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Average Communication Rate for
Event-Triggered Stochastic Control Systems

Zengjie Zhang†, Qingchen Liu†*, Mohammad H. Mamduhi, and Sandra Hirche

Abstract—Quantification of the triggering rates of an event-
triggered stochastic system with deterministic thresholds is a
challenging problem due to the non-stationary nature of the
system’s stochastic processes. A typical example is the com-
putation of the average communication rate (ACR) of the
networked event-triggered stochastic control systems (ET-SCS) of
which the communication of the sensor network is scheduled by
whether a system variable of interest exceeds predefined constant
thresholds. For such a system, a closed-loop effect emerges due to
the interdependence between the system variable and the trigger
of communication. This effect, commonly referred to as side
information by related work, distorts the stochastic distribution of
the system variables and makes the ACR computation non-trivial.
Previous work in this area used to over-simplify the computation
by ignoring the side information and misusing a Gaussian
distribution, which leads to approximated results. This paper
proposes both analytical and numerical approaches to predict the
exact ACR for an ET-SCS using a recursive model. Furthermore,
we use theoretical analysis and a numerical study to qualitatively
evaluate the deviation gap of the conventional approach that
ignores the side information. The accuracy of our proposed
method, alongside its comparison with the simplified results of the
conventional approach, is validated by experimental studies. Our
work is promising to benefit the efficient resource planning of
networked control systems with limited communication resources
by providing accurate ACR computation.

I. INTRODUCTION

IN recent years, emerging networked control systems, such
as intelligent industrial manufacturing [1], smart power

grids [2], and autonomous vehicles [3], are characterized by a
distributed design manner where the plants and the sensors are
located remotely and are connected with a common network.
The development of the closed-loop controllers for these sys-
tems requires sufficient sampling of the system states ensured
by active communication of the network, such that the con-
trollers always have access to the latest system states provided
by the remote sensors through the network. Nevertheless, the
communication resources of the networked systems are often
limited by the power restrictions of the system, especially for
the mobile and portable devices of which the power mainly
rely on batteries. This issue suggests reducing the frequency of
state sampling by properly scheduling the communication of
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the network. This was conventionally solved with time-based
schemes which later gave way to event-based schemes.

It is argued in [4] that the event-based scheduling schemes
can achieve the same performance as the periodic time-based
ones but with considerably less consumption of commu-
nication resources. This finding motivates the development
of different event-based scheduling schemes, including the
stochastic, periodic, and deterministic event-based ones, for
various networked systems [5]–[7]). The event-based schemes
have shown superior efficiency, high flexibility, and quick
responsiveness incorporating the restriction of communication
resource limitations [8]–[11]. A typical event-based scheduling
scheme is illustrated in Fig. 1, where the sampling of the sys-
tem state or the activation of the communication is governed
by a scheduler that triggers a time-asynchronous event. This
event does not explicitly depend on time but is associated with
a system variable of interest and a predefined threshold. Thus,
the scheduling is performed in a time-asynchronous manner
which activates the communication only when necessary.
The necessity of communication is determined by a certain
triggering event, which intermittently closes the loop between
the controlled system and the sensor. This ensures efficient
consumption of the communication resources [12]–[16].

Sensor System

Scheduler

Remote sensing

St

δt

Vt

E(Vt, η)

Figure 1: A typical event-based communication scheduler for
a networked system. The dashed line indicates remote sensing,
such as infra-sensing or visual perception. The switch symbol
denotes the communication status δt (active or inactive) of
the network. St is the sampled system state, Vt is the system
variable of interest, and E (Vt, η) represents the event that
triggers the communication based on a given threshold η.

One of the main purposes of investigating communication
scheduling schemes for networked systems is for the efficient
planning of communication resources. Compared to the time-
based scheduling schemes, the resource planning for the event-
based ones is usually less straightforward and more challeng-
ing due to asynchronous state sampling. A typical index that
facilitates communication resource planning is communication
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rate (CR) which depicts the likelihood of active commu-
nication at a certain time [17], i.e., the probability of the
communication switch in Fig. 1 being closed. CR provides a
practical insight into how many system resources are allocated
to network communication and supports the efficient planning
of system resources. In most applications, the communication
status is a random variable incorporating stochastic system
uncertainties. Thus, what attracts us is typically the average
communication rate (ACR) which refers to the expected
value of active communication. Particular attention has been
attracted to the stationary ACR [18] which represents the limit
of the ACR as the time approaches infinity. It is often used
to evaluate the consumption of communication resources in
the steady state of a networked system. Conventionally, the
computation of the ACR is solved using statistical methods
via numerical experiments, such as a Monte Carlo experiment.
The analytical solution of the ACR with a closed form is a
challenging problem due to the closed-loop effect of the event-
based scheduling scheme, also known as side information [19].

In Fig. 1, the closed-loop effect, or side information, refers
to the interdependence between the triggering event and the
system variable of interest, which forms a closed loop between
the system and the scheduler (the blue path). This closed-loop
distorts the distributions of the system variables, such that
they are no more subject to trivial Gaussian distributions even
though the system uncertainties are formulated as Gaussian.
Analyzing the stochastic property of the communication status
is thus challenging since it is difficult to track the probabilistic
propagation of the system variables. In the literature, analytical
computation methods for the ACR are quite sparse. They only
show up in a few papers that mainly focus on the control
and filtering of networked systems [6], [17], [20]–[23]. These
approaches either over-simplify the computation of the ACR
by imposing impractical assumptions or conduct conservative
and coarse approximations. Their results can hardly be used
to predict exact ACR which is important to efficient resource
planning for networked communication systems. In [17], [20],
the ACR is computed by ignoring the closed-loop effect
and approximating the distribution of the concerned system
variable with a Gaussian distribution, which, however, leads
to an accuracy gap with the true ACR. The work in [22]
provides lower and upper bounds for the ACR without giving
its analytical form. In [6], [23], the computation of ACR
is simplified by involving a stochastic triggering threshold
which has obvious shortcomings compared to deterministic
thresholds due to the inferior control performance and the
sensitivity to data loss. To our best knowledge, the accurate
computation of ACR for an event-triggered networked system
with deterministic triggering thresholds has not been addressed
in the literature, although it is a fundamental step towards the
study of the crucial filtering problem [22], [24]–[27].

As mentioned, the fundamental challenge of accurately
quantifying the ACR for an event-triggered networked system
is the precise tracking of the probabilistic propagation of
the system variables of interest under the closed-loop effect.
From a mathematical perspective, the event-based scheduling
scheme with deterministic thresholds imposes constant trunca-
tion to the support set of the probabilistic distribution functions

(PDF) of the concerned system variables at each sampling
instant. This truncation operation constantly removes the
Gaussianity of the system variables. Thus, the critical technical
point of accurately computing the ACR is to precisely depict
the truncated PDFs of the system variables recursively over
time, which formulates a challenging mathematical problem.
The main goal of this work is to overcome this challenge
and provide accurate computation methods for the ACR of a
typical networked system, an event-triggered stochastic control
system (ET-SCS), where the communication is triggered when
the state estimation error exceeds a deterministic threshold.
To support this, we propose a recursive model that exactly
depicts the temporal evolution of ACR based on the model
raised in [17]. Using this recursive model, we are able to
track the truncated PDF of the system variables at each
sampling time and investigate its influence on the ACR. Based
on this, we are able to compute the ACR at an arbitrary
instant using a finite number of coefficients. We also prove the
existence of the stationary ACR and calculate its value using
these coefficients. Considering the complexity of the proposed
analytical method, we further raise a numerical counterpart
algorithm to calculate the ACR recursively. Both theoretical
analysis and experimental studies are conducted to verify the
accuracy of the proposed methods and qualify the inaccuracy
gap of the conventional methods [6], [17], [20]–[23]. The main
contributions of this article are summarized below.

1) Proposing a novel recursive temporal-evolution model for
the ACR of a generic ET-SCS.

2) Proving the existence of the stationary ACR for a generic
ET-SCS with deterministic event-triggered thresholds.

3) Providing an analytical method and a numerical algorithm
for the computation of ACR for a generic ET-SCS.

4) Conducting theoretical and numerical studies to qualify
the accuracy gap of the conventional method.

5) Validating the feasibility and accuracy of the proposed
methods using a case study.

The rest of this article is organized as follows. Sec. II formu-
lates the problem, with mathematical preliminaries provided.
In Sec. III, we introduce the recursive model of the ACR
and investigate the existence of the stationary ACR. Sec. IV
presents the methods to precisely compute the ACR. In Sec. V,
we use theoretical analysis and a numerical example to verify
the accuracy of the proposed method and evaluate the accuracy
gap of the conventional method. In Sec. VI, a numerical
experiment on a simple vehicle-following case is conducted to
validate our methods. Finally, Sec. VII concludes the article.

