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Abstract: Data–driven predictive control (DPC) is becoming an attractive alternative to model
predictive control as it requires less system knowledge for implementation and reliable data is
increasingly available in smart engineering systems. Two main approaches exist within DPC: the
subspace approach, which estimates prediction matrices (unbiased for large data) and the behavioral,
data-enabled approach, which uses Hankel data matrices for prediction (allows for optimizing the
bias/variance trade–off). In this paper we develop a novel, generalized DPC (GDPC) algorithm by
merging subspace and Hankel predictors. The predicted input sequence is defined as the sum of
a known, baseline input sequence, and an optimized input sequence. The corresponding baseline
output sequence is computed using an unbiased, subspace predictor, while the optimized predicted
output sequence is computed using a Hankel matrix predictor. By combining these two types of
predictors, GDPC can achieve high performance for noisy data even when using a small Hankel
matrix, which is computationally more efficient. Simulation results for a benchmark example from
the literature show that GDPC with a reduced size Hankel matrix can match the performance of
data–enabled predictive control with a larger Hankel matrix in the presence of noisy data.

Keywords: data–driven control; predictive control; constrained control; regularized least squares

MSC: 37N35; 93C40; 93D20

1. Introduction

Reliable data is becoming increasingly available in modern, smart engineering sys-
tems, including mechatronics, robotics, power electronics, automotive systems, and smart
infrastructures, see, e.g., [1,2] and the references therein. For these application domains,
model predictive control (MPC) [3,4] has become the preferred advanced control method
for several reasons, including constraints handling, anticipating control actions, and op-
timal performance. Since obtaining and maintaining accurate models requires effort and
reliable data becomes readily available in engineering systems, it is of interest to develop
data–driven predictive control (DPC) algorithms that can be implemented in practice. An
indirect data–driven approach to predictive control design was already developed in [5]
more than 20 years ago, i.e., subspace predictive control (SPC). The SPC approach skips the
identification of the prediction model and identifies the complete prediction matrices from
input–output data using least squares. This provides an unbiased predictor for sufficiently
large data.

More recently, a direct data–driven approach to predictive control design was devel-
oped in [6] based on behavioral systems theory and Willems’ fundamental lemma [7], i.e.,
data–enabled predictive control (DeePC). The idea to use (reduced order) Hankel matrices
as predictors has been put forward earlier in [8], but the first well–posed constrained
data–enabled predictive control algorithm was formulated in [6], to the best of the authors’
knowledge. The DeePC approach skips the identification of prediction models or matrices
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all together and utilizes Hankel matrices built from input–output data to parameterize
predicted future inputs and outputs. In the deterministic, noise free case, equivalence of
MPC and DeePC was established in [6,9], while equivalence of SPC and DeePC was shown
in [10]. Stability guarantees for DeePC were first obtained in [9] by means of terminal
equality constraints and input–output–to–state stability Lyapunov functions. Alternatively,
stability guarantees for DeePC were provided in [11] using terminal inequality constraints
and dissipation inequalities involving storage and supply functions. An important con-
tribution to DeePC is the consistent regularization cost introduced in [12], which enables
reliable performance in the presence of noisy data. Indeed, since the DeePC algorithm
jointly solves estimation and controller synthesis problems, the regularization derived
in [12] allows one to optimize the bias/variance trade–off if data is corrupted by noise. A
systematic method for tuning the regularization cost weighting parameter was recently
presented in [13].

Computationally, SPC has the same number of optimization variables as MPC, which
is equal to the number of control inputs times the prediction horizon. In DeePC, the
number of optimization variables is also driven by the data length, which must be in
general much larger than the prediction horizon. Especially in the case of noisy data, a
large data size is required to attain reliable predictions, see, e.g., [9,12,13]. As this hampers
real–time implementation, it is of interest to improve computational efficiency of DeePC.
In [14], a computationally efficient formulation of DeePC was provided via LQ factorization
of the Hankel data matrix, which yields the same online computational complexity as
SPC/MPC. In this approach, DeePC yields an unbiased predictor, similar to SPC. In [15],
a singular value decomposition is performed on the original Hankel data matrix and a
DeePC algorithm is designed based on the resulting reduced Hankel matrix. Therein, it
was shown that this approach can significantly reduce the computational complexity of
DeePC, while improving the accuracy of predictions for noisy data. In [16], an efficient
numerical method that exploits the structure of Hankel matrices was developed for solving
quadratic programs (QPs) specific to DeePC. Regarding real–life applications of DeePC, the
minimal data size required for persistence of excitation is typically used, see, e.g., [17,18],
or an unconstrained solution of DeePC is used instead of solving a QP, see, e.g., [19]. These
approaches however limit the achievable performance in the presence of noisy data and
hard constraints, respectively.

