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Modularized Control Synthesis for Complex Signal Temporal Logic

Specifications*

Zengjie Zhang1 and Sofie Haesaert1

Abstract— The control synthesis of a dynamic system subject
to signal temporal logic (STL) specifications is commonly
formulated as a mixed-integer linear programming (MILP)
problem. Solving a MILP problem is computationally expensive
when the STL formulas are long and complex. In this paper,
we propose a framework to transform a long and complex
STL formula into a syntactically separate form, i.e., the logical
combination of a series of short and simple subformulas with
non-overlapping timing intervals. Using this framework, one
can easily modularize the synthesis of a complex formula using
the synthesis solutions of the subformulas, which improves the
efficiency of solving a MILP problem. Specifically, we propose
a group of separation principles to guarantee the syntactic
equivalence between the original formula and its syntactically
separate counterpart. Then, we propose novel methods to solve
the largest satisfaction region and the open-loop controller of
the specification in a modularized manner. The efficacy of the
methods is validated with a robot monitoring case study in
simulation. Our work is promising to promote the efficiency of
control synthesis for systems with complicated specifications.

I. INTRODUCTION

Signal temporal logic (STL) has been widely used to

describe the specifications of various practical systems, such

as cyber-physical systems [1], [2] and robot systems [3], [4].

Compared to other temporal logic (TL) languages, STL can

specify dense-time real-valued signals incorporating finite

timing bounds [5]. It also has various metrics to quantify

its satisfaction with real values instead of binary values,

such as robustness degree [6] and the characteristic func-

tion [7]. Based on these metrics, the control synthesis of

a system subject to STL specifications can be formulated

as a mixed integer linear programming (MILP) problem

which optimizes the real-valued specification satisfaction [5].

Such an optimization-based problem allows the synthesis

of both open-loop and closed-loop controllers, where the

latter is usually a model predictive controller (MPC) [8], [9],

[10]. Nevertheless, solving a MILP problem is usually quite

computationally expensive and time-consuming, especially

for complex STL formulas that have long timing intervals

or consist of many subformulas. A subformula refers to a

simple STL formula that serves as a primitive unit of a

complex formula. Such formulas are used to specify complex

tasks with many sequential subtasks [11], [12], [13]. For

example, a food delivery task for a delivery robot can be

decomposed into three subtasks: (1). pick up the correct order

*This work was supported by the European project SymAware under the
grant Nr. 101070802.
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Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB
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at the restaurant; (2). navigate to the correct address of the

customer; (3). find the customer and finish the delivery. The

computational complexity of the optimization-based methods

has become a bottleneck of the control synthesis of complex

STL specifications.

Various efforts are devoted to reducing the complexity of

an STL synthesis problem. One effective approach is the

model-checking-based method which transforms an STL for-

mula into an automaton with strict timing bounds [14]. Then,

the control synthesis problem is solved as a game. Since

the model-checking-based method is only concerned with

a feasible solution instead of the optimal one, it is usually

more efficient than solving a MILP problem. Control barrier

functions (CBF) [12] and funnel functions [15] are also used

to simplify the STL synthesis problems.They provide an

elegant manner to encode STL specifications in spatiotempo-

ral constraints and generate closed-form controllers. Another

direction of simplifying an STL synthesis problem is to split

an STL formula into shorter or simpler subformulas, such

that a big optimization problem is split into several smaller

ones. Usually, solving a MILP problem for a short and simple

STL formula is far easier than a long and complex one.

Furthermore, if the timing intervals of the subformulas are

separated in time, it is possible to synthesize the individual

subformulas one by one in the order of time, which forms

the essential idea of modularized control synthesis. This idea

is straightforward from a practical perspective: a complex

task is usually composed of a series of smaller subtasks

that have independent objectives and are ordered in time.

Accomplishing the task means finishing all its subtasks.

However, STL specification separation and modularized

synthesis are not trivial from a technical perspective. There

exist several challenges. Firstly, the original formula and

its separated counterpart must be syntactically equivalent.

This is important to ensure consistency between the solution

spaces of the two formulas [16]. Secondly, the subformulas

may have overlapping timing intervals, which means that

some subtasks require simultaneous execution. In this case,

each subformula should not be synthesized independently,

which is the major difficulty of modularized control syn-

thesis of STL specifications. In existing work, the syntactic

equivalence of a separated formula is ensured by syntactic

separation which is originally discussed in [17]. In [18], a

framework for separating an STL formula is presented based

on a global time expression, although it is stated that sepa-

rating a general STL formula in local time is still difficult. In

general, the syntactic separation of STL formulas is still not

well studied and remains an open question. Also, according

http://arxiv.org/abs/2303.17086v1


to the best knowledge of the authors, there is currently no

existing work discussing the modularized solution of control

synthesis of complex STL formulas. However, we believe

that syntactic separation is a critical technical point to realize

modularized control synthesis which can greatly improve the

efficiency of optimization-based STL synthesis methods.

This paper gives the first attempt to use the syntactic

separation technology to realize modularized control synthe-

sis for complex STL specifications. The synthesis problem

is transformed into solving several small MILP problems,

which achieves higher efficiency than directly solving an

optimization problem for the original complex specification.

The main contributions are summarized as follows. Firstly,

we define a new type of STL formula with a sufficiently

separated form that contains a group of subformulas with

non-overlapping timing intervals. This type of formula is

suitable to prescribe the specifications for most practical

complicated tasks. Secondly, based on the existing work [17],

[18], we provide a group of separation principles that can

transform a certain class of STL formulas into a sufficiently

separated formula with syntactic equivalence. Thirdly, we

provide modularized methods for two important problems

related to STL synthesis, namely the largest satisfying region

(LSR) and the open-loop controller design for a complex

STL formula, using the solutions of the sufficiently separated

subformulas. The results of this paper are promising to pro-

vide efficient optimization-based approaches to the synthesis

of specifications for complicated tasks in practice.

The rest of the paper is organized as follows. We intro-

duce the preliminary knowledge of this paper in Sec. II.

Sec. III presents the main results of this paper, including

the separation principles to generate sufficiently separated

STL formulas, the modularized method to compute the LSR

of a complex STL formula, and the modularized approach

for the synthesis of complex STL specifications. We validate

the proposed methods using a simulation use case in Sec. IV.

Finally, Sec. IV concludes this paper.

Notations: In this paper, we use R, R+, and R≥0 to denote

the sets of real numbers, positive real numbers, and non-

negative real numbers. We also use N and N
+ to represent

non-negative integers and positive integers.

II. PRELIMINARIES AND PROBLEM STATEMENT

This section gives the preliminary knowledge of this paper,

including the syntax, semantics, and syntactic separation of

STL formulas. We also introduce the reachable set of a

dynamic system and the largest satisfaction region (LSR)

of an STL formula. Finally, we formulate the problem

investigated in this paper.

