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A B S T R A C T

Artificial intelligence is getting a foothold in medicine for disease screening and diagnosis. While typical
machine learning methods require large labeled datasets for training and validation, their application is limited
in clinical fields since ground truth information can hardly be obtained on a sizeable cohort of patients.
Unsupervised neural networks – such as Self-Organizing Maps (SOMs) – represent an alternative approach to
identifying hidden patterns in biomedical data. Here we investigate the feasibility of SOMs for the identification
of malignant and non-malignant regions in liquid biopsies of thyroid nodules, on a patient-specific basis.
MALDI-ToF (Matrix Assisted Laser Desorption Ionization - Time of Flight) mass spectrometry-imaging (MSI)
was used to measure the spectral profile of bioptic samples. SOMs were then applied for the analysis of MALDI-
MSI data of individual patients’ samples, also testing various pre-processing and agglomerative clustering
methods to investigate their impact on SOMs’ discrimination efficacy. The final clustering was compared
against the sample’s probability to be malignant, hyperplastic or related to Hashimoto thyroiditis as quantified
by multinomial regression with LASSO. Our results show that SOMs are effective in separating the areas of
a sample containing benign cells from those containing malignant cells. Moreover, they allow to overlap the
different areas of cytological glass slides with the corresponding proteomic profile image, and inspect the
specific weight of every cellular component in bioptic samples. We envision that this approach could represent
an effective means to assist pathologists in diagnostic tasks, avoiding the need to manually annotate cytological
images and the effort in creating labeled datasets.
Abbreviations: SOM, Self-Organizing Maps; MALDI, Matrix Assisted Laser Desorption Ionization; ToF, Time of Flight; MSI, Mass Spectrometry Imaging;
LASSO, Least Absolute Shrinkage and Selection Operator; AI, Artificial Intelligence; FNA, Fine Needle Aspiration; DESI, Desorption Electrospray Ionization;
DSUUL, Discrimination of Spectra Using Unsupervised Learning; ROI, Region of Interest; H&E, Hematoxylin and Eosin; ANN, Artificial Neural Network; BMU,
Best Matching Unit; PTC, Papillary Thyroid Carcinoma; HP, Hyperplastic; HT, Hashimoto Thyroiditis; NIFTP, Noninvasive Thyroid Neoplasm with Papillary-like
Nuclear Features; TIC, Total Ion Current; MAD, Mean Absolute Deviation; GPU, Graphics Processing Unit; SIMD, Same Instruction Multiple Data
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1. Introduction

Artificial Intelligence (AI) represents nowadays a promising means
to aid clinicians in prognosis, diagnosis, treatment identification, and
disease screening (Obermeyer & Topol, 2021). The most widespread
supervised AI methods – e.g., machine learning (Rajkomar, Dean, &
Kohane, 2019) and deep learning (Esteva et al., 2019) – require large
amounts of labeled data for AI models’ training and validation; though,
adequate labeled datasets are not always available or demand a huge
effort for their creation. To overcome this limit, unsupervised AI meth-
ods can be exploited to identify patterns in data, and to spontaneously
learn the optimal separation of a dataset into clusters according to
some measure of mutual similarity. In this context, neural networks
like Self-Organizing Maps (SOMs) (Kohonen, 2012) have been exten-
sively used as a tool for clustering (Günter & Bunke, 2002; Vesanto
& Alhoniemi, 2000), complexity reduction (Wang, Delabie, Aasheim,
Smeland, & Myklebost, 2002), anomaly detection (Tian, Azarian, &
Pecht), and visualization of multi-dimensional numerical data (Vesanto,
1999) to assist and simplify its interpretation (Pourkia, Rahimi, &
Baghaei, 2019). Practical application areas in which SOMs have been
effectively applied include pattern recognition (Yamagutchi, Nagata,
Truong, Pfurtscheller, & Inoue, 2007) and medical applications, such
as clustering of gene microarray data of breast and prostate cancer
cells (Hautaniemi et al., 2003; Markey, Lo, Tourassi, & Floy. Jr, 2003),
integration of clinical and molecular information to the aim of classify-
ing the risk of progression in bladder cancer (Borkowska et al., 2014),
identification of patterns associated with the survival of patients with
breast cancer (Shukla, Hagenbuchner, Win, & Yang, 2018), analysis of
functional magnetic resonance imaging (Ngan, Yacoub, Auffermann,
& Hu, 2002) and ophthalmological data (Henson, Spenceley, & Bull,
1997).

Here, we propose the application of SOMs for the analysis of Matrix-
Assisted Laser Desorption Ionization (MALDI) Mass Spectrometry Imag-
ing (MSI) data, which were generated to measure the spectral profiles of
Fine Needle Aspiration (FNA) biopsies. FNA is a widely used procedure
for the collection of specimens, employed in the diagnosis of benign
and malignant lesions in the pre-surgical setting. In particular, we use
MALDI-MSI data of FNA biopsies of thyroid nodules as a case study.
Thyroid cancer can be diagnosed by detecting thyroid nodules, which
are radiologically distinct from the normal types of tissue of the thyroid
gland. Although the majority of such nodules – that are very common
and most of the times incidentally detected during imaging procedures
for other indications – are benign, approximately 7–15% of patients
with thyroid nodules are affected by malignant thyroid carcinoma.
Furthermore, around 20–30% of cases have an indeterminate for ma-
ignancy final report after biopsy and undergo surgery; however, after
he thyroidectomy, 80% of these nodules are confirmed to be benign
Capitoli et al., 2022). The early identification of malignant nodules
romoted by FNA, combined with the application of innovative tech-
ologies – such as MALDI-MSI – on cytological thyroid specimens thus
epresents a promising approach to better characterize and distinguish
he molecular signature of different lesions.

Several computational approaches have been presented in the liter-
ture to analyze MALDI-MSI data. For instance, hierarchical clustering
as exploited to highlight possible tumor areas within a tissue sec-

ion (Deininger, Ebert, Futterer, Gerhard, & Rocken, 2008); machine
earning techniques, such as support vector machines and random
orests, were employed to differentiate cancer and non-cancer sam-
les (Datta & DePadilla, 2006), and to perform data factorization and
imensionality reduction (Verbeeck, Caprioli, & Plas, 2020); convolu-
ional neural networks were used in classification tasks of MALDI-MSI
ata (Seddiki et al., 2020). More recently, principal component analysis
nd t-distributed stochastic neighbor embedding were implemented
n the tool M2aia to realize a dimensionality reduction analysis of
SI data (Cordes et al., 2021); differently from the approach that
2

is presented in this work, in M2aia a peak picking of the spectra is
performed, rather than considering them entirely.

In previous approaches, MALDI-MSI data, obtained from FNA sam-
ples, was used to characterize the pathological state of patients. Con-
versely, in this work we propose a different approach to automatically
discriminate different proteomic profiles within a FNA thyroid sample
with the aim of identifying specific spectra footprint characteristic of
morphological regions. We assess the feasibility of exploiting SOMs
on proteomic profiles of thyroid FNA data. Namely, we evaluate the
mass spectra clustering outcome and compare it to the corresponding
morphological image. It is of great interest to evaluate the applicability
of SOMs for the identification of clusters of different proteomic profiles
as this approach can directly use the unlabeled liquid biopsy samples
obtained with FNA, and has therefore the potential of supporting
clinicians in cytological diagnosis.

