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Abstract
Despite the tremendous advances in machine learning (ML), training with imbalanced data still poses challenges in many real-
world applications. Among a series of diverse techniques to solve this problem, sampling algorithms are regarded as an efficient
solution. However, the problem is more fundamental, with many works emphasizing the importance of instance hardness. This
issue refers to the significance of managing unsafe or potentially noisy instances that are more likely to be misclassified and
serve as the root cause of poor classification performance. This paper introduces HardVis, a visual analytics system designed to
handle instance hardness mainly in imbalanced classification scenarios. Our proposed system assists users in visually comparing
different distributions of data types, selecting types of instances based on local characteristics that will later be affected by the
active sampling method, and validating which suggestions from undersampling or oversampling techniques are beneficial for the
ML model. Additionally, rather than uniformly undersampling/oversampling a specific class, we allow users to find and sample
easy and difficult to classify training instances from all classes. Users can explore subsets of data from different perspectives
to decide all those parameters, while HardVis keeps track of their steps and evaluates the model’s predictive performance in a
test set separately. The end result is a well-balanced data set that boosts the predictive power of the ML model. The efficacy and
effectiveness of HardVis are demonstrated with a hypothetical usage scenario and a use case. Finally, we also look at how useful
our system is based on feedback we received from ML experts.

Keywords: instance hardness, imbalanced data, sampling techniques, machine learning, visual analytics, visualization

CCS Concepts: • Human-centred computing → Visualization; Visual analytics; •Machine learning → Supervised learning

1. Introduction

In machine learning (ML), easy to classify instances are those for
which ML models have a high probability of predicting the correct
class label, whereas the opposite is true for the difficult to clas-
sify instances [YLW*21]. The assessment of instance hardness
can reveal useful information about the boundaries of ML capabil-
ities [PHOMU15]. Instance hardness is a common problem that in-
spired the creation of well-known boosting algorithms [YLF*21],
such as AdaBoost [FSA99]. It can also highlight when and where
human intervention is required to resolve data-related issues. The
ultimate goal of such a procedure is to identify misclassified in-
stances and interpret why this has happened [CdMP14], as well

as improve predictive performance [SMGC14]. This scenario is
where visual analytics (VA) approaches are considered as a pos-
sible solid solution [WDC*22] with many recent works focusing
on problematic subsets of data for the interpretation and perfor-
mance boost of ML models [CVW22, ZOS*23]. However, the clas-
sification problem becomes significantly more complex when the
data set contains both class overlap and class imbalance. There are
many problems [RKN06, WLC*13, HKB18, CCS06, KHM98] in
which the minority class—composed of mostly unsafe instances
such as borderline examples, rare cases and outliers—is of great
interest [NS16]. A medical diagnosis task of detecting ill pa-
tients within a healthy majority is an example that illustrates the
great importance of imbalanced data problems. Learning from such
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unbalanced data sets can be difficult because most models will the-
oretically attain high accuracy by merely predicting the majority
class [Ste16].

There are two fundamental methodologies to deal with these
kinds of imbalance problems: data-level and algorithm-level ap-
proaches [Kra16]. The first method utilizes pre-processing strate-
gies in order to balance the training set. The second method aims at
determining what causes a certain ML model to fail in imbalanced
circumstances and addressing those flaws to create new robust ML
models [CZV13, CT17]. Ensemble approaches have also grown in
popularity, as they allow for a fusion of model combinations and
the usage of one of the methodologies discussed above [KGW17,
WGC14]. In this paper, we solely focus on the data-level approaches
because they are not tied to a specific ML algorithm; and they re-
main as an underrepresented category without the support of VA so-
lutions [CMJK20, CMJ*20, YCY*21]. These approaches perform
data sampling with either undersampling or oversampling tech-
niques. The former removes instances from the training set, while
the latter generates synthetic/artificial instances from the already ex-
isting data to balance the class distribution.

For undersampling, two advanced techniques for concurrently
eliminating and maintaining instances are: one-sided selection
(OSS) [KM97] and neighbourhood cleaning rule (NCR) [Lau01].
The goal here is to remove ambiguous points on the class boundary
and, at the same time, keep any non-redundant examples far from
the decision boundary. On the other hand, a frequently used over-
sampling algorithm is the synthetic minority oversampling tech-
nique (SMOTE) [CBHK02], but it comes with several drawbacks.
One of those is the uniform approach to oversampling which con-
siders all minority instances equally important. To deal with this
flaw, adaptive synthetic (ADASYN) [HBGL08] was invented that
dynamically determines which cases may represent a greater chal-
lenge for an ML model, thus oversampling instances around class
borders. A non-trivial issue with these algorithms is that they re-
quire the exploration of specific parameters from the user side. The
common ground in all these techniques is the k-value that should be
set for the k-nearest neighbours (KNN) algorithm [Alt92, FH89].
Depending on this critical value, more or fewer instances will be re-
moved or used for artificial addition, which might cause harm to the
predictive performance of the ML model under training. For exam-
ple, in an imbalanced healthcare data scenario, a data analyst who
blindly trusts one of the previous heuristic-based approaches for
undersampling and chooses a high k-value will eventually remove
many healthy patients (belonging to the majority class), leading to
a balanced training set but with a significant loss of critical data for
generalizing when the system is put into production. Tuning those
parameters is not straightforward to automate since there are multi-
ple ways on how to combine undersampling and oversampling; thus,
this makes room for human-centric solutions such as interactive vi-
sualizations that facilitate human exploration and domain knowl-
edge injection into this complex problem. Furthermore, the local
characteristics of each instance are at least equally important as the
global extracted patterns, which are usually investigated with auto-
mated methods [RVV*15]. Consequently, a remaining open ques-
tion is: (RQ1) for a given data set, how can visualization assist users
in deciding the optimal parameters for the undersampling and over-
sampling techniques?

Another challenge related to the previous one is to identify com-
mon local characteristics of the instances in order to classify them
into data types, as in the work of Napierala and Stefanowski [NS16]
who acknowledge four types of data: safe, borderline, rare and out-
liers (SBRO in short). As described before, depending on the se-
lected k-value, the distribution of instances in those types is sub-
ject to change [SK17]. Outliers can account for a sizable fraction
of a class, especially in minority groups; as a result, in some data
sets, they may even pre-dominate [NS16]. It is dangerous to treat
outliers as noise and utilize noise-handling approaches such as re-
labelling or eliminating them from the learning set without exten-
sively analysing them [XYX*19, BNR20]. Separating noise from
outliers is a necessary but non-trivial task [SAPV16]. If we consider
the previously established example, a data analyst will receive vari-
ous distributions of SBRO instances (i.e. separations of patients) de-
pending on the k-value selected for splitting the data with KNN into
these four data types, where some combinations will lead to more
outliers that could be potentially treated as noisy data compared
to others. Moreover, rare cases exist in several data sets [Rav11].
This indicates that class difference is not the only source of dif-
ficulties when dealing with unbalanced data, but local character-
istics of each class are also essential [NS16]. This problem is
partially addressed with upgraded versions of SMOTE and hybrid
algorithms. For example, Borderline-SMOTE [HWM05] focuses on
oversampling cases that are near to class boundaries. Safe-Level-
SMOTE [BSL09] allocates weights to instances based on how ‘safe’
they are from the majority class influence, and it uses these weights
to guide the introduction of artificial examples. Additionally, selec-
tive pre-processing of imbalanced data (SPIDER) [NSW10] focuses
on highlighting problematic cases, particularly those that overlap
with the majority class. Nevertheless, it would be better to dynami-
cally adjust this ratio based on the exploration of local data features
and the varying density of examples. In such dynamic approaches,
evaluating several types of data could be useful [NS16]. Thus, a
question that arises is: (RQ2)which algorithmic suggestions should
users accept based on the visual analysis of particular SBRO areas
or even whole regions?

In this paper, we present a VA system, called HardVis, that incor-
porates undersampling and oversampling techniques for the man-
agement of both instance hardness and class imbalance independent
of the ML algorithm in use. It adopts validation metrics suitable for
imbalanced multi-class classification problems and includes several
iterative phases that enable users to apply undersampling and over-
sampling in various strategic schemes. Our contributions are sum-
marized as follows:

• a coherent visual analytic workflow that takes into account in-
stance hardness, while leveraging undersampling and oversam-
pling techniques;

• a working prototype of the suggested workflow in the form of our
VA system, HardVis, which comprises a novel combination of
multiple coordinated views to support the entire process of selec-
tively undersampling and oversampling parts of the data set;

• a proof-of-concept showcasing the proposed system’s applicabil-
ity with a hypothetical usage scenario, and a use case that illus-
trates the utility of our decision to deploy sampling approaches
and involves humans in-between automated methods; and
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• the discussion of the methodology and findings of interview ses-
sions with five ML experts, presenting positive results.

The remainder of this paper is organized as follows. In Section 2, we
review automated methods for the detection of different data types,
visually assisted identification of outliers and rare examples, and
visualization approaches for data-centric ML error analysis. After-
wards, in Section 3, we outline the analytical tasks and design goals
for using VA to manage instance hardness in imbalanced data sets,
and we emphasize the need for both automatic approaches and hu-
man intuition. Section 4 presents the system’s functionalities and si-
multaneously describes a first simple use case with multiple cycles
of undersampling and oversampling applied to specific instances in
order to enhance predictive performance. Following that, in Sec-
tion 5, we illustrate the applicability and utility of HardVis with
two real-world data sets concentrating on detecting breast cancer
and recognizing vehicles from their silhouettes. Thereafter in Sec-
tion 6, we examine the input received from the expert interviews,
including limitations identified by the experts. Subsequently, in Sec-
tion 7, we reflect further on the visual design and the limitations of
our work that lead to future plans for HardVis. Finally, Section 8
concludes our paper.