In this paper we develop a novel, generalized DPC (GDPC) algorithm by merging
subspace and Hankel predictors with the goal of reducing online computational complexity
without sacrificing control performance in the presence of noisy data. The predicted input
sequence is defined as the sum of a known, baseline input sequence and an optimized input
sequence. The corresponding baseline output sequence is computed using an unbiased,
subspace predictor based on a large data set, while the optimized predicted output sequence
is computed using a Hankel matrix predictor based on a reduced data set. Via the extension
of Willems’ fundamental lemma to multiple data sets [20], the sum of the two trajectories
spanned by two (possibly different) data sets will remain a valid system trajectory, as
long as the combined data matrices are collectively persistently exciting and the system is
linear. By combining these two types of predictors, GDPC can achieve high performance
in the presence of noisy data even when using Hankel matrices of smaller size, which is
computationally efficient and preserves the bias–variance tradeoff benefits of DeePC. The
performance and computational complexity of GDPC with a minimal (according to DeePC
design criteria) size Hankel matrix is evaluated for a benchmark example from the MPC
literature and compared to DeePC with a Hankel matrix of varying size.

The remainder of this paper is structured as follows. The necessary notation and the
DeePC approach to data–driven predictive control are introduced in Section 2. The GDPC
algorithm is presented in Section 3, along with design guidelines, stability analysis and
other relevant remarks. Simulation results and a comparison with DeePC are provided in
Section 4 for a benchmark example from the literature. Conclusions are summarized in
Section 5. Frequently used abbreviations are summarized in Table 1.
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Table 1. Table of abbreviations.

MPC Model Predictive Control
DPC Data–driven Predictive Control
SPC Subspace Predictive Control

DeePC Data–enabled Predictive Control
GDPC Generalized Data–driven Predictive Control

QP Quadratic Programming

2. Preliminaries

Consider a discrete–time linear dynamical system subject to zero–mean Gaussian
noise w(k) ∼ N (0, σ2

w I):

x(k + 1) = Ax(k) + Bu(k), k ∈ N,

y(k) = Cx(k) + w(k),
(1)

where x ∈ Rn is the state, u ∈ Rnu is the control input, y ∈ Rny is the measured output and
(A, B, C) are real matrices of suitable dimensions. We assume that (A, B) is controllable
and (A, C) is observable. By applying a persistently exciting input sequence {u(k)}k∈N[0,T]

of length T to system (1) we obtain a corresponding output sequence {y(k)}k∈N[0,T]
.

If one considers an input–output model corresponding to (1), it is necessary to in-
troduce the parameter Tini that limits the window of past input–output data necessary to
compute the current output, i.e.,

y(k) =
Tini

∑
i=1

aiy(k− i) +
Tini

∑
i=1

biu(k− i), (2)

for some real–valued coefficients. For simplicity of exposition we assume the same Tini for
inputs and outputs.

Next, we introduce some instrumental notation. For any finite number q ∈ N≥1 of
vectors {ξ1, . . . , ξq} ∈ Rn1 × . . .×Rnq we will make use of the operator col(ξ1, . . . , ξq) :=
[ξ>1 , . . . , ξ>q ]>. For any k ≥ 0 (starting time instant in the data vector) and j ≥ 1 (length of
the data vector), define

ū(k, j) := col(u(k), . . . , u(k + j− 1)), ȳ(k, j) := col(y(k), . . . , y(k + j− 1)).

Let N ≥ Tini denote the prediction horizon. Then we can define the Hankel data matrices:

Up :=
[
ū(0, Tini) . . . ū(T − 1, Tini)

]
,

Yp :=
[
ȳ(1, Tini) . . . ȳ(T, Tini)

]
,

U f :=
[
ū(Tini, N) . . . ū(Tini + T − 1, N)

]
,

Y f :=
[
ȳ(Tini + 1, N) . . . ȳ(Tini + T, N)

]
.

(3)

According to the DeePC design [6], one must choose Tini ≥ n and T ≥ (nu + 1)(Tini +
N + n)− 1, which implicitly requires an assumption on the system order (number of states).
Given the measured output y(k) at time k ∈ N and Tini ∈ N≥1 we define the sequences of
known input–output data at time k ≥ Tini, which are trajectories of system (1):

uini(k) := col(u(k− Tini), . . . , u(k− 1)), yini(k) := col(y(k− Tini + 1), . . . , y(k)).

Next, we define the sequences of predicted inputs and outputs at time k ≥ Tini, which
should also be trajectories of system (1):

u(k) := col(u(0|k), . . . , u(N − 1|k)), y(k) := col(y(1|k), . . . , y(N|k)),
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where the notation y(i|k) denotes the predicted value of y(k + i) using measured output
data available up to y(k).