Moving forward from the first results obtained using cytological
smears or tissues taken from surgical procedures (Kurczyk et al., 2020;
Mosele, Smith, Galli, Pagni, & Magni, 2017; Pietrowska et al., 2017),
some previously studies investigated proteomics signatures on FNAs us-
ing MALDI-MSI technique (Capitoli et al., 2020, 2019), or metabolomic
with desorption electrospray ionization mass spectrometry (DESI-MSI)
technique (DeHoog et al., 2019). In both cases, based on the molecular
profiles obtained from malignant thyroid carcinomas and benign thy-
roid tissues, classification models (e.g., LASSO (Tibshirani, 1996) and
elastic net Zou & Hastie, 2005) were generated and used to predict a
diagnosis based on the morphological composition of FNA material.
It is worth highlighting that these methods often require the use of
several pre-processing steps. Pre-processing filters out irrelevant and
redundant information present in the data; however, it could poten-
tially also remove relevant information that should have been included.
In this context, an additional advantage in the use of SOMs is that
they are typically applied to the original data with only minimal pre-
processing, thus allowing for retaining as much information as possible.
Moreover, SOMs aim at discovering patterns and then clustering the
data accordingly, which is different from supervised statistical models
that are used to identify specific ‘‘signals’’ based on which they are
able to identify different entities, without taking into account the whole
shape of a spectrum.

To sum up, in this work we present a novel framework, called
DSUUL, for the automatic clustering of spectral profiles provided by
MALDI-MSI data. We apply our framework to analyze FNA biopsies of
thyroid nodules. Fig. 1 schematizes the workflow of mass spectrometry
sample preparation and analysis, whose outcome represents the input
for the machine learning strategies. LASSO (supervised) and DSUUL
(unsupervised) learning approaches are depicted for comparison, to
highlight the manual steps regarding the annotation of Regions of
Interest (ROIs) in the sample and the labeling of the spectra, which
are required to build a LASSO model. To the best of our knowledge,
DSUUL represents the first attempt in using unsupervised learning as
a possible complementary approach to routine FNA-based cytology.
Since malignant thyroid samples can have different spectral footprints,
we investigate the feasibility of unsupervised anomaly detection us-
ing SOMs. Various data pre-processing and clustering strategies are
also used to investigate their impact on the discrimination efficacy of
SOMs. Our results show that SOMs can be effective in automatically
identifying and separating the areas of a sample containing benign
cells from those containing malignant cells, thus avoiding the need for
pathologists to manually annotate ROIs within the sample. Indeed, our
method relies on mass spectra data analysis to determine cells’ specific
positions and different morphological areas, and it is able to extract the
corresponding spectral footprints.

AI-based clinical decision support systems have gone through a fast
development in the last decades, given their potentiality in improving
the clinical workflow management, acting for cost containment, and
providing automated diagnostic supplements (Ostropolets, Zhang, &

Hripcsak, 2020; Sutton et al., 2020). By supporting pathologists with
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Fig. 1. Top: General workflow of the mass spectrometry sample preparation and analysis. FNA samples are collected and prepared to be analyzed with MALDI-MSI technique,
resulting in the extraction of a single spectrum for each pixel of the sample. The H&E images are then coregistered with the molecular ones, combining the morphological
information with the proteomic profile. Bottom: Strategies to analyze mass spectrometry data by means of supervised (LASSO) and unsupervised (SOM) learning models. The
statistical LASSO model (left side) for the classification of thyroid nodules is constructed relying on mass spectra extracted from regions of interest (ROIs) manually selected from
samples of many patients. Differently from LASSO, DSUUL (right side) takes as input sample data from a single patient, which is then automatically clustered by means of the
SOM. The result of clustering is mapped to the sample coordinates in the H&E slide to provide the pathologist with an image highlighting the presence and separation of any
region characterized by different cell types (benign, malignant, inflammatory) or noise.
computerized indications, diagnostic systems as DSUUL might help in
confirming their clinical judgement or backtracking from the initial
interpretation of the patient data. This outcome would become par-
ticularly advantageous in countries or remote regions where access to
pathology experts of various medical specialties is not fully available,
as it might reduce the use of more invasive or risky diagnostics exams.
DSUUL could also give hints on the visual interpretability and the
explainability of human diagnosis – two highly debated aspects related
to trustworthy AI and ethical issues (Amann et al., 2022) – thanks
to its possibility of inspecting specific areas of a cytology sample and
comparing them with the corresponding proteomic profiles to better
characterize the cellular components therein.

2. Methods and materials

2.1. Pathology

On a cohort of 8 patients US-guided FNAs were performed using a
25-gauge needle at the Department of Radiology, San Gerardo Hospital,
Monza, Italy. One or two passes per nodule were executed and needle
washing from every pass was sent for proteomics MALDI-MSI analy-
sis following standard clinical procedure (Capitoli et al., 2022; Piga,
Capitoli, Tettamanti, Denti, Smith, Chinello, Stella, Leni, Garancini,
Galimberti, Magni, & Pagni, 2019b). Pathologists evaluated the cor-
responding Pap-stained smears for traditional morphological diagnosis
certifying the existence of diagnostic criteria (e.g., the presence of be-
nign and malignant thyrocytes clusters, a diffuse lymphocytic infiltrate
and oncocytic changes of epithelial cells). The study was approved
by the ASST Monza Ethical Board (Associazione Italiana Ricerca sul
Cancro-AIRC-MFAG 2016 Id. 18445, HSG Ethical Board Committee
approval October 2016, 27/10/2016). Appropriate informed consent
was obtained from patients included in the study.

2.2. MALDI-MSI

Needle washing biopsies from thyroid FNAs were collected after
which samples were prepared with a previously optimized protocol
to provide reproducible results, and finally they were transferred as a
3

cytospin spot onto ITO glass slides (Piga et al., 2019a, 2019b). MALDI-
ToF-MSI was performed using an ultrafleXtreme MALDI-ToF (Bruker
Daltonik GmbH, Bremen, Germany) in positive-ion linear mode, using
300 laser shots per spot, with a laser focus setting of 3 medium (di-
ameter of 50 μm) and a pixel size of 50 × 50 μm. Protein Calibration
Standard I (Bruker Daltonics, Billerica, MA, USA), which contained a
mixture of standard proteins within the mass range of 5, 730 to 16, 950
Da, was used for external calibration (mass accuracy ±30 ppm). Spectra
were recorded within the 3, 000–20, 000 m/z range. Data acquisition
and visualization were performed using the Bruker software packages
(flexControl 3.4, flexImaging 5.0). After the analysis, the slides were
stained with hematoxylin and eosin (H&E), digitally scanned using a
ScanScope CS digital scanner (Aperio, Park Center Dr., Vista, CA, USA),
and images were coregistered to the MSI datasets in flexImaging for the
integration of proteomic and morphological data (Capitoli et al., 2020).

2.3. Statistical model

Statistical analysis of proteomic data was performed for each patient
on all the single spectra of the imzML MALDI-MSI files (pixel-by-
pixel). A previously published multinomial regression with a LASSO
regularization method (Tibshirani, 1996) was used to quantify the
probability of the sample being malignant, hyperplastic or Hashimoto
thyroiditis (Capitoli et al., 2020). For each pixel the probabilities to
belong to the three aforementioned classes were calculated. The highest
of the three indices obtained from each single spectrum was used to
classify the corresponding pixel. Data preprocessing (MALDIquant
package Gibb & Strimmer, 2012) and statistical analyses (glmnet
package Friedman, Hastie, & Tibshirani, 2010) were performed using
the open-source R software version 3.6.0.