A. Signal Temporal Logic (STL)

STL is a fragment of linear temporal logic (LTL) but with

the capability of quantifying specifications for real-valued

signals. For a real-valued signal defined in the continuous

time domain x : R≥0→R
n, the syntax of STL is defined as

ϕ ::=⊤|µ |¬ϕ |ϕ1∧ϕ2 |ϕ1U[a,b ]ϕ2, (1)

where ϕ1,ϕ2 are STL formulas, ¬, ∧ are operators negation

and conjunction, µ is a predicate that evaluates a predicate

function η : Rn → {⊤,⊥} by µ =

{

⊤ if η(x(t))≥ 0

⊥ if η(x(t))< 0
,

for a given time t ∈ R≥0, and U[a,b ] is the until operator

bounded with time interval [a, b ], where a,b∈N+ and a≤ b.

Note that the operator interval may also be semi-closed or

open, like (a, b ], [a, b), or (a, b), with a < b to avoid being

empty. For a given time t ∈ R≥0, (x, t) |= ϕ defines the

semantics of STL, i.e., x satisfies ϕ at time t, which is recur-

sively assigned as follows. 1). (x, t) |= µ , if η(x(t))≥ 0; 2).

(x, t) |=¬ϕ , if ¬((x, t) |=ϕ); 3). (x, t) |=ϕ1∧ϕ2, if (x, t) |=ϕ1

and (x, t) |= φ2; 4). (x, t) |= ϕ1U[a,b ]ϕ2, if ∃t ′ ∈ [ t +a, t +b ],
such that (x, t ′) |=ϕ2, and (x, t ′′) |=ϕ1 holds for all t ′′ ∈ [ t, t ′ ].
Besides, additional operators disjunction, eventually, and

always are respectively defined as ϕ1∨ϕ2 = ¬(¬ϕ1∧¬ϕ2),
F[a,b ]ϕ = ⊤U[a,b ]ϕ , and G[a,b ]ϕ = ¬F[a,b ]¬ϕ . A formula

ϕ is feasible if and only if ∃x : R≥0 :→ R
n such that

(x,0) |= ϕ . The length [19] or future-reach [17] of an STL,

L (ϕ), is recursively defined as L (µ) = 0, L (¬ϕ) =L (ϕ),
L (ϕ1 ∧ϕ2) = max{L (ϕ1),L (ϕ2)}, L (ϕ1U[a,b ]ϕ2) = b+
max{L (ϕ1),L (ϕ2)}, which represents the maximum time

it takes to determine the truth of the formula ϕ . The

robustness semantics defined as follows are widely used to

depict the extent of satisfaction with real values [6],

ρ(x, t,µ) := h(x(t)), ρ(x, t,¬ϕ) := −ρ(x, t,ϕ),

ρ(x, t,ϕ1∧ϕ2) := min(ρ(x, t,ϕ1),ρ(x, t,ϕ2)),

ρ(x, t,ϕ1∨ϕ2) := max(ρ(x, t,ϕ1),ρ(x, t,ϕ2)),

ρ
(

x, t,ϕ1U[a,b ]ϕ2

)

:=

max
t′∈[t+a,t+b ]

(

min

(

ρ(x, t ′,ϕ2), min
t′′∈[t,t′ ]

ρ(x, t ′′,ϕ1)

))

,

ρ
(

x, t,F[a,b ]ϕ
)

:= max
t′∈[t+a,t+b ]

ρ(x, t ′,ϕ),

ρ
(

x, t,G[a,b ]ϕ
)

:= max
t′∈[t+a,t+b ]

ρ(x, t ′,ϕ).

(2)

For the case t = 0, the symbol t can be omitted.

B. Syntactic Separation of STL

In general, syntactic separation refers to splitting an STL

formula into a group of subformulas [17], most commonly

first-order formulas [18]. Specifically, for an STL formula ϕ
defined as (1), represent it in the following separated form,

ϕ ::= ϕ1∧ϕ2 |ϕ1∨ϕ2, (3)

where ϕ1,ϕ2 are STL formulas. An STL formula in (3) is a

subformula if it can not be further separated into the logical

combination of other STL formulas. For example, for a real-

valued signal x :R≥0→R
n, (x>−1)∧G[0,2 ](x<0)∨F[1,3 ](x>

2) is a syntactic separated formula, with (x>−1), G[0,2 ](x<
0), and F[1,3 (x > 2) being subformulas connected using

logical operators ∧ and ∨. For an STL formula consisting

of an until operator ϕ = ϕ1U(a,b )ϕ2 with an open timing

interval (a, b), where ϕ1, ϕ2 are STL formulas, the following

separation law for a separating point τ ∈ R
+, a < τ < b



ensures syntactic equivalence [17], [18], i.e., both sides have

the same set of satisfying signals,

ϕ =ϕ1U(a,τ)ϕ2∨(G(a,τ)ϕ1∧F{τ}
(

ϕ1∧ϕ2∨ϕ1U(0,b−τ)ϕ2)
)

(4)

Besides, the following properties hold [17],

F{τ}(¬ϕ)=¬F{τ}ϕ , F{τ}(ϕ1∧ϕ2)=F{τ}ϕ1∧F{τ}ϕ2, (5a)

ϕ0U(a,b )(ϕ1∨ϕ2) = ϕ0U(a,b )ϕ1∨ϕ0U(a,b )ϕ2, (5b)

where ϕ0 is an STL formula.

C. Optimization-Based Synthesis for STL Specifications

The STL formulas are used to model the specifications that

prescribe the desired behavior of a system. In this paper,

we consider a system that is represented as the following

continuous-time dynamic model

ẋ(t) = f (x(t)+ u(t)), t ∈R≥0, (6)

where x(t) ∈ X and u(t) ∈ U are respectively the states and

the control input of the system at time t, where X⊆R
n and

U⊆R
m are the admissible sets of the state and control input,

and f :X×U→R
n is a smooth vector field. Suppose that the

specification of system (6) is described by an STL formula

ϕ . Then, the synthesis of the system can be formulated as

the following optimization problem,

maxu ρ(x,ϕ) (7a)

s.t. xi+1 = xi + h f (xi + ui), (7b)

xi ∈X, ui ∈ U, i = 0,1, · · · ,L− 1, (7c)

where (7b) is the discrete-time form of the system in (6)

with a sampling rate h ∈ R
+, such that the discretization is

performed in a zero-order manner, i.e., x(τ) = xi, for all ih≤
τ < (i+1)h, i∈N≥0, L∈N+ in (7c) denotes the finite control

horizon, and u = {u0, u1, · · · , uL−1} and x = {x0, x1, · · · ,
xL} in (7a) are respectively the control and state sequences

of the system. The problem in (7) is commonly formulated

as a MILP problem and solves an open-loop controller u

that attempts to maximize the robust semantics of formula

ϕ , such that the state signal of the system x satisfies the

specification at the maximal extent. The closed-loop solution

of the synthesis can be formulated as a model predictive

control problem and is introduced in [20], [10].

