

Cryptanalysis of Strong Physically Unclonable Functions

Citation for published version (APA):
Kraleva, L., Mahzoun, M., Posteuca, R., Toprakhisar, D., Ashur, T., & Verbauwhede, I. (2023). Cryptanalysis of
Strong Physically Unclonable Functions. IEEE Open Journal of the Solid-State Circuits Society, 3, 32-40. Article
9971721. https://doi.org/10.1109/OJSSCS.2022.3227009

DOI:
10.1109/OJSSCS.2022.3227009

Document status and date:
Published: 01/01/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/OJSSCS.2022.3227009
https://doi.org/10.1109/OJSSCS.2022.3227009
https://research.tue.nl/en/publications/d00a5032-e40f-4054-841d-46a036539bc5

Received 29 July 2022; revised 2 October 2022 and 30 October 2022; accepted 22 November 2022. Date of publication 6 December 2022;
date of current version 7 April 2023.

Digital Object Identifier 10.1109/OJSSCS.2022.3227009

Cryptanalysis of Strong Physically
Unclonable Functions

LILIYA KRALEVA 1, MOHAMMAD MAHZOUN2, RALUCA POSTEUCA 1, DILARA TOPRAKHISAR 1,
TOMER ASHUR 3, AND INGRID VERBAUWHEDE 1 (Fellow, IEEE)

1imec-COSIC, KU Leuven, 3001 Leuven, Belgium

2Department of Mathematics and Computer Science, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands

3Cryptomeria, Leuven, Belgium

CORRESPONDING AUTHOR: R. POSTEUCA (e-mail: raluca.posteuca@esat.kuleuven.be)

This work was supported in part by CyberSecurity Research Flanders under Grant VR20192203; in part by the Research Council of the KU Leuven
under Grant C16/15/058; in part by the European Commission through the Horizon 2020 Research and Innovation Program under Grant Agreement Belfort

ERC Advanced under Grant 101020005 695305; and in part by the Intel through the Intel Project on Cryptographic Frontiers. The work of Liliya Kraleva
was supported by the Research Foundation Flanders (FWO). The work of Tomer Ashur was supported by FWO under Grant 12ZH420N.

ABSTRACT Physically unclonable functions (PUFs) are being proposed as a low-cost alternative to
permanently store secret keys or provide device authentication without requiring nonvolatile memory, large
e-fuses, or other dedicated processing steps. In the literature, PUFs are split into two main categories.
The so-called strong PUFs are mainly used for authentication purposes; hence, also called authentication
PUFs. They promise to be lightweight by avoiding extensive digital post-processing and cryptography. The
so-called weak PUFs, also called key generation PUFs, can only provide authentication when combined
with a cryptographic authentication protocol. Over the years, multiple research results have demonstrated
that Strong PUFs can be modeled and attacked by machine learning (ML) techniques. Hence, the general
assumption is that the security of a strong PUF is solely dependent on its security against ML attacks. The
goal of this article is to debunk this myth, by analyzing and breaking three recently published Strong PUFs
(Suresh et al., VLSI Circuits 2020; Liu et al., ISSCC 2021; and Jeloka et al., VLSI Circuits 2017). The
attacks presented in this article have practical complexities and use generic symmetric key cryptanalysis
techniques.

INDEX TERMS Cascaded PUFs, cryptanalysis, physically unclonable functions (PUFs), strong PUF.

I. INTRODUCTION

PHYSICALLY unclonable functions (PUFs) are the
method of choice for hardware applications requiring

device authentication. Since securely storing a secret key
in an integrated circuit (IC) is expensive and simply hard-
coding it is vulnerable to physical attacks, PUFs offer a third
option: as the manufacturing process of ICs is subject to envi-
ronmental variances, one can parameterize a cryptographic
algorithm by harvesting the resulting randomness.
PUF taxonomy distinguishes between two types of PUFs,

namely, Weak- and Strong PUFs. While both types are
described in the literature as Challenge–Response Protocols,
they differ by the challenge domain’s size, i.e., the number
of challenge–response pairs (CRPs). Weak PUFs support a

relatively small number of CRPs, while the number of CRPs
supported by a Strong PUF is much larger. Thus, Weak
PUFs are usually used for storing a (small number of) cryp-
tographic key(s), whereas Strong PUFs are often perceived
as a building block in an authentication protocol.
The focus of this article is on analyzing the security of

Strong PUFs as a device implementing a random n-to-m
function. Broadly speaking, the workings of such a device
consist of an n-bit challenge and an m-bit response; in
Strong PUF-literature, typically, m = 1. To compute the
response, the PUF uses a finite amount of intrinsic random-
ness harvested from some physical properties of the hardware
implementing it (e.g., the start-up value of a SRAM or the
delay of a multiplexer in the case of an arbiter PUF or the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 3, 2023 32

HTTPS://ORCID.ORG/0000-0002-4835-6466
HTTPS://ORCID.ORG/0000-0003-3880-2642
HTTPS://ORCID.ORG/0000-0003-4551-6775
HTTPS://ORCID.ORG/0000-0001-6091-4857
HTTPS://ORCID.ORG/0000-0002-0879-076X

KRALEVA et al.: CRYPTANALYSIS OF STRONG PUFs

frequency of a ring oscillator). Following a sequence of suc-
cessful attacks using machine learning (ML) techniques, the
most recent trend is to build Strong PUFs from an IC tem-
plate cascading nonlinear components. The behavior of the
nonlinear components is determined by the intrinsic random-
ness mentioned above and the intuition behind this approach
is that the cascade amplifies the nonlinear effect. It appears
from the literature that this approach indeed thwarts ML
attacks; however, as we show in this article, it is not enough
by itself to provide the desired properties.