2. Related Work

This section summarizes previous research on automatic approaches
for the identification of different types of instances, visualization
methods for outlier/anomaly and rare category detection, and data-
centric ML solutions from the visualization community. To under-
score the uniqueness of our approach, we explain the difference
between such solutions contrasted to HardVis. To the best of our
knowledge, there is no literature explaining the use of VA for the
complete undersampling and oversampling procedure, along with
the partial application in specific types based on the visual explo-
ration of data and distributions.

2.1. Automatically distinguishing types of instances

In the ML community, several methods for automatically cate-
gorizing data instances into different types exist, with a partic-
ular focus on the outlier/anomaly detection research in the past
decades [CBK09, HA04]. Nevertheless, most algorithms cannot
identify rare cases that are typically isolated groups, including a
set of comparable data examples that deviate from the majority—
rather than single isolated instances which are outliers. The major-
ity of anomaly detection techniques can be divided into five cat-
egories: (1) classification-based [HHWB02, WMCW03, MC03],
(2) density-based [BS03, BKNS00], (3) clustering-based [MLC07,
VW09, SPBW12], (4) statistical-based [YTWM04, KK17] and
(5) ensemble approaches [VK09, SLSH15, VC17, ZDH*17]. The
last category is a hybrid one, which aims to combine the bene-
fits of the various techniques from the other categories. The prob-
lem with all the approaches, except for the density-based ap-
proaches, is the misalignment with sophisticated undersampling
(e.g. NCR) and oversampling algorithms (e.g. ADASYN) that are
using KNN to propose instances for removal or addition, respec-
tively. Two empirical studies [SK17, NS16] that were conducted
with density-based sampling algorithms deploy KNN to distin-

guish the type of each instance along with multi-dimensional scal-
ing (MDS) [Kru64], which is a global linear dimensionality reduc-
tion algorithm. We follow the same methodology to characterize
instances based on local characteristics, but HardVis uses an in-
teractive UMAP projection [MHM18] since it preserves better the
local structure [EMK*21]. Although those studies suggest that ap-
plying sampling techniques in specific types of instances (e.g. by
using only outliers) can boost predictive performance, controlling
which subsets of particular instance types are considered when un-
dersampling and oversampling is an unexplored step. This research
opportunity inspired us to design HardVis.

Density-based algorithms [HHHM11, HLL08] also work well
with the detection of rare categories by discovering substan-
tial changes in data densities using a KNN search in the high-
dimensional space. But how to choose the best k-value for a given
data set? While it is possible to estimate the best k-value automat-
ically by using the local outlier factor [BKNS00], the balance of
the distribution of safe and unsafe instances could be off when fo-
cusing merely on rare cases and outliers. Huang et al. [HCG*14]
proposed a method for automatically selecting k-values. However,
their algorithm starts with a seed depending on the target category,
which is often difficult to set. iFRED and vFRED [LCH*14] are two
approaches for identifying rare categories based onwavelet transfor-
mation without the necessity of any pre-defined seed. Nevertheless,
thesemethods are robust in low-dimensional data only but fail to dis-
cover the remaining types of data introduced in Section 1, which are
important for HardVis. Regarding decision boundaries and border-
line examples, Melnik [Mel02] analyses their structure using con-
nectivity graphs [MS94]. And finally, Ramamurthy et al. [RVM19]
utilize persistent homology inference to describe the ambiguity (or
even lack) of decision boundaries. All described methods, while be-
ing valuable, do not focus on the problem of undersampling or over-
sampling at all, as it happens with our system.

2.2. Visualization for outlier and rare category detection

Numerous VA approaches are combined with detection algorithms
as described in Section 2.1. Usually, they are designed for sup-
porting outlier and rare categories identification and classification,
which could be considered relevant to our work. Oui [ZCW*19] is a
tool that assists users in comprehending, interpreting and selecting
outliers identified by multiple algorithms. #FluxFlow [ZCW*14] is
another VA system that utilizes complex analytical methods to find,
summarize and understand aberrant information spreading patterns.
TargetVue [CSL*16] detects users with abnormal behaviours using
the local outlier factor and intuitive behaviour glyph designs. An
extension of such glyphs, named as Z-Glyph [CLGD18], was de-
veloped to aid human judgement in multivariate data outlier anal-
ysis. RCLens [LGG*18] is an active learning system that uses vi-
sualization approaches to support the discovery of rare instances.
EnsembleLens [XXM*19] is a hybrid visual system that utilizes
a modified Gaussian mixture model [AY19] to identify problem-
atic patterns in human behaviours. RISSAD [DB21] is an interac-
tive approach that not only assists users in detecting abnormalities
but also automatically defines them using descriptive rules. Even
border detection has recently gotten some attention thanks to a VA
method [MM21] which uses the power of explainability from linear
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projections to help analysts study non-linear separation structures.
However, the final goal of HardVis differs since we try to merge the
gap between instance hardness and sampling techniques for evalu-
ating their suggestions. None of the above VA systems incorporate
sampling mechanisms, as defined in Section 1.

VERONICA [RAS*21] is a domain-specific VA system that uses
undersampling and SMOTE for specific classes of data and groups
of features. On the other hand, HardVis is inherently designed to be
generalizable to any numerical data set stored in a tabular form. It
also accounts for instance hardness while enabling the microman-
agement of the sampling techniques. To improve the efficiency of
model construction, Li et al. [LFM*18] presented a VA approach
that allows infusing dynamic user feedback in various forms, with
interactive addition of new samples being one of them. Despite that,
the goal is different from HardVis since the focus is on learning
with a limited amount of data or incrementally learning as in Paiva
et al. [PSPM15]. During themain use case of RuleMatrix [MQB19],
Ming et al.manually selected a problematic subset of instances and
applied oversampling, which resulted in improved model accuracy.
In contrast, HardVis enables knowledgeable users to systematically
explore the distribution of data in different types and the sugges-
tions of the undersampling and oversampling to enhance predictive
performance.

2.3. Data-centric machine learning

Most of the model-centric ML work so far has focused on how
model developers incrementally improve an existing or newly in-
vented ML algorithm’s predictive performance while making no
changes to the collected data [Ham22]. On the other hand, prac-
titioners of data-centric ML maintain the ML model stable while
iteratively upgrading the quality of the data at hand [Ham22]. Ad-
vocates for data-centric ML have recently increased in volume. A
few reasons for this shift are the benefits of involving domain ex-
perts in the data analysis process and the necessity for very config-
urable solutions that focus on subsets (or slices) of data [Ham22].
Closely related to this paradigm, ModelTracker [ACD*15] and
Squares [RAL*17] are two interactive visualization approaches that
improve a more standard confusion matrix to detect issues with par-
ticular instances and enable users to tune the input by monitoring
the output of the model. The former proposes a visualization that
incorporates information from a variety of typical descriptive statis-
tics while providing instance-level performance and allowing for di-
rect error analysis and troubleshooting. The latter computes perfor-
mance measurements and assists users in concentrating their efforts
on instance-level issues. Therefore, both works follow the general
framework of visual parameter space analysis (vPSA) [SHB*14].
Although HardVis is also an applied example of the vPSA frame-
work, it is explicitly designed for the first stages of an ML model-
building pipeline, addressing a clear need for applying sampling
techniques in specific types of instances only.

Active learning is also part of data-centric ML solutions. It can be
defined as the active usage of a learning algorithm to iteratively sug-
gest to a user to classify unknown instances in order to increase the
MLmodel’s performance quickly [Set12]. In the visualization com-
munity, many VA techniques have been developed explicitly for ac-
tive learning [BZL*18, BHS*21, BHZ*18, GBSW21].More specif-

ically, these works have focused on how VA can help users during
the labelling process for semi-supervised learning problems. The
challenges are somewhat similar to ours since understanding how
hard (or important) it is for an instance to be labelled before the rest
is a relatable problem. However, our end goal is to prioritize which
instances should be undersampled and oversampled first (and how
exactly) in supervised learning classification problems containing
labels for all data instances.

3. Analytical Tasks and Design Goals

This section outlines the basic analytical tasks (T1–T5) that a user
should be able to complete when undersampling or oversampling
while using a VA system for support and direction. Following that,
we present the design goals (G1–G5) that guided the development
of HardVis.

3.1. Analytical tasks for undersampling and oversampling

From the in-depth examination of the related work highlighted
in Section 2 and our own recent experiences implementing VA tools
for ML [CMK20, CMKK21a, CMKK21b, CMKK22, CMK23], we
came up with five analytical tasks.

T1: Identify the various types of instances. As the decrease in
predictive performance is connected to data distribution-related fac-
tors, such as the presence of many rare subgroups obscuring the
classification [WH00, Jap01], the consequences from the overlap
between the classes [PBM04, GSM07] or the existence of several
misclassified examples [NSW10], a primary goal is to spot such
groups of points—as precisely as possible—with the use of VA
systems.

T2: Support the exploration of undersampling versus over-
sampling alternatives applied globally and locally. When apply-
ing such techniques, the data instances used as input for undersam-
pling and oversampling algorithms could differ depending on the
stable anchors a user sets. An example of a stable anchor is how the
partitioning of data into four types occurs, leading up to 16 differ-
ent SBRO combinations used as input for the sampling algorithms.
Also, the distribution of SBRO (as defined in T1) is another factor
to be considered as a stable anchor under investigation. On the one
hand, global undersampling or oversampling will allow all instances
to be candidates for removal or under consideration when creating
synthetic data, respectively. On the other hand, locally applied al-
gorithms will dynamically enable users to consider local character-
istics of data points and exclude a few suggestions from the pool of
recommendations. Modifying this ratio dynamically could be bene-
ficial for the ML model, thus the user’s interaction guided by visual
feedback is necessary.