D. Reachable Set and Largest Satisfaction Region

For a defined STL formula in (1) and a dynamic system

in (6), an important concept is the largest satisfaction region

(LSR) which prescribes the feasible initial conditions of the

system for the STL specification [21]. Before this, we first

introduce the reachable set of a dynamic system.

Definition 1: [22] The reachable set of system in (6) at

any time τ ∈ R
+ from a set of initial states X0 ⊂ X for all

admissible control inputs u ∈ U
τ is defined as

Rτ(X0) = {x
u(x0,τ) |x0 ∈X0, u ∈U

τ } , (8)

where U
τ is the set of all admissible control signals from

the time 0 to τ and xu(x0,τ) is the system state at time τ
with the initial condition x0 and control signal u ∈U

τ . �

The reachable set Rτ(X0) represents all possible states of

the system at time τ with the initial conditions starting from

X0. For a deterministic system (6) with a smooth vector

field f , xu(x0, t) is unique for given x0 and u. Therefore, any

initial state set X0 corresponds to a reachable set Rτ(X0)
at time τ , and vice versa. We refer to X0 =R−1

τ (Xτ ) as the

inverse reachable set of Xτ = Rτ(X0) with backward time

τ , which represents the largest set of initial states that can

reach Xτ at time τ , i.e.,

R
−1
τ (Xτ ) = {x0 ∈ X |∃u ∈ U

τ , s.t. xu(x0,τ) ∈Xτ } . (9)

The specification ϕ is recognized as a constraint exerted

on the system state signal x ∈X(X0,U
τ ), where X(X0,U

τ )
represents the set of system trajectories starting from the

initial state set X0 and under the admissible control signals

in U
τ . It affects the largest set of system initial states. We

define the largest satisfying region (LSR) of system (6) for

specification ϕ as follows.

Definition 2: For the system (6) with a set of initial

states X0 and a specification ϕ with length l = L (ϕ), the

admissible control set is defined as

U (X0,ϕ) = {u ∈ U
l |x(x0,u) |= ϕ , ∀x0 ∈X0} (10)

which includes all admissible control signals such that all

system trajectories x(x0,u) ∈ X(X0,U
τ) starting from x0 ∈

X0 and under u ∈U (X0,ϕ) satisfy specification ϕ . Based

on this, the LSR of system (6) and formula ϕ is defined as

S0(ϕ) = {x0 ∈ X |∃u ∈ U
l , s.t.x(x0,u) |= ϕ} (11)

which is equivalent to S0(ϕ) = {x0|U (x0,ϕ) 6=∅}. �

Therefore, LSR denotes the largest set of initial conditions

of the system subject to a certain STL specification. It is an

important concept in the synthesis of LTL and STL specifi-

cations. A controller exists if and only if the initial state of

the system lies in an LSR. Conventionally, LSR is solved by

model-checking-based methods which are computationally

expensive when the specification is long and complicated. It

is noticed that LSR is very similar to the inverse reachable set

defined in (9). In fact, they are the same if xu(x0,τ) ∈Xτ

is formulated as a specification ϕ . In Sec. III-C, we will

explain the connection of LSR and reachable set in detail.

E. Problem Statement

The main problem of this paper is formulated as follows.

Problem 1: Define a class of STL formulas ϕ such that it

can be transformed into a syntactically separate form as (3)

with the following objectives achieved.

1). The timing intervals of the subformulas ϕ1, ϕ2, · · · , ϕn

be sufficiently short and have no overlapping, n ∈ N
+.

2). Use the LSRs of the subformulas S0(ϕi), i= 1,2, · · · ,n,

to compute the LSR of the original formula S0(ϕ).
3). For system (6) with an initial state x0 ∈ S0(ϕ), solve

open-loop controller u ∈ U
L (ϕ), such that x(x0,u) |= ϕ . �

The main purpose of Problem 1 is to realize modularized

control synthesis for a long and complex STL formula. Ob-

jective 1) is necessary to provide the syntactically separated

form for the formula. Objective 2) aims at solving the LSR



of the formula in a modularized way, such that the feasible

initial states can be determined. Objective 3) describes a

normal control synthesis problem. The main goal of this

paper is to achieve it also in a modularized manner. The

details of our solutions are given in Sec. III.

III. MAIN RESULTS

In this section, we present the main results of this paper.

We first define a class of STL formulas, namely S2-formulas

which ensure no overlappings for the timing intervals of the

subformulas. Then, we give a group of separation principles

to transform a complex STL formula into this form. Finally,

we propose modularized methods to solve the LSR and the

open-loop control law for the complex STL formula.

A. Sufficiently Separate Formulas

In this paper, we consider the complex tasks that are

formulated as the following STL fragments,

ψ := γ |ξ |γ ∧ξ ,

γ ::= γ1∧ γ2 |G[a,b ]ϕ , ξ ::= ξ1∨ξ2 |F[a,b ]ϕ ,
(12)

where ψ , γ , ξ are respectively referred to as ψ-, γ-, and

ξ -class formulas, γ1, γ2 are γ-class formulas, ξ1, ξ2 are ξ -

class formulas, ϕ are arbitrary STL formulas defined in (1),

and a,b ∈ R
+, a ≤ b. Therefore, a γ-class formula is the

conjunction of several always formulas and a ξ -class formula

is the disjunction of eventually formulas. Besides, a ψ-class

formula can be either γ-class, or ξ -class, or the conjunction

of the two. We represent a ψ-class formula as follows

ψ ::=
∧n

i=1G[ai,bi ]ϕi∧
∨ñ

j=1F[ ã j , b̃ j ]
ϕ̃ j, (13)

where n, ñ ∈ R
+, ai,bi, ã j, b̃ j ∈ R≥0, ai ≤ bi, ã j ≤ b̃ j, and

ϕi, ϕ̃ j are STL formulas, i = 1,2, · · · ,n, j = 1,2, · · · , ñ. Note

that a ξ -class formula can also be represented as (13) by

setting ϕi =⊤, for all i= 1,2, · · · ,n. For a γ-class formula,

we set any one ϕ̃ j=⊤, j=1,2, · · · , ñ, while all others as ¬⊤.