For a positive definite matrix L let L
1
2 denote its Cholesky factorization. At time

k ≥ Tini, given uini(k), yini(k), the regularized DeePC algorithm [12] computes a sequence
of predicted inputs and outputs as follows:

min
g(k),u(k),y(k),σ(k)

lN(y(N|k)) +
N−1

∑
i=0

l(y(i|k), u(i|k)) + λglg(g(k)) + λσlσ(σ(k)) (4a)

subject to constraints:
Up
Yp
U f
Y f

g(k) =


uini(k)

yini(k) + σ(k)
u(k)
y(k)

, (4b)

(y(k), u(k)) ∈ YN ×UN . (4c)

Above
l(y, u) := ‖Q

1
2 (y− ry)‖2

2 + ‖R
1
2 (u− ru)‖2

2, lσ(σ) := ‖σ‖2
2 (5)

for some positive definite Q, R matrices. The terminal cost is typically chosen larger than
the output stage cost, to enforce convergence to the reference; a common choice is a scaled
version of the output stage cost, i.e., lN(y) := αl(y, 0), α ≥ 1. The references ry ∈ Rny and
ru ∈ Rnu can be constant or time–varying. We assume that the sets Y and U contain ry and
ru in their interior, respectively. The cost

lg(g) := ‖(I −Π)g‖2
2, Π :=

Up
Yp
U f

†Up
Yp
U f

, (6)

is a regularization cost proposed in [12], where [·]† denotes a generalized pseudo–inverse.
Notice that using such a regularization cost requires T > Tini(nu + ny) + Nnu in order to
ensure that the matrix I −Π has a sufficiently large null–space. If a shorter data length T
is desired, alternatively, the regularization cost lg(g) := ‖g‖2

2 can be used. However, this
regularization is not consistent, as shown in [12].

In the deterministic, noise–free case, the DeePC algorithm [6] does not require the
costs lg, lσ and the variables σ. We observe that the computational complexity of DeePC
is dominated by the vector of variables g ∈ RT , with T ≥ (nu + 1)(Tini + N + n) − 1.
Hence, ideally one would prefer to work with the minimal value of data length T, but
in the presence of noise, typically, a rather large data length T is required for accurate
predictions [9,12,13].

3. Generalized Data–Driven Predictive Control

In this section we develop a novel, generalized DPC algorithm by constructing the
predicted input sequence u(k) as the sum of two input sequences, i.e.,

u(k) := ū(k) + ug(k), k ∈ N, (7)

where ū is a known, base line input sequence typically chosen as the shifted, optimal input
sequence from the previous time, i.e.,

ū(k) := {u∗(1|k− 1), . . . , u∗(N − 1|k− 1), ū(N − 1|k)}, (8)

where common choices for the last element ū(N − 1|k) are ru or u∗(N − 1|k− 1). At time
k = Tini, when enough input–output data is available to run the GDPC algorithm, ū(k) is
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initialized using a zero input sequence (or an educated guess). The sequence of inputs ug
can be freely optimized online by solving a QP, as explained next.

Using a single persistently exciting input sequence split into two parts, or two different
persistently exciting input sequences, we can define two Hankel data matrices as in (3), i.e.,

H̄ :=


Ūp
Ȳp
Ū f
Ȳ f

 ∈ R(nu+ny)(Tini+N)×T , H :=


Up
Yp
U f
Y f

 ∈ R(nu+ny)(Tini+N)×Tg , (9)

where the length T of the first part/sequence can be taken as large as desired and the choice
of the length Tg of the second part/sequence is flexible. That is, Tg should be small enough
to meet computational requirements, but it should provide enough degrees of freedom to
optimize the bias/variance trade off. Offline, compute the matrix

Θ := Ȳ f

Ūp
Ȳp
Ū f

†

∈ R(ny N)×(Tini(nu+ny)+nu N). (10)

Online, at time k ≥ Tini, given uini(k), yini(k) and ū(k), compute

ȳ(k) = Θ

uini(k)
yini(k)
ū(k)

 (11)

and solve the GDPC optimization problem:

min
g(k),u(k),y(k),σ(k)

lN(y(N|k)) +
N−1

∑
i=0

l(y(i|k), u(i|k)) + λglg(g(k)) + λσlσ(σ(k)) (12a)

subject to constraints:
Up
Yp
U f
Y f

g(k) =


0

σ(k)
u(k)− ū(k)
y(k)− ȳ(k)

, (12b)

(y(k), u(k)) ∈ YN ×UN . (12c)

Above, the cost functions lN(y), l(y, u), lg(g) and lσ(σ) are defined in the same way as
in (5) for some Q, R � 0.

Since the size of the matrix Θ does not depend on the data length T, i.e., the number
of columns of the Hankel matrix H̄, the computation as in (11) of the predicted output
corresponding to ū(k) is efficient even for a large T. Thus, GDPC benefits from an unbiased
base line output prediction, which allows choosing Tg, i.e., the number of columns of the
Hankel matrix H, much smaller than T. In turn, this reduces the online computational
complexity of GDPC, without sacrificing performance in the presence of noisy data. It can
be argued that the selection of Tg provides a trade–off between computational complexity
and available degrees of freedom to optimize the bias/variance trade off.