T3: Explore automated methods’ suggestions. The identifica-
tion of conditions for the efficient use of a particular method is an
open research problem [NS16]. A user should be competent in judg-
ing the influence of a suggestion on the whole data set. For exam-
ple, what if, by removing too many rare cases, the model overfits
the training data but generalizes poorly in a test set? A user should
be empowered by VA systems that facilitate exploratory analysis of
unsafe instances.
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T4: Confirm suggestions by making justifiable decisions. A
user should have the ability to partially confirm the proposal of the
automated methods based on the analysis he/she has performed ear-
lier in the preceding task. How will the data distribution change due
to the acceptance of such a suggestion? VA systems should envision
these future steps and enhance users’ decision-making.

T5: Monitor and evaluate the results of the sampling process.
At any stage of the sampling process (T2–T4), a user should be
able to observe performance fluctuations with the use of appropriate
validation metrics for imbalanced data sets (e.g. balanced accuracy
and f1-score). A user might also wish to look back at the history of
activities to see if any crucial actions corresponded to better results.
Thus, VA systems must be capable of providing ways to monitor
performance.

3.2. Design goals for HardVis

We identified five design goals for our system to meet in order to
fulfil the more general aforementioned analytical tasks for under-
sampling and oversampling. We implemented them in Section 4.

G1: Visual examination of several data types’ distributions
and projections to choose a generic ‘number of neighbours’ pa-
rameter. Our goal is to assist in the search for distinctive distri-
butions of data types that might consider different populations of
SBRO instances (T1). By systematically modifying the number of
neighbours parameter of UMAP, we aim to assure that users will
pick a better value based on the visual exploration of data types in
the generated projection. Furthermore, this value propagates in the
undersampling and oversampling techniques that require a k-value,
which works similarly to the above parameter.

G2: Application of undersampling and oversampling in spe-
cific data types only, with different parameter settings. There are
several different undersampling and oversampling techniques, but
they are usually only applied to the entire training set (i.e. global
sampling). However, with our proposed system, we enable users to
choose a technique, tune the parameters depending on the visual ex-
ploration and even deploy them in particular subsets of the training
data (i.e. local sampling as established in T2).

G3: Exploratory data analysis of unsafe suggestions. Next, the
system should provide sufficient visual guidance to users to focus on
the exploration of the values in each feature for unsafe suggestions
(T3). The analysis of borderline, rare and outlier data types should
be feasible in a generic and detailed manner.

G4: Comparison of trade-offs while removing or adding
training instances throughout the decision-making process. Af-
ter the extraction of evidence as defined in G3, users should see
how the distribution of instances will change due to the undersam-
pling and/or oversampling phases. Next, the system should give
a prediction for a data point and juxtapose it to all other points.
With this, users should be able to estimate the impact of algorith-
mic recommendations during exclusion or inclusion of instances
(T4).

G5: Keep track of critical steps and evaluate predictive per-
formance in general and for specific test instances. Users’ inter-

actions should be tracked in order to preserve a history of modifica-
tions in the training set, and the performance should be monitored
with validation metrics (T5). Finally, using an unseen test set, the
system should continuously stress the difference in the model’s pre-
dictive performance.

4. HardVis: System Overview and First Application

Following the analytical tasks and the resulting design goals, we
have developed HardVis, an interactive web-based VA system that
allows users to identify areas where instance hardness occurs and
to micromanage sampling algorithms. Section 7.2 contains further
implementation details.

The system consists of eight interactive visualization panels
(Figure 1): (a) data types projections (→G1) incl. data sets and sam-
pling techniques (→ G2), (b) data overview, (c) data types distribu-
tion, (d) data details, (e) data space, (f) predicted probabilities (→
G3 and G4), (g) sampling execution tracker and (h) test set confu-
sion (→G5). We propose the followingworkflow for the integrated
use of these panels (cf. Figure 2): (i) explore various projections
with alternative distributions of data types, leading to the division
of training data into SBRO (cf. Figure 3(b)); (ii) in the undersam-
pling or oversampling phase, tune the active algorithm’s parameters
to affect specific types of data (Figure 1(a)); (iii) during the confir-
mation phase, identify which suggestions will impact negatively or
positively the predictive performance and approve or reject any sug-
gestion (cf. Figures 1(b)–(f)) and (iv) store every manually operated
sampling execution, identify confused test instances and compare
the predictive performance in each step of the process according to
two validation metrics designed explicitly for imbalanced classifi-
cation problems (Figures 1(g) and (h)). These steps are iterative, and
they might occur in any sequence. The created knowledge obtained
from the undersampled/oversampled data set is the end result. This
knowledge can be useful to users that have to explain and are ac-
countable for their actions, e.g. people working in critical domains
such as medicine.

HardVis employs a state-of-the-art ensemble learning approach
named as XGBoost [CG16], and its workflow is model-agnostic. To
make our approach even more future-proof, we train this ML algo-
rithm with the Bayesian Optimization package [Nog14]. HardVis
utilizes OSS, NCR, SMOTE and ADASYN, which are state-of-the-
art sampling algorithms that are tweaked to receive specific SBRO
instances as an input. Despite that, these algorithms are easily re-
placeable. The reader is referred to Refs. [HG09, HM13] for a more
detailed analysis of different strategies that cope with class imbal-
ance. For this section and the use cases in Section 5, we split the
data sets into 75% training and 25% testing sets with the stratified
strategy (i.e. keeping the same balance in all classes for both sets)
and validate our results with 5-fold cross-validation. Also, we scan
the hyperparameter space for 25 iterations, choosing the model with
the best accuracy. The hyperparameters we used are the same as in
another VA system developed by us [CMKK22].

In the following subsections, we explain the system by using a
running example with the iris flower data set [FIS36] obtained from
the UCI ML repository [DG17]. The data set represents a balanced
multi-class classification problem and consists of four numerical
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Figure 1: Undersampling and oversampling certain data types with HardVis: (a) the panel with many tunable parameters for UMAP, un-
dersampling and oversampling; (b) box plots for comparing the values of all points against the algorithm’s suggestion in each feature; (c)
a stacked bar chart showing the base versus the new distribution if the suggestion is approved; (d) a table heatmap view for comparing the
instances’ values across all features; (e) a UMAP projection emphasizing the additions/deletions of points, along with the data type for every
instance; (f) an inverse polar chart with chords that depicts the predicted probabilities, as well as the training confusion; (g) a Sankey diagram
for tracking any undersampling or oversampling confirmed actions and (h) a visual embedding based on (e) to highlight the confusing test
instances, and a horizontal bar chart to illustrate the performance difference for each step.

features and 150 instances. The three classes are: setosa, versicolor
and virginica.

4.1. Data types

HardVis follows the Napierala and Stefanowski [NS16] methodol-
ogy in order to label all training instances in one of the following
types: safe (S) examples, borderline (B) samples, rare (R) cases and
outliers (O). To calculate the difference between instances in the
high-dimensional space, we use KNN [Alt92, FH89] with the de-
fault value of k being 5 and the Euclidean distance metric. For de-
termining the type of a sample with k = 5, we would have, e.g. five
or four nearest instances being from the same class, then the sample
gets labelled as S; three or two instances from the same class, then it
belongs to B; only one instance from the same class, it is R; and zero
(i.e. the five nearest instances are from the other class), it becomes
O. However, the analogies will change with k > 5.

As shown in Figure 3(a), stacked bar chart, the distributions of
instances change accordingly as the number of neighbours in the
UMAP [MHM18] shifts since we utilize the same value for the
KNN algorithm. Thus, the goal of the two-dimensional projection
is to reflect visually the same separation of training instances into

the SBRO types. The minimum distance is another parameter of
UMAP that (in our case) is being automatically computed from the
maximum achievable Shepard diagram correlation (SDC) [CMK20]
score (see Figure 3(a), line chart). This metric serves as a first in-
dicator of optimal distance preservation between the low- and the
high-dimensional space. Nevertheless, it cannot be trusted blindly,
and human exploration is necessary to conclude which parameters
are optimal for the given data set.

The main challenge of KNN is the user-selected k-value, thus it
is a highly parametric-dependent approach. To resolve this prob-
lem, we enable the user to explore different data types’ projec-
tions generated by the systematic change of k-value from 5 to 13
(cf. Figure 3(b)). This range is chosen intentionally because, in
low k-values, a slight modification is more impactful to the projec-
tion [NS16]. However, these values are adjustable within the code.

4.2. Undersampling

Figure 3(c) presents the tab for Undersampling (US), which along
with the standard method’s parameters comprises a Types menu
with options to exclude any SBRO group. The k-value is auto-
matically tuned due to the selection of the number of neighbours
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Figure 2: The HardVis workflow starts by classifying the training
data into four types according to the user’s visual inspection of nine
alternative projections. The data are sent for either undersampling
or oversampling, which can make suggestions continuously. The
user’s confirmation is requested after the exploratory data analy-
sis through the visualizations.

parameter, as explained in Section 4.1. OSS [KM97] uses Tomek
links [Tom76] which are ambiguous points on the class boundary
that are typically identified and removed. Moreover, it employs the
condensed nearest neighbour rule [Har68] to remove redundant ex-
amples far from the decision boundary. In contrast, NCR [Lau01]
is an undersampling technique that combines the condensed nearest
neighbour rule to exclude redundant examples and the edited near-
est neighbours rule [Wil72] to remove noisy or ambiguous points.
Its main difference from OSS is that fewer redundant examples are
deleted, and more attention is placed on ‘cleaning’ those retained
instances. Each algorithm expects input for a unique parameter. In
particular, NCR has Threshold which is used for deciding whether
to consider a class or not during the cleaning after applying edited
nearest neighbours. Seeds is the number of samples to extract in or-
der to build a set S for OSS. All these techniques can be employed
in the Majority, �= Minority, �= Majority, or All classes according to
the user’s choice. In multi-class classification problems, the Major-
ity will be merely the class that contains the most instances, �= Mi-
nority will be all classes except the one with the least instances, and
so on. In balanced data sets, only the All option is relevant.