In (13), we refer to G[ai,bi ]ϕi, i = 1, 2, · · · , n, as a γ-

class subformula and F[ ã j , b̃ j ]
ϕ̃i, j = 1, 2, · · · , ñ as a ξ -class

subformula. They represent the specifications of individual

subtasks with individual objectives of a practical complex

task. In this sense, a ψ-class formula is capable of prescribing

a complex task that contains a sequence of subtasks that are

assigned to different timing intervals. However, there may

exist overlappings between the timing intervals of different

subformulas, i.e., [ai, bi ] or [ ãi, b̃i ], i = 1, 2, · · · , n, j = 1,

2, · · · , ñ, which indicates that some of the subtasks have to

be executed simultaneously. The overlappings of the timing

intervals bring challenges to modularized control synthesis

since the corresponding subformulas can not be solved inde-

pendently. Now, we introduce an ideal syntactically separated

formula that eases modularized synthesis. Later, we will

discuss how to transfer a ψ-class formula into this form.

Definition 3: A ψ-class formula formulated as (13) is a

sufficiently separated formula (in time), or an S2-formula if

1). n = ñ and ai = ãi, bi = b̃i hold for all i = 1,2, · · · ,n.

2). (ai, bi)∩ (a j, b j) =∅, ∀ i, j = 1,2, · · · ,n, i 6= j. �

For γ and ξ -class formulas, sufficient separation means

that the timing intervals of all subformulas are sufficiently

separated and have no overlappings. For a ψ-class formula, it

requires that its γ-and ξ -class components are all sufficiently

separated and have the same number of subformulas. Also,

the timing intervals of the corresponding γ-class and ξ -class

subformulas [ai, bi ] are the same for i= 1, 2, · · · , n. Consider

the following examples of STL formulas,

γ1 = G[0,4 ]ϕ0∧G[2,6 ]ϕ1, ξ1 = F[0,1 ]ϕ0∨F[2,6 ]ϕ1,

ψ1 = G[0,4 ]ϕ0∧F[0,4 ]ϕ1, ψ2 = G[0,1 ]ϕ0∧F[2,6 ]ϕ1,

where ϕ0, ϕ1 are STL formulas. According to definition 3,

ξ1 and ψ1 are S2-formulas. However, γ1 is not since the

timing intervals (0, 4) and (2, 6) of its subformulas have an

overlapping interval (2, 4). Neither is ψ2 since the timing

interval of its γ-component [0, 1 ] is different from its ξ -

component [2, 6 ]. In the next subsection, we discuss how to

transform a general ψ-class formula into an S2-form.

B. Separation Principles of STL Formulas

This subsection proposes the syntactic separation princi-

ples to transform a ψ-class formula into an S2-form. We start

with the following lemmas.

Lemma 1: The following conditions hold for arbitrary

STL formulas ϕ , ϕ1, and ϕ2.

1). F{τ}ϕ =G{τ}ϕ , for any τ ∈R≥0, where both sides are

true for signal x : R→R
n if and only if (x,τ) |= ϕ .

2). G{τ}(ϕ1∨ϕ2)=G{τ}ϕ1∨G{τ}ϕ2 holds for any τ ∈R≥0.

3). For any a,b∈R≥0, a≤ b, G{τ}
(

G[a,b ]ϕ
)

=G[τ+a,τ+b ]ϕ
and F{τ}

(

F[a,b ]ϕ
)

=F[τ+a,τ+b ]ϕ hold for τ ∈R≥0, τ < a. �

Proof: See Appendix.

Lemma 2: Given a,b ∈ R≥0, a ≤ b and an arbitrary STL

formula ϕ , G[a,b ]ϕ =G{a}ϕ∧G(a,b )ϕ∧G{b}ϕ and F[a,b ]ϕ =
F{a}ϕ ∨F(a,b )ϕ ∨F{b}ϕ hold. �

Proof: See Appendix.

Lemmas 1 and 2 provide several properties as the com-

plementaries of previous work on syntactic separation. These

properties support the following theorem that renders an im-

portant principle for the separation of γ- and ξ -subformulas.

Theorem 1: Given τ,a,b ∈ R≥0, τ ≤ a ≤ b and an arbi-

trary STL formula ϕ , the following conditions hold,

G[a,b ]ϕ = G[a,τ ]ϕ ∧G[τ,b ]ϕ , (14a)

F[a,b ]ϕ = F[a,τ ]ϕ ∨F[τ,b ]ϕ . (14b)

Moreover, the following conditions hold,

G[τ0,τm ]ϕ =
∧m

i=1G[τi−1,τi ]ϕ , (15a)

F[τ0,τm ]ϕ =
∨m

i=1F[τi−1,τi ]ϕ , (15b)

where τ0, τ1, · · · , τm ∈ R
+, τ0 < τ1 < · · ·< τm. �

Proof: See Appendix.

Theorem 1 provides two important separation principles

for γ- and ξ -class subformula. It can be used to separate

a subformula into an arbitrary number of subformulas. By

properly selecting the separation time points, we can restrict

the length of the timing intervals of the subformulas, which



solves Problem 1-1). The following proposition combines the

subformulas with overlapping timing intervals.

Proposition 1: Given a,b ∈ R
+, a≤ b,

G[a,b ](ϕ1∧ϕ2) = G[a,b ]ϕ1∧G[a,b ]ϕ2. (16a)

F[a,b ](ϕ1∨ϕ2) = F[a,b ]ϕ1∨F[a,b ]ϕ2, (16b)

where ϕ1 and ϕ2 are arbitrary STL formulas. �

Proof: See Appendix.

Theorem 1 and Proposition 1 provide a method to sep-

arate subformulas and combine the ones with overlapping

timing intervals. The method allows a ψ-class formula to be

transformed into an S2-formula. The transformed formula

has the same semantics as the original formula since all

the separation principles do not affect the soundness of the

formulas. An example of such transformation will be shown

in the case study in Sec. IV. From an intuitive perspective,

these principles seem straightforward if the formulas are

recognized as spatiotemporal constraints. Nevertheless, we

provide formal proof for these separation principles, which is

important for the formal inference of complex STL formulas.

C. Modularized Solution of Largest Satisfying Regions

Using the separation principles provided in Sec. III-B, we

can transform any ψ-class formula into an S2-form. This

subsection discusses how to solve the LSR of a complex

ψ-class formula using the LSRs of its S2 subformulas. To

ease the interpretation, we define a novel concept τ-LSR as

follows.

Definition 4: For system (6) with an STL specification ϕ ,

the τ-LSR for any τ ∈ R
+, 0≤ τ < l is defined as Sτ(ϕ) =

{xu(x0,τ) |∃u ∈ U
l , x0 ∈X, s.t.x(x0,u) |=ϕ}. �

Lemma 3: Given a,b ∈ R≥0, a≤ b, for the dynamic sys-

tem in (6) and arbitrary STL formulas ϕ1, ϕ2, the following

conditions hold, if S0(ϕ1) 6=∅, and S0(ϕ2) 6=∅.