Remark 1 (Offset–free GDPC design). In practice it is of interest to achieve offset–free track-
ing. Following the offset–free design for SPC developed in [21], which was further applied to
DeePC in [13], it is possible to design an offset–free GDPC algorithm by defining an incremental
input sequence

∆u(k) := ∆ū(k) + ∆ug(k), k ∈ N,

where ∆ū is chosen as the shifted optimal input sequence from the previous time, i.e.,
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∆ū(k) := {∆u∗(1|k− 1), . . . , ∆u∗(N − 1|k− 1), ∆ū(N − 1|k)}. (13)

The input data blocks in the Hankel matrices H̄ and H must be replaced with incremental input
data, i.e., ∆Ūp, ∆Ū f and ∆Up, ∆U f , respectively. The input applied to the system is then u(k) :=
∆u∗(0|k) + u(k− 1).

In what follows we provide a formal analysis of the GDPC algorithm.

3.1. Well-Posedness and Design of GDPC

In this subsection we show that in the deterministic case GDPC predicted trajecto-
ries are trajectories of system (1). In this case, the GDPC optimization problem can be
simplified as

min
g(k),u(k),y(k)

lN(y(N|k)) +
N−1

∑
i=0

l(y(i|k), u(i|k)) (14a)

subject to constraints:
Up
Yp
U f
Y f

g(k) =


0
0

u(k)− ū(k)
y(k)− ȳ(k)

, (14b)

(y(k), u(k)) ∈ YN ×UN . (14c)

Lemma 1 (GDPC well–posedness). Consider one (or two) persistently exciting input sequence(s)
of sufficient length(s) and construct two Hankel matrices H̄ and H as in (9) with T and Tg columns,
respectively, and such that H̄ has full row rank. Consider also the corresponding output sequence(s)
generated using system (1). For any given input sequence ū(k), and initial conditions uini(k) and
yini(k), let ȳ(k) be defined as in (11). Then there exists a real vector g(k) ∈ RTg such that (14b)
holds if and only if u(k) and y(k) are trajectories of system (1).

Proof. Define ḡ(k) :=

Ūp
Ȳp
Ū f

†uini(k)
yini(k)
ū(k)

. Then it holds that:

[
H̄ H

][ḡ(k)
g(k)

]
=


Ūp
Ȳp
Ū f
Ȳ f

ḡ(k) +


Up
Yp
U f
Y f

g(k)

=


uini(k)
yini(k)
ū(k)
ȳ(k)

+


0
0

u(k)− ū(k)
y(k)− ȳ(k)

 =


uini(k)
yini(k)
u(k)
y(k)

. (15)

Since the matrix H̄ has full row rank, the concatenated matrix
[
H̄ H

]
has full row rank

and as such, the claim follows from [6] if one input sequence is used and from [20] if two
different input sequences are used to build the Hankel matrices.

The selection of Tg enables a trade off between computational complexity and available
degrees of freedom to improve the output sequence generated by the known, base line

input sequence. Indeed, a larger Tg results in a larger null space of the data matrix
[

Up
Yp

]
,

which confines g(k) in the deterministic case. However, high performance can be achieved
in the case of noisy data even for a smaller Tg, because the base line predicted output is
calculated using an unbiased least squares predictor, i.e., as defined in (11).
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An alternative way to define the known input sequence ū(k) is to use an unconstrained
SPC control law [5]. To this end, notice that the matrix Θ can be partitioned, see, e.g., [21],
into

[
P1 P2 Γ

]
such that

ȳ(k) =
[
P1 P2

][uini(k)
yini(k)

]
+ Γū(k).

Then, by defining Ψ := diag{R, . . . , R}, Ω := diag{Q, . . . , Q, αQ}, G := 2
(
Ψ + ΓTΩΓ

)
and

F := 2ΓTΩ, we obtain:

ūspc(k) := −G−1
(

F
([

P1 P2
][uini(k)

yini(k)

]
− ry

)
− 2Ψru

)
, (16)

where ry := col(ry, . . . , ry) and ru := col(ru, . . . , ru). Since the inverse of G is computed
offline, computing ūspc(k) online is numerically efficient even for a large prediction horizon
N. In this case, since the corresponding base line predicted output trajectory is unbiased, the
simpler regularization cost lg(g) := ‖g‖2

2 can be used in (12a), without loosing consistency.
When the base line input sequence is computed as in (16), the optimized input sequence
ug(k) acts to enforce constraints, when the analytic SPC control law (16) results in violation
of input or state constraints, and it can also optimize the bias/variance trade off under
appropriate tuning of λg.