The UMAP projection in Figure 3(d) allows users to observe the
type of each instance concurrently and if it was suggested for re-
moval with an ‘×’ symbol or addition with a ‘+’ mark by the active
undersampling or oversampling algorithm, respectively. The param-
eters for the UMAP are set as discussed in the preceding subsection.
Hovering over a point will present details on demand such as the ID
of the point, the predicted probability and the values for each fea-
ture.

The distribution of data types is known due to a stacked and
grouped bar chart with the instances distributed in SBRO and per
class, simultaneously (cf. Figure 3(e)). The base distribution is also
comparable with the suggestion from the sampling algorithm that
will modify the initial distribution.

Figure 3(f) is a box plot that facilitates the comparison of all
points per feature versus the selected points via lasso functionality
in the projection. When a sampling algorithm is active, the same
group of instances with merely the sampling suggestions is also
visualized. In case of no selection, a simpler version of all points
against all points in either undersampling or oversampling sugges-
tion exists (see Figure 1(b)). Users’ actions determine the mode au-
tomatically. The features are sorted from left to right, from the least
important to the most important at each execution step of undersam-
pling/oversampling (due to XGBoost retraining process). The pro-
posals for removal are denoted in light red colour, and light green is
used for the suggested additions.

The table heatmap view in Figure 3(g) is a more detailed view
of the aggregated results present in the box plots. It normalizes the
values from 0 to 1, evident in dark brown to dark teal colours, and it
shows for each feature the current value in each instance. The fea-
tures are sorted as in the box plots.Moreover, the # Type # is perceiv-
able through this visual representation, with outliers, then rare cases,
next borderline examples, and finally safe instances being at the top
of the list. The selection of a specific feature in this view applies the
diverging colourmap to the projection for comparing all instances
for this particular feature (see Figure 6(d), zoomed in view). More
detailed discussions on the visual design behind some of the views
can be found in Section 7.1.

The inverse polar chart in Figure 3(i) is deliberately designed to
provide more space to instances that are in the borders between two
classes or completely misclassified cases. The predicted probabil-
ity with the ground truth class is used for the 100 to 0 axis, and the
angle/orientation is computed as the difference in predicted prob-
ability of belonging to the remaining two classes. The greater this
difference is, the farther a point deviates from the centre of its circu-
lar segment corresponding to the correct class label. In our example,
the versicolor has a few instancesmainly confusedwith the virginica
and vice versa. This is why all setosa instances are near 100% pre-
dicted probability in the purple circular segment. The size of each
piece is calculated from the number of training instances that belong
to a particular class, with extra space being provided to larger classes
(i.e. consisting of more points). The same symbols as in the projec-
tion are also retained here. This approach can easily work for two or
three classes but becomes challenging to interpret withmore classes;
such limitations are discussed in Sections 6 and 7.2. The centrepiece
of this visualization is a chord diagram that summarizes the confu-
sion matrix for the training data, as in Alsallakh et al. [AHH*14].
Thus, in Figure 3(i), the confusion between versicolor and virginica
is immediately distinguishable by the chords linking the different
circular segments. The number of confused instances from one to
the other classes is encoded as chord width.

4.3. Oversampling

Two mainstream oversampling techniques are implemented in
HardVis. SMOTE [CBHK02] finds the KNN in the minority
class for each of the samples in the class. Next, it draws a line
between the neighbours and generates random points on the lines.
ADASYN [HBGL08] is the same as SMOTE, just with a minor
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Figure 3: At first, a comparison of different data types projections and then two consecutive undersampling phases with the NCR algorithm are
shown in this arrangement of screenshots. The default value for the number of neighbours is 5 (see (a)), which is used as input for computing
the type of each instance with KNN. The projections are generated by systematically tweaking the above parameter, as illustrated in (b); the
best choice is theoretically the highest value for the Shepard diagram correlation (SDC) metric. In (c), we have activated the algorithm, and
we check the impact of this automated technique on the projection in (d). (e) presents the difference in distributions of all data types per class
label from when the algorithm was inactive as opposed to its activation. In (f), we explore a specific rare case under removal consideration.
This instance is contrasted against the remaining points of this same class (i.e. virginica in orange colour); the selection was made using a
lasso interaction, as demonstrated in (d). While the values for all features are lower for this sample than the rest, sepal_l appears the furthest
away. Additional details can be found in (g) that highlights these differences in values of particular features and confirms our findings from the
data overview. Consequently, we choose to delete this instance because it might cause further confusion to the model, as depicted in (d). The
second time we deploy NCR (cf. (h)), two safe instances are in our focus since they are easily classified due to the high predicted probability
visible from the inverse polar chart in (i). Therefore, we decide to remove these two points.

improvement. After creating those samples, it adds a small random
deviation to the points, thus making it more realistic with the ad-
ditional variance. Similar to the undersampling techniques before,
SMOTE and ADASYN have all options except for the division of
types provided via a separate menu of our system. The All option
is equivalent to �= Majority, but we implemented them differently
when a type of instance is deactivated. The former considers
removing all points of the specific deactivated type/s irrelevant to
the class that will be oversampled, leading to more excluded points
for the active algorithm. The latter excludes from the pool of points
only those from the deactivated type/s but from the class that will
be oversampled. The Minority and �= Minority are implemented
based on the second schema described here. The same exploration
and analysis options mentioned in the previous subsection also
apply for oversampling.

4.4. Sampling execution tracker and test set confusion

Each manual undersampling or oversampling confirmation is reg-
istered in the Sankey diagram (see Figure 4(d)). The initial setting
is to record the distribution of all training data to the SBRO types.
Then, as an undersample or oversample execution takes place, the
instances move from their type to the US (in dark red) or OS (in
dark green) bin of the Sankey diagram.

The test set is also plotted using the visual embedding of training
data in each step (cf. Figure 4(e), left). All test instances are trans-
parent when predicted correctly by the ML model and opaque in
cases of confusion. For example, in Figure 4(e), left, the star with
blue colour is from the versicolor class, but it was predicted as vir-
ginica due to the orange outline. Furthermore, the initial and current
balanced accuracy (bright turquoise) and f1-scores (deep magenta)
are visible in the text at each side of the heading of the Test Set Con-
fusion panel. The difference in performance based on those metrics
is tracked for every step of the process with a horizontal bar chart
(Figure 4(e), right).

4.5. First application

In our first application, we observe that the maximum SDC value is
94.80% (high correlation, Figure 3(b)), resulting in a most prob-
ably trustworthy projection. Another reassurance stems from the
visual inspection of points in the middle of two classes that ap-
pear clearly confused, with most rare and borderline instances being
located there.

The undersampling phase is perhaps most crucial since remov-
ing unsafe instances without justifying one’s action could cause a
severe issue to the ML model. We choose to activate the de facto
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Figure 4: An oversampling phase that aims to balance the data set again. According to (a), we use ADASYN for the minority class (versicolor
in blue) that contains fewer instances. Also, we exclude from the input of the algorithm two rare cases near the borders of two classes,
as illustrated in (b). The system proposes two artificially created points for addition that we approve, see (c). The Sankey diagram in (d)
summarizes the core execution phases with undersampling and oversampling steps. Only one test instance is confused according to (e), while
the manual decisions (steps 2, 4 and 7/8) improved the balanced accuracy and f1-score scores compared to the automated methods (steps 1,
3 and 5).

NCR algorithm without any tweaks to check the suggestions (Fig-
ures 3(c) and (d)). The distribution of instances changes according to
this global suggestion for removal of orange and blue points, as seen
in Figure 3(e). Despite that, we want to explore further a suggestion
for removal that is a distant point from the core virginica cluster.
We use the lasso to select those points and proceed with the investi-
gation. The box plot in Figure 3(f) enables us to conclude that this
is an extreme case relatively different from the remaining selected
points of its own class since the values for all features are very low.
The table heatmap view in Figure 3(g) reaffirms our hypothesis be-
cause the instance with ID 28 has the lowest sepal_l value (<0.1 due
to dark brown colour). We exclude this instance, but we keep the
rare cases around the borders of the two classes that can easily flip
class labels. Another phase of undersampling is also capable with
HardVis since the new data become the ground zero for the next
application of the automatic algorithm; NCR is again our choice.
This time, five instances are proposed for deletion (cf. Figure 3(h)).
However, by checking the inverse polar chart in Figure 3(i), we see
that two of them are easily predictable and potentially redundant
for the ML model. Therefore, we decide to exclude those two safe
samples solely.

Using the Oversampling (OS) tab, we try to balance the classes
that contain fewer training samples. In Figure 4(a), we activate
ADASYN for the minority class, which requires two more exam-
ples to restore balance in the training set. This setting, in combina-
tion with the observation of two rare cases that are in the borders
of the versicolor class (Figure 4(b)), leads to the deselection of the
Rare type. Consequently, these two rare cases are excluded from
the pool of available for oversampling training instances. Without
the appropriate choice of k-value, resulting in an expressive and ef-
fective distribution of data types, it would have been challenging to
detect and handle such cases (especially if no class labels were pro-
vided). The oversampling generated two instances that we accept in
step 8, as depicted in Figure 4(c).

In Figure 4(d), the deletion of one rare instance during the first
NCR phase, the removal of two safe instances during the second
NCR phase and the oversampling phase utilizing ADASYN for gen-
erating a safe and a borderline instance is visible. Also, the confu-
sion of a test instance is highlighted in Figure 4(e) with the decisions
of the automatic algorithm hurting the performance and the manual
decisions in steps 2, 4 and 7/8 improving the predictive power of the
ML model.

5. Use Cases

In this section, we present a hypothetical usage scenario and a use
case about how HardVis can evaluate suggestions based on local
data characteristics to build trust in ML and to improve the balanced
accuracy and f1-score scores for both training and testing sets.