A. PREVIOUS WORK
The first PUF allowing for a large number of CRPs (thus
initiating the research line on Strong PUFs) was the arbiter
PUF introduced in [1]. The arbiter PUF exploits signal delay
variations unique to each IC to parameterize a challenge–
response protocol (i.e., assigning a unique behavior to each
device). This article further introduces the adversary objec-
tives and capabilities. It is assumed that the adversary has
physical access to the IC and their goal is to clone the
PUF. The PUF is considered secure if the adversary is
unable to:1

1) apply an exhaustive search over the entire CRP space;
2) produce a counterfeit that perfectly simulates the

behavior of the attacked PUF;
3) apply a timing attack based on a measurement of

the delays in the attacked strong PUF, followed by
a prediction of the outputs;

4) apply noninvasive attacks (e.g., algorithmic attacks);
in this case, the adversary models the PUF and tries
to predict the response associated with a specific
challenge with “very high” probability.2

A series of strong PUFs were subsequently proposed in the
literature, e.g., ring oscillator [2], XOR-Arbiter [2], or the OT-
based PUFs [3]. At CCS’10, Rührmair et al. [4] developed a
ML model attempting to predict the response of previously
published strong PUFs. This resulted in breaking all Strong
PUFs published until that point.
Other important work in the field of Strong PUFs’ anal-

ysis is presented by Delvaux et al. [5], in which they
analyzed eight Strong PUFs in an integrated framework.
This work was then extended in [6], in which 11 more
Strong PUFs were added to the integrated framework, show-
ing numerous security and practicality issues for all the
19 analyzed primitives. Both papers focus on the analy-
sis of Strong PUFs as authentication protocols, underlining
that the CRP size of all the analyzed Strong PUFs is not
suitable for ensuring a sufficient level of security. The con-
clusion of these two papers is that “proper compensation
seems to be in conflict with the lightweight objective” of a
Strong PUF.

1. We stress that these attack scenarios are reproduced from [1] and are
therefore informal. We provide a formal discussion in Section V.

2. The term very high probability is used in the original paper. We
interpret it to mean better than a random guess.

Moreover, Delvaux [7] presented an analysis of five
Arbiter-PUF-based authentication protocols, using ML
techniques, concluding that the use of lightweight obfusca-
tion logic provides insufficient protection against machine-
learning attacks for all five analyzed primitives.
Consequently, the primary focus in PUF-design has shifted

toward explicitly showing resistance to ML-modeling. A
recent trend in this direction is cascaded Strong PUFs sug-
gested in [8]. The idea is to use a composition of random
subfunctions (i.e., a cascade), conjecturing that the over-
all nonlinear effect thwarts ML-modeling. The three PUFs
we investigate in this article are all of this type. Besides
the three primitives addressed in this article, many more
strong PUFs are proposed in the literature, always aim-
ing at increasing the ML resistance. One such example
is the “Double-Arbiter” PUF [9], which introduces a new
type of Strong PUF based on the Arbiter PUF. The aim
of this new primitive is to increase the unpredictability of
the response, which is measured as the tolerance of the
primitive to ML attacks. Another example of a cascaded
PUF is the LP-PUF introduced in [10]. The LP-PUF con-
sists of three layers, namely, an Arbiter layer, a mixing
layer, and a XOR layer, leading to the generation of 1-bit
responses. As the author observes, the structure of the LP-
PUF resembles the substitution-permutation-network (SPN),
a technique used for the design of block ciphers. The same
observation could apply for many cascaded Strong PUFs
presented in the literature, leading to a natural inclusion of
symmetric-key cryptanalysis techniques in the security evalu-
ation of a Strong PUF. Although ML represents an important
technique to asses the security of a primitive, it represents
only a first step in the security analysis. ML is a black-box
approach and it does not take into account the structure of
a Strong PUF. In this work, we go beyond this approach,
by using tools from symmetric-key cryptanalysis and by
taking insights from the description of the primitive. More
precisely, in this article, we choose to analyze three represen-
tative strong PUFs (Suresh et al. [11], VLSI Circuits 2020;
Liu et al. [12], ISSCC 2021; and Jeloka et al. [13], VLSI
Circuits 2017) because they have nice CMOS circuit
implementations.

B. OUR CONTRIBUTION
This article serves as a tutorial for the design of secure
PUFs from a symmetric-key point of view. We motivate the
need for such a tutorial by investigating—from an algorith-
mic point of view—three recently published cascaded Strong
PUFs and show that they all exhibit undesirable properties
undermining their security.
We stress that our aim with this article is to provide general

guidelines to the design of secure algorithms and that we did
not attempt to provide a thorough cryptanalysis of the three
algorithms. Indeed, more powerful attacks probably exist,
and directly fixing the issues we raise is unlikely to result
in secure devices.

32 VOLUME 3, 2023

FIGURE 1. Schematic description of the PUF. The figure is copied without any
modifications from [11] and we use it under the provisions of fair use.

II. SURESH ET AL.
In this section, we present the details of the strong PUF
proposed by Suresh et al. [11]. We then show that the cas-
caded nature of this algorithm collapses the 2128 CRP domain
into a much smaller subspace of equivalence classes.

A. DESCRIPTION
Suresh et al. [11] offered a cascaded algorithm in 14-nm
CMOS with a claimed 1028 ≈ 293 CRP space. It takes a
128-bit challenge and returns a 1-bit response. The algorithm
is abstracted into three layers as depicted in Fig. 1.
The first layer consists of 64 random 4-to-1 functions

(denoted ES1 boxes in the original paper). It takes a 256-bit
input and returns a 64-bit output. The second layer involves
16 AES Sboxes, each taking an 8-bit input and returning
an 8-bit output. The third layer again consists of 64 random
4-to-1 functions (denoted ES2 boxes in the original paper).
Finally, the 1-bit response is taken as the parity of the third
layer’s output.
The original paper also refers to the first and third layers

as Stage 1 and Stage 2, respectively. In lieu of a complete
specification, which was not provided in [11], we proceed
by assuming that the bit permutations are according to the
wirings illustrated in Fig. 1.