Notation: The rest of this article obeys the following nota-
tions. The sets of real and natural numbers are denoted by
R and N. The superscript + sued after them indicates the
subsets only containing the positive elements. A Gaussian
distribution with mean value µ ∈ R and variance σ2, σ ∈ R+

is represented by N (µ, σ2). For a stochastic event E defined
on a probability space, P (E ) denotes the occurring probability
of E . For a stochastic variable z∈ R, P (z), pz(·), Fz(·), E(z),
and Var(z) denote, respectively, its probability, PDF, cumula-
tive distribution function (CDF), expectation, and variance.
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II. PROBLEM STATEMENT AND PRELIMINARIES

In this section, we describe the main mathematical problem
of this paper and provide the preliminaries for its solution.
First, we introduce the dynamical model of an ET-SCS and
the definition of the ACR, followed by the problem statement.
Then, we revisit the Jury’s stability criterion and the stochastic
properties of truncated random variables which are important
to the analysis of the ACR in the next sections.

A. Dynamic Model of ET-SCS and State Estimation Error

As shown in Fig. 2, the ET-SCS considered in this article
is composed of a plant and a series of sensors which are con-
nected with a common network. In this paper, we investigate
a scalar ET-SCS, where the dynamic model of the plant is
assumed to be linear time-invariant (LTI) and depicted by the
following scalar stochastic difference equation (SDE),

xk+1 = Axk +Buk + wk, (1)

where k ∈ N denotes the discrete sampling time of the system,
xk, uk ∈ R are, respectively, the state and control input of the
system at time k, A,B ∈ R are constant parameters, and
wk ∈ R is the stochastic noise of the system. For simplicity,
we assume that the initial state of the system x0 is a known
deterministic variable. Note that the stochastic process wk,
k ∈ N, is subject to the following assumption.

Assumption 1. The Gaussian stochastic process wk is inde-
pendent and identically distributed (i.i.d.) for all k ∈ N, i.e.,

1) wk ∼ N
(
0, σ2

)
, ∀ k ∈ N, with σ ∈ R+.

2) pw,w(wi, wj) = pw(wi)pw(wj) holds for all i, j ∈ N,
i 6=j, where pw(·) is the PDF of stochastic variable wk, k ∈ N,
and pw,w(·, ·) is the joint PDF of wi and wj , i, j ∈ N.

Sensor

State Estimator

Controller Plant Dynamics

Scheduler

Memory

rk uk

ek

−

Network

Ik−1:ι

Plant

δk

xk

− Ek

x̂k

Figure 2: The block diagram of an ET-SCS.

Remark 1. Our work in this paper only deals with a scalar
ET-SCS. Note that the exact computation of the ACR for a
multi-dimensional ET-SCS is even more challenging due to
the probabilistic coupling among the individual dimensions of
the non-Gaussian system variables. Also, various triggering
options for multi-dimensional system variables make it tedious
to determine their analytical distribution functions. The study
on a scalar ET-SCS is sufficient to draw essential quantitative
and qualitative conclusions that can be extended to multi-
dimensional systems with additional efforts in future work.

For system (1), its state xk at any time k ∈ N+ can be mea-
sured by one or multiple sensors. However, the state is sampled
for the system plant only when the network communication
is active, indicated by a closed switch in Fig. 2. At the time
k, whether the status of the communication is active or not is
represented as a binary event δk ∈ {0, 1}, namely δk = 1 for
active and δk = 0 for inactive. For brevity, we represent these
conditions as δ{1}k and δ{0}k . The communication status δk is
affected by an event Ek which is produced by an event-based
scheduler which will be introduced in Sec II-B. When the sys-
tem state is not sampled, an estimated value x̂k is provided by
a state estimator utilizing the system model (1) and the history
data Ik−1:ι = {δk−1, · · · , δι+1, δι, xι, uk−1, · · · , uι} [7],

x̂ι =xι

x̂ι+1 =Axι +Buι,

· · ·
x̂i =Ax̂i−1 +Bui−1,

(2)

i = ι + 2, · · · , k, where ι ∈ N refers to the last instant of
state sampling and equation x̂ι = xι indicates a state sampling
operation. Since the initial state x0 is deterministic and known,
we have x̂0 = x0 and e0 = 0. The history data Ik−1:ι is stored
in a memory on the plant. All the system data before the last
instant, i.e., all {δi, xi, ui} where i < ι, is timely abandoned.
Thus, a feedback controller uk = u(x̂k−rk) can be designed to
achieve the desired closed-loop performance. The performance
of the feedback controller is not within the scope of this paper.
We make a correspondence between the ET-SCS in Fig. 2
and the general event-based networked system in Fig. 1 by
recognizing xk as the system state and the estimation error
ek = xk − x̂k as the system variable of interest.

By subtracting (2) from (1), we obtain the dynamic model
of the state estimation error as

eι = 0,

eι+1 = wι,

· · ·
ei = Aei−1 + wi−1,

(3)

where i = ι + 2, · · · , k. Therefore, for all i = ι + 1, · · · , k,
ei is a random variable. Substituting ek−1, ek−2, · · · , eι to ek
recursively, we obtain

ek =
∑k−1
i=ι A

k−i−1wi, k > ι. (4)

The dynamic model (3) indicates that the estimation error
accumulates over the time interval {ι + 1, ι + 2, · · · , k} due
to the lack of state sampling. The error accumulation may
lead to the degradation of the system control performance.
Meanwhile, equation (4) shows that ek is subject to a Gaussian
distribution N

(
0,
∑k−1
i=ι A

2(k−i−1)
)

considering the property
of the linear combination of Gaussian stochastic variables.
Nevertheless, we should note that (3) and (4) only hold when
the state estimation error and the triggering event are subject
to an open-loop configuration. In Fig. 2, this pertains to the
scenario where the Scheduler is designed such that its output
Ek is independent of its input ek. Next, we will show that (3)
and (4) do not generally hold and ek is no more a Gaussian-
distributed stochastic variable for an event-triggered scheduler.
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B. Event-Triggered Scheduling and Closed-Loop Effect

To restrict the accumulation of the state estimation error ek,
k ∈ N+, by fully exploiting the communication resources, the
scheduler performs a least-necessary principle meaning that
the communication is only activated when either the last state
estimation error ek−1 exceeds a predefined threshold η ∈ R+,
or the consecutive inactive period is beyond a time limit T ∈
N+, i.e., for all k ∈ N+ and ι ∈ N, ι < k,

δk =

{
1, if |ek−1| ≥ η or k − ι > T

0, otherwise,
(5)

where the condition that triggers active communication δ
{1}
k

refers to a positive event Ek, otherwise a negative event
E k. The scheduling scheme (5) maintains a decent system
performance by ensuring low resource usage by limiting the
frequency of communication while restricting the estimation
errors. Such an event-based scheduling model is widely used
in various networked control systems, such as platooning of
a group of vehicles [28], [29], power systems [30], [31] and
cooperative manipulation in robotics systems [32], [33].

The result of the event-triggering scheduling scheme (5)
is a closed loop between the triggering event Ek, or the
communication status δk and the state estimation error ek (the
blue path in Fig. 2). This loop has a significant influence
on the probabilistic distribution of the estimation error ek.
Specifically, the error accumulation depicted in (3) only occurs
when |ei| ≤ η, for any i = ι, ι+ 1, · · · , k− 1. Otherwise, any
|ei| > η will immediately activate the state sampling and lead
to δi+1 = 1 and ei+1 = 0. Thus, given the last communication
instant ι and the history data Ik−1:ι, the estimation error under
the event-triggered scheduling scheme (5) becomes

êι = 0,

êι+1 = wι,

· · ·

êi =

{
Aêi−1 + wi−1, if |êi−1| < η,
0, else,

(6)

where i = ι + 2, · · · , k, for all k ≤ ι + T . Here, we
use a new symbol êi to represent this closed-loop state
estimation error, or closed-loop error under the event-triggered
scheduling scheme (5) to distinguish it from the open-loop
error ei in (3). Similar to ei, êi is also a random variable,
for i = ι + 1, ι + 2, · · · , k. Differently, the closed-loop error
(6) contains additional side information |êi−1| < η compared
to the open-loop error (3). This side information imposes a
truncation operation on the probabilistic distribution of the
closed-loop error at every sampling instant. It breaks the
linearity of the dynamic model of the state estimation error
and distorts its stochastic propagation. As a result, the closed-
loop error is hardly subject to a Gaussian distribution as
time increases, even though the noise is a stationary Gaussian
process according to Assumption 1. Also, it is difficult to bring
up a brief overall analytical form to represent êk, similar to
(4), which makes it difficult to track the distorted stochastic
propagation. In this paper, we refer to the fact that the side
information distorts the stochastic propagation of the system

variable of interest as the closed-loop effect. In Sec. II-E, we
will briefly introduce the effect of a truncation operation on a
random variable.