5.1. Usage scenario: local assessment of undersampling

Zoe is a data analyst in a hospital, working primarily with healthcare
data. She receives a manually labelled data set with nine features re-
lated to breast cancer [DG17]. This data set is rather imbalanced,
with 458 benign and 241malignant cases. From her experience, she
knows that instance hardness and class imbalance can be trouble-
some for the ML model. Thus, she wants to experiment with well-
known algorithms for undersampling and oversampling the data.
However, especially with medical records, the use of merely au-
tomated methods is questionable because they cannot be trusted
blindly. The doctors need explanations, and theminority class in this
binary classification problem is of more importance than the major-
ity consisting of healthy patients. In reality, patients who are healthy
but predicted as ill will undergo extensive follow-up diagnostic tests
before treatments such as surgery and chemotherapy are advised;
however, the opposite is not true. To accomplish this main objective
and to control the sampling techniques, Zoe deploys HardVis.
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Figure 5: The investigation of diverse structures of data types and alternative suggestions in an undersampling scenario. View (a) shows the
selection of the number of neighbours value of 13, which has 75.21% Shepard diagram correlation (SDC) score, as illustrated in (b). The
UMAP visible in (c) has one rare sample and six outliers belonging to the benign class that holds relatively normal values compared to the
malignant cluster (C), as shown in (d). Therefore, the suggestions for removal in C1 are valid since even humans cannot understand why
these points are benign cases. On the other hand, C2 contains five rare examples and two outliers that serve as a bridge between the two
classes, cf. (c). Interestingly, the three most important features differentiate the right group of points (IDs: 64, 102 and 134) from the left, i.e.
size_un, shape_un and bare_nuc in (e). This diversity is crucial when predicting difficult to classify instances, hence the analyst chooses to
keep this cluster despite the NCR algorithm’s suggestion for removal. C3 is the final selection, with most outliers being removed because the
model badly predicted them, as seen in (f). This leads to (g), which presents an improved performance with six confused test instances that
are cancer-free but predicted as the opposite. The malignant class is secure due to the rare cases being intact.

Choosing an accurate projection. Zoe begins with the selection
of a number of neighbours parameter by activating a window con-
taining data types projections (cf. Figure 5(a)). HardVis enables her
to compare a grid of diverse projections, as presented in Figure 5(b).
The one with the highest SDC score (i.e. 75.21%) is a noteworthy
candidate because the two classes are clearly separated. Rare cases
and outliers are also easily visible, forming a bridge between benign
and malignant instances. She clicks on the bar with the number 13
in Figure 5(a), and this projection becomes the main for further ex-
ploration. At this initial phase, six benign test instances were incor-
rectly classified, while the remaining four out of the 10misclassified
patients were actually malignant cases.

Examining unsafe instances proposed for removal. After-
wards, she activates the NCR algorithm with the default settings
(k-value is synchronized to 13 due to the previously selected pro-
jection) from the Undersampling (US) tab. Cluster 1 (C1) in Fig-
ure 5(c) is interesting because seven benign cases (mostly marked
as outliers) are in between the malignant class. She chooses to com-
pare the selected points in C1 against these suggestions of under-
sampling, as depicted in the box plots (Figure 5(d)). In summary,
the values are lower for these points but still in between normal

margins. Therefore, it would have been almost impossible for the
doctors to conclude that these are healthy patients with benign can-
cer. A thorough check should be performed in these cases, e.g. to
determine if the labels are erroneous. She first notifies the data col-
lection team and doctors about this important finding and then re-
moves C1 suggestions. On the contrary, C2 includes five rare cases
and two outliers with size_un, shape_un and bare_nuc features sep-
arating the points closer to the benign class from the rest, as illus-
trated in the table heatmap view (Figure 5(e)). The right group of
points has mostly lower values for the size_un and shape_un fea-
tures, while the bare_nuc is higher compared to the points on the
left. Zoe understands that such diversity is important when dividing
borderline patients located at the conjunction of the two huge clus-
ters. Therefore, she uses lasso selection to grab all points except for
C2, which will be her manual undersample strategy. The inverse po-
lar chart in Figure 5(f) highlights the training instances that will be
deleted, which are mostly completely misclassified instances or safe
examples. The samples between the two classes already explored
remain intact, which is essential since they all belong to the more
important minority class. In Figure 5(g), Zoe observes that only six
test instances were incorrectly classified as having malignant can-
cer while they were healthy.When inspecting the balanced accuracy

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14726 by T

echnical U
niversity E

indhoven, W
iley O

nline L
ibrary on [21/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Chatzimparmpas et al. / HardVis: Visual Analytics to Handle Instance Hardness Using Undersampling and Oversampling Techniques 145

Figure 6: The examination of diverse structures of data types and alternative suggestions while undersampling with OSS. View (a) shows
the selection of the number of neighbours value of 13, which is also used as an input to KNN for sampling similarly in the high-dimensional
space. This decision was made after a careful review of the nine projections in (b), leading to a distribution of mostly safe instances, then
borderline examples, next rare cases, and finally a few outliers. This is the second-best projection in terms of Shepard diagram correlation
(SDC) score, but it preserves exceptionally well the clusters of buses in purple versus vans in orange colour at the bottom-left region. In (c),
we experiment with the maximum seed value for the OSS algorithm, but it seems that several safe instances that could have been proposed
for removal are actually not. Thus, we reduce the seed value in half to check if the new suggestion fits our viewpoint, as depicted in (d). The
goal we set has been accomplished, however, a cluster of rare cases mixed in two classes is about to be deleted. In (e), we investigate further
this group of points at the bottom-left corner; these instances differ mainly because of eitherMaxLensAspRat or HollowsRat. Such rare cases
are critical information for the model to split these two classes; hence, we exclude the rare cases from the automatic algorithm, see (f). From
the remaining 260 under consideration instances, there are four outliers that caught our interest. Only one out of the four outliers appears
problematic based on (g). As a result, we exclude the outliers from the analysis and Execute Undersample to the remaining 256 points.

and F1-score scores, the overall predictive performance for the test
set seems slightly improved contrasted to the automatic algorithm.
Nevertheless, the major gain is that the doctors might trust this mod-
ified data set more because the model correctly predicts all patients
with malignant cancer (since there is no highlighted yellow star for
the test set in Figure 5(g), left). Based on prior findings [NS16], Zoe
stops her exploration at this phase because oversampling is ineffec-
tive for data sets with mostly safe instances.

5.2. Use case: explorative sampling for better classification

This use case is about a multi-class classification problem. There
are 18 features collected for the vehicle silhouettes data set [Sie87].
With the main task of classifying 199 vans, 218 buses and 429 cars,
the class distribution is somewhat unbalanced.

Comparing projections and distributions of data types. Sim-
ilar to the procedure described in Section 4, we start by exploring
which projection represents the data types in the best possible way.
Three projections reaching high enough SDC with minimum dis-

tance parameter equals to zero are extremely condensed, making
it hard to observe anything (see Figure 6(b)). Among the remain-
ing, two of them have SDC score of more than 83%. Although they
are two similar projections, the last one clearly shows the differ-
ence between bus and van classes in purple and orange, respectively
(see the circled area at the bottom). We choose to continue with this
projection; thus, we go back to Figure 6(a) and select a number of
neighbours parameter equal to 13. When we hover over the stacked
bar chart in Figure 6(a), we observe that safe and borderline cases
account for 47.16% and 34.54% of the training set, respectively.
This is significantly different in the distributions of data created with
lower values for the number of neighbours (e.g. 5). In summary, the
visual analysis guides us in picking all the aforementioned parame-
ters.

Tuning the undersampling based on exploratory data analy-
sis. After selecting the projection (which results in a specific distri-
bution of data types), we decide to apply the OSS undersampling al-
gorithm. Nevertheless, the default settings cause the van class to dis-
appear completely, thus the predictive performance gets extremely
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penalized (see step 1 in Figure 1(h), right).We pick the highest avail-
able seeds parameter to consider more points except for the minority
class. The algorithm suggests 196 instances to be removed (step 2),
as illustrated in Figure 6(c). It seems from the projection that our
previous setting does not capture several buses while being safe to
remove examples. Therefore, we decrease the parameter to 125, half
of the prior selection. The effect is that 329 are currently suggested
for removal (step 3), as depicted in Figure 6(d). This action accom-
plishes our initial goal, but 7 regional points are about to be under-
sampled. As we should be very careful when deleting rare cases, we
further explore this group of points in the table heatmap view (Fig-
ure 6(e)). It is observable that the instance with ID 486 is separated
from the othersmainly due to theHollowsRat feature, while instance
631 is different because of a low value in the MaxLensAspRat fea-
ture. We decide not to exclude rare cases with such high variance
because they may be part of our test set (step 4). The new sugges-
tion after excluding the rare points is visible in Figure 6(f). Another
critical category of data types is the outliers. From all outliers in the
last projection, four are proposed for deletion by the oversampling
algorithm.Only 1 out of the 4 points appearsmarginally problematic
with prominent confusion between car and van classes, as depicted
in the inverse polar chart (see Figure 6(g)). Since the majority of
points is safely predicted correctly, we decide to keep the outliers in
the training set. After this step, 256 out of the 634 points are getting
removed (steps 5 and 6).

Deciding to oversample all types except outliers. To understand
if a new round of undersamplingwould be beneficial, we activate the
OSS algorithm again with the same settings (step 7). However, the
outcome is to decrease the relatively safe population that much, so
that the result is becoming worse. Therefore, we disable the algo-
rithm and stop the undersampling phase (step 8). Moving on to the
oversampling phase, we aim at utilizing SMOTE to generate artifi-
cial points for increasing the number of instances in the underrep-
resented classes. The oversampling of all data types reduces both
balanced accuracy and F1-score (step 9 in Figure 1(h)). From Fig-
ure 6(f), we can understand that several problematic outliers are not
considered for removal at all by the OSS algorithm during the pre-
vious phase. In particular, four outliers are predicted as vans while
they belong to the car class according to the ground truth, as shown
in Figure 6(g), at the bottom-left region. The oversampling algo-
rithm should not eternalize this confusion. Consequently, we choose
to exclude all six outliers from the pool of instances in order to pri-
marily generate safe and borderline instances for the van and bus
classes (cf. Figure 1(a)). The resulting distribution of points achieves
our goal (see Figure 1(c)) and leads to an improvement in the overall
predictive power (step 10).