B. INTUITION
According to [11], the PUF offers a challenge space in the
range 1028–1031 ≈ 293–2103. As this is the only quantifi-
able claim, we understand it to be the advertised security.
Since the response of the PUF consists of only a single
bit, predicting the output with probability better than (1/2)

amounts to a successful attack.
Our first observation is that the first layer is an entropy

choke point, i.e., no matter how much randomness was
invested in it, it cannot cascade more than 64 bits of entropy

to the rest of the device. We say that two inputs are in the
same collision class if they result in the same output after
the first layer (Stage 1). Such two values will result in the
same computation throughout the rest of the device and
subsequently the same response for both inputs.
Our second observation is that each pair (ES132+n,ES1n)

of ES1 functions is isolated from all other ES1 functions.
Therefore, we consider an alternative representation where
the first layer consists of 32 functions each mapping a 4-bit
input to a 2-bit output. Then, the output values are 00, 01,
10, and 11 and they induce four equivalence classes each
containing four values on average.

C. RECOVERING THE EQUIVALENCE CLASSES
By using the two observations presented in the previous
section, we show how 211.8 ≈ 103.55 queries are enough
to group the 128-bit input into 264 sets. Each of these sets
contains on average 264 values all resulting in the same
response. Thus, learning the response to one challenge leaks
the response to all the other 264 − 1 values from the same
equivalence class.
Without loss of generality, we consider the equivalence

classes of the pair (ES163,ES131). The adversary fixes the
last 124 bits of the input to an arbitrary value and iterates the
first four. Two sets S0 and S1 are initialized and each 4-bit
input is added to the set Si if and only if the response is i.
However, those are not yet the desired equivalence classes.
Having the same response for two different plaintexts can
be caused by any of the following three reasons.
1) A collision after Stage 1.
2) A collision after Stage 2, without a collision after

Stage 1.
3) The same Hamming weight after Stage 2, regardless

of the state after Stage 1 or Stage 2.
The last two cases are false positives that need to be filtered
out. In order to do so, the last 124 bits are fixed to a different
arbitrary value.
Note that the elements in the same class will always be

mapped together to one of the sets (but not necessarily the
same one for different values of the last 124 bits). The
equivalence classes are then computed by identifying which
values are always mapped together to the same set. The
probability of recovering the correct equivalence classes is
approximately 99% when the process is repeated seven times.
For comparison, even three repetitions result in a success
probability of 65% to identify the right set. The probability
was computed empirically, using Monte Carlo simulations.
The complexity of determining an equivalence class for

a single pair of ES1 functions with 99% success rate is
7 · 16 = 26.8 ≈ 102.05chosen queries. This is repeated for
each pair of ES1 functions independently, leading to an
overall complexity of 32 × 26.8 = 211.8 = 103.55 chosen
challenges for recovering all pair-equivalence classes with
expected success probability of (1−0.01)32 = 0.73 (or 73%).

The next step after recovering all pair-equivalence classes
is to link them into state-equivalence classes. We define a

VOLUME 3, 2023 32

KRALEVA et al.: CRYPTANALYSIS OF STRONG PUFs

state equivalence class as a set of challenges for which the
state after Stage 1 is equal, therefore leading to the same
response for both inputs.
Since each pair-equivalence class has an average of four

elements, the average number of elements in one state-
equivalence class is 432 = 264 ≈ 1019.27. Additionally, the
state after Stage 1 is 64-bit long, leading to 264 ≈ 1019.27

different state-equivalence classes.
At this point, learning the response to any challenge leaks

the response to all other challenges within the same state-
equivalence class. Note that the classes are built such that
on observing a new challenge it requires negligible effort to
identify which state-equivalence class it belongs to.

D. DISCUSSION
Our approach exploits the fact that the input space collapses
from 2128 to 264 after Stage 1. We see that by investing
a relatively small amount of effort (the analysis of 211.8

chosen challenges) an adversary can learn the outputs of
Stage 1 for any new challenge, effectively removing the first
layer of random functions. Moreover, if the adversary learns
the response associated to a challenge, then they also know
that the same response is associated to all the challenges in
the same state-equivalence class with the initial one. This
is an undesirable behavior; or alternatively, in case this is
an acceptable behavior, it can be achieved using cheaper
components.
Note that we did not investigate the properties of the other

layers, and it is likely that this basic attack can be improved
further.

III. LIU ET AL.
The second design we analyze is [12] due to Liu et al. We
show that this device is vulnerable to two generic attacks.
The first attack can be applied if the device exhibits an
inherent bias, which can easily be detected and exploited.
The second attack is independent on the bias of the device
and allows the adversary to guess the responses associated
to a group of well chosen challenges.

A. DESCRIPTION
Liu et al. proposed a cascade of 5-to-5-bit random functions
formed in two layers of five with a bit-permutation between
them, resulting in a 25-to-25-bit function which we denote
by S(x); see Phase 1 in Fig. 2. S(x) is used to digest the
100-bit input by first splitting it into four 25-bit blocks,
then consuming the blocks iteratively with a feed-backward
operation from each block to the next one; see Phase 2 in
Fig. 2.
A finalization function, which we denote by C(x), is used

to compute the response. First, a sequence of 5-to-1-bit ran-
dom functions is applied to the output coming from the last
call to S(x), resulting in a 5-bit output. Then, the parity of
these five bits is returned as the response; see Phase 3 in
Fig. 2.

FIGURE 2. Schematic description of the PUF. The figure is copied without any
modifications from [12] and we use it under the provisions of fair use.

