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Abstract

In this paper, we present a proof of the NP-completeness of computing
the smallest Deterministic Finite Automaton (DFA) that distinguishes
two given regular languages as DFAs. A distinguishing DFA is an au-
tomaton that recognizes a language which is a subset of exactly one of the
given languages. We establish the NP-hardness of this decision problem
by providing a reduction from the Boolean Satisfiability Problem (SAT)
to deciding the existence of a distinguishing automaton of a specific size.

1 Introduction

We consider the problem of automatically explaining the inequivalence of De-
terministic Finite Automata (DFAs). In particular, we are interested in short
witnesses for the inequivalence. A straightforward approach to explain the in-
equivalence of two DFAs would be to provide a distinguishing word, i.e. a word
that is accepted by one of the automata but not the other.

This method of finding minimal distinguishing words is well understood and
decidable in polynomial time [6]. An efficient implementation is given in [8]
that has the same runtime complexity as the best known algorithm that decides
language equivalence, known as Hopcroft’s minimization [3].

In this work we are motivated by smaller witnesses of inequivalence in the
form of regular languages. These languages might contain invariants that pro-
vide a shorter and more intuitive explanation. For example, consider the DFAs
A and B shown in Figure 1. The shortest distinguishing word for these DFAs
is a7. Indeed, we confirm a7 ∈ L(A) but a7 6∈ L(B). A different explanation
for the inequivalence of A and B could be: every odd length sequence of a’s is
accepted by A and not by B.

We call a DFA a distinguishing automaton for two DFAs if the language
recognized is a subset of exactly one of the two DFAs. In the example from
Figure 1, we see that our distinguishing witness with invariant is equivalent
to a distinguishing automaton with only two states, i.e. the DFA Aodd such

1

http://arxiv.org/abs/2306.03533v1


q0

q1

q2

q3

a a

aa

p0 p1

p2

p3

p4

a

a a

a

a

Figure 1: The DFA A on the left and the DFA B on the right side.

that L(Aodd) = {a2i+1 | i ∈ N}. An automaton recognizing only the minimal
distinguishing word a7 would contain at least eight states.

In the setting of model based development it can be key to understand the
differences between state based systems. This led us to study the synthesis of
distinguishing DFAs, and leads naturally to following decision problem.

k-DFA-DIST: Let A1 and A2 be DFAs such that L(A1) 6= L(A2), and
k ∈ N a number. Decide if there is a DFA Adist with at most k states such that:

L(Adist) ⊆ L(A1) ⇐⇒ L(Adist) 6⊆ L(A2).

The contribution of this work is that we prove the intractability of k-DFA-
DIST.

Theorem 1. Deciding k-DFA-DIST is NP-complete.

The reduction from CNF-SAT that proves the NP-completeness is new to
our knowledge. We believe this reduction of CNF-SAT formulas to regular
languages is an intuitive method of showing DFA problems NP-complete.

There are some decision problems on DFAs that show some similarities, but
are different from the work here. For instance the early work of Gold [2] and
Pfleeger [7] in which it is shown that learning minimal DFAs from (partial)
observations is NP-complete. In the line of this work by Gold, so-called sepa-
rating languages are widely studied in the literature [1, 5]. Here the separating
problem is, given languages L1 and L2, to find a separating language Lsep such
that Lsep ⊆ L1 and Lsep ∩ L2 = ∅. Although this resembles our distinguishing
problem, a direct relation is not trivial.

Another influential work is due to Kozen [4]. This work includes a proof of
NP-hardness of deciding whether the intersection of a finite number of DFAs is
empty.

2 Notation & Background

For two natural numbers i, j ∈ N we write [i, j] = i, i+ 1, . . . , j as the closed
interval from i to j. Given a finite alphabet Σ, a sequence of elements of Σ
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is called a word. We define Σi as the set of all words over Σ of length i, and
Σ∗ =

⋃
i∈N

Σi for all words over Σ. Given words u, v ∈ Σ∗, we write u ·v and uv

for word concatenation. Additionally, given a number i ∈ N and a word u ∈ Σ∗

we write ui for the concatenation of i times the word u.

