

sNMPC

Citation for published version (APA):
Eyüboglu, M., & Lazar, M. (2022). sNMPC: A Matlab Toolbox for Computing Stabilizing Terminal Costs and
Sets. IFAC-PapersOnLine, 55(30), 19-24. https://doi.org/10.1016/j.ifacol.2022.11.022

Document license:
CC BY-NC-ND

DOI:
10.1016/j.ifacol.2022.11.022

Document status and date:
Published: 01/01/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1016/j.ifacol.2022.11.022
https://doi.org/10.1016/j.ifacol.2022.11.022
https://research.tue.nl/en/publications/28fc3ce5-8ea9-4751-b212-9bd17f0a7edf

IFAC PapersOnLine 55-30 (2022) 19–24

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.11.022

10.1016/j.ifacol.2022.11.022 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

sNMPC: A Matlab Toolbox for Computing
Stabilizing Terminal Costs and Sets

Mert Eyüboğlu ∗ Mircea Lazar ∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mails: m.eyuboglu@student.tue.nl, m.lazar@tue.nl).

Abstract: This paper presents a Matlab toolbox that implements methods for computing
stabilizing terminal costs and sets for nonlinear model predictive control (NMPC). Given a
discrete–time nonlinear model provided by the user, the toolbox computes quadratic/ellipsoidal
terminal costs/sets and local control laws for the following options: (i) cyclically time–varying
or standard terminal ingredients; (ii) first or quasi–second order Taylor approximation of the
dynamics; (iii) linear or nonlinear local control laws. The YALMIP toolbox and the MOSEK
solver are used for solving linear matrix inequalities and the IPOPT solver (with global search)
is used for nonlinear programming. Simulation of the resulting stabilizing NMPC algorithms is
provided using the CasADi toolbox.

Keywords: Stability of nonlinear systems, nonlinear predictive control, terminal costs and sets.

1. INTRODUCTION

The most common constructive approach for guaranteeing
stability within the nonlinear model predictive control
(NMPC) framework is to introduce stabilizing terminal
ingredients (i.e., terminal costs and sets). Typically, the
terminal set and the terminal cost are chosen as an invari-
ant set and a control Lyapunov function, respectively. It is
already possible to compute these terminal ingredients via
the MPT3 toolbox (Herceg et al., 2013) for linear time–
invariant, piecewise affine and mixed logical dynamical
systems. However, computation of terminal ingredients for
nonlinear systems remains as an open problem of interest.

The most common approach is to first compute terminal
ingredients for linearized dynamics and then compensate
for the approximation error. Such methods for continuous–
time systems can be found in (Michalska and Mayne,
1993), (Chen and Allgöwer, 1998) and (Chen et al., 2003).
A discrete–time equivalent of the same correction method
was worked out in (Kwon and Han, 2005) and (Yu et al.,
2015). An improvement of this method for continuous–
time and discrete–time systems was presented in (Ra-
jhans et al., 2016) and (Rajhans et al., 2019), respec-
tively, by introducing additional degrees of freedom for
shaping the terminal sets. Other approaches, (Hu and
Chen, 2007) and (Darup and Cannon, 2015), use linear
difference inclusions (LDIs) to approximate the nonlinear
dynamics. Another method for continuous–time NMPC
(Lucia et al., 2015) uses higher order Taylor series expan-
sions and sum–of–squares techniques to further alleviate
conservatism. In (Lazar and Tetteroo, 2018) a framework
for computing cyclically time–varying terminal ingredients
for discrete–time NMPC was developed based on finite–
step control Lyapunov functions (Lazar and Spinu, 2015).
(Fitri and Kim, 2020) presented a method for increasing
the domain of attraction of NMPC by combining multiple
ellipsoidal terminal sets.

Following the advances in nonlinear programming (NLP),
toolboxes such as MATMPC (Chen et al., 2019) or the
Matlab MPC Toolbox now have modules for efficient im-
plementation of NMPC. In addition to these, it is possi-
ble to define and solve NMPC problems with optimiza-
tion toolboxes such as YALMIP (Löfberg, 2004), CasADi
(Andersson et al., 2018), ACADO (Houska et al., 2011),
etc. However, these toolboxes do not feature methods for
computing stabilizing terminal ingredients for NMPC.

This paper presents a Matlab toolbox for computing stabi-
lizing terminal ingredients for discrete–time NMPC, which
builds on the framework of (Lazar and Tetteroo, 2018).
The stabilizing NMPC (sNMPC) toolbox computes ellip-
soidal terminal sets and quadratic terminal cost functions
for NMPC with the following design choices: (i) cyclically
time–varying or standard terminal ingredients; (ii) first or
quasi–second order Taylor approximation of the nonlin-
ear dynamics; (iii) linear or nonlinear local control laws.
The sNMPC toolbox utilizes the following toolboxes and
solvers: YALMIP (Löfberg, 2004) for defining optimiza-
tion problems; MOSEK (ApS, 2019) for solving LMIs;
(Wächter and Biegler, 2006) with a multistart method for
solving nonlinear optimization problems. OPTI Toolbox
(Currie and Wilson, 2012) is used for enabling the interface
between YALMIP and IPOPT. The Ellipsoidal Toolbox
(Kurzhanskiy and Varaiya, 2006) is used for plotting the
ellipsoidal terminal sets as well as for computing their vol-
umes. Furthermore, the polytopic library of MPT3 (Herceg
et al., 2013) is used for plotting polytopic admissible sets.
The CasADi nonlinear optimization toolbox (Andersson
et al., 2018) is utilized for simulating the stabilizing NMPC
algorithms.

2. THEORETICAL FOUNDATION

Consider a discrete–time nonlinear system

x(k + 1) = ϕ(x(k), u(k)), k ∈ N, (1)

sNMPC: A Matlab Toolbox for Computing
Stabilizing Terminal Costs and Sets

Mert Eyüboğlu ∗ Mircea Lazar ∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mails: m.eyuboglu@student.tue.nl, m.lazar@tue.nl).

Abstract: This paper presents a Matlab toolbox that implements methods for computing
stabilizing terminal costs and sets for nonlinear model predictive control (NMPC). Given a
discrete–time nonlinear model provided by the user, the toolbox computes quadratic/ellipsoidal
terminal costs/sets and local control laws for the following options: (i) cyclically time–varying
or standard terminal ingredients; (ii) first or quasi–second order Taylor approximation of the
dynamics; (iii) linear or nonlinear local control laws. The YALMIP toolbox and the MOSEK
solver are used for solving linear matrix inequalities and the IPOPT solver (with global search)
is used for nonlinear programming. Simulation of the resulting stabilizing NMPC algorithms is
provided using the CasADi toolbox.

Keywords: Stability of nonlinear systems, nonlinear predictive control, terminal costs and sets.

1. INTRODUCTION

The most common constructive approach for guaranteeing
stability within the nonlinear model predictive control
(NMPC) framework is to introduce stabilizing terminal
ingredients (i.e., terminal costs and sets). Typically, the
terminal set and the terminal cost are chosen as an invari-
ant set and a control Lyapunov function, respectively. It is
already possible to compute these terminal ingredients via
the MPT3 toolbox (Herceg et al., 2013) for linear time–
invariant, piecewise affine and mixed logical dynamical
systems. However, computation of terminal ingredients for
nonlinear systems remains as an open problem of interest.

The most common approach is to first compute terminal
ingredients for linearized dynamics and then compensate
for the approximation error. Such methods for continuous–
time systems can be found in (Michalska and Mayne,
1993), (Chen and Allgöwer, 1998) and (Chen et al., 2003).
A discrete–time equivalent of the same correction method
was worked out in (Kwon and Han, 2005) and (Yu et al.,
2015). An improvement of this method for continuous–
time and discrete–time systems was presented in (Ra-
jhans et al., 2016) and (Rajhans et al., 2019), respec-
tively, by introducing additional degrees of freedom for
shaping the terminal sets. Other approaches, (Hu and
Chen, 2007) and (Darup and Cannon, 2015), use linear
difference inclusions (LDIs) to approximate the nonlinear
dynamics. Another method for continuous–time NMPC
(Lucia et al., 2015) uses higher order Taylor series expan-
sions and sum–of–squares techniques to further alleviate
conservatism. In (Lazar and Tetteroo, 2018) a framework
for computing cyclically time–varying terminal ingredients
for discrete–time NMPC was developed based on finite–
step control Lyapunov functions (Lazar and Spinu, 2015).
(Fitri and Kim, 2020) presented a method for increasing
the domain of attraction of NMPC by combining multiple
ellipsoidal terminal sets.

Following the advances in nonlinear programming (NLP),
toolboxes such as MATMPC (Chen et al., 2019) or the
Matlab MPC Toolbox now have modules for efficient im-
plementation of NMPC. In addition to these, it is possi-
ble to define and solve NMPC problems with optimiza-
tion toolboxes such as YALMIP (Löfberg, 2004), CasADi
(Andersson et al., 2018), ACADO (Houska et al., 2011),
etc. However, these toolboxes do not feature methods for
computing stabilizing terminal ingredients for NMPC.

