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Summary

The aim of this thesis Symmetric Wide-matrix Varieties and Powers of GL-
varieties is to study (sequences of) algebraic varieties defined by systems of
polynomial equations with a large symmetry group. In the limit, they become
infinite-dimensional with an infinite symmetry group and are amenable to
techniques exploiting this symmetry.

The thesis is composed of four chapters, the first of which provides an
introduction with essential definitions. Each of the remaining chapters, based
on journal articles, covers a distinct topic related to the central theme of the
thesis.

In Chapter 2 and Chapter 3, the focus is on sequences of varieties of ma-
trices where the number of rows is fixed, but the number of columns increases.
More specifically, Chapter 2 concentrates on counting the number of irreducible
components of varieties within such a sequence, up to symmetry, while Chap-
ter 3 establishes the descending chain property of their image closures under
polynomial maps that respect symmetry. The final chapter, Chapter 4, focuses
on the stabilization of infinite-dimensional varieties that are stable under co-
ordinate permutations and linear coordinate transformations.
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Notation

N {1, 2, 3, ...}
Z≥0 {0, 1, 2, ...}
Z {0,±1,±2, ...}
[n] {1, 2, ..., n} for n ∈ Z≥0

Sym(n) the symmetric group on n letters
Sym Sym(∞) = ∪n≥1 Sym(n)
V ∗ dual of a vector space V

GL(V ) the group of invertible linear maps V → V
GLn GL(Kn) for a field K
GL GL∞ = ∪n≥1 GLn
Ei,j n×n-matrix where the entry in position (i, j) equals one and the other entries

are zeroes
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Chapter 1

Preliminaries

1.1 Introduction

In algebraic geometry, infinite-dimensional varieties are difficult to understand.
But many of them that are equipped with an action of a large group are well
behaved up to that action. This lays a foundation for equivariant commutative
algebra and equivariant algebraic geometry: the study of commutative rings
and varieties equipped with group action.

For instance, varieties of c×N-matrices that are stable under the action of
the infinite symmetric group Sym(N) by permuting columns are equivariantly
Noetherian (Noetherian up to the Sym(N) action): every descending chain

X1 ⊇ X2 ⊇ · · · ⊇ Xn ⊇ · · ·

of Zariski closed subsets, each stable under the column permutations, stabi-
lizes, which means that Xn = Xn+1 = · · · for n sufficiently large.

There are two general problems in the equivariant world: one is to investi-
gate equivariantly Noetherian spaces taking into account the group action and
the other is to discover spaces that are equivariantly Noetherian or construct
new equivariantly Noetherian spaces from existing ones.

1.1.1 Main results

This thesis demonstrates the following results in relation to the aforementioned
problems.
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Theorem 1.1.1.1. The image closures of equivariantly Noetherian varieties
of c × N-matrices under Sym(N)-equivariant polynomial maps (maps respect-
ing the Sym(N)-action) in the space of N × · · · × N-tensors are equivariantly
Noetherian. Moreover, they are defined, as a set, by Sym(N)-orbits of finitely
many equations.

A natural approach to examine a variety X of c×N-matrices is by studying
a sequence of varieties Xn of truncated matrices:

Xn := X ∩ Ac×n

where Ac×n is the space of all c × n-matrices. Such a sequence of varieties is
called a wide-matrix variety. Each Xn is stable under the group Sym(n) of
column permutations and the action of Sym(n) on Xn induces an action of
Sym(n) on the set C(Xn) of irreducible components (irreducible subsets that
are maximal under inclusion) of Xn. Note that the set C(Xn) is finite as Xn

is a finite-dimensional variety.
Recall that a quasipolynomial is a function f : Z≥0 → R of the form

f(n) = cd(n)nd + cd−1(n)nd−1 + · · ·+ c0(n)

where each ci : Z≥0 → R is periodic with integral period.

Theorem 1.1.1.2. There exists a quasipolynomial f and a natural number N
such that the number of Sym(n)-orbits on C(Xn) equals f(n) for all n ≥ N .

Theorem 1.1.1.3. Let Z be a variety that is Noetherian up to an action of the
infinite general linear group GL. Then the product variety ZN is Noetherian
up to the natural action of the product group Sym(N)×GL.

Theorem 1.1.1.1 is an extension to a result by Draisma, Eggermont, Krone,
and Leykin in [DEKL16]. They proved that the image closures of wide-matrix
varieties under monomial maps satisfy the descending chain condition. This
work has been generalized to image closures under polynomial maps. However,
the result is topological rather than ring theoretic.

Theorem 1.1.1.2 is inspired by a recent work of Le, Nagel, Nguyen, and
Römer in [LNNR19; LN22]. They proved and conjectured many nice results
about homological invariants of wide-matrix varieties.

Theorem 1.1.1.3 is motivated by recent works on Sym(N)-stable varieties
[AH07; HS12; Dra14; NS21b] and on GL-stable varieties [DES17; Dra19;
BDES22]. This work gives a common generalization to the above works, offer-
ing a positive outlook for a future in which the Sym(N)-world and the GL-world
can be effectively combined to advance equivariant algebraic geometry.



1.1.2 Relation to existing literature

Noetherianity up to symmetry was first studied by Cohen in [Coh67; Coh87].
He proved that the (non-Noetherian) polynomial ring K[x1, x2, x3, ...] in in-
finitely many variables is Noetherian up to the permutation of variables as
well as a generalization to finitely many rows of variables. The same was re-
discovered in [AH07; HS12]. In the later article, Hillar and Sullivant used this
to prove the Independent Set Theorem which is an important result in alge-
braic statistics. A further application of this result is due to Draisma [Dra10].
He proved that the polynomial equations for the k-factor model and for the
chirality varieties are finitely characterizable.

Many challenging questions about Sym-invariant chains of ideals and vari-
eties have been answered using Noetherianity up to symmetry. For example,
the bivariate Hilbert series for such a chain of ideals is a rational function
[NR17; KLS17; GN18]. As a consequence of the rationality result codimen-
sion (respectively multiplicity) of varieties appearing in a wide-matrix variety
grows eventually linearly (respectively exponentially); see [NR17; LNNR19].
Furthermore, asymptotic behavior of projective dimension, Betti numbers,
and Castelnuovo-Mumford regularity along such chains have been studied in
[LN22; Bie+20]. A very nice survey is [JLR20] which also contains a number
of open problems. Further geometry of these varieties has been studied in
[NS21b; NS21a; KR22; KVR22].

Returning to the general linear group: A fundamental property, the de-
scending chain property, of varieties acted upon by the infinite general linear
group was proved by Draisma in [Dra19] (for polynomial representations) and
by Eggermont and Snowden in [ES21] (for algebraic representations). From
the former article, this property was used in [DLL19; ESS19a; ESS19b] to
give a new proof of a very beautiful conjecture, Stillman’s conjecture, which
is a motivation for the growing literature on equivariant commutative algebra.
Further applications of GL-varieties are [BDE19; DES17]. For streamlined lit-
erature on GL-varieties see [BDES22] where many foundational results about
them have been established.

Inspired by literature on FI-modules [CEF15; NR19] this work uses the
language of categories and functors. We think that this is a useful and conve-
nient language to prove the above results. In this setup, a wide-matrix variety
is an FIop-scheme: a contravariant functor from the category FI of finite sets
with injections to the category of affine schemes.



1.1.3 Organization of this thesis

The remainder of this chapter discusses direct and inverse limits, Noetherianity
up to the action of a group, FI-algebras, and FIop-schemes. These concepts
have been used throughout this work. The remaining chapters are based on
my work with my advisors and research colleagues during my Ph.D. studies
at the Eindhoven University of Technology. Chapter 2 is about components of
wide-matrix varieties and is based on the article [DEF22] with Jan Draisma and
Rob Eggermont. Chapter 3 is about the image closures of wide-matrix varieties
and is based on the article [DEFM22] with Jan Draisma, Rob Eggermont, and
Leandro Meier. Chapter 4, the last chapter, is devoted to studying powers of
GL-varieties and is based on the article [Chi+22] with Christopher H. Chiu,
Alessandro Danelon, Jan Draisma, and Rob Eggermont.

1.2 Limits

1.2.1 Direct limit

Direct limit is a way of constructing a larger object from a sequence of smaller
objects that are combined in a particular manner. In this section, the objects
are defined as sets with a specific algebraic structure, such as groups, rings,
and algebras (over a fixed ring). The process of combining them is established
by a system of morphisms (in the relevant category) between these smaller
objects.

Definition 1.2.1.1. Let (An)n∈N be a sequence of objects in some category
and φmn : Am → An be a morphism for all m ≤ n with the following proper-
ties:

1. φnn is the identity of An, and

2. φln = φmn ◦ φlm for all l ≤ m ≤ n.

The pair ((An)n, (φmn)m≤n) is called a direct system. ♢

Definition 1.2.1.2. The direct limit, also called a colimit, of the direct sys-
tem ((An)n, (φmn)m≤n) is denoted by lim−→ An and is defined as follows. Its
underlying set is the disjoint union of the An’s modulo the following equiva-
lence relation ∼ : if al ∈ Al and am ∈ Am, then al ∼ am if and only if there is
some n with l ≤ n and m ≤ n and such that φln(al) = φmn(am). ♢



Intuitively, two elements in the disjoint union are equivalent if and only if
they eventually become equal in the direct system.

Denote by Sym(n) the symmetric group on n letters. Let φn,n+1 : Sym(n)→
Sym(n+ 1) be the inclusion map by regarding Sym(n) as stabilizer of n+ 1 in
Sym(n+ 1).

Definition 1.2.1.3. Denote by Sym(∞) (or simply Sym) the direct limit
of the direct system (Sym(n), φmn) where φmn : Sym(m) → Sym(n) is the
composition of the inclusion maps. ♢

Denote by GLn the general linear group of n × n invertible matrices over
some field. Let φn,n+1 : GLn → GLn+1 be the natural inclusion map g 7→[
g 0
0 1

]
.

Definition 1.2.1.4. Denote by GL∞ (or simply GL) the direct limit of the
direct system (GLn, φmn) where φmn : GLm → GLn is the composition of the
inclusion maps. ♢

1.2.2 Inverse limit of topological spaces

In this section, we define the inverse limit of topological spaces which is a con-
struction that allows us to glue together a sequence of topological spaces. The
precise gluing process is specified by continuous maps between the topological
spaces.

Definition 1.2.2.1. Let (Xn)n∈N be a family of topological spaces and fmn :
Xn → Xm be a continuous map for all m ≤ n (note the order) with the
following properties:

1. fnn is the indentity of Xn, and

2. fln = flm ◦ fmn for all l ≤ m ≤ n.

The pair ((Xn)n, (fmn)m≤n) is called an inverse system. ♢

Definition 1.2.2.2. The inverse limit of the inverse system ((Xn)n, (fmn)m≤n)
is defined as

X∞ := lim←− Xn = {(xn) ∈
∏
n∈N

Xn | fn,n+1(xn+1) = xn}.

X∞ is equipped with the subspace topology, where
∏
n∈NXn has the product

topology. We call it inverse limit topology. ♢



Denote by πm the natural projection map
∏
n∈NXn → Xm as well as its

restriction X∞ → Xm. These mappings πm are continuous and satisfy the
following compatibility condition:

X∞

Xn Xm

πn πm

fmn

fmn ◦ πn = πm whenever m ≤ n.

Remark 1.2.2.3. The inverse limit topology X∞ satisfies the following uni-
versal property: whenever Y is a topological space and for each n ∈ N, ψn :
Y → Xn is a continuous map satisfying the compatibility condition fmn◦ψn =
ψm whenever m ≤ n,

Y

X∞

Xn Xm

ψn ψm

h

πn πm

fmn

then there is a unique continuous map h : Y → X∞ such that πn ◦ h = ψn for
all n ∈ N. ♢

1.3 Noetherianity up to the action of a group

Noetherianity is a desirable property but not all spaces possess this property.
However, it has been observed that many non-Noetherian rings and topological
spaces can exhibit Noetherian-like behavior under the action of a large group.
Specifically, these objects are Noetherian up to a group action in the following
sense.

Definition 1.3.0.1. Let X be a topological space equipped with an action of
a group G by means of continuous maps.

1. A closed subset Y of X is called a G-stable closed subset of X if g ·y ∈ Y
for all g ∈ G and y ∈ Y .



2. The space X is said to be G-Noetherian or Noetherian up to the action
of G (or equivariantly Noetherian when G is clear from the context) if it
satisfies the descending chain condition on G-stable closed subsets: every
descending chain

X1 ⊇ X2 ⊇ · · · ⊇ Xn ⊇ · · ·

of G-stable closed subsets stabilizes, which means that Xn = Xn+1 = · · ·
for n sufficiently large..

♢

Definition 1.3.0.2. Let R be a commutative ring equipped with an action of
a group G by means of ring homomorphisms.

1. An ideal I of the ring R is said to be a G-stable ideal if g · f ∈ I for all
g ∈ G and f ∈ I.

2. The ring R is said to be G-Noetherian or Noetherian up to the action
of G if it satisfies the ascending chain condition on G-stable ideals, or
equivalently, if every G-stable ideal of R is generated by G-orbits of
finitely many elements of R.

♢

It is easy to show that if R is G-Noetherian ring, then the spectrum SpecR
of R equipped with the Zariski topology is G-Noetherian with respect to the
induced action of G on SpecR.

Since every Noetherian ring satisfies the ascending chain condition on ideals
(G-stable or not), every Noetherian ring is G-Noetherian and also the spectrum
of a Noetherian ring is G-Noetherian.

Presented below is a noteworthy theorem that provides an example of a
nontrivial Sym(∞)-Noetherian ring.

Theorem 1.3.0.3. [Coh87; HS12] Fix a positive integer c and a Noetherian
ring K. The polynomial ring

K[Xc×N] = K[xi,j | i ∈ [c], j ∈ N]

with the action of the symmetric group Sym(∞) defined by σ · xi,j = xi,σ(j) is
Sym(∞)-Noetherian.

Corollary 1.3.0.4. The space SpecK[Xc×N] of c×N-matrices under the ac-
tion of the symmetric group Sym(∞) by permuting the columns is topologically
Sym(∞)-Noetherian.



Example 1.3.0.5. [HS12, Example 3.8.] The polynomial ring

K[XN×N] = K[xi,j | (i, j) ∈ N× N]

under the action of Sym(∞) defined by σ · xi,j = xσ(i),σ(j) is not Sym(∞)-
Noetherian (not even Sym(∞)×Sym(∞)-Noetherian with respect to the action
defined by (τ, σ)·xi,j = xτ(i),σ(j)). Indeed, for l ≥ 3 denote byMl the monomial
x1,1x1,2x2,2x2,3 · · ·xl,lxl,1 and for n ≥ 3 denote by In the ideal generated by
Sym(∞)-orbits of monomials M3,M4, ...,Mn. Then, the following chain

I3 ⊂ I4 ⊂ I5 ⊂ · · ·

of Sym(∞)-stable ideals of K[XN×N] does not stabilize. ♢

Remark 1.3.0.6. The above example also shows that the space SpecK[XN×N]
of N × N-matrices equipped with the natural action of Sym(∞) is not equiv-
ariantly Noetherian (not even Sym(∞)× Sym(∞)-Noetherian). ♢

We close this section by stating a general problem which is the main mo-
tivation for this work.

Problem 1.3.0.7. Study the Sym(∞)-stable ideals of K[Xc×N] and the Sym(∞)-
stable varieties of SpecK[Xc×N].

1.4 FI-algebras and FIop-schemes

In this section, the central focus will be on FI-algebras and FIop-schemes.
They form the backbone of our work and will be thoroughly explored and
analyzed. Our main references for this section are [NR19; DEF22], which
provide comprehensive coverage of these topics.

1.4.1 The category FI

Definition 1.4.1.1. Denote by FI the category whose objects are finite sets
and whose morphisms are injective maps. FIop denotes its opposite category.

♢

Denote by Z≥0 and N the set of nonnegative integers and positive integers,
respectively. The category FI is equivalent to the category with objects [n] :=
{1, 2, . . . , n} for n ∈ Z≥0 (by convention [0] := ∅) and morphisms from [m] to
[n] being the injective maps [m] ↪→ [n].



1.4.2 The category of FIop-schemes

Let K be a commutative ring with unity. Denote by AlgK the category of
commutative, unital K-algebras M whose morphisms are unital ring homo-
morphisms M → N compatible with the homomorphisms from K into them.

Definition 1.4.2.1. An FI-algebra over K is a covariant functor from FI to
the category AlgK of K-algebras. ♢

For a finite set S ∈ FI we denote the K-algebra A(S) by AS and we write
An for A[n].

Example 1.4.2.2. Let L be an algebra over K, then the constant functor
FI→ AlgK assigning L to every finite set and assigning idL to every injection
is an FI-algebra. ♢

Example 1.4.2.3. The functor P : FI → AlgK that assigns to each finite
set S the polynomial ring PS := K[xi | i ∈ S] and assigns to each injection
σ : S → T the K-algebra homomorphism P (σ) : PS → PT determined by
xi 7→ xσ(i) is an FI-algebra. ♢

Example 1.4.2.4. The functor Q : FI → AlgK that assigns to each finite
set S the polynomial ring QS := K[yi,j | i, j ∈ S] and assigns to each injection
σ : S → T the K-algebra homomorphism Q(σ) : QS → QT determined by
yi,j 7→ yσ(i),σ(j) is an FI-algebra. ♢

Definition 1.4.2.5. An affine FIop-schemes over K is a contravariant functor
from FI to the category of affine schemes over K. ♢

For a finite set S ∈ FI we denote the scheme X(S) by XS and we write Xn

for X[n]. As we will only consider affine FIop-schemes, we will usually drop
the adjective “affine”.

Example 1.4.2.6. The contravariant functor from FI to the category of affine
schemes over K that assigns to each finite set S the spectrum SpecPS =
SpecK[xi | i ∈ S] and assigns to each injection σ : S → T the morphism
SpecP (σ) : SpecPT → SpecPS dual to the K-algebra homomorphism P (σ) :
PS → PT is an FIop-scheme. ♢

Definition 1.4.2.7. Given an FI-algebra A over K, the spectrum of A de-
noted by Spec(A) is the FIop-scheme that maps a finite set S to Spec(AS).
Dually, given an FIop-scheme X, the coordinate ring of X denoted by K[X]
is the FI-algebra that maps S to K[XS ] the coordinate ring of the scheme
XS . ♢



Remark 1.4.2.8. If A is an FI-algebra over K, then A is also an FI-algebra
over A0: for each finite set S the unique inclusion ∅ → S yields an algebra
homomorphism A0 → AS , and functoriality implies that the K-algebra homo-
morphisms AS → AT corresponding to injections S → T are compatible with
the A0-algebra structure. ♢

Definition 1.4.2.9. An FI-ideal I of an FI-algebra A assigns to each finite
set S an ideal I(S) of A(S), in such a manner that the algebra homomorphism
A(π) : A(S) → A(T ) corresponding to any π ∈ HomFI(S, T ) maps I(S) into
I(T ). A closed subscheme Z of an FIop-scheme X is a subfunctor of X such
that, for each finite set S, Z(S) is a closed subscheme of X(S). ♢

Every ideal I of an FI-algebra A gives rise to a closed FIop-subscheme
Spec(A/I) of the FIop-scheme SpecA defined by Spec(A/I)S := Spec(AS/IS).

A morphism A → B of FI-algebras over K is a natural transformation of
functors: it consists of a K-algebra homomorphism φ(S) : AS → BS for each
S ∈ FI such that for all S, T ∈ FI and for each injection σ from S to T , the
following diagram commutes

AS BS

AT BT .

φ(S)

A(σ) B(σ)

φ(T )

Morphisms of FIop-schemes over K are defined dually. The category of FI-
algebras is equivalent to the category of FIop-schemes. The equivalence is
given by the functor that associates to an FI-algebra A the spectrum SpecA
of A.

Let A be an FI-algebra, and consider any finite set S ∈ FI. In this
context, the symmetric group Sym(S) acts from the left on A(S), where
Sym(S) = HomFI(S, S). Specifically, each π in HomFI(S, S) yields a K-
algebra homomorphism A(π) : A(S) → A(S). It follows from the functo-
rial axioms of A that (π, a) 7→ A(π)(a) represents a left action of Sym(S) by
K-algebra automorphisms on A(S).

Similarly, given an FIop-scheme X, for each finite set S ∈ FI the symmetric
group Sym(S) acts on XS by automorphisms of K-schemes. When acting
on points of XS with values in a K-algebra L, i.e., on the set of K-algebra
homomorphisms K[XS ] → L, this is a naturally a right action, reflecting the
fact that X is a contravariant functor.

Remark 1.4.2.10. The symmetric group Sym(n) acts on An by K-algebra
automorphisms, and the map A(ι) : An → An+1, where ι : [n] → [n + 1] is



the standard inclusion, is a Sym(n)-equivariant K-algebra homomorphism, if
Sym(n) is regarded as the subgroup of Sym(n+1) consisting of all permutations
that fix n+1. Conversely, from the data (for all n) of An, the action of Sym(n)
on An, and the Sym(n)-equivariant map An → An+1 the FI-algebra A can
be recovered up to isomorphism. This gives another, more concrete picture of
FI-algebras. However, the definition of FI-algebras as a functor from FI to
K-algebras is more elegant and, as we will see, often more convenient. ♢

The tensor product A⊗B of FI-algebras A and B over K is defined in the
obvious way: for an object S ∈ FI,

(A⊗B)S := AS ⊗K BS

and for an injection σ : S → T the map (A⊗B)(σ) is determined by,

(A⊗B)(σ)(a⊗ b) = A(σ)(a)⊗B(σ)(b)

where a ∈ AS and b ∈ BS .

The direct sum A⊕B of FI-algebras A and B over K is defined in a similar
way.

1.4.3 Wide-matrix spaces

Recall that P denotes the FI-algebra that maps a finite set S to the polynomial
ring PS := K[xi | i ∈ S].

Definition 1.4.3.1. For a positive integer c ∈ N, the tensor product P⊗c of
the FI-algebra P is isomorphic to, and will be identified with, the FI-algebra
that maps an object S ∈ FI to

P⊗cS := K[xi,j | 1 ≤ i ≤ c, j ∈ S].

The FIop-scheme SpecP⊗c over K is called a wide-matrix space. It is
denoted by Matc,K . ♢

If L is a K-algebra, then the set of L-points Matc,K(L) is the contravariant
functor from FI to sets that assigns to S the set Lc×S of c× S-matrices over
L, and to a morphism π : S → T the map Lc×T = (Lc)T → (Lc)S = Lc×S

where the middle map is composition with π.



1.4.4 Width-d FIop-schemes

Width-one FIop-schemes of finite type are nicely behaved, as we will see, and
are the main characters of this work.

Definition 1.4.4.1. Let A be an FI-algebra over a ring K. Let d be a
nonnegative integer.

1. A subalgebra B of A is a functor from FI to K-Alg such that BS is a
subalgebra of AS for each finite set S and B(σ) is the restriction of the
map A(σ) to BS for each injection σ : S → T .

2. A is said to be finitely generated if there are finitely many objects Si ∈
FI and a finite set D ⊂

⋃
ASi

which is not contained in any proper
subalgebra of A. If such D exists, we say that A is generated by D.

♢

Definition 1.4.4.2. For a finite set S ∈ FI and an element a ∈ AS , the
minimal n such that a lies in A(π)(An) for an injection π : [n] → S, is called
the width of a. It is denoted by w(a). ♢

Example 1.4.4.3. The element x3+x25 ∈ P ([5]) has width 2 because x3+x25 =
P (σ)(x1+x22) where σ : [2]→ [5] is an injection mapping 1 7→ 3 and 2 7→ 5. ♢

Definition 1.4.4.4. Let A be an FI-algebra.

1. A is said to be generated in width ≤ d if there exists a collection (ai ∈
ASi)i∈I of elements of width ≤ d that generates A.

2. A is said to be finitely generated in width ≤ d if A is finitely generated
and generated in width ≤ d.

♢

Remark 1.4.4.5. The definition finitely generated in width ≤ d is equivalent
to the condition that A is generated by a finite collection of elements ai ∈ ASi

of width ≤ d. ♢

Example 1.4.4.6. The FI-algebra P that assigns S 7→ K[xi | i ∈ S] is finitely
generated in width ≤ 1, namely, by the element x1 ∈ P ([1]). ♢

Example 1.4.4.7. The FI-algebra Q that maps S → K[yi,j | i, j ∈ S] is
generated by two elements y1,1 and y1,2 having width 1 and 2 respectively. So
it is finitely generated in width ≤ 2 (but not in width ≤ 1). ♢



Definition 1.4.4.8. The spectrum of a finitely generated FI-algebra over K
is called an FIop-scheme of finite type over K. ♢

Definition 1.4.4.9. The spectrum of an FI-algebra over K that is finitely
generated in width ≤ d is called a width-d FIop-scheme of finite type over
K. ♢

Remark 1.4.4.10. The class of FI-algebras that are finitely generated in
width at most 1 is closed under taking finite direct sums and tensor products
over K. Dually, the corresponding class of width-one FIop-schemes of finite
type is closed under disjoint unions and Cartesian products. ♢

For later use we record the following lemma.

Lemma 1.4.4.11. Let A be an FI-algebra over K that is finitely generated in
width ≤ 1, and let X = Spec(A) be the corresponding width-one FIop-scheme
over K. If we set Z := X1, then for each S ∈ FI the map XS →

∏
j∈S X{j}

∼=
ZS, where the product is over Spec(A0), is a closed embedding. Furthermore,
the FIop-scheme ZS is isomorphic to a closed subset of Matc,A0

for some c.

Proof. Dually, we need to show that the map
⊗

j∈S A{j} → AS , where the
tensor product is over A0 and where A{j} → AS comes from the inclusion
{j} → S, is surjective. This follows from the fact that A is generated in width
at most 1. For the last statement, note that A1 is finitely generated as a K-
algebra, hence a fortiori as an A0-algebra. If A1 is generated by c elements
over A0, then A is a quotient of P⊗cA0

, Z is a closed FIop-subscheme of the

c-dimensional affine space AcA0
over A0, and S 7→ ZS a closed FIop-subscheme

of Matc,A0
.

1.4.5 Limit of FIop-schemes

Limits are a natural way to connect FI-algebras and FIop-schemes with infinite-
dimensional objects that are acted upon by the infinite symmetric group.

Denote by ιm,n ∈ HomFI([m], [n]) the inclusion map [m] → [n], j 7→ j for
m ≤ n.

Definition 1.4.5.1. Given any FI-algebra A over K, define its direct limit

A∞ = lim−→ An

using the direct system ((An)n∈N, (A(ιm,n))m≤n).



Dually, the inverse limit of an FIop-scheme X over K is defined as

X∞ = lim←−Xn

using the inverse system ((Xn)n∈N, (X(ιm,n))m≤n). ♢
Remark 1.4.5.2. Each Xn is equipped with the Zariski topology so X∞ has
the inverse limit topology. ♢

By functoriality, each An is acted upon by the symmetric group Sym(n),
the map A(ιn,n+1) is Sym(n)-equivariant if Sym(n) is embedded into Sym(n+
1) as the stabilizer of {n + 1}, and hence the direct limit A∞ is acted upon
by the group Sym(∞). Dually, Sym(∞)-acts on the inverse limit X∞ of an
FIop-scheme X over K.

Given an ideal I of A, the direct limit I∞ := lim−→In is a Sym(∞)-stable

ideal of A∞. Conversely, given a Sym(∞)-stable ideal J of A∞, then for any
finite set S ∈ FI and any bijective map π : [n] → S, set I(S) := A(π)(Jn),
where Jn is the preimage of J in An.

Example 1.4.5.3. The direct limit (P⊗c)∞ of the FI-algebra P⊗c that maps
S 7→ K[xi,j | i ∈ [c] and j ∈ S] is naturally isomorphic to the polynomial ring

K[xi,j : 1 ≤ i ≤ c, j ∈ N]

and admits a Sym(∞)-action induced by σ(xi,j) = xi,σ(j) for any σ ∈ Sym(∞).
♢

Example 1.4.5.4. The direct limit Q∞ of the FI-algebra Q that maps S 7→
K[yi,j | i, j ∈ S] is naturally isomorphic to the polynomial ring

K[yi,j : 1 ≤ i ≤ c, j ∈ N]

and admits a Sym(∞)-action induced by σ(yi,j) = yσ(i),σ(j) for any σ ∈
Sym(∞). ♢

1.4.6 Noetherianity of FIop-schemes

We close this section by describing a very useful property, the descending chain
property, of width-one FIop-schemes.

Definition 1.4.6.1. An FI-algebra A is called Noetherian if it satisfies the
ascending chain condition on ideals, i.e., if

I1 ⊆ I2 ⊆ ...

is an ascending chain of ideals in A, then there exists a positive integer m such
that Im = Im+1 = · · · . ♢



It is easy to show that the direct limit of a Noetherian FI-algebra is
Sym(∞)-Noetherian.

Definition 1.4.6.2. An FIop-scheme X is called Noetherian if it satisfies
the descending chain condition on closed FIop-subschemes, and topologically
Noetherian if it satisfies the descending chain condition on closed and reduced
FIop-subschemes: for each descending chain

X1 ⊇ X2 ⊇ ...

of closed and reduced FIop-subschemes Xi ⊆ X, there exists an integer n such
that Xn = Xn+1 = · · · . ♢

Again the inverse limit of a topologically Noetherian FIop-scheme is topo-
logically Sym-Noetherian. From now on we will use the word “closed subset”
to mean “reduced subschemes”.

The following theorem and corollary are of fundamental importance for the
rest of the thesis.

Theorem 1.4.6.3. [NR19, Theorem 6.15] Let K be a Noetherian ring. Then
every FI-algebra A over K that is finitely generated in width ≤ 1 is Noetherian.
In particular, the FI-algebra P⊗c over a Noetherian ring K is Noetherian.

Corollary 1.4.6.4. Any width-one FIop-scheme of finite type over a Noethe-
rian ring K is topologically Noetherian. In particular, the wide-matrix space
SpecP⊗c over a Noetherian ring K is topologically Noetherian.

Example 1.4.6.5. The space of c×N-matrices is Sym(∞)-Noetherian up to
column permutations being the inverse limit of the FIop-scheme SpecP⊗c. ♢

Lemma 1.4.6.6. Let A be a Noetherian FI-algebra and I be an ideal of A.
Then the quotient FI-algebra A/I defined by (A/I)S = AS/IS for all S ∈ FI
is Noetherian.

Proof. Any ascending chain of ideals in the quotient A/I lifts up to an ascend-
ing chain of ideals in A. The latter chain stabilizes so is the former.

The above lemma shows that closed FIop-subschemes of a topological
Noetherian FIop-scheme are topologically Noetherian.

We record the following properties of topologically Noetherian FIop-schemes.

Lemma 1.4.6.7. [DK14] Let X, Y and Z be FIop-schemes over a ring K.
Suppose, moreover, that X and Y are topologically Noetherian.



• Any closed subset of a topologically Noetherian FIop-scheme is topolog-
ically Noetherian.

• The disjoint union X ⊔ Y defined by (X ⊔ Y )S = XS ⊔ YS of X and Y
is topologically Noetherian with respect to the disjoint union topology.

• Let ψ : X → Z be a morphism of FIop-schemes. Then the image Im(ψ)
is topologically Noetherian with respect to the topology induced from Z.



Chapter 2

Components of symmetric
wide-matrix varieties

This chapter is based on the paper [DEF22] with Jan Draisma and Rob Eg-
germont.

2.1 Introduction

2.1.1 Main result

Let K be a Noetherian ring (commutative with 1), let c ∈ Z≥0, and, for all
n ∈ Z≥0, let In be an ideal in the polynomial ring An := K[xi,j | i ∈ [c], j ∈ [n]]
such that the following two conditions are satisfied:

1. In is preserved by the (left) action of the symmetric group Sym([n]) on
An via K-algebra automorphisms determined by πxi,j = xi,π(j); and

2. In ⊆ In+1.

Dually, let Xn be the prime spectrum of An/In, a closed subscheme of
Spec(An). Then the two conditions above express that

1. Xn is preserved by the induced action of Sym([n]) on Spec(An); and

2. the projection Spec(An+1)→ Spec(An) dual to the inclusion An → An+1

maps Xn+1 into Xn.
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Such a sequence (Xn)n of schemes of matrices is called a width-one FIop-
scheme of finite type over K (see Section 1.4 for a more convenient, functorial
definition) or, more informally, a symmetric wide-matrix scheme, where the
adjective wide refers to the fact that c is constant and we are interested in the
case where n≫ 0; for brevity, we will usually drop the adjective symmetric.