Tracking the process and evaluating the results. To verify our
sampling execution actions, we continuously monitor the process
through the Sankey diagram, as shown in Figure 1(g). From this rep-
resentation, we acknowledge that the population of safe instances
decreased drastically when the undersampling was executed. The
manual undersampling and oversampling processes (described pre-
viously) led to the best predictive result we managed to accomplish,
with nine confused test instances (seven of them belonging to the
car class, as presented in Figure 1(h), left). From the horizontal bar
chart in Figure 1(h), right, the performance difference in each step
suggests that using directly the automated sampling algorithms led

to worse results (cf. steps 1 and 9). With the help of HardVis, we
managed to improve, even more, both balanced accuracy and F1-
score by approximately +2%. To sum up, our VA system guided
us in systematically setting the parameters of the sampling algo-
rithms and applying them in subsets of the data throughout the var-
ious rounds of undersampling and oversampling. As pointed out by
the experts in Section 6, this would have been (almost) impossible
without direct human intervention.

6. Evaluation

We performed online, semi-structured interviews with five inde-
pendent experts to gain qualitative feedback on our system’s use-
fulness, using the procedure described in prior works [MXLM20,
XXM*19]. The first ML expert (E1) is a full professor with a PhD
in computer science. He has 15 years of experience withML, and he
is head of the natural language processing (NLP) group at his univer-
sity. The second ML expert (E2) is a full professor in ML and data
science addressing mainly challenges in humanities. He has worked
with ML for the past 30 years, and he holds a PhD in applied math-
ematics. The third ML expert (E3) is an assistant professor working
with ML and deep learning, with 7 years of experience in ML. His
PhD is in media technology. The fourth ML expert (E4) is a postdoc
also focusing onML and deep learning, and she has 8 years of expe-
rience in ML. Finally, the fifth ML expert (E5) is a post-doc with 20
years of experience inML. The latter two experts have PhDs in com-
puter science. E1 was the only one who reported a colourblindness
issue (deuteranomaly), but he affirmed having no problem perceiv-
ing correctly the specific colour combinations we used in HardVis.
Each interview lasted about 1 h and 15 min, and the interviews were
structured as follows: (1) introduction of the primary objectives of
HardVis, including the analytical tasks and design goals of Sec-
tion 3; (2) presentation of the functionality of every visualization
and interaction with the system using the iris flower data set (as
in Section 4) and (3) explanation of the steps taken to arrive at the
results in Section 5. We asked the participants to freely comment on
anything. Their responses are summarized below.

Workflow. All experts agreed that HardVis’ workflow is well-
designed and reasonable from their perspective. They characterized
the workflow as straightforward and aligned with respective fully
automated sampling processes. E1 and E2 repeatedly commented
positively upon our systematic and fine-grained approach that they
have never seen before in all those years of developing new and de-
ploying already existent MLmodels. ‘The offered granularity of un-
dersampling and oversampling is exceptional, i.e. the fact that sev-
eral phases can be applied in a row and for different subsets of the
data space is something that I believe is almost impossible to accom-
plish without such a tool’, said E1. E2 underlined the clear benefit
of controlling the automatic algorithms’ suggestions since blindly
following them could overfit the training set (and hurt generaliza-
tion). He then stated that letting users be completely free to remove
or generate artificial instances manually could probably harm the
predictive performance similarly. Thus,E2 found that our tool com-
bines the best of both worlds.

Visualization and interaction. The promising findings we were
able to obtain with the help of our VA system in the usage scenario
of Section 5 amazed E3 and E4. While using the same value for
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the number of neighbours parameter and the k-value for the dis-
tribution of data types, E3 appreciated that the k-value could still
be adapted freely, as illustrated in Figure 3(c). The most intuitive
visualization according to E2, E4 and E5 was the box plots view
(Figure 3(f)) which was found exceptionally well-linked with the
UMAP projection (Figure 3(d)). Especially with this view, these ex-
perts were able to understand the decisions we made in Sections 4
and 5. The inverse polar chart (cf. Figure 3(i)) was the most con-
fusing view at first. However, after a careful explanation from our
side, all experts understood its meaning and claimed this visual-
ization was the most novel visual representation of our tool. Since
the same encoding as with the UMAP projection makes this view
intuitive, they were able to inspect the instances immediately with
low predicted probability (and with which specific class) from the
eyes of the model. An interesting suggestion by E2 was to visualize
the KNN-graph for a particular instance when users hover over a
specific point/instance. Although HardVis already enables users to
make justifiable actions by exploring all training instances from both
global and local perspectives, this recommendation could be seen as
an extra validation step for the projection. He also mentioned that
for a more unsupervised-focused approach, the main colour of the
projected points could show the data types, and the outline of points
could be used for the ground truth labels (if there are any). Despite
that, E3 and E4 thought that with the current colour scale, the fo-
cus is on unsafe cases, which could decrease the model’s accuracy
if they are removed before or without reasoning about them at all.

Limitations identified by the experts. E1 and E2 were con-
cerned about the scalability of the system. The former concentrated
on the problem of visualizing hundreds of features, while the lat-
ter on the exploration of more than three classes. E1 acknowledged
that the box plots and the table heatmap view are interactive with
zooming and panning functionalities, which could partially address
this issue. Also, the feature importance could be useful for decid-
ing which features are not informative for a provided data set to
exclude them beforehand. Regarding the second issue, the main
bottlenecks are the inverse polar chart and the extensive use of
colours. The proposed visualization could be further improved to
scale with more than three classes by using advanced RadViz-based
approaches [POSC*15, TBVLH*14]. Furthermore, E2 noted that
multi-class classification problems could be resolved as being bi-
nary due to the one-versus-rest strategy. E5 proposed to deploy
HardVis in a cloud server supporting parallel processing to improve
further the efficiency of the system. E1 and E3mentioned that heav-
ily modifying our VA system is inevitable in case we would like to
extend it to other types of data, e.g. image or NLP data sets that
consist of non-interpretable features such as pixels and word vec-
tors. However, they completely agreed that this was not our original
intention. E1 stated that non-expert users or even domain experts
could find it difficult to operate HardVis and be advised by all visu-
alizations concurrently, despite the views being logically positioned
in a single window. Therefore, as an improvement of generalizabil-
ity to other target groups, he proposed to separate the views in dif-
ferent tabs depending on the certain domain problem at hand and
the users’ prior experience to reduce the cognitive load. However,
for ML experts, this deep level of granularity and the guidance re-
ceived from the tool are necessary for making decisions. Finally, E3
described that as with any other VA tool and ML model in general,
the quality of the data set would probably affect negatively the ca-

pability of the tool to explore a complex and low-quality data set to
the point that it could be challenging to improve the predictive per-
formance. A pre-processing phase that handles missing values and
wrangles the data could alleviate this problem. We plan to work on
methods to surpass such limitations.

Overall assessment. The provided feedback was encouraging
and in favour of HardVis compared to employing automatic ap-
proaches. All experts were confident about the benefits of using
our VA system.

7. Discussion

In this section, we discuss the visual design and overall limitations
of our approach as well as the current implementation.

7.1. Visual design

Here, we elaborate further on the key design concepts of our VA
system that were presented in Section 4.

Familiarity with the prevalent types of data visualization. The
visual representations used are intentionally simple but form a pow-
erful system when combined. Specifically, the benefits originate
from the identification of areas where sampling strategies should
be applied with guidance across the entire process. Similar to the
user profile selected for theML experts that participated in our inter-
view sessions, we deem that the users of our tool would have worked
with box plots, bar charts, tabular representations and visual embed-
dings in the past. Therefore, there may be a gradual learning curve
relevant to the familiarity with the visualizations. Two exceptions
could be the Sankey diagram and the inverse polar chart. The for-
mer is for keeping track of their actions (usually studied under the
term provenance in visualization [XOW*20]). A simpler alternative
we considered is a log list of user’s actions being registered in each
step, as well as empowerements of this representation with high-
lighted text. However, it would capture too much space for a view
that can be deemed as optional, especially since the Sankey diagram
is not crucial during the exploration and analysis phases (i.e. before
either undersampling or oversampling take place). The latter repre-
sentation needs to be learned but can be a game-changer for finding
instances of confusion with a particular class and observing the dis-
tribution of SBRO types from the perspective of the ML model, as
already mentioned in Section 6. As a straightforward alternative, we
tried out a multi-class confusion matrix. However, it only provides
aggregated information and fails to use the same visual encodings
as the main view (see below).

Commonality in the visual encoding and colour scales.
Throughout the whole HardVis system, the visual encodings prop-
agate from one view to the others. For example, the common
grayscale denotes the four distinct types of instances in all views.
Tightly connected views—such as the UMAP projection and the in-
verse polar chart—share identical encodings, i.e. label class mapped
to filled-in colour, data type as outline colour and US/OS repre-
sented with symbols. The inverse polar chart is compact and uses the
available space effectively due to its inherent design; it spares more
area for the misclassified instances. For the table heatmap view, the
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diverging colour scale emphasizes the extreme values and allows
users to notice more differences on the left- and right-hand sides
of the middle point, with five colours having the same origin. For
example, this middle point is crucial for the breast cancer data set,
because instances with values closer to 1 for all features should be
classified as malignant, while samples with values around 0 should
be benign cancer. Finally in this view, hovering over a specific cell
interaction partly resolves the ambiguity problem introduced due to
distributing the normalized values into 10 distinct bins.