This paper presents a Matlab toolbox for computing stabi-
lizing terminal ingredients for discrete–time NMPC, which
builds on the framework of (Lazar and Tetteroo, 2018).
The stabilizing NMPC (sNMPC) toolbox computes ellip-
soidal terminal sets and quadratic terminal cost functions
for NMPC with the following design choices: (i) cyclically
time–varying or standard terminal ingredients; (ii) first or
quasi–second order Taylor approximation of the nonlin-
ear dynamics; (iii) linear or nonlinear local control laws.
The sNMPC toolbox utilizes the following toolboxes and
solvers: YALMIP (Löfberg, 2004) for defining optimiza-
tion problems; MOSEK (ApS, 2019) for solving LMIs;
(Wächter and Biegler, 2006) with a multistart method for
solving nonlinear optimization problems. OPTI Toolbox
(Currie and Wilson, 2012) is used for enabling the interface
between YALMIP and IPOPT. The Ellipsoidal Toolbox
(Kurzhanskiy and Varaiya, 2006) is used for plotting the
ellipsoidal terminal sets as well as for computing their vol-
umes. Furthermore, the polytopic library of MPT3 (Herceg
et al., 2013) is used for plotting polytopic admissible sets.
The CasADi nonlinear optimization toolbox (Andersson
et al., 2018) is utilized for simulating the stabilizing NMPC
algorithms.

2. THEORETICAL FOUNDATION

Consider a discrete–time nonlinear system

x(k + 1) = ϕ(x(k), u(k)), k ∈ N, (1)

sNMPC: A Matlab Toolbox for Computing
Stabilizing Terminal Costs and Sets

Mert Eyüboğlu ∗ Mircea Lazar ∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mails: m.eyuboglu@student.tue.nl, m.lazar@tue.nl).

Abstract: This paper presents a Matlab toolbox that implements methods for computing
stabilizing terminal costs and sets for nonlinear model predictive control (NMPC). Given a
discrete–time nonlinear model provided by the user, the toolbox computes quadratic/ellipsoidal
terminal costs/sets and local control laws for the following options: (i) cyclically time–varying
or standard terminal ingredients; (ii) first or quasi–second order Taylor approximation of the
dynamics; (iii) linear or nonlinear local control laws. The YALMIP toolbox and the MOSEK
solver are used for solving linear matrix inequalities and the IPOPT solver (with global search)
is used for nonlinear programming. Simulation of the resulting stabilizing NMPC algorithms is
provided using the CasADi toolbox.

Keywords: Stability of nonlinear systems, nonlinear predictive control, terminal costs and sets.

1. INTRODUCTION

The most common constructive approach for guaranteeing
stability within the nonlinear model predictive control
(NMPC) framework is to introduce stabilizing terminal
ingredients (i.e., terminal costs and sets). Typically, the
terminal set and the terminal cost are chosen as an invari-
ant set and a control Lyapunov function, respectively. It is
already possible to compute these terminal ingredients via
the MPT3 toolbox (Herceg et al., 2013) for linear time–
invariant, piecewise affine and mixed logical dynamical
systems. However, computation of terminal ingredients for
nonlinear systems remains as an open problem of interest.

The most common approach is to first compute terminal
ingredients for linearized dynamics and then compensate
for the approximation error. Such methods for continuous–
time systems can be found in (Michalska and Mayne,
1993), (Chen and Allgöwer, 1998) and (Chen et al., 2003).
A discrete–time equivalent of the same correction method
was worked out in (Kwon and Han, 2005) and (Yu et al.,
2015). An improvement of this method for continuous–
time and discrete–time systems was presented in (Ra-
jhans et al., 2016) and (Rajhans et al., 2019), respec-
tively, by introducing additional degrees of freedom for
shaping the terminal sets. Other approaches, (Hu and
Chen, 2007) and (Darup and Cannon, 2015), use linear
difference inclusions (LDIs) to approximate the nonlinear
dynamics. Another method for continuous–time NMPC
(Lucia et al., 2015) uses higher order Taylor series expan-
sions and sum–of–squares techniques to further alleviate
conservatism. In (Lazar and Tetteroo, 2018) a framework
for computing cyclically time–varying terminal ingredients
for discrete–time NMPC was developed based on finite–
step control Lyapunov functions (Lazar and Spinu, 2015).
(Fitri and Kim, 2020) presented a method for increasing
the domain of attraction of NMPC by combining multiple
ellipsoidal terminal sets.

Following the advances in nonlinear programming (NLP),
toolboxes such as MATMPC (Chen et al., 2019) or the
Matlab MPC Toolbox now have modules for efficient im-
plementation of NMPC. In addition to these, it is possi-
ble to define and solve NMPC problems with optimiza-
tion toolboxes such as YALMIP (Löfberg, 2004), CasADi
(Andersson et al., 2018), ACADO (Houska et al., 2011),
etc. However, these toolboxes do not feature methods for
computing stabilizing terminal ingredients for NMPC.

This paper presents a Matlab toolbox for computing stabi-
lizing terminal ingredients for discrete–time NMPC, which
builds on the framework of (Lazar and Tetteroo, 2018).
The stabilizing NMPC (sNMPC) toolbox computes ellip-
soidal terminal sets and quadratic terminal cost functions
for NMPC with the following design choices: (i) cyclically
time–varying or standard terminal ingredients; (ii) first or
quasi–second order Taylor approximation of the nonlin-
ear dynamics; (iii) linear or nonlinear local control laws.
The sNMPC toolbox utilizes the following toolboxes and
solvers: YALMIP (Löfberg, 2004) for defining optimiza-
tion problems; MOSEK (ApS, 2019) for solving LMIs;
(Wächter and Biegler, 2006) with a multistart method for
solving nonlinear optimization problems. OPTI Toolbox
(Currie and Wilson, 2012) is used for enabling the interface
between YALMIP and IPOPT. The Ellipsoidal Toolbox
(Kurzhanskiy and Varaiya, 2006) is used for plotting the
ellipsoidal terminal sets as well as for computing their vol-
umes. Furthermore, the polytopic library of MPT3 (Herceg
et al., 2013) is used for plotting polytopic admissible sets.
The CasADi nonlinear optimization toolbox (Andersson
et al., 2018) is utilized for simulating the stabilizing NMPC
algorithms.

2. THEORETICAL FOUNDATION

Consider a discrete–time nonlinear system

x(k + 1) = ϕ(x(k), u(k)), k ∈ N, (1)

sNMPC: A Matlab Toolbox for Computing
Stabilizing Terminal Costs and Sets

Mert Eyüboğlu ∗ Mircea Lazar ∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mails: m.eyuboglu@student.tue.nl, m.lazar@tue.nl).

Abstract: This paper presents a Matlab toolbox that implements methods for computing
stabilizing terminal costs and sets for nonlinear model predictive control (NMPC). Given a
discrete–time nonlinear model provided by the user, the toolbox computes quadratic/ellipsoidal
terminal costs/sets and local control laws for the following options: (i) cyclically time–varying
or standard terminal ingredients; (ii) first or quasi–second order Taylor approximation of the
dynamics; (iii) linear or nonlinear local control laws. The YALMIP toolbox and the MOSEK
solver are used for solving linear matrix inequalities and the IPOPT solver (with global search)
is used for nonlinear programming. Simulation of the resulting stabilizing NMPC algorithms is
provided using the CasADi toolbox.

Keywords: Stability of nonlinear systems, nonlinear predictive control, terminal costs and sets.

1. INTRODUCTION

The most common constructive approach for guaranteeing
stability within the nonlinear model predictive control
(NMPC) framework is to introduce stabilizing terminal
ingredients (i.e., terminal costs and sets). Typically, the
terminal set and the terminal cost are chosen as an invari-
ant set and a control Lyapunov function, respectively. It is
already possible to compute these terminal ingredients via
the MPT3 toolbox (Herceg et al., 2013) for linear time–
invariant, piecewise affine and mixed logical dynamical
systems. However, computation of terminal ingredients for
nonlinear systems remains as an open problem of interest.