2.4. Self-organizing maps

Self-Organizing Maps (SOMs) – also known as Kohonen maps or
Kohonen neural networks – are a class of artificial neural networks
(ANNs) that are trained in an unsupervised learning fashion (Kohonen,
2012). A SOM does not require any labeled data as the algorithm
learns by observation instead of learning by examples. This feature
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Fig. 2. Architectural scheme of a Self-Organizing Map. All neurons in the input layer (black dots) are connected to the neurons, called units, in the output layer (colored dots);
bold lines represent the connections between the input layer neurons and unit #0, whose weights are denoted by 𝑤0

0 , 𝑤
0
1 ,… , 𝑤0

𝑚−1 (here, 𝑚 = 5). The magenta neuron denotes
the Best Matching Unit (BMU). The neighborhood of the BMU is denoted by blue neurons. The green neurons do not belong to the BMU’s neighborhood, and thus they are not
updated in the current iteration.
allows SOMs to discover hidden patterns within the data: the main
goal of SOMs is to transform a complex high-dimensional input space
into a two-dimensional discrete map, whilst preserving any existing
topological relationships in the data (Asan & Ercan, 2012).

A SOM is conceptually composed of two layers of neurons: the input
layer and the output layer. Since all neurons of the input layer are
connected to all neurons in the output layer, a SOM is a completely
connected ANN, as shown in Fig. 2. The input layer receives the
data samples presented to the SOM for the training process, which
are encoded as 𝑚-dimensional vectors whose elements represent the
features of the dataset. The output layer is composed of interconnected
neurons, named units, which are usually organized in a 𝑢×𝑣 lattice, for
some user-defined integer numbers 𝑢 and 𝑣. Each unit is connected to
its neighboring units, using a rectangular or hexagonal neighborhood
(see an example in Fig. 2). At the end of the learning process, the output
layer will provide a low-dimensional representation of the input data.

A weight vector 𝐰𝑖 = (𝑤𝑖
0,… , 𝑤𝑖

𝑚−1), 𝐰𝑖 ∈ R𝑚, is associated with
each connection among the input neurons and the 𝑖th output neuron.
In the case of MALDI-MSI spectra analysis presented here, 𝑚 = 8, 000
since the histograms representing the spectra are composed of 8, 000
values. The initial weights of the SOM can be randomly generated using
one of the existing initialization methods (Attik, Bougrain, & Alexandre,
2005), e.g., by means of random values taken from the input data, or
random samples extracted from the subspace defined by the first two
eigenvectors identified by principal components analysis on the dataset.
According to Akinduko, Mirkes, and Gorban (2016), a purely stochastic
initialization of the weights outperforms all other methods in the case
of non-linear datasets; this approach was chosen as the default in this
work.

The peculiar learning process exploited by SOMs is known as com-
petitive learning (Asan & Ercan, 2012), whereby each input vector that
is fed to the SOM is simultaneously processed by all units in the output
layer. The units compete and the output layer neuron whose weight
vector is most similar to the input vector is declared the winner; this
neuron takes the name of Best Matching Unit (BMU, represented by the
magenta hexagon in Fig. 2).
4

The BMU is identified according to a user-specified similarity mea-
sure, e.g., Euclidean, absolute value, or cosine distances (Wan, Vi-
davsky, & Gross, 2002). (Stein & Scott, 1994) showed that, in the
context of mass spectrometry data, cosine similarity better differen-
tiates very similar spectra than alternative methods, so that it was
selected as similarity metric in this work. The cosine similarity (also
known as dot-product distance) between two spectra 𝐱𝑖, 𝐱𝑗 ∈ R𝑚 is
calculated as follows:

𝑑(𝐱𝑖, 𝐱𝑗 ) = cos(𝜃) =
𝐱𝑖 ⋅ 𝐱𝑗

‖𝐱𝑖‖ ‖𝐱𝑗‖
, (1)

where ⋅ denotes the dot-product and 𝜃 is the angle between the two
vectors defined by the spectra in the 𝑚-dimensional hyperspace.

As soon as a BMU is identified, that neuron begins to interact with
its neighbors; the rationale behind this is that, to the aim of preserving
the topology of the data, nearby locations in the output layer (i.e., the
topological neighborhoods) are supposed to share similar properties.
Thus, not only the BMU but also the neurons within its neighborhood
are activated (the blue hexagons in Fig. 2), so that they can learn from
the same input vector. During this phase, the weights of both the BMU
and its neighbors are updated and ‘‘pulled’’ towards the input vector,
with a strength that is proportional to the topological proximity to
the BMU. The weights update during the 𝑡th iteration is based on two
hyper-parameters: the learning rate 𝛼(𝑡), and the neighborhood size 𝜎(𝑡).

The learning rate 𝛼(𝑡) determines the rate of change of the weight
vectors. It is generally based on a decay function that makes its value
gradually decreasing in the interval (0, 1) as a function of the iteration
step 𝑡. The decay function can be linear, exponential, geometrical,
inversely proportional, or user-defined. The following formula shows
how the weight vector 𝐰𝑏 of the BMU is updated using the learning
rate:

𝐰𝑏(𝑡 + 1) = 𝐰𝑏(𝑡) + 𝛼(𝑡)
(

𝐱(𝑡) − 𝐰𝑏(𝑡)
)

, (2)

where 𝐱 is the current sample shown to the SOM.
The neighborhood size 𝜎(𝑡) determines to which extent the BMU

influences the activation of the neighbor neurons at iteration 𝑡; stated
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Fig. 3. The four phases of DSUUL workflow: (1) data pre-processing, (2) optimization of SOMs’ hyper-parameters, (3) unsupervised learning and data discrimination, (4) outcome
for clinical support.
otherwise, it represents the width or the radius of the neighborhood
at each iteration. The rate of modification of the weight vectors in
the neighborhood decreases according to a decay function that takes
into account both the distance of the neighbor neuron from the BMU
and the number of iterations. This decay function is also called the
neighborhood function and can either be discrete or continuous. The
most widespread neighborhood function is the Gaussian function:

ℎ𝑏𝑖(𝑡) = exp

(

−
𝑑2𝑏𝑖

2𝜎(𝑡)2

)

, (3)

where 𝑑𝑏𝑖 denotes the lateral distance between the BMU (denoted by 𝑏)
and the excited neuron 𝑖. In the specific case of the BMU (i.e., neuron
𝑖 = 𝑏), the value of the function ℎ𝑏𝑏(𝑡) is equal to 1.

After both the neighborhood and its neighborhood function are de-
fined, the weight vectors of the units in the neighborhood are updated
using the following formula:

𝐰𝑖(𝑡 + 1) = 𝐰𝑖(𝑡) + 𝛼(𝑡)ℎ𝑏𝑖(𝑡)
(

𝐱(𝑡) − 𝐰𝑖(𝑡)
)

. (4)

The learning process is iterated until a termination criterion is met,
e.g., a fixed number of iterations 𝑡𝚖𝚊𝚡 is reached, or the change of the
weights is smaller than some user-defined threshold value. In this work,
we use the former halting criterion.

At the end of the learning process, each sample in the dataset will
be recognized and mapped by a specific BMU. Similar samples in the
dataset will be mapped to BMUs that are topologically close in the
network, and characterized by similar weights. By clustering the units
according to their similarity, it is possible to aggregate similar samples
to the aim of discriminating one or more classes that are present
(though hidden) in the dataset.

3. Results

3.1. DSUUL: automatic discrimination of malignant spectra with SOMs

DSUUL is a novel framework that supports the pathology diagno-
sis by exploiting unsupervised machine learning. Specifically, DSUUL
automatically separates MALDI spectra by means of SOMs; the main
phases of its functioning are schematized in Fig. 3.

DSUUL is applied here to mass spectra obtained from the MALDI-
MSI analysis of the biopsies taken from each individual patient in the
cohort. In particular, each MALDI-MSI analysis extracted a number of
spectra ranging from 13, 055 to 20, 421.