C. Stationary and Transient ACR of an ET-SCS

For the ET-SCS in (1) with the state estimator (2) and the
event-triggered scheduler (5), the ACR is defined as

E(δk) = P (δ
{1}
k ), k ∈ N (7)

which depicts the likelihood of the active status of the com-
munication, or, equivalently, the realization of the event δ{1}k .
Meanwhile, the ACR denotes the probability of the state
sampling. Since the initial state x0 is deterministic and known,
we have E(δ0) = P (δ

{1}
0 ) = 1. Also, given ê0 = x0− x̂0 = 0,

we know E(δ1) = P (δ
{1}
1 ) = 0. For any k ∈ N+, k ≥ 2,

however, the value of δk is usually random, and the ACR is
computed as

E(δk) = 1− P (δ
{0}
k ) = 1−

∫ η
−η pêk−1

(z)dz, (8)

where pêk(·) is the PDF of the state estimation error and z ∈
R is an auxiliary variable. Note that the integration interval
[−η, η ] corresponds to the constraint |êk−1| < η in (5) which
blocks state sampling at time k.

Remark 2. The above statements are based on our assumption
that the initial system state x0 is known. Otherwise, the values
of E(δ0) and E(δ1) are neither 1 nor 0. Instead, they are
dependent on the distribution of x0 and should be valued
within the interval (0, 1).

The limit E(δ∞) = lim
k→∞

E(δk), if it exists, is defined as the
stationary ACR, while E(δk) for a finite k ∈ N is referred to as
the transient ACR. The main issue of exactly calculating the
stationary and the transient ACR is that the analytical form
of the PDF pêk(·), k ∈ N, is difficult to derive due to the
challenge of capturing the nontrivial stochastic propagation
of the closed-loop errors, as introduced in Sec. II-B. In some
existing work [17], [23], pêk(·) is approximated by a Gaussian
distribution by ignoring the closed-loop effect, which leads
to the approximated calculation of ACR. We show in this
article that such approximation results in a larger value of
ACR compared to the truth. Alongside this, accurate ACR
computation methods are also provided.

D. Existence of Steady State of A Discrete-Time LTI System

To verify the existence of the stationary ACR for an ET-
SCS, in this paper, we construct a recursive model to depict
the timed evolution of the ACR. The recursive ACR model is
indeed a discrete-time LTI (dt-LTI) system and the stationary
ACR is equivalent to its steady state. This allows us to solve
the stationary ACR by investigating the asymptotic stability of
a general dt-LTI system, which can be examined by the well-
known Jury stability criterion [34]. Consider a characteristic
polynomial with variable z ∈ R in the following form,

D(z) = a0 + a1z + a2z
2 + . . .+ aNz

N ,
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where N ∈ N+ is the degree of the characteristic polynomial
and ai ∈ R, i = 1, 2, · · · , N , are coefficients. The following
tests determine whether the system represented by D(z) has
any pole outside the unit circle (the instability region). A sys-
tem must conform to all the following rules to be considered
stable.
Rule 1: If z = 1, D(z) > 0 must hold.
Rule 2: If z = −1, zND(z) > 0 must hold.
Rule 3: |a0| < |aN | must hold.

If all rules satisfied, we expand the Jury Array as follows.

1) a0 a1 a2 a3 . . . aN
2) aN . . . a3 a2 a1 a0
3) b0 b1 b2 . . . bN−1
4) bN−1 . . . b2 . . . b0
...

...
...

...
2N − 3) v0 v1 v2

Once we reach to a row with 2 members, we stop constructing
further arrays. To calculate the values of the odd-number rows,
we can use the following formula. The even number rows are
equal to the previous row in reverse order. We will use k as
an arbitrary subscript value. These formulas are reusable for
all elements in the array:

bk =

∣∣∣∣a0 aN−k

aN ak

∣∣∣∣ , ck =

∣∣∣∣ b0 bN−1−k

bN−1 bk

∣∣∣∣ , dk =

∣∣∣∣ c0 cN−2−k

cN−2 ck

∣∣∣∣ .
This pattern can be carried out to all lower rows of the array,
if necessary.
Rule 4: Once the Jury array has been formed, all the following
relationships must be satisfied until the last row of the array

|b0| > |bN−1|, |c0| > |cN−2|, |d0| > |dN−3|.

The system is stable if all these conditions are satisfied.

E. Truncated Stochastic Variables

As mentioned in Sec. II-C, the side information |ek−1| < η
in (6) changes the support of pêk(·) at every sampling instant
k. With a constant threshold η ∈ R+, the change is specifically
a symmetric truncation operation to the PDF pêk(·). Consider
a scalar stochastic variable ζ ∈ R with an infinite-support
PDF pζ(·). We use ζ [a,b] to represent the truncated stochastic
variable derived from ζ by trimming its support set with a fixed
interval ζ ∈ [ a, b ], a, b ∈ R. Due to this truncation operation,
the derived variable ζ [a,b] has different stochastic properties
compared to its original ζ. Specifically, its PDF reads

pζ[a,b](z) =

{
ρζ(a, b)pζ(z), a ≤ z ≤ b,
0, otherwise,

(9)

where z ∈ R is an auxiliary variable, pζ[a,b](·) denotes the PDF
of ζ [a,b] subject to a truncation interval [ a, b ], and ρζ(a, b) is
a scalar calculated as

ρζ(a, b) = 1/(Fζ(b)− Fζ(a))

where Fζ(·) is the cumulative distribution function (CDF) of
ζ. Also, the expected value and the variance of ζ [a,b] are

E
(
ζ [a,b]

)
=
∫ b
a
zpζ[a,b](z)dz = ρζ(a, b)

∫ b
a
zpζ(z)dz, (10)

Var
(
ζ [a,b]

)
=
∫ b
a
z2pζ[a,b](z)dz − E2

(
ζ [a,b]

)
= ρζ(a, b)

∫ b
a
z2pζ(z)dz − E2

(
ζ [a,b]

)
.

(11)

Note that the difference between the mean values and the
variances of a stochastic variable ζ and its truncated coun-
terpart ζ [a,b] is reflected not only by the additional multiplier
ρζ(a, b) but also by the changed upper and lower limits of
the integrals, a and b. If ζ is a Gaussian variable, ζ [a,b] is not
necessarily Gaussian. This means that all the properties that
are proposed for Gaussian variables, such as the linear combi-
nation properties, may not hold for their truncated variables.
Ignoring this effect may lead to the inaccurate characterization
of the truncated stochastic variable.

III. COMMUNICATION RATE ANALYSIS

In this section, we conduct a comprehensive analysis of
the transient and the stationary ACR for an ET-SCS defined
in (7). Based on the introduction of the predictive indexes
and the predictive coefficients, we derive a recursive model
for the transient ACR of an ET-SCS. Then, by showing
the equivalence between the recursive model and a dt-LTI
system, we prove the existence of the stationary ACR using
the Jury stability criterion recalled in Sec. II-D. As a result,
the transient and the stationary ACR can be calculated using
a finite number of predictive coefficients.

A. The Predictive Indexes and The Predictive Coefficients

In this section, we introduce the predictive indexes and
the predictive coefficients which are important to analyze the
ACR. We first define a compound event for k, n ∈ N+, n ≤ k,

Ek:k−n = δ
{0}
k ∩ δ{0}k−1 ∩ · · · ∩ δ

{0}
k−n+1 ∩ δ

{1}
k−n, (12)

which represents the conjunction of n successive inactive
events after an active event δ{1}k−n. It is straightforward to show
that the compound event satisfies the following property.

Property 1. For any n, k ∈ N+, n ≤ k, event Ek:k−n satisfies
the following conditions.

1) Ek:k−n 6= ∅, ∀n ≤ T , and Ek:k−n = ∅, ∀n > T .
2) Ek:k−i ∩ Ek:k−j = ∅, for any i, j ≤ k, i 6= j.
3)
⋃k
n=1 Ek:k−n = δ

{0}
k .