The most common approach is to first compute terminal
ingredients for linearized dynamics and then compensate
for the approximation error. Such methods for continuous–
time systems can be found in (Michalska and Mayne,
1993), (Chen and Allgöwer, 1998) and (Chen et al., 2003).
A discrete–time equivalent of the same correction method
was worked out in (Kwon and Han, 2005) and (Yu et al.,
2015). An improvement of this method for continuous–
time and discrete–time systems was presented in (Ra-
jhans et al., 2016) and (Rajhans et al., 2019), respec-
tively, by introducing additional degrees of freedom for
shaping the terminal sets. Other approaches, (Hu and
Chen, 2007) and (Darup and Cannon, 2015), use linear
difference inclusions (LDIs) to approximate the nonlinear
dynamics. Another method for continuous–time NMPC
(Lucia et al., 2015) uses higher order Taylor series expan-
sions and sum–of–squares techniques to further alleviate
conservatism. In (Lazar and Tetteroo, 2018) a framework
for computing cyclically time–varying terminal ingredients
for discrete–time NMPC was developed based on finite–
step control Lyapunov functions (Lazar and Spinu, 2015).
(Fitri and Kim, 2020) presented a method for increasing
the domain of attraction of NMPC by combining multiple
ellipsoidal terminal sets.

Following the advances in nonlinear programming (NLP),
toolboxes such as MATMPC (Chen et al., 2019) or the
Matlab MPC Toolbox now have modules for efficient im-
plementation of NMPC. In addition to these, it is possi-
ble to define and solve NMPC problems with optimiza-
tion toolboxes such as YALMIP (Löfberg, 2004), CasADi
(Andersson et al., 2018), ACADO (Houska et al., 2011),
etc. However, these toolboxes do not feature methods for
computing stabilizing terminal ingredients for NMPC.

This paper presents a Matlab toolbox for computing stabi-
lizing terminal ingredients for discrete–time NMPC, which
builds on the framework of (Lazar and Tetteroo, 2018).
The stabilizing NMPC (sNMPC) toolbox computes ellip-
soidal terminal sets and quadratic terminal cost functions
for NMPC with the following design choices: (i) cyclically
time–varying or standard terminal ingredients; (ii) first or
quasi–second order Taylor approximation of the nonlin-
ear dynamics; (iii) linear or nonlinear local control laws.
The sNMPC toolbox utilizes the following toolboxes and
solvers: YALMIP (Löfberg, 2004) for defining optimiza-
tion problems; MOSEK (ApS, 2019) for solving LMIs;
(Wächter and Biegler, 2006) with a multistart method for
solving nonlinear optimization problems. OPTI Toolbox
(Currie and Wilson, 2012) is used for enabling the interface
between YALMIP and IPOPT. The Ellipsoidal Toolbox
(Kurzhanskiy and Varaiya, 2006) is used for plotting the
ellipsoidal terminal sets as well as for computing their vol-
umes. Furthermore, the polytopic library of MPT3 (Herceg
et al., 2013) is used for plotting polytopic admissible sets.
The CasADi nonlinear optimization toolbox (Andersson
et al., 2018) is utilized for simulating the stabilizing NMPC
algorithms.

2. THEORETICAL FOUNDATION

Consider a discrete–time nonlinear system

x(k + 1) = ϕ(x(k), u(k)), k ∈ N, (1)

sNMPC: A Matlab Toolbox for Computing
Stabilizing Terminal Costs and Sets

Mert Eyüboğlu ∗ Mircea Lazar ∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mails: m.eyuboglu@student.tue.nl, m.lazar@tue.nl).

Abstract: This paper presents a Matlab toolbox that implements methods for computing
stabilizing terminal costs and sets for nonlinear model predictive control (NMPC). Given a
discrete–time nonlinear model provided by the user, the toolbox computes quadratic/ellipsoidal
terminal costs/sets and local control laws for the following options: (i) cyclically time–varying
or standard terminal ingredients; (ii) first or quasi–second order Taylor approximation of the
dynamics; (iii) linear or nonlinear local control laws. The YALMIP toolbox and the MOSEK
solver are used for solving linear matrix inequalities and the IPOPT solver (with global search)
is used for nonlinear programming. Simulation of the resulting stabilizing NMPC algorithms is
provided using the CasADi toolbox.

Keywords: Stability of nonlinear systems, nonlinear predictive control, terminal costs and sets.

1. INTRODUCTION

The most common constructive approach for guaranteeing
stability within the nonlinear model predictive control
(NMPC) framework is to introduce stabilizing terminal
ingredients (i.e., terminal costs and sets). Typically, the
terminal set and the terminal cost are chosen as an invari-
ant set and a control Lyapunov function, respectively. It is
already possible to compute these terminal ingredients via
the MPT3 toolbox (Herceg et al., 2013) for linear time–
invariant, piecewise affine and mixed logical dynamical
systems. However, computation of terminal ingredients for
nonlinear systems remains as an open problem of interest.

The most common approach is to first compute terminal
ingredients for linearized dynamics and then compensate
for the approximation error. Such methods for continuous–
time systems can be found in (Michalska and Mayne,
1993), (Chen and Allgöwer, 1998) and (Chen et al., 2003).
A discrete–time equivalent of the same correction method
was worked out in (Kwon and Han, 2005) and (Yu et al.,
2015). An improvement of this method for continuous–
time and discrete–time systems was presented in (Ra-
jhans et al., 2016) and (Rajhans et al., 2019), respec-
tively, by introducing additional degrees of freedom for
shaping the terminal sets. Other approaches, (Hu and
Chen, 2007) and (Darup and Cannon, 2015), use linear
difference inclusions (LDIs) to approximate the nonlinear
dynamics. Another method for continuous–time NMPC
(Lucia et al., 2015) uses higher order Taylor series expan-
sions and sum–of–squares techniques to further alleviate
conservatism. In (Lazar and Tetteroo, 2018) a framework
for computing cyclically time–varying terminal ingredients
for discrete–time NMPC was developed based on finite–
step control Lyapunov functions (Lazar and Spinu, 2015).
(Fitri and Kim, 2020) presented a method for increasing
the domain of attraction of NMPC by combining multiple
ellipsoidal terminal sets.

Following the advances in nonlinear programming (NLP),
toolboxes such as MATMPC (Chen et al., 2019) or the
Matlab MPC Toolbox now have modules for efficient im-
plementation of NMPC. In addition to these, it is possi-
ble to define and solve NMPC problems with optimiza-
tion toolboxes such as YALMIP (Löfberg, 2004), CasADi
(Andersson et al., 2018), ACADO (Houska et al., 2011),
etc. However, these toolboxes do not feature methods for
computing stabilizing terminal ingredients for NMPC.

This paper presents a Matlab toolbox for computing stabi-
lizing terminal ingredients for discrete–time NMPC, which
builds on the framework of (Lazar and Tetteroo, 2018).
The stabilizing NMPC (sNMPC) toolbox computes ellip-
soidal terminal sets and quadratic terminal cost functions
for NMPC with the following design choices: (i) cyclically
time–varying or standard terminal ingredients; (ii) first or
quasi–second order Taylor approximation of the nonlin-
ear dynamics; (iii) linear or nonlinear local control laws.
The sNMPC toolbox utilizes the following toolboxes and
solvers: YALMIP (Löfberg, 2004) for defining optimiza-
tion problems; MOSEK (ApS, 2019) for solving LMIs;
(Wächter and Biegler, 2006) with a multistart method for
solving nonlinear optimization problems. OPTI Toolbox
(Currie and Wilson, 2012) is used for enabling the interface
between YALMIP and IPOPT. The Ellipsoidal Toolbox
(Kurzhanskiy and Varaiya, 2006) is used for plotting the
ellipsoidal terminal sets as well as for computing their vol-
umes. Furthermore, the polytopic library of MPT3 (Herceg
et al., 2013) is used for plotting polytopic admissible sets.
The CasADi nonlinear optimization toolbox (Andersson
et al., 2018) is utilized for simulating the stabilizing NMPC
algorithms.

2. THEORETICAL FOUNDATION

Consider a discrete–time nonlinear system

x(k + 1) = ϕ(x(k), u(k)), k ∈ N, (1)

sNMPC: A Matlab Toolbox for Computing
Stabilizing Terminal Costs and Sets

Mert Eyüboğlu ∗ Mircea Lazar ∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mails: m.eyuboglu@student.tue.nl, m.lazar@tue.nl).

Abstract: This paper presents a Matlab toolbox that implements methods for computing
stabilizing terminal costs and sets for nonlinear model predictive control (NMPC). Given a
discrete–time nonlinear model provided by the user, the toolbox computes quadratic/ellipsoidal
terminal costs/sets and local control laws for the following options: (i) cyclically time–varying
or standard terminal ingredients; (ii) first or quasi–second order Taylor approximation of the
dynamics; (iii) linear or nonlinear local control laws. The YALMIP toolbox and the MOSEK
solver are used for solving linear matrix inequalities and the IPOPT solver (with global search)
is used for nonlinear programming. Simulation of the resulting stabilizing NMPC algorithms is
provided using the CasADi toolbox.

Keywords: Stability of nonlinear systems, nonlinear predictive control, terminal costs and sets.