Recall that a quasipolynomial is a function f : Z→ R of the form

f(n) = cd(n)nd + cd−1(n)nd−1 + · · ·+ c0(n)

where each ci : Z → R is periodic with integral period. Equivalently, f is a
quasipolynomial if and only if there exist an N and polynomials f0, . . . , fN−1
such that f(n) = fi(n) whenever n ≡ i modulo N .

Theorem 2.1.1.1 (Main Theorem). Let (Xn)n be a width-one FIop-scheme
of finite type over a Noetherian ring K. Then the action of Sym([n]) on Xn

induces an action of Sym([n]) on the set C(Xn) of irreducible components
of Xn, and there exists a quasipolynomial f : Z → R and a natural number
n0 ∈ Z≥0 such that the number |C(Xn)/ Sym([n])| of Sym([n])-orbits on C(Xn)
equals f(n) for all n ≥ n0.

2.1.2 Examples

We illustrate the Main Theorem with a number of examples. We recall that
the irreducible components of Xn are in one-to-one correspondence with the
inclusion-wise minimal prime ideals of An that contain In.

Example 2.1.2.1. LetK be a domain, take c = 1, write xj instead of x1,j , and
let In be the ideal generated by all monomials xixjxk with i, j, k ∈ [n] distinct.
Clearly, the sequence (In)n satisfies the conditions (1) and (2) above. A prime
ideal containing In contains at least one variable from each triple of distinct
variables. Hence the minimal prime ideals containing In are the ideals IS :=
({xi | i ∈ S}) where S ⊆ [n] is a set of cardinality n − 2; the corresponding
subscheme is the coordinate plane corresponding to the coordinates not labeled
by S. Hence Xn has

(
n
n−2
)

=
(
n
2

)
irreducible components, which form a single

orbit under the symmetric group Sym([n]). The quasipolynomial from the
Main Theorem is 1. ♢

Example 2.1.2.2. Set K := C, let d ∈ Z≥0, take c = 1, and let In be the ideal
generated by all polynomials xdi − 1 with i ∈ [n]. The irreducible components
of Xn are the points (ζ1, . . . , ζn) where each ζi is an d-th root of unity. Thus
Xn has dn irreducible components, and these form

(
n+d−1
d−1

)
orbits under the



group Sym([n]), each of which has a unique representative of the form

(1, . . . , 1, e2πi/d, . . . , e2πi/d, e2·2πi/d, . . . , e2·2πi/d,

. . . , e(d−1)·2πi/d, . . . , e(d−1)·2πi/d),

where the numbers of occurrences of ej·2πi/d, j = 0, . . . , d − 1 are arbitrary
nonnegative integers whose sum is n. ♢

Example 2.1.2.3. Set K := C(t), where t is a variable, let c = 1, and let In
be the ideal generated by all polynomials of the form x2i − t with i ∈ [n]. Then
I1 is a prime ideal, but for n ≥ 2 and two distinct i, j ∈ [n] any prime ideal P
containing In also contains

(x2i − t)− (x2j − t) = (xi − xj)(xi + xj)

and hence either xi−xj or xi+xj . Hence, modulo P , the variables x1, . . . , xn
can be partitioned into two subsets: within each of these sets, all variables
are equal modulo P , and they are minus the variables in the other set, again
modulo P .

Conversely, if A,B ⊆ [n] are disjoint sets with A ∪B = [n], then the ideal
PA,B generated by the polynomials xi − xj with (i, j) ∈ (A × A) ∪ (B × B),
the polynomials xi + xj with (i, j) ∈ A × B, and the polynomial x21 − t is a
minimal prime ideal over In. By the above, these are all minimal primes over
In. Note that PA,B = PC,D if and only if {A,B} = {C,D}, so there is a
bijection between unordered partitions of [n] into two parts (one of which may
be empty).

The number of unordered partitions of [n] is 2n−1. The action of Sym([n])
on minimal primes over In corresponds to the natural action of Sym([n]) on
unordered partitions of [n]. The number of Sym([n])-orbits on the latter is
⌊n/2⌋+ 1—indeed, {A,B}, {Ã, B̃} are in the same Sym([n])-orbit if and only
if min{|A|, |B|} = min{|Ã|, |B̃|}, and this number takes any of the values in
{0, . . . , ⌊n/2⌋}. Here the quasipolynomial is the function f(n) = ⌊n/2⌋ + 1,
and it holds for all n ≥ 0. ♢

Example 2.1.2.4. Set K := C, c := 1, let d ∈ Z≥1, and let In be the ideal
generated by all differences xdi−xdj with i, j ∈ [n]. In this case, each prime ideal
P containing In also contains, for each i ̸= j, a polynomial of the form xi−ζxj ,
where ζ is a d-th root of unity. Hence the variables can be partitioned into d
sets, where modulo P the variables in each set are e2πi/d times the variables
in the previous set.



Conversely, let A = (A0, . . . , Ad−1) be an ordered partition of [n]: a se-
quence of disjoint, potentially empty subsets of [n] whose union is [n]. Then
the ideal PA generated by the polynomials xj − e2bπi/dxl whenever l lies in
some Aa and j lies in Aa+b (indices modulo d) is a minimal prime over In, and
by the above, all primes arise in this manner. Furthermore, PA = PB if and
only if the sequence B arises from A by a cyclic permutation, i.e., by adding
an element of Z/dZ to the indices.

Hence the irreducible components of the scheme defined by In correspond
bijectively to orbits of ordered partitions of [n] into d parts under the action
of Z/dZ by rotation of the parts. The number of Sym([n])-orbits on such
components is therefore equal to the number of (Z/dZ) × Sym([n])-orbits on
ordered partitions. Modding out Sym([n]) first, what remains is to count the
Z/dZ-orbits on ordered integer partitions of n into d nonnegative parts. This
is done using the orbit-counting lemma (due to Cauchy, Frobenius, and not
Burnside) for Z/dZ: for e ∈ Z/dZ define

f(e) := gcd(d, e) ∈ {1, . . . , d}.

Then rotation by e on such integer partitions has the same fixed points as
rotation by f(e). This number is 0 if n is not divisible by d/f(e), and equal

to
(
n/(d/f(e))+f(e)−1

f(e)−1
)

otherwise: the first f(e) positions in the partition can

be filled arbitrarily with nonnegative integers whose sum is n/(d/(f(e))), and
this determines the partition fixed under rotating over f(e). Thus the number
of Sym([n])-orbits on components equals

1

d

∑
e∈Z/dZ:(d/f(e))|n

(
n/(d/f(e)) + f(e)− 1

f(e)− 1

)
,

which is, indeed, a quasipolynomial in n. ♢

These examples illustrate different aspects of the proof of Theorem 2.1.1.1.
First, the projection Xn+1 → Xn maps each irreducible component of Xn+1

into some component of Xn, but not necessarily onto some such component: in
Example 2.1.2.1, the coordinate planes involving the variable xn+1 are mapped
onto coordinate lines rather than planes. However, “most” coordinate planes
are mapped onto coordinate planes. We will capture these relations between
components of the Xn as n varies by the so-called component functor (see
Section 2.4), which is a contravariant functor from FI to the category PF of
finite sets with partially defined maps. This functor plays a fundamental role
in the proof of Theorem 2.1.1.1, and also yields a more detailed picture of the
components of the Xn for varying n.



Second, Example 2.1.2.2 illustrates that, while the number of components
of Xn can grow exponentially with n, the number of orbits is upper-bounded
by a polynomial.

Third, in Example 2.1.2.3 we see that, if we adjoin
√
t to the ground field

K, then the example reduces to a variation on Example 2.1.2.2: there are 2n

components and n+1 orbits on components. This suggests that the quasipoly-
nomiality in the Main Theorem is due to the action of a Galois group. We will
see that this is, indeed, the case when the wide-matrix scheme is of product
type; see §2.5.4.

Finally, Example 2.1.2.4 shows that even when K is an algebraically closed
field, quasipolynomiality (rather than polynomiality) occurs. In part, this is
because we will have to work over larger base fields that are transcendental
extensions of the ground field K; and in part, it is because Galois groups
are not the sole reason for quasipolynomiality: in §2.5.7, we will replace the
orbit-counting via Galois groups to orbit-counting via certain groupoids.

2.1.3 Applications

In this subsection, we give two interesting applications of our techniques.

Corollary 2.1.3.1. Let K be a field, let S ⊆ K be a finite subset, and let k
be a natural number. For every n ∈ Z≥0, define

Mn := {A ∈ Sn×n ⊆ Kn×n | rk(A) = k},

the set of all rank-k matrices all of whose entries are in S. Let Sym([n]) act
by simultaneous row and column permutations on Mn. Then |Mn/ Sym([n])|
is a quasipolynomial in n for n≫ 0.

Proof. Consider the morphism φn : Ak×nK ×Ak×nK → An×nK given by (A,B) 7→
AT ·B. For each C ∈Mn, the closed subscheme φ−1n (C) is irreducible—indeed,
for any field extension L of K, its L-points form an orbit under the action
of the group GLk(L) acting via g(A,B) = ((g−1)TA, gB), and irreducibility
follows from irreducibility of the group scheme GLk. Hence (Xn)n defined
by Xn := φ−1n (Mn) is a wide-matrix scheme with c = 2k whose irreducible
components are in Sym(n)-equivariant one-to-one correspondence with the
points of Mn. The corollary follows from the Main Theorem to (Xn)n.

Remark 2.1.3.2. The same argument works for symmetric rank-k matrices
and for skew-symmetric rank-k matrices. More generally, by a similar argu-
ment: if Yn ⊆ An×nK is a closed subscheme of the variety of rank-≤ k matrices



such that Yn is preserved under the action of Sym([n]) by conjugation and such
that forgetting the last row and column maps Yn+1 to Yn, then, too, the num-
ber of orbits of Sym([n]) on irreducible components of Yn is a quasipolynomial
in n for n≫ 0. ♢

Example 2.1.3.3. Consider K = Q and let Mk,n be the set of symmetric
n× n-matrices with entries in {0, 1} of rank precisely k. Then:

• M0,n consists of the zero matrix only, so there is a single Sn-orbit.

• Each Sn-orbit in M1,n has a unique representative of the form[
J 0
0 0

]
where J is an m ×m-matrix (1 ≤ m ≤ n) with all ones, and the zeros
are block matrices of appropriate sizes. Hence there are n orbits.

• There are three types of Sn-orbits in M2,n, with representativesJ1 0 0
0 J2 0
0 0 0

 ,
 0 J 0
JT 0 0
0 0 0

 ,
J1 J2 0
JT2 0 0
0 0 0


where, in the first case, J1, J2 are all-one matrices of formats n1×n1, n2×
n2 with 1 ≤ n1 ≤ n2 and n1 +n2 ≤ n; in the second case, J is an all-one
n1×n2-matrix with 1 ≤ n1 ≤ n2 and n1 +n2 ≤ n; and in the third case,
J1 is an all-one n1 × n1-matrix and J2 is an all-one n1 × n2-matrix with
1 ≤ n1, n2 and n1 + n2 ≤ n.

In the last case, the number of pairs (n1, n2) is
(
n
2

)
. In the first and

second cases, we have to count pairs (n1, n2) with 1 ≤ n1 ≤ n2 and
n1 + n2 ≤ n. This number equals

⌊n/2⌋∑
n1=1

(n− 2n1 + 1) = ⌊n/2⌋ · ⌈n/2⌉.

Summarising, the number of Sn-orbits on M2,n equals 2 · ⌊n/2⌋ · ⌈n/2⌉+(
n
2

)
, clearly a quasipolynomial in n.

♢



For the next application, recall that a linear code of length n and dimension
m over Fq is a linear subspace of Fnq of dimension m. Puncturing such a
code means deleting a coordinate; we only allow this when the dimension of
the code does not drop. There is a natural notion of isomorphism of linear
codes, involving permuting and scaling coordinates as well as applying an
automorphism of Fq; see Example 2.5.6.5.

Theorem 2.1.3.4. Fix a finite field Fq and a natural number m. Let C be
a family of isomorphism classes of m-dimensional codes, of varying lengths,
that are preserved under puncturing. Then for n ≫ 0 the number of length-n
elements in C is a quasipolynomial in n.

This theorem is not a direct consequence of our Main Theorem, but rather
than one of the tools that we develop for the Main Theorem, see §2.5.6 and
§2.5.7.

2.1.4 Organisation of this chapter

This chapter is organized as follows. In section 2, we introduce certain classes
of width-one FIop-schemes of finite type. Such as nice FIop-schemes and
reduced FIop-schemes. These schemes are very useful for counting irreducible
components of the scheme Xn for large values of n. We also discuss the shifting
of FIop-schemes which is a key ingredient for the Shift Theorem 2.3.1.1.

In Section 3, we prove that any width-one FIop-scheme of finite type is
of product type after a suitable shift and a suitable localisation (see the Shift
Theorem 2.3.1.1 and Proposition 2.3.3.1). The shifting technique is also used
by Draisma in his work on polynomial functors [Dra19], and the Shift Theorem
is reminiscent of and was inspired by, the Shift Theorem in [BDES22]. It is
the strongest new structural result that we prove about wide-matrix schemes.

In Section 4, for an FIop-scheme X, we define the component functor CX
from FI to the category PF of finite sets with partially defined maps. The
component functor is one of the most important notions of this chapter, and
in the remainder of the chapter, we obtain an almost complete combinatorial
description of CX in the case where X is a width-one FIop-scheme.

Section 5 is devoted to the proof of the Main Theorem. In three steps, we
construct more and more refined combinatorial models for CX . The first ones,
called elementary model functors, allow us to prove the Main Theorem when
X is of product type (see §2.5.4). By the Shift Theorem this situation is always
attained by a shift and a localisation, and to undo the simplifications caused by
that shift and localisation, we need the two more complicated combinatorial
models dubbed model functors (see §2.5.6) and pre-component functors (see



§2.5.8). A major generalization in the step from elementary model functors to
model functors is that we pass from counting orbits under a finite group—in
the application to CX , this is the image of a Galois group—which is part of the
defining data of an elementary model functor, to counting orbits under a finite
groupoid which emerges by itself from the defining data of a model functor. The
proof of Theorem 2.5.7.1 that model functors have a quasipolynomial count is
entirely elementary, but very subtle. A direct application is Theorem 2.1.3.4.

In comparison, the step from model functors to pre-component functors is
conceptually small. In §2.5.9 we prove that pre-component functors always
have a quasipolynomial count, and in §2.5.10 we establish that the component
functor of a wide-matrix scheme satisfies the properties Compatibilities (1)–
(3) of a pre-component functor. This, then, completes the proof of the Main
Theorem.

2.2 Width-one FIop-schemes

Recall from Theorem 1.4.6.3 that any width-one FIop-scheme of finite type
over a Noetherian ring K is topologically Noetherian, i.e., it satisfies the de-
scending chain condition on closed FIop-subschemes.

2.2.1 Nice width-one FIop-schemes

The following consequence of Noetherianity will be useful to us: it implies that
when we are interested in the tail of a width-one FIop-scheme X of finite type
over a Noetherian ring K, i.e., in X([n]) for n≫ 0, then we may without loss
of generality assume that the map X([n + 1]) → X([n]) dual to the inclusion
[n]→ [n+ 1] is dominant for all n.

Proposition 2.2.1.1. Let K be a Noetherian ring and let X = Spec(B) be
a width-one scheme of finite type over K. Then there exists an n0 ∈ Z≥0
such that for all S, T ∈ FI with n0 ≤ |S| ≤ |T | and all π ∈ HomFI(S, T ), the
homomorphism B(π) : B(S)→ B(T ) is injective. Define

B′(S) :=

{
B(S) if |S| ≥ n0, and
B(S)/ ker(B(σ)) if |S| ≤ n0

where σ is any chosen element of HomFI(S, [n0]) ( the result doesn’t depend
on σ). For any S, T ∈ FI and π ∈ HomFI(S, T ) the K-algebra homomorphism
B(π) : B(S)→ B(T ) induces a well-defined K-algebra homomorphism B′(π) :
B′(S)→ B′(T ), and thus B′ becomes an FI-algebra over K, finitely generated



in width ≤ 1, with the property that B′(π) is injective for all π ∈ HomFI(S, T ).
Set X ′ := Spec(B′); then X ′(π) : X ′(T ) → X ′(S) is dominant for all π ∈
HomFI(S, T ).

Proof. First we show that for all S, T ∈ FI we have

kerB(π) = kerB(σ) for all π, σ ∈ HomFI(S, T ).

For any two injections π, σ : S → T there exists a permutation τ of T such that
π = τ◦σ. For f ∈ kerB(σ) we have B(π)(f) = B(τ◦σ)(f) = B(τ)(B(σ)(f)) =
B(τ)(0) = 0. This implies that kerB(σ) ⊂ kerB(π). By symmetry, also the
reverse inclusion holds. In particular, this shows that kerB(σ) is independent
of the choice of σ and it is stable under the action of the group Sym(S).

Now suppose that the first claim of the proposition is not true, that is,
there does not exist such an n0. Then there exists a strictly increasing se-
quence of positive integers (mi)i and injections πi : [mi]→ [mi + 1] such that
for all i, kerB(πi) is not trivial. Let Ii be the FI-ideal in B generated by⋃i
j=1 kerB(πj); by the first paragraph, Ii(T ) = {0} for all T with |T | > mi.

Hence the sequence (Ii)i is a strictly increasing chain of FI-ideals of B; this is
a contradiction to the fact that B is Noetherian.

Let S, T ∈ FI and let π ∈ HomFI(S, T ). If |S| ≥ n0, then B′(S) =
B(S) and it is immediate that B(π) : B(S) → B(T ) induces a K-algebra
homomorphism B′(S) → B′(T ). Otherwise, let σ : S → [n0] be an injection,
so that B′(S) = B(S)/ kerB(σ). If |T | ≥ n0, then π factors via σ and it
follows that

kerB(π) ⊇ kerB(σ);

again, B(π) induces a map B′(S)→ B′(T ) = B(T ). Finally, if also |T | ≤ n0,
then let ι : T → [n0] be an injection. Replace σ by ι ◦ π, another injection
S → [n0]. Then kerB(σ) = ker(B(ι) ◦ B(π)) by the first paragraph, and
hence B(π) maps kerB(σ) into kerB(ι), so that, once more, it induces a map
B′(S)→ B′(T ).

The check that B′ is an FI-algebra over K finitely generated in width
≤ 1 is straightforward, and the check that each B′(π) is injective follows from
a similar analysis to that in the previous paragraph. The final statement is
standard: injectiveK-algebra homomorphisms yield dominant morphisms.

Definition 2.2.1.2. We call an FI-algebra B over a ring K nice if for all
π ∈ HomFI(S, T ) the map B(π) : B(S)→ B(T ) is injective; also its spectrum
is then called nice. Proposition 2.2.1.1 says that if K is Noetherian, then any



width-one FIop-scheme of finite type over K agrees with a nice scheme for
sufficiently large S. ♢

Lemma 2.2.1.3. Let B be a nice FI-algebra over K and let h ∈ K. Then
B[1/h] is a nice FI-algebra over K[1/h].

Proof. For each π ∈ HomFI(S, T ), B[1/h](π) is the K[1/h]-algebra homo-
morphism B(S)[1/h]→ B(T )[1/h] obtained by the K-algebra homomorphism
B(S) → B(T ) by localisation. By assumption, the latter is injective. Hence,
since localisation is an exact functor from K-modules to K[1/h]-modules, so
is the former.

2.2.2 Reduced FIop-schemes

Definition 2.2.2.1. The FI-algebra B over K is called reduced if B(S) has
no nonzero nilpotent elements for any S ∈ FI. Then also X = Spec(B) is
called reduced. ♢

The following lemma is immediate.

Lemma 2.2.2.2. Let B be an FI-algebra over K and for each S ∈ FI let
Bred(S) be the quotient of B(S) by the ideal of nilpotent elements. Then for π ∈
HomFI(S, T ) the homomorphism B(π) induces a homomorphism Bred(S) →
Bred(T ), and this makes Bred into a reduced FI-algebra over K. Furthermore,
if B is finitely generated in width ≤ 1, then so is Bred. □

It follows that to prove our Main Theorem, we may always assume that X
is reduced.

2.2.3 Shifting

The idea of shifting an FI-structure over a finite set goes back to [CEF15].
Draisma also used it in his work on topological Noetherianity of polynomial
functors [Dra19], except that there, one shifts over a vector space.

Definition 2.2.3.1. Let S0 be a finite set. Then ShS0 : FI → FI is the
functor that sends S to the disjoint union S0 ⊔ S and π ∈ HomFI(S, T ) to
ShS0

π : S0 ⊔ S → S0 ⊔ T that is the identity on S0 and equal to π on S. For
an FI-algebra B over K we write

ShS0 B := B ◦ ShS0



and for the FIop-scheme X = Spec(B) over K we write

ShS0 X := X ◦ ShS0 = Spec(ShS0 B).

Furthermore, for a homomorphism φ : B → R of FI-algebras over K, we
write ShS0

φ for the morphism ShS0
B → ShS0

R that sends S to φ(S0 ⊔ S),
and similarly for morphisms of FIop-schemes. A straightforward check shows
that ShS0 is a covariant functor from FI-algebras over K into itself and from
FIop-schemes over K into itself. ♢

If B is finitely generated in width ≤ d, then so is ShS0
B; and hence, if X

is a width-d FIop-scheme of finite type over K, then so is ShS0 X.

For future use, we note that ShS0(ShS1 B) is canonically isomorphic to
ShS0⊔S1 B, and similarly for FIop-schemes. Furthermore, shifting preserves
reducedness and niceness.

Base change

Definition 2.2.3.2. If A is an FI-algebra over a ring K, and L is a K-algebra,
then we obtain an FI-algebra AL over L by setting S 7→ L ⊗K AS . In the
special case where L is the localisation K[1/h] for some h ∈ K, we also write
A[1/h] for AL.

Dually, if X = Spec(A) is the associated FIop-scheme, then we write XL =
Spec(AL) for the base change, and X[1/h] if L = K[1/h]. ♢

Remark 2.2.3.3. If B′ := ShS0
B, then B′ is naturally an FI-algebra over

B′0 = B(S0) (see Remark 1.4.2.8). Thus shifting naturally leads to a change of
base ring—informally, by shifting we “move some functions into the constants”.
For an f ∈ B(S0), its image in B(S0 ⊔ S) under B(ι), where ι is the natural
injection S0 → S0 ∪S, will also be denoted simply by f . This is a slight abuse
of notation, especially as B(ι) needs not to be an injection if B is not nice,
but this will not lead to confusion.

In the interpretation from Remark 1.4.2.10 of FI-algebras consisting of
algebras acted upon by Sym(n) with suitable maps between them, one may
model shifting by restricting the action to the subgroup of Sym(n) that fixes
the numbers 1 up to n0 := |S0|. We will, however, not explicitly use this
model. ♢



2.3 The Shift Theorem

2.3.1 Formulation of the Shift Theorem

Recall from Lemma 1.4.4.11 that a width-one FIop-scheme X = Spec(B)
of finite type over a ring K is a closed FIop-subscheme of S 7→ ZS , where
Z = X([1]) and where the product is over B0. In this section, we establish
the fundamental result that in fact, after a suitable shift and localisation, X
becomes equal to such a product.

Theorem 2.3.1.1 (Shift Theorem). Let B be a reduced and nice FI-algebra
that is finitely generated in width ≤ 1 over a ring K, assume that 1 ̸= 0 in B0,
and set X := Spec(B). Then there exists a finite set S0 ∈ FI and a nonzero
element h ∈ B(S0) such that X ′ := (ShS0

X)[1/h] is isomorphic to S 7→ ZS,
where Z = X ′([1]) and where the product is over B(S0)[1/h].

2.3.2 Shift-and-localise

Before proving the Shift Theorem, we establish that shifting and localisation
commute in a suitable sense.

Lemma 2.3.2.1. Let B be a reduced FI-algebra over K, S0 and S1 be finite
sets, h0 ∈ B(S0) nonzero, B′ := (ShS0

B)[1/h0], h1 ∈ B′(S1) nonzero, and
B′′ := (ShS1

B′)[1/h1]. Then there exists a nonzero h ∈ B(S0 ⊔ S1) such that
(ShS0⊔S1

B)[1/h] ∼= B′′ as FI-algebras over K.

Proof. By multiplying h1 with a suitable power of the image of h0 in B′(S1),
we achieve that h1 lies in the image of B(S0⊔S1) in B(S0⊔S1)[1/h0] = B′(S1).
Let h̃1 be an element of B(S0⊔S1) mapping to h1. Then, by a straightforward
computation,

h := h0h̃1 ∈ B(S0 ⊔ S1)

does the trick.

2.3.3 Proof of the Shift Theorem

Proof. By Lemma 1.4.4.11, X is (isomorphic to) a closed FIop-subscheme of
Matc,B0

for some c. Let R : S → B0[xij | i ∈ [c], j ∈ S] be the coordinate ring
of the latter wide-matrix space, and let I be the ideal of X in R.

Fix any monomial order on Zc≥0. We will use this order to compare mono-
mials in the variables x1j , . . . , xcj for any j.



Elements of I([1]) are B0-linear combinations of monomials xα1
1,1 · · ·x

αc
c,1

with α ∈ Zc≥0. Let M ⊆ Zc≥0 be the set of (exponent vectors of) leading
monomials of monic elements of I([1]). By Dickson’s lemma, there exist finitely
many monic elements f1, . . . , fk ∈ I([1]) whose leading monomials u1, . . . , uk
generate M .

Now there are two possibilities. Either for every n ∈ Z≥1 and every nonzero
f ∈ I([n]) ⊆ R([n]), some monomial in f is divisible by R(π)ui for some i ∈ [k]
and some π ∈ HomFI([1], [n])—or not. In the former case, using the fi are
monic, we can do division with the remainder by theR(π)fi until the remainder
is zero, and it follows that f1, . . . , fk ∈ I([1]) generate the FI-ideal I. Then X
itself is a product as desired—indeed, by Lemma 1.4.4.11, X is a closed FIop-
subscheme of the FIop-scheme S 7→ X([1])S , and the fact that the FI-ideal of
X is generated by I([1]) implies that the corresponding closed embedding is
an isomorphism. Hence in this case we can take S0 := ∅ and h := 1 ̸= 0 ∈ B0.

In the latter case, let n0 be minimal such that there exists a nonzero f ∈
I([n0]) none of whose terms are divisible by any R(π)ui. Regard f as a poly-
nomial in x1,n0 , . . . , xc,n0 with coefficients in R([n0−1]), let u = xα1

1,n0
· · ·xαc

c,n0

be the leading monomial of f , and let h̃ ∈ R([n0−1]) be the coefficient of u in
f . Now h̃ ̸∈ I([n0 − 1]) by minimality of n0 and the fact that no term in h̃ is
divisible by any R(π)ui with i ∈ [k] and π ∈ HomFI([1], [n− 1])—indeed, such
a term, multiplied with u, would yield a term in f with the same property.
Set S0 := [n0 − 1] and let h be the image of h̃ in B(S0); this is nonzero by
construction.

Now set B′ := (ShS0
B)[1/h] and X ′ := Spec(B′), and note that 1 ̸= 0

in B′0. Then X ′ is a closed FIop-subscheme of Matc,B′
0
, and we claim that

if we construct M ′ ⊆ Zc≥0 for X ′ in the same manner as we constructed M
for X, then M ′ ⊋ M . Indeed, if ι : [1] → S0 ⊔ [1] is the natural inclusion,
then R(ι) maps fi to an element in the ideal of X(S0 ⊔ [1]) with the same
leading monomial ui, and this maps to an element of the ideal of X ′([1]) with
that same leading monomial. This shows that M ′ ⊇M . Furthermore, via the
bijection τ : [n0] → S0 ⊔ [1] that is the identity on S0 = [n0 − 1] and sends
n0 to 1 we obtain another element R(τ)f in the ideal of X(S0 ⊔ [1]), whose
image in the ideal of X ′([1]) has an invertible leading coefficient (namely, h)
and leading monomial xα1

1,1 · · ·x
αc
c,1. We thus find that α ∈ M ′, while α ̸∈ M

by construction.

The fact that B is nice and reduced implies that so is B′. Hence we can
continue in the same manner with B′. By Dickson’s lemma, the set M can
strictly increase only finitely many times. Hence after finitely many shift-and-
localise steps, we reach the former case, where we know that X is a product.



Finally, we invoke Lemma 2.3.2.1 to conclude that this finite sequence of
shift-and-localise steps can be turned into a single shift followed by a single
localisation inverting a nonzero element.

We will use the following strengthening of the Shift Theorem in the case
where K is Noetherian.

Proposition 2.3.3.1. In the setting of the Shift Theorem, if we further as-
sume that K is Noetherian, then there exists a nonzero h′ ∈ B′0 such that
B′′ := B′[1/h′] and X ′′ := Spec(B′′) have the following properties:

1. like in the Shift Theorem, X ′′ is isomorphic to S 7→ V S where V :=
X ′′([1]) and where the product is over B′′0 ;

2. B′′0 is a domain; and

3. for each S ∈ FI, every irreducible component of V S maps dominantly
into Spec(B′′0 ).

Proof. The FIop-scheme X ′ = Spec(B′) from the Shift Theorem maps S to
ZS , where Z = X ′([1]) and where the product is over B′0. By construction,
B′ is reduced, nice, and 1 ̸= 0 in B′0. Any localisation by a nonzero h′ ∈ B′0
satisfies (1). We will now construct h′ so as to satisfy (2) and (3).

As K is Noetherian and B′0 is a finitely generated K-algebra, B′0 is Noethe-
rian. Hence Spec(B′0) is the union of finitely many irreducible components;
let C be one of them. Then there exists a nonzero h1 ∈ B′0 that vanishes
identically on all other irreducible components of Spec(B′0). Now B′0[1/h1] is
a domain, namely, the coordinate ring of C[1/h1].

Furthermore, B′1[1/h1] is a finitely generatedB′0[1/h1]-algebra and by generic
freeness [Eis95, Theorem 14.4], there exists a nonzero h2 ∈ B′0[1/h1] such that
B′1[1/h1][1/h2] is a free
B′0[1/h1][1/h2]-module. After multiplying with a power of (the image of) h1,
we may assume that h2 the image of some h̃2 ∈ B0. Then set h′ := h1h̃2.

Set B′′ := B′[1/h′] and X ′′ := Spec(B′′) = X ′[1/h′]. Now B′′0 is a localisa-
tion of the domain B′[1/h1], hence a domain, so (2) holds.

Furthermore, for every S ∈ FI, X ′′(S) is the product over B′′0 = B′[1/h′] of
|S| copies of V := X ′′([1]). Its coordinate ring B′′(S) is then a tensor product
over B′′0 of |S| copies of the free B′′0 -module B′′1 , and hence B′′(S) is itself
a free B′′0 -module. Furthermore, again since niceness is preserved, the map
B′′0 → B′′(S) is injective. Then, by the going-down theorem for flat extensions
[Eis95, Lemma 10.11], every minimal prime ideal of B′′(S) intersects B′′0 in the
zero ideal, so that every irreducible component of X ′′(S) maps onto Spec(B′′0 ),
as desired.



Definition 2.3.3.2. Let L be a Noetherian domain, Q ⊇ L a ring extension
such that Q is a finitely generated L-algebra and free as an L-module. Set
Z := Spec(Q). Then the FIop-scheme over L defined by S 7→ ZS , where the
product is over L, is said to be of product type. As we have seen above, each
irreducible component of ZS then maps dominantly into SpecL. ♢

In Section 2.5 we will establish our Main Theorem for FIop-schemes of
product type and then relate the general case to the product case via the Shift
Theorem.

Example 2.3.3.3. To illustrate the Shift Theorem and Proposition 2.3.3.1
we analyse [KR22, Example 3.20] in the case of curves. In our notation,
let Xd(S) be the reduced, closed subvariety of Mat2,C(S) sonsisting of all S-
tuples of points (xi, yi) for which there exists a nonzero degree-≤ d polynomial
p ∈ C[x, y] with p(xi, yi) = 0 for all i ∈ S. It is proved in [KR22] that Xd(S) is
an irreducible variety for all d ≥ 1 and all S, so it is not particularly interesting
from the perspective of counting components. However, it is interesting from
the perspective of the Shift Theorem. Take n0 := dimC[x, y]≤d − 1, so that
through n0 points (xi, yi), i = 1, . . . , n0 in general position goes a unique
plane curve C of degree ≤ d. The coefficients of the corresponding polynomial
p are rational functions of the (xi, yi) with i ∈ [n0]. Take for h a common
multiple of the denominators of these rational functions, so that C is a curve
over the ring C[x1, y1, . . . , xn0

, yn0
][1/h] =: B′0. Then X ′ = (Sh[n0]X)[1/h] is

the FIop-variety that maps S to CS , where the product is over B′0. ♢

2.4 The component functor

To establish the Main Theorem, we will analyse the functor that assigns to
a finite set S the set of components of X(S). This functor takes values in
another category called PF.