Formally, denote by x = (x0, x1, x2, x3) the 100-bit
challenge, where xi is the ith part of length 25. Then

PUF(x) = C(S(S(S(S(x0)⊕ x1)⊕ x2)⊕ x3)) (1)

is a succinct description of the function.
As before, we assume that the adversary does not have

access to the description of the internal functions. Again the
adversary seeks to predict the 1-bit response associated to a
newly seen challenge with a probability better than (1/2).

B. INTUITION
From the formal description in (1) arises a natural
observation.
Observation 1: Fix the first 75 bits of the challenge,

namely, x0, x1, and, x2; then, (1) is reduced to

PUF(x) = C(S(c⊕ x3)) (2)

where c = S(S(S(x0)⊕ x1)⊕ x2) is fixed but unknown.
For brevity, we define an auxiliary function

f (x) = C(S(x)). (3)

We underline that PUF(x) = f (x ⊕ c), where c =
S(S(S(x0)⊕ x1)⊕ x2).
Definition 1: We define a map of a function f as the

ordered set Mf = {(x, f (x)) ∀x}, where the order is defined
as follows:

(x1, f (x1)) < (x2, f (x2))⇔ x1 < x2.

Note that the map Mf was constructed such that the input
before the last application of the S function takes all possible
values. In particular, all the maps have the same elements,
but arranged in a different order. This property is formally
described in the following general observation.

32 VOLUME 3, 2023

Observation 2: Let x0, x1, and x2 be randomly chosen and
fixed. Then, the map Mc

f = {(x⊕ c, f (x⊕ c) ∀x} is an affine
translation by c = S(S(S(x0)⊕ x1)⊕ x2) of the map Mf .
By constructing one arbitrary Mf in full, the adversary

learns its distribution, i.e., the number of 0 or 1 responses.
Due to Observation 2, any map Mc

f has the same distri-
bution as Mf . If the device exhibits an inherent bias, then
the distribution of Mf can be trivially used by the adver-
sary to predict the output to any challenge not in Mf with
a probability better than (1/2). For example, if the number
of 0 responses associated to Mf is 225− 220, then the prob-
ability of having a 0 response to an arbitrary challenge is
Pr = ([225 − 220]/225) = 1− 2−5 = 0.96 (96%).

C. ATTACK DESCRIPTION
To construct Mf , the adversary first chooses an arbitrary
75-bit value which they use to fix x0||x1||x2. Then, iterating
over the remaining 25 bits, the adversary queries the PUF
225 ≈ 107.53 times and records the responses in Mf .

Constructing Mf requires 225 ≈ 107.53 chosen challenges.
The memory complexity for storing Mf can be optimized
to 222 bytes, i.e., 4.19 MB by querying the challenges in a
natural order and indexing the responses accordingly.
Fixing Mf as a reference system, and recalling

Observation 2, we see that determining c is sufficient for
translating CRPs from Mf to Mc

f . To do so, the adversary
observes 25 CRPs from the target equivalence class (i.e.,
these 25 CRPs share the same value in the first 75 bits).
Then, by means of exhaustive search on c, the adversary
filters candidates where Mf [i ⊕ c] �= Mc

f [i] using the 25
queries. This exhaustive search could be viewed as solving
a system of equations with 25 bit unknown values. Therefore,
the minimum number of equations such that this system is
independent is 25. Our experiments show that 25 CRPs are
enough for the correct c to be the only surviving candidate
with high probability. At this point, the adversary can deter-
mine with full certainty that Mc

f [i] = Mf [i⊕c] for all values
of i. This way the adversary can learn the responses to all
the remaining challenges from Mc

f .

D. DISCUSSION
Note that the fact that the device is biased is not a problem
in itself. Daemen and Rijmen analyzed in [14] the bias of
ideal m-to-n-bit functions and showed that they are approx-
imately normal distribution with mean 0 and variance 2−n.
For an ideal 100-to-1-bit function, such a bias would not be
detectable. However, what Observation 2 shows is that this
device actually models a random 25-to-1-bit function (in the
best case scenario); making it significantly easier to detect
the bias.
A second observation that we did not pursue in this article

is that the cascade structure will amplify the bias introduced
by the random 5-to-5-bit functions. Each of these functions
is an entropy choke point in itself and the cascade will
result in bias that is even larger than what is predicted by
Daemen and Rijmen [14] for the ideal case.

Algorithm 1: Psuedocode for the PUF From [3]
Input: C = {r1, . . . , rt}
Output: F(C): = Trt
T ← S
for (ri, ri+1) ∈ C do

for 0 ≤ j ≤ m− 1 do
if Pri,j > Pri+1,j then

Tri+1,j ← Tri,j
else

Tri,j ← Tri+1,j
end

end
end
Return Trt

Moreover, we see again that by investing a relatively small
amount of effort (the processing of 225 + 25 chosen chal-
lenges and an exhaustive search over a space of 225) an
adversary can predict the response to unknown queries with
high probability. This is again an undesirable behavior; or
alternatively, in case this, is an acceptable behavior, it can
be achieved using cheaper components.
Note that we did not investigate the properties of the other

layers, nor the ones of the component functions, and it is
likely that this basic attack can be improved further.

IV. JELOKA ET AL.
The third design we analyze was introduced by
Jeloka et al. [13]. We show that the responses of this device
preserve input correlations with high probability.