1. INTRODUCTION

The most common constructive approach for guaranteeing
stability within the nonlinear model predictive control
(NMPC) framework is to introduce stabilizing terminal
ingredients (i.e., terminal costs and sets). Typically, the
terminal set and the terminal cost are chosen as an invari-
ant set and a control Lyapunov function, respectively. It is
already possible to compute these terminal ingredients via
the MPT3 toolbox (Herceg et al., 2013) for linear time–
invariant, piecewise affine and mixed logical dynamical
systems. However, computation of terminal ingredients for
nonlinear systems remains as an open problem of interest.

The most common approach is to first compute terminal
ingredients for linearized dynamics and then compensate
for the approximation error. Such methods for continuous–
time systems can be found in (Michalska and Mayne,
1993), (Chen and Allgöwer, 1998) and (Chen et al., 2003).
A discrete–time equivalent of the same correction method
was worked out in (Kwon and Han, 2005) and (Yu et al.,
2015). An improvement of this method for continuous–
time and discrete–time systems was presented in (Ra-
jhans et al., 2016) and (Rajhans et al., 2019), respec-
tively, by introducing additional degrees of freedom for
shaping the terminal sets. Other approaches, (Hu and
Chen, 2007) and (Darup and Cannon, 2015), use linear
difference inclusions (LDIs) to approximate the nonlinear
dynamics. Another method for continuous–time NMPC
(Lucia et al., 2015) uses higher order Taylor series expan-
sions and sum–of–squares techniques to further alleviate
conservatism. In (Lazar and Tetteroo, 2018) a framework
for computing cyclically time–varying terminal ingredients
for discrete–time NMPC was developed based on finite–
step control Lyapunov functions (Lazar and Spinu, 2015).
(Fitri and Kim, 2020) presented a method for increasing
the domain of attraction of NMPC by combining multiple
ellipsoidal terminal sets.

Following the advances in nonlinear programming (NLP),
toolboxes such as MATMPC (Chen et al., 2019) or the
Matlab MPC Toolbox now have modules for efficient im-
plementation of NMPC. In addition to these, it is possi-
ble to define and solve NMPC problems with optimiza-
tion toolboxes such as YALMIP (Löfberg, 2004), CasADi
(Andersson et al., 2018), ACADO (Houska et al., 2011),
etc. However, these toolboxes do not feature methods for
computing stabilizing terminal ingredients for NMPC.

This paper presents a Matlab toolbox for computing stabi-
lizing terminal ingredients for discrete–time NMPC, which
builds on the framework of (Lazar and Tetteroo, 2018).
The stabilizing NMPC (sNMPC) toolbox computes ellip-
soidal terminal sets and quadratic terminal cost functions
for NMPC with the following design choices: (i) cyclically
time–varying or standard terminal ingredients; (ii) first or
quasi–second order Taylor approximation of the nonlin-
ear dynamics; (iii) linear or nonlinear local control laws.
The sNMPC toolbox utilizes the following toolboxes and
solvers: YALMIP (Löfberg, 2004) for defining optimiza-
tion problems; MOSEK (ApS, 2019) for solving LMIs;
(Wächter and Biegler, 2006) with a multistart method for
solving nonlinear optimization problems. OPTI Toolbox
(Currie and Wilson, 2012) is used for enabling the interface
between YALMIP and IPOPT. The Ellipsoidal Toolbox
(Kurzhanskiy and Varaiya, 2006) is used for plotting the
ellipsoidal terminal sets as well as for computing their vol-
umes. Furthermore, the polytopic library of MPT3 (Herceg
et al., 2013) is used for plotting polytopic admissible sets.
The CasADi nonlinear optimization toolbox (Andersson
et al., 2018) is utilized for simulating the stabilizing NMPC
algorithms.

2. THEORETICAL FOUNDATION

Consider a discrete–time nonlinear system

x(k + 1) = ϕ(x(k), u(k)), k ∈ N, (1)

20 Mert Eyüboğlu et al. / IFAC PapersOnLine 55-30 (2022) 19–24

where ϕ : Rn × Rm → Rn is the system dynamics, x(k)
is the state and u(k) is the input at time instant k. It
is assumed that ϕ(0, 0) = 0. The NMPC optimization
problem with a prediction horizon N is:

min
Uk

J(x0|k, Uk) = min
Uk

F (xN |k, k) +

N−1
i=0

l(xi|k, ui|k)

,

(2a)

subject to:

xi+1|k = ϕ(xi|k, ui|k), i ∈ {0, . . . , N − 1}, (2b)

xi|k ∈ X ⊆ Rn, i ∈ {0, . . . , N − 1}, (2c)

ui|k ∈ U ⊆ Rm, i ∈ {0, . . . , N − 1}, (2d)

xN |k ∈ XT (k) ⊆ X, (2e)

where x0|k = x(k), u0|k = u(k), F : Rn × N → R≥0 is
the terminal cost, XT is the terminal set and l : Rn ×
Rm → R≥0 is the stage cost. Note that the terminal cost
and the terminal set are allowed to be time–varying. It
is assumed that l(0, 0) = 0 and l(x, ·) ≥ α3(||x||), for all
x ∈ X where α3 is a K∞ class function.

For any finite M ∈ N≥1, let {(Fj(·),Sj , hj(·))}j=0,...,M−1

denote a set of terminal ingredients, where Fj : Rn →
R+ with Fj(0) = 0 are terminal costs, Sj are compact
terminal sets that contain the origin in their interior and
hj : Rn → Rm with hj(0) = 0 are terminal control laws
for all j = 0, . . . ,M − 1. Define Φj(x) := ϕ(x, hj(x)) and
for a subset S of Rn define Φj(S) := {Φj(x) : x ∈ S}.
Let the terminal ingredients satisfy the conditions given in
Assumption 1 of (Lazar and Tetteroo, 2018). Theorem 3
of (Lazar and Tetteroo, 2018) establishes that the MPC
problem (2) is recursively feasible and the corresponding
closed–loop system is asymptotically stable for all x(0) ∈
Xf (N) ⊆ X for such a design of terminal ingredients.

Then, following Assumption 1 of (Lazar and Tetteroo,
2018), the time–varying terminal costs/sets are defined as:

If k = 0 & XT (0) = Sj , ∀j = 0, . . . ,M − 1

⇒ XT (k) := S(j+k)modM , (3a)

⇒ F (x, 0) = Fj(x) & F (x, k) = F(j+k)modM (x). (3b)

The initial terminal set and cost pair to be used at time
k = 0 must be determined by solving an optimization
problem. Note that for M = 1, the original design with
a single invariant terminal set, terminal cost and local
control law is recovered. Using multiple control laws and
terminal cost functions introduces a degree of freedom
for satisfying the required assumptions, which allows for
a larger domain of attraction when compared to being
restricted to a single control law and terminal cost.

Computation of Terminal Ingredients
Let l(x, u) = xTQx + uTRu with Q ≻ 0, R ≻ 0. Set
Fj(x) := xTPjx with Pj ≻ 0 and Sj := {x : Fj(x) ≤ α}
with α > 0 and set hj(x) := Kjx,Kj ∈ Rn×m for all
j = 0, . . . ,M − 1. Next, define the approximation error

rj(x) := ϕ(x,Kjx)− (A+BKj)x = Φj(x)− (A+BKj)x,
(4)

for all j = 0, . . . ,M − 1. By defining AKj := A + BKj ,
and Φj(x) := AKjx+rj(x), the inequalities in Assumption
1-(ii) of (Lazar and Tetteroo, 2018) can be written as

(AKj
x+ rj(x))

TPj+1(AKj
x+ rj(x))

− xTPjx+ xT (Q+KT
j RKj)x ≤ 0. (5)

For Sj := {x : xTPjx ≤ 1} and Fj(x) = 1
αx

TPjx, the
inequality (5) can be split into the LMI

(1− κj)Oj (AOj +BYj)

T Oj Y T
j

AOj +BYj Oj+1 0 0
Oj 0 ᾱQ−1 0
Yj 0 0 ᾱR−1

 ⪰ 0, (6)

and the nonlinear inequality

Rj(x) := rj(x)
TPj+1rj(x)

+ 2xTAT
kj
Pj+1rj(x)− κjx

TPjx ≤ 0, (7)

where 0 < κj < 1, ᾱ = 1
α , Oj = P−1

j , Yj = KjP
−1
j with

Pj ≻ 0 for all j = 0, . . . ,M − 1.

Remark 1. In (Lazar and Tetteroo, 2018), after introduc-
ing α into the LMIs the terminal set is defined incorrectly
as Sj := {x : Fj(x) ≤ 1} throughout the paper with
F (x) = 1

αx
TPx. Hereby, the terminal set definition is

corrected as Sj := {x : xTPjx = αFj(x) ≤ 1}.

