0, 0.142]⊤, which puts the interconnected systems at the
limit of the frequency deviations that can be handled under
the given constraints.

In Figure 1 we plot the closed–loop trajectories for N = 4.
Constraints are satisfied at all times and the distributed
NMPC scheme successfully stabilizes the interconnected
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Fig. 2. Example 2 : Supply trajectories.

generators. In Figure 2 we provide the corresponding dy-
namic supply trajectories and the weighted cyclic supplies

wi(k) :=
∑Mi−1

l=0 µi,lsi(k + l) with Mi = 5 for all i and

µi,0 = µi,1 = µi,2 = µi,3 = 0.1, µi,4 = 1, for i = 1, 2, 3,

µ4,0 = µ4,1 = 0.01, µ4,2 = µ4,3 = 0.1, µ4,4 = 1.

Minimizing λisi(k) has a damping effect on the closed–
loop system trajectories and reduces the control effort,
despite not penalizing the control inputs.

As visible in Figure 2, si(k) > 0 for all i and k = 0, 1, 2
and thus, the conditions corresponding to (Willems, 1976),
(Arcak et al., 2016) do not hold. Also, the cyclically neutral
supply conditions (14), which require that each Vi is a
local finite–step Lyapunov function, do not hold even for
Mi = 10. In constrast, the weighted cyclically neutral
supply conditions (13) hold with Mi = 5 and the weights
given above, as shown in the bottom plot in Figure 2.

6. CONCLUSIONS

In this paper we have considered stability of large scale
interconnected nonlinear dissipative systems. We have
developed generalized compositional stability criteria for

interconnected dissipative systems by means of cyclically
neutral supply conditions. The resulting stability criteria
are less conservative and scale well with the network
size. For future work is particularly of interest to utilize
the developed stability criteria for solving the stability
problems arising in current/future smart grids.
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Switzerland, European Mathematical Society.

Gielen, R.H. and Lazar, M. (2015). On stability analysis
methods for large-scale discrete-time systems. Automat-
ica, 55, 66–72. doi:10.1016/j.automatica.2015.02.034.

Hill, D. and Moylan, P. (1976). The stability of nonlinear
dissipative systems. IEEE Transactions on Automatic
Control, 21(5), 708–711.

Jokic, A. and Lazar, M. (2009). On decentralized stabi-
lization of discrete-time nonlinear systems. In American
Control Conference, 5777–5782.

Kottenstette, N. and Antsaklis, P.J. (2010). Relationships
between positive real, passive dissipative, & positive
systems. In Proceedings of the 2010 American Control
Conference, 409–416.

Lazar, M. (2021). Stabilization of discrete–time nonlinear
systems based on control dissipation functions. In
60th IEEE Conference on Decision and Control (CDC),
3179–3185.

Lofberg, J. (2004). Yalmip : A toolbox for model-
ing and optimization in MATLAB. In Proceedings
of the CACSD Conference. Taipei, Taiwan. URL
http://users.isy.liu.se/johanl/yalmip.

Moylan, P. and Hill, D. (1978). Stability criteria for
large-scale systems. IEEE Transactions on Automatic
Control, 23(2), 143–149.

van der Schaft, A. (2017). L2-gain and passivity techniques
in nonlinear control, 3rd Edition. Springer.

Willems, J.C. (1972). Dissipative dynamical systems part
i: General theory. Arch. Rational Mech. Anal., 45, 321–
351.

Willems, J.C. (1976). Stability of large scale interconnected
systems. Ho Y.C., Mitter S.K. (eds) Directions in Large-
Scale Systems. Springer, Boston, MA.



 Mircea Lazar  et al. / IFAC PapersOnLine 55-30 (2022) 144–149 149

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

A
n
g
le

1

2

3

4

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

F
re

q
u
e
n
c
y 1

2

3

4

0 2 4 6 8 10 12 14 16 18 20

Discrete-time instant

-5

0

5

In
p
u
t

u
1

u
2

u
3

u
4

Fig. 1. Example 2 : State and input trajectories, N = 4.

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

S
u
p
p
ly

s
1

s
2

s
3

s
4

0 2 4 6 8 10 12 14 16 18 20

Discrete-time instant

-4

-3

-2

-1

0

W
e
ig

te
d
 c

y
c
lic

 s
u
p
p
ly

w
1

w
2

w
3

w
4

Fig. 2. Example 2 : Supply trajectories.

generators. In Figure 2 we provide the corresponding dy-
namic supply trajectories and the weighted cyclic supplies

wi(k) :=
∑Mi−1

l=0 µi,lsi(k + l) with Mi = 5 for all i and

µi,0 = µi,1 = µi,2 = µi,3 = 0.1, µi,4 = 1, for i = 1, 2, 3,

µ4,0 = µ4,1 = 0.01, µ4,2 = µ4,3 = 0.1, µ4,4 = 1.

Minimizing λisi(k) has a damping effect on the closed–
loop system trajectories and reduces the control effort,
despite not penalizing the control inputs.

As visible in Figure 2, si(k) > 0 for all i and k = 0, 1, 2
and thus, the conditions corresponding to (Willems, 1976),
(Arcak et al., 2016) do not hold. Also, the cyclically neutral
supply conditions (14), which require that each Vi is a
local finite–step Lyapunov function, do not hold even for
Mi = 10. In constrast, the weighted cyclically neutral
supply conditions (13) hold with Mi = 5 and the weights
given above, as shown in the bottom plot in Figure 2.

6. CONCLUSIONS

In this paper we have considered stability of large scale
interconnected nonlinear dissipative systems. We have
developed generalized compositional stability criteria for

interconnected dissipative systems by means of cyclically
neutral supply conditions. The resulting stability criteria
are less conservative and scale well with the network
size. For future work is particularly of interest to utilize
the developed stability criteria for solving the stability
problems arising in current/future smart grids.
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