2.4.1 Contravariant functors FI→ PF

Definition 2.4.1.1. Let PF be the category whose objects are finite sets and
whose morphisms T → S are partially defined maps from T to S, i.e., maps π
into S whose domain dom(π) is a subset of T . If π : T → S and σ : S → U
are morphisms in this category, then σ ◦ π is defined precisely at those i ∈ T
for which i ∈ dom(π) and π(i) ∈ dom(σ); and σ ◦ π takes the value σ(π(i))
there. ♢



We are interested in contravariant functors F : FI → PF and morphisms
between these.

Definition 2.4.1.2. A morphism from a contravariant functor F : FI→ PF
to another such functor F ′ is a collection of everywhere defined maps (Ψ(S) :
F(S) → F ′(S))S∈FI such that for all S, T ∈ FI and π ∈ HomFI(S, T ) the
diagram

F(T )
Ψ(T ) //

F(π)

��

F ′(T )

F ′(π)

��
F(S)

Ψ(S)
// F ′(S)

commutes in the following sense: if the leftmost map F(π) is defined at some
f ∈ F(T ), then the rightmost map F ′(π) is defined at Ψ(T )(f), and we have

F ′(π)(Ψ(T )(f)) = Ψ(S)(F(π)(f)).

The morphism is called injective/surjective if each Ψ(S) is injective/surjective,
and an isomorphism if each Ψ(S) is bijective and moreover F ′(π) is defined
precisely at all f ′ ∈ F ′(T ) such that F(π) is defined at Ψ(T )−1(f ′). ♢

Note that our morphisms F → F ′ are not precisely natural transforma-
tions, since we do not require that the diagram above commutes as a diagram
of partially defined maps: we allow the partially defined map F ′(π) ◦ ψ(T ) to
have a larger domain than ψ(S) ◦ F(π).

2.4.2 The component functor of an FIop-scheme

Definition 2.4.2.1. Let B be a finitely generated FI-algebra over a Noethe-
rian ring K, so that X = Spec(B) is an FIop-scheme of finite type over K.
We define the contravariant functor CX : FI→ PF on objects by

CX(S) = {the irreducible components of X(S)}

and on morphisms π ∈ HomFI(S, T ) as follows: CX(π) is defined at some com-
ponent C ∈ CX(T ) if (and only if) X(π) : X(T )→ X(S) maps C dominantly
into a component of X(S). The functor CX is called the component functor of
X. ♢

Note that the condition that K is Noetherian and B is finitely generated
implies that, indeed, CX(S) is a finite set for each S.



Example 2.4.2.2. In Example 2.1.2.1, CX is isomorphic to the functor FI→
PF that assigns to the set S the set

(
S
2

)
of two-element subsets and to π : S →

T the partially defined map
(
T
2

)
→
(
S
2

)
that sends {i, j} to {π−1(i), π−1(j)}

whenever this is defined. ♢

In the definition of the component functor we have not assumed that B is
generated in width ≤ 1, and indeed larger FI-algebras also yield interesting
examples.

Example 2.4.2.3. Let K be a field and let R be the FI-algebra that assigns
to S the ring

R(S) = K[xi,j | i, j ∈ S]/({xi,j − xj,i | i, j ∈ S})

and to a morphism π ∈ HomFI(S, T ) the K-algebra homomorphism deter-
mined by xi,j 7→ xπ(i),π(j). This FI-algebra is generated in width 2 by the two
elements x1,1, x1,2 ∈ R([2]).

It is well known that this FI-algebra is not Noetherian; the following exam-
ple is closely related to [HS12, Example 3.8]. Let Id(S) be the ideal generated
by all cycle monomials of the form xi1,i2xi2,i3 · · ·xik,i1 where 3 ≤ k ≤ d and
i1, . . . , ik are distinct. Then I3 ⊊ I4 ⊊ . . . is an infinite strictly increasing chain
of ideals in R. Let I∞ be their union, and X = Spec(R/I∞). A prime ideal
P in R(S) containing I∞(S) contains at least one variable from every cycle of
length at least 3, so the edges {i, j} corresponding to variables xi,j with i ̸= j
that are not in P form a forest with vertex set S. Every forest is contained
in a tree with vertex set S. Correspondingly, every such tree T gives rise to a
minimal prime ideal containing I∞(S), namely the ideal generated by all xi,j
with {i, j} not an edge in T .

It follows that the minimal prime ideals of R(S)/I∞(S) are in bijection to
the trees with vertex set S. Recall that, by Cayley’s formula, this number of
trees is nn−2 when n := |S| ≥ 2. In particular, the number of Sym([n])-orbits
is at least (nn−2)/n! and hence superpolynomial in n; this shows that in the
Main Theorem, the width-one condition cannot be dropped.

Furthermore, given a π ∈ HomFI(S, T ), CX(π) is defined on trees ∆ with
vertex set T as follows. If the induced subgraph of ∆ on π(S) is connected
(and hence a tree), then CX(π)(∆) is that tree but with the label j ∈ π(S)
replaced by π−1(j). Otherwise, CX(π) is not defined at ∆. ♢

2.4.3 The underlying species

In our proof of the Main Theorem, we will give a fairly complete picture of
the component functor of width-one FIop-schemes, at least on sets S ∈ FI



with |S| ≫ 0. The first observation is that for any contravariant functor
F : FI → PF and any π ∈ EndFI(S) = Sym(S), F(π) is defined everywhere
on F(S), and a bijection there. After all, by the properties of a contravariant
functor idF(S) = F(π ◦ π−1) = F(π−1) ◦ F(π). It follows that the functor
from the category of finite sets with bijections to itself that sends S to F(S)
and π to F(π)−1 is a covariant functor and hence a species in the sense of
[Joy81]; we call this the underlying species of the F . For the Main Theorem,
it would suffice to know the underlying species of the component functor CX
of X. However, to understand this species, we will also need to have some
information on the partially defined maps CX(π) where π : S → T is not a
bijection.

2.4.4 A property in width one

The second observation on component functors concerns width-one FIop-
schemes.

Lemma 2.4.4.1. Suppose that X is a width-one FIop-scheme of finite type
over a Noetherian ring K. Then there exists an n0 such that for all S, T ∈ FI
with n0 ≤ |S| ≤ |T | and all π ∈ HomFI(S, T ), the partially defined map CX(π)
is surjective.

Proof. Take the n0 from Proposition 2.2.1.1, so that X(π) : XT → XS is
dominant for all S, T ∈ FI with n0 ≤ |S| ≤ T . Then for each component of
XS there must be some component of XT mapping dominantly into it.

2.5 Proof of the main theorem

In this section, which takes up the remainder of the chapter, we establish the
Main Theorem. To do so, on the one hand we develop purely combinatorial
tools (see §§2.5.2,2.5.3,2.5.5,2.5.6, 2.5.7,2.5.8,2.5.9) and on the other hand we
establish algebraic results relating the component functors of width-1 FIop-
schemes to those combinatorial tools (see §§2.5.1,2.5.4,2.5.10). Finally, all is
combined in §2.5.11 to establish the Main Theorem. We would like to highlight
§2.5.7, where from a so-called model functor we extract certain groupoids
acting on unions of rational cones, after which we use an orbit-counting lemma
for groupoids from §2.5.5 to establish quasipolynomiality in that crucial case.



2.5.1 The component functor of a wide-matrix space

Let L be a finitely generated K-algebra, where K is a Noetherian ring, and
c ∈ Z≥0. For each finite set S ∈ FI we have a natural morphism Matc,L(S)→
Spec(L) (corresponding to the natural embedding L→ L[Matc,L(S)]), and the
preimages of the irreducible components of L are the irreducible components
of Matc,L(S). This establishes the following.

Lemma 2.5.1.1. Let k be the number of minimal prime ideals of L. The
component functor of Matc,L is isomorphic to the functor that assigns the set
[k] to each S ∈ FI and the identity on [k] to each π ∈ HomFI(S, T ). In
particular, the number of Sym([n])-orbits on CMatc,L([n]) is equal to k. □

2.5.2 Elementary model functors

We will construct a class of contravariant functors FI → PF from which, as
we will see, the component functor of a width-one FIop-scheme of finite type
over a Noetherian ring is built up in a suitable sense.

Definition 2.5.2.1. Let k ∈ Z≥0, let G be a subgroup of Sym([k]), and, for
S ∈ FI, let E(S) be a subset of [k]S that is preserved under the diagonal action
of G on [k]S . Assume, furthermore, that for all π ∈ HomFI(S, T ) the map
[k]T → [k]S , α 7→ α ◦ π maps E(T ) into E(S). Then the contravariant functor
FI → PF that sends S to E(S)/G and π ∈ HomFI(S, T ) to the (everywhere
defined) map

E(T )/G→ E(S)/G, G · α 7→ G · (α ◦ π)

is called an elementary model functor FI → PF. Note that the latter map is
well-defined as G acts diagonally. ♢

2.5.3 A first quasipolynomial count

Proposition 2.5.3.1. Let k ∈ Z≥0, G a subgroup of Sym([k]) and let M be
a G-stable downward closed subset of Zk≥0; that is, for all β ∈ M and g ∈ G
we have gβ ∈ M , and for all β ∈ M and j ∈ [k] with βj > 0 we have
β−ej ∈M , where ej is the j-th standard basis vector in Zk. Then there exists
a quasipolynomial f such that for n≫ 0 the number of G-orbits on the set Mn

of elements β ∈M of total degree |β| :=
∑
j βj equal to n equals f(n).

Proof. By the orbit-counting lemma the number of orbits equals

1

|G|
∑
g∈G
|Mg

n|



where Mg
n = {α ∈ Mn | gα = α}. So it suffices to prove that each of the

summands is a quasipolynomial for n≫ 0.
The set M has a so-called Stanley decomposition [Sta82]

M =

d⊔
i=1

(αi + ZIi≥0)

for suitable subsets Ii ⊆ [k]. Call the i-th term N(i). Then, for each g ∈ G,
N(i)g is the set of nonnegative integers points in a certain rational polyhedron,
and its elements of degree n≫ 0 are counted by a quasipolynomial by [Sta97,
Theorem 4.5.11 and Proposition 4.4.1].

An immediate consequence is the following.

Corollary 2.5.3.2. Let S 7→ E(S)/G ⊆ [k]S/G be an elementary model func-
tor. Then |(E([n])/G)/Sym([n])| equals some quasipolynomial in n, for all
n≫ 0.

Proof. Define a map E([n])→ Zk≥0 by sending the vector α to its count vector
β, i.e., the vector in which βj is the number of l ∈ [n] with αl = j. Note that
this map is G-equivariant, so the image Mn is G-stable; and that the fibres
are precisely the Sym([n])-orbits. Furthermore, the fact that E is a model
functor implies that the union M =

⋃
nMn is downward closed. Now apply

Proposition 2.5.3.1.

2.5.4 FIop-schemes of product type

Elementary model functors are combinatorial models for the component func-
tor of FIop-schemes of product type in the sense of Definition 2.3.3.2, as fol-
lows.

Proposition 2.5.4.1. Let L be a Noetherian domain and let X be a width-
one FIop-scheme of product type over L. Then the component functor CX is
isomorphic to an elementary model functor.

Before we prove this result, we show that it holds in Example 2.1.2.3.

Example 2.5.4.2. Let X(S) be the closed subscheme of ASC(t) defined by the

equations x2i − t for all i ∈ S. We claim that this is of product type. First,
X(S) = ZS where Z is the subscheme of A1

C(t) defined by x2−t, and where the

product is over M := C(t). Second, to determine the irreducible components
of X(S), we extend scalars to a separable closure M of M , which in particular



contains a
√
t. Then XM (S) is just {±

√
t}S , each point of which maps onto

Spec(M). Thus X is of product type as claimed. The irreducible components
of X(S) are orbits of irreducible components of XM (S) under the Galois group,
which acts diagonally on {±

√
t}S by swapping

√
t and −

√
t. Thus CX is

isomorphic to the elementary model functor that maps S to {1, 2}S/Sym([2]).
♢

Proof. By assumption, X(S) = ZS , where Z is a fixed affine scheme over
L, and each irreducible component of X(S) maps dominantly into Spec(L).
Let M be the fraction field of L, and let XM be the base change of X to
M . Since each irreducible component of X(S) maps dominantly into Spec(L),
basic properties of localisation imply that the morphism XM (S) → X(S) is
a bijection at the level of irreducible components. Furthermore, taking these
bijections for all S, we obtain an isomorphism CXM

→ CX of contravariant
functors FI→ PF.

Let M be a separable closure of M and let XM be the base change of XM

to M . For each S ∈ FI, the morphism XM (S)→ XM (S) induces a surjection
CXM

(S)→ CXM
(S), and the fibers are precisely the orbits of the Galois group

Gal(M : M) on CXM
(S) (see [Sta20, Tag 0364]). In other words, CXM

(S) has a

canonical bijection to the group CXM
(S)/Gal(M : M). To complete the proof,

we need to analyse the component functor of XM .
To this end, let Z1, . . . , Zk be the irreducible components of the base change

ZM . Then

XM (S) = ZS
M

=
⋃

α∈[k]S

∏
i∈S

Zαi
i

where each product over i ∈ S is a product of irreducible varieties over the
separably closed field M , and hence irreducible. To construct our component
functor, we just set E(S) := [k]S .

Finally, let G be the image of Gal(M : M) in Sym([k]) through its action on
the irreducible components Z1, . . . , Zk of Z. Then the (image of the) action of
Gal(M : M) on irreducible components of XM (S) corresponds precisely to the
(image of the) diagonal action of G on E(S), and hence the orbit space E(S)/G
is in bijection with the irreducible components of XM (S). This bijection,
taken for all S, is an isomorphism from the elementary model functor given
by E(S) = [k]S and the group G ⊆ Sym([k]).

Remark 2.5.4.3. Note that the elementary model functors coming from
FIop-schemes of product type all have E(S) = [k]S rather than just E(S) ⊆
[k]S . The set of count vectors is therefore all of Zk≥0. However, in our proof of
the Main Theorem we will need to do induction over the poset of downward



closed subsets of Zk≥0; this requires the greater generality in the definition of
elementary model functors. ♢

Corollary 2.5.4.4. The Main Theorem holds for affine FIop-schemes of prod-
uct type over some Noetherian domain.

Proof. This is an immediate corollary of Proposition 2.5.4.1 and Corollary 2.5.3.2.

We are now in a position to prove the following result, most of which also
follows from combining results from [LNNR19] (linearity of codimension) and
[NR17] (the form of the Hilbert function).

Theorem 2.5.4.5. Let X be an affine width-one FIop-scheme X of finite
type over a Noetherian ring K. Assume that X([n]) is not the empty scheme
for any n. Then for n ≫ 0 the Krull dimension of X([n]) is eventually equal
to an affine-linear polynomial in n, and the number of irreducible components
|CX([n])| is bounded from above by cn for some constant c ≥ 1.

Proof. By Lemma 2.2.2.2 we may assume that X = Spec(B) is reduced, and
by Proposition 2.2.1.1 we may assume that X is nice. Since X([n]) is not the
empty scheme for any n, we have 1 ̸= 0 in B0. By the Shift Theorem 2.3.1.1
and Proposition 2.3.3.1 there exists an S0 ∈ FI and a nonzero h ∈ B(S0) such
that X ′ := (ShS0

X)[1/h] is of product type; in particular, it sends S → ZS

for some reduced scheme Z of finite type over L := B(S0)[1/h].
Let Y be the closed FIop-subscheme of X defined by the vanishing of h.

For any S ∈ FI, X(S0⊔S) is the union of Y (S0⊔S) and all X(π)X ′(S) where
π ranges over the finite set Sym(S0 ⊔ S). Therefore,

dimX(S0 ⊔ S) = max{dim(Y (S0 ⊔ S)),dim(X ′(S))}.

By Noetherian induction using Theorem 1.4.6.3, we may assume that the the-
orem holds for Y . On the other hand, we have dim(X ′(S)) = dim(L) + |S| ·
dim(Z). We conclude that, for n≫ 0, dim(X([n])) is a maximum of two affine-
linear functions of n, hence itself an affine-linear function of n. Similarly, to
bound |CX(S0 ⊔ S)| we claim that

|CX(S0 ⊔ S)| ≤ |CY (S0 ⊔ S)|+ (|S|+ |S0|)(|S|+ |S0| − 1)

· · · (|S|+ 1)|CX′(S)|.

Indeed, if C is an irreducible component of X(S0 ⊔ S), then either C is con-
tained in Y (S0 ⊔ S) (and then a component there) or else there exists an



injection π : S0 → S0 ⊔ S such that B(π)h is not identically zero on C. In
the latter case, let σ ∈ Sym(S0 ⊔ S) be any element with σ ◦ π = idS0

. Then
B(σ)B(π)h = h, and hence C = X(σ)C ′ for a component C ′ of X(S0 ⊔ S) on
which h is nonzero. These components correspond bijectively to components
of X ′(S). This explains the second term, where the first |S0| factors count the
number of possibilities for π.

Now the first term is bounded by an exponential function of |S0|+ |S| by
the induction hypothesis, and the second term is bounded by an exponential
function by the proof of Proposition 2.5.4.1. Hence so is the sum.

2.5.5 The orbit-counting lemma for groupoids

It turns out that in the general case of the Main Theorem, the (Galois)
group that featured in the proof of Corollary 2.5.4.4, is replaced by a suit-
able groupoid. We briefly recall the relevant set-up.

Let G be a finite groupoid, that is, a category whose class of objects is a
finite set Q and in which for any p, q ∈ Q the set G(p, q) := Hom(p, q) is a finite
set all of whose elements are isomorphisms. Rather than homomorphisms or
isomorphisms, we will call these elements arrows.

For a groupoid to act on a finite set X, one first specifies an anchor map
a : X → Q. For p ∈ Q, set

Xp := a−1(p).

Then, an action of G on X consists of the data of a map φ(g) : Xp → Xq for
each homomorphism g : p → q, subject to the conditions that φ(idp) = idXp

and φ(h ◦ g) = φ(h) ◦ φ(g) for any two arrows g : p → q and h : q → r. We
often write gx instead of φ(g)(x).

Write G(p) :=
⋃
q∈QG(p, q) for the set of arrows from p. For x ∈ Xp we

have a map G(p)→ X, g 7→ gx. The image of this map is called the orbit of x
and denoted G(p)x. On the other hand, we write

G(p, p)x := {g ∈ G(p, p) | gx = x},

the stabiliser of x in G(p, p), which is a subgroup of the group G(p, p). Observe
that the map G(p) → G(p)x yields a bijection G(p)/G(p, p)x → G(p)x; here
G(p, p)x acts freely onG(p) by precomposition, so that |G(p)x| = |G(p)|/|G(p, p)x|.
Furthermore, for every element y ∈ G(p)x we have |G(a(y))| = |G(p)| and
|G(a(y), a(y))y| = |G(p, p)x|.

Finally, for g ∈ G(p, p) we write Xg
p for the set of elements x ∈ Xp with

gx = x. The following is a generalization of the orbit-counting lemma for
groups.



Lemma 2.5.5.1. The number of orbits of G on X equals∑
p∈Q

1

|G(p)|
∑

g∈G(p,p)

|Xg
p |.

Proof. We count the triples (p, g, x) with p ∈ Q and x ∈ Xp and g ∈ G(p, p)
with gx = x and |G(p)| = N in two different ways. If we first fix x, then we
are forced to take p := a(x), and we obtain∑

x∈X:|G(a(x))|=N

|G(a(x), a(x))x|

=
∑

x∈X:|G(a(x))|=N

|G(a(x))|/|G(a(x))x|

=
∑

x∈X:|G(a(x))|=N

N/|G(a(x))x|.

This is N times the number of orbits of G on the set of x with |G(a(x))| = N .
On the other hand, if we first fix p with |G(p)| = N and g ∈ G(p, p), then

we find ∑
p∈Q:|G(p)|=N

∑
g∈G(p,p)

|Xg
p |.

Hence the number of orbits of G on the set of x with |G(a(x))| = N equals

1

N

∑
p∈Q:|G(p)|=N

∑
g∈G(p,p)

|Xg
p |.

Now sum over all possible values of N to obtain the formula in the lemma.

2.5.6 Model functors

Elementary model functors are special cases of a more general class of functors
FI → PF, which we call model functors. Their construction is motivated by
Theorem 2.3.1.1 and Proposition 2.5.4.1, as we will see below.

Fix S0 ∈ FI, a k ∈ Z≥0, and a subfunctor E : FI → PF of the functor
S 7→ [k]S , where we require that for all π ∈ HomFI(S, T ), E(π) is defined
everywhere. Hence, by passing to count vectors as in §2.5.3, E is uniquely
determined by a downward closed subset of Zk≥0.

Then we define a new functor F : FI→ PF on objects by

F(S) = {(σ, α) | σ ∈ HomFI(S0, S), α ∈ E(S \ im(σ))}



Figure 2.1: The construction of F(π) in Definition 2.5.6.1.

and on a morphism π ∈ HomFI(S, T ) as follows: for (σ, α) ∈ F(T ) we set

F(π)((σ, α)) :=

{
undefined if im(σ) ̸⊆ im(π); and

(σ′, α ◦ π|S\im(σ′)) where σ′ := π−1 ◦ σ otherwise.

Figure 2.1 depicts all relevant maps. At the level of species (so remembering
the maps F(π) only when π is a bijection), this is an instance of a well-known
construction: F is the product of the species that maps S to its set of bijections
S0 → S and the species that maps S to E(S).

Next let ∼S be an equivalence relation on F(S) for each S, and assume
that these relations satisfy the following three axioms:

Axiom (1) if (σ, α) ∼T (σ′, α′) and π ∈ HomFI(S, T ) has im(π) ⊇ im(σ) ∪
im(σ′), then F(π)((σ, α)) ∼S F(π)((σ′, α′));

Axiom (2) conversely, if the pairs (σ, α) ∈ F(T ), (σ′′, α′′) ∈ F(S), and
the map π ∈ HomFI(S, T ) satisfy im(π) ⊇ im(σ) and F(π)((σ, α)) ∼S
(σ′′, α′′), then there exists a pair (σ′, α′) ∈ F(T ) with im(σ′) ⊆ im(π)
such that (σ′, α′) ∼T (α, σ) and F(π)((σ′, α′)) = (σ′′, α′′); and

Axiom (3) if (σ, α) ∼T (σ′, α′) and i, j ∈ T \ (im(σ) ∪ im(σ′)), then α(i) =
α(j)⇔ α′(i) = α′(j).

The first axiom ensures that F/∼: S 7→ F(S)/∼S is a functor FI → PF
that comes with a canonical surjective morphism F → F/∼ in the sense of
Definition 2.4.1.2; in particular, this implies that ∼S is preserved under the



symmetric group Sym(S) acting on F(S). The second and third axioms will
be crucial in §2.5.7.

Definition 2.5.6.1. A functor of the form S 7→ F(S)/∼S as constructed
above is called a model functor. ♢

Remark 2.5.6.2. Each elementary model functor S 7→ E(S)/G is isomorphic
to a model functor with S0 = ∅ (so that we may leave out the σs from the
pairs) and α ∼S α′ if and only if α′ ∈ Gα. We will see that, conversely, a
model functor gives rise to certain groupoids that play the role of G. ♢

We revisit Example 2.1.2.4 from the perspective of model functors.

Example 2.5.6.3. Let X(S) be the subscheme of ASC defined by the equations
xdj − xdl for all j, l ∈ S. Set ζ := e2πi/d. If we fix a j0 ∈ S, there is a bijection

between irreducible components of X(S) and elements of (Z/dZ)S\{j0}, where
the component corresponding to α ∈ (Z/dZ)S\{j0} is that in which each xj , j ̸=
j0, equals ζαjxj0 . By identifying Z/dZ with [d] in the natural manner and
regarding j0 as the image of a σ ∈ HomFI(S0, S) where S0 is a singleton, we
obtain a surjection from the functor

F : S 7→ {(σ, α) | σ ∈ HomFI(S0, S), α ∈ [d]S\im(σ)}

to the component functor CX . A pair (σ, α) is mapped to the same component
as a pair (σ′, α′) if and only if either (σ, α) = (σ′, α′) or else σ, σ′ have distinct
images j0, j

′
0 and for all j ∈ S \ {j0, j′0} we have α′(j) − α′(j0) = α(j) and

α(j) − α(j′0) = α′(j) (both in Z/dZ). This defines an equivalence relation
∼S satisfying Axioms (1)–(3), and CX is isomorphic to the model functor
S 7→ F(S)/∼S . ♢

Remark 2.5.6.4. Informally, we think of (σ, α) as a word in [k]S in which the
letters corresponding to im(σ) ⊆ S are concealed. If (σ′, α′) ∼S (σ, α), then
(σ′, α′) corresponds to a different word in which the letters corresponding to
im(σ′) are concealed. Outside of im(σ)∪ im(σ′), by Axiom (3), the two words
are equal up to some permutation of [k]. Axioms (1) and (2) simply ask that
these equivalent words behave well with respect to FI-morphisms. In the
next section, we will roughly speaking attempt to “discover” the information
concealed in im(σ) by looking at equivalent pairs (σ′, α′) where im(σ′) does
not contain im(σ). ♢

Example 2.5.6.5. Fix a finite field Fq and a natural number m. Let S be a
finite set. On the set of rank-m matrices in Fm×Sq act four groups:



1. GLm(Fq) by row operations;

2. Sym(S) by permuting columns;

3. (F∗q)S by scaling columns; and

4. Aut(Fq) by acting on all coordinates.

Modding out only GLm(Fq), we get the set of m-dimensional codes in
FSq , and two codes are called isomorphic if they are in the same orbit under

Sym(S) ⋉G(S), where G(S) = Aut(Fq) ⋉ (F∗q)S .
Let N be a functor FI → PF that assigns to S a set of m-dimensional

codes in FSq and to an injective map π : S → T the map that sends a code
C ∈ N (T ) to the code

{v ◦ π | v ∈ C} ⊆ FSq ,

provided that this linear space still has dimension m. In particular, we require
that the code above is then an element of N (S). This implies that N (S) is
preserved under Sym(S) and that N is closed under puncturing. Furthermore,
we assume that N (S) is preserved under G(S). To prove Theorem 2.1.3.4, we
need to count the orbits of Sym(S) ⋉ G(S) on N (S); this is the same as the
number of orbits of Sym(S) on M(S) := N (S)/G(S). We will informally call
the elements of M(S) codes, as well. This M is another functor FI → PF,
and we claim that it is isomorphic to a model functor.

To see this, let k := |Fmq /F∗q | = 1 + (qm − 1)/(q − 1) and fix any bijection
between [k] and Fmq /F∗q by which we identify these two sets. Also set S0 := [m].
Now define

E(S) := {α ∈ ((Fq)m/F∗q)S | the row space of

the matrix (I|α) ∈ (Fq)[m]×(S0⊔S) is in N (S0 ⊔ S)},

where (I|α) is the [m]×(S0⊔S)-matrix which in the [m]×S0-block has the iden-
tity matrix I and in the [m]× S-block has the matrix α. Furthermore, define
F(S) as the set of pairs (σ, α) with σ ∈ HomFI(S0, S) and α ∈ E(S \ im(σ)).
We have a surjective morphism Ψ : F →M in the sense of Definition 2.4.1.2
that sends (σ, α) to the orbit under G(S) of the row space of (I|α) ∈ Fm×Sq ,

where now I ∈ F[m]×im(σ)
q is the permutation matrix with entries δi,σ−1(j).

We define ∼S on F(S) by (σ, α) ∼ (σ′, α′) if and only if Ψ((σ, α)) =
Ψ((σ′, α′)). We need to show that this satisfies Axioms (1),(2), and (3). Axiom
(1) follows from the fact that if (σ, α), (σ′, α′) represent the same (G(T )-orbit
of) code(s), then the same is true after puncturing this code in a coordinate



outside im(σ) ∪ im(σ′). To see Axiom (2), we puncture a code C represented
by (σ, α) in a coordinate i ∈ T \ im(σ), and assume that the resulting code C ′,
represented by (σ, α|T\{i}), is also represented by some other pair (σ′′, α′′) ∈
F(T \ {i}). Then the projection of C ′ to Fim(σ′′)

q is surjective, and hence
the same holds for C, so that C is also represented by a pair of the form
(σ′′, α′). Finally, Axiom (3) says that if in the generator matrix (I|α) for the
code C represented by (σ, α) the columns labelled i, j ∈ T \ im(σ) are parallel,
then the same holds for any other pair (σ′, α′) that represents C and satisfies
i, j ∈ T \ im(σ′)—the main point here is that parallelness is preserved under
field automorphisms. ♢

2.5.7 A second quasi-polynomial count

We use the notation from §2.5.6. So S 7→ F(S)/∼S is a model functor,
where F(S) is the set of pairs (σ, α) with σ ∈ HomFI(S0, S) and α ∈ E(S \
S0) ⊆ [k]S\S0 , and where ∼S is an equivalence relation on F(S) that satisfies
Axioms (1),(2),(3) for model functors. The following theorem and its proof
are elementary, but quite subtle—indeed, this is probably the most intricate
part of the chapter.

Theorem 2.5.7.1. Let S 7→ F(S)/∼S be a model functor FI → PF. Then
there exists a quasipolynomial f such that the number of Sym([n])-orbits on
F([n])/∼[n] equals f(n) for all n≫ 0.

This immediately implies Theorem 2.1.3.4.

Proof of Theorem 2.1.3.4. By Example 2.5.6.5, the number of length-n ele-
ments in C is the number of Sym([n])-orbits on F([n])/∼[n] for a suitable
model functor. The result now follows from Theorem 2.5.7.1.

To prove Theorem 2.5.7.1, we introduce the notion of sub-model functor.

Definition 2.5.7.2. Suppose that we have, for each S ∈ FI, a subset E ′(S) ⊆
E(S) such that, first, for all π ∈ HomFI(S,T ) the pull-back map [k]T → [k]S that
maps E(T ) into E(S) also maps E ′(T ) into E ′(S); and second, for all (σ, α) ∼S
(σ′, α′) ∈ F(S) with α ∈ E ′(S \ im(σ)), we also have α′ ∈ E ′(S \ im(σ′)). Then
S 7→ F ′(S)/∼S , where

F ′(S) := {(σ, α) ∈ F(S) | α ∈ E ′(S)}

and where ∼S stands for the restriction of ∼S to F ′(S) is a model functor
called a sub-model functor of F . ♢



Proof of Theorem 2.5.7.1. The proof of this theorem will take up the remain-
der of this subsection. This will involve an induction hypothesis for a sub-
model functor F ′ of F and the construction of a certain groupoid for the
complement F \ F ′.

Let M ⊆ Zk≥0 be the downward-closed set consisting of all the count vectors
of elements in E(S) for S running over FI. Since, by Dickson’s lemma, the
set of downward-closed sets in Zk≥0 satisfies the descending chain property, we
may assume that the theorem holds for all model functors whose corresponding
downward set is strictly contained in M .

Our goal is now to find E ′(S) ⊆ E(S) that defines a sub-model functor F ′
of F such that the downward closed set M ′ of E ′ is strictly contained in M .
Then we have

|F(S)/∼S | = |F ′(S)/∼S | + |(F(S) \ F ′(S))/∼S |

and this equality continues to hold if we mod out the action of Sym(S) on
the three sets in question. Hence by the induction hypothesis we are done if
we can show that the number of Sym(S)-orbits on (F(S) \ F ′(S))/∼S grows
quasipolynomially in |S| for |S| ≫ 0. In this induction argument, we may of
course assume that M is not empty—otherwise, the quasipolynomial 0 will do.

To construct E ′ we proceed as follows. Let

A := {I ⊆ [k] | ∃v ∈M : v + ZI≥0 ⊆M};

here, and in the rest of the chapter, we identify ZI≥0 with ZI≥0×{0}[k]\I ⊆ Zk≥0.
Note that A is nonempty because M is. Let I be an inclusion-wise maximal
element of A and set

d := max

 ∑
l∈[k]\I

v(l) | v + ZI≥0 ⊆M

 .

This is well-defined, since if the sum of the entries in such v at positions outside
I were unbounded, then I would be contained in a strictly larger element of
A. Choose v ∈M such that v + ZI≥0 ⊆M and

∑
l∈[k]\I v(l) = d.