Remark 2 (Relation with SPC and DeePC). The main novelty of GDPC with respect to existing
data–driven predictive controllers SPC [5] and DeePC [6] is the construction of a hybrid data-driven
predictor, i.e., a combination of subspace and Hankel predictors. This comes with the benefit that
online computational complexity can be reduced, by reducing the size of the Hankel matrix, while
robust control performance is still achieved due to the unbiased subspace predictor. Moreover,
GDPC can recover SPC or DeePC under specific settings as follows. First, notice that for a zero
baseline input sequence, i.e., ū(k) = 0 for all k ∈ N, and a sufficiently large Tg, the optimization
problem (14) becomes the DeePC problem (4) and yields the corresponding g∗DeePC(k). Then, if in
GDPC one selects Tg = T and H = H̄ in (9), we have that g(k) := g∗DeePC(k)− ḡ(k) satisfies (15),
and the DeePC solution is recovered for any baseline sequence ū(k). Alternatively, if the baseline
sequence is chosen as in (16) and the regularization cost λglg(g(k)) = λg‖g‖2

2 is added in (14a),
then u∗(k)→ u∗SPC(k) as λg → ∞, where u∗SPC(k) denotes optimal solution of the corresponding
SPC algorithm, see, e.g., [13].

Remark 3 (GDPC open challenges). A systematic method for choosing the data length T for
the subspace predictor versus the data length Tg for the Hankel predictor is required. This choice
represents an additional degree of freedom and depends on the noise level, system order and prediction

horizon, while it affects the null space of
[

Up
Yp

]
. The data length T for the subpace predictor can be

determined via standard subspace identification criteria, see, e.g., [3,22]. Tg can be chosen via the
singular value decomposition method proposed in [15] or as the minimal data length required by
DeePC [6]. Another open problem is the tuning of the hyper-parameters λg and λσ. A systematic
method for tuning λg was presented for DeePC in [13]. However, the same method does not apply
directly to GDPC, due to the presence of the time-varying baseline sequence.

3.2. Stability of GDPC

In this section we will provide sufficient conditions under which GDPC is asymptoti-
cally stabilizing. To this end define J(y(k), u(k)) := lN(y(N|k)) + ∑N−1

i=0 l(y(i|k), u(i|k)), let
lN(y) := l(y, 0) and let y∗(k) and u∗(k) denote optimal trajectories at time k ≥ Tini. Given
an optimal input sequence at time k ≥ Tini, i.e., u∗(k) = ū(k) + u∗g(k), define a suboptimal
input sequence at time k + 1 as
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us(k + 1) = ū(k + 1) + ug(k + 1)

= col(u∗(1|k), . . . , u∗(N − 1|k), ū(N|k)) + col(0, . . . , 0, 0), (17)

and let
ys(k + 1) = ȳ(k + 1) = col(y∗(2|k), . . . , y∗(N|k), ȳ(N + 1|k))

denote the corresponding suboptimal output trajectory. Note that the last output in the
suboptimal output sequence satisfies:

ȳ(N + 1|k) =
Tini

∑
i=1

aiy∗(N + 1− i|k) +
Tini

∑
i=1

biu∗(N + 1− i|k).

Definition 1 (Class K functions). A function ϕ : R+ → R+ belongs to class K if it is
continuous, strictly increasing and ϕ(0) = 0. A function ϕ : R+ → R+ belongs to class K∞ if
ϕ ∈ K and lims→∞ ϕ(s) = ∞. id denotes the identity K∞ function, i.e., id(s) = s.

Next, as proposed in [11], we define a non–minimal state:

xini(k) := col(y(k− Tini), . . . , y(k− 1), u(k− Tini), . . . , u(k− 1)),

and the function W(xini(k)) := ∑Tini
i=1 l(y(k− i), u(k− i)). In what follows we assume that

ry = 0 and ru = 0 for simplicity of exposition. However, the same proof applies for any
constant references that are compatible with an admissible steady–state.

Assumption 1 (Terminal stabilizing condition). For any admissible initial state xini(k) there
exists a function ρ ∈ K∞, with ρ < id, a prediction horizon N ≥ Tini and ū(N|k) ∈ U such that
ȳ(N + 1|k) ∈ Y and

l(ȳ(N + 1|k), ū(N|k))− (id− ρ) ◦ l(y(k− Tini), u(k− Tini)) ≤ 0. (18)

Theorem 1 (Stability of GDPC). Suppose that there exist α1,l , α2,l , α2,J ∈ K∞ such that

α1,l(‖ col(y, u)‖) ≤ l(y, u) ≤ α2,l(‖ col(y, u)‖), ∀(y, u) ∈ Y×U (19a)

J(y∗(k), u∗(k)) ≤ α2,J(‖xini(k)‖), ∀xini(k) ∈ N , (19b)

for some proper set N with the origin in its interior. Furthermore, let Assumption 1 hold and
suppose that problem (14) is feasible for all k ≥ Tini. Then system (1) in closed–loop with the GDPC
algorithm that solves problem (14) is asymptotically stable.