A. DESCRIPTION
Jeloka et al. proposed an SRAM-based PUF with a claimed
CRP space that grows exponentially in the number of rows
and the challenge length. The device has a secret initial state
S ∈ F

n×m
2 and a secret matrix of powers P ∈ Z

n×m
n . Each

column of P is viewed as a permutation on the integers
{0, 1, . . . , n− 1}. Larger numbers are associated with “more
power.” A challenge C = {r1, . . . , rt} ⊆ {0, 1, . . . , n− 1} is
defined as a sequence of rows, where each two consecutive
rows (ri, ri+1) “fight” and the cell with bigger associated
power wins the fight and overwrites its value over that of
the other cell. The fight takes place independently for each
column. More precisely, in a fight between row i and row j,
for each column k, if Pi,k > Pj,k, then Sj,k ← Si,k; otherwise,
Si,k ← Sj,k. The corresponding response to a challenge C
denoted by F(C), represents the m bits of the last row in
the challenge.
Jeloka et al. [13] described the PUF in an abstract

way for any dimensions (n,m) and challenge length t (see
Algorithm 1). The authors suggest that n = m = 64 and t = 6
are sufficient to attain some unspecified level of security.

B. INTUITION
We show how two challenges that are “similar” will result
in the same response with high probability. Concretely, we

VOLUME 3, 2023 32

KRALEVA et al.: CRYPTANALYSIS OF STRONG PUFs

show that two challenges (sequences) differing only in their
first value will produce the same 64-bit response with prob-
ability 2−0.77. Note that since the response is 64-bit long,
one would expect this probability to be 2−64.

C. ATTACK DESCRIPTION
First, we analyze the state S with a single column. In the
case where m = 1, the response F(C) to the challenge C is
a 1-bit value F(C) = b.
Observation 3: Let X̄ = (x1, x2, x3, x4) and F(a, X̄) be

the result of the fight between the rows a, x1, x2, x3, and x4
(a, is the first row of the fight and the output is x4). Let
G(X̄) be the result of the fight without considering the first
row a. Then

F
(
a, X̄

) �= G
(
X̄
) ⇐⇒ F

(
a, X̄

) = Sa and G
(
X̄
) �= Sa.

The probability that a changes the response is

Pr
[
F
(
a, X̄

) �= G
(
X̄
)] = 1

2
· 1

5!
= 1

240
.

The only case in which the result of two functions is different
is when the response is Sa and the powers have the form Pa >

Px1 > Px2 > Px3 > Px4 with p = (1/120) and F(X̄) �= Sa
with p = (1/2).

Observation 3 shows that the first row in the challenge
has small influence on the final response. Therefore, two
challenges that only differ in the first row have different
responses with the following probability:

Pr

[
F
(
a, X̄

) �= F
(
b, X̄

) = 1

120

]
.

The cases that F(a, X̄) �= F(b, X̄) are as follows.
1) F(a, X̄) = Sa and F(b, X̄) �= Sa with probability

(1/240).
2) F(a, X̄) = F(X̄) and b is the strongest: F(b, X̄) �= F(X̄)

with probability (1/240).
So, the total probability that both queries give the same
result in a single column is 1 − (1/120) = (119/120).
Since the powers in different columns are independent,
the probability of a correct guess for m = 64 columns is
(119/120)64 = 2−0.77.

D. DISCUSSION
In this case, we see that the PUF does not offer good dif-
fusion properties and that each query allows to predict with
high probability the response to multiple other queries. This
is an undesirable property as one can expect from an authen-
tication device to produce an uncorrelated response even for
correlated entries.
For brevity, we did not model the case where the two

challenges differ in positions other than the first one or
when they differ in more than one position. As a general
observation, we offer that the probability for collision is
higher when the change occurs in earlier positions. This
violates Jeloka et al.’s claim that longer sequences result in
better security.

V. STRONG PUFS WHEN VIEWED SYMMETRIC-KEY
ALGORITHMS
The work presented in this article highlights a gap between
two communities concerned with the development and imple-
mentation of secure cryptographic algorithms. The disparity
is reflected in different areas, such as design strategies,
security analysis, and even in the way a new algorithm is
presented to a larger audience. We discuss some of these dif-
ferences, hoping to initiate a larger discussion and exchange
of ideas between the two communities.

A. ABSTRACTION LEVEL
The design process resulting in a secure device involves
several levels of abstraction. In the context of this article,
we focus on three of those.

1) Mathematical Level: In this abstraction level, the math-
ematical properties of abstract classes of functions are
investigated. This kind of work involves for exam-
ple methods from probability theory, combinatorics,
statistics, algebra (both linear and modern), Fourier
analysis, complexity theory, etc., and is normally pub-
lished in pure mathematics- or mathematically oriented
cryptography venues.

2) Algorithmic Level: At this level, the abstract func-
tions are used as conceptual building blocks to form
an algorithmic model. In addition to understanding
the properties of the building blocks, the designer
must also understand how they interact when com-
bined together (for security reasons), and the platform
that they will be running on (for efficiency reasons). In
addition to the algorithm description itself, the algorith-
mic model includes a well-defined adversarial model
and security claims pertaining to it. This is at the core
of what cryptographers do, and a standard practice
is to submit such works to cryptographic venues for
peer-review and 3rd party evaluation.

3) Implementation Level: Having completed the vetting
process of the algorithmic model, the algorithm is
implemented first in simulation and later in a tan-
gible form. Even assuming the ideal security of the
algorithm, the implementation process itself is sus-
ceptible to issues undermining the device’s security
(e.g., timing attacks and side channels). It is therefore
not enough to understand the efficiency metrics and
one must also understand the idiosyncrasies of secure
implementations.

Strong PUFs aim to achieve goals on the implemen-
tation level (e.g., secure key storage). The PUFs we
looked into stem from a deep understanding of the
execution platform, namely, IC, and are therefore very
efficient. However, the mathematical and algorithmic lev-
els have been systematically overlooked. This is why
Rührmair et al. and Delvaux were able to use ML attacks
in [4] and [7] and why this article can attack more recent
works.