Lemma 2.5.7.3. For j ∈ Z≥0, define vj := v + j ·
(∑

i∈I ej
)
∈ M . There

exists a j ∈ Z≥0 such that the vectors in M that are componentwise ≥ vj are
precisely the vectors in vj +ZI≥0; this then also holds for all larger values of j.

Proof. Suppose that for every j ∈ Z≥0 there is a wj ∈M \ (vj + ZI≥0) that is
componentwise ≥ vj . Then by Dickson’s lemma the sequence

w1|[k]\I , w2|[k]\I , w3|[k]\I , . . .



would contain an infinite subsequence, labelled by i1 < i2 < . . ., that weakly
increases componentwise. It follows that wi1 + ZI≥0 ⊆M because M is down-
ward closed and the entries of wij labelled by I diverge to infinity. Further-
more, by the choice of wi1 , the sum

∑
l∈[k]\I wi1(l) is strictly larger than d, a

contradiction.

From now on, we will make the following assumption on v:

The entries v(l) are ≫ 0 for all l ∈ I.

In particular, after replacing v with the vj from the lemma, this implies
that the vectors in M that are componentwise ≥ v are precisely the vectors in
v + ZI≥0. In the course of our reasoning, we will need further assumptions on
how large the v(l) with l ∈ I are—to avoid technicalities, however, we make
no attempt to specify a precise lower bound that works.

The set I is now uniquely determined by v as the set of all positions l ∈ [k]
where v(l) is very large. We call it the frequent set of v.

Write v = v0 +v1 with v0 ∈ Z[k]\I
≥0 and v1 ∈ ZI≥0. We now define F ′ : FI→

PF by setting F ′(S) to be the set of pairs (σ, α) ∈ F(S) for which there exists
no pair (σ′, α′) ∼S (σ, α) such that the count vector of α′ is in ṽ+ZI≥0, where
ṽ := v + v1 = v0 + 2v1. Notice the factor 2; the relevance of this will become
clear towards the end of the proof.

Lemma 2.5.7.4. The association S 7→ F ′(S)/∼S is a sub-model functor of
F .

Proof. By definition, F ′(S) is a union of of∼S-equivalence classes, and uniquely
determined by a subset E ′(S) ⊆ E(S) of allowed second components α. So we
need only prove that F ′ is preserved under morphisms.

Hence let (σ, α) ∈ F ′(T ), let π ∈ HomFI(S, T ) satisfy im(π) ⊇ im(σ), and
consider (σ̃, α̃) := F(π)((σ, α)). If (σ̃, α̃) ∼S (σ′′, α′′) where α′′ has a count
vector in ṽ + ZI≥0, then by Axiom (2) for model functors there exists a pair
(σ′, α′) ∼T (σ, α) with F(π)((σ′, α′)) = (σ′′, α′′). This means that the count
vector of α′ is an element of M that is componentwise greater than or equal
to the count vector of α′′ and hence, by the choice of ṽ, the count vector of
α′ lies in ṽ + ZI≥0. This contradicts the fact that (σ, α) ∈ F ′(T ). Therefore,
F(π)((σ, α)) ∈ F ′(S).

Furthermore, we observe that the downward closed subset M ′ correspond-
ing to E ′ is strictly contained in M , since it does not contain ṽ ∈ M . Hence
the induction hypothesis applies to F ′.



Our task is therefore reduced to counting the Sym(S)-orbits on the set of
∼S-equivalence classes on F̃(S) := F(S) \ F ′(S). Note that F̃ is not a sub-
model functor of F ; rather, F̃(S) consists of all pairs (σ, α) that are equivalent
to some pair (σ′, α′) where α′ has a count vector in ṽ + ZI≥0. Before counting

these, we will work for a while with the larger set F ′′(S) ⊇ F̃(S) consisting
of all pairs (σ, α) ∈ F(S) that are equivalent to some pair (σ′, α′) where the
count vector of α′ is in v + ZI≥0 ⊇ ṽ + ZI≥0.

For the time being, fix a pair (σ, α) ∈ F ′′(T ) where α has count vector
in v + ZI≥0. This implies that all elements in I occur very frequently among
the entries of α, while all elements in [k] \ I occur very infrequently; we call I
the frequent set of α and of the pair (σ, α). Now let (σ′, α′) ∼T (σ, α). Since,
by Axiom (3) for model functors, the equality patterns of α′ and α agree on
T \(im(σ)∪ im(σ′)), there exists a set I ′ ⊆ [k] of the same cardinality as I, and
a bijection g = g((σ′, α′), (σ, α)) : I → I ′ such that, for i ∈ T \(im(σ)∪im(σ′)),
we have α(i) = l ∈ I if and only if α′(i) = g(l). In particular, α′, too, has
a distinguished set I ′ ⊆ [k] of elements that occur very frequently among its
entries, while the complement occurs very infrequently. We call I ′ the frequent
set of α′.

Furthermore, if also (σ′′, α′′) ∼T (σ, α), then we have

g((σ′′, α′′), (σ′, α′)) ◦ g((σ′, α′), (σ, α)) = g((σ′′, α′′), (σ, α)) (2.1)

as a map from I to the frequent set I ′′ of α′′, and we have

g((σ, α), (σ, α)) = idI . (2.2)

Still using elements from the ∼T -equivalence class of (σ, α), we define a
relation ≡ on T as follows: first, ≡ is reflexive, and second, for i ̸= j we
have i ≡ j if and only if there exists (σ′, α′) ∼T (σ, α) with i, j ̸∈ im(σ′) and
α′(i) = α′(j) ∈ I ′ := g((α′, σ′), (α, σ))I.

Lemma 2.5.7.5. If i ≡ j then (σ, α) ∼T F((i j))(σ, α), where (i j) is the
transposition of i and j.

Proof. If i = j, then the statement is obvious. Otherwise, there exists a pair
(σ′, α′) ∼T (σ, α) such that α′ is defined at i and j and takes the same value
l in the frequent set of α′. Then F((i j))(σ′, α′) = (σ′, α′) and by Axiom (1),
F((i j))(σ, α) ∼T F((i j))(σ′, α′) = (σ′, α′) ∼T (σ, α), as desired.

Lemma 2.5.7.6. The relation ≡ is an equivalence relation on T .



Proof. First note that—using Axiom (3) for model functors—if i ̸= j satisfy
i ≡ j, then in fact for all (σ′, α′) ∼T (σ, α) with i, j ∈ T \ im(σ′) we have
α′(i) = α′(j) ∈ I ′. Since ≡ is reflexive and symmetric by definition, we only
need to show transitivity. For this, assume that i ≡ j and j ≡ h, where we
may assume that i, j, h are all distinct. Let (σ′, α′) ∼T (σ, α) be such that
α′(j) = α′(h) ∈ I ′. Now if α′ is defined at i, then i ≡ j implies that also
α′(i) = α′(j) so that i ≡ h. Assume that α′ is not defined at i. Then let
i′ ∈ T \ {i, j, h} be a position where α′ is defined and such that i′ ≡ i—this
exists, because there exists a pair (σ′′, α′′) ∼T (σ, α) for which α′′ is defined at
i (and defined and equal at j); now set l := α′′(i), an element in the frequent
set of α′′, and take for i′ any element from ((α′′)−1(l)) \ {i, j, h}. Then by
Lemma 2.5.7.5 we have (σ′, α′) ∼T F((i i′))(σ′, α′) and the latter element is
defined at i, j, h. This proves transitivity.

So for all elements (σ′, α′) in the ∼T -equivalence class of (σ, α) we have
the same, well-defined equivalence relation ≡ on T . Let T1 ⊆ T be the set of
elements that form a singleton class; we call T1 the core of (the ∼T -equivalence
class of) (σ, α). Note that T1 = T10 ⊔ T11 where T10 is the set of those po-
sitions in T that are in im(σ′) for all (σ′, α′) ∼T (σ, α) and T11 is the set
of elements that are in (α′)−1([k] \ I ′) for some (σ′, α′) ∼T (σ, α) and I ′ =
g((σ′, α′), (σ, α))I. We have T10 ⊆ im(σ) and also T11 ⊆ im(σ) ∪ α−1([k] \ I);
in particular, |T1| is bounded from above by |S0| + |α−1([k] \ I)| = |S0| + d,
where d was the number used in the construction of v ∈M .

The same reasoning applies to any element (σ, α) ∈ F ′′(T ): it unambigu-
ously determines a subset J ⊆ [k] (the frequent set of α) of cardinality |J | = |I|
and a subset T1 ⊆ T of some bounded size (the core of the pair), as well as
a surjection τ : T \ T1 → J defined by τ(i) = l if and only if there exists a
(α′, σ′) ∼T (α, σ) with α′ defined at i and α′(i) = g((α′, σ′), (α, σ))(l); and
this surjection only has large fibres. Furthermore, passing to another element
of the ∼T -equivalence class, the core T1 remains the same, J is acted upon by
a bijection g to yield a J ′, and τ is composed with that same bijection. We
now determine how certain morphisms transform the data J, T1, τ .

Lemma 2.5.7.7. Let π ∈ HomFI(S, T ) be such that im(π) contains the core
T1 ⊆ T of (the ∼T -equivalence class of) (σ, α), and assume that (σ̃, α̃) :=
F(π)((σ, α)) lies in F ′′(S). Then the frequent set of α̃ equals the frequent set J
of α, the core S1 ⊆ S of (σ̃, α̃) equals π−1(T1), and the surjection τ̃ : S\S1 → J
determined by (σ̃, α̃) is the map τ ◦ (π|S\S1

) where τ : T \ T1 → J is the
surjection determined by (σ, α).



Proof. That the frequent set J remains unchanged is immediate: the elements
that appear frequently in α̃ also appear frequently in α and vice versa.

For the statement about the core, it suffices to show that distinct i, j ∈ S
satisfy i ≡ j in the equivalence relation on S defined by (σ̃, α̃) if and only if
π(i) ≡ π(j) in the equivalence relation on T defined by (σ, α).

Let i, j ∈ S be distinct and assume i ≡ j, so that there exists a pair
(σ̃′, α̃′) ∼S (σ̃, α̃) with α̃′(i) = α̃′(j) ∈ J . By Axiom (2) there exists a pair
(σ′, α′) ∼T (σ, α) with F(π)((σ′, α′)) = (σ̃′, α̃′), and we find that α′(π(i)) =
α′(π(j)) ∈ J , so π(i) ≡ π(j).

Conversely, let i, j ∈ S be distinct and assume that π(i) ≡ π(j), so there
exists a pair (σ′, α′) ∼T (σ, α) with α′(π(i)) = α′(π(j)) ∈ J . Since im(π)
contains T1, it contains all elements of im(σ′) ∩ T1. Using Lemma 2.5.7.5 we
may apply transpositions F((h h′)) to (σ′, α′) for all h ∈ im(σ) \ im(π) ⊆
T \ T1, where the h′ ≡ h are all chosen distinct, disjoint from im(σ) and from
{i, j}, and inside im(π) \ T1, to arrive at a (σ′′, α′′) ∼T (α′, α′) still satisfying
α′′(π(i)) = α′′(π(j)) and now also satisfying im(σ′′) ⊆ im(π). So we may
apply F(π) to (σ′′, α′′) and find that i ≡ j.

For the statement about τ̃ let i ∈ S \ S1 = S \ π−1(T1). Then there exists
a (σ̃′, α̃′) ∼S (σ̃, α̃) such that α̃′ is defined at i. By Axiom (2) there exists a
(σ′, α′) ∼T (σ, α) with F(π)((σ′, α′)) = (σ̃′, α̃′). In particular, α′ is defined at
π(i) and we have α′(π(i)) = α̃′(i), so that τ̃(i) = τ(π(i)), as desired.

A special case of the lemma is that where S = T , and we find that Sym(S)
acts in the expected manner on the data consisting of the frequent set (namely,
trivially) and on the core S1 and the map τ . The cardinality of the core is
an invariant under this action, and also preserved under the more general
morphisms of Lemma 2.5.7.7.

The core is a finite subset of cardinality at most |S0| + d. For each e ∈
{0, . . . , |S0| + d} let F ′′e (S) be the set of elements in F ′′(S) with a core of
cardinality e, and set F̃e(S) := F̃(S) ∩F ′′e (S). We are done once we establish
that for each e the set of Sym(S)-orbits on F̃e(S)/∼S is quasipolynomial in
|S| for |S| ≫ 0.

We will decouple the core from the rest of S. A first justification for this
is the following lemma.

Lemma 2.5.7.8. The number of Sym([e]⊔S)-orbits on A := F̃e([e]⊔S)/∼[e]⊔S
equals the number of Sym([e]) × Sym(S)-orbits on the set B of elements in
F̃e([e] ⊔ S)/∼[e]⊔S with core equal to [e].

Proof. The inclusion map B → A induces a map B/(Sym([e]) × Sym(S)) →
A/ Sym([e] ⊔ S). This map is surjective since the core of any element in



A can be moved into [e] by an element of Sym([e] ⊔ S). To see that it is
also injective, note that if π ∈ Sym([e] ⊔ S) and (σ, α), (σ′, α′) ∈ B satisfy
F(π)((σ, α)) = (σ′, α′), then π must preserve the common core [e] of both
tuples, hence π ∈ Sym([e])× Sym(S).

Consider a pair (σ, α) ∈ F ′′e ([e] ⊔ T ) with core equal to [e]. To such a pair
we associate the quintuple (J, τ, σ0, σ1, α) determined by:

1. the frequent set J of α;

2. the surjection τ : T → J ;

3. the partially defined map σ0 : S0 → [e], which is the restriction of σ to
σ−1([e]);

4. the map σ1 : S0 \ dom(σ0)→ J defined by σ1(i) = τ(σ(i)).

5. the restriction α of α to [e] \ im(σ), which takes values in [k] \ J .

The quintuple remembers everything about the pair (σ, α) except the exact
values (in T ) of σ on S0 \ dom(σ0): of these values, only their equivalence
classes under ≡ classes are remembered; these can be read off from σ1 (and
τ). If another pair (σ′, α′) ∈ F ′′e ([e]⊔T ) with core equal to [e] yields the same
quintuple, then (σ′, α′) differs from (σ, α) by a permutation of T that permutes
elements within their equivalence classes under ≡. Hence, by repeatedly ap-
plying Lemma2.5.7.5, we find that (σ′, α′) ∼[e]⊔T (σ, α).

We will use the notation ∼[e]⊔T for the induced equivalence relation on
such quintuples. Note that Sym([e]) fixes (J and) τ , whereas Sym(T ) fixes (J
and) σ0, σ1, α. Also note that all components of the quintuple except τ can
take only finitely many different values as T varies. We call (J, σ0, σ1, α) the
quadruple determined by the quintuple (and a fortiori also determined by the
pair (σ, α)).

We now come to the central tool for proving quasipolynomiality; note that
now we work with F̃ instead of F ′′—recall that F̃ and its complement F ′ were
defined using ṽ = v + v1 = v0 + 2v1, while F ′′ ⊇ F̃ was defined using v.

Definition 2.5.7.9. Let G be the finite directed graphs whose vertices are
all quadruples of pairs in F̃e([e] ⊔ T ) with core [e], where T runs through FI,
and whose arrows from one quadruple (J, σ0, σ1, α) to (J ′, σ′0, σ

′
1, α
′) are all

bijections g((σ′, α′), (σ, α)) : J → J ′ coming from pairs (σ′, α′) ∼[e]⊔T (σ, α)

in F̃e([e] ⊔ T ) with core [e] and with the prescribed quadruples. ♢



Typically, the same bijection g will arise from more than one pair of pairs
with the prescribed quadruples; it then only appears once as an arrow g be-
tween those quadruples. The following proposition will be used below to es-
tablish that G is, in fact, a groupoid.

Proposition 2.5.7.10. Let (J, τ, σ0, σ1, α) be the quintuple of a pair (σ, α) ∈
F̃e([e] ⊔ T ) with core [e] and let g be an arrow in G from (J, σ0, σ1, α) to
(J ′, σ′0, σ

′
1, α
′). Then (J ′, g ◦ τ, σ′0, σ′1, α′) is also the quintuple of some pair in

F̃e([e]⊔T ) with core [e], and that quintuple is ∼[e]⊔T -equivalent to the original
quintuple. Furthermore, all quintuples equivalent to the original quintuple arise
in this manner.

Proof. The last statement is immediate: such an equivalent quintuple comes
from an equivalent pair (σ′, α′) ∼[e]⊔T (σ, α), and for the arrow we can take
g = g((σ′, α′), (σ, α)).

For the first statement, let (σ̃, α̃) ∼[e]⊔S (σ̃′, α̃′) be pairs with the given
quadruples such that g = g((σ̃′, α̃′), (σ̃, α̃)).

We will replace these equivalent pairs by smaller pairs, the first of which
we can relate to (σ, α) so as to apply Axiom (2). The details are as follows.

For each l ∈ J let ml be the minimum of |α−1(l)| and |α̃−1(l)| and set
nl := |σ−11 (l)|. Define an injection π from [e]⊔

⊔
l∈J([ml]⊔ [nl]) to [e]⊔S that

is the identity on [e], sends each [ml] injectively to ml elements in α−1(l) ⊆ S
and sends each [nl] bijectively to the elements in im(σ̃) ∩ S where τ takes the
value l. This construction ensures that F(π) is defined at (σ̃, α̃). It might a
priori not be defined at (σ̃′, α̃′), because im(σ̃′)∩S might not be contained in
im(π). But if it is not, then using Lemma 2.5.7.5 we can replace (σ̃′, α̃′) by
a ∼S-equivalent pair, with the same quadruple and with the same bijection
g : J → J ′, such that F(π) is defined at (σ̃′, α̃′). Now replace (σ̃, α̃) and
(σ̃′, α̃′) by their images under F(π).

The point of distinguishing F̃ and F ′′ is that these images may not be in
F̃ . The reason is that while ṽ+ZI≥0 is closed under the map that sends a pair
w1, w2 of vectors to the componentwise minimum vector min(w1, w2) defined
by min(w1, w2)(l) := min(w1(l), w2(l)), the count vectors of pairs in F̃ with a
fixed frequent set J may not quite be closed under componentwise minimum:
the number of entries that α has in the frequent set is not quite invariant under
the equivalence relations ∼, although it is up to a bounded difference. This is
remedied by allowing the componentwise minimum to have a count vector in
the bigger set v + ZI≥0.

Hence the new (σ̃, α̃) and (σ̃′, α̃′) are in F ′′([e] ⊔
⊔
l∈J([ml] ⊔ [nl])) and

are related by the same bijection g. Now construct similarly an injection π′ :



[e]⊔
⊔
l∈J([ml]⊔[nl])→ [e]⊔T which is the identity on [e], sends [ml] injectively

into the set α−1(l), and sends [nl] bijectively to the set of elements in im(σ)∩T
where τ takes the value l. Then (σ̃, α̃) = F(π′)((σ, α)). Now apply Axiom (2)
to find that there exists a pair (σ′, α′) ∼[e]⊔T (σ, α) such that F(π′)((σ′, α′)) =
(σ̃′, α̃′). The pair (σ′, α′) has the required quintuple. Moreover, since the pair
is ∼[e]⊔T -equivalent to (σ, α), so are their quintuples.

Proposition 2.5.7.11. The finite graph G is a groupoid with objects its ver-
tices (quadruples), arrows as in Definition 2.5.7.9, and composition maps given
by composing the bijections g.

Before proving this in general, we revisit Example 2.5.6.3.

Example 2.5.7.12. Consider the functor F : FI→ PF that maps S to

F(S) = {(σ, α) | σ ∈ HomFI(S0, S), α ∈ [d]S\im(σ)}

where S0 is a singleton and where we identify [d] with Z/dZ via a 7→ a+dZ. Let
∼S be as in Example 2.5.6.3, i.e. (σ, α) ∼ (σ′, α′) if and only if either the pairs
are equal, or else {j0} := im(σ) ̸= im(σ′) =: {j′0} and for all j ∈ S \ {j0, j′0}
we have α′(j)− α′(j0) = α(j) and α(j)− α(j′0) = α′(j) in Z/dZ.

In this case, I = [d], and v ∈ [d]I is any vector containing sufficiently many
copies of each element of [d]. Fix a pair (σ, α) ∈ F ′′(T ) where α has count
vector in v + ZI≥0. Set {j0} := im(σ). The frequent set of α is J = I = [d],
and all equivalence classes in T under ≡, except possibly for that of j0, are
large, since the fibres of α are large.

Pick a j′0 ̸= j0, let σ′ be the map S0 → T with image {j′0}, and define
α′ : T \ {j′0} → [d] via α′(j) = α(j) if j ̸= j0, j

′
0 and α′(j0) = d (which is

identified with 0 + dZ). Then it follows that (σ, α) ∼T (σ′, α′). Since α′ is
defined at j0 and takes the same value d at least once more (in fact, many
times), we conclude that the equivalence class of j0 under ≡ is not a singleton,
either. Hence the core of (σ, α) is empty.

We can now complete the quintuple of (α, σ): the partially defined map σ0
from S0 to the core ∅ is the only such map, the surjection τ : T → J equals α
on T \ {j0} and d on j0, the map σ1 maps the singleton S0 to d, and α is the
empty map ∅ → ∅. Note that the quadruple (J, σ0, σ1, α) does not depend on
the particular choice of (σ, α), so the groupoid G has a single object.

To determine all arrows in G, suppose that (σ, α) ∼T (σ′′, α′′), set {j′′0 } :=
im(σ′), and assume that j′′0 ̸= j0 (otherwise we get the identity arrow). Then



for any j ∈ T ′′ := T \ {j0, j′′0 }, we have

α′′(j)− α(j) = (α′′(j)− α′′(j0)) + (α′′(j0)− α(j))

= α(j) + (α′′(j0)− α(j))

= α′′(j0)

so that α′′|T ′′ is obtained from α|T ′′ by a coordinate-wise shift over the con-
stant α′′(j0) =: a. The map g(σ,α),(σ′′,α′′) : [d] → [d] is adding a (modulo
d). Conversely, for every choice of α′′(j0) ∈ [d] = Z/dZ, there is a unique
pair (σ′′, α′′) equivalent to (σ, α). We conclude that the groupoid G is just
(isomorphic to) the group Z/dZ. ♢

Proof. That G has identity arrows follows from (2.2), and that all arrows
are invertible follows from (2.1) combined with (2.2). It remains to check
that composition is well-defined. So let g1 be an arrow in G from a vertex
q := (J, σ0, σ1, α) to a vertex q′ := (J ′, σ′0, σ

′
1, α
′), and let g2 be an arrow in

G from q′′ := (J ′′, σ′′0 , σ
′′
1 , α

′′) to q. We need to show that g1 ◦ g2 is an arrow
in G from q′′ to q′. Now the existence of the arrow g2 means that there are a
finite set T and pairs (σ, α), (σ′′, α′′) ∈ F̃e([e]⊔T ) with core [e] and quadruples
q, q′′, respectively, such that g2 = g((σ, α), (σ′′, α′′)).

Let (J, τ, σ0, σ1, α) be the quintuple of (σ, α). By Proposition 2.5.7.10,
(J ′, g1 ◦ τ, σ′0, σ′1, α′) is the quintuple of another pair (σ′, α′) ∈ F̃e([e] ⊔ T )
with core [e] and (σ′, α′) ≃[e]⊔T (σ, α). Then g1 = g((σ′, α′), (σ, α)), and
g1 ◦ g2 = g((σ′, α′), (σ′′, α′′)) is an arrow from q′′ to q′, as desired.

Consider the class of quintuples arising from pairs (σ′, α′) ∈ F̃([e]⊔T ), T ∈
FI with core [e]. This class of quintuples comes with a natural anchor map
to the objects of G, namely, the map that forgets τ . The following says that
equivalence classes of quintuples are precisely orbits under G.

Corollary 2.5.7.13. The groupoid G acts on the set of quintuples of pairs in
F̃([e] ⊔ T ) with core [e], for T varying through FI, via the anchor map that
sends a quintuple to its corresponding quadruple. The orbits of this action are
precisely the ∼[e]⊔T -equivalence classes. The action of G commutes with the
action of Sym(T ).

Proof. The action of an arrow g : (J, σ0, σ1, α)→ (J ′, σ′0, σ
′
1, α
′) on a quintuple

(J, τ, σ0, σ1, α) yields the quintuple
(J ′, g ◦ τ, σ′0, σ′1, α′), and the axioms for a groupoid action are readily verified.
The action commutes with π ∈ Sym(T ) because (g ◦ τ) ◦ π = g ◦ (τ ◦ π). That
the G-orbits on quintuples coming from pairs (σ, α) ∈ F̃([e] ⊔ T ) with core [e]



are precisely the ∼[e]⊔T -equivalence classes follows from the last statement of
Proposition 2.5.7.10.

Recall that, by Lemma 2.5.7.8, we need to count the elements of F̃([e]⊔T )
with core [e] up to ∼[e]⊔T as well as up to the action of Sym([e]) × Sym(T ).
Modding out the action of Sym(T ) is now straightforward: it just consists of
replacing τ : T → J by its count vector u in ZJ≥0. Thus now the groupoid

G acts on quintuples (J, u, σ0, σ1, α) coming from pairs in F̃e([e] ⊔ T ) with
core [e], where u is a vector in ZJ≥0. Also the group Sym([e]) acts on such
quintuples, indeed, it acts on the corresponding quadruples and fixes u. We
need to count the quintuples up to the action of G and Sym([e]). To do so, we
first observe that Sym([e]) acts by automorphisms of G on the objects of G: if
there is an arrow g : q → q′, then there is also an arrow π(q)→ π(q′) with the
same label g, for each π ∈ Sym([e]). To stress that this arrow has a different
source and target, we write π(g : q → q′)π−1 for that arrow π(q)→ π(q′).

We now combine these actions into that of a larger groupoid G̃ with the
same ground set as G and with arrows q → q′′ all pairs (π, g : q → q′) where g is
an arrow from the quadruple q to some quadruple q′ and π ∈ Sym([e]) maps q′

to q′′. The composition (π′, g′) ◦ (π, g), where g′ : q′′ → q′′′ and π′(q′′′) = q′′′′,
is defined as (π′ ◦ π, π−1(g′ : q′′ → q′′′)π ◦ g). It is straightforward to see that
G̃ is, indeed, a finite groupoid acting on quintuples. Now we are left to count
orbits of G̃ on quintuples.

Proposition 2.5.7.14. There exists a quasipolynomial f such that, for n≫ 0,
the number of orbits of G̃ on quintuples (J, u ∈ ZJ≥0, σ0, σ1, α) arising from

pairs (σ, α) ∈ F̃e([e] ⊔ [n]) with core [e] equals f(n).

Proof. Applying the orbit-counting lemma for groupoids
(Lemma 2.5.5.1), it suffices to show that for each object of G̃, which is a
quadruple q = (J, σ0, σ1, α), and for each arrow (π, g) : q → q in G̃, the
number of fixed points of (π, g) on quintuples with the given quadruple q is
quasipolynomial for n ≫ 0. Such a quintuple is fixed if and only if the count
vector u ∈ ZJ≥0 is fixed by g—indeed, π acts trivially on the count vector.

Now we figure out the structure of the set of count vectors arising from
such quintuples. First, if u is the count vector of a quintuple (with the fixed
quadruple q) arising from (σ, α) ∈ F̃e([e] ⊔ [n]), and if l ∈ J and i ∈ [n] such
that α(i) = l, then u− el is the count vector of the quintuple arising from the
pair (σ̃, α̃) := F(π)((σ, α)), where π : [e]⊔ [n− 1]→ [e]⊔ [n] is the identity on
[e] and increasing from [n− 1]→ [n] and does not hit i. This suggest that the



set of count vectors that we are considering is downward closed. However, it
may be that (σ̃, α̃) is in F ′′([e] ⊔ [n− 1]) \ F̃([e] ⊔ [n− 1]).

On the other hand, if we had started with (σ, α) ∈ F ′′([e]⊔ [n])\F̃([e]⊔ [n])
and applied such an element F(π) to it, the result would not have been an
element of F̃([e] ⊔ [n− 1]).

This shows that the set of relevant count vectors is the difference N \N ′,
where N and N ′ are downward closed sets in ZJ≥0. Hence, using the Stanley
decomposition as in the proof of Proposition 2.5.3.1, the fixed points u that we
are counting are the lattice points in a finite disjoint union of rational cones,
each given as the intersection of a linear space (the eigenspace of g in RJ with
eigenvalue 1) and a finite union of sets of the form u+ ZJ′

≥0 with J ′ ⊆ J . The
number of such u is a quasipolynomial in n =

∑
l u(l) for n ≫ 0 for each of

the finitely many choices of (π, g), hence so is their sum.

This completes the proof of Theorem 2.5.7.1.

2.5.8 Pre-component functors

We will see that, if X is a width-one FI-scheme of finite type over a Noethe-
rian ring K, then we can cover X(S) by means of closed, irreducible subsets
parameterised by a finite number of model functors evaluated at S. Then, of
course, the irreducible components of X(S) are among these. But to ensure
that we are neither double-counting components of X(S) nor counting closed
subsets that are strictly contained in components, we need to keep track of
the inclusions among these closed subsets. At the combinatorial level, this is
done using compatible quasi-orders.

Definition 2.5.8.1. Let a ∈ Z≥0, for each b ∈ [a] let kb ∈ Z≥0 and let
S 7→ Fb(S)/∼b,S be a model functor, where Fb(S) is the set of pairs (σ, α)
with σ : S0,b → S and α ∈ Eb(S) ⊆ [kb]

S .
Suppose that we are given, for each S ∈ FI, a quasi-order ⪯S (i.e., a

reflexive and transitive relation) on the disjoint union

F(S) :=

a⊔
b=1

Fb(S).

This collection of quasi-orders is called compatible if the following properties
are satisfied:

Compatibility (1) whenever Fb(S) ∋ (σ, α) ⪯S (σ′, α′) ∈ Fb′(S), we have
b ≤ b′;



Compatibility (2) the restriction of ⪯S to each Fb(S) equals the equivalence
relation ∼b,S ; and

Compatibility (3) for all π ∈ HomFI(S, T ) and (σ, α) ∈ Fb(T ) and (σ′, α′) ∈
Fb′(T ) with im(π) ⊇ im(σ) ∪ im(σ′) we have

(σ, α) ⪯T (σ′, α′)⇒ Fb(π)((σ, α)) ⪯S Fb′(π)((σ′, α′)). ♢

Note that the condition that im(π) contains both im(σ) and im(σ′) implies
that Fb(π)((σ, α)) and Fb′(π)((σ′, α′)) are both defined.

Definition 2.5.8.2. In the setting of the previous definition, we introduce an
equivalence relation ∼S on F(S) by (σ, α) ∼S (σ′, α′) if both (σ, α) ⪯S (σ′, α′)
and (σ′, α′) ⪯S (σ, α). Note that, by the first and second axioms for pre-
component functors, (σ, α) ∈ Fb(S) is ∼S-equivalent to (σ′, α′) ∈ Fb′(S) if
and only if b = b′ and (σ, α) ∼b,S (σ′, α′).

The quasi-order ⪯S induces a partial order on the set

F(S)/∼S=
⊔
b

(Fb(S)/∼b,S)

of equivalence classes. We define the functor C : FI→ PF on objects by

C(S) := {the maximal elements of F(S)/∼S}

and on a morphism π : S → T as follows. Let c ∈ C(T ) be a maximal
equivalence class. If c contains some element (σ, α) ∈ Fb(T ) at which Fb(π)
is defined (i.e., with im(σ) ⊆ im(π)), and if, moreover, c′ := [Fb(π)((σ, α))]∼S

is also maximal in F(S)/∼S , then we set C(π)(c) := c′ ∈ C(S). By the
axioms for compatible quasi-orders, this is independent of the choice of the
representative (σ, α) of c—subject to the requirement that Fi(π) be defined at
that representative.

A functor C : FI→ PF obtained in this manner is called a pre-component
functor. ♢

2.5.9 The final quasipolynomial count

We retain the notation from §2.5.8: for each b ∈ [a] we have a model functor
S 7→ Fb(S)/∼b,S , and on the disjoint unions F(S) :=

⊔
b Fb(S) (for S ∈ FI)

we have compatible quasi-orders ⪯S .

Theorem 2.5.9.1. Let C be the pre-component functor corresponding to the
data above. Then the number of Sym(S)-orbits on C(S) is a quasipolynomial
in |S| for all S with |S| ≫ 0.



The proof requires the proof technique used in §2.5.7, and takes up the rest
of this subsection.