In Property 1, condition 1) is met considering that the non-
communication period of the system should not be larger than
the limit T , according to the event-triggered scheduler (5).
Condition 2) is verified by the mutual exclusion between the
compound events. Condition 3) is justified by taking the union
of all compound events Ek:k−n, for all n = 1, 2, · · · , k.
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1) Predictive indexes: For particular communication vari-
ables δ0, δ1, · · · , δn, we define n-step predictive non-
communication index Pn, or predictive index as

Pn = P
(
δ{0}n , δ

{0}
n−1, · · · , δ

{0}
1

∣∣∣ δ{1}0

)
, n ∈ N+, (13)

which denotes the probability that no communication is acti-
vated for n sampling instants given an active communication
event δ{1}0 . We will later generalize the predictive index to
arbitrary-time communication status δk, k ∈ N+. The n-step
predictive index Pn satisfies the following property.

Property 2. For any n, T ∈ N+, the predictive index Pn
satisfies the following conditions.

1) For all n > T , Pn = 0.
2) For all n ≤ T , 0 < Pn < 1.

Property 2-1) is justified by that the communication is
activated by force after n > T , according to (5). For n ≤ T ,
neither activation nor deactivation of the communication is a
certain event, since the support of the PDF of the noise wk is
infinite, ∀ k = 1, 2, · · · , n. This addresses property 2-2).

2) Predictive coefficients: Also for communication sta-
tus variables δ0, δ1, · · · , δn, the n-stacked predictive non-
communication coefficient Pn, or predictive coefficient is
defined as

Pn = P
(
δ{0}n

∣∣∣En−1:0) , n = 1, 2, · · · , T, (14)

which denotes the probability of a single non-communication
event δ{0}n given the history compound event En−1:0. Similar
to the predictive index, the predictive coefficient has the
following property due to the infinite support of the PDF of
the stochastic noise.

Property 3. 0 < Pn < 1 holds for all n = 1, 2, · · · , T .

3) Relation between the indexes and coefficients: From the
definitions of the predictive index in (13) and the predictive
coefficient (14), we have the following relation,

Pn =P
(
δ{0}n , δ

{0}
n−1, · · · , δ

{0}
1

∣∣∣ δ{1}0

)
=P

(
δ{0}n

∣∣∣ δ{0}n−1, · · · , δ{0}1 , δ
{1}
0

)
× P

(
δ
{0}
n−1, · · · , δ

{0}
1

∣∣∣ δ{1}0

)
=PnPn−1, n = 2, · · · , T,

(15)

with P1 = P 1, which renders the following property.

Property 4. (Relation of the predictive index and coefficient)
The following relation holds.

Pn =
∏n
i=1 P i, n = 1, 2, · · · , T. (16)

Meanwhile, applying Property 2 and Property 3 to (15)
recursively, we have the following property.

Property 5. (Monotonic decrease of predictive index) The
condition 0 < PT < . . . < P2 < P1 < 1 always holds.

4) Time-Invariance of the indexes and coefficients: Ensured
by Assumption 1, the system noise wk, k ∈ N+ is a
stationary stochastic process. Thus, its stochastic properties
are time-invariant. As a result, the dynamic model of the state
estimation error in (6) and the communication status in (5) are
also invariant to the last communication instant ι. This justifies
the following property.

Property 6. (Time-invariance of communication probabilities)
The following conditions hold ∀n = 1, 2, · · · , T and ∀ ι ∈ N.

P
(
δ
{0}
ι+n, δ

{0}
ι+n−1, · · · , δ

{0}
ι+1

∣∣∣ δ{1}ι )
= Pn,

P
(
δ
{0}
ι+n

∣∣∣Eι+n−1:ι) = Pn.
(17)

Property 6 proposes a very important claim for our work. It
indicates that the n-step predictive indexes Pn and coefficients
Pn can be used to depict the communication probabilities
(17) for an arbitrary state-sampling time ι ∈ N, even though
they are originally defined specifically for ι = 0. Nevertheless,
we should keep in mind that this property only holds when
Assumption 1 is ensured.

B. The Recursive Model of The Transient ACR

Having introduced the predictive indexes and coefficients,
we are ready to present the recursive model for the transient
ACR. According to Property 1-3) and 1-2), we know

P
(
δ
{0}
k

)
= P

(
k⋃

n=1

Ek:k−n

)
=

k∑
n=1

P (Ek:k−n) , k ∈ N+,

which leads to

P
(
δ
{0}
k

)
=

k∑
n=1

P
(
δ
{0}
k , · · · , δ{0}k−n+1

∣∣∣ δ{1}k−n)︸ ︷︷ ︸
=Pn

P
(
δ
{1}
k−n

)
,

(18)
where we used Property 6. Note that Pn = 0 holds ∀n > T
according to Property 1-1). Thus, (18) can be rewritten as

P
(
δ
{0}
k

)
=
∑min(k,T )
n=1 PnP

(
δ
{1}
k−n

)
, k ∈ N+. (19)

According to the definition of ACR in (7), (19) leads to the
following recursive model,

E (δk) = 1−
∑min(k,T )
n=1 PnE (δk−n) , k ∈ N+, (20)

with an initial condition E(δ0) = 1. Model (20) depicts the
recursive evolution of ACR at an arbitrary sampling instant as
time increases. Using Property 4, model (20) can be rewritten
as

E (δk) = 1−
∑min(k,T )
n=1

∏n
i=1 P iE (δk−n) , k ∈ N+. (21)

The recursive model (21) indicates that the transient ACR at
any time k ∈ N+ can be recursively calculated using a finite
number of predictive coefficients P 1, P 2, · · · , PT . Therefore,
how to obtain the values of these coefficients is a critical
technical point for the exact computation of the transient ACR.
We explore the solution to this problem in Sec. IV.
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C. The Existence of The Stationary ACR

The recursive model (20), for k ≥ T , is equivalent to
a T -order dt-LTI system. This offers us a solution to study
the existence of the stationary ACR using the Jury Criterion
recalled in Sec. II-D, which renders the following theorem.

Theorem 1. The stationary ACR E(δ∞) = lim
k→∞

E(δk) derived
from the recursive model (20) exists and its value reads

E(δ∞) = 1/(1 +
∑T
n=1

∏n
i=1 P i). (22)

Proof. We can rewrite the recursive model (20) as the follow-
ing matrix-vector form

ξk =

[
0> I
PT p

]
ξk−1 + β, ∀ k ∈ N+, (23)

where I is a (T − 1)-dimensional identity matrix, 0 ∈ RT−1
is a zero vector, and

ξk = [E(δk+T−1) . . . E(δk+1) E(δk) ]
>
,

p = [PT−1 . . . P1 ] , β = [0> 1 ]>,

with an initial condition

ξ0 = [E(δT−1) . . . E(δ1) E(δ0) ]
>
, (24)

Therefore, (23) can be recognized as a dt-LTI system, where
ξk, k ∈ N, is the system state, β is the constant input, and Pn,
n = 1, 2, · · · , T , are the constant parameters. In this sense, the
existence of the stationary ACR E(δ∞) can be determined by
the stability of the dt-LTI system using the Jury’s criterion.

For any z ∈ R, the characteristic polynomial of the dt-LTI
(23) is

D(z) = PT + PT−1z + . . .+ P1z
T−1 + zT . (25)

Given the polynomial (25), we investigate the state conver-
gence of the dt-LTI system (23) using the Jury’s criterion
recalled in Sec. II-D. It is straightforward to verify that Rules
1-3 in Sec. II-D hold for (25). We then use the coefficients in
(25) to construct the Jury array. The elements in the first row
of the Jury array then become

a0 = PT , a1 = PT−1, . . . , aT = 1.

Having the elements on row i and row 2 of Jury array,
the elements bk and bk+1 in the row 3 and row 4, with
k ∈ {0, . . . , T − 1}, can be constructed as

bk =

∣∣∣∣a0 aT−k
aT ak

∣∣∣∣ = a0ak − aT−kaT ,

bk+1 =

∣∣∣∣a0 aT−k−1
aT ak+1

∣∣∣∣ = a0ak+1 − aT−k−1aT .

From Lemma 5, we obtain 0 < a0 < a1 < . . . < aT =
1, which implies a0ak < a0ak+1 < aT−k−1aT < aT−kaT .
This inequality further implies −1 < bk < bk+1 < 0 and
|b0| > |bT−1|. These results reveal the relationship among
the elements bk. Similarly, we can construct ck and ck+1, as
follows

ck =

∣∣∣∣ b0 bT−1−k
bT−1 bk

∣∣∣∣ = b1bk − bT+1−kbT ,

ck+1 =

∣∣∣∣ b0 bT−2−k
bT−1 bk+1

∣∣∣∣ = b0bk+1 − bT−2−kbT−1.