Note that (6) and (7) only have to hold for all x ∈ Sj .
Thus, to find a solution to the original terminal cost
inequalities in Assumption 1 of (Lazar and Tetteroo,
2018), it is sufficient to find a solution to (6) and to
check if maxx∈Sj

Rj(x) ≤ 0. The volume of the result-
ing terminal sets can be maximized by maximizing over
log det(Oj) while solving the LMIs (6). The resulting
feedback gains {Kj}{j=0,...,M−1} will yield a stable (mon-
odromy) matrix AKM−1

AKM−2
. . . AK0

. After solving (6),
maxx∈Sj Rj(x) ≤ 0 can be checked by using a NLP solver.
If the check fails, Sj must be appropriately scaled down.

A quasi–second order Taylor approximation of ϕ(·, ·) can
also be used, which requires modification of the LMIs in
(6), as defined in equation (9) of (Lazar and Tetteroo,
2018). For input affine nonlinear systems (i.e., ϕ(x, u) =
f(x) + g(x)u) we can further reduce conservatism by
employing auxiliary nonlinear control laws as defined in
Proposition 1 of (Raimondo et al., 2009), i.e.,

hj(x) := −(gT (x)Pjg(x) + αR)−1gT (x)Pjf(x). (8)

This requires the following update:

rj(x) := ϕj(x, hj(x))− (A+BKj)x, (9)

where rj(x) = r1,j(x) + g(x)r2,j(x) with

r1,j(x) := f(x) + g(x)Kjx− (A+BKj)x,

and r2,j(x) := hj(x) − Kjx. In this case (5) must be
replaced by

(AKjx+ rj(x))
TPj+1(AKjx+ rj(x))− xTPjx

+ xTQx+ xT (Kj + r1,j(x))
TR(Kj + r2,j(x)) ≤ 0. (10)

This yields no changes in the LMIs while the corresponding
nonlinear inequality becomes

Rj(x) := rj(x)
TPj+1rj(x) + 2xTAT

kj
Pj+1rj(x)

+r2,j(x)
TαRr2,j(x)+2xTKT

j αRr2,j(x)−κjx
TPjx ≤ 0.

(11)

In summary, the key tuning knobs are: (i) the number M
of terminal ingredients, (ii) the order of the approximation
of the nonlinear dynamics (first or quasi–second order),
and (iii) linear or nonlinear control laws. Additionally, the
parameters κj can be optimized.

 Mert Eyüboğlu et al. / IFAC PapersOnLine 55-30 (2022) 19–24 21

where ϕ : Rn × Rm → Rn is the system dynamics, x(k)
is the state and u(k) is the input at time instant k. It
is assumed that ϕ(0, 0) = 0. The NMPC optimization
problem with a prediction horizon N is:

min
Uk

J(x0|k, Uk) = min
Uk

F (xN |k, k) +

N−1
i=0

l(xi|k, ui|k)

,

(2a)

subject to:

xi+1|k = ϕ(xi|k, ui|k), i ∈ {0, . . . , N − 1}, (2b)

xi|k ∈ X ⊆ Rn, i ∈ {0, . . . , N − 1}, (2c)

ui|k ∈ U ⊆ Rm, i ∈ {0, . . . , N − 1}, (2d)

xN |k ∈ XT (k) ⊆ X, (2e)

where x0|k = x(k), u0|k = u(k), F : Rn × N → R≥0 is
the terminal cost, XT is the terminal set and l : Rn ×
Rm → R≥0 is the stage cost. Note that the terminal cost
and the terminal set are allowed to be time–varying. It
is assumed that l(0, 0) = 0 and l(x, ·) ≥ α3(||x||), for all
x ∈ X where α3 is a K∞ class function.

For any finite M ∈ N≥1, let {(Fj(·),Sj , hj(·))}j=0,...,M−1

denote a set of terminal ingredients, where Fj : Rn →
R+ with Fj(0) = 0 are terminal costs, Sj are compact
terminal sets that contain the origin in their interior and
hj : Rn → Rm with hj(0) = 0 are terminal control laws
for all j = 0, . . . ,M − 1. Define Φj(x) := ϕ(x, hj(x)) and
for a subset S of Rn define Φj(S) := {Φj(x) : x ∈ S}.
Let the terminal ingredients satisfy the conditions given in
Assumption 1 of (Lazar and Tetteroo, 2018). Theorem 3
of (Lazar and Tetteroo, 2018) establishes that the MPC
problem (2) is recursively feasible and the corresponding
closed–loop system is asymptotically stable for all x(0) ∈
Xf (N) ⊆ X for such a design of terminal ingredients.

Then, following Assumption 1 of (Lazar and Tetteroo,
2018), the time–varying terminal costs/sets are defined as:

If k = 0 & XT (0) = Sj , ∀j = 0, . . . ,M − 1

⇒ XT (k) := S(j+k)modM , (3a)

⇒ F (x, 0) = Fj(x) & F (x, k) = F(j+k)modM (x). (3b)

The initial terminal set and cost pair to be used at time
k = 0 must be determined by solving an optimization
problem. Note that for M = 1, the original design with
a single invariant terminal set, terminal cost and local
control law is recovered. Using multiple control laws and
terminal cost functions introduces a degree of freedom
for satisfying the required assumptions, which allows for
a larger domain of attraction when compared to being
restricted to a single control law and terminal cost.

Computation of Terminal Ingredients
Let l(x, u) = xTQx + uTRu with Q ≻ 0, R ≻ 0. Set
Fj(x) := xTPjx with Pj ≻ 0 and Sj := {x : Fj(x) ≤ α}
with α > 0 and set hj(x) := Kjx,Kj ∈ Rn×m for all
j = 0, . . . ,M − 1. Next, define the approximation error

rj(x) := ϕ(x,Kjx)− (A+BKj)x = Φj(x)− (A+BKj)x,
(4)

for all j = 0, . . . ,M − 1. By defining AKj := A + BKj ,
and Φj(x) := AKjx+rj(x), the inequalities in Assumption
1-(ii) of (Lazar and Tetteroo, 2018) can be written as

(AKj
x+ rj(x))

TPj+1(AKj
x+ rj(x))

− xTPjx+ xT (Q+KT
j RKj)x ≤ 0. (5)

For Sj := {x : xTPjx ≤ 1} and Fj(x) = 1
αx

TPjx, the
inequality (5) can be split into the LMI

(1− κj)Oj (AOj +BYj)

T Oj Y T
j

AOj +BYj Oj+1 0 0
Oj 0 ᾱQ−1 0
Yj 0 0 ᾱR−1

 ⪰ 0, (6)

and the nonlinear inequality

Rj(x) := rj(x)
TPj+1rj(x)

+ 2xTAT
kj
Pj+1rj(x)− κjx

TPjx ≤ 0, (7)

where 0 < κj < 1, ᾱ = 1
α , Oj = P−1

j , Yj = KjP
−1
j with

Pj ≻ 0 for all j = 0, . . . ,M − 1.

Remark 1. In (Lazar and Tetteroo, 2018), after introduc-
ing α into the LMIs the terminal set is defined incorrectly
as Sj := {x : Fj(x) ≤ 1} throughout the paper with
F (x) = 1

αx
TPx. Hereby, the terminal set definition is

corrected as Sj := {x : xTPjx = αFj(x) ≤ 1}.

Note that (6) and (7) only have to hold for all x ∈ Sj .
Thus, to find a solution to the original terminal cost
inequalities in Assumption 1 of (Lazar and Tetteroo,
2018), it is sufficient to find a solution to (6) and to
check if maxx∈Sj

Rj(x) ≤ 0. The volume of the result-
ing terminal sets can be maximized by maximizing over
log det(Oj) while solving the LMIs (6). The resulting
feedback gains {Kj}{j=0,...,M−1} will yield a stable (mon-
odromy) matrix AKM−1

AKM−2
. . . AK0

. After solving (6),
maxx∈Sj Rj(x) ≤ 0 can be checked by using a NLP solver.
If the check fails, Sj must be appropriately scaled down.

A quasi–second order Taylor approximation of ϕ(·, ·) can
also be used, which requires modification of the LMIs in
(6), as defined in equation (9) of (Lazar and Tetteroo,
2018). For input affine nonlinear systems (i.e., ϕ(x, u) =
f(x) + g(x)u) we can further reduce conservatism by
employing auxiliary nonlinear control laws as defined in
Proposition 1 of (Raimondo et al., 2009), i.e.,

hj(x) := −(gT (x)Pjg(x) + αR)−1gT (x)Pjf(x). (8)

This requires the following update:

rj(x) := ϕj(x, hj(x))− (A+BKj)x, (9)

where rj(x) = r1,j(x) + g(x)r2,j(x) with

r1,j(x) := f(x) + g(x)Kjx− (A+BKj)x,

and r2,j(x) := hj(x) − Kjx. In this case (5) must be
replaced by

(AKjx+ rj(x))
TPj+1(AKjx+ rj(x))− xTPjx

+ xTQx+ xT (Kj + r1,j(x))
TR(Kj + r2,j(x)) ≤ 0. (10)

This yields no changes in the LMIs while the corresponding
nonlinear inequality becomes

Rj(x) := rj(x)
TPj+1rj(x) + 2xTAT

kj
Pj+1rj(x)

+r2,j(x)
TαRr2,j(x)+2xTKT

j αRr2,j(x)−κjx
TPjx ≤ 0.