Proof. By Theorem 2.5.7.1, we know that the number of Sym(S)-orbits on the
disjoint union of model functors

⊔
b(Fb(S)/∼b,S) is eventually quasipolynomial

in |S|. From this disjoint union we will remove, for each b ∈ [a], the ∼b,S-
classes of pairs (σ, α) for which there exists a b′ > b and a (σ′, α′) ∈ Fb′(S)
with (σ, α) ⪯S (σ′, α′). We will see that, for a fixed b ∈ [a], the Sym(S)-orbits
on these deletions are also counted by a quasipolynomial.

To this end, fix b ∈ [a] and let M ⊆ Zkb≥0 be the downward closed subset
corresponding to Eb. From §2.5.7 we recall that, to prove that the number
of Sym(S)-orbits on Fb(S)/∼b,S is quasipolynomial in |S| for |S| ≫ 0, we
performed induction on M using Dickson’s lemma. We do the same here.

Lemma 2.5.9.2. Fix b ∈ [a]. For |S| ≫ 0, the number of Sym(S)-orbits on
pairs (σ, α) ∈ Fb(S) that are ⪯ some pair (σ′, α′) ∈ Fb′(S) for some b′ > b is
quasipolynomial in |S|.

Proof. We construct the sub-functor E ′b ⊆ Eb and the corresponding sub-

functor F ′b ⊆ Fb as in §2.5.7, as well as the difference F̃b(S) := Fb(S) \ F ′b(S).
By induction on M using Dickson’s lemma, we may assume that the lemma
holds for the sub-model functor S 7→ F ′b(S)/∼b,S . On the other hand, in §2.5.7

we counted the Sym(S)-orbits on F̃b(S)/∼b,S , for all S, as a finite sum of orbit
counts of certain finite groupoids. More precisely, for finitely many values of
a nonnegative integer e, we there considered the pairs (α, σ) ∈ F̃b([e] ⊔ S)
with core equal to [e]. Each of these pairs gives rise to a quintuple (J, u ∈
ZJ≥0, σ0, σ1, α) where J ⊆ [kb] is the frequent set of α, and we showed that
the Sym(S)-orbits on ∼b,[e]⊔S-equivalence classes of such pairs (α, σ) are in
bijection with the orbits of a certain groupoid on the sum-|S| level set of a
difference N \ N ′ where N,N ′ ⊆ Zkb≥0 are downward closed; this difference is

where the count vector u ∈ ZJ≥0 ⊆ Zkb≥0 lives.
Now suppose that (σ, α) ⪯[e]⊔S (σ′, α′) for some (σ′, α′) ∈ Fb′([e] ⊔ S)

with b′ > b, and let i ∈ S be such that l := α(i) ∈ J . If i happens to be in
im(σ)∪im(σ′), then choose j ∈ S\(im(σ)∪im(σ′)) such that α(i) = α(j) = l—
this can be done since l appears frequently in α (although, to be precise, when
choosing the vector ṽ in the construction of F̃b, we now have to make sure that
its large entries values are large even compared to the finitely many numbers
kb′ , b

′ ∈ [a]).
By Lemma 2.5.7.5, (σ, α) ∼b,[e]⊔S (σ̃, α̃) := Fb((i j))((σ, α)), and the ax-

ioms for compatible quasi-orders imply that (σ̃, α̃)



⪯[e]⊔S (σ̃′, α̃′) := Fb′((i j))((σ′, α′)). Moreover, we have achieved that i ∈
S \ (im(σ̃) ∪ im(σ̃′)).

Now let π : [e] ⊔ S \ {i} → [e] ⊔ S be the inclusion map. Then Fb(π) and
Fb′(π) are defined at (σ̃, α̃) and (σ̃′, α̃′), respectively, and we have

Fb(π)((σ̃, α̃)) ⪯[e]⊔S\{i} Fb′(π)((σ̃′, α̃′)).

The count vector in ZJ≥0 of the left-hand side is just u− el.
We conclude that the set of count vectors of quintuples corresponding to

pairs in F̃b,e([e]⊔S) with core [e] whose ∼[e]⊔S-equivalence class is not maximal

in F̃ ([e] ⊔ S)/∼[e]⊔S is downward-closed, or more precisely the intersection of
a downward-closed set with the earlier difference N \ N ′ of downward-closed
sets, hence again a difference of downward-closed subsets of Zkb≥0. The same
orbit-counting argument with groupoids as in §2.5.7 applies, and shows that
the number of Sym(S)-orbits on pairs in F̃(S) that are not maximal in ⪯ is a
quasipolynomial.

This concludes the proof of Theorem 2.5.9.1.

2.5.10 Component functors “are” pre-component func-
tors

We are now ready to establish our main result on component functors of width-
one FIop-schemes.

Theorem 2.5.10.1. Let X be a reduced and nice width-one affine FIop-
scheme of finite type over a Noetherian ring K. Then there exists a pre-
component functor C and a morphism φ : C → CX such that φ is an isomor-
phism at the level of species.

More precisely, there exist an a ∈ Z≥0, nonnegative integers kb ∈ Z≥0 for
b ∈ [a], model functors S 7→ Fb(S)/∼b,S, a collection of compatible quasi-
orders ⪯S on

⊔
b Fb(S) for each S ∈ FI, and maps φb that assign to any

(σ, α) ∈ Fb(S) an irreducible, locally closed subset φb((σ, α)) of X(S) such
that, for all S and T ,

1. X(S) is the union of the sets φb((σ, α)) for b ∈ [a] and (σ, α) ∈ Fb(S);

2. two locally closed sets φb((σ, α)) and φb′((σ
′, α′)) with

(σ, α) ∈ Fb(S) and (σ′, α′) ∈ Fb′(S) are either equal or disjoint;



3. Fb(S) ∋ (σ, α) ⪯S (σ′, α′) ∈ Fb′(S) holds if and only if φb((σ, α)) is
contained in the Zariski closure of φb′((σ

′, α′)); and

4. if (σ, α) ∈ Fb(T ) and π ∈ HomFI(S, T ) are such that im(π) ⊇ im(σ),
so that (σ′, α′) := Fb(π)((σ, α)) is defined, then the map X(π) maps
φb((σ, α)) dominantly into φb((σ

′, α′)).

The pre-component functor C then assigns to S the equivalence classes of
the maximal elements of ⪯S, and the morphism φ is given by restricting the
φb to these maximal elements and taking the Zariski closure.

The proof of this theorem takes up the rest of this subsection.

Proof. Let X = Spec(B) be a width-one FIop-scheme of finite type over a
Noetherian ring K. We assume that X is reduced and nice. By the Shift
Theorem and Proposition 2.3.3.1 there exist S0 ∈ FI and h ∈ B(S0) such
that X ′ := ShS0 X[1/h] = Spec(B′) is of product type in the sense of Defini-
tion 2.3.3.2. In particular, B′0 = B(S0)[1/h] is a domain, X ′ is isomorphic to
S 7→ ZS where Z := X ′([1]), and for each S ∈ FI, each irreducible component
of ZS maps dominantly into Spec(B′0).

For an S ∈ FI, let Z(S) be the open subset of X(S) defined by

Z(S) := {p ∈ X(S) | ∃σ : S0 → S : (σh)(p) ̸= 0}.

Let Y (S) := X(S)\Z(S). Note that Y ⊊ X is a proper closed FIop-subscheme
of X(S), but Z(S) is not (quite) functorial in S: for π ∈ HomFI(S, T ) and
p ∈ Z(T ) it might happen that X(π)(p) lies in Y (S) rather than in Z(S).

However, if σ ∈ HomFI(S0, T ) and π ∈ HomFI(S, T ) satisfy im(σ) ⊆ im(π),
then X(π) maps the points of Z(T ) where σ(h) is nonzero to points of Z(S)
where (π−1σ)(h) is nonzero. Consequently, in spite of the fact that Z is not an
FIop-scheme, as in Definition 2.4.2.1 we associate to Z the component functor
CZ : FI→ PF that assigns to S the set of irreducible components of Z(S) and
to π ∈ HomFI(S, T ) the partially defined map CZ(π) : CZ(T )→ CZ(S) that at
a component c ∈ CZ(T ) is defined and takes the value c′ ∈ CZ(S) if and only
if X(π) maps c dominantly into c′.

Now CX(S) is the union of CZ(S) and the components in CY (S) that are
not contained in the closure in X(S) of any component of Z(S).

By Noetherian induction using Theorem 1.4.6.3, we may assume that The-
orem 2.5.10.1 holds for Y ⊊ X, that is, there exists a morphism φ from a
pre-component functor C1 to CY that is an isomorphism at the level of species,
and C1 is constructed from model functors S 7→ Fb(S)/∼b,S , b ∈ [a] and a
collection of compatible quasi-orders ⪯S , S ∈ FI, while φ is constructed from



maps φb that assign (disjoint or equal) locally closed subsets in Y (S) to pairs
(σ, α) ∈ Fb(S), b ∈ [a].

We now construct a model functor C2 and a morphism C2 → CZ that is an
isomorphism at the level of species.

Let L be the fraction field of B′0 and let X ′L be the base change of X ′ to L.
Since every irreducible component of X ′(S) maps dominantly into Spec(B′0),
the morphism CX′

L
→ CX′ is an isomorphism. So for each S ∈ FI, the irre-

ducible components of X ′L(S) are in bijection with the irreducible components
of X(S0 ⊔ S)[1/h] ⊆ Z(S0 ⊔ S). Consequently, for each injection σ : S0 → S
we now have an injective map

{irreducible components of X ′L(S \ im(σ))} → CZ(S), (2.3)

c 7→ X(σ̃)(c)

where σ̃ : S → S0 ⊔ (S \ im(σ)) is the bijection that equals σ−1 on im(σ) and
the identity on S \ im(σ). The image of this injective map consists precisely of
the irreducible components of Z(S) on which σ(h) is not identically zero. As
we vary σ, we thus obtain all irreducible components of Z(S), indeed typically
multiple times.

Let L be a separable closure of L, and let X ′
L

be the base change of X ′ to L.
Now we have a surjective morphism CX′

L
→ CX′

L
whose fibres are Galois orbits.

More precisely, let C1, . . . , Ck be the irreducible components of X ′
L

([1]) = ZL,

and let G be the image of the Galois group Gal(L/L) in Sym([k]) through its
action on the components C1, . . . , Ck. Then, as we have seen in §2.5.4, CX′

L

is isomorphic to the functor S 7→ E(S) := [k]S . Furthermore, CX′ ∼= CX′
L

is
isomorphic to the elementary model functor S 7→ E(S)/G.

Now we construct the functor F : FI→ PF by

F(S) := {(σ, α) | σ : S0 → S, α ∈ E(S \ im(σ))}.

Then, by the above, we have a surjective morphism

Ψ : F → CZ ;

concretely, Ψ(S) takes (σ, α) ∈ F(S), computes the component of X ′
L

(S \
im(σ)) corresponding to α, its image in CX′

L
(S \ im(σ)) (modding out the

Galois group), and then applies the map (2.3). To simplify notation, we will
write Ψ((σ, α)) instead of Ψ(S)((σ, α)).

This surjection is by no means a bijection: even ignoring the Galois groups
for a moment, on the left we have pairs of a component in Z(S) and a specified



σ : S0 → S such that σ(h) is not identically zero on that component; and on
the right we just have components of Z(S). A single component of Z(S) may
admit many different such maps σ. We therefore introduce an equivalence
relation ∼S on F(S) by (σ, α) ∼S (σ′, α′) :⇔ Ψ((σ, α)) = Ψ((σ′, α′)). In text
we will sometimes opress the S and say that (σ, α) is equivalent to (σ′, α′).

We will prove that the equivalence relation ∼S satisfies the axioms in the
definition of a model functor (§2.5.6).

Lemma 2.5.10.2. Suppose that F(T ) ∋ (σ, α) ∼T (σ′, α′) ∈ F(T ) and let
π ∈ HomFI(S, T ) with im(π) ⊇ im(σ) ∪ im(σ′). Then

F(π)((σ, α)) ∼S F(π)((σ′, α′))

holds.

Proof. The assumptions assert that Ψ((σ, α)) = Ψ((σ′, α′)) and that CZ(π) is
defined at this component of Z(T ). By construction, we have

Ψ(F(π)((σ, α))) = CZ(π)(Ψ((σ, α)))

= CZ(π)(Ψ((σ′, α′)))

= Ψ(F(π)((σ′, α′))),

so that F(π)((σ, α)) ∼S F(π)((σ′, α′)), as desired.

This lemma establishes Axiom (1) for the equivalence relations ∼S . We
continue with Axiom (2).

Lemma 2.5.10.3. Let (σ, α) ∈ F(T ) and let π ∈ HomFI(S, T ) satisfy im(π) ⊇
im(σ). Assume that F(π)((σ, α)) ∼S (σ′′, α′′) ∈ F(S). Set σ′ := π ◦ σ′′. Then
there exists an α′ ∈ E(T ) such that (σ′, α′) lies in F(T ), is ∼T -equivalent to
(σ, α), and satisfies F(π)((σ′, α′)) = (σ′′, α′′).

Proof. Let C := Ψ((σ, α)) be the corresponding component of Z(T ) and D its
image in Z(S) under X(π). The fact that F(π)((σ, α)) ∼S (σ′′, α′′) ∈ F(S)
implies that σ′′(h) is not identically zero on D. Then σ′(h) = π(σ′′(h)) is not
identically zero on C, and hence C = Ψ((σ′, α̃′)) for a suitable α̃′ ∈ E(T ). Then
F(π)((σ′, α̃′)) = (σ′′, α̃′′) for α̃′′ := α̃′ ◦ π|S\im(σ′′) and we have (σ′′, α̃′′) ∼S
(σ′′, α′′). Since the first component σ′′ of these pairs is the same, it follows that
α′′ = gα̃′′ for some g ∈ G. Now set α′ := gα̃′. As the action of G commutes
with F(π), we have (σ′′, α′′) = F(π)((σ′, α′)), and since Ψ((σ′, α′)) = C, we
have (σ′, α′) ∼T (σ, α).

Next, we establish Axiom (3) for model functors.



Lemma 2.5.10.4. Assume that (σ, α) ∈ F(T ) is ∼T -equivalent to (σ′, α′) ∈
F(T ). Then for all all i, j ∈ T \ (im(σ) ∪ im(σ′)) we have

α(i) = α(j)⇔ α′(i) = α′(j).

Proof. Set C := Ψ((σ, α)) = Ψ((σ′, α′)), an irreducible component of Z(T ).
Set D := X(im(σ))[1/(σh)], and note that the inclusion im(σ) → T yields a
dominant morphism C → D. Similarly, the inclusion im(σ′) → T yields a
dominant morphism C → D′ := X(im(σ′))[1/(σ′h)].

Furthermore, let D̃ the image of C in

X(im(σ) ∪ im(σ′))[1/(σh), 1/(σ′h)]

under the morphism coming from the inclusion im(σ)∪ im(σ′)→ T . Note that
X(σ) mapsD isomorphically onto Spec(B′0) andX(σ′) mapsD′ isomorphically
onto Spec(B′0), and that D̃ maps dominantly into D and into D′.

Now let M be the field of rational functions on D, and M ′ the field of
rational functions on D′. Note that σ and σ′ give rise to isomorphisms from
L to M and M ′, respectively. We extend these isomorphisms to isomorphisms
from L to separable closures M and M ′ of M,M ′. This yields isomorphisms
from Gal(L/L) to the Galois groups Gal(M/M) and Gal(M ′/M).

The base change CM equals⋃
β∈Gα

∏
i∈T\im(σ)

Cβi ;

here the product is over M and Cβi
is regarded as a variety over M via the

isomorphism L → M ; and similarly for (σ′, α′). The base change D̃M splits
as a similar union of products, but now over β ∈ Gα|im(σ′)\im(σ).

Let M̃ ⊇M∪M ′ be the field of rational functions of D̃, and let M̃ ⊇M∪M ′
be a separable closure of M̃ . The components of the base change C

M̃
can then

be computed in two different ways: by first doing a base change to M or by
first doing a base change to M ′. For the first route, we have to analyse what
happens to the product over M ∏

i∈T\im(σ)

Cβi

when doing a base change to M̃ . Write this product as V ×MW , where V is the

product over all i ∈ im(σ′)\im(σ), and hence an irreducible component of D̃M ;



and W is the product over all i ∈ T \ (im(σ)∪ im(σ′)). The function field M̃ of
the irreducible M -scheme D̃ embeds into the function field of any component
of D̃M , hence in particular into M(V ), and this field extension is algebraic, so

that M̃ ∼= M(V ). So the base change to M̃ of the product V ×MW is just the
base change of W over the separably closed field M with the field extension

M(V ) and hence still irreducible (e.g. by [Sta20, Tag 020J]).

Summarising, we obtain a bijection from the irreducible components of
CM , which are labelled by elements of Gα, to the irreducible components of
C
M̃

, and that bijection is evidently Sym(T \ (im(σ)∪ im(σ′)))-equivariant. As

a consequence, for i, j ∈ T \ (im(σ) ∪ im(σ′)) we have α(i) = α(j) if and only
if the transposition (i j) preserves some (and then each) component in CM , if
and only if that transposition preserves some (and then each) component in
C
M̃

.

Similarly, we obtain a bijection from the irreducible components of CM ′ ,
which are labelled by elements of Gα′, to the irreducible components of C

M̃
,

with the same remark about compatibility with the transposition (i j). Com-
bining these results, we find that for i, j ∈ T \ (im(σ) ∪ im(σ′)) we have
α(i) = α(j) if and only if α′(i) = α′(j).

We have now concluded the proof that C2 : S 7→ F(S)/∼S is a model
functor; and by construction, the map C2 → CZ induced by Ψ is a morphism
that is an isomorphism at the level of species.

Finally, we combine the pre-component functor C1 (mapping onto CY ) and
the model functor C2 (mapping onto CZ) as follows. Recall that C1 is con-
structed by taking the equivalence classes of maximal elements in

⊔
b∈[a] Fb(S).

We now set Fa+1 := F(S), and we extend⪯S from
⊔
b∈[a] Fb(S) to

⊔
b∈[a+1] Fb(S)

by setting it equal to∼S on Fa+1(S) = F(S), and for (σ, α) ∈ Fb(S) with b ≤ a
and (σ′, α′) ∈ Fa+1(S) we set (σ, α) ⪯S (σ′, α′) if and only if the irreducible
locally closed subset φb((σ, α)) of Y (S) is contained in the Zariski closure of
the irreducible component φa+1((σ′, α′)) := Ψ((σ′, α′)) of Z(S). Properties
(1)–(4) in Theorem 2.5.10.1 are then straightforward, and so are the proper-
ties Compatibility (1) and (2) from the definition of pre-component functors.
For instance, Compatibility (1) follows from the fact that no component of
Z(S) can be contained in Y (S).

Regarding Compatibility (3): for b = b′ = a + 1 this is just Axiom (1),
verified in Lemma 2.5.10.2; and for b ≤ a, b′ = a+ 1 it follows from the simple
fact that if the irreducible locally closed set φb((σ, α)) in Y (T ) is contained in
the Zariski closure of the component Ψ((σ′, α′)) of Z(T ), then the same holds
for their projections in Y (S) and Z(S), respectively, along the map X(π).



With this quasi-order, the pre-component functor C1 and the model functor
C2 are combined into a pre-component functor C3 with an obvious morphism
to CX that is an isomorphism at the level of species.

2.5.11 Proof of the main theorem

Proof of Theorem 2.1.1.1. Before the Main Theorem we introduced FIop-schemes
slightly differently than we do in §1.4, but the two definitions are equivalent
via Remark 1.4.2.10. So we may assume that X is a width-one FIop-scheme of
finite type over a Noetherian ring K in the sense of §1.4. Furthermore, since
the Main Theorem only makes a statement about the underlying topological
space of X([n]) for n≫ 0, we may assume that X is both nice and reduced.

By Theorem 2.5.10.1, the component functor CX of X is, at the level of
species, isomorphic to a pre-component functor C. In particular, for all S,
the number of Sym(S)-orbits on CX(S) equals the number of Sym(S)-orbits
on C(S). By Theorem 2.5.9.1, this number is a quasipolynomial in |S| for
all sufficiently large S. This proves the Main Theorem and concludes the
chapter.



Chapter 3

Image closure of symmetric
wide-matrix varieties

This chapter is based on the paper [DEFM22] with Jan Draisma, Rob Egger-
mont, and Leandro Meier.

3.1 Introduction

Recall from Section 1.3 that the space of k × N-matrices equipped with the
natural action of Sym(N) is topologically Sym(N)-Noetherian but the space
of N × N-matrices equipped with the natural action of Sym(N), or even with
the action of Sym(N) × Sym(N), is not equivariantly Noetherian, and it gets
only worse for higher-dimensional tensors. This is problematic because many
varieties of relevance to applications, such as the k-factor model [Dra10] and
hierarchical models [HS12] naturally live in matrix or tensor spaces and are
preserved by (copies of) the symmetric group.

Hence it is interesting to find Sym(N)-stable subvarieties of N×N-matrices,
or N × · · · × N-tensors, that are defined by finitely many orbits of equations
and Sym(N)-Noetherian. In this chapter, we study such subvarieties that arise
as image closures of Sym(N)-equivariant polynomial maps from the space of
k×N-matrices, and we show that these are always defined, set-theoretically, by
finitely many Sym(N)-orbits of equations, as well as themselves topologically
Sym(N)-Noetherian.
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3.1.1 Main theorem

Recall from Chapter 1 that an FI-algebra A is finitely generated in width at
most 1 if A is generated by A(∅) and A({1}), and both of these are finitely
generated. This is equivalent to the statement that A can be realised as a
quotient (in the category of FI-algebras over K) of an algebra of the form

S 7→ K[xij | i ∈ [c], j ∈ S];

see 1.4.4.11. Geometrically, Spec(A) is then an FIop-subscheme over K of the
scheme that sends S to k × S-matrices.

Theorem 3.1.1.1 (Main Theorem). Let φ be a morphism of FI-algebras B →
A, where A and B both are finitely generated FI-algebras over a Noetherian
ring K. Suppose, moreover, that A is generated in width at most 1. Then
the Zariski closure Im(φ∗) of the image of Spec(A) under the dual map φ∗ is
defined, as a set, by finitely many elements in B. Equivalently, there exists
a finitely generated FI-ideal I in B such that the radical of I is equal to the
radical of the kernel Kerφ.

Moreover, Im(φ∗) is topologically Noetherian, that is, it satisfies the de-
scending chain condition on reduced closed subschemes.

An immediate consequence of the Main Theorem is the following.

Corollary 3.1.1.2. For any Sym(N)-equivariant morphism φ of K-schemes
from the scheme of k × N-matrices to the scheme of N × · · · × N-tensors, the
image closure Im(φ) of φ is defined, set-theoretically, by finitely many Sym(N)-
orbits of equations. Furthermore, it is topologically Sym(N)-Noetherian: any
descending chain

im(φ) ⊇ X1 ⊇ X2 ⊇ . . .

of reduced, closed subschemes stabilizes.

We do not know whether kerφ itself is necessarily finitely generated.

Conjecture 3.1.1.3. Let φ be the FI-algebra homomorphism defined in the
Main Theorem 3.1.1.1. Then the FI-ideal Kerφ is finitely generated.

A particular case of the above conjecture was stated in [AH07, Conjecture
5.10] and proved in [DEKL16] when generators of the FI-algebra B are mapped
under φ to monomials in A.

On the other hand, in the setting of the Main Theorem, there are exam-
ples where Im(φ∗) is not scheme-theoretically Noetherian, i.e., has an infinite



strictly descending chain of closed (but non-reduced) FIop-subschemes: in
[DKK, Theorem 43] it is proved that the cone over the Grassmannian of 2×S-
spaces, with S ∈ FI, has this bad behavior in characteristic 2 (but not in
characteristic zero due to the existence of Reynolds operators, see [Dra10]).

To illustrate the strength of our Main Theorem, we explain how it imme-
diately implies the main result in [Dra10].

Example 3.1.1.4. In [DSS06] the question was raised whether the ideal of
polynomial relations among the entries of a matrix of the form Σ = AAT +D,
with A running through Rn×k and D running through the (positive-definite)
diagonal matrices, is generated by a finite number of Sym([n])-orbits for n→
∞. The set of all such matrices is the Gaussian k-factor model. This question
remains open to this date. However, in [BD11] an affirmative answer was given
for k = 2, and in [Dra10] an affirmative answer for a set-theoretical version was
established for arbitrary k. The latter also follows from the Main Theorem,
because the map that sends the matrix entry σij to the entry

∑k
l=1 ailajl +

δij · dii is a homomorphism from the FI-algebra S 7→ R[σij | i, j ∈ S] to the
FI-algebra S 7→ R[ail, dii | l ∈ [k], i ∈ S], and the latter is generated in width
≤ 1. ♢

Recently our Main Theorem 3.1.1.1 has been used by Yulia Alexandr, Joe
Kileel, and Bernd Sturmfels in [AKS23, Theorem 10] to prove the set-theoretic
finiteness for moment varieties of conditionally independent mixture distribu-
tions on Rn.

3.1.2 Organisation of this chapter

In Section 2 we recall elementary properties of finitely generated FI-algebras.
Section 3 is devoted to the reduction of the Main Theorem 3.1.1.1 to the case
of free FI-algebras. In Section 4 we prove our Main Theorem. To this end, we
prove that the image of the map φ∗ lies in the closed subscheme of Spec(B)
defined by off-diagonal (l + 1) × (l + 1)-subdeterminants of flattenings, see
Lemma 3.4.2.5. This subscheme is defined by finitely many equations (Lemma
3.4.2.4) and is contained in the image of a topologically Noetherian space, see
Proposition 3.4.2.10 and Lemma 3.4.2.8.

A result of potentially independent interest is the following tensor comple-
tion result: a tensor labeled by the tuples in S × · · · × S in which no entry
appears more than once (an off-diagonal tensor) and of which all the meaning-
ful (l+1)×(l+1)-subdeterminants of flattenings are zero, can be completed to
a full tensor (including the diagonal) of some bounded rank; see Proposition
3.4.2.10.



3.2 Finitely generated FI-algebras

The following (class of) FI-algebra Bd is a building block for FI-algebras that
are finitely generated in width ≤ d.

Definition 3.2.0.1. For a non-negative integer d, denote by Bd the FI-algebra
over a ring K that maps a finite set S to the K-algebra

Bd(S) = K[yi1,i2,...,id : i1, i2, ..., id ∈ S and ij ̸= il when j ̸= l]

and for an injection σ : S → T , the K-algebra homomorphism Bd(σ) is deter-
mined by Bd(σ)(yi1,i2,...,id) := yσ(i1),σ(i2),...,σ(id). It is easy to see that Bd is
generated by the single element y1,2,...,d ∈ Bd([d]), of width d.

Remark 3.2.0.2. 1. We think of the elements of SpecBd as S×S× ...×S-
tensors of which only the entries outside the big diagonal {(i1, i2, ..., id) :
∃ j < l, ij = il} are given. We call these tensors “off-diagonal tensors”.

2. It is easy to show that the tensor product of such algebras is again finitely
generated in width at most the largest of the relevant d.

3. For fixed non-negative integers d, k0, k1, k2, ..., kd,
B[k0, k1, k2, ..., kd] denotes the FI-algebra

⊗d
i=0B

⊗ki
i , which is finitely

generated in width at most d.
♢

We record the following lemmas for later use.

Lemma 3.2.0.3. Let A be an FI-algebra. Then any homomorphism φ : Bd →
A of FI-algebras is completely determined by the image of y1,2,...,d ∈ Bd([d]).
Moreover, Bd has the following universal property: if a ∈ A([d]) is any ele-
ment of A, then there exists a unique homomorphism φ : Bd → A such that
φ(y1,2,...,d) = a.

Proof. Let yi1,i2,...,id be a variable in Bd(S) where i1, i2, ..., id ∈ S. Let σ :
[d]→ S be the injection that sends j to ij . Then we have

φ(yi1,i2,...,id) = φ(Bd(σ)y1,2,...,d) = A(σ)φ(y1,2,...,d).

Thus the image of y1,2,...,d completely determines the map φ.
To prove the last statement, for i1, . . . , id ∈ S distinct, define φ(yi1,i2,...,id) :=

A(σ)a, where σ : [d] → S is the map that sends j to ij , and extend this to a
homomorphism Bd(S)→ A(S) in the unique manner. A straightforward com-
putation shows that this does, indeed, define an FI-algebra homomorphism
B → A with φ(y1,...,d) = a.



Remark 3.2.0.4. Lemma 3.2.0.3 implies that the FI-algebraB[k0, k1, k2, ..., kd]

has the same universal property when a is replaced by a tuple in
∏d
e=0A([e])ke .

♢

Lemma 3.2.0.5. Let A be an FI-algebra that is finitely generated in width at
most d. Then there exists a surjective homomorphism φ : B[k0, k1, k2, ..., kd]→
A for some non-negative integers k0, k1, k2, ..., kd.

Proof. Let ki be the number of generators of width i. Assume h
(i)
1 , h

(i)
2 , ..., h

(i)
ki
∈

A([i]) are generators of width i. Consider the unique FI-algebra homomor-

phism φi : B⊗kii → A that sends y
(l)
1,2,...,i ∈ Bi([i])⊗ki to h

(i)
l for l = 1, 2, ..., ki.

Then φi is surjective by construction. Then the tensor map

d⊗
i=0

φi : B[k0, k1, k2, ..., kd]→ A

is the required surjective morphism.

Remark 3.2.0.6. Dually, Spec(A) embeds in a finite product of affine spaces
of off-diagonal tensors. ♢

Recall from Section 2.2.3 that ShT0 A denotes the shift over a finite set
T0 of an FI-algebra A and ShT0

X denotes the FIop-scheme Spec(ShT0
A).

Furthermore, ShT0
φ denotes the morphism ShT0

A→ ShT0
B that sends T to

φ(T0 ⊔ T ) for a morphism φ : A→ B of FI-algebras.

Lemma 3.2.0.7. For a fixed finite set T0, ShT0
B[k0, k1, k2, ..., kd] is isomor-

phic to B[k′0, k
′
1, k
′
2, ..., k

′
d−1, kd] for some non-negative integers k′0, k

′
1, ..., k

′
d−1.

Proof. We have ShT0(A ⊗ C) ∼= (ShT0 A) ⊗ (ShT0 C), for any FI-algebras A
and C. So it suffices to show that Bd is isomorphic to B[k′0, k

′
1, ..., k

′
d−1, 1].

Note that

ShT0
Bd(T )

= K[yi1,i2,...,id : i1, i2, ..., id ∈ T0 ⊔ T and il ̸= im when l ̸= m]

∼=

(
d−1⊗
e=0

Be(T )⊗(d
e)×|T0|×(|T0|−1)×...×(|T0|−d+e+1)

)
⊗ (Bd(T )),

where the exponent counts the number of ways of filling d − e of the d index
positions with elements of T0. Thus ShT0

Bd ∼= B[k′0, k
′
1, k
′
2, ..., k

′
d−1, 1].



3.3 Reduction to the case of free FI-algebras

This section is devoted to the reduction of our main theorem to the case of
free FI-algebras.

3.3.1 Making B free

Here we introduce the following useful notations. Let A be an FI-algebra. By
f ∈ A we mean that there exists S ∈ FI such that f ∈ A(S). Similarly, by
p ∈ SpecA we mean that there exists T ∈ FI such that p ∈ SpecA(T ). By
f(p) = 0 we mean that for all σ : S → T injections, (σf)(p) = 0.

Proposition 3.3.1.1. Let π : C → B and φ : B → A be homomorphisms
of FI-algebras, where π is surjective. If the image closure Im(π∗ ◦ φ∗) of
π∗ ◦ φ∗ : SpecA → SpecC is defined by finitely many elements in C, then
the image closure Im(φ∗) of φ∗ : SpecA → SpecB is also defined by finitely
many elements in B. If, moreover, Im(π∗ ◦ φ∗) is topologically Noetherian,
then Im(φ∗) is also topologically Noetherian.

Proof. Suppose f1, f2, . . . , fm ∈ C define the image closure
Im(π∗ ◦ φ∗). We claim that their images πf1, πf2, ..., πfm ∈ B define the
image closure Im(φ∗). First note that Im(π∗ ◦ φ∗) = π∗(Im(φ∗)) as π∗ is a
closed embedding. Let p ∈ Im(φ∗), then πfi(p) = fi(π

∗p) = 0. Thus for all
i = 1, 2, ...,m we have that πfi vanishes on Im(φ∗).