S0(ϕ1∨ϕ2) = S̆0, S0(ϕ1∧ϕ2) = S̃0(ϕ1)∩ S̃0(ϕ2)⊂ Ŝ0.

where S̆0 = S0(ϕ1)∪S0(ϕ2), Ŝ0 = S0(ϕ1)∩S0(ϕ2), S̃0(ϕ1)=
{x0 ∈ Ŝ0 |∃u ∈ U

l , s.t.x(x0,u) |= ϕ1}, and S̃0(ϕ2) = {x0 ∈
Ŝ0 |∃u ∈U

l , s.t.x(x0,u) |=ϕ2}. �

Proof: See Appendix.

This lemma provides an important principle to obtain the

LSR of the disjunction or conjunction of two STL formulas

from their own LSRs. It is interesting to see that the LSR

of the disjunction of two formulas equals the union of their

individual LSRs, which, however, does not apply to the con-

junction case. Instead, the LSR of conjunction is even smaller

than the intersection of the LSRs of the individual formulas.

The following lemma gives the relationship between LSR

and τ-LSR and builds their connection with reachability.

Lemma 4: For system as (6) and an STL formula ϕ ,

S0(ϕ)=Sτ

(

F{τ}ϕ
)

=Rτ

(

S0

(

F{τ}ϕ
))

holds for τ ∈ R
+. �

Proof: See Appendix.

This lemma reveals the role of τ-LSR as a bridge that

connects the LSR and the reachable set of the system and

the specification. It provides the foundation for the following

theorem on modularized LSR solution for S3-formulas.

Theorem 2: For an S2-γ- or S2-ξ -class formula in the

form of (13) and prescribed in Definition 3, its LSR reads

S0(ξ ) =
⋃n

i=1 S0(ξi) =
⋃n

i=1 R−1
ai

(S0(ξ̂i)), (17a)

S0(γ) =
⋂n

i=1 S̃0(γi) =
⋂n

i=1 R
−1
ai

(S̃0(γ̂i)), (17b)

where ξi = F[ai,bi]ϕi, γi = G[ai,bi]ϕi, ξ̂i = F[0,bi−ai]ϕi, γ̂i =

G[0,bi−ai]ϕi, ϕi are arbitrary STL formulas, and S̃0(γi)={x0∈

∩n
j=1S0(γ j) |∃u ∈ U

l ,s.t.,x(x0,u) |=γi,}, i=1,2, · · · ,n. �

Proof: See Appendix.

This theorem provides a solution to compute the LSR for

a γ- or ξ -class formula using the LSRs of its subformulas.

Suppose that ξ and γ are long and complex STL formulas

that contain a finite number of short and simple subformulas

ξi and γi, i = 1,2, · · · ,n. Moreover, the subformulas can be

transformed into the ones with timing intervals starting with

0, i.e., ξ̂i and γ̂i which are easier to be solved. Then, the LSR

of the original STL formula can be solved using a finite

number of set operations and inverse reachability compu-

tations, which greatly improves the efficiency compared to

the conventional model-checking-based approaches. For a ψ-

class formula ψ = ξ ∧ γ , its LSR can be calculated as

S0(ψ) = S̃0(ξ )∩ S̃0(γ), (18)

according to Lemma 3. An example showing how to use this

method to calculate the LSR of a complex ψ-class formula

will be shown in the case study in Sec. IV.

D. Modularized Synthesis of an ψ-class formula

Until now, we have introduced the separation and combi-

nation principles to transform an ψ-class formula into an S3-

form. We also proposed a method to compute the LSR of an

S2-formula using the LSRs of its subformulas. If a complex

STL specification is represented in an S2-form, its synthesis

problem can be performed in an efficient and modularized

manner. Specifically, the synthesis can be performed for

individual subformulas one by one in the order of time,

instead of directly for the entire formula. The synthesis for

each subformula only generates a partition of the open-loop

control sequence and the system trajectory. The sufficient

separation of the complex STL ensures that, at any time,

the system synthesis can incorporate as few subformulas as

possible. In this subsection, we present how to use these

principles to synthesize an open-loop control law for system

(6) with an arbitrary ψ-class formula in three steps.

1) Step 1: Formula Separation: For any ψ-class formula,

we perform the transformation for its γ- and ξ -component

separately. For any γ- or ξ -class formula, we first use

Theorem 1 to split its subformulas with overlapping intervals

into several subformulas with shorter intervals. Then, we

combine the subformulas that share the same overlapping

intervals using Proposition 1. For ψ-class formulas, we may

flexibly use GI⊤ and FI¬⊤ to generate the paired form

in (13), where I ∈ 2R≥0 is a proper interval. The resulting

formula is in an S2-form.



2) Step 2: Solving LSR: Before using the ψ-class formula

to synthesize the system controller, we need to solve its LSR

to find out the feasible initial conditions. The initial condition

of the system must be placed within the LSR of the complete

formula to guarantee the feasibility of the synthesis problem.

We first compute the LSRs of all subformulas using model-

checking methods. This process is efficient for subformulas

with short timing horizons. Then, we use Theorem 2 to

compute the LSR of a γ- or a ξ -class formula. Then, the

LSR of a ψ-class formula can be solved using (18).

3) Step 3: Modularized Synthesis: For an S2-formula in

form of (13), at any time τ ∈ R
+, we define its head until

its j-th subformula as

~ψ j(τ) ::=
∧ j

i=1G[ai−τ,bi−τ ]ϕi∧
∨ j

i=1F[ai−τ,bi−τ ]ϕ̃i,

and define its tail from its j-th subformula as

~ψ j(τ) ::=
∧n

i= jG[ai−τ,bi−τ ]ϕi∧
∨n

i= jF[ai−τ,bi−τ ]ϕ̃i.

Specially, we define ~ψ j = ~ψ j(a j) and ~ψ j = ~ψ j(a j). Then,

for any time τ = a j, j = 1,2, · · · ,n− 1, the synthesis of the

system can be performed only for the head of the formula

~ψ j while ensuring that the system state at τ = a j+1 falls into

the LSR of the tail ~ψ j+1, i.e., x(a j+1) ∈ S0(~ψ
j+1), such that

there exist control sequences such that the successive state

trajectory satisfy the tail specification ~ψ j+1. This forms the

most important principle for modularized synthesis. Note that

the synthesis of ~ψ j is usually quite efficient since the past-

time temporal logic does not need to be incorporated.