Proof. As done in [11] for the DeePC algorithm, we consider the following storage function

V(xini(k)) := J(u∗(k), y∗(k)) + W(xini(k)),

and we will prove that it is positive definite and it satisfies a dissipation inequality. First,
from (19a) and by Lemma 14 in [11] we obtain that there exist α1,V , α2,V ∈ K∞ such that

α1,V(‖xini(k)‖) ≤ V(xini(k)) ≤ α2,V(‖xini(k)‖).

Then, define the supply function

s(y(k− Tini), u(k− Tini)) := l(ȳ(N + 1|k), ū(N|k))− l(y(k− Tini), u(k− Tini)).

By the principle of optimality, it holds that
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V(xini(k + 1))−V(xini(k)) = J(y∗(k + 1), u∗(k + 1)) + W(xini(k + 1))

− J(y∗(k), u∗(k))−W(xini(k))

≤ J(ys(k + 1), us(k + 1))− J(y∗(k), u∗(k))

+ W(xini(k + 1))−W(xini(k))

= l(ȳ(N + 1|k), ū(N|k))− l(y(0|k), u(0|k))
+ l(y(0|k), u(0|k))− l(y(k− Tini), u(k− Tini))

= s(y(k− Tini), u(k− Tini)).

Hence, the storage function V(xini(k)) satisfies a dissipation inequality along closed–loop
trajectories. Since by (18) the supply function satisfies

s(y(k− Tini), u(k− Tini)) ≤ −ρ ◦ l(y(k− Tini), u(k− Tini)),

the claim then follows from Corollary 17 in [11].

Notice that condition (18) corresponds to a particular case of condition (25) employed
in Corollary 17 in [11], i.e., for M = 1.

Remark 4 (Terminal stabilizing condition). The terminal stabilizing condition (18) can be
regarded as an implicit condition, i.e., by choosing the prediction horizon N sufficiently large, this
condition is more likely to hold. Alternatively, it could be implemented as an explicit constraint in
problem (14) by adding one more input and output at the end of the predicted input and output
sequences u(k), y(k), respectively. This also requires including the required additional data in the
corresponding H̄ and H Hankel matrices. This yields a convex quadratically constrained QP, which
can still be solved efficiently. The stabilizing condition (18) can also be used in the regularized
GDPC problem (12) to enforce convergence, but in this case a soft constraint implementation is
recommended to prevent infeasibility due to noisy data.

It is worth to point out that the conditions invoked in [9] imply that condition (18)
holds, i.e., Assumption 1 is less conservative. Indeed, if a terminal equality constraint is
imposed in problem (14), i.e., y(N|k) = ry, then ū(N|k) = ru is a feasible choice at time
k + 1, which yields ȳ(N + 1|k) = ry and hence, l(ȳ(N + 1|k), ū(N|k)) = 0. Hence, (18)
trivially holds since the stage cost l(y, u) is positive definite and ρ < id. Alternatively, one
could employ a data–driven method to compute a suitable invariant terminal set in the
space of xini, as proposed in [23]. Tractable data–driven computation of invariant sets is
currently possible for ellipsoidal sets, via linear matrix inequalities, which also yields a
convex quadratically constrained QP that has to be solved online.

4. Simulations Results

In this section we consider a benchmark MPC illustrative example from Section 6.4
in [4] based on the flight control of the longitudinal motion of a Boeing 747. After dis-
cretization with zero–order–hold for Ts = 0.1[s] we obtain a discrete–time linear model as
in (1) with:

A =


0.9997 0.0038 −0.0001 −0.0322
−0.0056 0.9648 0.7446 0.0001
0.0020 −0.0097 0.9543 −0.0000
0.0001 −0.0005 0.0978 1.0000

, B =


0.0010 0.1000
−0.0615 0.0183
−0.1133 0.0586
−0.0057 0.0029

,

C =

[
1.0000 0 0 0

0 −1.0000 0 7.7400

]
,

(20)

with two inputs, the throttle u1 and u2, the angle of the elevator, and two outputs, the lon-
gitudinal velocity and the climb rate, respectively. The inputs and outputs are constrained
as follows:
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U :=
{

u ∈ R2 :
[
−20
−20

]
≤ u ≤

[
20
20

]}
Y :=

{
y ∈ R2 :

[
−25
−15

]
≤ Y ≤

[
25
15

]}
.