Phase 1. The first phase of DSUUL consists in the pre-processing
of spectra; in order to retain as much information as possible for the
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discrimination process, this phase consists only of normalization (total
ion current, TIC method) and peak alignment (mean absolute deviation
(MAD) noise estimation method and a half window width equal to 5.
The TIC method divides each intensity by the sum of all intensities in
the mass spectrum, resulting in the same intensity range across spectra
and consequently allowing the comparison among spectra within the
sample as well as spectra from other samples. This pre-processing step
corrects for slight differences in m/z-values so that the same proteins
can be identified among spectra: the method applies a cubic warping
function to match each peak’s m/z to the nearest peak’s m/z of a mean
spectrum acting as a reference within a given tolerance. Peak alignment
is essential for the application of SOMs, since the underlying algorithm
uses a distance measure to compute the similarity between the input
vector and the output neuron; a misalignment of the peaks would lead
to faulty similarity matching and inaccurate results. The pre-processing
phase is performed by using the R MALDIquant library (Gibb &
Strimmer, 2012).

Phase 2. The second phase of DSUUL consists in the optimization of
SOM’s hyper-parameters to maximize the discrimination performance.
We automatically determine the size of the map, i.e., the values 𝑢 and
𝑣 that correspond to the number of neurons in the rows and columns
of the output layer, respectively. The choice of the map size is particu-
larly critical, because it influences the accuracy and the generalization
capability of the SOM and, in turn, of DSUUL. Although there are no
strict rules or best practices for selecting the map size, in this work we
adopted a widespread heuristic presented by Vesanto and Alhoniemi
(2000), which states that the overall number of neurons can be cal-
culated as 𝑢𝑣 = 5

√

𝑘, where 𝑘 represents the number of input vectors
in the dataset. As default setting, DSUUL exploits a hexagonal topology
with a Gaussian neighborhood, as suggested by Asan and Ercan (2012),
and performs 𝑡𝚖𝚊𝚡 = 10, 000 iterations. The other hyper-parameters
– notably, 𝜎 and 𝛼 values – are automatically determined in a pre-
liminary phase by exploiting the hyperopt Python library (Bergstra,
Komer, Eliasmith, Yamins, & Cox, 2015). DSUUL executes 200 runs to
determine the best settings for these hyper-parameters. The SOM was
implemented with the minisom library (Vettigli, 2018) version 2.2.7.
The imzML files produced by MALDI experiments were imported with
the pyimzml library, version 1.2.6.

Phase 3. The third phase of DSUUL consists of actual unsupervised
learning with the SOM. When the training is completed, the neurons
are clustered by means of the agglomerative clustering algorithm imple-
mented in scikit-learn (Pedregosa et al., 2011). Specifically, the
clustering algorithm aims at discriminating the spectra in the following
four classes:
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Fig. 4. Comparison between DSUUL and LASSO model: correct clustering of different cell populations in various samples. 1st column: H&E staining images; 2nd column: DSUUL
clustering results; 3rd column: zoom-in of the morphological images; 4th column: results of the classification model (LASSO). For the LASSO model, the green, yellow, red, and
white pixels correspond to epithelial cells, inflammatory background, malignant cells and empty/noise spectra, respectively.
1. benign cells/epithelial cells;
2. malignant cells/malignant thyrocytes;
3. any other cells/inflammatory background;
4. noise/empty spectra.

Empty profiles regard spectra containing several empty bins (i.e., inten-
sity values equal to 0). These spectra are caused by points in the sample
where the MALDI-MSI instrument was unable to extract proteins due
to the absence of cells in that particular area of the sample. The noisy
profiles refer to spectra rich in signal, but consisting of very low and
similar intensity values due to instrumental background noise.

Phase 4. At the end of the clustering process, all units are assigned
to one of the four aforementioned classes. Since all samples in the
dataset are associated with a specific BMU, each sample is transitively
associated with the same class of the unit. This association is mapped
to the sample coordinates to visually represent the discrimination of
pixels in the four classes. This representation is aimed at providing
the pathologist with an immediate perception of the presence and
separation of regions, if any, characterized by different cell types, most
notably benign or malignant thyrocytes.
6

3.2. DSUUL analysis outcome

The dataset analyzed in this work consists of multiple FNA biopsy
samples of thyroid nodules. The outcome of the proteomic MALDI-
MSI analysis of these samples was processed by DSUUL to assess its
capability in distinguishing different molecular signatures.

Figs. 4 and 5 show the results achieved by DSUUL, together with
a pixel-by-pixel comparison with the results obtained with the LASSO
model (Capitoli et al., 2020). The two figures include samples taken
from 8 patients – with ID 268, 993, 1047, 1050, 1084ev, 1122, 1238,
19488 – who show various lesions, as highlighted by the presence
of different types of entities within the specimens (first column, H&E
staining images). In particular, the biological heterogeneity investi-
gated in the analyses presented here includes 2 Papillary Thyroid Car-
cinoma (PTC), 1 Hyperplastic (HP), 3 Hashimoto Thyroiditis (HT), and
2 Noninvasive Thyroid Neoplasm with Papillary-like Nuclear Features
(NIFTP).

In general, the outcome of DSUUL is in good agreement with both
the cytological diagnosis and the MALDI-MSI data, with only a few
exceptions. In the case of patient 1238 (NIFTP), shown in the first row
of Fig. 4, specific groups of spectra – corresponding to epithelial cells
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Fig. 5. Comparison between DSUUL and LASSO model: representative cases of homogeneous samples. Due to the homogeneous distribution of cellular entities, DSUUL is not able
to differentiate clusters of different types of spectra but only to differentiate them based on the cellular concentration or quality of samples. 1st column: H&E staining images; 2nd
column: DSUUL clustering results; 3rd column: zoom-in of the morphological images; 4th column: results of the classification model (LASSO). For the LASSO model, the green,
yellow, red, and white pixels correspond to epithelial cells, inflammatory background, malignant cells and empty/noise spectra, respectively.
(red), lymphocyte/oncocytic background (purple), and malignant cells
(green/cyan) – were correctly separated in different clusters according
to the classification obtained with the LASSO model. These results
also highlight the ability of proteomic MALDI-MSI analysis to generate
specific molecular signatures representing different entities. It is worth
noting that DSUUL performed a blind clinical assessment of cytological
specimens, showing an excellent agreement with the results provided
by a supervised classifier (Capitoli et al., 2020). The different proteomic
NIFTP profiles were also distinguishable in patient 19488, in which
the purple cluster corresponds to the presence of specific ‘‘signals of
alert’’ for malignancy that can be identified by the pathologist in the
pixel-by-pixel classification (Piga et al., 2020), while the red cluster
represents colloidocistic areas, as confirmed in the zoom-in of the H&E
image (reported in the second row of Fig. 4). While the red cluster may
appear sparse at first observation, it is in agreement with the morpho-
logical image as smaller regions of thyrocytes are present throughout
the sample. In the field of thyroid tumors, NIFTP lesions represent a
heterogeneous group of nodules that often require surgical treatment.
These lesions can be diagnosed as NIFTP only after thyroidectomy with
the histological evaluation. While the detection of possible differences
at the level of proteomic spectra of thyroid FNAs is a very challeng-
ing issue (Canini et al., 2019; Piga et al., 2020), DSUUL proved its
capability in correctly distinguishing lymphocytes from epithelial cells
based on specific signals, as illustrated in Fig. 4, where lymphocytes
background (cyan and violet clusters) and epithelial cells (red and
green clusters) were localized in agreement with H&E.