7.2. Limitations

In the following, we acknowledge limitations we have discovered
for our system (beyond those mentioned in Section 6), which imply
prospective future developments.

Scalability for a large number of instances and features. In
general, the number of instances and features that can be visually
expressed with our approach has no intrinsic limit. Collaris and van
Wijk [CVW22] found that usually the top 10–20 features were im-
pactful for the tabular data sets they experimented with. For hun-
dreds of features, it would be cognitively demanding for a human
to analyse the influence of all these features at different levels of
granularity. The methodology that might be used is first to limit the
space under inspection using an additional pre-processing phase in
the pipeline before employing HardVis for a deep analysis of fea-
tures, as already stated by an ML expert in Section 6. Collaris and
van Wijk [CVW22] also limited the number of instances to 5000 in
order to prevent overplotting issues in their projection-based view.
Arguably, similar constraints should apply to our tool, especially
for the UMAP projection and the inverse polar chart view. However
in our case, zooming and panning functionalities implemented for
both views can partly solve this problem along with overlap removal
strategies that could be helpful [HMJE*19, YXX*21]. Regarding
the table heatmap view, it is mostly useful for comparing a group of
instances after a lasso selection has been performed. Additionally,
we have the box plots that offer an overview first and scale better to
many more instances.

Other kinds of data sets. Despite the vast range of application
domains covered with all our use cases, HardVis has merely been
evaluated with structured tabular data consisting of numerical val-
ues [SZA22]. We want to enable other data types in the future. Nev-
ertheless, the features of each data set under investigation should be
meaningful, becausewe focus on human expertise and knowledge to
resolve problematic situations where essential instances for the gen-
eralizability of unseen data are being considered for deletion and to
avoid the generation of artificial samples that negatively impact the
predictive performance of the model. Overall, since our prototype
tool is a proof-of-concept, the system’s workflow and theoretical
co[ntributions are generalizable in this respect.

Target group. The primarily targeted users that would gain the
most from adopting our approach are ML experts. We suppose that
they understand the fundamentals of their data sets and know how
to interpret common visual representations, but they require addi-
tional assistance with the sampling procedure. As evident from Sec-
tion 6, the five ML experts who participated in our 1-h and 15-min
interview sessions were able to grasp the main concepts and operate

Table 1: Time taken to complete each activity of the sampling process for
all use cases. The completion time is expressed in minute:second format.
Please note that for the iris flower data set, the undersampling time refers to
two consecutive rounds.

Data set Sampling process
Data types Undersampling Oversampling

Iris flower 0:45 2:57 1:06
Breast cancer 1:53 6:52 -
Vehicle silhouettes 3:29 8:58 5:12

HardVis. Another potential here is to create a more basic version
of our tool, geared explicitly for ML developers and even inexperi-
enced ML users with a low level of visualization literacy.

Completion time for each activity. The frontend of Hard-
Vis has been developed in JavaScript and uses Vue.js [vue14],
D3.js [D311] and Plotly.js [plo10], while the backend has been writ-
ten in Python and uses Flask [Fla10] and Scikit-learn [PVG*11].
More technical details are made available on GitHub [Har22]. All
experiments were performed on a MacBook Pro 2019 with a 2.6
GHz (6-Core) Intel Core i7 CPU, an AMD Radeon Pro 5300M 4
GB GPU, 16 GB of DDR4 RAM at 2667 Mhz and running macOS
Monterey. By taking into account the specifications of the computer,
we recorded the total wall-clock time dedicated to completing the
sampling process for each data set (see Table 1, rows). For the time
reported, we aggregate both the computational analysis and the ex-
ecution of the user’s actions, as described in Sections 4.5 and 5. Ta-
ble 1 columnsmap the time for each activity of the sampling process
(i.e. distribution of data types, undersampling phase and oversam-
pling phase). In particular, as the number of instances and features
to be examined grows, so does the time necessary to compare alter-
native options and finalize the user-defined actions. Unsurprisingly,
the undersampling phase took the longest in all situations, followed
by the oversampling phase, and lastly the distribution of data types.
Depending on the quantity and importance of the extracted patterns,
these values might become rather different. In general, the rendering
time after a major user’s action is restricted to a couple of seconds
for all the data sets we tried. To sum up, the efficiency of HardVis
could be increased in various ways, as explained before.

8. Conclusion

In this paper, we developed HardVis, a VA system that uses hardly
configurable undersampling and oversampling techniques to handle
instance hardness. As part of an intensively iterative process, mul-
tiple coordinated views assist users in defining an ideal distribution
of data types, undersampling particular safe for removal samples
and oversampling others. Additionally, it facilitates the explo-
ration of algorithmic suggestions using a variety of visual clues to
confirm non-harmful removal or addition proposals. Finally, our
VA approach is ideal for dealing with the instance hardness and
class imbalance challenges because it makes the entire process
adjustable and more transparent. The effectiveness of HardVis
was investigated using real-world data sets, which revealed an
increase of trustworthiness and in performance due to removed and
synthetically generated instances. The workflow and visualizations
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of our system received positive feedback from experts suggesting
that such in-depth sampling would be impossible without our tool.
They also assisted us in identifying the existing limitations of
HardVis, which we are considering as future research directions.
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ture multilayer ensemble—concept and evaluation of a classifier.
Journal of Intelligent & Fuzzy Systems 32, 2 (2017), 1427–1436.

[KHM98] Kubat M., Holte R. C., Matwin S.: Machine learning
for the detection of oil spills in satellite radar images. Machine
Learning 30, 2 (1998), 195–215.

[KK17] Kwak S. K., Kim J. H.: Statistical data preparation: Man-
agement of missing values and outliers. Korean Journal of Anes-
thesiology 70, 4 (2017), 407–411.

[KM97] Kubat M., Matwin S.: Addressing the curse of imbal-
anced training sets: One-sided selection. In Proceedings of the
International Conference on Machine Learning (ICML) (1997),
Morgan Kaufmann, pp. 179–186.

[Kra16] Krawczyk B.: Learning from imbalanced data: Open
challenges and future directions. Progress in Artificial Intelli-
gence 5, 4 (2016), 221–232.

[Kru64] Kruskal, J. B.: Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1
(Mar. 1964), 1–27. https://doi.org/10.1007/BF02289565

[Lau01] Laurikkala J.: Improving identification of difficult small
classes by balancing class distribution. In Proceedings of the
AIME (2001), Springer-Verlag, pp. 63–66.

[LCH*14] Liu Z., Chiew K., He Q., Huang H., Huang B.:
Prior-free rare category detection: More effective and efficient
solutions. Expert Systems with Applications 41, 17 (Dec. 2014),
7691–7706. https://doi.org/10.1016/j.eswa.2014.06.026

[LFM*18] Li H., Fang S., Mukhopadhyay S., Saykin A. J.,
Shen L.: Interactive machine learning by visualization: A small
data solution. In Proceedings of the IEEE BigData (2018), 3513–
3521. https://doi.org/10.1109/BigData.2018.8621952

[LGG*18] Lin H., Gao S., Gotz D., Du F., He J., Cao N.:
RCLens: Interactive rare category exploration and identification.
IEEE Transactions on Visualization and Computer Graphics
24, 7 (2018), 2223–2237. https://doi.org/10.1109/TVCG.2017.
2711030

[MC03] MahoneyM., Chan P.: Learning rules for anomaly detec-
tion of hostile network traffic. In Proceedings of the IEEE ICDM
(2003), 601–604. https://doi.org/10.1109/ICDM.2003.1250987

[Mel02] Melnik O.: Decision region connectivity analysis: A
method for analyzing high-dimensional classifiers. Machine
Learning 48, 1–3 (Sep. 2002), 321–351. https://doi.org/10.1023/
A:1013968124284

[MHM18] McInnes L., Healy J., Melville J.: UMAP: Uni-
form manifold approximation and projection for dimension re-
duction. ArXiv e-prints 1802.03426 (Feb. 2018). https://arxiv.
org/abs/1802.03426

[MLC07] Münz G., Li S., Carle G.: Traffic anomaly detection
using k-means clustering. In GI/ITG Workshop MMBnet (2007),
vol. 7, pp. 9.

[MM21] Ma Y., Maciejewski R.: Visual analysis of class separa-
tions with locally linear segments. IEEE Transactions on Visu-
alization and Computer Graphics 27, 1 (2021), 241–253. https:
//doi.org/10.1109/TVCG.2020.3011155

[MQB19] Ming Y., Qu H., Bertini E.: RuleMatrix: Visualizing
and understanding classifiers with rules. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (2019), 342–352.
https://doi.org/10.1109/TVCG.2018.2864812

[MXLM20] Ma Y., Xie T., Li J., Maciejewski R.: Explaining vul-
nerabilities to adversarial machine learning through visual ana-
lytics. IEEE Transactions on Visualization and Computer Graph-
ics 26, 1 (Jan. 2020), 10751085. https://doi.org/10:1109/TVCG:
2019:2934631

[MS94] Martinetz T., Schulten K.: Topology representing net-
works.Neural Networks 7, 3 (1994), 507–522. https://doi.org/10.
1016/0893-6080(94)90109-0

[Nog14] Nogueira F.: Bayesian Optimization: Open source
constrained global optimization tool for Python (2014). https:
//github.com/fmfn/BayesianOptimization. Accessed December
20, 2022.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14726 by T

echnical U
niversity E

indhoven, W
iley O

nline L
ibrary on [21/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1109/ICDM.2008.122
https://doi.org/10.1109/ICDM.2008.122
https://arxiv.org/abs/1903.06262
https://doi.org/10.1007/BF02289565
https://doi.org/10.1016/j.eswa.2014.06.026
https://doi.org/10.1109/BigData.2018.8621952
https://doi.org/10.1109/TVCG.2017.2711030
https://doi.org/10.1109/TVCG.2017.2711030
https://doi.org/10.1109/ICDM.2003.1250987
https://doi.org/10.1023/A:1013968124284
https://doi.org/10.1023/A:1013968124284
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://doi.org/10.1109/TVCG.2020.3011155
https://doi.org/10.1109/TVCG.2020.3011155
https://doi.org/10.1109/TVCG.2018.2864812
https://doi.org/10:1109/TVCG:2019:2934631
https://doi.org/10:1109/TVCG:2019:2934631
https://doi.org/10.1016/0893-6080(94)90109-0
https://doi.org/10.1016/0893-6080(94)90109-0
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization


152 Chatzimparmpas et al. / HardVis: Visual Analytics to Handle Instance Hardness Using Undersampling and Oversampling Techniques

[NS16] Napierala K., Stefanowski J.: Types of minority class
examples and their influence on learning classifiers from im-
balanced data. Journal of Intelligent Information Systems 46, 3
(2016), 563–597.