Similarly, we can readily conclude that 1 > ck > ck+1, which
also implies |c1| > |cT − 1|. Similar analysis can be carried
out to show that Rule 4 of Jury stability criteria always holds.
Therefore, the characteristic polynomial (25) meets Jury’s
stability criteria, which means that all the eigenvalues of the
state transition matrix in (23) are less than or equal to 1, i.e.
the system presented in (23) is asymptotically stable. This
indicates that the limit E(δ∞) = limk→∞ E(δk) exists. By
taking the limit of both sides of (20), we obtain

limk→∞ E (δk) = 1−
∑T
n=1 Pn limk→∞ E (δk−n) , (26)

which leads to (22) and proves this theorem.

Based on a general recursive model (20), Theorem 1 proves
the existence of the stationary ACR for any ET-SCS with an
event-triggered communication scheduler and a deterministic
constant threshold. This claim does not require any additional
conditions, meaning that the stationary ACR in general exists
for any ET-SCS defined in this paper. Equation (22) indicates
that the stationary ACR can also be calculated using a finite
number of predictive coefficients Pn, n = 1, 2, · · · , T , similar
to the transient ACR explained in Sec. III-B.

IV. COMPUTATION OF THE PREDICTIVE COEFFICIENTS

As shown in Sec. III, the computation of both the transient
and the stationary ACR requires the predictive coefficients Pn,
n = 1, 2, · · · , T . This section provides both analytical and
numerical approaches to compute these coefficients. Then, we
compare our methods with the previous results which apply
the restricted Gaussianity assumption. Finally, we present a
numerical example to demonstrate our theoretical claims.

A. The Analytical Form of The Predictive Coefficients

This section explores the analytical method to exactly
compute the predictive coefficients. According to the definition
of the predictive coefficients in Sec. III-A, we have

P i = P
(
δ
{0}
i

∣∣∣Ei−1:0) =
∫ η
−η pêi−1(z) dz, (27)

for i = 2, · · · , T , with an initial condition P 1 = 1. Thus,
each coefficient P i is the integration of the PDF of the state
estimation error êi−1 on a finite support set [−η, η ], where
the error recursively evolves following (6). Then, the critical
technical point is to obtain the analytical form of these PDFs.
For each i = 1, 2, · · · , T − 1, the PDF of êi reads

pêi(z) =
∫ η
−η pêηi−1

(ξ)pw(z −Aξ)dξ, (28)

where pêηi−1
(·) denotes the PDF of the truncated stochastic

variable êηi−1 of êi−1 with a symmetric truncation interval
[−η, η ] and pw(·) is the PDF of the disturbance wk, k ∈ N+.
Note that ê0 = 0, and ê1, wk ∼ N (0, σ), which yields

pê0(z)=δ(z), pê1(z)=pw(z)=
1√
2πσ

exp

(
− z2

2σ2

)
, (29)
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where δ(·) is the Dirac delta function. Thus, the distribution
pêi(z) in (28) can be obtained as

pêi(z) =

∫ η

−η

pêηi−1
(ξ)

√
2πσ

exp

(
− (z −Aξ)2

2σ2

)
dξ. (30)

According to the PDF of a truncated random variable in
Sec. II-E, we have

pêηi−1
(z) = Gêi−1

(z)pêi−1
(z), (31)

where pêi−1
(·) is the PDF of the non-truncated variable êi−1

and Gêi−1(·) is a piece-wise constant function defined as

Gêi−1
(z) =

{
1/
∫ η
−η pêi−1

(ξ)dξ, −η ≤ z ≤ η,
0, otherwise.

(32)

Substituting (32) and (31) to the PDF (30), we obtain

pêi(z) =
Gêi−1(z)
√

2πσ

∫ η

−η
pêi−1

(ξ) exp

(
− (z −Aξ)2

2σ2

)
dξ.

(33)
Thus, equations (29) and (33) form a complete recursive model
to solve the analytical forms of the PDFs of the closed-loop
errors, pêi(·), for all i = 1, 2, · · · , T . Then, (27) can be
used to accurately calculate the predictive coefficients P i, for
i = 2, 3, · · · , T − 1. Note that, for any i = 2, 3, · · · , T , the
PDF pêi(·) is not necessarily Gaussian due to the recursive
truncation operations. Also, the analytical form of pêi(·)
becomes increasingly complicated and challenging to solve
as i gets larger. To resolve this issue, in the next section, we
propose a numerical algorithm to approximate the predictive
coefficients using the recursive stochastic sampling technique.

B. Approximating The Predictive Coefficients Numerically

Considering the difficulty of analytically computing the
coefficients P i for large i, we propose a numerical algorithm
to approximate them using the recursive stochastic sampling
method, as shown in Algorithm 1. The computation of P 1

and P 2 in Line 1 is straightforward since the analytical forms
of pê0(·) and pê1(·) are trivial and simple. In Line 2, N
particles are initialized from the distribution pê1(·), i.e., a
Gaussian distribution N (0, σ). From Line 3, the particles are
used to approximate the nontrivial PDFs pêi(·) for i ≥ 2.
The particles are a group of real scalars independently drawn
from a certain distribution. Consider that N ∈ N+ particles
Z = {z(1), z(2), · · · , z(N)}, z(i) ∈ R, i = 1, 2, · · · , N , are
independently drawn from a distribution depicted by a PDF
p(·). Then, the unbiased estimation of p(·) can be obtained
using a Gaussian kernel method as

p̂(z,Z) =
1√

2πσ̂N

N∑
j=1

exp

(
−
(
z − z(j)

)2
2σ̂2

)
, (34)

where σ̂ ∈ R+ is a variance parameter. Here, we use the
symbol p̂(·) to represent the PDFs approximated using parti-
cles. Based on the approximated PDFs p̂êi(·), the predictive
coefficients P i+1 are calculated recursively, following the flow
p̂êi−1

(·)→ p̂êηi−1
(·)→ p̂êi(·)→ P i+1.

The approximation in each iteration is described as follows.
In line 4, the particles exceeding the threshold η are removed,

which simulates the truncation operation to the PDF pêi−1
(·).

Then, in line 5, the PDF pêηi−1
(·) of the truncated stochastic

variable êηi−1 is approximated with the remaining particles. In
line 6, N particles are resampled from the approximated PDF
p̂êηi−1

(·). The particles then perform the stochastic propagation
according to the error dynamics (6), as shown in lines 7-10.
In line 11, the particle approximation method (34) is used
again to approximate the PDF pêi(·). Finally, the predictive
coefficient P i+1 are calculated in line 14.

Algorithm 1: Approximation of the predictive coeffi-
cients using particles
Inputs : noise variance σ and particle number N
Outputs: P i, ∀ i = 1, 2, · · · , T , T > 2

1 Calculate P 1, P 2 using (27) with pê0(·), pê1(·) in (29);
2 Sample particles z(j)1 ∼ N (0, σ), j = 1, 2, · · · , N ;
3 for i← 2 to T − 1 do
4 Remove all particles

∣∣∣z(j)i−1∣∣∣ ≥ η;

5 Approximate p̂êηi−1
(·) with z(j)i−1 using (34);

6 Re-sample particles z(j)i−1 ∼ p̂êηi−1
(·);

j = 1, 2, · · · , N ;
7 for j ← 1 to N do
8 Draw ε

(j)
i−1 ∼ N (0, σ);

9 z
(j)
i = Az

(j)
i−1 + ε

(j)
i−1;

10 end
11 Approximate pêi(·) with z(j)i using (34);
12 Calculate P i+1 with (27) using PDF pêi(·);
13 end

Note that Algorithm 1 may lead to approximation errors in
the predictive coefficients. The main source of the errors is the
deviation between the PDFs pêi(·) and their estimations p̂êi(·).
In fact, the unbiasedness of the approximation only holds in
the statistical sense. To reduce the approximation errors, N
should be selected sufficiently large and σ̂ should be small.

Remark 3. In this paper, our theoretical claims and numerical
methods target at a specific class of ET-SCS, where the
network communication is triggered by an asynchronous event
associated with state estimation errors. In fact, the state
estimation error ek, k ∈ N, can be recognized as a variable
that depends on the internal states of the joint dynamic model
of the system plant and the state estimator, namely the plant
state xk and the estimator state x̂k. Thus, our results can also
be extended to a generic ET-SCS of which the triggering event
may be assigned to an arbitrary state-dependent variable. In
this case, the recursive model of the ACR is still effective.
What changes is that the predictive coefficients are calculated
using the PDF of this state-dependent variable. The challenge
of such an extension depends on the complexity of this PDF.