Conversely, pick p ∈ SpecB such that p is in the closed subset defined by
πf1, πf2, ..., πfm, then π∗p lies in the variety defined by f1, f2, ..., fm, that is,
by our supposition, π∗p ∈ Im(π∗ ◦ φ∗). Now let g be an element of Ker (φ). By
the surjectivity of π, there exists g′ ∈ C such that πg′ = g, which implies that
g′ ∈ Ker (φ◦π). Hence g′ vanishes on π∗(p). So g(p) = πg′(p) = g′(π∗(p)) = 0.
Hence p ∈ Im(φ∗).

The last statement is straightforward. Every descending chain of closed
subsets in Im(φ∗) maps under π∗ to a descending chain of closed subsets in
Im(π∗ ◦ φ∗) because π∗ is a closed embedding. The latter chain stabilizes, and
when it does, so does the former chain. This completes the proof.

Remark 3.3.1.2. Let B be an FI-algebra that is finitely generated in width
at most d and φ : B → A be a homomorphism of FI-algebras. Then, by
Lemma 3.2.0.5, there exists a surjective map π from B[k0, k1, ..., kd] to B.
Thus Proposition 3.3.1.1 implies that it suffices to prove the main theorem for
the FI-algebra B[k0, k1, ..., kd] instead of B, i.e. without loss of generality, in
the main theorem, we can assume that B is free. ♢



3.3.2 Making A free, as well

Proposition 3.3.2.1. Let φ : B → A, ψ : B → A′ and π : A′ → A be homo-
morphisms of finitely generated FI-algebras such that π ◦ψ = φ. If the closure
Im(ψ∗) of the image of ψ∗ is topologically Noetherian, then the closure Im(φ∗)
of the image of φ∗ is also topologically Noetherian. If, moreover, Im(ψ∗) is
defined by finitely many elements in B, then Im(φ∗) is also defined by finitely
many elements in B.

Proof. The first statement is a straightforward implication of the fact that a
closed subspace of a topologically Noetherian space is topologically Noetherian.
Since Ker (ψ) is contained in Ker (φ), we have

Im(φ∗) = VSpecB(Ker (φ)) = VSpecB(Ker (π ◦ ψ))

is a closed subset of VSpecB(Ker (ψ)) = Im(ψ∗). The latter is topologically
Noetherian, hence so is the former.

For the last statement, observe that Im(φ∗), being a closed subset of a
topologically Noetherian space Im(ψ∗), is defined by finitely many elements
in the coordinate ring K[Im(ψ∗)] = B/I, where I = I(Im(ψ∗)) is an ideal
generated by finitely many elements in B. This implies that Im(φ∗) is defined
by finitely many elements in B.

Remark 3.3.2.2. Let A be an FI-algebra that is finitely generated in width
at most 1 and let φ : B[k0, k1, ..., kd] → A be a morphism. Then by Lemma
3.2.0.5 there is a surjective map π : B[k′0, k

′
1] → A. By universality of

B[k0, k1, ..., kd] (see Remark 3.2.0.4), there exists (not necessarily unique) map
ψ : B[k0, k1, ..., kd]→ B[k′0, k

′
1] such that φ = π ◦ ψ. Thus Proposition 3.3.2.1

implies that it suffices to prove the main theorem for B[k′0, k
′
1] instead of A

i.e. without loss of generality, in the main theorem, we can assume that A is
free. ♢

3.4 Proof of the main theorem

3.4.1 Flattening

For a more detailed description of flattening see [DK14].



Definition 3.4.1.1. Let V =
⊗n

j=1 Vj be a tensor product of vector spaces
Vj over a field L. Then for each i ∈ [n], there is a natural isomorphism

♭i : V →

⊗
j ̸=i

Vj

⊗ Vi.
For a t ∈ V the image ♭i(t) is a 2-tensor called a flattening of t. ♢

A tensor has rank 1 if it can be written as a tensor product of vectors
vi ∈ Vi. A tensor t has rank l if l is the minimum number of rank 1 tensors
that sum to t. For 2-tensors, the tensor rank is equal to the ordinary matrix
rank.

Remark 3.4.1.2. Flattening does not increase the rank of a tensor, i.e.
rk(♭i(t)) ≤ rk(t). ♢

3.4.2 Tensors

Define an FI-algebra Cd over a ring K that sends a finite set S to the K-
algebra,

Cd(S) = K[yi1,i2,...,id : i1, i2, ..., id ∈ S],

and an injection σ : S → T to Cd(σ) : Cd(S) → Cd(T ) maps yi1,i2,...,id to
yσ(i1),σ(i2),...,σ(id).

Remark 3.4.2.1. For a finite set S, SpecCd(S) is the set of S × S × ...× S-
tensors, now including entries on the big diagonal. ♢

There is a natural inclusion ι : Bd → Cd. Dually, we have the projection
map ι∗ : SpecCd → SpecBd. For a tensor t ∈ SpecCd(S) we think of the
flattening ♭i(t) as a matrix whose rows and columns are labeled by tuples in
S[d]\{i} and elements in S respectively.

Definition 3.4.2.2. A tuple (xi)i∈[d] in Sd is called a distinct value tuple if

xi ̸= xj when i ̸= j. Denote by DSd the set of distinct value tuples in Sd. ♢

Definition 3.4.2.3. An off-diagonal l× l sub-matrix of ♭i(t) is a u1×u2-sub-
matrix where u1 ⊂ DSd−1, u2 ⊂ S such that u1×u2 ⊂ DSd and |u1| = |u2| =
l. By an off-diagonal l × l-sub-determinant of ♭i(t), we mean the determinant
of an off-diagonal l × l-sub-matrix of ♭i(t). ♢



Fix non-negative integers l and d. Let Zd,l be the subset of SpecBd defined
as follows: for all S ∈ FI, Zd,l(S) is the variety defined by all off-diagonal
(l + 1)× (l + 1)-sub-determinants of ♭i(y), for all i ∈ [d] and y ∈ SpecBd(S).
The following lemma shows that Zd,l is defined by finitely many equations in
Bd.

Lemma 3.4.2.4. The subset Zd,l of SpecBd is defined by finitely many equa-
tions in Bd.

Proof. Let S be a finite set, let y ∈ SpecBd (S) and i ∈ [d] be arbitrary. Let h
be an arbitrary off-diagonal (l + 1)× (l + 1)-subdeterminant of the flattening
♭i (y). The subdeterminant h is given by indices i1, . . . , il+1 ∈ S and distinct
value tuples α1, . . . , αl+1 ∈ DSd−1 such that none of the indices ij occur in
any of the αk and such that all the αk are distinct.

Let S′ be the subset of S consisting of all the entries of the ij and αk. Then
|S′| ≤ (d− 1) · (l + 1) + l+ 1 = d · (l + 1). Set n = |S′| and choose a bijection
ρ : [n] → S′. Define α′j = ρ−1 ◦ αj and i′j = ρ−1(ij) for all j ∈ [l + 1], where
we consider the αj as maps from [d− 1] to S′.

Then h = Bd (ρ)h′, where h′ is the off-diagonal subdeterminant of the flat-

tening ♭i

(
(yβ)β∈D[n]d−1

)
given by columns i′1, . . . , i

′
l+1 and rows α′1, . . . , α

′
l+1.

Since n can take on at most d · (l + 1) values, this construction yields finitely
many polynomials h′. These polynomials define Zd,l.

Lemma 3.4.2.5. Let φ : Bd → B⊗k1 be an FI-algebra homomorphism. Then

Im(φ∗) ⊂ Zd,l for some l.

Proof. By Lemma 3.2.0.3, the map φ is determined by the image of y1,2,...,d ∈
Bd([d]). First we suppose that y1,2,...,d ∈ Bd([d]) is mapped under φ to a
monomial M =

∏
i∈[k],j∈[d] x

αi,j

i,j ∈ B⊗k1 ([d]). Dually, a = (ai,j)i∈[k],j∈S ∈
SpecB1(S)⊗k is mapped to the projection (via ι∗) of the following tensor:

(aj1,j2,...,jd =

k∏
i=1

a
αi,1

i,j1
·
k∏
i=1

a
αi,2

i,j2
· · ·

k∏
i=1

a
αi,d

i,jd
)j1,j2,...,jd∈S

=

d⊗
j=1

(

k∏
i=1

a
αi,j

i,s )s∈S ∈ SpecBd(S),

that is, φ∗(a) is the projection of a rank ≤ 1 tensor. Thus Im(φ∗) is contained
in the projection of rank ≤ 1 tensors.



Now, if y1,2,...d ∈ Bd([d]) is mapped under φ to f =
∑l
c=1Mc which is a

sum of, say l, monomials in the variables xi,j where 1 ≤ i ≤ k and 1 ≤ j ≤ d,
then the subadditivity of tensor rank implies that Im(φ∗) lies in the projection
i∗ of tensors having rank at most l. Since flattening does not increase rank,
this implies Im(φ∗) ⊂ Zd,l. Hence Im(φ∗) ⊂ Zd,l.

Remark 3.4.2.6. Let φ : B[k0, k1, ..., kd] → B⊗k1 be an FI-algebra homo-

morphism. By universality of B[k0, k1, ..., kd], φ =
⊗d

e=0(
⊗ke

i=1 φe,i) where,

φe,i : Be → B⊗k1 for all e and for all i, and Im(φ∗e,i) ⊂ Ze,le,i for some le,i.
Let l be the maximum of the set {le,i : 0 ≤ e ≤ d and 0 ≤ i ≤ ke}. Then

Im(φ∗) ⊂
∏d
e=0 Z

ke
e,l. ♢

For a commutative ring R with 1, and a prime ideal p ∈ SpecR, κ(p)
denotes the fraction field of the integral domain R/p.

Lemma 3.4.2.7. Let Y be a subset of SpecCd. Suppose that there exists
N ∈ Z≥0 such that for all S, for all p ∈ Y (S), the tensor rank of p over
the field κ(p) is at most N . Then there exist an FI-algebra A that is finitely
generated in width at most 1 and a map φ∗N : SpecA → SpecCd such that
Y ⊂ Im(φ∗N ).

In this lemma, Y (S) is an arbitrary subset of Spec(C(S)), in such a manner
that for any π ∈ HomFI(S, T ), the map C(π)∗ maps Y (T ) into Y (S).

Proof. Define a homomorphism of FI-algebras φN : Cd → A = C
⊗[N ]×[d]
1 by

sending yi1,i2,...,id to
∑N
j=1 xj,1,i1xj,2,i2 · · ·xj,d,id . By assumption, for each S

and for every
p = (pi1,i2,...,id)i1,i2,...,id∈S ∈ Y (S),

there exists (qj,l,il)(j,l,il)∈[N ]×[d]×S ∈ SpecC
⊗[N ]×[d]
1 (S)(κ(p)) such that

pi1,i2,...,id =

N∑
j=1

qj,1,i1qj,2,i2 · · · qj,d,id .

Hence Y ⊂ Im(φ∗N ).

Lemma 3.4.2.8. Let Z be a subset of SpecBd. Suppose that there exists N ∈
Z≥0 such that for all S ∈ FI and for all p ∈ Z(S) there exists p̃ ∈ SpecCd(S)
such that the tensor rank of p̃ over the field κ(p̃) is at most N and ι∗(p̃) = p
where ι : Bd → Cd is the inclusion map. Then there exists a map ψ : Bd → A
such that Z ⊂ Im(ψ∗), where A is an FI-algebra that is finitely generated in
width at most 1.



Remark 3.4.2.9. The condition on the off-diagonal tensor p is that it can be
completed to a (full) tensor p̃ of rank ≤ N , where N does not depend on p or
S. ♢

Proof. We define

Y := {p̃ ∈ (i∗)−1(Z) : tensor rank of p̃ over κ(p̃) ≤ N}.

By Lemma 3.4.2.7, Y ⊂ Im(φ∗N ) and by construction, Z = i∗(Y ). Then
ψ = φN ◦ i is the required map such that Z ⊂ Im(ψ∗).

Proposition 3.4.2.10. Let Zd,l be the subset of SpecBd defined above, by the
vanishing of off-diagonal (l+ 1)× (l+ 1)-subdeterminants of flattenings. Then
there exists N ∈ Z≥0 such that for all S ∈ FI and for all p ∈ Zd,l(S) there
exists p̃ ∈ SpecCd(S) such that the tensor rank of p̃ over the field κ(p̃) is at
most N and ι∗(p̃) = p where ι : Bd → Cd is the inclusion map.

Proof. We will prove this by a double induction: an outer induction on d and
an inner induction on l. For d = 0 and d = 1, we have Bd = Cd, and every
element of SpecCd(S) has tensor rank at most 1, regardless of l. Assume the
proposition is true for ≤ d−1. When l = 0 note that Zd,0 contains only a zero
tensor. Take N = 0 and we are done. Fix l > 0 and assume the proposition is
true for all smaller values. Write Zd,l(S) = Zd,l−1(S) ∪ (Zd,l(S) \ Zd,l−1(S)).
By the inner induction hypothesis, there exists N0 such that for every p ∈
Zd,l−1(S) there exists p̃ ∈ SpecCd(S) such that the tensor rank of p̃ over the
field κ(p̃) is at most N0 and i∗(p̃) = p.

Now take p ∈ Zd,l([n]) \ Zd,l−1([n]). This implies that there exists i0 ∈ [d]
such that there is an l × l-sub-determinant h of ♭i0(p) which is non-zero. The
sub-determinant h involves at most ≤ l(d− 1) + l = l · d indices. Split [n] into
S ⊔ T such that S consists of indices that appear in h and T = [n] \ S; i.e.,
T is the set of indices that do not appear in h. For each fixed subset I ⊂ [d]
and fixed distinct value tuple α ∈ DS[d]\I , consider the off-diagonal tensor
pα = (pα,β)β∈DT I . We regard pα as an element of SpecB|I|(T ).

Case 1: If I ̸= [d], then the outer induction hypothesis applies to pα.
Indeed, flattening ♭i(pα) for i ∈ I yields a sub-matrix of ♭i(p) and by the
induction hypothesis, pα = i∗(qα), where qα ∈ SpecC|I|(T ) has rank ≤ Nα.

Case 2: If I = [d], then we want to find q∅ ∈ SpecCd(T ) such that p∅ =
i∗(q∅) and the tensor rank of q∅ over the field κ(p) is at most some N∅. Then
we will have

p = i∗(
∑
I,α

(qα padded with zeros))



u1

T [d−1]

u2 T

M

q{i1} · · · q{il}

qα1...
qαl

[d(q∅)

Figure 3.1: Flattening

such that the tensor rank of p over the field κ(p) is at most N1 =
∑
αNα.

Without loss of generality, assume that i0 = d. We have an off-diagonal l × l-
sub-matrix M of the matrix ♭d(p) such that det(M) = h ̸= 0. Define q∅ as
follows:

q∅ =
∑

j∈u2 and α∈u1

(M−1)j,αq{j} ⊗ qα

=
∑
j∈u2

q{j} ⊗ (
∑
α∈u1

(M−1)j,α · qα)

where rk(q{j}) ≤ N{j} and rk(
∑
α∈u1

(M−1)j,α · qα) ≤ 1. Hence rk(q∅) ≤
N∅ :=

∑
j∈u2

N{j}.

Notations used in Figure 3.1: Rows and columns of the matrix are labeled
by tuples in (S ⊔ T )d−1 and elements in S ⊔ T respectively. M is a u1 × u2-
submatrix where u1 ⊂ DSd−1, u2 ⊂ S such that u1 × u2 ⊂ DSd and |u1| =
|u2| = l.

We want to show that i∗(q∅) = p∅. Straightforward computations (from
linear algebra) show that the matrix in Figure 3.1 has rank = l. In particular,
all off diagonal (l+1)× (l+1)-sub-determinants in positions (u1∪{α})× (u2∪
{i}) are zero where α ∈ DT d−1 and i ∈ T . The same holds, by assumption
for p. Hence, since M is invertible and for all j ∈ u2, i∗(q{j}) = p{j} and for

all α ∈ u1, i∗(qα) = pα, we find that (p∅)α,i = (q∅)α,i, for all α ∈ DT d−1 and
for all i ∈ T such that (α, i) ∈ DT d. Hence i∗(q∅) = p∅. N = max{N0, N1} is
the required N . This completes the proof.



Recall from Remark 3.2.0.2 that for any nonnegative integers e, k0, k1, ..., ke,
B[k0, k1, ..., ke] denotes the following FI-algebra

⊗e
i=0B

⊗ki
i .

Lemma 3.4.2.11. For any morphism φ : B = B[k0, k1, ..., ke] → A = B⊗k1

there exist a closed subset Z ⊂ SpecB defined by finitely many equations in B,
an FI-algebra A′ that is finitely generated in width at most 1, and a morphism
ψ : B → A′ such that Im(φ∗) ⊂ Z ⊂ Im(ψ∗).

Proof. We will prove this by induction on the number of FI-algebras appearing
in the tensor product B = B[k0, k1, ..., ke].

For the base case, suppose that B = Bd for some nonnegative integer d.
Then by Lemma 3.4.2.5, there exists a positive integer l such that Im(φ∗) is
a closed subset of Zd,l. By Lemma 3.4.2.4, Zd,l is defined by finitely many
equations in Bd. We take Z = Zd,l. By Proposition 3.4.2.10 and Lemma
3.4.2.8, there exists a homomorphism ψ : Bd → A′ of FI-algebras such that
Z = Zd,l is contained in the image ψ∗(SpecA′), where A′ is an FI-algebra that
is finitely generated in width at most 1.

Now suppose that B = Bd1 ⊗Bd2 ⊗· · ·⊗Bdn . Here di’s are not necessarily
distinct. We write B = C ⊗ Bdn where C = Bd1 ⊗ Bd2 ⊗ · · · ⊗ Bdn−1

. We
think of C and Bdn as subalgebras of B via the natural inclusions. Denote by
φ1 and φ2 the restrictions of the map φ : B → A to C and Bdn respectively.
Then by the induction hypothesis, there exist closed subsets Z1 ⊂ specC and
Z2 ⊂ SpecBdn defined by finitely many equations in C and in Bdn respectively,
FI-algebras A1 and A2 both are finitely generated in width at most 1, and
homomorphisms ψ1 : C → A1, ψ2 : Bdn → A2 such that

Im(φ∗1) ⊂ Z1 ⊂ Im(ψ∗1) and Im(φ∗2) ⊂ Z2 ⊂ Im(ψ∗2).

We now have Im(φ∗) ⊆ Im(φ∗1) × Im(φ∗2) and Im(ψ∗1) × Im(ψ∗2) = Im((ψ1 ⊗
ψ2)∗), where ψ1 ⊗ ψ2 is the FI-algebra homomorphism C ⊗ Bdn → A1 ⊗ A2

obtained as the tensor product of ψ1 and ψ2.
Note that the FI-algebra A1⊗A2, being the tensor product of FI-algebras

that are finitely generated in width at most 1, is itself also finitely generated in
width at most 1. Further, the product Z := Z1×Z2 is defined by the union of
the finite sets of equations defining Z1 and Z2. Thus this Z, and A′ := A1⊗A2,
and ψ := ψ1 ⊗ ψ2 have the required property Im(φ∗) ⊂ Z ⊂ Im(ψ∗).

Proof of the Main Theorem. Recall from Section 3.3 that without loss of gen-
erality we can assume that both FI-algebras B and A are free, that is, B =
B[k0, k1, ..., ke] and A = B⊗k1 for some nonnegative integers k, k0, k1, ..., ke.

From Lemma 3.4.2.11, Im(φ∗) is contained in a closed subset Z ⊂ SpecB
which is defined by finitely many equations in B, moreover, Z is contained



in the image Im(ψ∗) of a width-one FIop-scheme of finite type. Recall from
Corollary 1.4.6.4 that width-one FIop-schemes of finite type are topologically
Noetherian and from Lemma 1.4.6.7 that the image of a topologically Noethe-
rian space is topologically Noetherian. By Lemma 1.4.6.7, the subset Z, being
a subset of the topologically Noetherian space Im(ψ∗), is topologically Noethe-
rian. Thus Im(φ∗) is topologically Noetherian being a closed subset of Z and
defined by finitely many equations in the coordinate ring of Z. Since Z is
defined by finitely many equations in B, this implies that Im(φ∗) is defined by
finitely many equations in B. This completes the proof.



Chapter 4

Sym-Noetherianity for
powers of GL-varieties

This chapter is based on the paper [Chi+22] with Christopher Chui, Alessandro
Danelon, Jan Draisma, and Rob Eggermont.

4.1 Introduction

A significant amount of contemporary literature delves into investigating the
finiteness properties of algebraic varieties with infinite dimensions, that have
an accompanying action from either the infinite symmetric group or the infinite
general linear group. In this chapter, we explore a shared extension where both
groups act on spaces with infinite dimensions. Our result demonstrates that
these spaces are topologically Noetherian under this joint action.

4.1.1 Sym-Noetherianity and GL-Noetherianity

It has been well-established since the 1980s that if Z is finite-dimensional va-
riety, then the topological space ZN, equipped with the inverse-limit topology
of the Zariski topologies, has the property that if

X1 ⊇ X2 ⊇ X3 ⊇ . . .

is a descending chain of closed subsets, each stable under the infinite symmetric
group Sym permuting the copies of Z, then Xn = Xn+1 for all n≫ 0. We say
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that ZN is Sym-Noetherian; see [Coh67; Coh87; AH07; HS12] for the relevant
literature.

On the other hand, in [Dra19] Draisma proved that if Z is a GL-variety: a
(typically infinite-dimensional) affine variety equipped with a suitable action
of the infinite general linear group GL—see below for precise definitions—then
Z is topologically GL-Noetherian. See [BDES22] for the structure theory of
GL-varieties.

4.1.2 Our result: Sym×GL-Noetherianity

Given a GL-variety Z, the group Sym×GL acts naturally on ZN, and our
main goal in this chapter is to prove the following theorem.

Theorem 4.1.2.1 (Main Theorem). Let Z be a GL-variety over a field of
characteristic zero. Then ZN is topologically Sym×GL-Noetherian. In other
words, every descending chain

X1 ⊇ X2 ⊇ . . .

of Sym×GL-stable closed subsets of ZN stabilises eventually. Equivalently,
any Sym×GL-stable closed subset of ZN is defined by finitely many Sym×GL-
orbits of polynomial equations.

4.1.3 A generalisation: Symk×GL-Noetherianity

We prove the Main Theorem by establishing first the following more general
result.

Theorem 4.1.3.1. Let Z1, . . . , Zk be GL-varieties over a field of characteristic
zero. Then the variety ZN

1 × · · · × ZN
k is topologically Noetherian up to the

natural action of Symk ×GL.

Here there is one copy of GL that acts diagonally, and there are k copies
of Sym that act on separate copies of N. We believe it is impossible to prove
the Main Theorem without considering multiple copies of Sym. Indeed, the
need for this generalization comes from the fact that, in order to cover a proper
closed Sym×GL-stable subset of ZN, we often need to partition N into finitely
many parts, such that for the indices i in one of these parts, the points in Z
labeled by those indices behave in a similar fashion. The following example
illustrates this point.



Example 4.1.3.2. Let Z be the space of N×N-matrices over a field of char-
acteristic zero, equipped with the GL-action given by (g,A) 7→ gAgT . Let
X be the closed Sym×GL-stable subvariety of ZN consisting of all infinite
matrix tuples (A1, A2, . . .) such that each Ai is either symmetric or skew-
symmetric. It is easy to see that X is defined by the Sym×GL-orbit of the
equation (x112 + x121)(x112 − x121), where xijk is the (j, k)-entry of the ith
matrix. We will see that the Sym×GL-Noetherianity of X follows from the
Sym2×GL-Noetherianity of the “smaller” variety ZN

1 × ZN
2 , where Z1 ⊆ Z is

the GL-subvariety of symmetric matrices, and Z2 ⊆ Z is the GL-subvariety
of skew-symmetric matrices. Here the term “smaller” refers to the fact that
both Z1 and Z2 are quotients of Z. The exact meaning of smaller varieties is
given in Section 4.2.8. ♢

4.1.4 Relation to existing literature

The Main Theorem generalizes the results mentioned in Section 4.1.1: taking
for Z a finite-dimensional affine variety with trivial GL-action, one recovers
the Sym-Noetherianity of ZN; and on the other hand, if Z is a GL-variety,
then considering chains X1 ⊇ X2 ⊇ . . . in which each Xi is of the form ZN

i

with Zi ⊆ Z a GL-subvariety, one recovers the GL-Noetherianity of Z.

The proof of the Main Theorem will reflect these two special cases. We
will use the proof method from [Dra19] for the GL-Noetherianity of Z, and
similarly, we will use methods for Sym-varieties from [DEF22]. In fact, we do
not explicitly use Higman’s lemma in our proofs as is classically done [AH07;
HS12; Dra14], and en passant we give a new proof of the Sym-Noetherianity
of ZN for a finite-dimensional variety Z. However, our proof only yields a set-
theoretic Noetherianity result, while in the pure Sym-setting (much) stronger
results are known: the increasing chains of Sym-stable ideals stabilize [Coh67;
Coh87; AH07; HS12], and even finitely generated modules over such rings with
a compatible Sym-action are Noetherian [NR19]. In the pure GL-setting, how-
ever, such stronger Noetherianity results are known only for very few classes
of GL-varieties [NSS16; SS22].

Partitions of N into finitely many subsets also feature in the classification
of symmetric subvarieties of infinite affine space (A1)N [NS21b], and while our
proofs do not logically depend on this classification, that paper did serve as
an inspiration.



4.1.5 Organisation of this chapter

This chapter is organized as follows. In Section 4.2 we reformulate the Main
Theorem and Theorem 4.1.3.1 in the more convenient language of affine va-
rieties over the categories FIop ×Vec and (FIop)k ×Vec, respectively. We
introduce a category PM with morphisms between such varieties, in which,
for the reasons explained in Example 4.1.3.2 and above it, k varies. Then in
Section 4.3 we formulate and prove the Parameterisation Theorem, the core
technical result of this chapter. The statement roughly says that if X is a
proper closed (FIop)k ×Vec-subvariety of a variety Z of product type

Z : (V ;S1, . . . , Sk) 7→
k∏
i=1

Zi(V )Si ,

where the Zi are Vec-varieties, then X is covered by finitely many morphisms
in PM from (FIop)l × Vec-varieties of product form that are, in a suitable
(and very subtle!) manner, smaller than Z. In Section 2.5 we use this to prove
that all (FIop)k ×Vec-varieties of product type are Noetherian, and obtain
Theorem 4.1.3.1 and the Main Theorem as corollaries.

4.1.6 Notation and conventions

• Let S be a finite set. We denote by |S| the cardinality of S.

• Throughout this chapter, we work over a field K of characteristic zero.

• Sym denotes the infinite symmetric group Sym(∞).

• GL denotes the infinite general linear group GL∞.

• The category of schemes over K is denoted by SchK . A product X × Y
of two schemes will always mean a product in this category.

• A variety X here is a reduced affine scheme of finite type over K. By
K[X] we denote its coordinate ring, so X = SpecK[X]. If Y is a subvari-
ety of X, then we write I(Y ) ⊆ K[X] for the (radical) ideal of functions
on X vanishing on Y .

• If f ∈ K[X] then we write X[1/f ] := Spec(K[X]f ).

• Let φ : X → Y be a morphism of varieties. We denote by φ# : K[Y ]→
K[X] the induced morphism on coordinate rings.



• By a point x of a variety X we always mean a closed point of X, i.e. an
element of X(K). Recall that, for example, (X×Y )(K) ∼= X(K)×Y (K)
and that a morphism of varieties X → Y is surjective if and only if the
map X(K)→ Y (K) is.

4.2 The category of (FIop)k ×Vec-varieties

4.2.1 Polynomial functors

Let K be a field of characteristic zero, and let Vec be the category of finite-
dimensional vector spaces over K with K-linear morphisms.

Definition 4.2.1.1. A polynomial functor is a functor P : Vec → Vec such
that for each U, V ∈ Vec the map P : HomVec(U, V )→ HomVec(P (U), P (V ))
is polynomial, and such that the degree of this polynomial map is upper-
bounded independently of U, V . The minimal such bound is called the degree
of P . ♢

Example 4.2.1.2. The functor Vec→ Vec that maps every vector space to
a fixed finite-dimensional vector space V0 and every linear map to the iden-
tity map idV0 is a polynomial functor of degree zero. We call it a constant
polynomial functor. ♢

Example 4.2.1.3. The functor Vec→ Vec that maps all vector spaces and
linear maps to themselves is a polynomial functor of degree one. ♢

Example 4.2.1.4. Let i ∈ N be a positive integer. The functor T i : Vec →
Vec that maps a vector space V to the i-th tensor power V ⊗i of V and a
linear map f : V →W to the map f⊗i : V ⊗i →W⊗i sending v⊗i to f(v)⊗i is
a polynomial functor of degree i. ♢

Definition 4.2.1.5. Let P and Q be two polynomial functors. We define the
direct sum of P and Q, denoted by P ⊕ Q, as the polynomial functor given
by (P ⊕ Q)(V ) = P (V ) ⊕ Q(V ), where ⊕ denotes the direct sum of vector
spaces and the map (P ⊕Q)(f) : P (V )⊕Q(V )→ P (W )⊕Q(W ) for a linear
map f : V →W is defined by (P ⊕Q)(f)(v1, v2) = (P (f)(v1), Q(f)(v2)). The
degree of P ⊕Q is the maximum of the degrees of P and Q. ♢

Remark 4.2.1.6. The direct sum of a finite collection of polynomial functors
is defined in a natural manner. ♢



We will also regard a polynomial functor P as a functor Vec → SchK by
composing with the embedding Vec→ SchK given by V 7→ Spec SymK(V ∗),
the spectrum of the symmetric algebra on V ∗. Every polynomial functor P
equals P0 ⊕ · · · ⊕ Pd, where d is the degree of P and Pi is defined as

Pi(V ) := {v ∈ P (V ) | ∀t ∈ K : P (t idV )v = tiv}.

Considering P as a functor Vec→ SchK we have P (V ) = P0(V )×. . .×Pd(V ).
We note that P0 is a constant polynomial functor, which assigns a fixed vector
space P (0) ∈ Vec to all V ∈ Vec and the identity map to each linear map.
We call P pure if P0 = {0}.

4.2.2 Vec-varieties

This subsection presents the concept of Vec-varieties, which serve as the finite-
dimensional, functorial counterpart to GL-varieties. See Remark 4.2.2.6 for the
connection with GL-varieties.

Definition 4.2.2.1. LetX,Y : Vec→ SchK be functors. A closed immersion
ι : X → Y is a natural transformation such that ι(V ) : X(V ) → Y (V ) is a
closed immersion for all V ∈ Vec. In particular, X is then a subfunctor of
Y . ♢

Definition 4.2.2.2. An affine Vec-scheme is a functor X : Vec → SchK
that admits a closed immersion X → P with P : Vec → SchK a polynomial
functor. A Vec-variety is an affine Vec-scheme X such that X(V ) is reduced
for all V ∈ Vec. The category of affine Vec-schemes is the full subcategory
of the functor category SchVec

K whose objects are affine Vec-schemes. ♢

Spelled out explicitly, a Vec-variety X can be described by the data of a
polynomial functor P and a subvariety X(V ) ⊆ P (V ) for each V ∈ Vec such
that, for each φ ∈ HomVec(U, V ), the linear map P (φ) maps X(U) into X(V ).
A morphism of Vec-varieties τ : X → Y consists of a morphism of varieties
τ(V ) : X(V )→ Y (V ) for each V ∈ Vec such that, for each φ ∈ HomVec(U, V ),
we have τ(V ) ◦X(φ) = Y (φ) ◦ τ(U).

Remark 4.2.2.3. The subcategory of Vec-varieties is closed under taking
closed immersions and finite products. To see the latter, note that the product
of X,Y : Vec → SchK in SchVec

K is given by V 7→ X(V ) × Y (V ); and
furthermore, given closed immersions X ↪→ P , Y ↪→ Q the assignment

X(V )× Y (V )→ P (V )×Q(V )



defines a closed immersion of the product X × Y into the polynomial functor
P ⊕Q. ♢

Lemma 4.2.2.4. The category of affine Vec-schemes admits fiber products.

Proof. First note that for morphisms of affine Vec-schemes X → Y , Z → Y
the fibre product X ×Y Z of X and Z over Y exists in the functor category
SchVec

K and is given by

(X ×Y Z)(V ) := X(V )×Y (V ) Z(V ).

Moreover, since Y (V ) is affine (or more generally since Y (V ) is separated, see
[Sta20, Tag 01KR]) the natural morphism

X(V )×Y (V ) Z(V )→ X(V )× Y (V )

is a closed immersion. The statement follows by Remark 4.2.2.3.

The main result of [Dra19] says that Vec-varieties are topologically Noethe-
rian.