32 VOLUME 3, 2023

B. ADVERSARIAL MODELS
To be able to speak of the security offered by an algorithm,
the conservation must obtain a shared understanding of what
“security” is. As the notion of security only makes sense with
respect to the existence of a bad actor (i.e., an adversary),
it makes sense to start the discussion there. An inherent
imbalance between defenders and attackers (designer and
adversaries, respectively) is that attack methods are plenti-
ful, and it is enough for one of them to succeed for the
defender to fail their role. Since attackers are creative and
resourceful, it is futile to attempt predicting what methods
they will use. Instead, cryptographers work with adversarial
models. An adversarial model presumes only the capabilities
of the adversary, but not how the adversary will use these
capabilities.
Depending on the capabilities, an adversary can be classi-

fied as either passive or active. Whereas a passive adversary
is capable of only observing the communication channel,
an active adversary is additionally able to delete, add, and
alter the data sent over the channel. In the context of PUF
design, we identified the following relevant models from [15]
and [16].

1) Passive Adversaries:

a) Ciphertext-Only Attack: The adversary can only
observe the outputs of the system; thus, the
outputs of a secure cryptosystem should pro-
vide no information regarding the corresponding
inputs, or the secret key/randomness; this model
is the easiest to carry out in practice, since the
only requirement is passively eavesdropping the
communication channel.

b) Known-Plaintext Attack: The adversary is in pos-
session of some inputs and the corresponding
outputs generated under the same secret key.

2) Active Adversaries:

a) Chosen-Plaintext Attack: The adversary is capa-
ble of obtaining the outputs corresponding to
inputs of the adversary’s choice.

b) Adaptive Chosen-Plaintext Attack: The adversary
may select the inputs depending on the received
outputs from the previous requests.

Since, in many cases, the input or parts thereof are pub-
lic (e.g., HTTP headers) known plaintext attacks are often
regarded practical. Furthermore, in 2-party authentication
protocols such as the ones considered for strong PUFs, both
active models also appear reasonably feasible.

C. ALGORITHMIC DESCRIPTION
Symmetric-key algorithms normally define the input, output,
and key spaces, and an algorithmic description to produce the
corresponding output given the input and the secret key. A
strong PUF can be modeled in the same way by considering
the challenge as the input, the PUF’s response as the output,
and the intrinsic randomness as the key.

A fundamental assumption in cryptography is the reputed
Kerckhoffs’ principle, which states that “a cryptosystem
should be secure even if everything about the system, except
the key, is public knowledge.” In the algorithmic description,
the key is seen as part of the input that is unknown to the
adversary.
It follows from Kerckhoffs’ principle that the algorithmic

description can be provided independent of the key (just like
an IC can be manufactured irrespective of the values it will
receive through its input wires).
The dissemination of new algorithms is a sort of “con-

versation” between the designers and their audience. To
support this conversation, the designers provide a design
rationale motivating their decisions. A reference implemen-
tation, and/or test vectors are provided to alleviate any
ambiguity in the algorithmic description. If additional data
was generated or used by the designers in the design process,
it is also provided for examination and reproducibility.

D. SECURITY CLAIMS
When the key is modeled as an additional input, it becomes
apparent that any algorithm using a finite number of secret
bits is vulnerable to brute force attacks since it is always
possible (but not necessarily feasible) to exhaustively iterate
the key space. From the observation that the key size pro-
vides an upper bound on the effort required for attacking the
algorithm arises an intuitive definition to what constitutes an
attack.
Definition 2: A cryptosystem is said to be broken if an

adversary can achieve their goals with less effort that would
be required if they used a brute force attack.
Translating this to the case of Strong PUFs, let C be an

arbitrary3 n-bit challenge, f (C) its 1-bit response, and Q
the set challenges that have already been made and whose
responses are known to the adversary. A reasonable security
claim would be that if C /∈ Q, no adversary can predict f (C)

with probability better than (1/2), even when C is chosen
after observing all the responses to the challenges in Q
(adaptive chosen challenge); formally

Pr
[
f (C)|C,Q

] = 1

2
. (4)

Another way to view this security claim is through the notion
of advantage: for any n-bit uniformly random challenge C

ADV = 1

2
+ |Q|

2n
. (5)

3. We note the terms arbitrary and random are not interchangeable in
cryptography. A value is said to be random if it is sampled rigorously
from a given distribution, usually the uniform one; it is said to be arbitrary
when there is no importance to how it was sampled. For example, one’s
birthday is an arbitrary value, but for an encryption algorithm to be secure,
the key must be chosen randomly from the uniform distribution of k-bit
vectors.

VOLUME 3, 2023 32

KRALEVA et al.: CRYPTANALYSIS OF STRONG PUFs

Equation (5) captures the intuitive notion that the only way
for an adversary to gain any knowledge is by querying device
on that specific challenge.4

With an adversarial model, an algorithmic description, and
a clear notion of security, the designer can provide secu-
rity claims. Such security claim for the PUF presented in
Section II can take the following form “the Strong PUF
can resist any chosen plaintext attack that runs in time less
than 250 time and requires less than 293 chosen queries.” If
an attacker generates all the state-equivalence classes, i.e.,
requiring 264 queries, they can guess the response associated
to any future challenge with probability 1. Therefore, such
an attack which uses fewer queries and running time than
what is permissible, is interpreted as breaking the algorithm.
A subtle point that we have seen overlooked is that in addi-

tion to being correct, the security claim must also be sensible.
For example, since a PUF does not have a way to verify
that a challenge has been received from a valid server (rather
than from an adversary), it does not make sense to ignore
chosen and adaptive-chosen challenge attacks. Likewise, our
observations in this article do not invalidate the claims about
resistance to ML-attacks, yet these PUFs are not secure and
should not be deployed in field settings.
Finally, we note that in light of the Strong PUFs we

found in the literature, it does not make sense to consider
the complexity of a brute-force attack as a function in the
secret/random material. As the amount of randomness used is
much larger than the CRP-space, the adversary can clone the
PUF trivially by querying it completely. Thus, (4) and (5)
are the more natural choice.