V. COMPARISON WITH THE CONVENTIONAL METHOD

Based on Sec. III and Sec. IV, we are able to calculate the
stationary and the transient ACR for an ET-SCS using a finite
number of predictive coefficients. The analytical and numerical
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methods to compute these coefficients are also provided. In
this section, we make a comparison between our approaches
and the conventional method [17] that intentionally ignores the
side information for simplification. Both theoretical analysis
and a numerical study are conducted to validate the accuracy
of our approaches and qualitatively verify the accuracy gap
between the conventional method and the ground truth.

A. Deviation Analysis of The Conventional Method

As mentioned above, the computation of ACR without
considering the closed-loop effect leads to an oversimplified
distribution model for the state estimation error and eventually
returns approximated results. Assume that the open-loop state
estimation error is subject to the dynamic model (3). Then,
the error has a fully Gaussian PDF, and, similar to (21), the
open-loop ACR can be recursively computed as

Ĕ (δk) = 1−
∑min(k,T )
n=1

∏n
j=1 P̆ j Ĕ (δk−n) , k ∈ N+, (35)

with Ĕ(δ0) = 1, where P̆ i, i = 1, 2, · · · , T, are the coeffi-
cients obtained by

P̆ i =
∫ η
−η pei−1

(z)dz, i = 1, 2, · · · , T, (36)

where pei(·) is the PDF of the open-loop state estimation
error ei subject to the dynamic model (3) with ι = 0. Hence,
according to (3), for all i > 1, we have

pei(z) =
∫∞
−∞ pei−1

(ξ) pw(z −Aξ)dξ

=

∫ ∞
−∞

pei−1
(ξ)

√
2πσ

exp

(
− (z −Aξ)2

2σ2

)
dξ,

(37)

with the initial conditions

pe0(z) = δ(z), pe1(z) =
1√
2πσ

exp

(
− z2

2σ2

)
. (38)

Comparing (33) and (37), one notices that ê1 and e1 have the
same distribution N (0, σ), while for each i > 1, pêi(·) has an
additional multiplier Gêi−1(·), compared to pei(·). Also, the
integration intervals are also different.

Now, we compare the mean values and the variances of
the two stochastic variables êi and ei for i = 1, 2, · · · , T .
From (4), we know that the state estimation error ei is a linear
combination of the Gaussian-distributed stochastic variables
w0, · · · , wi−1. Hence, ei is also Gaussian-distributed and has
the following property.

Property 7. Given that w0, · · · , wT−1 are i.i.d. stochastic
variables (Assumption 1), the following statements hold for
all ei, i = 1, 2, · · · , T .

1) For any z ∈ R, pei(z) = pei(−z).

2) E(ei) =
∑i−1
n=ιA

i−n−1E(wn) = 0.

3) Var(ei) =
∑i−1
n=ιA

i−n−1Var(wn) =
∑i−1
n=ιA

i−n−1σ2.

Property 7 is easy to verify using the linear properties
of Gaussian stochastic variables. Nevertheless, the stochastic
properties of the closed-loop state estimation error êi are not
that straightforward due to the recursive truncation operations.
Before proceeding with the study on the stochastic properties

of êi, it is necessary to propose the following proposition for
truncated stochastic variables.

Proposition 1. Let ζ ∈ R be an arbitrary stochastic variable
of which the PDF pζ(z) has infinite support. E(ζ) and Var(ζ)
are respectively its mean value and variance. Also, let ζη ∈ R
be a truncated stochastic variable by trimming the support of
ζ to be within the symmetrically bilateral interval [−η, η ],
η > 0. If E(ζ) = 0, and pζ(z) = pζ(−z) holds for all z ∈ R,
then the following conditions are valid.

1) E(ζη) = 0, and pζη (z) = pζη (−z), ∀ z ∈ R.
2) Var(ζη) < Var(ζ).

Proof. If E(ζ) = 0 and pζ(z) = pζ(−z) hold, according to the
definition of the PDF of truncated stochastic variables in (9),
we have

pζη (z) =
pζ(z)

Fζ(η)− Fζ(−η)
=

pζ(−z)
Fζ(η)− Fζ(−η)

= pζη (−z).

Utilizing this property, we further have

E(ζη) =

∫ η

−η
zpζη (z)dz = 0.

Therefore, condition 1) is proved. Furthermore, the variance
of ζη reads

Var(ζη) =
∫ η
−η z

2pζη (z)dz − E2(ζη)

=
∫ η
−η z

2pζ(z)dz
/∫ η
−η pζ(z)dz .

Note that Var(ζη) is indeed a function of the truncation
interval η. Thus, we represent it as Var(η). It can be verified
that Var(η) is continuous and continuously differential for η.
Moreover, we know

lim
η→∞

Var(η) =

∫ ∞
−∞

z2pζ(z)dz = Var(ζ), lim
η→0

Var(η) = 0.

(39)
By taking the derivative of Var(η) to η, we obtain

Var′(η) =

[(∫ η
−η z

2pζ(z)dz
)′ ∫ η
−η pζ(z)dz

−
(∫ η
−η pζ(z)dz

)′ ∫ η
−η z

2pζ(z)dz

]/(∫ η
−η pζ(z)dz

)2
.

Note that(∫ η
−η z

2pζ(z)dz
)′

= η2[pζ(η) + pζ(−η)] = 2η2pζ(η),(∫ η
−η pζ(z)dz

)′
= pζ(η) + pζ(−η) = 2pζ(η).

Thus,

Var′(η) = 2pζ(η)

∫ η

−η

(
η2 − ζ2

)
pζ(z)dz

/∫ η

−η
pζ(z)dz.

Since pζ(·) is a non-negative, we conclude V ′(η) > 0, for all
η > 0. This implies that V (η) is a monotonically increasing
function in the interval η ∈ (0,∞). Therefore, we can write
Var(ζη) = Var(η) < Var(∞) = Var(ζ), for any 0 < η <∞.
Thus, condition 2) is proved.

Proposition 1 indicates that a truncated stochastic variable
has the same expected value but a smaller variance than its
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original counterpart if the latter has an even PDF around zero
and the truncation interval is symmetric. We now present the
following theorem that characterizes the relation between the
mean values and variances of the closed-loop and open-loop
state estimation errors.

Theorem 2. Given state estimation errors êi and ei de-
picted by the dynamic models (6) and (3), respectively, i =
1, 2, · · · , T , the following conditions hold.

1) pêi(z) = pêi(−z), for all z ∈ R.
2) E(êi) = E(ei) = 0.
3) Var(ê1) = Var(e1), Var(êi) < Var(ei), for all i ≥ 2.

Proof. We first consider the case k = 1. Since ê1, e1 ∼
N (0, σ), we have pê1(z) = pê1(−z), for all z ∈ R,
E(ê1) = E(e1) = 0, and Var(ê1) = Var(e1) = σ2. Then,
for a truncated stochastic variable êηi with threshold η > 0,
according to Proposition 1, given any i = 1, 2, · · · , T−1, such
that pêi(z) = pêi(−z), we have pêηi (z) = pêηi (−z), E(êηi ) = 0,
and Var(êηi ) < Var(êi).

According to (6), we know êi+1 = Aêηi + wi, from which
we conclude

pêi+1
(z) =

∫ η
−η pêηi (ξ) pw(z −Aξ)dξ.

Considering that pêη1 (·) is an even PDF, and pw(z) = pw(−z),
for all z∈ R, we obtain

pêi+1
(z) =

∫ ξ=η
ξ=−η pêηi (−ξ) pw(−z +Aξ)dξ.

Set ẑ = −ξ, then we will have

pêi+1
(z) =

∫ −ẑ=η
−ẑ=−η pêηi (ẑ) pw(−z −Aẑ)d(−ẑ)

= −
∫ −ẑ=η
−ẑ=−η pêηi (ẑ) pw(−z −Aẑ)dẑ

=
∫ ẑ=η
ẑ=−η pêηi (ẑ) pw(−z −Aẑ)dẑ = pêi+1

(−z) .

This property leads to

E(êi+1) =

∫ η

−η
zpêi+1

(z) dz = 0.

Also, from Assumption 1, we know that eηi and ei are
independent from wi−1. Thus we conclude

Var(êi+1) = A2Var(êηi ) + σ2,

Var(ei+1) = A2Var(ei) + σ2.