Theorem 4.2.2.5 ([Dra19, Theorem 1]). Let X be a Vec-variety. Then every
descending chain of Vec-subvarieties

X = X0 ⊇ X1 ⊇ X2 ⊇ . . .

stabilizes, that is, there exists N ≥ 0 such that for each n ≥ N we have
Xn = Xn+1.

Remark 4.2.2.6. IfX is a Vec-variety, then the inverse limitX∞ := lim←nX(Kn)
is a GL-variety in the sense of [BDES22]. This yields an equivalence of cate-
gories between Vec-varieties and GL-varieties. Most of our reasoning will be
in the former terminology but could be rephrased in the latter. ♢

4.2.3 (FIop)k ×Vec-varieties

Recall that FI denotes the category of finite sets with injections.

Definition 4.2.3.1. Let k ∈ Z≥0. An (FIop)k ×Vec-variety is a covariant
functor X from (FIop)k to the category of Vec-varieties. ♢

Explicitly, an (FIop)k×Vec-variety is given by the following data: for any
k-tuple (S1, . . . , Sk) we have a Vec-variety X(S1, . . . , Sk), and for any k-tuple
of injective maps

ι = (ι1 : S1 → T1, . . . , ιk : Sk → Tk),

https://stacks.math.columbia.edu/tag/01KR


we have a corresponding morphism X(ι) : X(T1, . . . , Tk) → X(S1, . . . , Sk) of
Vec-varieties and the usual requirements that X(τ ◦ ι) = X(ι) ◦ X(τ) and
X(idS1 , . . . , idSk

) = idX(S1,...,Sk).
Again, there are natural notions of morphism and closed immersion of

(FIop)k ×Vec-varieties, and we call an (FIop)k ×Vec-variety Noetherian if
every descending chain of closed (FIop)k

×Vec-subvarieties stabilizes.

Remark 4.2.3.2. In particular, any contravariant functor from FI to finite-
dimensional affine varieties, i.e., an FIop-variety, is trivially an FIop ×Vec-
variety. In this generality, FIop-varieties are certainly not Noetherian: see
[HS12, Example 3.8].

However, we will be largely concerned with (FIop)k×Vec-varieties defined
as follows. Let Z1, . . . , Zk be Vec-varieties, define

X(S1, . . . , Sk) := ZS1
1 × · · · × Z

Sk

k (4.1)

and for ι = (ι1, . . . , ιk) : (S1, . . . , Sk)→ (T1, . . . , Tk) define X(ι) as the product
of the natural projections ZTi → ZSi associated to ιi. We will prove that
(FIop)k ×Vec-varieties of this form are, indeed, Noetherian. ♢

Note that we may also regard a (FIop)k×Vec-variety as a functor (FIop)k×
Vec → SchK . For fixed k, the (FIop)k ×Vec-varieties thus form a category
by considering it as the full subcategory in the corresponding functor category.

Remark 4.2.3.3. If X is an (FIop)k×Vec-variety, then the group Symk ×GL
acts on the inverse limit

lim←−
n1,...,nk,n

X([n1], . . . , [nk])(Kn).

This gives a functor from (FIop)k × Vec-varieties to (infinite-dimensional)
schemes equipped with a Symk ×GL-action. Unlike in Remark 4.2.2.6, this
is not quite an equivalence of categories (even under reasonable restrictions
on the Symk ×GL-action). For example, X([n1], . . . , [nk]) could be empty for
large ni and a fixed nontrivial GL-variety for smaller ni. We will consider an
explicit example of this type later in Example 4.2.8.7. In that case, the inverse
limit is empty but the (FIop)k ×Vec-variety is not trivial. Our theorems will
be formulated in the richer category of (FIop)k ×Vec-varieties. ♢

4.2.4 Partition morphisms and the category PM

Suppose that we are given a point p in some X(S1, . . . , Sk)(V ), where X is as
in (4.1). Then the components of p labelled by one of the finite sets Si may



exhibit different behaviours, which prompts us to further partition Si into
subsets labelling components where the behaviour is similar. In that case, p
will be in the image of some partition morphism, a notion that we define now.

Definition 4.2.4.1. Let X be an (FIop)k × Vec-variety and let Y be an
(FIop)l ×Vec-variety. A partition morphism Y → X consists of the following
data:

1. a map π : [l]→ [k]; and

2. for each l-tuple of finite sets (T1, . . . , Tl) a morphism

φ(T1, . . . , Tl) : Y (T1, . . . , Tl)→ X

 ⊔
j∈π−1(1)

Tj , . . . ,
⊔

j∈π−1(k)

Tj


of Vec-varieties in such a manner that for any l-tuple ιj ∈ HomFI(Sj , Tj)
the following equality holds:

X

 ⊔
j∈π−1(1)

ιj , . . . ,
⊔

j∈π−1(k)

ιj

 ◦ φ(T1, . . . , Tl)

= φ(S1, . . . , Sl) ◦ Y (ι1, . . . , ιl).

♢

Remark 4.2.4.2. Note that if we take k = l and π = id[k], then a partition

morphism is just a morphism of (FIop)k ×Vec-varieties. ♢

There is a natural way to compose partition morphisms: if (π, φ) is a
partition morphism Y → X as above and (ρ, ψ) is a partition morphism Z →
Y , where Z is an (FIop)m × Vec-variety, then (π, φ) ◦ (ρ, ψ) is the partion
morphism given by the data π ◦ ρ : [m]→ [k] and the morphisms

φ

 ⊔
n∈ρ−1(1)

Rn , . . . ,
⊔

n∈ρ−1(l)

Rn

 ◦ ψ(R1, . . . , Rm) :

Z(R1, . . . , Rm)→ X

 ⊔
n∈(π◦ρ)−1(1)

Rn , . . . ,
⊔

n∈(π◦ρ)−1(k)

Rn

 .

A tedious but straightforward computation shows that partition morphisms
turn the class of (FIop)k ×Vec-varieties, with varying k, into a category. We
call this category PM.



Definition 4.2.4.3. Let X be an (FIop)k×Vec-variety, Y an (FIop)l×Vec-
variety, and (π, φ) : Y → X a partition morphism. Let S1, . . . , Sk ∈ FI and
V ∈ Vec. The (set-theoretic) image of (π, φ) in X(S1, . . . , Sk)(V ) is defined
as the set of all points of the form (X(ι1, . . . , ιk)(V ) ◦ φ(T1, . . . , Tl)(V ))(q)
where T1, . . . , Tl are finite sets, q is a point in Y (T1, . . . , Tl)(V ), and each
ιi is a bijection from Si to

⊔
j∈π−1(i) Tj . The partition morphism (π, φ) is

called surjective if its image in X(S1, . . . , Sk)(V ) equals X(S1, . . . , Sk)(V ) for
all choices of S1, . . . , Sk and V . ♢

Remark 4.2.4.4. In the previous definition, each bijection ιi induces a par-
tition of the set Si. Furthermore, if a partition morphism (π, φ) is surjective
and for every i the Vec-variety

X(∅, . . . , ∅, {∗}, ∅, . . . , ∅),

where {∗} is a singleton in the i-th position, is nonempty, then the map π
is automatically surjective, so that π induces a partition of [l] into k labeled,
nonempty parts. This is our reason for calling the morphisms in PM partition
morphisms. ♢

The following example rephrases Example 4.1.3.2 in the current terminol-
ogy.

Example 4.2.4.5. Let Z be the Vec-variety that maps V to V ⊗ V , and
let Z1, Z2 be the closed Vec-subvarieties consisting of symmetric and skew-
symmetric tensors, respectively. Consider the FIop ×Vec-variety defined by
S 7→ ZS , and for every finite set S let X(S) be the closed Vec-subvariety
given by the points x = (xs)s∈S ∈ Z(V )S such that each component xs is
either symmetric or skew-symmetric. Note that X is a closed FIop × Vec-
subvariety. Let Y be the (FIop)2 ×Vec-variety defined by

Y (S1, S2) = ZS1
1 × Z

S2
2 .

We now construct a partition morphism φ : Y → X as follows. The map
π : [2]→ [1] is the only possible, and for every V ∈ Vec and (S1, S2) ∈ FIop2

the map

φ(S1, S2)(V ) : Y (S1, S2)(V ) = Z1(V )S1 × Z2(V )S2 → X(S1 ⊔ S2)(V )

is defined by:

((xs1)s1∈S1 , (xs2)s2∈S2) 7→ (xs)s∈S1⊔S2 .



Note that the partition morphism φ is surjective. In particular, we say that
X is covered by Y , and, as we have already hinted in Example 4.1.3.2, Y is
in some sense smaller than the assignment S 7→ ZS . The fact that we can do
this, in general, is the content of the Parameterisation Theorem 4.3.1.1. ♢

The following lemma is immediate.

Lemma 4.2.4.6. Let X be an (FIop)k ×Vec-variety, X ′ a closed (FIop)k ×
Vec-subvariety of X, and let (π, φ) be a partition morphism from an (FIop)l×
Vec-variety Y to X. Then Y ′ := (π, φ)−1(X ′) defined by

Y ′(T1, . . . , Tl) := φ(T1, . . . , Tl)
−1

X ′
 ⊔

j∈π−1(1)

Tj , . . . ,
⊔

j∈π−1(k)

Tj


is a closed (FIop)l ×Vec-subvariety of Y , and the data of π together with the
restrictions of the morphisms φ(T1, . . . , Tl) gives a partition morphism from
Y ′ to X. Moreover, if (π, φ) is surjective, then so is its restriction to Y ′ → X ′.

The following easy proposition is crucial in our approach to the main the-
orem.

Proposition 4.2.4.7. If (π, φ) is a surjective partition morphism from Y to
X, and Y is a Noetherian (FIop)l × Vec-variety, then X is a Noetherian
(FIop)k ×Vec-variety.

Proof. Let X1 ⊇ X2 ⊇ . . . be a descending chain of closed (FIop)k × Vec-
subvarieties. By Lemma 4.2.4.6, the preimages Yi := (π, φ)−1(Xi) are closed
(FIop)l ×Vec-subvarieties of Y . Hence the chain Y1 ⊇ Y2 ⊇ . . . stabilises by
assumption. The surjectivity of (π, φ) implies the surjectivity of its restriction
to Yi → Xi. This implies that Xi is uniquely determined by Yi, and hence the
chain X1 ⊇ X2 ⊇ . . . stabilizes at the same point.

4.2.5 Product type

We now introduce the (FIop)k × Vec varieties of product type. Essentially,
these are the varieties from Remark 4.2.3.2, but for our proofs, we will need
finer control over these products. Therefore, we will work over a general base
Vec-variety Y , and keep track of the “constant parts” Bi of the Vec-varieties
whose products we consider.

Definition 4.2.5.1. Let Y be a Vec-variety and k, n1, . . . , nk ∈ Z≥0. For each
i ∈ [k], let Bi be a Vec-subvariety of Y × Ani , and Qi be a pure polynomial



functor. By construction each Vec-variety Bi × Qi has a morphism to Y
induced by the projection Y ×Ani → Y . We define the (FIop)k×Vec-variety
Z = [Y ;B1 ×Q1, . . . , Bk ×Qk] via

Z(S1, . . . , Sk) := (B1 ×Q1)×Y . . .×Y (B1 ×Q1)×Y (B2 ×Q2)

×Y . . .×Y (Bk ×Qk),

where for every index i ∈ [k] the fibre product over Y of Bi ×Qi with itself is
taken |Si| times, and these copies are labelled by the elements of Si; and where
the morphism Z(T1, . . . , Tk) → Z(S1, . . . , Sk) corresponding to ι : S → T is
the projection as in Remark 4.2.3.2. We also write the above product in a
more compact notation as

(B1 ×Q1)S1

Y ×Y · · · ×Y (Bk ×Qk)Sk

Y .

We say that Z is an (FIop)k ×Vec-variety of product type (over Y ). ♢

Note that Z(S1, . . . , Sk) is naturally a closed Vec-subvariety of

Y ×
k∏
i=1

(Ani ×Qi)Si .

Moreover, if k = 0, then by definition Z = Y .
When we talk of (FIop)k ×Vec-varieties of product type, we will always

specify each Bi together with its closed embedding in Y × Ani ; the reason
being that, in the proof of the Main Theorem, we aim to argue by induction
on both Y and ni.

Remark 4.2.5.2. The settings of Theorem 4.1.2.1 and Theorem 4.1.3.1 can
be rephrased in our current terminology as follows. Consider Vec-varieties
Z1, . . . , Zk. Then for every i ∈ [k] there exist ni ∈ Z≥0, a finite-dimensional
affine variety Ai ⊆ Ani , and a pure polynomial functor Qi such that Zi ⊆ Ai×
Qi. Define Y to be a point, and Bi := Y ×Ai. Then the variety ZN

1 ×· · ·×ZN
k

of Theorem 4.1.3.1 is a subvariety of the product-type (FIop)k ×Vec-variety

[Y ;B1 ×Q1, . . . , Bk ×Qk],

with k = 1 being the special case addressed in Theorem 4.1.2.1. ♢

Remark 4.2.5.3. In [DEF22], for FIop-varieties (no dependence on Vec),
the notion of product type is more restrictive. Essentially, there the last three



authors considered a single finite-dimensional affine variety Z with a mor-
phism to a finite-dimensional, irreducible, affine variety Y , with the additional
requirement that K[Z] is a free K[Y ]-module. This then ensures that each
irreducible component of ZS maps dominantly to Y . In [DEF22] this is used
to count the orbits of Sym(S) on these irreducible components. ♢

The following example describes the partition morphisms between product-
type varieties. It is particularly relevant as the partition morphisms we will
be dealing with in our proof of the Parameterisation Theorem 4.3.1.1 are of
this shape.

Example 4.2.5.4. Let Z ′ := [Y ′;B′1 × Q′1, . . . , B′l × Q′l] and Z := [Y ;B1 ×
Q1, . . . , Bk × Qk] be an (FIop)l ×Vec-variety and an (FIop)k ×Vec-variety
of product type over Y ′ and Y , respectively. We want to construct a partition
morphism (π, φ) : Z ′ → Z. Consider the following data:

• let π : [l]→ [k] be any map;

• let α : Y ′ → Y be a morphism of Vec-varieties;

• and for each j ∈ [l] let βj : B′j ×Q′j → Bπ(j) ×Qπ(j) be a morphism of
Vec-varieties such that the following diagram commutes:

B′j ×Q′j

��

βj // Bπ(j) ×Qπ(j)

��
Y ′

α
// Y.

(4.2)

For each (T1, . . . , Tl) ∈ FIl we define the morphism of Vec-varieties

φ(T1, . . . , Tl) : Z ′(T1, . . . , Tl)→ Z

 ⊔
j∈π−1(1)

Tj , . . . ,
⊔

j∈π−1(k)

Tj


as follows. Let Si :=

⊔
j∈π−1(i) Tj , then for any V ∈ Vec the element

((b′j,t, q
′
j,t)t∈Tj

)j∈[l] ∈ (B′1 ×Q′1)T1

Y ′(V )×Y ′ · · · ×Y ′ (B′l ×Q′l)
Tl

Y ′(V )

is mapped to the element

(((βj(V )(b′j,t, q
′
j,t))t∈Tj )j∈π−1(i))i∈[k] ∈ (B1 ×Q1)S1

Y (V )×Y · · · ×Y (Bk ×Qk)Sk

Y (V ).



By construction, the pair (π, φ) is a partition morphism Z ′ → Z. Conversely,
every partition morphism Z ′ → Z is of this form. Indeed, from a general
partition morphism Z ′ → Z, α is recovered by taking all Tj empty and βj is
recovered by taking Tj a singleton and all Tj′ with j′ ̸= j empty. That (4.2)
commutes then follows by applying the commuting diagram from the definition
of a partition morphism to the morphism (∅, . . . , ∅, . . . , ∅)→ (∅, . . . , {∗}, . . . , ∅)
in FIl. ♢

4.2.6 The leading monomial ideal

We introduce a size measure for a closed subvariety B ⊆ Y × An.

Definition 4.2.6.1. Let Y be a Vec-variety, n ∈ Z≥0 and B a closed Vec-
subvariety of Y × An. For V ∈ Vec consider the ideal I(B(V )) of

K[Y (V )][x1, . . . , xn]

defining B(V ). We fix the lexicographic order on monomials in x1, . . . , xn,
and denote by LM(B) the set of those monomials that appear as leading
monomials of monic polynomials in I(B(V )), i.e., those with leading coefficient
1 ∈ K[Y (V )]. ♢

The following lemma shows that LM(B) is well-defined.

Lemma 4.2.6.2. The set LM(B) does not depend on the choice of V .

Proof. Let V ∈ Vec and consider the linear maps ι : 0→ V and π : V → 0. If
f ∈ I(B(V )) is monic with leading monomial xu, then applying Y (ι)# to all
coefficients of f yields a polynomial in I(B(0)) which is monic with leading
monomial xu. This shows that the leading monomials of monic polynomials
in I(B(V )) remain leading monomials of monic elements in I(B(0)). One
obtains the converse inclusion by applying Y (π)#.

The following lemma monitors the size of LM of the constant parts after a
base change in product-type varieties. See Proposition 4.2.7.4.

Lemma 4.2.6.3. Let Y ′ → Y be a morphism of Vec-varieties, let B be a
closed Vec-subvariety of Y ×An, and define B′ := Y ′ ×Y B ⊆ Y ′ ×An. Then
LM(B′) ⊇ LM(B).

Proof. Pulling back a monic equation for B(V ) along Y ′(V )×An → Y (V )×An
yields a monic equation for B′(V ) with the same leading monomial.



4.2.7 Shifting over tuples of finite sets

We now introduce an operation that has had much fortune to prove results in
the infinite-dimensional setting via the functorial language. The third author
first used it in [Dra19] to prove what became “The Embedding Theorem”
for GL-varieties in [BDES22, Theorems 4.1, 4.2]. Afterward, the last three
authors performed this operation in the FI-world [DEF22]. Here we describe
this operation in the context of (FIop)k ×Vec-varieties.

Definition 4.2.7.1. LetX be an (FIop)k×Vec-variety and let S = (S1, . . . , Sk) ∈
FIk. Then the shift ShS X of X over S is the (FIop)k ×Vec-variety defined
by

(ShS X)(T1, . . . , Tk) := X(S1 ⊔ T1, . . . , Sk ⊔ Tk)

and, for injections ιi : Ti → T ′i ,

(ShS X)(ι1, . . . , ιk) := X(idS1
⊔ι1, . . . , idSk

⊔ιk). ♢

Remark 4.2.7.2. Consider an tuple S = (S1, . . . , Sk) in (FIop)k and define
the covariant functor ShS : (FIop)k ×Vec → (FIop)k ×Vec by assigning to
each tuple (T1, . . . , Tk) the tuple (S1 ⊔ T1, . . . , Sk ⊔ Tk) and to each morphism

ι : (ι1, . . . , ιk) : (T1, . . . , Tk)→ (T ′1, . . . , T
′
k)

the morphism ι ⊔ idS . In particular ShS X is the composition X ◦ ShS . ♢

Remark 4.2.7.3. Let V be a finite-dimensional vector space. While, as sets,
ShS X(T1, . . . , Tk)(V ) and X(S1 ⊔ T1, . . . , Sk ⊔ Tk)(V ) coincide, the action of
the k copies of the symmetric group on them is different. Indeed, the groups
Sym(S1 ⊔ T1) × · · · × Sym(Sk ⊔ Tk) and Sym(T1) × · · · × Sym(Tk) act by
functoriality on the latter and on the former, respectively. ♢

With the following proposition, we describe what happens when the shift
operation is performed on product-type varieties.

Proposition 4.2.7.4. The shift ShS Z over S = (S1, . . . , Sk) of an (FIop)k×
Vec-variety Z := [Y ;B1×Q1, . . . , Bk×Qk] of product type is itself isomorphic
to a variety of product type:

ShS Z ∼= [Y ′;B′1 ×Q1, . . . , B
′
k ×Qk]

with Y ′ := (B1 ×Q1)S1

Y ×Y . . .×Y (Bk ×Qk)Sk

Y , and B′i := Y ′ ×Y Bi.
Furthermore, each B′i is naturally a Vec-subvariety of Y ′ × Ani , and we

have LM(B′i) ⊇ LM(Bi).



Proof. Straightforward; for the last statement use Lemma 4.2.6.3.

In analogy with [Dra19, Lemma 14] and [DEF22, Section 3.3], the shift
operation doesn’t increase the “complexity” of product-type varieties. Indeed,
we will have ShS Z ⪯ Z according to the order in Section 4.2.8.

4.2.8 Well-founded orders

By a pre-order ⪯ on a class, we will mean a reflexive and transitive relation.
We also write B ⪰ A for A ⪯ B. Furthermore, write A ≺ B or B ≻ A to
mean that A ⪯ B but not B ⪯ A. The pre-order is well-founded if it admits
no infinite strictly decreasing chains A1 ≻ A2 ≻ . . ..

In this section, we first recall a well-founded pre-order on polynomial func-
tors. Building on it, we define well-founded pre-orders

• on varieties appearing in the definition of (FIop)k × Vec-varieties of
product type,

• on product-type varieties, and

• on closed subvarieties of a fixed product-type variety.

Order on polynomial functors

Definition 4.2.8.1. For polynomial functors P,Q, we write P ⪯ Q if P ∼= Q
or else, for the largest e with Pe ̸∼= Qe, Pe is a quotient of Qe. ♢

This is a well-founded partial order on polynomial functors, see [Dra19,
Lemma 12].

Order on Vec-varieties of type B ×Q

Consider Vec-varieties Y, Y ′, integers n, n′, pure polynomial functors Q,Q′,
and Vec-subvarieties B ⊂ Y ×An, B′ ⊂ Y ′×An′

. We say that B′×Q′ ⪯ B×Q
if:

1. Q′ ≺ Q in the order of Definition 4.2.8.1; or

2. Q′ ∼= Q, n′ = n and LM(B′) ⊇ LM(B).

This is a pre-order on Vec-varieties of this type.



Remark 4.2.8.2. We remark that ⪯ is defined on Vec-varieties with a spec-
ified product decomposition B × Q where B is a Vec-variety with a specified
closed embedding into a specified product Y ×An of a Vec-variety Y and some
n. It is not a pre-order on Vec-varieties without further data. ♢

Lemma 4.2.8.3. The pre-order on Vec-varieties defined above is well-founded.

Proof. Suppose we had an infinite strictly decreasing chain

B1 ×Q1 ≻ B2 ×Q2 ≻ . . .

with Bi ⊆ Yi×Ani . Then we have Q1 ⪰ Q2 ⪰ . . .. By the well-foundedness of
⪰ on polynomial functors, there exists a j ≥ 1 such that both Qi and ni are
constant for i ≥ j. But then LM(Bi) ⊊ LM(Bi+1) ⊊ . . ., which contradicts
Dickson’s lemma.

Order on product-type varieties

Consider an (FIop)k × Vec-variety Z := [Y ;B1 × Q1, . . . , Bk × Qk], and an
(FIop)l×Vec-variety Z ′ := [Y ′;B′1×Q′1, . . . , B′l ×Q′l]. We say that Z ′ ⪯ Z if
there exists a map π : [l]→ [k] with the following properties:

1. B′j ×Q′j ⪯ Bπ(j) ×Qπ(j) holds for all j ∈ [l], and

2. for all j whose π-fibre π−1(π(j)) has cardinality at least 2 we have B′j ×
Q′j ≺ Bπ(j) ×Qπ(j).

3. If π is a bijection, then either at least one of the inequalities in (1) is
strict, or else Y ′ is a closed Vec-subvariety of Y .

Lemma 4.2.8.4. Suppose Z ′ ⪯ Z is witnessed by π : [l] → [k] and suppose
that at least one of the following holds:

• l ̸= k, or

• at least one of the inequalities in (1) is strict.

Then we have Z ′ ≺ Z.

Proof. Assume, on the contrary, that σ : [k]→ [l] witnesses Z ⪯ Z ′. Construct
a directed graph Γ with vertex set [l] ⊔ [k] and an arrow from each j ∈ [l] to
π(j) and an arrow from each i ∈ [k] to σ(i). Like any digraph in which each
vertex has out-degree 1, Γ is a union of disjoint directed cycles (here of even
length) plus a number of trees rooted at vertices in those cycles and directed



towards those roots. Moreover, those cycles have the same number of vertices
in [l] as in [k].

The assumptions imply that at least one of the vertices of Γ does not lie
on a directed cycle. Without loss of generality, there exists an i ∈ [k] not in
any cycle such that j := σ(i) lies on a cycle. Let n be half the length of that
cycle, so that (σπ)n(j) = j. Then we have

B′j ×Q′j ⪯ Bπ(j) ×Qπ(j) ⪯ . . . ⪯ Bπ(σπ)n−1(j) ×Qπ(σπ)n−1(j)

≺ B′(σπ)n(j) ×Q
′
(σπ)n(j) = B′j ×Q′j

where the strict inequality holds because σ−1(j) has at least two elements:
i and π(σπ)n−1(j). By transitivity of the pre-order from Section 4.2.8, we
find B′j × Q′j ≺ B′j × Q′j , which however contradicts the reflexivity of that
pre-order.

Lemma 4.2.8.5. The relation ⪯ is a well-founded pre-order on varieties in
PM of product type.

Proof. For reflexivity, we may take π equal to the identity. For transitivity,
if π : [l] → [k] witnesses Z ′ ⪯ Z and σ : [k] → [m] witnesses Z ⪯ Z ′′, then
τ := σ ◦ π witnesses Z ′ ⪯ Z ′′—here we note that if |τ−1(τ(j))| > 1 for some
j ∈ [l], then either |π−1(π(j))| > 1 or else |σ−1(σ(π(j)))| > 1; in both cases
we find that B′j ×Q′j ≺ B′′τ(j) ×Q

′′
τ(j).

For well-foundedness, suppose that we had a sequence Z1 ≻ Z2 ≻ Z3 ≻ . . .,
where

Zi = [Yi;Bi,1 ×Qi,1, . . . , Bi,ki ×Qi,ki ],

and where πi : [ki+1] → [ki] is a witness to Zi ≻ Zi+1. We note that ki > 0
for all i. Otherwise 0 = ki = ki+1 = . . . and then Zi = Yi ≻ Zi+1 = Yi+1 ≻ . . .
implies that Yi ⊋ Yi+1 ⊋ . . ., which contradicts the Noetherianity of the Vec-
variety Yi, see Theorem 4.2.2.5.

From the chain, we construct an infinite rooted forest with vertex set [k1]⊔
[k2] ⊔ . . . as follows: [k1] is the set of roots, and we attach each j ∈ [ki+1] via
an edge with πi(j); the latter is called the parent of the former. We further
label each vertex j ∈ [ki] with the product Bi,j ×Qi,j .

We claim that πi is an injection for all i≫ 0, i.e., that there are only finitely
many vertices with more than one child. Indeed, if not, then by König’s lemma
the forest would have an infinite path starting at a root in [k1] and passing
through infinitely many vertices with at least two children. By construction,
the labels B × Q decrease weakly along such a path and strictly whenever



going from a vertex to one of its more than one child, a contradiction to
Lemma 4.2.8.3.

For even larger i, the ki are constant, say equal to k, and hence the πi are
bijections. After reordering, we may assume that the πi all equal the identity
on [k]. Moreover, for all such i we still have Bi,j × Qi,j ⪰ Bi+1,j × Qi+1,j ⪰
. . . for all j ∈ [k], and all these chains stabilise. When they do, we have
Yi ⊋ Yi+1 ⊋ . . ., which is a strictly decreasing chain of Vec-varieties—but this
again contradicts the Noetherianity of Vec-varieties.

Order on closed subvarieties of product-type varieties in PM

Consider the (FIop)k ×Vec-variety Z = [Y ;B1 ×Q1, . . . , Bk ×Qk] and let X
be a closed (FIop)k×Vec-subvariety of Z; X is not required to be of product
type. We define

δX := min
(S1,...,Sk)∈FIk

{
k∑
i=1

|Si| : X(S1, . . . , Sk) ̸= Z(S1, . . . , Sk)

}

Let X and X ′ be closed (FIop)k×Vec-subvarieties of Z, then we say X ′ ⪯ X
if δX′ ≤ δX . This is a well-founded pre-order on the (FIop)k×Vec-subvarieties
of Z.

Remark 4.2.8.6. If f is a nonzero equation forX(S1, . . . , Sk)(V ) with
∑
i |Si| =

δX , then f may still “come from smaller sets”. More specifically, there might
exist a k-tuple (S′1, . . . , S

′
k) with |S′i| ≤ |Si| for all i ∈ [k] and with strict in-

equality for at least one i, an FIk-morphism ι := (ι1, . . . , ιk) : (S′1, . . . , S
′
k) →

(S1, . . . , Sk), and an element f ′ ∈ K[Z(S′1, . . . , S
′
k)(V )] such that Z(ι)(V )#( f ′) =

f . This is related to Remark 4.2.3.3. The following example demonstrates this
phenomenon. ♢

Example 4.2.8.7. Consider the FIop ×Vec-variety Z := [{0};K]. The co-
ordinate ring K[Z(S)] is isomorphic to the polynomial ring over K in |S|
variables. Let n ∈ Z>0 and define the proper closed variety X of Z by

X(S) :=

{
Z(S) for |S| < n;

∅ otherwise.

Then δX is equal to n and computed by the element 1 ∈ K[Z([n])], which is
the image of 1 ∈ K[Z(∅)] under the natural map K[Z(∅)]→ K[Z([n])]. ♢



4.3 Covering (FIop)k ×Vec-varieties by smaller
ones

4.3.1 The Parameterisation Theorem

The goal of this section is to prove the following core result, which says that
any proper closed subset of an (FIop)k×Vec-variety of product type is covered
by finitely many smaller such varieties.

Theorem 4.3.1.1 (Parameterisation Theorem). Consider an (FIop)k×Vec-
variety Z of product type and let X ⊊ Z be a proper closed (FIop)k × Vec-
subvariety. Then there exist a finite number of quadruples consisting of:

• an l ∈ Z≥0;

• an (FIop)l ×Vec-variety Z ′ of product type with Z ′ ≺ Z;

• a k-tuple S = (S1, . . . , Sk) ∈ FIk; and

• a partition morphism (π, φ) : Z ′ → ShS Z;

such that for any T1, . . . , Tk ∈ FIk, any V ∈ Vec, and any p ∈ X(T1, . . . , Tk)(V )
there exist: one of these quadruples; finite sets U1, . . . , Uk; and bijections
σi : Ti → Si ⊔ Ui; such that p lies in the image under Z(σ1, . . . , σk)(V ) of
the image of (π, φ) in ShS(Z)(U1, . . . , Uk)(V ) = Z(S1 ⊔ U1, . . . , Sk ⊔ Uk)(V ).

Remark 4.3.1.2. Recall Definition 4.2.4.3 of the image of a partition mor-
phism. Explicitly, the conclusion above means that there exist finite sets
U ′1, . . . , U

′
l and, for each i ∈ [k], a bijection ιi : Ui →

⊔
j∈π−1(i) U

′
j , and a point

q ∈ Z ′(U ′1, . . . , U ′l )(V ) such that

(Z(σ1, . . . , σk)(V ) ◦ (ShS Z)(ι1, . . . , ιl)(V ) ◦ φ(U ′1, . . . , U
′
l )(V ))(q) = p.

Informally, we will say that all points in X are hit by finitely many partition
morphisms from varieties Z ′ in PM of product type with Z ′ ≺ Z. ♢

4.3.2 A key proposition

The proof of Theorem 4.3.1.1 uses a key proposition that we establish first. The
reader may prefer to read only the statement of this proposition and postpone
its proof until after reading the proof of Theorem 4.3.1.1 in Section 4.3.5.



Proposition 4.3.2.1. Let Y be a Vec-variety; n ∈ Z≥0; B a closed Vec-
subvariety of Y × An; Q a pure polynomial functor; and X a proper closed
Vec-subvariety of B ×Q ⊆ Y × An ×Q.

Then there exist a proper closed Vec-subvariety Y0 of Y , a Vec-variety Y ′

together with a morphism α : Y ′ → Y ; k ∈ Z>0 and, for each l = 0, . . . , k,
integers nl ∈ Z≥0; closed Vec-subvarieties Bl ⊆ Y ′ × Anl ; pure polynomial
functors Ql; and morphisms βl : Bl × Ql → B × Q such that the following
properties hold:

1. For each l = 0, . . . , k, Bl×Ql ≺ B×Q in the preorder from Section 4.2.8,
and the following diagram commutes:

Bl ×Ql
βl //

��

B ×Q

��
Y ′

α
// Y.