The same level of accuracy in the results holds for the sample of
patient 1122, which is characterized by a mixture of epithelial and
inflammatory background, and for the samples of patients 1047 and
1050, which show an undeniable evidence of homogeneous lympho-
cytes in the higher part of the samples (see the last three rows of
Fig. 4). These specific signals, localized in an area with an abundance of
lymphocytes and epithelial cells, were previously investigated (Capitoli
et al., 2020). The zoom-in of the H&E image of patient 1122 presents
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areas rich in inflammatory background (e.g., granulocytes, oncocytes)
in contrast to the poor background within the better defined cluster
of benign thyrocytes. Overall, these results were found in rather good
agreement with the presence of epithelial and lymphocytes cells based
on the pixel-by-pixel classification elaboration of the MALDI-MSI data.

Patients 993 and 268 (HP and PTC, respectively) are represen-
tative cases of homogeneous samples in terms of their morphology
(see Fig. 5), which represent a complex and challenging scenario for
the automatic identification of proteomics profiles of different entities.
The obtained results highlight the need for further investigation for
this specific case. In homogeneous samples, DSUUL was not able to
differentiate specific spectra profiles even in the presence of different
types of cells; on the contrary, it identified clusters according to the
amount of cells, thus separating highly populated areas from those
with a paucity of cells. It is worth noting that this is a consequence
of the proteomic MALDI-MSI analysis, executed with an ad hoc spatial
resolution (> 20 μm, as in the case of this study) that does not allow
for extracting spectra profiles at a single-cell level. A different aspect
is shown in the sample of patient 1084ev (last row in Fig. 5), which is
characterized by an homogeneous presence of malignant cells that the
LASSO model was able to detect only in the contour of the sample, due
to the fact that the center is characterized by the presence of a dry area
that did not allow for extracting enough molecules to obtain specific
spectra of malignant cells. The same clustering result was achieved by
DSUUL, which identified the presence of two main different clusters
(red and purple, Fig. 5).

Fig. 6 reports examples of spectra taken from different clusters. For
what concerns patient 1238, we show the spectra representative of the
two main clusters that were highlighted in Fig. 4: here, it is possible
to observe the expression of signals intensities in different regions of
the mass spectra associated with specific cellular morphological char-
acterizations of malignant thyrocytes (green cluster) and lymphocytes
(purple cluster). The plot referring to cluster 1 of patient 1238 is char-
acterized by the hypothetical signals of malignancy reported in Piga
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Fig. 6. Examples of clusters’ representative spectra. In the case of patient 1238, two clusters are considerably different, representing the classes of malignant and benign/inflammatory
cells. In the case of patient 1047, the spectra might seem similar but there are relevant differences due to the cellular relative amounts. In the case of patient 268, the spectra are
too similar and DSUUL was not able to properly discriminate between the four classes.
et al. (2020) due to the fact that this sample falls in the pre-malignancy
class (NIFTP); the spectrum of cluster 2 of patient 1238 represents
inflammatory background, as already seen in the morphological zoom-
in of Fig. 4. In addition, the spectra profile of cluster 2 of patient
1238 has signals in common with the spectra profile of cluster 1 of
patient 1047, which is a typical case of Hashimoto thyroiditis, with
a high presence of lymphocytes. Patient 1047 shows spectra profiles
that differ in the intensity of the signals, due to the different cellular
amount of inflammatory background present in the upper part of the
sample. It is worth mentioning that even if the spectra of the two
clusters of patient 1047 may look similar, from a proteomic point of
view they are very dissimilar, representing different cellular amounts
in the sample and also denoting the presence of different signals, as
already reported in Capitoli et al. (2020). Conversely, patient 268 is
one of the cases in which DSUUL was not able to properly discriminate
between the four classes. The heterogeneity of cells in this sample,
together with their homogeneity in the spatial distribution, led DSUUL
to misidentify different clusters as a result of the data obtained from
proteomic MALDI-MSI analysis executed with 50 μm laser diameter.
This is reflected on the representative alpha blended spectra profile
reported in Fig. 6, which appear to be very similar, thus bringing to
the same conclusion from a proteomic point of view.

As a final test, we investigated the influence of different agglom-
erative clustering methods, implemented using scikit-learn (Pe-
dregosa et al., 2011), on the outcome of DSUUL. As shown in Fig. 7, in
almost all cases DSUUL achieved the same results, with the exception of
K-means (for the particular case of patient 1047) and of Single linkage.
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The K-means algorithm clusters data by trying to separate samples in
𝑛-groups of equal variance. As already seen in Fig. 6, the majority of
the data related to patient 1047 represent the molecular information
of inflammatory background, characterized by similar spectra (with
the same expressed proteins signals, with different intensities). Due to
this fact, K-means included all the spectra in the same cluster, despite
having different intensities of the same peaks (which underlines a mor-
phological difference that was not detected). Instead, the Single linkage
works on minimizing the distance between the closest observations of
pairs of clusters, and it resulted to be the less robust approach when
dealing with noisy data, as in the case of these analyses.

4. Discussions & conclusions

The present study introduces DSUUL, an original methodological
approach that exploits the unsupervised learning ability of SOMs in
(thyroid) cytopathology, by taking advantage of data measured with
the MALDI-MSI technology. The capability of SOMs to identify clusters
of different proteomic profiles has never been investigated before on
thyroid liquid biopsy specimens. Here, we have shown their feasibility
on samples characterized by four different proteomic profiles that
correspond to the presence of benign and epithelial cells, malignant cell
and thyrocytes, other cells and inflammatory background, or noise and
empty spectra. An additional advantage of DSUUL is the possibility to
overlap the different areas of the H&E stained slides and the proteomic
profile image, which allows to verify the specific weight of every
cellular component of FNA samples. This is particularly important
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Fig. 7. Outcome of DSUUL exploiting different clustering methods. As default setting, DSUUL uses the Ward method.
since FNA provides challenging specimens in terms of heterogeneity,
with inter-sparsed epithelial cells, macrophages, lymphocytes and/or
malignant thyrocytes. Despite the technical challenges of this study,
the coupled application of proteomics and imaging may help to elu-
cidate key biomolecular events and pathways in oncogenic processes.
DSUUL indeed represents an effective means to assist pathologists,
since it automatically identifies morphological regions based only on
experiment-specific information – that is, mass spectra – without any
further action. This is in contrast to what happens in a typical di-
agnostic scenario where, generally, the ROIs in a given cytological
image are visually inspected and annotated by the pathologist after the
MALDI-MSI analysis. Since the cytological image and the corresponding
molecular image might be affected by slight differences, which hinder
their co-registration, the manual identification of the ROIs cannot en-
sure an exact correspondence between the cell morphology information
and the related mass spectra data.

In our tests we observed that the performance of SOMs can be
hampered in the case of unbalanced (e.g., homogeneous) datasets and
in the presence of empty and/or noisy spectra. These two circumstances
warrant further investigations to promptly detect these situations and
provide clear feedback to the user. For example, in the case of homo-
geneous samples, information can instead be provided on the quality
and subtypes of different cellular phenotypes within the benign or
malignant classes. We plan to extend DSUUL to analyze and compare
the identified clusters against reference profiles from existing proteomic
libraries (benign, malignant and inflammatory spectra) through sim-
ilarity measures. Following the promising agreement shown between
SOM’s clustering and the results obtained with the supervised classifier
and the morphological image, we can assess the independent (unsuper-
vised) identification of the clusters made by DSUUL. So doing, DSUUL
will be able to (i) assist the pathologist in the complex decision making
processes, with the aim of obtaining insights into the distribution of
cellular entities in the sample, also allowing for reviewing the repre-
sentative spectra of each cluster, and (ii) provide the pathologist with
specific features to integrate the library with atypical tumor entities
and broaden the spectrum of cases that can be compared to the new
experimental data.