(11)

In summary, the key tuning knobs are: (i) the number M
of terminal ingredients, (ii) the order of the approximation
of the nonlinear dynamics (first or quasi–second order),
and (iii) linear or nonlinear control laws. Additionally, the
parameters κj can be optimized.

3. TOOLBOX IMPLEMENTATION IN MATLAB

The sNMPC toolbox consists of several Matlab functions
which are classified under three modules enabling different
functionalities as depicted in Fig. 1.

Computation of terminal ingredients Module
This module yields periodically time–varying terminal in-
gredients consisting of terminal sets Sj and their corre-
sponding terminal costs Fj(x) for all j = 0, . . . ,M − 1. To
use this module, one must first define the design choices
such as M , the type of approximation and control law,
κj , ρ, η and the number of gridpoints as well as the MPC
cost parameters Q and R and the prediction horizon N .
Afterwards, the following functions can be employed:

• get ABHessian(): Computes the Jacobian and Hes-
sian matrices used for the first or quasi–second order
approximation of the system dynamics.

• solve LMIs(): Solves the set of LMIs in (6), (13),
(14) and (15). The LMIs are defined using YALMIP
(Löfberg, 2004) and solved with MOSEK (ApS,
2019) while maximizing over log(det(Oj)), where j =

max(1, ⌊M
2 ⌋) is used as in (Lazar and Tetteroo, 2018).

• solve NLP bisection(): Checks if maxx∈Sj
Rj(x) ≤

0 holds for the candidate terminal sets and scales
down the sets by bisection until the check is satisfied.
The NLP is again defined using YALMIP (Löfberg,
2004) and solved with IPOPT (Wächter and Biegler,
2006) using a multistart approach.

After calling the above 3 functions, the terminal ingre-
dients corresponding to the selected design choices are
obtained.

A set of state and input polytopic constraints can be
provided by the user, i.e., X = {x : Hxx ≤ 1} and
U = {u : Hu ≤ 1}. Then letting [Hx]p: denote the p-
th line of Hx and [Hu]p: denote the p-th line of Hu, the
inequalities

[Hx]p:Oj [Hx]
T
p: ≤ 1, ∀p : 1, . . . , nx, ∀j ∈ {0, . . . ,M−1},

(12)
ensure that Sj ⊆ X holds for Sj = {x : xTPjx ≤ 1},
while the inequalities[

1 [Hu]p:Yj

Y T
j [Hu]

T
p: Oj

]
≥ 0, ∀p : 1, . . . , nu,

∀j ∈ {0, . . . ,M − 1}, (13)

ensure that hj(Sj) ⊆ U holds for Sj = {x :
xTPjx ≤ 1}. The above LMIs are included in the function
solve LMIs().

If a quasi–second order Taylor approximation is chosen,
the sets Sj must lie within a bounding polytope P ⊆ X
with set of vertices Pv. To ensure this, define Pv := ηX =
{x : HPx ≤ 1} for 0 < η ≤ 1 and let [HP]p: denote the
p-th line of the matrix HP with nP rows. Then the LMIs

[HP]p:Oj [HP]
T
p: ≤ 1, ∀p : 1, . . . , nP , ∀j ∈ {0, . . . ,M − 1},

(14)
included in the function solve LMIs() ensure Sj ⊂ P.

Since (14) is equivalent to (12) for η = 1, only (14) is
used in all cases where η = 1 if a first order Taylor
approximation is chosen and the user determined η value
is used otherwise. If the LMIs end up being infeasible when

Table 1. Toolbox functions and their corre-
sponding inputs and outputs.

Function Inputs Outputs

get

ABHessian()
sys sys

solve LMIs()
sys, p, Mode,

opt L

P, K, α,
E1, VOL1,

XUset,

Xset scaled

solve NLP

bisection()

sys, p, P, K,

alpha, Mode,

opt NL

alpha, E2,

VOL2

a quasi–second order approximation is used, the bounding
polytope Pv := ηX is further scaled down by decreasing η,
in steps of size η/30, until the LMIs become feasible.

Notice that while computing cyclically time–varying ter-
minal sets, variance within the terminal sets orientation is
enforced by adding the constraint

Yj+1 ≥ ρYj , ∀j ∈ {0, . . . ,M − 2}, (15)

where ρ > 1 is a scaling factor.

Remark 2. For the sake of generalization, the approxima-
tion error is defined as rj(x) := r1,j(x) + g(x)r2,j(x) with

r1,j(x) := f(x) + g(x)Kjx− (Ā(x) + B̄(x)Kj)x,

and r2,j(x) = hj(x)−Kjx in all cases. Thus, the nonlinear
inequality (11) is considered always while it is equivalent
to (7) if r2,j(x) = 0.

To solve the NLP porblem (11) with a multistart method,
for all j = 0, . . . ,M − 1 a certain number of gridpoints,
defined by the user, inside the terminal set Sj = {x :
xTPjx ≤ 1} are selected randomly with a uniform distri-
bution employing the algorithm presented in (Dezert and
Musso, 2001). These gridpoints are used as initial guesses
for the multistart optimization. If maxx∈Sj

Rj(x) ≤ 0 is
violated for any of the gridpoints for some j, the terminal
sets are scaled down by bisection with a binary search
algorithm until the check is satisfied for all initial points
for all j = 0, . . . ,M − 1 and the scaling factor γ ≤ 1 is
returned. Using the obtained scaling factor γ the terminal
sets are updated as Sj = {x : xTPjx ≤ γ}. The bisection
tolerance can be determined by the user.

The inputs and outputs of the functions in this module
are presented in Table 1. There, sys contains the system
dynamics and constraints, p contains the user defined
parameters which are κj ,M,N,QR, ρ, η, number of grid-
points used in nonlinear optimization, bisection tolerance
and maximum scaling during bisection, opt L and opt NL
are the linear and nonlinear solvers respectively, Mode is
the type of approximation and control law chosen by the
user, XUSet and Xset scaled denote polytopic bound-
aries used for plotting while P,K,E1,VOL1,E2 and VOL2
denote Pj ,Kj and ellipsoidal sets and their volumes for all
j = 0, . . . ,M − 1.

Simulation Module
This module delivers the resulting closed–loop state tra-
jectories for the sNMPC algorithms with terminal ingredi-
ents. This is enabled by the following functions which use
the CasADi toolbox (Andersson et al., 2018) for solving
the NMPC optimization problems:

22 Mert Eyüboğlu et al. / IFAC PapersOnLine 55-30 (2022) 19–24

Fig. 1. Flowchart of the sNMPC toolbox functions.

• find init set(): Checks the feasibility of an initial
condition x(0) and determines the optimal terminal
cost and set to be used at k = 0 (if M > 1 is chosen).
This is done by solving (19) and determining if the
problem is feasible and in which terminal set the
terminal state xN |0 lies in. If xN |0 lies inside more
than one terminal set, for the sake of optimality, the
terminal set resulting in the smallest cost is chosen.

• casadi simulation(): Simulates the closed–loop sys-
tem by solving the optimization problem (20) and
applying the first control input, ∀k ∈ N.

For M ellipsoidal terminal sets defined by Sj = {x :
xTPjx ≤ 1}, Pj ≻ 0, j = 0, . . . ,M − 1, define

Sλ := {x : xTPλx ≤ 1}, (16)

where

Pλ :=

M−1
j=0

λjPj , and

M−1
j=0

λj = 1, (17)

and λj ≥ 0 for all j = 0, . . . ,M − 1. In (Fitri and Kim,
2020), it is shown that

Sλ ⊂ ∪M−1
j=0 Sj , (18)

and for a proper choice of λj , Sλ can cover any point that

is inside the union ∪M−1
j=0 Sj . (18) implies that any point

inside the union ∪M−1
j=0 Sj also belongs to at least one of

the terminal sets Sj , j = 0, . . . ,M − 1. Hence, by solving
a single optimization problem with Sλ as the terminal set,

min
U0

J(x0|0, U0) = min
U0

 1

α
xT
N |0PλxN |0 +

N−1
i=0

l(xi|0, ui|0)