Definition 2. A Deterministic Finite Automata (DFA) A = (Q,Σ, δ, q0, F ) is
a five-tuple consisting of:

– Q a finite set of states,

– Σ a finite set of symbols called the alphabet,

– δ : Q× Σ → Q the transition function,

– q0 ∈ Q the initial state, and

– F ⊆ Q the set of final states.

The transition function δ extends naturally to a transition function for words
δ∗ : Q× Σ∗ → Q. This is done inductively as follows:

δ∗(q, ε) = q

δ∗(q, aw) = δ∗(δ(q, a), w).

The language recognized by a DFA A = (Q,Σ, δ, q0, F ), is denoted by L(A),
and consists of all words w ∈ Σ∗ such that δ∗(q0, w) ∈ F .

The Myhill-Nerode theorem is a useful tool to establish the number of states
necessary to recognize a language. It is based on the equivalence relation relating
words that have the exact same accepting extensions.

Definition 3. Let x, y ∈ Σ∗ be words and L ⊆ Σ∗ a language, then x ≡L y if
and only if for all z ∈ Σ∗ it holds that xz ∈ L ⇐⇒ yz ∈ L.

Theorem 4. (Myhill-Nerode [3, Theorem 3.9]) Let L ⊆ Σ∗ be a language, then
L is regular if and only if the relation ≡L has a finite number of equivalence
classes.

A more specific corollary of the theorem relates the number of equivalence
classes of ≡L to the smallest number of states a DFA needs in order to recognize
L.

Corollary 5. Let L be a regular language over an alphabet Σ, then the smallest
DFA A that recognizes L has k states where k is the number of equivalence
classes of the relation ≡L.

3 Reduction

Before we introduce the reduction we define some notation in which we encode
truth values of propositions. In the reduction we represent truth assignments
as words over the Boolean alphabet B = {0, 1}. Given a set of propositional
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variables Prop = {p1, . . . , pk}, a truth assignment ρ : Prop → B is represented
by the word a1 . . . ak ∈ B

k, where ai = ρ(pi) for every i ∈ [1, k]. The set X = B
k

defines all words that represent truth assignments.
Now we are ready to introduce our reduction from CNF-SAT in order to

prove Theorem 1. Let φ = C1 ∧ · · · ∧ Cn be a CNF formula over the proposi-
tional variables Prop = {p1, . . . , pk}, we define two regular languages over the
alphabet Σ = B ∪ {♯}. The first language L−

φ ⊆ Σ∗ is the finite set of at most
n concatenated truth assignments separated by a ♯, i.e.

L−

φ = {w1♯ . . . wj♯ | j ∈ [1, k] and w1, . . . , wj ∈ X}.

The second language L+

φ ⊆ Σ∗ is a superset of L−

φ . In addition to all the

word of L−

φ , the language L+

φ contains all words that have as prefix n truth
assignments w1, . . . , wn ∈ X that consecutively satisfy all clauses C1, . . . , Cn,
more precisely that is,

L+

φ = L−

φ ∪ {w1♯ · · ·wn♯w |w ∈ Σ∗,wi ∈ X and wi satisfies Ci for all i ∈ [1, n]}.

The languages L−

φ and L+

φ are regular, and hence there are automata that
recognize these languages. In particular there are automata recognizing these
languages that are polynomial in size. One way of observing this fact is by
inspecting the number of Myhill-Nerode equivalence classes of L+

φ and L−

φ .

Lemma 6. Given a CNF formula φ, the languages L+

φ and L−

φ are recognizable
by an automaton that is polynomial in the size of φ.

The next lemma proves the key fact of our reduction. A truth assignment
that satisfies a CNF formula φ as recurring pattern forms a small distinguishing
automaton. Inversely a distinguishing automaton smaller than a certain size
necessarily implies the existence of a satisfying truth assignment for φ.

Lemma 7. Let φ = C1∧· · ·∧Cn be a CNF formula over k propositional letters
Prop = {p1, . . . , pk}. Then φ is satisfiable if and only if there is a DFA Adist

with at most k + 2 states such that L(Adist) ⊆ L+

φ and L(Adist) 6⊆ L−

φ .

Proof. We prove both directions of the implication separately.

(⇒) Assume φ is satisfiable, then there is a satisfying truth assignment ρ that
is mapped to the word wρ = ρ(p1) . . . ρ(pk) ∈ X . We define the language
Ldist = {(wρ · ♯)i | i ∈ N}, and show that Ldist witnesses this implication.