In order to carry out the discrimination of malignant cells in a
personalized way, DSUUL systematically re-trains a SOM from scratch
9

exploiting the patient’s own MALDI-MSI data. However, due to the
large number of samples and neurons in the SOM, both the training
of the network and the generation of figures can be computationally
expensive. In our tests, performed on a workstation equipped with an
Intel Core i7-7700HQ CPU @ 2.80 GHz and 16 GB of RAM, the whole
process required approximately 2 h. Nevertheless, many portions of
DSUUL’s code are intrinsically parallel (e.g., the determination of the
BMU for each sample) so that they could be offloaded to a SIMD (same
instruction, multiple data) co-processor, most notably the Graphics
Processing Unit (GPU). As a future development, we aim at integrating
in DSUUL the GPU-based SOM implemented in CUDA-SOM (Rundo
et al., 2021), in order to strongly reduce the running time and highlight
potential regions characterized by malignant cells within a few minutes.

Moreover, we plan to analyze the performance of DSUUL using
different map sizes of the SOM, that is, different numbers of neurons,
and alternative SOM models, such as dynamic and growing grids (Bar-
balho, Costa, Neto, & Netto, 2003), which might affect the clustering
accuracy.

Finally, we are currently developing a user-friendly graphical user
interface, designed to make the analysis and interpretation of DSUUL’s
results faster and easier. We envision a system where pathologists can
drag and drop a imzML file directly into DSUUL and obtain, within a
few minutes, an insight about the distribution of cellular entities in the
sample, with the possibility of reviewing the representative spectra of
each cluster, and rapidly identify and highlight groups of malignant
cells. DSUUL can potentially complement clinicians in their cytological
diagnosis of FNA samples.

CRediT authorship contribution statement

Marco S. Nobile: Conceptualization, Computational methodology,
Software, Validation, Formal analysis, Investigation, Data curation,
Writing – original draft, Visualization, Project administration. Giulia
Capitoli: Conceptualization, Computational methodology, Software,
Validation, Formal analysis, Investigation, Resources, Data curation,
Writing – original draft, Visualization, Project administration. Vir-
gil Sowirono: Maldi computational methodology, Software, Formal



Expert Systems With Applications 215 (2023) 119296M.S. Nobile et al.

i

A

B

B

B

C

C

E

F

G

G

H

K
K

M

M

N

O

O

P

P

analysis, Investigation, Data curation, Writing – original draft, Visual-
ization. Francesca Clerici: MALDI-MSI methodology, Resources, Visu-
alization. Isabella Piga: MALDI-MSI methodology, Resources. Kirsten
van Abeelen: Writing – original draft. Fulvio Magni: Resources, Writ-
ng – review & editing, Supervision. Fabio Pagni: Resources, Writing

– review & editing, Supervision, Funding acquisition. Stefania Gal-
imberti: Resources, Writing – review & editing, Supervision. Paolo
Cazzaniga: Writing – original draft, Supervision. Daniela Besozzi:
Writing – original draft, Supervision.

Data availability

The data that has been used is confidential.

Acknowledgment

All authors approved the version of the manuscript to be published.

Funding

This research was funded by Regione Lombardia POR FESR 2014-
2020, Call HUB Ricerca ed Innovazione: Immun-HUB, Regione Lom-
bardia, regional law n. 9/2020, resolution n. 3776/2020: Programma
degli interventi per la ripresa economica: sviluppo di nuovi accordi
di collaborazione con le universitá per la ricerca, l’innovazione e il
trasferimento tecnologico: NephropaThy, Associazione Italiana Ricerca
sul Cancro Grant - AIRC-MFAG 2016 Id. 18445, and Ricerca Finalizzata
GR-2019-12368592.

Statements of ethical approval

The study was conducted according to the guidelines of the Decla-
ration of Helsinki, and approved by the Institutional Review Board (or
Ethics Committee) of ASST Monza HSG (protocol code 18445 and date
of approval 27/10/2016).

Informed consent statement

The study was carried out in accordance with the relevant guide-
lines and regulations. It was approved by the ASST Monza Ethical Board
(Associazione Italiana Ricerca sul Cancro - AIRC-MFAG 2016 Id. 18445,
HSG Ethical Board Committee approval October 2016, 27/10/2016),
and study participants signed an informed consent.

References

Akinduko, A. A., Mirkes, E. M., & Gorban, A. N. (2016). SOM: Stochastic initialization
versus principal components. Information Science, 364, 213–221. http://dx.doi.org/
10.1016/j.ins.2015.10.013.

Amann, J., Vetter, D., Blomberg, S. N., Christensen, H. C., Coffee, M., Gerke, S.,
et al. (2022). To explain or not to explain?– artificial intelligence explainability
in clinical decision support systems. PLOS Digital Health, 1, Article e0000016.
http://dx.doi.org/10.1371/journal.pdig.0000016.

Asan, U., & Ercan, S. (2012). An introduction to self-organizing maps. Computational
Intelligence Systems in Industrial Engineering, 295–315.

ttik, M., Bougrain, L., & Alexandre, F. (2005). Self-organizing map initialization.
International Conference on Artificial Neural Networks, 357–362. http://dx.doi.org/
10.1007/11550822_56.

arbalho, J., Costa, J., Neto, A., & Netto, M. (2003). Hierarchical and dynamic SOM
applied to image compression. In Proceedings of the international joint conference on
neural networks, vol. 1 (pp. 753–758). IEEE.

ergstra, J., Komer, B., Eliasmith, C., Yamins, D., & Cox, D. D. (2015). Hyperopt:
a Python library for model selection and hyperparameter optimization. Computer
Science Discoveries, 8, Article 014008.

orkowska, E. M., Kruk, A., Jedrzejczyk, A., Rozniecki, M., Jablonowski, Z.,
Traczyk, M., et al. (2014). Molecular subtyping of bladder cancer using Kohonen
self-organizing maps. Cancer Medicine, 3, 1225–1234. http://dx.doi.org/10.1002/
10

cam4.217.
Canini, V., Leni, D., Pincelli, A. I., Scardilli, M., Garancini, M., Villa, C., et al. (2019).
Clinical-pathological issues in thyroid pathology: study on the routine application
of NIFTP diagnostic criteria. Science Reports, 9, http://dx.doi.org/10.1038/s41598-
019-49851-1.

apitoli, G., Piga, I., Clerici, F., Brambilla, V., Mahajneh, A., Leni, D., et al. (2020).
Analysis of Hashimoto’s thyroiditis on fine needle aspiration samples by MALDI-
Imaging. Biochimica et Biophysica ACTA (BBA) - Proteins and Proteom, 1868, Article
140481.

Capitoli, G., Piga, I., Galimberti, S., Leni, D., Pincelli, A. I., Garancini, M., et al.
(2019). MALDI-MSI as a Complementary Diagnostic Tool in Cytopathology: A
Pilot Study for the Characterization of Thyroid Nodules. Cancers, 11(1377), http:
//dx.doi.org/10.3390/cancers11091377.

apitoli, G., Piga, I., L’Imperio, V., Clerici, F., Leni, D., Garancini, M., et al. (2022).
Cytomolecular classification of thyroid nodules using fine-needle washes aspiration
biopsies. International Journal of Molecular Sciences, 23, http://dx.doi.org/10.3390/
ijms23084156.

Cordes, J., Enzlein, T., Marsching, C., Hinze, M., Engelhardt, S., Hopf, C., et al.
(2021). M2aia–interactive, fast, and memory-efficient analysis of 2D and 3D multi-
modal mass spectrometry imaging data. GigaScience, 10, http://dx.doi.org/10.1093/
gigascience/giab049, giab049.