,

(19a)

subject to:

xi+1|0 = ϕ(xi|0, ui|0), i ∈ {0, . . . , N − 1}, (19b)

xi|0 ∈ X ⊆ Rn, i ∈ {0, . . . , N − 1}, (19c)

ui|0 ∈ U ⊆ Rm, i ∈ {0, . . . , N − 1}, (19d)

xN |0 ∈ Sλ, (19e)
M−1
j=0

λj = 1, λj ≥ 0, j ∈ {0, . . . , N − 1}, (19f)

we can determine the initial terminal set. For a feasible ini-
tial condition x0|0 = x(0), let Sj∗0

denote the terminal set

with the lowest corresponding terminal cost 1
αx

T
N |kPj∗0

xN |k
such that xN |0 ∈ Sj∗0

. Consequently, for any k ∈ N, there
exists a j ∈ {0, . . . ,M − 1} such that j = (j∗0 + k)modM .
Thus, for all k ∈ N, the NMPC optimization problem is
defined as

min
Uk

J(x0|k, Uk) = min
Uk

 1

α
xT
N |kPjxN |k +

N−1
i=0

l(xi|k, ui|k)

,

(20a)

subject to:

xi+1|k = ϕ(xi|k, ui|k), i ∈ {0, . . . , N − 1}, (20b)

xi|k ∈ X ⊆ Rn, i ∈ {0, . . . , N − 1}, (20c)

ui|k ∈ U ⊆ Rm, i ∈ {0, . . . , N − 1}, (20d)

xN |k ∈ Sj , j = (j∗0 + k)modM. (20e)

CasADi Implementation
The optimal control problems in find init set() and
casadi simulation() are implemented and solved via
CasADi (Andersson et al., 2018). Thus, to use these
functions one must redefine the state–space model using
the SX data type symbolic variables, instead of the Matlab
sym data type. Then, the components of the optimization
problem are defined (by the toolbox) as follows:

Decision

variables
=

u0|k . . . uN−1|k λ0 . . . λM−1

, for (19),

u0|k . . . uN−1|k

, for (20),

Constraints

vector
:=

x1|k . . . xN |k

xN |kPλxN |k
M−1

j=0 λj

,

for (19),

x1|k . . . xN |k xN |kPjxN |k

, for (20),

Cost

function
:=

1
αx

T
N |kPλxN |k +

N−1
i=0 l(xi|k, ui|k), for (19),

1
αxN |kPjxN |k +

N−1
i=0 l(xi|k, ui|k), for (20),

for all j = 0, . . . ,M − 1. Then, M different NMPC prob-
lems are defined using the above components which are
solved in a periodic manner as previously explained. The
upper and lower limit vectors for the constraints vector
and the decision variables are constructed according to the

 Mert Eyüboğlu et al. / IFAC PapersOnLine 55-30 (2022) 19–24 23

Fig. 1. Flowchart of the sNMPC toolbox functions.

• find init set(): Checks the feasibility of an initial
condition x(0) and determines the optimal terminal
cost and set to be used at k = 0 (if M > 1 is chosen).
This is done by solving (19) and determining if the
problem is feasible and in which terminal set the
terminal state xN |0 lies in. If xN |0 lies inside more
than one terminal set, for the sake of optimality, the
terminal set resulting in the smallest cost is chosen.

• casadi simulation(): Simulates the closed–loop sys-
tem by solving the optimization problem (20) and
applying the first control input, ∀k ∈ N.

For M ellipsoidal terminal sets defined by Sj = {x :
xTPjx ≤ 1}, Pj ≻ 0, j = 0, . . . ,M − 1, define

Sλ := {x : xTPλx ≤ 1}, (16)

where

Pλ :=

M−1
j=0

λjPj , and

M−1
j=0

λj = 1, (17)

and λj ≥ 0 for all j = 0, . . . ,M − 1. In (Fitri and Kim,
2020), it is shown that

Sλ ⊂ ∪M−1
j=0 Sj , (18)

and for a proper choice of λj , Sλ can cover any point that

is inside the union ∪M−1
j=0 Sj . (18) implies that any point

inside the union ∪M−1
j=0 Sj also belongs to at least one of

the terminal sets Sj , j = 0, . . . ,M − 1. Hence, by solving
a single optimization problem with Sλ as the terminal set,

min
U0

J(x0|0, U0) = min
U0

 1

α
xT
N |0PλxN |0 +

N−1
i=0

l(xi|0, ui|0)

,

(19a)

subject to:

xi+1|0 = ϕ(xi|0, ui|0), i ∈ {0, . . . , N − 1}, (19b)

xi|0 ∈ X ⊆ Rn, i ∈ {0, . . . , N − 1}, (19c)

ui|0 ∈ U ⊆ Rm, i ∈ {0, . . . , N − 1}, (19d)

xN |0 ∈ Sλ, (19e)
M−1
j=0

λj = 1, λj ≥ 0, j ∈ {0, . . . , N − 1}, (19f)

we can determine the initial terminal set. For a feasible ini-
tial condition x0|0 = x(0), let Sj∗0

denote the terminal set

with the lowest corresponding terminal cost 1
αx

T
N |kPj∗0

xN |k
such that xN |0 ∈ Sj∗0

. Consequently, for any k ∈ N, there
exists a j ∈ {0, . . . ,M − 1} such that j = (j∗0 + k)modM .
Thus, for all k ∈ N, the NMPC optimization problem is
defined as

min
Uk

J(x0|k, Uk) = min
Uk

 1

α
xT
N |kPjxN |k +

N−1
i=0

l(xi|k, ui|k)

,

(20a)

subject to:

xi+1|k = ϕ(xi|k, ui|k), i ∈ {0, . . . , N − 1}, (20b)

xi|k ∈ X ⊆ Rn, i ∈ {0, . . . , N − 1}, (20c)

ui|k ∈ U ⊆ Rm, i ∈ {0, . . . , N − 1}, (20d)

xN |k ∈ Sj , j = (j∗0 + k)modM. (20e)

CasADi Implementation
The optimal control problems in find init set() and
casadi simulation() are implemented and solved via
CasADi (Andersson et al., 2018). Thus, to use these
functions one must redefine the state–space model using
the SX data type symbolic variables, instead of the Matlab
sym data type. Then, the components of the optimization
problem are defined (by the toolbox) as follows:

Decision

variables
=

u0|k . . . uN−1|k λ0 . . . λM−1

, for (19),

u0|k . . . uN−1|k

, for (20),

Constraints

vector
:=

x1|k . . . xN |k

xN |kPλxN |k
M−1

j=0 λj

,

for (19),

x1|k . . . xN |k xN |kPjxN |k

, for (20),

Cost

function
:=

1
αx

T
N |kPλxN |k +

N−1
i=0 l(xi|k, ui|k), for (19),

1
αxN |kPjxN |k +

N−1
i=0 l(xi|k, ui|k), for (20),

for all j = 0, . . . ,M − 1. Then, M different NMPC prob-
lems are defined using the above components which are
solved in a periodic manner as previously explained. The
upper and lower limit vectors for the constraints vector
and the decision variables are constructed according to the

defined state and input constraints as well as
∑M−1

j=0 λj = 1

and 0 ≤ λj ≤ 1 if (19) is of concern. Then the NMPC
problem is solved using IPOPT (Wächter and Biegler,
2006), either once for k = 0 (19) or within a for loop
for k ∈ N (20). A shifted version of the optimal solution
obtained at k−1, i.e., {u1|k−1, . . . , uN−1|k−1, hj(xN |k−1)}T
is provided to the solver as an initial guess/warm start.

Plotting Module This module provides functions for plot-
ting closed–loop trajectories and estimating the domain of
attraction of the resulting NMPC controllers, as follows:

• plot ellipsoidal sets(): Plots the obtained ter-
minal sets by making use of the Ellipsoidal Toolbox
(Kurzhanskiy and Varaiya, 2006). The polytopic state
boundaries implied by the state constraints are plot-
ted as well by using MPT3 (Herceg et al., 2013). For
high dimensional systems, projections of the terminal
sets on 2D planes are plotted instead.

• plot DOA(): Obtains a grid of feasible and infea-
sible initial conditions which provides an approxi-
mation of the domain of attraction for the NMPC
controller. The feasibility of any initial condition
x(0) is determined by calling find init set() for
each grid point to check if (19) is feasible. By call-
ing plot ellipsoidal sets(), it plots a domain of
attraction representation of the closed–loop system
on top of the obtained terminal sets. This plot is
only available for 1D/2D systems, but the number
of feasible and infeasible gridpoints are also returned
for numerical comparison when higher dimensional
systems are of concern.

4. ILLUSTRATIVE EXAMPLES

Consider an inverted pendulum example (Iles et al., 2015):

ϕ1(x, u) = x1 + TsmgL sin(x2) + CmTsu,

ϕ2(x, u) = x2 + Tsx1,

with Ts = 0.2s, Cm = 14, mgL = 2. The state and
input constraints are ∥x∥∞ ≤ 10 and |u| ≤ 2. Let Q =
(0.05)I2, R = 0.1 and in (6) set ᾱ ≤ 106 . With the
design parameters set as η = 1, ρ = 2, κj = κ = 0.05
and M = 10, a quasi–second order approximation and
a nonlinear local control law are chosen. solve LMIs()
yields the candidate terminal ingredients where the P and
K matrices corresponding to the largest terminal set are

P5 =

[
0.010557876915815 0.002426931164891
0.002426931164891 0.010557877055499

]
,

K5 = [−0.075334772611226 −0.203393867313070] ,

with α = 4.742387356691633×10−6. solveNLPbisection()
was then called for these candidate terminal ingredients
which certified that (11) was already satisfied and γ = 1
was returned. The volume of the largest terminal set is ob-
tained as 3.057465536528358× 102. The resulting M = 10
terminal sets are plotted in Fig. 2 in blue.