First we show that Ldist ⊆ L+

φ . Assume i ∈ N, if i 6 n then by definition

(wρ · ♯)i ∈ L−

φ and hence also in (wρ · ♯)i ∈ L+

φ . If i > n, since ρ is a

satisfying assignment, it holds for any w′ ∈ Σ∗ that (wρ · ♯)nw′ ∈ L+

φ , and

thus also (wρ · ♯)n(wρ · ♯)i−n ∈ L+

φ . By covering both cases this means

Ldist ⊆ L+

φ .

Next, we observe that (wρ ·♯)n+1 6∈ L−

φ , and thus Ldist 6⊆ L−

φ . Hence, since

Ldist ⊆ L+

φ any DFA that recognizes Ldist is a distinguishing automaton.
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The minimal DFA Adist such that L(Adist) = Ldist contains one loop with
k + 1 states containing all positions of the word wρ · ♯ and a sink state to
reject all other words. Thus, if φ is satisfiable we can construct Adist with
k + 2 states that distinguishes L+

φ and L−

φ , which was to be showed.

(⇐) We assume Adist is a DFA with at most k + 2 states such that for the
language accepted L̂ = L(Adist) it holds that L̂ ⊆ L+

φ and L̂ 6⊆ L−

φ . We
show that this means φ is satisfiable.

Since L̂ \ L−

φ 6= ∅ and L̂ ⊆ L+

φ there is a word w ∈ L+

φ \ L−

φ accepted

by Adist. By definition w is of shape w = w1♯ . . . wn♯w
′ where w′ ∈ Σ+

and w1, . . . , wn ∈ X and for every i ∈ [1, k] the word wi represents a
satisfying truth assignment for the clause Ci. Next we show that w1

represents a satisfying truth assignment for φ by counting the number of
equivalence classes of ≡

L̂
for the prefixes of w1 ·♯, together with the postfix

wpost = w2♯ . . . wn♯w
′ that witnesses an accepting postfix for w1♯.

We define the set U as the set containing all prefixes of w1 = a1 . . . ak, i.e.

U = {ε} ∪ {a1 . . . aj | j ∈ [1, k]}.

If v, u ∈ U and v 6= u then v 6≡
L̂

u, since there is a σ ∈ Σ∗ such that

vσ = w and w ∈ L̂ and uσ 6∈ L̂. This means there are |U | = k+1 distinct
classes of ≡

L̂
. Lastly, since ♯z 6∈ L̂ for any z ∈ Σ∗ we can also conclude

that ♯ 6≡
L̂
u for all u ∈ U .

Since we assumed that Adist has at most k+2 states, by Corollary 5 there
are at most k + 2 equivalence classes of ≡

L̂
. Since trivially w1♯ 6≡L̂

♯, by
the pigeonhole principle there is a prefix u ∈ U such that at w1♯ ≡L̂

u.

It can not be the case that u = a1 . . . ai for some i ∈ [1, k], since

a1 . . . ai · ai+1 . . . ak♯wpost ∈ L̂

w1♯ · ai+1 . . . ak♯wpost 6∈ L̂.

By eliminating all alternatives we conclude u = ε. Using this equivalence
and since ε · w1♯wpost ∈ Ldist we derive that w1♯ · w1♯wpost ∈ Ldist. In
particular, this means that (w1♯)

n · wpost ∈ Ldist. By definition of L+

φ

this means that the truth assignment w1 satisfies all clauses C1, . . . , Cn

and hence it is a satisfying assignment for φ. This witnesses that φ is a
satisfying formula.

This lemma allows us to prove Theorem 1.

Proof of Theorem 1. Membership of NP follows naturally. For two DFAs A1

and A2 we can, in polynomial time, check if L(A1) ⊆ L(A2). This can be done
by computing the emptiness of L(A1)∩L(A2). Moreover, either A1 or A2 itself
necessarily already is a distinguishing automaton, so the minimal distinguishing
DFA is definitely polynomial in size.

NP-hardness is a direct consequence of Lemma 7 and of the fact that L−

φ ⊆

L+

φ , so the language of any distinguishing automaton is a subset of L+

φ and not
vice-versa.
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