E. CONCLUDING REMARKS ON SECURITY-EFFICIENCY
TRADEOFFS
Surveying the recent literature on Strong PUFs, we noticed
that the general trend in designing them is to employ a series
of random-based operations, such as random Boolean func-
tions, Sboxes, or linear layers. While the need for efficient
algorithms is understandable, the security/efficiency trade-
off must be handled carefully, as operations resulting in an
insecure mechanism are by definition inefficient. Moreover,
in symmetric-key cryptography, two of the most important
properties that are analyzed in a new design are the confu-
sion and the diffusion ensured by the component functions
of a cipher. These aspects are covered in a series of books,
such as [17], [18], and [19].
In the PUFs we surveyed in this article, we see that the

adversarial model is not stated, and instead, heuristic are
used to assess the device’s security. Among symmetric-key
cryptographers, this approach is considered obsolete. Modern
techniques for the design of symmetric-key algorithms build
on over 50 years of research in this domain to offer well
understood tradeoffs between efficiency and security. In other

4. Cryptographers sometimes use the word leakage to describe “the
knowledge an adversary may gain.” However, this term is already loaded
with meaning in the electrical engineering community, hence we omit it to
avoid confusion.

words, it is unlikely that a casual, nonsystematic approach
would yield a secure algorithm (regardless of its efficiency).5

We refer readers interested in understanding the state of
the art in lightweight cryptography to the Wiki maintained by
the cryptography group in the University of Luxembourg [20]
noting that after more than a decade of research into this
area it is unlikely that the state of the art can be significantly
improved without a paradigm shift. Interestingly, we observe
that the amount of randomness exploited in PUF designs far
exceeds what is common in symmetric-key cryptography.
Whereas contemporary symmetric-key primitives have key
sizes ranging between 80 and 256 bits, the algorithms we
surveyed above use randomness that is measured in the order
of thousands of bits. More randomness is usually associated
with better security through an increase in the key size. It
would be interesting to explore in future work if a different
tradeoff can be obtained by fixing the security level and
somehow exploiting the additional randomness to improve
efficiency.

VI. CONCLUSION
PUF design shares many common characteristics with
the design of symmetric-key cryptographic algorithms.
Motivated by the undesirable properties we found in three
recently published Strong PUFs, we attempted to provide in
this article a tutorial to the approach taken by symmetric-
key researchers to ensure the security of their algorithms.
We hope that this article would serve as a starting point for
discussion between the two communities.

REFERENCES
[1] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and

S. Devadas, “A technique to build a secret key in integrated circuits for
identification and authentication applications,” in Symp. VLSI Circuits.
Dig. Tech. Papers, 2004, pp. 176–179.

[2] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proc. 44th ACM/IEEE
Design Autom. Conf., 2007, pp. 9–14.

[3] U. Rührmair, “Oblivious transfer based on physical Unclonable func-
tions,” in Trust and Trustworthy Computing. Heidelberg, Germany:
Springer, 2010, pp. 430–440.

[4] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable func-
tions,” in Proc. 17th ACM Conf. Comput. Commun. Security, 2010,
pp. 237–249. [Online]. Available: https://doi.org/10.1145/1866307.
1866335

[5] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Secure
lightweight entity authentication with strong PUFs: Mission impos-
sible?” in Proc. 16th Int. Workshop, Cryptograph. Hardw. Embedded
Syst., 2014, pp. 451–475. [Online]. Available: https://doi.org/10.1007/
978-3-662-44709-3_25

[6] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede, “A survey on
lightweight entity authentication with strong PUFs,” ACM Comput.
Surveys, vol. 48, no. 2, p. 26, 2015. [Online]. Available: https://doi.
org/10.1145/2818186

[7] J. Delvaux, “Machine-learning attacks on PolyPUFs, OB-PUFs,
RPUFs, LHS-PUFs, and PUF–FSMs,” IEEE Trans. Inf. Forensics
Security, vol. 14, pp. 2043–2058, 2019.

[8] A. Vijayakumar, V. C. Patil, C. B. Prado, and S. Kundu, “Machine
learning resistant strong PUF: Possible or a pipe dream?” in Proc.
IEEE Int. Symp. Hardw. Oriented Security Trust (HOST), 2016,
pp. 19–24.

5. For a version of this message, see Bruce Schneier’s blogpost
https://www.schneier.com/blog/archives/2015/05/amateurs_produc.html.

32 VOLUME 3, 2023

[9] T. Machida, D. Yamamoto, M. Iwamoto, and K. Sakiyama, “A new
arbiter PUF for enhancing unpredictability on FPGA,” Sci. World J.,
vol. 2015, Sep. 2015, Art. no. 864812.

[10] N. Wisiol, “Towards attack resilient arbiter PUF-based strong PUFs,”
Cryptol. ePrint Archive, IACR, Lyon, France, Rep. 2021/1004, 2021.
[Online]. Available: https://eprint.iacr.org/2021/1004

[11] V. B. Suresh, R. Kumar, M. Anders, H. Kaul, V. De, and S. Mathew,
“A 0.2% BER, 1028 challenge-response machine-learning resistant
strong-PUF in 14nm CMOS featuring stability-aware adversarial chal-
lenge selection,” in Proc. IEEE Symp. VLSI Circuits, 2020, pp. 1–2.
[Online]. Available: https://doi.org/10.1109/VLSICircuits18222.2020.
9162890

[12] K. Liu et al., “36.3 a modeling attack resilient strong PUF with
feedback-SPN structure having < 0.73% bit error rate through in-cell
hot-carrier injection burn-in,” in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC), vol. 64, 2021, pp. 502–504.