There is an issue with the ξ -class component of formula

ψ . If there exists any time τ = a j, such that ~ψ j is satisfied

by the existing system trajectory, we can state that the ξ -

class component of ψ is satisfied and set all ϕ̃r = ¬⊤,

r = j+1, j+2, · · · ,n, and remove all subformulas F[ar,br ]ϕ̃r

from the tail ~ψ j+1. This can help reduce the computation for

solving the τ-LSR Sa j+1
(~ψ j+1). Based on these principles,

we propose Algorithm 1 for modularized synthesis, where

int() transforms any value to its closest integer, sys optimize()

is a function that solves problem (7), and append() attaches

its second parameter to the end of its first parameter. Note

that we prescribe an+1=L (ψ) and ~ψn+1=⊤.

IV. CASE STUDY IN SIMULATION

In this section, we use a simple simulation to showcase

how to use our proposed separation principles and modu-

larized synthesis approaches to efficiently solve a synthesis

problem for a complex specification. We consider a scenario

where a robot is required to perform a monitoring task in

a rectangular space Z ⊂ R
2 sized 12m×8m, as shown in

Fig. 1. Z0, Z1, and Z2 are square regions in the space with a

side length 2m, respectively representing TARGET, HOME,

and CHANGER. The centers of the regions are z0 = (4,6)m,

z1 = (8,6)m, and z2 = (8,3)m.

The motion of the robot is depicted as the following single-

integrator dynamic model,

ζ̇ (t) = u(t), t ∈ R≥0, (19)

Algorithm 1 Modularized Specification Synthesis

Input: Specification ψ , LSR S0(ψ), sampling time h, syn-

thesis timing points a1, a2, · · · , an, an+1, heads ~ψ1, ~ψ2,

· · · , ~ψn, tails ~ψ2, ~ψ3, · · · , ~ψn+1

Output: Control signal u

1: x0 ∈ S0(ψ)
2: for j = 1 to n do

3: L = int((a j+1−a j)/h)
4: Compute S0(~ψ

j+1) using Theorem 2

5: ϕ = ~ψ j ∧ xL−1∈S0(~ψ
j+1)

6: (FEASIBLE, ũ) = sys optimize(x0, L, ϕ)
7: if FEASIBLE then

8: x0 = xũ(x0, a j+1− a j)
9: if ϕ̃ j 6= ¬⊤ then

10: ϕ̃ j ←⊤
11: for r = j+ 1 to n do

12: ϕ̃r←¬⊤
13: end for

14: end if

15: u← append(u, ũ)
16: else

17: ϕ̃ j ←¬⊤, j = j− 1

18: end if

19: end for
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Fig. 1. The illustration of the robot monitoring scenario with the spatial
information of the synthesized trajectory subject to specification ψ .

where ζ (t) = [ζx, ζy]
⊤ ∈R2 represents the planar coordinate

of the robot position at time t, where ζx,ζy ∈ R are respec-

tively the x- and y-axis coordinates, u(t) = [ux, uy]
⊤ ∈ R

2 is

the linear velocity of the robot as the control input of the

system at time t, with ux,uy ∈ R being the x- and y-axis

components. The control input of the system is subject to

saturation constraints |ux| ≤ 1m/s,
∣

∣uy

∣

∣ ≤ 1m/s. The moni-

toring task is described in natural language as follows.

1). Until 30s, the robot should frequently visit TARGET

Z0. The duration between two visits should be less than 5s.

2). From 15s to 45s, once the robot leaves HOME Z1, it

should get back to HOME Z1 within 5s.

3). Before 45s, its should stay in CHANGER Z2 contin-

uously for at least 3s to charge its battery.



These task specifications can be formulated as an over-

all ψ-class formula ψ = G[0,30 ]ϕ0∧G[15,45 ]ϕ1∧F[0,45]ϕ2,

where ϕ0=F[0,5](ζ∈Z0), ϕ1=¬(ζ∈Z1)→F[0,5](ζ∈Z1), ϕ2=
G[0,3](ζ∈Z2) are STL formulas. Then, ψ = γ∧ξ has a γ-

class and a ξ -class components, γ =G[0,30 ]ϕ0∧G[15,45 ]ϕ1,

ξ =F[0,45](ζ∈Z1).
1) Step 1: Formula Separation: Applying the separation

principles in Sec. III-B, we rewrite γ and ξ as

γ = G[0,15 ]ϕ0∧G[15,30 ](ϕ0∧ϕ1)∧G[30,45 ]ϕ1,

ξ = F[0,15 ]ϕ2∨F[15,30 ]ϕ2∨F[30,45 ]ϕ2.
(20)

Then, ψ = γ∧ξ is in an S2-form.

2) Step 2: Solving LSR: The form (20) can be formulated

as γ = γ̂0∧G{15}(γ̂0∧γ̂1)∧G{30}γ̂1, ξ = ξ̂0∨F{15}ξ̂0∨F{30}ξ̂0,

where γ̂0 =G[0,15 ]ϕ0, γ̂1 =G[0,15 ]ϕ1, ξ̂0 = F[0,15 ]ϕ2. There-

fore, the LSRs of γ and ξ are calculated as

S0(γ) = S̃0(γ̂0)∩R
−1
15

(

S̃0(γ̂0∧γ̂1)
)

∩R
−1
30

(

S̃0(γ̃1)
)

={ζ ∈Z |‖ζ − z0‖ ≤ 5} ,

S0(ξ ) =S0(ξ̂0)∪R
−1
15 (S0(ξ̂0))∪R

−1
30 (S0(ξ̂0)) = Z .

Therefore, considering the space size, the LSR of ψ reads

S0(ψ)= S̃0(γ)∩S̃0(ξ )=
{

ζ
∣

∣0≤ζx ≤ 9, 1≤ζy ≤ 8
}

which is marked as a red region in Fig. 1. Therefore, the

robot must start from S0(ψ) to ensure the satisfaction of ψ .

3) Step 3: Modularized Synthesis: We use Algorithm 1

to synthesis an open-loop control signal for system (19) and

specification ψ . The synthesis timing points are 0s, 15s, and

30s, corresponding to three synthesis stages. The sampling

time h = 0.5. The BluSTL toolbox [23] is used to implement

the sys optimize() method in Algorithm 1. The resulting robot

trajectory ζ (t) = [ζx(t), ζy(t) ] are shown in Fig. 1 and Fig. 2.

The trajectories in different stages are marked with different

colors. The synthesis procedure is introduced as follows.
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Fig. 2. The x- and y-axes of the robot trajectory ζ (t) as time changes.