Datta, S., & DePadilla, L. M. (2006). Feature selection and machine learning with
mass spectrometry data for distinguishing cancer and non-cancer samples. Statistical
Methodology, 3, 79–92. http://dx.doi.org/10.1016/j.stamet.2005.09.006.

DeHoog, R. J., Zhang, J., Alore, E., Lin, J. Q., Yu, W., Woody, S., et al. (2019).
Preoperative metabolic classification of thyroid nodules using mass spectrometry
imaging of fine-needle aspiration biopsies. Proceedings of the National Academy of
Sciences, 116, 21401–21408. http://dx.doi.org/10.1073/pnas.1911333116.

Deininger, S.-O., Ebert, M. P., Futterer, A., Gerhard, M., & Rocken, C. (2008). MALDI
imaging combined with hierarchical clustering as a new tool for the interpretation
of complex human cancers. Journal of Proteome Research, 7, 5230–5236. http:
//dx.doi.org/10.1021/pr8005777.

steva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., et
al. (2019). A guide to deep learning in healthcare. Nature Medicine, 25, 24–29.
http://dx.doi.org/10.1038/s41591-018-0316-z.

riedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33, 1–22.
http://dx.doi.org/10.18637/jss.v033.i01.

ibb, S., & Strimmer, K. (2012). MALDIquant: A versatile R package for the analysis
of mass spectrometry data. Bioinform, 28(2270–2271), http://dx.doi.org/10.1093/
bioinformatics/bts447.

ünter, S., & Bunke, H. (2002). Self-organizing map for clustering in the graph
domain. Pattern Recognition Letters, 23, 405–417. http://dx.doi.org/10.1016/S0167-
8655(01)00173-8.

autaniemi, S., Yli-Harja, O., Astola, J., Kauraniemi, P., Kallioniemi, A., Wolf, M., et
al. (2003). Analysis and visualization of gene expression microarray data in human
cancer using self-organizing maps. Machine Learning, 52, 45–66. http://dx.doi.org/
10.1023/A:1023941307670.

Henson, D., Spenceley, S. E., & Bull, D. (1997). Artificial neural network analysis of
noisy visual field data in glaucoma. Artificial Intelligence in Medicine, 10, 99–113.
http://dx.doi.org/10.1016/S0933-3657(97)00388-6.

ohonen, T. (2012). Self-organizing maps, vol. 30. Springer Science & Business Media.
urczyk, A., Gawin, M., Chekan, M., Wilk, A., Łakomiec, K., Mrukwa, G., et al.

(2020). Classification of thyroid tumors based on mass spectrometry imaging of
tissue microarrays; a single-pixel approach. Journal of Molecular Science, 21(6289),
http://dx.doi.org/10.3390/ijms21176289.

arkey, M. K., Lo, J. Y., Tourassi, G. D., & Floy. Jr, C. E. (2003). Self-organizing map
for cluster analysis of a breast cancer database. Artificial Intelligence in Medicine,
27, 113–127. http://dx.doi.org/10.1016/S0933-3657(03)00003-4.

osele, N., Smith, A., Galli, M., Pagni, F., & Magni, F. (2017). MALDI-MSI analysis
of cytological smears: The study of thyroid cancer. Methods in Molecular Biology,
1618, 37–47. http://dx.doi.org/10.1007/978-1-4939-7051-3_5.

gan, S.-C., Yacoub, E. S., Auffermann, W. F., & Hu, X. (2002). Node merging in
Kohonen’s self-organizing mapping of fMRI data. Artificial Intelligence in Medicine,
25, 19–33. http://dx.doi.org/10.1016/S0933-3657(02)00006-4.

bermeyer, Z., & Topol, E. J. (2021). Artificial intelligence bias, and patients’ per-
spectives. The Lancet, 397, 2038. http://dx.doi.org/10.1016/S0140-6736(21)01152-
1.

stropolets, A., Zhang, L., & Hripcsak, G. (2020). A scoping review of clinical decision
support tools that generate new knowledge to support decision making in real time.
The official journal of the American Medical Informatics Association, 27, 1968–1976.
http://dx.doi.org/10.1093/jamia/ocaa200.

edregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et
al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.

ietrowska, M., Diehl, H. C., Mrukwa, G., Kalinowska-Herok, M., Gawin, M.,
Chekan, M., et al. (2017). Molecular profiles of thyroid cancer subtypes: Clas-
sification based on features of tissue revealed by mass spectrometry imaging.
Biochimica et Biophysica ACTA (BBA) - Proteins and Proteom, 1865, 837–845.
http://dx.doi.org/10.1016/j.bbapap.2016.10.006.

http://dx.doi.org/10.1016/j.ins.2015.10.013
http://dx.doi.org/10.1016/j.ins.2015.10.013
http://dx.doi.org/10.1016/j.ins.2015.10.013
http://dx.doi.org/10.1371/journal.pdig.0000016
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb3
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb3
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb3
http://dx.doi.org/10.1007/11550822_56
http://dx.doi.org/10.1007/11550822_56
http://dx.doi.org/10.1007/11550822_56
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb5
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb5
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb5
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb5
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb5
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb6
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb6
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb6
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb6
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb6
http://dx.doi.org/10.1002/cam4.217
http://dx.doi.org/10.1002/cam4.217
http://dx.doi.org/10.1002/cam4.217
http://dx.doi.org/10.1038/s41598-019-49851-1
http://dx.doi.org/10.1038/s41598-019-49851-1
http://dx.doi.org/10.1038/s41598-019-49851-1
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb9
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb9
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb9
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb9
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb9
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb9
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb9
http://dx.doi.org/10.3390/cancers11091377
http://dx.doi.org/10.3390/cancers11091377
http://dx.doi.org/10.3390/cancers11091377
http://dx.doi.org/10.3390/ijms23084156
http://dx.doi.org/10.3390/ijms23084156
http://dx.doi.org/10.3390/ijms23084156
http://dx.doi.org/10.1093/gigascience/giab049
http://dx.doi.org/10.1093/gigascience/giab049
http://dx.doi.org/10.1093/gigascience/giab049
http://dx.doi.org/10.1016/j.stamet.2005.09.006
http://dx.doi.org/10.1073/pnas.1911333116
http://dx.doi.org/10.1021/pr8005777
http://dx.doi.org/10.1021/pr8005777
http://dx.doi.org/10.1021/pr8005777
http://dx.doi.org/10.1038/s41591-018-0316-z
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.1093/bioinformatics/bts447
http://dx.doi.org/10.1093/bioinformatics/bts447
http://dx.doi.org/10.1093/bioinformatics/bts447
http://dx.doi.org/10.1016/S0167-8655(01)00173-8
http://dx.doi.org/10.1016/S0167-8655(01)00173-8
http://dx.doi.org/10.1016/S0167-8655(01)00173-8
http://dx.doi.org/10.1023/A:1023941307670
http://dx.doi.org/10.1023/A:1023941307670
http://dx.doi.org/10.1023/A:1023941307670
http://dx.doi.org/10.1016/S0933-3657(97)00388-6
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb22
http://dx.doi.org/10.3390/ijms21176289
http://dx.doi.org/10.1016/S0933-3657(03)00003-4
http://dx.doi.org/10.1007/978-1-4939-7051-3_5
http://dx.doi.org/10.1016/S0933-3657(02)00006-4
http://dx.doi.org/10.1016/S0140-6736(21)01152-1
http://dx.doi.org/10.1016/S0140-6736(21)01152-1
http://dx.doi.org/10.1016/S0140-6736(21)01152-1
http://dx.doi.org/10.1093/jamia/ocaa200
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb29
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb29
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb29
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb29
http://refhub.elsevier.com/S0957-4174(22)02314-4/sb29
http://dx.doi.org/10.1016/j.bbapap.2016.10.006


Expert Systems With Applications 215 (2023) 119296M.S. Nobile et al.