In Fig. 2 it can be seen that for M = 10, different
terminal sets are covering different areas of the state–
space which actually corresponds to further improvements
in the domain of attraction. Using a single terminal set and
linear local control law, which corresponds to the standard
method as implemented in (Kwon and Han, 2005), yields
a much smaller terminal set, as it can be seen in Fig. 2.

Fig. 2. Terminal set for κj = 0.05 (Kwon and Han, 2005)
in red and sNMPC terminal sets (quasi–second order
approximation, nonlinear control law, M = 10) in
blue. State trajectories for some initial conditions on
the boundary of the domain of attraction for N = 1
employing the sNMPC terminal costs and sets.

Table 2. Volume of the largest set computed
using (Kwon and Han, 2005) versus sNMPC.

System (Kwon and Han, 2005) sNMPC

Inv. pend. 3.279275893066 305.7465536528

Oscillator 16.31201535119 20.78049118918

Cart 4.88197679500 15.74898441913

Flex. joint 0.04039957065 0.08499855865

2DOF arm 537.7987359438189 733.1966909073088

However, it should be noted that increasing M does not
always result in larger sets. Similarly, employing a quasi–
second order approximation is not always superior to a
first order approximation since it introduces conservatism
in a different way. Using a nonlinear control law results in
terminal sets that are always large than or equal to the
ones obtained using a linear control law. A linear control
law is still provided as an option so that the application
of the toolbox is not limited to input affine systems.

The sNMPC toolbox was also tested on a 2D oscillator
(Darup and Cannon, 2015), a 2D cart spring–damper (Rai-
mondo et al., 2009), a 4D flexible joint (Ghahramani and
Towhidkhah, 2009) and a 4D 2DOF robotic arm (Cisneros
et al., 2018). The volumes of the largest terminal sets
calculated using the sNMPC toolbox for these examples
are presented in Table 2 along with the volumes for ter-
minal sets corresponding to the method in (Kwon and
Han, 2005). The results show that by making use of the
several available degrees of freedom, the sNMPC toolbox
consistently results in enlarged terminal sets for various
nonlinear dynamics.

Remark 3. The volumes presented in Table 1 of (Lazar

and Tetteroo, 2018) were computed by
√

det(P−1) which
are proportional but not equal to the actual volume of the
ellipsoidal sets. In the sNMPC toolbox, the exact volumes
are calculated using the Ellipsoidal Toolbox (Kurzhanskiy
and Varaiya, 2006).

24 Mert Eyüboğlu et al. / IFAC PapersOnLine 55-30 (2022) 19–24

5. CONCLUSIONS

This paper presented the sNMPC Matlab toolbox for
the computation of stabilizing terminal ingredients, which
mainly builds on the framework presented in (Lazar and
Tetteroo, 2018) and includes other existing methods as
specific cases. The toolbox provides several degrees of
freedom in the design of terminal ingredients such that
significant improvements in the domain of attraction can
be obtained for the resulting NMPC algorithms. The
toolbox also includes functions for simulating the closed–
loop NMPC systems and visualizing the terminal sets with
aid of other existing Matlab toolboxes.

The toolbox can be freely downloaded at the link:
https://github.com/mlazar04/sNMPC.

REFERENCES

Andersson, J., Gillis, J., Horn, G., Rawlings, J., and Diehl,
M. (2018). Casadi — a software framework for non-
linear optimization and optimal control. Mathematical
Programming Computation, 11(1), 1–36.

ApS, M. (2019). The MOSEK optimization toolbox for
MATLAB manual. Version 9.0.

Chen, H. and Allgöwer, F. (1998). A quasi-infinite horizon
nonlinear model predictive control scheme with guaran-
teed stability. Automatica, 34(10), 1205–1217.

Chen, H., O’Reilly, J., and Ballance, D.J. (2003). On
the terminal region of model predictive control for non-
linear systems with input/state constraints. Interna-
tional Journal of Adaptive Control and Signal Process-
ing, 17(3), 195–207.

Chen, Y., Bruschetta, M., Picotti, E., and Beghi, A.
(2019). Matmpc - a matlab based toolbox for real-
time nonlinear model predictive control. In 2019 18th
European Control Conference (ECC), 3365–3370.

Cisneros, P.S.G., Sridharan, A., and Werner, H. (2018).
Constrained predictive control of a robotic manipulator
using quasi-lpv representations. IFAC-PapersOnLine,
51, 118–123.

Currie, J. and Wilson, D. (2012). Opti: Lowering the bar-
rier between open source optimizers and the industrial
matlab user.

Darup, M.S. and Cannon, M. (2015). A missing link
between nonlinear MPC schemes with guaranteed sta-
bility. In 2015 54th IEEE Conference on Decision and
Control (CDC).

Dezert, J. and Musso, C. (2001). An efficient method for
generating points uniformly distributed in hyperellip-
soids.

Fitri, I.R. and Kim, J.S. (2020). A nonlinear model
predictive control with enlarged region of attraction via
the union of invariant sets. Mathematics, 8(11).

Ghahramani, N.O. and Towhidkhah, F. (2009). Con-
strained incremental predictive controller design for a
flexible joint robot. ISA Transactions, 48(3), 321–326.

Herceg, M., Kvasnica, M., Jones, C., and Morari, M.
(2013). Multi-Parametric Toolbox 3.0. In Proc. of the
European Control Conference. Zürich, Switzerland.

Houska, B., Ferreau, H., and Diehl, M. (2011). ACADO
Toolkit – An Open Source Framework for Automatic
Control and Dynamic Optimization. Optimal Control
Applications and Methods, 32(3), 298–312.

Hu, X.B. and Chen, W.H. (2007). Model predictive control
for non-linear missiles. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, 221(8), 1077–1089.

Iles, S., Lazar, M., and Matusko, J. (2015). Stabi-
lizing model predictive control based on flexible set-
membership constraints. In 2015 European Control
Conference (ECC).

Kurzhanskiy, A.A. and Varaiya, P. (2006). Ellipsoidal tool-
box (et). In Proceedings of the 45th IEEE Conference
on Decision and Control, 1498–1503.

Kwon, W.H. and Han, S.H. (2005). Receding Horizon
Control: Model Predictive Control for State Models.
Springer Verlag.

Lazar, M. and Spinu, V. (2015). Finite-step terminal in-
gredients for stabilizing model predictive control. IFAC-
PapersOnLine, 48(23), 9–15.

Lazar, M. and Tetteroo, M. (2018). Computation of
terminal costs and sets for discrete–time nonlinear mpc.
IFAC-PapersOnLine, 51(20), 141–146.

Löfberg, J. (2004). Yalmip : A toolbox for modeling and
optimization in matlab. In In Proceedings of the CACSD
Conference. Taipei, Taiwan.

Lucia, S., Rumschinski, P., Krener, A.J., and Findeisen, R.
(2015). Improved design of nonlinear model predictive
controllers. IFAC-PapersOnLine, 48(23), 254–259.

Michalska, H. and Mayne, D. (1993). Robust receding
horizon control of constrained nonlinear systems. IEEE
Transactions on Automatic Control, 38(11), 1623–1633.

Raimondo, D.M., Limon, D., Lazar, M., Magni, L., and
Camacho, E.F. (2009). Min-max model predictive con-
trol of nonlinear systems: A unifying overview on stabil-
ity. European Journal of Control, 15(1), 5–21.

Rajhans, C., Griffith, D.W., Patwardhan, S.C., Biegler,
L.T., and Pillai, H.K. (2019). Terminal region charac-
terization and stability analysis of discrete time quasi-
infinite horizon nonlinear model predictive control.
Journal of Process Control, 83, 30–52.

Rajhans, C., Patwardhan, S.C., and Pillai, H. (2016). Two
alternate approaches for characterization of the terminal
region for continuous time quasi-infinite horizon nmpc.
In 2016 12th IEEE International Conference on Control
and Automation (ICCA), 98–103.

Wächter, A. and Biegler, L. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
programming, 106, 25–57.

Yu, S., Hou, C., Qu, T., and Chen, H. (2015). A revisit to
MPC of discrete-time nonlinear systems. In 2015 IEEE
International Conference on Cyber Technology in Au-
tomation, Control, and Intelligent Systems (CYBER).