[NSW10] NapierałaK., Stefanowski J.,Wilk S.: Learning from
imbalanced data in presence of noisy and borderline examples. In
Proceedings of the Rough Sets and Current Trends in Computing
(2010), Springer, Berlin, Heidelberg, pp. 158–167.

[PBM04] Prati R. C., Batista G. E. A. P. A., Monard M. C.:
Class imbalances versus class overlapping: An analysis of a
learning system behavior. In Proceedings of the MICAI 2004:
Advances in Artificial Intelligence (2004), Springer, Berlin, Hei-
delberg, pp. 312–321.

[PHOMU15] Prudêncio R. B., Hernández-Orallo J.,
Martınez-Usó A.: Analysis of instance hardness in machine
learning using item response theory. In Proceedings of the
International Workshop on Learning over Multiple Contexts
(2015).

[plo10] Plotly—JavaScript open source graphing library (2010).
https://plot.ly. Accessed December 20, 2022.

[POSC*15] Piazentin Ono J. H., Sikansi F., Corrêa D. C.,
Paulovich F. V., Paiva A., Nonato, L. G.: Concentric RadViz:
Visual exploration of multi-task classification. In Proceedings of
the 28th SIBGRAPI Conference on Graphics, Patterns and Im-
ages (2015), 165–172. https://doi.org/10.1109/SIBGRAPI.2015.
38

[PSPM15] Paiva, J. G. S., SchwartzW. R., Pedrini H., Minghim
R.: An approach to supporting incremental visual data clas-
sification. IEEE Transactions on Visualization and Computer
Graphics 21, 1 (2015), 4–17. https://doi.org/10.1109/TVCG.
2014.2331979

[PVG*11] Pedregosa F., Varoquaux G., Gramfort A., Michel
V., Thirion B., Grisel O., Blondel M., Prettenhofer P.,
Weiss R., Dubourg V., Vanderplas J., Passos A., Courna-
peau D., Brucher M., Perrot M., Duchesnay E.: Scikit-
Learn:Machine learning in Python. Journal ofMachine Learning
Research 12 (Nov. 2011), 2825–2830. https://doi.org/10.5555/
1953048.2078195

[RAL*17] Ren D., Amershi S., Lee B., Suh J., Williams, J. D.:
Squares: Supporting interactive performance analysis for multi-
class classifiers. IEEE Transactions on Visualization and Com-
puter Graphics 23, 1 (Jan. 2017), 61–70. https://doi.org/10.1109/
TVCG.2016.2598828

[RAS*21] Rostamzadeh N., Abdullah S. S., Sedig K., Garg A.
X., McArthur E.: VERONICA: Visual analytics for identifying
feature groups in disease classification. Information 12, 9 (2021).
https://doi.org/10.3390/info12090344

[Rav11] Ravindran S.: Learning with imprecise classes, rare
instances, and complex relationships. In Proceedings of the
AAAI/SIGART Doctoral Consortium (2011).

[RKN06] Rao R. B., Krishnan S., Niculescu, R. S.: Data mining
for improved cardiac care. ACM SIGKDD Explorations Newslet-
ter 8, 1 (June 2006), 3–10. https://doi.org/10.1145/1147234.
1147236

[RVM19] Ramamurthy K. N., Varshney K., Mody K.: Topo-
logical data analysis of decision boundaries with application to
model selection. In Proceedings of the International Conference
on Machine Learning (ICML) (June 2019), vol. 97, pp. 5351–
5360. PMLR

[RVV*15] Ramentol E., Vluymans S., VerbiestN., Caballero
Y., Bello R., Cornelis C., Herrera F.: IFROWANN: Im-
balanced fuzzy-rough ordered weighted average nearest neigh-
bor classification. IEEE Transactions on Fuzzy Systems 23,
5 (2015), 1622–1637. https://doi.org/10.1109/TFUZZ.2014.237
1472

[SAPV16] Salgado C. M., Azevedo C., Proença H., Vieira,
S. M.: Noise versus Outliers. Cham, Switzerland: Springer,
2016, pp. 163–183.https://doi.org/10.1007/978-3-319-43742-
2_14

[Set12] Settles B.: Active Learning. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning 6, 1 (2012), 1–114.

[SHB*14] Sedlmair M., Heinzl C., Bruckner S., Piringer
H., Möller T.: Visual parameter space analysis: A concep-
tual framework. IEEE Transactions on Visualization and Com-
puter Graphics 20, 12 (2014), 2161–2170. https://doi.org/10.
1109/TVCG.2014.2346321

[Sie87] Siebert, J. P.: Vehicle Recognition Using Rule Based
Methods. Research Memorandum TIRM-87-018, Turing Insti-
tute, Mar. 1987.

[SK17] Skryjomski P., Krawczyk B.: Influence of minority class
instance types on smote imbalanced data oversampling. In Pro-
ceedings of the First International Workshop on Learning with
Imbalanced Domains: Theory and Applications (Sep. 2017), vol.
74, PMLR, pp. 7–21.

[SLSH15] Sá ez J. A., Luengo J., Stefanowski J., Herrera
F.: SMOTE-IPF: Addressing the noisy and borderline examples
problem in imbalanced classification by a re-sampling method
with filtering. Information Sciences 291 (2015), 184–203.
https://doi.org/10.1016/j.ins.2014.08.051

[SMGC14] Smith M. R., Martinez T., Giraud-Carrier C.: An
instance level analysis of data complexity.Machine Learning 95,
2 (2014), 225–256.

[SPBW12] Syarif I., Prugel-Bennett A., Wills G.: Unsu-
pervised clustering approach for network anomaly detection.
In Proceedings of the Networked Digital Technologies (2012),
Springer, Berlin, Heidelberg, pp. 135–145.

[Ste16] Stefanowski J.: Dealing with data difficulty factors while
learning from imbalanced data. In Challenges in Computational
Statistics and Data Mining. Springer, Cham (2016), 333–363.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14726 by T

echnical U
niversity E

indhoven, W
iley O

nline L
ibrary on [21/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://plot.ly
https://doi.org/10.1109/SIBGRAPI.2015.38
https://doi.org/10.1109/SIBGRAPI.2015.38
https://doi.org/10.1109/TVCG.2014.2331979
https://doi.org/10.1109/TVCG.2014.2331979
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.3390/info12090344
https://doi.org/10.1145/1147234.1147236
https://doi.org/10.1145/1147234.1147236
https://doi.org/10.1109/TFUZZ.2014.2371472
https://doi.org/10.1109/TFUZZ.2014.2371472
https://doi.org/10.1007/978-3-319-43742-2_14
https://doi.org/10.1007/978-3-319-43742-2_14
https://doi.org/10.1109/TVCG.2014.2346321
https://doi.org/10.1109/TVCG.2014.2346321
https://doi.org/10.1016/j.ins.2014.08.051


Chatzimparmpas et al. / HardVis: Visual Analytics to Handle Instance Hardness Using Undersampling and Oversampling Techniques 153

[SZA22] Shwartz-Ziv R., Armon A.: Tabular data: Deep learn-
ing is not all you need. Information Fusion 81 (2022), 84–90.
https://doi.org/10.1016/j.inffus.2021.11.011

[TBVLH*14] Thanh Binh H. T., Van Long T., Hoai
N. X., Anh N. D., Truong, P. M.: Reordering dimen-
sions for radial visualization of multidimensional data—a
genetic algorithms approach. In Proceedings of the IEEE
Congress on Evolutionary Computation (2014), 951–958.
https://doi.org/10.1109/CEC.2014.6900619

[Tom76] Tomek I.: An experiment with the edited nearest-neighbor
rule. IEEE Transactions on Systems, Man, and Cybernetics
SMC-6, 6 (1976), 448–452. https://doi.org/10.1109/TSMC.1976.
4309523

[VC17] Vanerio J., Casas P.: Ensemble-learning approaches for
network security and anomaly detection. In Proceedings of the
Workshop on Big Data Analytics andMachine Learning for Data
Communication Networks (2017), ACM, pp. 1–6. https://doi.org/
10.1145/3098593.3098594

[VK09] Van Hulse J., Khoshgoftaar T.: Knowledge discovery
from imbalanced and noisy data.Data&Knowledge Engineering
68, 12 (2009), 1513–1542. https://doi.org/10.1016/j.datak.2009.
08.005

[vue14] Vue.js—The progressive JavaScript framework (2014).
https://vuejs.org/. Accessed December 20, 2022.

[VW09] Vatturi P., Wong, W.-K.,: Category detection using hier-
archical mean shift. In Proceedings of the 15th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining
(2009), ACM, pp. 847–856. https://doi.org/10.1145/1557019.
1557112

[WDC*22] Wu A., Deng D., Cheng F., Wu Y., Liu S., Qu H.:
In defence of visual analytics systems: Replies to critics. IEEE
Transactions on Visualization and Computer Graphics (2022),
1–11. https://doi.org/10.1109/TVCG.2022.3209360
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