The cost function of the predictive controllers is defined as in (4) and (5) using λg = 105,
λσ = 107, N = 20, Tini = 20, Q = 10 · Iny and R = 0.01 · Inu . For GDPC, if the suboptimal
input sequence is computed as in (8), using shifted optimal sequence from the previous
time with ū(k + N− 1) = u∗(k− 2+ N), the regularization cost lg(g(k)) is defined as in (6).
If the analytic SPC solution (16) is used to compute the suboptimal input sequence, then
the regularization cost lg(g(k)) = λg‖g(k)‖2

2 is used. For DeePC the regularization cost
lg(g(k)) is defined as in (6). In this way, all 3 compared predictive control algorithms utilize
consistent output predictors.

The QP problems corresponding to the data–driven predictive controllers are solved
using the quadprog Matlab QP solver on a laptop with an Intel i7-9750H CPU and 16GB of
RAM, with MATLAB version R2021a. The quadprog solver is not the fastest QP solver in
general, but it has a high accuracy, which is useful to analyze with precision the control
performance of different algorithms. The OSQP solver [24] can provide a faster alternative,
and it was used in this work only to solve quadratically constrained QPs. Such optimization
problems arise if the stabilizing constraint (18) is included in the GDPC problem.

The GDPC algorithm is implemented in Matlab based on Algorithms 1 and 2.

Algorithm 1 Data generation method, prior to controlling the system

Input: Measurable system, Desired sampling period Ts
1: Generate persistently exciting input U = {u(k)}k∈N[0,T]

, see Section 13.3 in [22]
2: Apply input, measure and collect system response Y = {y(k)}k∈N[0,T]

3: Construct Hankel matrices H̄ and H as in (9)
4: Compute Θ as in (10) using H̄

Algorithm 2 Implementation of GDPC

Input: H̄, H, Θ and the system constraints
for k = 0 : Tini do

1: Measure y(k)
2: Apply u(k) = γ · rand(k) to the system and wait for the next sampling interval

end for
for k = Tini + 1 : end do

1: Measure y(k)
2: Build yini(k), uini(k) from the last Tini data samples
3: Compute ū(k) using either (8) or (16)
4: Compute ȳ(k) = Θ

[
uini(k)T yini(k)T ū(k)T]T

5: Solve QP (12) with any QP solver to obtain u(k)
6: Apply u(k) = u(k)[0:nu ] to the system and wait for the next sampling interval

end for

In what follows, the simulation results are structured into 3 subsections, focusing on
nominal, noise–free data performance, noisy data performance for low and high noise
variance and comparison with DeePC. The controllers will only start when Tini samples
have been collected. For the time instants up to k = Tini, the system is actuated by a small
random input. For the sake of a sound comparison, the random input signal used up to Tini
is identical for all simulations/predictive controllers. In the data generation experiment, the
system inputs are constructed using two PRBS signals, both constrained between [−3, 3].
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4.1. Noise–Free Data GDPC Performance

In this simulation we implement the GDPC algorithm with the suboptimal input
sequence computed as in (8). Figure 1 shows the outputs, inputs and optimized inputs
ug(k) over time.

Figure 1. GDPC tracking performance: Tg = 150, T = 1000, σ2
w I = 0I.

We observe that the GDPC closed–loop trajectories converge to the reference values
and that the optimized inputs are active only at the start, after which the suboptimal
shifted sequence becomes optimal. The stabilizing condition (18) is implicitly satisfied
along trajectories; when imposed online, the GDPC problem is recursively feasible and
yields the same trajectories.

4.2. Noisy Data GDPC Performance

Next we illustrate the performance of GDPC for noisy data with a low and high
variance. Figures 2 and 3 show the GDPC response using ū(k) as defined in (8) and (16),
respectively, for low variance noise.

Although the two different methods to calculate the base line input sequence ū(k)
show little difference in the resulting total input u(k), the optimized part of the input, ug(k)
shows a notable difference. For the GDPC algorithm that uses the unconstrained SPC we
see that the optimized input only acts to enforce constraints, while around steady state the
unconstrained SPC becomes optimal.

Next, we show the performance of GDPC for high–variance noise, which also requires
a suitable increase of the data size. Figures 4 and 5 show the GDPC response using ū(k)
as defined in (8) and (16), respectively, for high variance noise. We see that both GDPC
algorithms achieve robust control performance, while in the case of the SPC baseline input
sequence, the optimized input is active also around steady state. This shows that GDPC
indeed optimizes the bias variance trade off with respect to the SPC solution.
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Figure 2. GDPC tracking performance: Tg = 150, T = 1000, σ2
w I = 0.05I, ū as in (8).

Figure 3. GDPC tracking performance: Tg = 150, T = 1000, σ2
w I = 0.05I, ū as in (16).
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Figure 4. GDPC tracking performance: Tg = 250, T = 5000, σ2
w I = 0.5I, ū as in (8).

Figure 5. GDPC tracking performance: Tg = 250, T = 5000, σ2
w I = 0.5I, ū as in (16).
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In Figure 6 it can be observed that DeePC requires a data sequence of length 750 to
achieve similar performance with GDPC with data lengths Tg = 250 (relevant for online
complexity), T = 5000.