According to Proposition 1, we have Var(êηi ) < Var(êi).
Therefore, for any i such that Var(êi) ≤ Var(ei), we have

Var(êi+1) = A2Var(êηi ) + σ2 < A2Var(êi) + σ2

≤ A2Var(ei) + σ2 = Var(ei+1).

Finally, we proved pêi(z) = pêi(−z), E(êi) = 0, and
Var(êi) ≤ Var(ei) hold for all i = 1, 2, · · · , T . Note that
Var(êi) = Var(ei) only when i = 1.

Theorem 2 indicates the qualitative difference between the
PDFs, the mean values, and the variances of the closed-loop
error êi and the open-loop error ei for i = 1, 2, · · · , T . Both of
them have even PDFs and zero mean values. Nevertheless, the
closed-loop error êi has a smaller variance than the open-loop
one ei, for i > 1. This indicates that the recursive truncation

operations in (6) result in a shrink in the PDF pêi(z) along the
z-axis compared to the infinite support Gaussian PDF pei(z).
Therefore, for any i > 1, Theorem 2 results in∫ η

−η pêi(z)dz >
∫ η
−η pei(z)dz. (40)

This can be explained in an intuitive manner that the shape of
pêi(·) is more narrow than pei(·). Based on this, we can infer
that the conventional method using pei(·) instead of pêi(·)
leads to smaller results for the coefficients, i.e., P̆ i+1 < P i+1

for i = 3, · · · , T , according to (27), and then larger values of
the transient ACR, i.e., Ĕ(δk) < E(δk) for k = 3, · · · , T .
Extending this claim to k → ∞, we also have a similar
conclusion for the stationary ACR, i.e., Ĕ(δ∞) < E(δ∞).

The analysis in this section not only proves the accuracy
gap of the conventional method in theory but also qualitatively
points out that it always leads to larger computation results.

B. Accuracy Comparison: A Numerical Example

Here we present a numerical example to verify the ac-
curacy of our proposed analytical and numerical methods,
in Sec. IV-A and Sec. IV-B, respectively. We also validate
the accuracy gap of the conventional method that ignores
the close-loop effect. Consider an ET-SCS as in (1) with
parameters A = 1.25, B = 1, an initial state x0 = −2,
a stochastic process wk ∼ N (0, 1), k ∈ N+, and a state-
feedback controller uk = −x̂k, where x̂k is estimated us-
ing (2). The threshold and the maximum triggering interval
of the event-triggered scheduler (5) are η = 1, T = 5. As
addressed in Sec. V-A, the major difference between our work
and the existing works is that the latter ignores the closed-loop
effects of an ET-SCS and use the open-loop estimation error
ek to compute ACR, instead of the closed-loop error êk. To
provide a fair and clear comparison study, we use five manners
to compute the transient ACR.

1) The Proposed Analytical Method (PAM): The recursive
expressions (29) and (33) are used to obtain the PDFs pêi(·) of
the closed-loop state estimation errors êi for i = 0, 1, · · · , 4.
Then, the coefficients P i+1 are calculated using (27). Finally,
(21) is recursively used to compute the transient ACR E(δk)
for k = 1, 2, · · · , 5.

2) The Proposed Numerical Method (PNM): Algorithm 1
is used to approximate the PDFs pêi(·) of the closed-loop state
estimation errors êi for i = 0, 1, · · · , 4, with parameters σ̂ =
0.1 and N = 104. Then, the coefficients P i+1 are calculated
using (27). Finally, (21) is recursively used to compute the
transient ACR E(δk) for k = 1, 2, · · · , 5.

3) The Conventional Analytical Method (CAM): [17] The
recursive expressions (37) and (38) are used to obtain the
PDFs pei(·) of the open-loop state estimation errors ei for
i = 0, 1, · · · , 4. Then, the open-loop predictive coefficients
P̆ i+1 are calculated using (36). Finally, (35) is recursively
used to compute the transient ACR Ĕ(δk) for k = 1, 2, · · · , 5.

4) The Conventional Numerical Method (CNM): This ap-
proach is merely used to provide a numerical counterpart of the
CAM approach for the completeness of our work. We first use
Algorithm 1, with the same parameters σ̂ = 0.1 and N = 104
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as PNM but with the lines 4-6 removed, to calculate the open-
loop predictive coefficients P̆ i+1. Then, (35) is recursively
used to compute the transient ACR Ĕ(δk) for k = 1, 2, · · · , 5.

5) Ground Truth (GT): We conduct a Monte-Carlo exper-
iment of the ET-SCS with the same initial state repeated for
104 trials to approximate the true value of ACR,

EGT (δk) = #(δk = 1)/104,

where #(δk = 1) is the total number of trials of which δk = 1.
The following Example 1 provides an instruction to compute

the transient ACR using PAM. Note that we only give the
results for E(δk), k = 1, 2, 3. The results for larger k values
are omitted due to the complexity of analytical computation.

Example 1. (Computation of ACR Using PAM) The compu-
tation procedure of E(δk) for k = 1, 2, 3 is as follows.
• For k = 1, according to (29), we have

P 1 =
∫ η
−η δ(z)dz = 1, and E(δ1) = 1− P 1 = 0.

• For k = 2, using (27), we can calculate

P 2 =
∫ η
−η pê1(z) dz = 0.6827,

where the analytical form of pê1(·) is provided in (29). Then,
according to (21), we have

E(δ2) = 1− P 1E(δ1)− P 2P 1E(δ0) = 0.3173.

• For k = 3, we have ê2 = Aêη1 + w1 according to (6).
Thus, the analytical form of pê2(·) reads

pê2(z) =
∫ η
−η pêη1 (ξ) pw(z −Aξ)dξ. (41)

Note that pêη1 (·) is a truncated Gaussian PDF and pw(·)
is a Gaussian PDF, which makes the calculation of pê2(·)
nontrivial. According to the formulations in Sec. II-E, we have

pêη1 (z) =
1

√
2πσ erf

(
η√
2σ2

) exp

(
− z2

2σ2

)
, (42)

where erf(x) = 2√
π

∫ x
0

exp(−x2)dx is the Gaussian error
function. Substituting (42) to the integral term in (41), we get

pê2(z) =

∫ η

−η

exp
(
− (z−Aξ)2+ξ2

2σ2

)
2πσ2erf

(
η√
2σ

) dξ

=
exp

(
− z2

2σ2(A2+1)

)
2πσ2erf

(
η√
2σ

) ∫ η

−η
exp

−
(
ξ − Az

A2+1

)2
2σ̄2

dξ

=
exp

(
− z2

2σ2(A2+1)

)
2σ
√

2π(A2 + 1)erf
(

η√
2σ

) (43)

×
{

erf

(
ηA2 + η −Az√

2σ
√
A2 + 1

)
+ erf

(
ηA2 + η +Az√

2σ
√
A2 + 1

)}
.

Therefore, we calculate

P 3 = 1−
∫ η

−η
pê2(z)dz = 0.5872.

According to (21), we have

E(δ3) = 1−P 1E(δ2)−P 2P 1E(δ1)−P 3P 2P 1E(δ0) = 0.2818.

It has been noticed that the analytical form of pê2(·) in
(43) becomes very complicated. The computation of E(δk)
for k > 3 is even more difficult due to the complicated form
of pêk−1

(·). Therefore, we only provide the results for k ≤ 3.
The computation results of the numerical study are reported

in Table I. Slight deviations are seen between PAM and PNM
or between CAM and CNM. Note that these deviations reflect
the inevitable approximation errors between the analytical
methods and their numerical counterparts due to the approx-
imation bias of the Gaussian kernel method. Incorporating
these errors, we can see that the results of PAM and PNM are
very close to the ground truth (with absolute errors smaller
than 0.005), which validates the effectiveness and accuracy of
the proposed methods. On the contrary, the results of CAM
and CNM present large calculation errors. Moreover, they are
all large than the GT results, in general, which verifies our
theoretical arguments in Sec. V-A that the conventional method
overapproximates the ACR values.

Table I: The GT and the computed ACR values for ET-SCS

k GT PAM PNM CAM CNM
1 0 0 0 0 0

2 0.3175 0.3173 0.3129 0.3173 0.3161

3 0.2826 0.2818 0.2877 0.3633 0.3668

4 0.2650 — 0.2609 0.3098 0.3082

5 0.2801 — 0.2797 0.3117 0.3126

More details can be found by taking a deeper look into the
stochastic properties of the state estimation errors. Table II
shows the mean values E(·) and the variances Var(·) of the
closed-loop error êk and open-loop error ek for k = 1, · · · , 5.
It can be seen that their mean values are very close to zero,
despite small errors due to the numerical approximation. Also,
we witness Var(e1) = Var(ê1) = 0 and Var(ek) > Var(êk),
for all k = 2, · · · , 5. This coincides with our theoretical state-
ments in Theorem 2 that the open-loop errors have the same
mean values as the closed-loop errors but larger variances.