[13] S. Jeloka, K. Yang, M. Orshansky, D. Sylvester, and D. Blaauw, “A
sequence dependent challenge-response PUF using 28nm SRAM 6T
bit cell,” in Proc. Symp. VLSI Circuits, 2017, pp. C270–C271.

[14] J. Daemen and V. Rijmen, “Probability distributions of correlation
and differentials in block ciphers,” J. Math. Cryptol., vol. 1, no. 3,
pp. 221–242, 2007. [Online]. Available: https://doi.org/10.1515/JMC.
2007.011

[15] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook
of Applied Cryptography. Boca Raton, FL, USA: CRC Press, 1996.
[Online]. Available: http://cacr.uwaterloo.ca/hac/

[16] J. Katz and Y. Lindell, Introduction to Modern Cryptography.
Boca Raton, FL, USA: Chapman Hall/CRC Press, 2007.

[17] J. Daemen and V. Rijmen, The Design of Rijndael—The Advanced
Encryption Standard (AES) (Information Security and Cryptography),
2nd ed. Heidelberg, Germany: Springer, 2020. [Online]. Available:
https://doi.org/10.1007/978-3-662-60769-5

[18] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Boca
Raton, FL, USA: CRC Press, 2014. [Online]. Available: https://www.
crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/
Katz-Lindell/p/book/9781466570269

[19] L. Knudsen and M. Robshaw, The Block Cipher Companion.
Heidelberg, Germany: Springer, Jan. 2011.

[20] (Univ. Luxembourg, Luxembourg City, Luxembourg). Lightweight
Block Ciphers. (2017). [Online]. Available: https://www.cryptolux.org/
index.php/Lightweight_Block_Ciphers

LILIYA KRALEVA received the bachelor’s degree
in applied mathematics and the master’s degree in
discrete algebraic structure from Sofia University
“St. Kliment Ohridski,” Sofia, Bulgaria, in 2015
and 2017, respectively, and the Ph.D. degree from
KU Leuven, Leuven, Belgium, in 2022 with an
FWO grant.

During her studies, she completed a mod-
ule for the Teacher of Mathematics and stud-
ied one semester with the Linnaeus University,
Vaxjo, Sweden, through the ERASMUS Exchange

Program. The topic of her research was “Cryptanalysis techniques for
lightweight symmetric-key primitives.”

MOHAMMAD MAHZOUN received the bachelor’s
degree in computer science from the University
of Tehran, Tehran, Iran, in 2018, and the mas-
ter’s degree in Master Parisien de Recherche en
Informatique from the Université Paris Cité, Paris,
France, in 2020. He is currently pursuing the
Ph.D. degree with the Eindhoven University of
Technology, Eindhoven, The Netherlands, super-
vised by Tomer Ashur.

He finished his master’s thesis on the “Design
and analysis of multi-input functional encryption

schemes” with Michel Abdalla and David Pointcheval. In addition to
research in cryptography, he worked as a DevOps Directory with TomanPay,
Tehran, and a Site Reliability Engineer with Cafe Bazaar, Tehran, while
studying for his bachelor’s degree. His research focuses on the design and
cryptanalysis of Algebraic ciphers.

RALUCA POSTEUCA received the bachelor’s and
master’s degrees from the University of Bucharest,
Bucureşti, Romania, in 2011 and 2013, respec-
tively. She is currently pursuing the Ph.D. degree
with COSIC, KU Leuven, Leuven, Belgium, under
the supervision of Vincent Rijmen and Tomer
Ashur.

Her work focuses on the design and analysis
of symmetric-key primitives, with emphasis on
lightweight primitives.

DILARA TOPRAKHISAR received the bachelor’s
degree from Sabanci University, Istanbul, Turkey,
in 2019, the master’s degree in behavior of alge-
braic ciphers in fully homomorphic encryption
from the Eindhoven University of Technology,
Eindhoven, The Netherlands, in 2021. She is cur-
rently pursuing the Ph.D. degree with COSIC, KU
Leuven, Leuven, Belgium.

Her main research interest is symmetric-
key cryptography: countermeasures against side-
channel analysis and fault attacks, and algebraic
ciphers.

TOMER ASHUR received the Ph.D. degree from
KU Leuven, Leuven, Belgium, in 2017.

He completed a dissertation on Cryptanalysis
of Symmetric-Key Primitives. He is the Director
of Cryptomeria Research. He was previously an
Assistant Professor with the Eindhoven University
of Technology, Eindhoven, the Netherlands; and
an FWO fellow with KU Leuven. Prior to this, he
was a grad student and a Teaching Assistant with
the University of Haifa, Haifa, Israel; the CIO
of Mediton Healthcare Services, Dubai, UAE; a

Project Manager with Katz Delivering Services, New York, NY, USA; the
Head of Support with Safend Inc., New York; and a Communication Officer
(OF-2) with the Israel Defense Forces, Jerusalem, Israel. He does not own
a piano.

INGRID VERBAUWHEDE (Fellow, IEEE) is a
Professor with the Research Group COSIC, KU
Leuven, where she leads the Secure Embedded
Systems and Hardware Group. She is a pioneer in
the field of efficient and secure implementations
of cryptographic algorithms on many different
platforms: ASIC, FPGA, embedded, and cloud.
With her research she bridges the gaps between
electronics, the mathematics of cryptography and
the security of trusted computing. Her group
owns and operates an advanced electronic secu-

rity evaluation lab. Her list of publications and patents is available at
www.esat.kuleuven.be/cosic/publications.

Dr. Verbauwhede received the IEEE 2017 Computer Society Technical
Achievement Award and the IEEE 2023 Don Pederson Solid-State Circuits
Award. She is a recipient of two ERC Advanced Grants, in 2016 and 2021.
She is a member of the Royal Academy of Belgium. She is a fellow of
IACR.

VOLUME 3, 2023 32

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