• Stage 1: at t = 0s, we set initial state as x0 =(2,2)m,

L = 30, ϕ = ~ψ1∧xL−1∈S0(~ψ
2), ~ψ1 = γ̂0∧ξ̂0, ~ψ2 = γ̂0∧γ̂1∧

G[0,15 ]γ̂1∧(ξ̂0∨G[0,15 ]ξ̂0), and S0(~ψ
2) = {ζ ∈R

2|2≤ ζx ≤
9, 1≤ ζy ≤ 8}. We use u =sys optimize(x0,L,ϕ) to solve

the optimal open-loop controller. Note that the problem is

infeasible unless we set ~ψ1 = γ̂0∧¬⊤. From Fig. 1 and Fig. 2,

it is seen that the robot starts from the initial position x0,

moves towards TARGET Z0, and stays on its boundary at

(3,6)m at 15s. Such a behavior satisfies the specification ψ
before 15s, as prescribed by the language description 1).

• Stage 2: at t = 15s, we know the robot trajectory

in the last stage ends at (3,6)m which is selected as the

initial position in this stage. We determine L = 30, ϕ =
~ψ2∧xL−1∈S0(~ψ

3), where ~ψ2 =ϕ0∧γ̂0∧γ̂1∧ξ0, ~ψ3 = γ̂1∧ξ̂0,

and S0(~ψ
3) = {ζ ∈ R

2|2 ≤ ζx ≤ 12, 1 ≤ ζy ≤ 7}. We use

u =sys optimize(x0,L,ϕ) to solve the optimal open-loop

controller. The problem is also infeasible unless we set

~ψ2 = ϕ0∧ γ̂0∧ γ̂1∧¬⊤. From Fig. 1 and Fig. 2, it is seen

that the robot starts from the initial position x0 = (3,6)m at

15s, moves across TARGET Z0 and towards HOME Z1, and

finally oscillates between Z0 and Z1. Such a behavior satisfies

the specification ψ between 15s and 30s, as prescribed by

both language descriptions 1) and 2).

• Stage 3: at t = 30s, Fig. 2 shows that the robot ends at

(7,5)m, i.e., the left bottom corner of Z1, as shown in Fig. 1.

Thus, we set this point as the initial position of the robot

in this stage. Also, L = 30, ϕ = ~ψ3 =ϕ0∧ϕ1∧γ̂1∧(ϕ2∨ξ̂0).
We use u =sys optimize(x0,L,ϕ) to solve the optimal open-

loop controller and the solution is feasible. From Fig. 1 and

Fig. 2, it is seen that the robot starts from the initial position

x0 = (7,5)m at 30s and ends in CHARGER Z2 ultimately,

which satisfies the specification ψ after 30s, as prescribed

by both language descriptions 2) and 3).

Fig. 1 illustrates the spatio information of the robot

trajectory ζ (t) from 0s to 45s, and Fig. 2 shows its temporal

information during this period. Both figures indicate that the

robot trajectory satisfies the overall complex specification

ψ . Moreover, we notice that the computation time of our

proposed modularized synthesis method is far shorter than

directly solving the overall specification, which also verifies

the efficiency of modularized synthesis.

V. CONCLUSIONS

In this paper, we discuss how to split a big optimization

problem for the synthesis of a complex STL specification into

several small optimization problems which are concerned

with the separate subformulas. Our proposed separate prin-

ciples ensure the syntactic equivalence between the origi-

nal complex formula and its separate counterpart. We also

use the LSR of the original specification to prescribe the

soundness and feasibility of its separation form. Modularized

methods are proposed to efficiently solve the LSR and the

open-loop controller, which is the first step towards efficient

optimization-based specification synthesis. There are still two

limitations of our work. One is that we only investigate the

separation of a certain class of STL formulas, i.e., the ones

only with always and eventually temporal operators, although

they are sufficient to prescribe most of the practical tasks.

The other is we only synthesize open-loop controllers in this



paper. Our future work will extend our results in this paper

to closed-loop controllers and more general STL formulas.

APPENDIX

This section presents the proof of all lemmas, propositions,

and theorems of this paper.

A. Proof of Lemma 1

For 1), from the definition of STL syntax, we know, for

an arbitrary STL formula ϕ , F{τ}ϕ =⊤U{τ}ϕ indicates that

there must exist k ∈ {τ}, such that (x,k) |= ϕ , which means

(x,τ) |= ϕ . Then, from G{τ}ϕ =¬F{τ}¬ϕ and (5a), we know

G{τ}ϕ ↔¬
(

¬F{τ}ϕ
)

= F{τ}ϕ .

For 2), according to (5a), we have F{τ}(ϕ1 ∨ϕ2) =
¬F{τ}(¬ϕ1∧¬ϕ2)=¬(F{τ}¬ϕ1∧F{τ}¬ϕ2). Then, using (5a),

we obtain F{τ}(ϕ1∨ϕ2) = ¬(¬F{τ}ϕ1∧¬F{τ}ϕ2) = F{τ}ϕ1∨
F{τ}ϕ2, which also holds for G, i.e., G{τ}(ϕ1 ∨ ϕ2) =
G{τ}ϕ1∨G{τ}ϕ2, according to condition 1) of this lemma.

For 3), for τ < a, we have

F{τ}

(

F[a,b ]ϕ
)

=⊤U{τ}
(

⊤U[a,b ]ϕ
)

=⊤U[τ+a,τ+b ]ϕ = F[τ+a,τ+b ]ϕ .
(21)

Applying (5a) to F{τ}G(a,b )ϕ , we have F{τ}G(a,b )ϕ =
F{τ}

(

¬F(a,b )¬ϕ
)

=¬F{τ}
(

F(a,b )¬ϕ
)

. Considering (21), we

have F{τ}G(a,b )ϕ =¬F(τ+a,τ+b )¬ϕ =G(τ+a,τ+b )ϕ . Accord-

ing to condition 1), we know,

G{τ}G(a,b )ϕ = F{τ}G(a,b )ϕ = G(τ+a,τ+b )ϕ . (22)

Therefore, principle 3) is proved by (21) and (22).

B. Proof of Lemma 2

Applying the principle in (4) to formulate formula F[a,b ]ϕ ,

we have

F[a,b ]ϕ =⊤U[a,b ]ϕ = F{a}ϕ ∨⊤U(a,b )ϕ ∨⊤U{b}ϕ

= F{a}ϕ ∨F(a,b )ϕ ∨F{b}ϕ .
(23)

Then, applying (23) to G[a,b ]ϕ we obtain

G[a,b]ϕ =¬F[a,b]¬ϕ = ¬
(

F{a}¬ϕ∨F(a,b)¬ϕ∨F{b}¬ϕ
)

= ¬F{a}¬ϕ ∧¬F(a,b )¬ϕ ∧¬F{b}¬ϕ

= G{a}ϕ ∧G(a,b )ϕ ∧G{b}ϕ .

(24)

Thus, this lemma is proved by (23) and (24).