Table II: The mean values and the variances of the closed-loop
and the open-loop state estimation errors

k E(êk) E(ek) Var(êk) Var(ek)

1 0 0 0 0

2 0.0000 −0.0000 1.4549 2.5625

3 −0.0037 −0.0000 1.4497 5.0031

4 0.0220 −0.0000 1.5108 8.7302

5 0.0149 0.0000 1.5288 13.601

The PDFs calculated using the closed-loop and the open-
loop errors, pêk(·) and pek(·), for k = 2, 3, 4, 5, are illustrated
in Fig. 3, using the red line and the blue line, respectively.
The GT PDF of the state estimation errors, drawn as the gray
area, obtained by conducting a Monte Carlo experiment, is
also presented for comparison. We observe that our proposed
method accurately follows the GT. On the contrary, the con-
ventional method obviously deviates from the GT results. The
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deviation becomes larger as k increases. This also verifies our
theoretical claims in Sec. V-A.

(a) k = 2 (b) k = 3

(c) k = 4 (d) k = 5

Figure 3: The approximated PDFs of the state estimation errors
for k=2, 3, 4, 5. The Red line denotes p̂êk(·) calculated using
our proposed methods (k = 2 using PAM and k = 3, 4, 5
using PNM) and the blue line is p̂ek(·) obtained from the
conventional approach (CAM). The gray area represents the
GT PDF using Monte Carlo sampling.

VI. EXPERIMENTAL STUDY

In this section, we conduct an experimental study of a
leader-follower autonomous driving scenario to validate our
theoretical results interpreted so far. The leader-follower sce-
nario is a simplified case of the widely-used platooning model
in autonomous driving [35]. As illustrated in Fig. 4, the
system contains a leader vehicle that maneuvers according to
a certain trajectory. A follower vehicle is dedicated to keeping
a constant distance from the leader vehicle. The positions and
velocities of the vehicles are measured using a series of remote
sensors. Both the vehicles and the sensors are connected using
a common communication network that allows data exchange
and state sampling. The switches installed on remote sensors,
subject to the triggering scheme (5), determine whether to
transmit the most recent vehicle states to the network.

The position of the leader vehicle follows a predefined
trajectory pL(t) = − cos(t) + 1.2t. The follower is required
to maintain a distance d = 3 m with the leader. The kinematic
model of the follower vehicle is

ṗ(t) = v(t), v̇(t) = u(t), (44)

where p(t), v(t), u(t) ∈ R are respectively the position, the ve-
locity, and the acceleration of the follower. In this experiment,
the parameters are selected as γ = 1, Q = 1, and K = 1. The
objective of the problem is to design a control law u(t), such

d

Remote Sensor

Communication Network

Plant

Figure 4: Illustration of a leader-follower system.

that p(t) → pL(t) + d and v(t) → ṗL(t) as time t increases.
We define the following feedback control law,

u(t) = −γQ−1v(t)−Q−1Kp(t) + γQ−1ṗL(t)

+Q−1KpL(t) + p̈L(t) +Q−1Kd,
(45)

where K,Q, γ ∈ R+ are positive parameters. It can be verified
using a Lyapunov method that p(t) − pL(t) = d and v(t) −
ṗL(t) = 0 render a globally asymptotic equilibrium of the
closed-loop system, which indicates the achievement of the
desired control performance. The proof is omitted in this paper.

In our experiment, we consider the discrete-time version of
the follower vehicle (44),

pk+1 = pk + ∆tvk,

vk+1 = vk + ∆tuk + wk,
(46)

where ∆t is the sampling period, and wk is an i.i.d. noise
process. Accordingly, we discretize the reference trajectory
pL(t) to pLk using discrete sampling t = k · ∆t. In corre-
spondence with the ET-SCS model in Fig. 2, the leader’s
trajectory pLk is the reference signal of the overall system.
Each follower is a plant with the state xk = vk. The limited
communication bandwidth motivates the application of the
event-triggered scheduler in (5), for which we set η = 1,
and T = 20 in this experiment. The state estimator (2)
is used to obtain x̂k = v̂k, with A = 1, and B = ∆t.
The discrete-time controller based on the estimated state is
uk = u(k ·∆t), for which p̂k is obtained using the recursive
model p̂k+1 = p̂k + ∆tv̂k. The simulation runs for 104 trials
with the same initial conditions p0 = 0 and v0 = 0. Each
trial lasts for t = 40 s with a sampling time ∆t = 0.1s.
The overall control performance is shown in Fig. 5. It is
observed that the average following distance E(p(t))− pL(t)
slightly fluctuates around d = 3 m, which indicates satisfactory
distance keeping. Also, the average velocity E(v(t)) is very
close to the reference velocity ṗL(t). This shows that the
configuration of the state estimator (2) and the event-triggered
scheduler (5) successfully achieves the control objectives.

The computed values of the ACR E(δk), using Algorithm 1
(PNM), with various triggering thresholds η, are shown in
Fig. 6 (in red). To verify the validity of our proposed
method, we also show the GT-ACR obtained from Monte-
Carlo simulation (in black), and the ACR computed according
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Figure 5: Average performance of the platoon controller (45).
Plot (a) depicts the tracking distance E(p(t))− pL(t). Plot (b)
shows the leading velocity ṗL(t) (in red) and the mean of the
actual velocity E(v(t)) (in blue).

to the conventional method (CAM), i.e., Ĕ(δk) (in blue). The
information delivered by Fig. 6 can be summarized as follows.

1) The general existence of the stationary ACR: It is
noticed that all ACR values, E(δk), Ĕ(δk), and the GT-ACR,
ultimately converge to their respective stationary points for all
triggering threshold values η = 1, 2, 3, 4. This validates our
result on the existence of the stationary ACR in Sec. III-C.

2) The accuracy of the proposed method: It is observed
that the computed ACR E(δk) closely follows the GT-ACR
at all time, indicating the accuracy of our proposed method.
On the contrary, Ĕ(δk) shows deviations from the GT-ACR
suggesting inaccuracy of computing the ACR by this method.
Also, Ĕ(δk) is in general larger than E(δk) in the steady state,
which validates our theoretical statement in Sec. V-A that this
method overestimates the stationary ACR.

3) The influence of the triggering threshold: The stationary
ACR values tend to be smaller as the triggering threshold η
increases. The intuition behind this observation is that, higher
threshold means higher estimation errors are tolerable, hence
less events will be triggered to reset the estimation error,
which consequently leads to lower ACR. Similar observation is
depicted in Fig. 7, where the change of stationary ACRs E(δ∞)
and Ĕ(δk), and their ratios are plotted versus the changes
of the threshold η. It van be seen that E(δ∞) < Ĕ(δk), for
all values of η. However, the scale of the deviation between
the two approaches is not monotone with respect to η, i.e.,
larger triggering thresholds do not necessarily lead to larger
deviations . The largest deviation occurs around η = 3, with
more than 25%, which is noticeable.

VII. CONCLUSION

Motivated by the conservativeness of the conventional exist-
ing methods, in this article we provide comprehensive analyt-
ical formulations to accurately compute the average commu-
nication rate for networked control systems under the event-
triggered sampling model. By incorporating the distribution
truncation operations that correspond to the side information
generated by the triggering decisions, we prove the existence
of stationary ACR using a novel recursive model. Afterwards,
we propose analytical and numerical approaches to accurately
calculate ACR at any arbitrary time and demonstrate the
noticeable ACR over-estimation when the triggering-induced
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Figure 6: ACRs computed using our proposed method E(δk)
(in red), the existing method Ĕ(δk) (in blue), and GT-ACR (in
black), for various triggering thresholds η = 1, 2, 3, 4.
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Figure 7: Comparison between the stationary ACRs vs. trigger-
ing threshold. Plot (a), our proposed method E(δ∞) (in red),
and the existing method Ĕ(δ∞) (in blue). Plot (b) shows the
ratio of the two stationary ACRs vs. triggering threshold.

truncations are ignored in computing the ACR. Our proposed
method and the theoretical claims are validated with a nu-
merical example and an experimental study on a platooning
scenario, showing that our ACR computation model precisely
follows the ground truth case.
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