P

P

R

S

S

S

T

T

Piga, I., Capitoli, G., Clerici, F., Brambilla, V., Leni, D., Scardilli, M., et al. (2020).
Molecular trait of follicular-patterned thyroid neoplasms defined by MALDI-
imaging. Biochimica et Biophysica ACTA (BBA) - Proteins and Proteom, 1868, Article
140511. http://dx.doi.org/10.1016/j.bbapap.2020.140511.

Piga, I., Capitoli, G., Denti, V., Tettamanti, S., Smith, A., Stella, M., et al. (2019a). The
management of haemoglobin interference for the MALDI-MSI proteomics analysis
of thyroid fine needle aspiration biopsies. Analytical and Bioanalytical Chemistry,
411(5007–5012), http://dx.doi.org/10.1007/s00216-019-01908-w.

iga, I., Capitoli, G., Tettamanti, S., Denti, V., Smith, A., Chinello, C., et al. (2019b).
Feasibility study for the MALDI-MSI analysis of thyroid fine needle aspiration
biopsies: evaluating the morphological and proteomic stability over time PRO-
TEOM. Clinical and Applied, 13, Article 1700170. http://dx.doi.org/10.1002/prca.
201700170.

ourkia, J., Rahimi, S., & Baghaei, K. T. (2019). Hospital data interpretation: A Self-
Organizing Map approach. In International fuzzy systems association world congress
(pp. 493–504). Springer, http://dx.doi.org/10.1007/978-3-030-21920-8_44.

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England
Journal of Medicine, 380, 1347–1358. http://dx.doi.org/10.1056/NEJMra1814259.

undo, L., Tangherloni, A., Cazzaniga, P., Mistri, M., Galimberti, S., Woitek, R., et
al. (2021). A CUDA-powered method for the feature extraction and unsupervised
analysis of medical images. The Journal of Supercomputer, 1–18. http://dx.doi.org/
10.1007/s11227-020-03565-8.

eddiki, K., Saudemont, P., Precioso, F., Ogrinc, N., Wisztorski, M., Salzet, M., et al.
(2020). Cumulative learning enables convolutional neural network representations
for small mass spectrometry data classification. Nature Communications, 11, 1–11.
http://dx.doi.org/10.1038/s41467-020-19354-z.

hukla, N., Hagenbuchner, M., Win, K. T., & Yang, J. (2018). Breast cancer data
analysis for survivability studies and prediction. Computer Methods and Programs
in Biomedicine, 155, 199–208. http://dx.doi.org/10.1016/j.cmpb.2017.12.011.

tein, S. E., & Scott, D. R. (1994). Optimization and testing of mass spectral library
search algorithms for compound identification. Journal of the American Society for
Mass Spectrometry, 5, 859–866. http://dx.doi.org/10.1016/1044-0305(94)87009-8.

Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., &
Kroeker, K. I. (2020). An overview of clinical decision support systems: benefits
risks, and strategies for success. Npj Digital Medicine, 3, 1–10. http://dx.doi.org/10.
1038/s41746-020-0221-y.
11
ian, J., Azarian, M. H., & Pecht, M. Anomaly detection using self-organizing maps-
based k-nearest neighbor algorithm. In Proceedings of the European conference of the
prognostics and health management society (pp. 1–9). Citeseer, http://dx.doi.org/10.
36001/phme.2014.v2i1.1554.

ibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of
the Royal Statistical Society. Series B. Statistical Methodology, 58(267–288), http:
//dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x.

Verbeeck, N., Caprioli, R. M., & Plas, R. Van de. (2020). Unsupervised machine learning
for exploratory data analysis in imaging mass spectrometry. Mass Spectrometry
Reviews, 39, 245–291. http://dx.doi.org/10.1002/mas.21602.

Vesanto, J. (1999). SOM-based data visualization methods. Intelligent Data Analysis, 3,
111–126. http://dx.doi.org/10.3233/IDA-1999-3203.

Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE
Transactions on Neural Networks, 11, 586–600. http://dx.doi.org/10.1109/72.
846731.

Vettigli, G. (2018). MiniSom: minimalistic and NumPy-based implementation of the self
organizing map. https://github.com/JustGlowing/minisom/.

Wan, K. X., Vidavsky, I., & Gross, M. L. (2002). Comparing similar spectra: from
similarity index to spectral contrast angle. Journal of the American Society for Mass
Spectrometry, 13, 85–88. http://dx.doi.org/10.1016/S1044-0305(01)00327-0.

Wang, J., Delabie, J., Aasheim, H. C., Smeland, E., & Myklebost, O. (2002). Clustering
of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of
lymphoma study. BMC Biomedicine, 3, 1–9. http://dx.doi.org/10.1186/1471-2105-
3-36.

Yamagutchi, T., Nagata, K., Truong, P. Q., Pfurtscheller, G., & Inoue, K. (2007).
Pattern recognition of EEG signal during motor imagery by using SOM. In Second
International Conference on Innovative Computing, Information and Control (ICICIC
2007) (p. 121). IEEE, http://dx.doi.org/10.1109/ICICIC.2007.447.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society. Series B. Statistical Methodology, 67, 301–320.
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x.

http://dx.doi.org/10.1016/j.bbapap.2020.140511
http://dx.doi.org/10.1007/s00216-019-01908-w
http://dx.doi.org/10.1002/prca.201700170
http://dx.doi.org/10.1002/prca.201700170
http://dx.doi.org/10.1002/prca.201700170
http://dx.doi.org/10.1007/978-3-030-21920-8_44
http://dx.doi.org/10.1056/NEJMra1814259
http://dx.doi.org/10.1007/s11227-020-03565-8
http://dx.doi.org/10.1007/s11227-020-03565-8
http://dx.doi.org/10.1007/s11227-020-03565-8
http://dx.doi.org/10.1038/s41467-020-19354-z
http://dx.doi.org/10.1016/j.cmpb.2017.12.011
http://dx.doi.org/10.1016/1044-0305(94)87009-8
http://dx.doi.org/10.1038/s41746-020-0221-y
http://dx.doi.org/10.1038/s41746-020-0221-y
http://dx.doi.org/10.1038/s41746-020-0221-y
http://dx.doi.org/10.36001/phme.2014.v2i1.1554
http://dx.doi.org/10.36001/phme.2014.v2i1.1554
http://dx.doi.org/10.36001/phme.2014.v2i1.1554
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1002/mas.21602
http://dx.doi.org/10.3233/IDA-1999-3203
http://dx.doi.org/10.1109/72.846731
http://dx.doi.org/10.1109/72.846731
http://dx.doi.org/10.1109/72.846731
https://github.com/JustGlowing/minisom/
http://dx.doi.org/10.1016/S1044-0305(01)00327-0
http://dx.doi.org/10.1186/1471-2105-3-36
http://dx.doi.org/10.1186/1471-2105-3-36
http://dx.doi.org/10.1186/1471-2105-3-36
http://dx.doi.org/10.1109/ICICIC.2007.447
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x

	Unsupervised neural networks as a support tool for pathology diagnosis in MALDI-MSI experiments: A case study on thyroid biopsies
	Introduction
	Methods and Materials
	Pathology
	MALDI-MSI
	Statistical Model
	Self-Organizing Maps

	Results
	DSUUL: automatic discrimination of malignant spectra with SOMs
	DSUUL analysis outcome

	Discussions & Conclusions
	CRediT authorship contribution statement
	Data availability
	Acknowledgment
	Statements of ethical approval
	Informed Consent Statement

	References