C. Proof of Theorem 1

Substituting ϕ1 =⊤ and ϕ2 = ϕ to (4), we have

⊤U(a,b )ϕ =⊤U(a,τ )ϕ ∨ (G(a,τ )⊤∧F{τ}
(

ϕ ∨⊤U(0,b−τ )ϕ)
)

,

=F(a,τ )ϕ ∨F{τ}
(

ϕ ∨F(0,b−τ )ϕ
)

.

Applying properties 1) and 3) in Lemma 1, we obtain

F(a,b )ϕ =⊤U(a,b )ϕ =F(a,τ )ϕ∨F{τ}ϕ∨F{τ}F(0,b−τ )ϕ

=F(a,τ )ϕ ∨F{τ}ϕ ∨F(τ,b )ϕ .
(25)

Substituting (25) to (23), we obtain

F[a,b ]ϕ = F(a,τ )ϕ ∨F{τ}ϕ ∨F(τ,b )ϕ

=F{a}ϕ ∨F(a,τ )ϕ ∨F{τ}ϕ ∨F(τ,b )ϕ ∨F{b}ϕ

=F[a,τ]ϕ ∨
(

F{τ}ϕ∨F(τ,b)ϕ∨F{b}
)

=F[a,τ]ϕ∨F[τ,b]ϕ .

(26)

Then, applying it to G[a,b ]ϕ , we obtain

G[a,b ] ϕ = ¬F(a,b )¬ϕ = ¬
(

F[a,τ ]¬ϕ ∨F[τ,b ]¬ϕ
)

=¬F[a,τ ]¬ϕ ∧¬F[τ,b ]¬ϕ = G[a,τ ]ϕ ∧G[τ,b ]ϕ .
(27)

Thus, (26) and (27) prove (14). Also, (15) can be proved by

recursively applying (14) to the separating time points τ0,

τ1, · · · , τm.

D. Proof of Proposition 1

Substituting ϕ0 =⊤ to (5b), we have F[a,b](ϕ1∨ϕ2) =
⊤U[a,b](ϕ1∨ϕ2) =⊤U[a,b]ϕ1∨⊤U[a,b ]ϕ2 = F[a,b]ϕ1∨F[a,b]ϕ2.

Then, applying it to G[a,b ](ϕ1∧ϕ2), we have

G[a,b ](ϕ1∧ϕ2) = ¬F[a,b ]¬(ϕ1∧ϕ2)

= ¬F[a,b ](¬ϕ1∨¬ϕ2) = ¬
(

F[a,b ]¬ϕ1∨F[a,b ]¬ϕ2

)

= ¬
(

F[a,b ]¬ϕ1

)

∧¬
(

F[a,b ]¬ϕ2

)

= G[a,b ]ϕ1∧G[a,b ]ϕ2

which proves this proposition.

E. Proof of Lemma 3

According to the definition of LSR, we know

S0(ϕ1∨ϕ2) = {x0 ∈ S0(ϕ1)∪S0(ϕ2) |U (x0,ϕ1∨ϕ2) 6=∅}

= U (S0(ϕ1),ϕ1∨ϕ2)∪U (S0(ϕ2),ϕ1∨ϕ2),

S0(ϕ1∧ϕ2) = {x0 ∈ S0(ϕ1)∩S0(ϕ2) |U (x0,ϕ1∧ϕ2) 6=∅}

= U (S0(ϕ1),ϕ1∧ϕ2)∩U (S0(ϕ2),ϕ1∧ϕ2),

where U (S0(ϕ1),ϕ1∨ϕ2)=S0(ϕ1)∪ S̃0(ϕ1), U (S0(ϕ2),ϕ1∧
ϕ2) = S0(ϕ2)∩ S̃0(ϕ2), where S̃0(ϕ1) and S̃0(ϕ2) are defined

in Lemma 3. Note that S̃0(ϕ1) ⊂ S0(ϕ1) and S̃0(ϕ2) ⊂
S0(ϕ2). Thus, we obtain S0(ϕ1∨ϕ2) = S0(ϕ1)∪ S0(ϕ2) and

S0(ϕ1∧ϕ2) = S̃0(ϕ1)∩ S̃0(ϕ2), which proves the lemma.

F. Proof of Lemma 4

According to Definition 4, Sτ(F{τ}ϕ) reads,

Sτ(F{τ}ϕ)={xτ ∈ X |∃u ∈ U
τ+l , s.t.x(x0,u) |=F{τ}ϕ},

(28)

where τ + l denotes the length of formula F{τ}ϕ . According

to condition 1) of Lemma 1, we know the equivalence,

x(x0,u) |= F{τ}ϕ ↔ (x(x0,u),τ) |= ϕ ↔ x(xτ ,u
τ ) |= F{τ}ϕ ,

(29)

where xτ is the system state at τ with initial condition x0

and control signal u, uτ is the partition of control signal u

after time τ , and x(xτ ,u
τ) is the system trajectory with initial

state xτ and control signal uτ . Thus, (28) can be rewritten as

Sτ

(

F{τ}ϕ
)

= {xτ ∈ X |∃uτ ∈U
l , s.t.x(xτ ,u

τ) |= ϕ}. (30)

In fact, (11) and (30) refer to the same set, only with the

difference of symbols, which renders S0(ϕ) = Sτ(F{τ}ϕ).
Let us now inspect S0(F{τ}ϕ) which reads

S0

(

F{τ}ϕ
)

= {x0 ∈X |∃u ∈ U
τ+l , s.t.x(x0,u) |= F{τ}ϕ}.

Substituting (29) to it, we have

S0

(

F{τ}ϕ
)

= {x0 ∈ X |∃u0 ∈ U
τ ,uτ ∈ U

l ,

s.t.x(xτ ,u
τ ) |= F{τ}ϕ , xτ = xu0

(x0,τ)}.
(31)



According to the definition of the inverse reachable set in (9),

we know that (31) implies S0

(

F{τ}ϕ
)

= R
−1
τ

(

Sτ

(

F{τ}ϕ
))

.

Therefore, this lemma is proved.

G. Proof of Theorem 2

Let us first inspect the case of a ξ -class formula. Then,

Lemma 3 implies

S0(ξ ) =
⋃n

i=1 S0(ξi) . (32)

Note that ξi=F{ai}ξ̂i. According to Lemma 4, we have

S0(ξi) = R
−1
ai

(

S0(ξ̂i)
)

, i = 1,2, · · · ,n. (33)

Substituting (33) to (32), we prove (17a).

Then, we inspect the case of a γ-class formula. Lemma 3

implies

S0(γ) =
⋃n

i=1 S̃0(γi) . (34)

Similar to the ξ -class formula, due to γi = G{ai}γ̂i, we have

S̃0

(

F[ai,bi ]ϕi

)

= R
−1
ai

(γi) , i = 1,2, · · · ,n. (35)

Substituting (35) to (34), we prove (17b).
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