The three tested predictive controllers yield the following average computational time
for the high–variance noise simulation: GDPC with ū as in (8) −59 ms; GDPC with ū as
in (16) −30 ms; DeePC −371 ms. This suggests that for high noise and large scale systems
GDPC provides a computationally efficient alternative to DeePC.

Figure 6. DeePC tracking performance: T = 750, σ2
w I = 0.5I.

4.3. Comparison with DeePC over Multiple Runs

In this section, we compare the performance of GDPC with DeePC for different sizes
of T over multiple runs. The performance can be expressed using the integral squared error
(ISE) or the integral absolute error (IAE) in relation with the input energy (InEn), formally
defined as:

ISE =
tmax

∑
k=Tini

‖y(k)− r(k)‖2
2, IAE =

tmax

∑
k=Tini

‖y(k)− r(k)‖1, InEn =
tmax

∑
k=Tini

‖u(k)‖2
2,

where tmax is the simulation time and note that the performance scores are computed after
the simulation ends, thus using simulated data (not predicted data). Furthermore, both
the data-collecting experiment and the simulation are influenced by noise with variance
σ2

w I = 0.05I. All algorithms are designed based on the same offline collected data set and
tested online using the same noise realization.

As shown in Figure 7, we notice that the GDPC predictor with data length Tg = 150
(Hankel matrix based predictor) and T = 1000 (least squares based predictor) can match
the performance of DeePC with data length T = 500, while the DeePC performance with
T = 150 is lower. Also, the input energy is lower for GDPC compared with the the same
cost for DeePC with T = 500. Two extreme outliers were removed from the results of
DeePC with T = 150 to make the plots more clear.

From a computational complexity point of view, as shown in Table 2, the average CPU
time of GDPC with Tg = 150 and T = 500 is of the same order as the average CPU time
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of DeePC with T = 150, while the average CPU time of DeePC with T = 500 is about
8 times higher.

Figure 7. 1: GDPC with ū as in (8), T = 1000, Tg = 150; 2: DeePC with T = 150; 3: DeePC with
T = 500. σ2

w I = 0.05I, using 50 Monte-Carlo runs.

Table 2. Average CPU time (Quadprog) over all runs for various data–driven predictive controllers.

GDPC (8), Tg = 150 DeePC T = 150 DeePC T = 500

CPU 33 ms 32 ms 260 ms

The obtained results validate the fact that GDPC offers more flexibility to optimize
the trade off between control performance in the presence of noisy data and online com-
putational complexity. As such, GDPC provides engineers with a practical and robust
data–driven predictive controller suitable for real–time implementation.

5. Conclusions

In this paper we developed a generalized data–driven predictive controller by merging
a subspace unbiased predictor with a Hankel matrix based predictor. We have shown that
this formulation results in a well–posed data–driven predictive controller with similar
properties as DeePC. Sufficient conditions for closed–loop asymptotic stability of GDPC
have been establsihed. Also, we have shown that compared to DeePC, the developed
GDPC algorithm provides a trade–off between computational complexity and robust
control performance.

To demonstrate this, Table 3 summarizes the performance versus computational
complexity trade-off of the developed GDPC algorithms and DeePC, respectively, for
system (20) and the following settings: N = 50, σ2

w I = 0.2I, T = 5000 and Tg = 250 for
GPDC algorithms, and for DeePC we test T = 250 and T = 500. All algorithms have
been designed using the same offline collected data set and tested online using the same
noise realization.
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Table 3. Average CPU time (Quadprog) and performance indicators for various DPC algorithms.

GDPC with (8) GDPC with (16) DeePC T = 250 DeePC T = 500

CPU 131 ms 68 ms 106 ms 386 ms

ISE 290 258 397 265

IAE 86 74 159 75

InEn 3400 4400 3900 3400

We observe that the performance of DeePC increases / improves with the increase
of the data length, but its computational complexity increases as well. For GDPC with a
baseline input sequence as in (8), i.e., the shifted sequence from previous time, and with
Tg = 250 outperforms DeePC for the same data size T = 250, with a slight computational
time increase. Moreover, GDPC with a baseline input sequence as in (16), i.e., the un-
constrained SPC control law, and with Tg = 250 outperforms DeePC even with T = 500,
while it is computationally faster than DeePC with T = 250. The fact that GDPC with
baseline (16) uses more input energy than DeePC with T = 500 to achieve improved control
performance, suggests that the merged predictor in this case is superior, as it is able to
correctly exploit the input energy for controlling the system, despite the large noise variance
in both offline and online data.

In future work we will research systematic methods for choosing the data lengths T, Tg
and tuning the hyper parameters λg and λσ. Also, we will research methods for providing
robust stability guarantees for GDPC using the input-to-state stability framework.
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