2. Let m ∈ Z≥0, V ∈ Vec, and points p1, . . . , pm ∈ X(V ) ⊆ Y (V ) ×
An × Q(V ) whose images in Y (V ) are are all equal to the same point
y ∈ Y (V ) \ Y0(V ). Then there exist indices lj ∈ {0, . . . , k} for j ∈ [m]
and points p′j ∈ Blj (V )×Qlj (V ) whose images in Y ′(V ) are all equal to
the same point y′ and such that βlj (V )(p′j) = pj for all j ∈ [m].

Remark 4.3.2.2. The condition βlj (V )(p′j) = pj , together with the commut-
ing diagram in (1), implies α(y′) = y. ♢

To apply Proposition 4.3.2.1 in the proof of Theorem 4.3.1.1 we will do
a shift over an appropriate k-tuple of finite sets. After this shift, we deal
with the points of X lying over Y0 by induction, while we cover those in
the complement by a partition morphism constructed with the morphisms α
and βj ’s, and whose domain is a product-type variety strictly smaller than
Z. Before proving Proposition 4.3.2.1 in Section 4.3.4, we demonstrate its
statement in two special cases.

Example 4.3.2.3. Consider the case where Y = SpecK and n = 0; then
B ⊆ Y × An is also isomorphic to SpecK. Let Q be an arbitrary polyno-
mial functor. In this case, X is a proper closed Vec-subvariety of Q and by
[BDES22] there exist k ∈ Z≥0, (finite-dimensional) varieties B1, . . . , Bk, pure
polynomial functors Q1, . . . , Qk ≺ Q and morphisms βi : Bi × Qi → Q such
that X is the union of the images of the βj . This is an instance of Proposi-
tion 4.3.2.1 with Y0 = ∅, Y ′ = Y , and α = idY . Note that then Bj ×Qj ≺ Q
since Qj ≺ Q, so the specific choice of embedding Bj ⊆ Anj is not relevant. ♢



Example 4.3.2.4. Consider the case where Y is constant, that is, just given
by a (finite-dimensional) variety, and Q = 0. Since X is a proper closed
subvariety of B ⊆ Y × An, there exists a V ∈ Vec and a nonzero function
f ∈ K[B(V )] that vanishes identically on X(V ).

Then f is represented by a polynomial in K[Y (V )][x1, . . . , xn], also denoted
by f . We may reduce f modulo I(B(V )) in such a manner that its leading
term c · xu has the property that c ∈ K[Y (V )] is nonzero and xu ̸∈ LM(B).
Then we take for Y0 the closed subvariety of Y defined by the vanishing of
c and for Y ′ the complement Y \ Y0, with α : Y ′ → Y being the inclusion.
Furthermore, we take k = 1, and B1 to be the intersection of B with Y ′ ×An
and with the vanishing locus of f in Y × An. Then LM(B1) ⊇ LM(B) and
since c is invertible on Y ′ and f vanishes on B1, xu ∈ LM(B1) \ LM(B). To
verify (2) of Proposition 4.3.2.1, we observe that the pi all map to the same
point in Y ′ = Y \ Y0, i.e., pi lies in the set B1 ⊆ B, and we can just take
p′j := pj for all j. ♢

4.3.3 Iterated partial derivatives

The main idea for proving Proposition 4.3.2.1 comes from
Lemma 4.3.3.1 below that is an extension (or better an iteration) of [Dra19,
Lemma 18]. Indeed, the proof of topological Noetherianity for polynomial
functors in [Dra19] states that we can find an equation f for X ⊊ P , an
irreducible component R of P , and a direction r0 such that ∂f/∂r0 is not
identically zero on X. The lemma below shows that we can iterate this process.

Lemma 4.3.3.1. Let B be a Vec-variety and Q a pure polynomial functor.
Decompose

Q = R1 ⊕ · · · ⊕Rt,

where the Ri are irreducible objects in the abelian category of polynomial func-
tors, arranged in weakly increasing degrees. Denote with R≤s the functor⊕s

i=1Ri, so that R≤0 = 0. Let X be a proper closed Vec-subvariety of B ×Q
and choose U0 ∈ Vec such that X(U0) ⊊ B(U0)×Q(U0). Then there exist

• a k ∈ Z≥0;

• vector spaces U1, . . . , Uk with partial sums U≤s :=
⊕s

i=0 Ui for s ≥ 0
(note that U0 is included in each of these);

• indices 0 = s0 < s1 ≤ · · · ≤ sk;



• for each l ∈ {0, . . . , k} a nonzero function hl ∈ K[B(U≤l)×R≤sl(U≤l)];
and

• for each l ∈ {1, . . . , k}, a nonzero coordinate xl ∈ R(Usl)
∗ and a function

rl in K[P ′(U≤l)×R≤sl(U≤l)/Rsl(Ul)] such that

hl = xl · hl−1 + rl;

and such that, moreover, the function hk vanishes on X(U≤k).

Sketch. Let f ∈ K[B(U0)×Q(U0)] be a nonzero function thta vanishes iden-
tically on X(U0). Choose sk as the maximal index in [t] such that f involves
coordinates in Rsk(U0)∗; if no such index exists, then k is set to zero, and we
may take h0 := f ∈ K[B(U0)]. For a subspace Uk of sufficiently high dimension
(at least dk := deg(Rsk) suffices), act on f with “upper triangular” elements
of the Lie algebra gl(U0 ⊕ Uk) that transform coordinates on Rsk(U0)∗ to co-
ordinates on Rsk(Uk)∗. This yields a new polynomial that also vanishes on

X(U0⊕Uk) but is now of the form f̃ = xk · h̃+ r̃, where h̃ ∈ K[B(U0)×Q(U0)]
is (nonzero and) of lower degree than f , and where r̃ does not contain co-

ordinates in Rsk(Uk)∗. Now let sk−1 be the maximal index in such that h̃
involves coordinates in Rsk−1

(U0)∗. We will allow sk−1 = sk, which will be the
case if f was not linear in the coordinates in Rsk(U0)∗. Again choose a vector

space Uk−1 of sufficiently high dimension, and act on f̃ with upper triangular
elements of gl(U0 ⊕ Uk−1) to obtain

f̂ = xk · (xk−1 · ĥ+ r̂) + r̄

where xk−1 is a coordinate in Rsk−1
(Uk−1)∗, r̂ does not involve coordinates in

Rsk−1
(Uk−1)∗, r̄ may be different from r̃, but still does not involve coordinates

in Rsk(Uk)∗, and ĥ ∈ K[B(U0)×Q(U0)] has smaller degree than h̃. Continuing
in this fashion, we eventually find a polynomial

hk = xk(xk−1(. . . (x2(x1h0 + r1) + r2) . . . ) + rk−1) + rk (4.3)

where h0 ∈ K[B(U0)]. Now it is clear how to define the intermediate hl.

4.3.4 Proof of Proposition 4.3.2.1

This section contains the proof of the Proposition 4.3.2.1, and, for clarity’s
sake, we spell it out in a concrete example at the end.



Remark 4.3.4.1. We recall that, for any Vec-variety Z and any U ∈ Vec, the
shift ShU Z of Z over U is the Vec-variety defined by (ShU Z)(V ) = Z(U⊕V ).
There is a natural morphism ShU Z → Z of Vec-varieties: for V ∈ Vec, this
morphism (ShU Z)(V ) = Z(U ⊕ V ) → Z(V ) is just Z(πV ), where πV is the
projection U ⊕ V → V . ♢

Lemma 4.3.4.2. Let Y be a Vec-variety, n ∈ Z≥0, and B a closed Vec-
subvariety of Y ×An. Then for any U ∈ Vec, ShU B is a closed Vec-subvariety
of (ShU Y )× An, and LM(B) = LM(ShU (B)).

Proof. This follows from Lemma 4.2.6.3.

Remark 4.3.4.3. Let X be a Vec-variety, U ∈ Vec and f ∈ K[X(U)]. We
define (ShU X)[1/f ] to be the Vec-variety given by V 7→ X(U⊕V )[1/f ], where
we identify f with its image under the natural map K[X(U)]→ K[X(U⊕V )].
Note that the action of the group GL on the coordinate ring of ShU X is the
identity on the element f . In particular, for every V ∈ Vec, (ShU X[1/f ])(V ) ⊆
ShU X(V ) is the distinguished open set of points not vanishing on the single
f . ♢

Proof of Proposition 4.3.2.1. Since X is a proper closed subvariety of B ×Q,
there exist a U0 ∈ Vec such that X(U0) ⊊ B(U0)×Q(U0). As a first step, we
apply the machinery of Lemma 4.3.3.1.

Decompose Q as R1 ⊕ · · · ⊕ Rt, where the Rs are irreducible polynomial
functors and deg(Rs) ≤ deg(Rs+1) for all 1 ≤ s ≤ t − 1. Write R≤s :=
R1⊕ · · · ⊕Rs and R>s := Rs+1⊕ · · · ⊕Rt, so that R≤0 = {0} and R>t = {0}.

By Lemma 4.3.3.1, we can construct a sequence of vector spaces U1, . . . , Uk
with partial sums U≤l :=

⊕l
i=0 Ui (note that U≤0 = U0), indices 0 = s0 <

s1 ≤ · · · ≤ sk ≤ t, nonzero coordinates xl ∈ Rsl(Ul)
∗ for l ∈ [k], nonzero

functions hl ∈ K[B(U≤l) × R≤sl(U≤l)] for l = 0, . . . , k and functions rl ∈
K[B(U≤l)× (R≤sl(U≤l)/Rsl(Ul))] for l ∈ [k] such that

hl = xl · hl−1 + rl (A)

for each l = 1, . . . , k and such that hk that vanishes on X(U≤k).
Now h0 ∈ K[B(U0)] is represented by a polynomial in

K[Y (U0)][x1, . . . , xn],

and after reducing modulo I(B(U0)), we may assume that its leading term
equals c · xu where c ∈ K[Y (U0)] is nonzero and xu ̸∈ LM(B).

Now set U := U≤k = U0 ⊕ · · · ⊕ Uk. Then we construct the relevant data
as follows.



1. Define Y0 as the closed Vec-subvariety of Y defined by the vanishing of
c, so that

Y0(V ) := {y ∈ Y (V ) | ∀φ ∈ HomVec(V,U0) : c(Y (φ)y) = 0}.

2. Set Y ′ := (ShU Y )[1/c] with α : Y ′ → Y the restriction to Y ′ of the
natural morphism ShU Y → Y .

3. Let B0 be the closed Vec-subvariety of (ShU B)[1/c] defined by the van-
ishing of the single equation h0. Note that B0 is a closed Vec-subvariety
of Y ′ × An0 with n0 := n. Define Q0 := Q and β0 : B0 × Q0 → B × Q
as the identity on Q and equal to the restriction to B0 of the natural
morphism ShU B → B on B0. Note that LM(B0) ⊇ LM(B) by virtue of
Lemma 4.3.4.2, and since h0 ∈ I(B0(U0)) has leading term c ·xu and c is
invertible on Y ′, we have xu ∈ LM(B0)\LM(B). Thus B0×Q0 ≺ B×Q.

4. For l ∈ [k], set

Ql := ((ShU R≤sl)/(R≤sl(U)⊕Rsl))⊕R>sl .

Here we recall that, for any pure polynomial functor R, the top-degree
part of ShU R is naturally isomorphic to that of R, and its constant part
is isomorphic to R(U) (see [Dra19, Lemma 14] for the first statement; the
second is proved in a similar fashion). So, since we ordered the irreducible
factors Rs by ascending degrees, Rsl is naturally a sub-object of the top-
degree part of ShU R≤sl ; and the constant polynomial functor R≤sl(U)
is the constant part of ShU R≤sl . Both are modded out, and we have
Ql ≺ Q.

5. For l ∈ [k], we define Bl as

Bl := (ShU B)[1/c]×R≤sl(U)× A1

⊆ Y ′ × An ×R≤sl(U)× A1 ∼= Y ′ × Anl .

where nl := n + dim(R≤sl(U)) + 1. Note that the factor R≤sl(U) is
precisely the constant term modded out in the definition of Ql; the role
of the factor A1 will become clear below.

6. To construct βl : Bl×Ql → B×Q we proceed as follows. Let Xl be the
closed Vec-subvariety of B ×R≤sl defined by the vanishing of hl. Then
(A) shows that, on the distinguished open subset (ShU≤l−1

Xl)[1/hl−1],
the coordinate xl can be expressed as a function on

ShU≤l−1
B × ((ShU≤l−1

R≤sl)/Rsl)



evaluated at Ul. Since Rsl is irreducible, each coordinate on it can be
thus expressed; this is a crucial point in the proof of [Dra19, Lemma 25].
This implies that the projection

ShU≤l−1
B × ShU≤l−1

R≤sl → (ShU≤l−1
B)× (ShU≤l−1

R≤sl)/Rsl

restricts to a closed immersion of (ShU≤l−1
Xl)[1/hl−1] into the open

subset of the right-hand side where hl−1 is nonzero. This statement
remains true when we replace U≤l−1 everywhere by the larger space U .
After also inverting c, we find a closed immersion

(ShU Xl)[1/hl−1][1/c]→ (ShU B)[1/c]× (ShU R≤sl)/Rsl × A1,

where the map to the last factor is given by 1/hl−1. By [Bik20, Proposi-
tion 1.3.22] the inverse morphism from the image of this closed immersion
lifts to a morphism of ambient Vec-varieties

ι :Bl × (ShU R≤sl)/(R≤sl(U)⊕Rsl)
∼= (ShU B)[1/c]× (ShU R≤sl)/Rsl × A1

→ ShU (B ×R≤sl)

that hits all the points in (ShU Xl)[1/hl−1][1/c]. Finally, we define βl :=
β′l × idR>sl

where β′l is the composition of ι and the natural morphism
ShU (B ×R≤sl)→ B ×R≤sl .

Property (1) in the proposition holds by construction. We now verify property
(2). Thus let V ∈ Vec, m ∈ Z≥0, and let p1, . . . , pm ∈ X(V ) ⊆ Y (V ) ×
An × Q(V ). Assume that the images of p1, . . . , pm in Y (V ) are all equal to
y, and that y ̸∈ Y0(V ). By definition of Y0, this means that there exists a
φ ∈ HomVec(V,U) such that c(Y (φ)(y)) ̸= 0.

On the other hand, we have hk(X(ψ)(pj)) = 0 for all j and all ψ : V → U ,
because hk vanishes identically on X. For j ∈ [k] define

lj := min{l | ∀ψ ∈ HomVec(V,U) : hl(X(ψ)(pj)) = 0}.

Put differently, lj is the smallest index l such that the projection of pj in
B×R≤sl lies in Xl ⊆ B×R≤sl . Note that, if lj > 0, then there exists a linear
map ψ : V → U such that hlj−1(X(ψ)(pj)) ̸= 0.

Since HomVec(V,U) is irreducible, there exists a linear map φ : V → U
such that both, c(Y (φ)(y)) and hlj−1(X(φ)(pj)) are not equal to zero for all
j with lj > 0.



We now define the p′j as follows. First, we decompose pj = (pj,1, pj,2) where
pj,1 ∈ B(V ) × R≤slj (V ) and pj,2 ∈ R>slj (V ). Similarly, we decompose the

point p′j = (p′j,1, p
′
j,2) to be constructed.

1. Set p′j,2 := pj,2 for all j. Recall that we had defined s0 := 0, so that
this implies that if lj = 0, then the component p′j,2 of p′j in Q equals the
component pj,2 of pj in Q.

2. If lj = 0, then pj,1 is a point inB(V ), and p′j,1 ∈ B0(V ) ⊆ (ShU B)[1/c](V )
is defined as B(φ ⊕ idV )(pj,1). Note that p′j,1 does indeed lie in B0(V );
this follows from the fact lj = 0, so that h0(B(ψ)(pj,1)) = 0 for all
ψ : V → U0, and hence also for all ψ that decompose as ψ′ ◦ (φ⊕ idV ).

Furthermore, note that β0(V )(p′j) = pj ; this follows from the equality
πV ◦ (φ ⊕ idV ) = idV . Also, the image of p′j in Y ′(V ) equals Y (φ ⊕
idV )(y) =: y′.

3. If l := lj > 0, then pj,1 ∈ B(V ) × R≤sl(V ) with sl ≥ 1, and p′j,1 is
constructed as follows. First apply (B×R≤sl)(φ⊕ idV ) to pj,1 and then
forget the component in Rsl(V ). The morphism β′l was constructed in
such a manner that β′l(V )(p′j,1) = pj,1 and therefore βl(V )(p′j) = pj .
Note that also the image of p′j in Y ′(V ) equals y′. This concludes the
proof.

Example 4.3.4.4. Let Y be the polynomial functor defined by Y (V ) := V ⊕V
and take B ⊆ Y × A1 the closed subvariety

B(V ) := {(v, tv, t) | v ∈ V, t ∈ K}

defined by the equation y1 − sx1, where we write xi, yi for the coordinates on
Y (Kn) = Kn ⊕Kn and s for the coordinate on A1. Note that LM(B) = ∅.
Consider Q(V ) := S2V , the symmetric tensors of V ⊗V , and let X ⊆ B(V )×
Q(V ) be defined by the 2×2-minors expressing that, in a quadruple (v, w, t, q),
the pair w2, q is linearly dependent. Take for the original equation f one of
these 2× 2-minors, and compute all the data as in the proof. ♢

Example 4.3.4.5. Write Y for the polynomial functor V → V ⊕ V and
write K[xi, yi | i ∈ [n]] for the coordinate ring of Y (Kn). Consider the Vec-
subvariety B of Y × A1 defined by y1 − t · x1, where t is the coordinate of
A1. Then LM(B) = ∅ and B(V ) is the set of triples (v, λv, λ) with v ∈ V and
λ ∈ K. Set Q(V ) := S2V , and choose coordinates zij , i ≤ j on Q(Kn) by



writing an arbitrary element of Q(Kn) as

n∑
i=1

ziie
2
i +

∑
1≤i<j≤n

2zijeiej .

Note that Q is an irreducible polynomial functor, so, in the notation of Propo-
sition 4.3.2.1, we have R = R1 = Q. Define the Vec-subvariety X ⊂ B ×Q ⊂
Y × A1 ×Q by

X(V ) := {(v, w, λ, q) | (v, w, λ) ∈ B(V ) and

w2, q are linearly dependent}.

An equation for X(K2) is the determinant

f := z12y
2
1 − z11y1y2 = t2(z12x

2
1 − z11x1x2) ∈ K[B(U0)×Q(U0)]

with U0 := K2. Define U1 := ⟨e3, e4⟩ ∼= K2, so that U0 ⊕ U1 = K4. Acting
on f equation with the (upper triangular) elements E1,3 and E2,4 of the Lie
algebra gl(U0 ⊕ U1) gives the equation:

h1 := z34(x21t
2) + (2z14x1x3 − 2z13x1x4 − z11x3x4)t2

that, by construction, vanishes on X(U0 ⊕ U1). Note that z34 ∈ Q(U1)∗,
h0 := x21t

2 ∈ K[B(U0)] (and we let c be the leading coefficient: c := x21), and
the rest belongs to K[B(U0 ⊕ U1)×Q(U0 ⊕ U1)/Q(U1)].

By acting with permutations (3, i) and (4, j) with i < j on h1 we find that,
where h0 is nonzero, on X we have

zij = − 1

h0
· (2z1jx1xi − 2z1ix1xj − z11xixj)t2. (4.4)

A similar expression can be found for zii, with the same denominator h0.
In this case, Y0 from the proposition is the Vec-subvariety of Y defined by

c = x21. This consists of all pairs (0, w) ∈ V ⊕ V . The preimage in X consists
of all quadruples (0, 0, λ, q) with q arbitrary.

Set U := U0 ⊕ U1, Y ′ := ShU Y [1/c], and let B0 be the vanishing locus of
h0 in ShU B[1/c] ⊂ Y ′ × A1. Note that we have t2 ∈ LM(B0)—indeed, t even
vanishes identically on B0. With Q0 := Q we find B0 ×Q0 ≺ B ×Q, and we
define the map:

β0 : B0 ×Q0 → B ×Q
as B(πV )|B0

× idQ(V ) for every V ∈ Vec. This covers all the points in X(V )
of the form (v, 0, 0, q) with v, q arbitrary.



Finally, consider the map:

ShU (B ×Q)[1/h0][1/c]→ ShU (B ×Q)/Q× A1

∼= (ShU B ×Q(U)× A1)× (ShU Q/(Q(U)⊕Q))

=: B1 ×Q1

where the coordinate on A1 is given by 1/h0. This is a closed immersion
because where h0 is nonzero, coordinates on Q(V ) with can be recovered from
the coordinates on the right-hand side via (4.4). We use this to construct the
map

β1 : B1 ×Q1 = ShU (B ×Q)/Q× A1 → ShU (B ×Q)→ B ×Q.

The first arrow is given by the identity on the coordinates not in Q(V ), while
the coordinates on Q(V ) are computed via (4.4). The second arrow projects
into B(V )×Q(V ). This map hits points in X(V ) of the form (v, λv, λ, µ(λv)2)
with v, λ nonzero. ♢

4.3.5 Proof of Theorem 4.3.1.1

Proof of Theorem 4.3.1.1. The (FIop)k ×Vec-variety Z is of product type,
hence by Definition 4.2.5.1 it can be written as

Z = [Y ;B1 ×Q1, . . . , Bk ×Qk]

for some Vec-subvarieties Bi of Y × Ani and pure polynomial functors Qi.
Furthermore, X is a proper closed (FIop)k ×Vec-subvariety of Z.

We prove, by induction on the quantity δX , that all points in X can be
hit by partition morphisms from finitely many (FIop)k ×Vec-varieties Z ′ of
product type with Z ′ ≺ Z. So in the proof we may assume that this is true
for all proper closed (FIop)k ×Vec-subvarieties X ′ ⊊ Z with δX′ < δX .

Let (S1, . . . , Sk) ∈ FIk be such that
∑
i |Si| = δX and X(S1, . . . , Sk) ̸=

Z(S1, . . . , Sk). If all Si are empty, then set Y ′ := X(∅, . . . , ∅), a proper closed
Vec-subvariety of Y , B′i := Y ′×Y Bi, and Z := [Y ′;B′1×Q1, . . . , B

′
k×Qk]. The

partition morphism (id[k], φ) with φ(T1, . . . , Tk) the inclusion
∏
i(B
′
i×Qi)Ti →∏

i(Bi×Qi)Ti has X in its image, and we have Z ′ ≺ Z because the Qi remain
the same, LM(B′i) ⊇ LM(Bi) by Lemma 4.2.6.3, and Y ′ is a proper closed
Vec-subvariety of Y . In this case, no shift of Z is necessary.

Next assume that not all Si are empty. First, we argue that the points of
X(T1, . . . , Tk) where, for some i, |Ti| is strictly smaller than |Si|, are hit by
partition morphisms from finitely many Z ′ ≺ Z. We give the argument for



i = k. Define the k-tuple S to be shifted over as S := (∅, . . . , ∅, Tk) ∈ FIk, and
define the (FIop)k−1 ×Vec- variety Z ′ of product type

Z ′ := [(Bk ×Qk)Tk ;B′1 ×Q1, . . . , B
′
k−1 ×Qk−1]

with B′i = (Bk×Qk)Tk ×Y Bi. Consider the partition morphism (π, φ) : Z ′ →
ShS Z where π : [k−1]→ [k] is the inclusion and φ(T1, . . . , Tk−1) is the natural
isomorphism of Vec-varieties

Z ′(T1, . . . , Tk−1)→ (ShS Z)(T1, . . . , Tk−1, ∅) = Z(T1, . . . , Tk−1, Tk).

Note that π witnesses Z ′ ⪯ Z since the Qi with i ≤ k − 1 remain the same
and LM(B′i) ⊇ LM(Bi) by Lemma 4.2.6.3. Furthermore, since k − 1 < k,
we have Z ′ ≺ Z by Lemma 4.2.8.4. All points in X where the last index set
has cardinality |Tk| are hit by this partition morphism. Since there are only
finitely many values of |Tk| that are strictly smaller than |Sk|, we are done.

So it remains to hit points in X(T1, . . . , Tk) where |Ti| ≥ |Si| for all i. In
this phase, we will apply Proposition 4.3.2.1.

As by assumption not all Si are empty, after a permutation of [k] we may

assume that Sk ̸= ∅. Let ∗ be an element of Sk and define S̃k := Sk \ {∗}.
Consider the Vec-varieties

Z(S1, . . . , Sk)

= (B1 ×Q1)S1

Y ×Y · · · ×Y (Bk ×Qk)S̃k

Y ×Y (Bk ×Qk){∗} and

Ỹ := Z(S1, . . . , Sk−1, S̃k) = (B1 ×Q1)S1

Y ×Y · · · ×Y (Bk ×Qk)S̃k

Y .

Set B̃k := Ỹ ×Y Bk ⊆ Ỹ ×Ank , and note that X(S1, . . . , Sk) is a proper closed

Vec-subvariety of B̃k × Qk. We may therefore apply Proposition 4.3.2.1 to
Ỹ , nk, B̃k, Qk and X(S1, . . . , Sk).

First consider the proper closed Vec-subvariety Y0 of Ỹ promised by Propo-
sition 4.3.2.1, and let X ′ be the largest closed (FIop)k ×Vec-subvariety of Z

that intersects Z(S1, . . . , Sk−1, S̃k) in Y0. ThenX ′(S1, . . . , S̃k) ̸= Z(S1, . . . , S̃k),
and therefore δX′ ≤ δX − 1 < δX . Hence, by the induction hypothesis, all
points in X ′(T1, . . . , Tk) can be hit by finitely many partition morphisms from
varieties Z ′ ≺ Z of product type.

Next, we consider the remaining pieces of data from Proposition 4.3.2.1.
First, we have the Vec-variety Y ′ with a morphism α : Y ′ → Ỹ . Further, we
have an integer s ∈ Z≥0 and for each i = 0, . . . , s we have integers n′k+i; Vec-

varieties B′k+i ⊆ Y ′ × An
′
k+i ; pure polynomial functors Q′k+i; and morphisms

βk+i : B′k+i ×Q′k+i → B̃k ×Qk satisfying the conditions (1) and (2).



Define B′i := Y ′×Y Bi for i = 1, . . . , k−1 and the (FIop)k+s×Vec-variety

Z ′ := [Y ′;B′1 ×Q1, . . . , B
′
k−1 ×Qk−1, B′k ×Q′k, . . . , B′k+s ×Q′k+s].

Now the map π : [k + s] → [k] that is the identity on [k − 1] and maps
[k+ s] \ [k− 1] to {k} witnesses that Z ′ ⪯ Z; here we use that B′k+j ×Q′k+j ≺
Bk × Qk for j ∈ {0, . . . , s} by the conclusion of Proposition 4.3.2.1, and also
Lemma 4.2.6.3 to show that B′i×Qi ⪯ Bi×Qi for i ∈ [k−1]. In fact, we have
Z ′ ≺ Z by Lemma 4.2.8.4.

Now the base variety Y ′ of Z ′ comes with a morphism α to the base variety
Ỹ of ShS Z; we have morphisms βi : B′i × Qi → B̃i × Qi for i = 1, . . . , k − 1

(the natural map B′i → B̃i times the identity on Qi) and the morphisms

βk+j : B′k+j × Q′k+j → B̃k × Qk defined earlier. By Example 4.2.5.4, these
data yield a partition morphism (π, φ) : Z ′ → ShS Z. We have to show that
this partition morphism hits all points in X that are not in X ′.

First we show, for a finite-dimensional vector space V , that a point p ∈
ShS X(T̃1, . . . , T̃k)(V ) whose projection to Ỹ (V ) is not in Y0(V ) lies in the

image of φ(T̃1, . . . , T̃k)(V ). To this end, we write

p = ((pi,t)t∈T̃i
)i∈[k]

with

pi,t ∈ ShS X(∅, . . . , ∅, {t}, ∅, . . . , ∅)(V )

= Ỹ (V )×Y (V ) Bi(V )×Qi(V ) ⊂ Ỹ (V )× Ani ×Qi(V )

where the singleton {t} is in the i-th position. We write pi,t = (ỹ, ai,t, bi,t)

with ỹ ∈ Ỹ (V ), ai,t ∈ Ani , and bi,t ∈ Qi(V ).
By definition of a fibre product, the pi,t all have the same projection ỹ

in Ỹ (V ) \ Y0(V ), and hence we can apply (2) of Proposition 4.3.2.1 to the

points pk,t with t ∈ T̃k. This yields integers lt ∈ {0, . . . , s} and points p′k,t ∈
B′k+lt(V ) × Q′k+lt(V ) for t ∈ T̃k whose images in Y ′(V ) are all equal, say to
y′ ∈ Y ′(V ), and which satisfy βk+lt(V )(p′k,t) = pk,t for all t. This implies that
α(y′) = ỹ.

Define

T ′k+j := { t ∈ T̃k | lt = j}

j = 0, . . . , s, and set T ′i := T̃i for i = 1, . . . , k−1. In Z ′(T ′1, . . . , T
′
k+s) we define

the point q = ((qi,t)t∈T ′
i
)i∈[k+s] as follows. We set qi,t to be (y′, ai,t, bi,t) for



i = 1, . . . , k − 1 and t ∈ T ′i , and qi,t = p′k,t for i = k, . . . , k + s and t ∈ T ′i .
Then

φ(T ′1, . . . , T
′
k+s)(q) = p,

as desired.
Now, more generally, consider a point p inX(T1, . . . , Tk)(V )\X ′(T1, . . . , Tk)(V ),

where the cardinalities satisfy |Ti| ≥ |Si|. Then there exists an FIk-morphism
ι = (ι1, . . . , ιk) : S → (T1, . . . , Tk) such that X(ι)(p) /∈ Y0(V ). Define

T̃i := Ti \ Im(ιi) and extend ι to an isomorphism ιe : S ⊔ (T̃1, . . . , T̃k) →
(T1, . . . , Tk) by defining ιi on T̃i to be the inclusion. Consider X(ιe)(p) ∈
X(S ⊔ (T̃1, . . . , T̃k))(V ). This is also a point in ShS X(T̃1, . . . , T̃k)(V ) whose

projection to Ỹ (V ) does not lie in Y0(V ). We can therefore find a point q as
described above showing that X(ιe)(p) is in the image of (π, φ) : Z ′ → ShS Z;
by Definition 4.2.4.3, then so is p.

4.4 Proof of the main theorem

The most general version of our Noetherianity result is the following.

Theorem 4.4.0.1. Any (FIop)k×Vec-variety of product type is Noetherian.

Proof. We proceed by induction along the well-founded order on objects of
product type in PM from Section 4.2.8.

Let Z be an (FIop)k ×Vec-variety of product type and let X1 ⊇ X2 ⊇ . . .
be a descending chain of closed (FIop)k × Vec-subvarieties. Then either all
Xi are equal to Z, or there exists an i0 such that X := Xi0 is a proper closed
(FIop)k ×Vec-subvariety of Z. In the latter case, by Theorem 4.3.1.1, there
exist a finite number of objects Z1, . . . , ZN in PM of product type, along with
k-tuples S1, . . . , SN ∈ FIk and partition morphisms (πj , φj) : Zj → ShSj

Z
such that every point of X is hit by one of these. By the induction hypothesis,
all Zjs are Noetherian. For each j, by Lemma 4.2.4.6, the preimage in Zj
of the chain (ShSj Xi)i≥i0 is a chain of closed subvarieties, which therefore
stabilizes. As soon as these N chains have all stabilized, then so has the chain
(Xi)i—here we have used a version of Proposition 4.2.4.7.

To deduce from this Theorems 4.1.2.1 and 4.1.3.1, we consider GL-varieties
Z1, . . . , Zk as well as the product Z := ZN

1 × · · · × ZN
k . Recall Remark 4.2.3.3.

Proof of Theorem 4.1.3.1. We need to prove that any descending chain Z ⊇
X1 ⊇ . . . of Symk ×GL-stable subsets of Z stabilizes.



To each Zi is associated a Vec-variety, which by abuse of notation we
also denote Zi; see Remark 4.2.2.6. Furthermore, Zi is a closed subvariety
of Bi × Qi for some finite-dimensional variety Bi and some pure polynomial
functor Qi, and hence Z is a closed subvariety of

(B1 ×Q1)N × · · · × (Bk ×Qk)N.

Now each Xi defines a closed (FIop)k ×Vec-subvariety X̃i of

Z̃ := [Y ;B1 ×Q1, . . . , Bk ×Qk],

where Y is a point. By Theorem 4.4.0.1, the X̃i stabilize. As soon as they do,
so do the Xi.

Proof of the Main Theorem. Apply Theorem 4.1.3.1 with k = 1.
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