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1

Chapter 1

General introduction

1.1 Longitudinal data
The use of longitudinal data is key in the fields of psychology, sociology, medicine, and
others. Through measuring subjects repeatedly at different moments in time, longitudinal
studies enable researchers to assess changes or developments in subjects. The change
on a response variable of interest can be assessed over any time scale, limited only by
the frequency of measurement. Here, subjects may refer to an individual person being
a patient or study participant, but also more higher-level groupings such as a college
classes, schools, cities, or even countries. Consider, for example, a longitudinal study for
investigating the daily hours of positive airway pressure (PAP) therapy usage of patients
suffering from sleep apnea. Patients are recommended to use this therapy during sleep
for at least four hours per night. Every patient is different and can be expected to have
slight differences in their average usage over time, referred to as population heterogeneity.
Heterogeneity may occur in the mean level, the change over time, the variability, or other
longitudinal characteristics of interest. Researchers may be interested in learning about
the general trend of daily therapy usage, but also how patients deviate from the trend or
how the hours of usage vary on a day-to-day basis.

Throughout the past two centuries, longitudinal analyses have been explored and
approached in different ways. During the 19th century, researchers sought to describe
populations using general laws. The focus was on describing change over time in terms of
a general trajectory that holds for all individuals of the population, ignoring variability
among patients (Gompertz, 1820; Verhulst, 1845). This methodology continued into the
early 20th century, during which change was described through increasingly complex
trajectory models. In later research, the notion that each subject is different and therefore
can be expected to exhibit a different level of change over time, was taken into account.
In early examples of such analyses, differences between subjects were addressed by fitting
individual curves (Wishart, 1938; Bollen and Curran, 2006).

The analysis of longitudinal datasets progressed substantially halfway into the 20th
century. In many longitudinal studies, subjects are hypothesized to approximately follow
a general trend, with random deviations from that trend (Hamaker, 2012). Starting in the
sixties, various statistical models have been developed for modeling such heterogeneity.
Notable examples are multilevel modeling, as developed under different names across fields
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(hierarchical linear modeling, mixed modeling, random coefficient modeling) (Bryk and
Raudenbush, 1987), and latent curve modeling (Bollen and Curran, 2006). Statistical
software for estimating these models became more commonly available in the nineties
(Bryk and Raudenbush, 1987).

1.2 Longitudinal cluster analysis
Instead of identifying one general trend from the data, researchers began extending
longitudinal methods to identify multiple common trends from the data (Nagin and
Land, 1993; Muthén and Shedden, 1999). This is more broadly referred to as clustering
longitudinal data. The rapid advancement in computational power throughout the past
decades has enabled researchers to estimate increasingly extensive temporal models on
larger datasets. Instead of identifying one general trend from the data, researchers began
extending temporal methods to identify groups of subjects with a similar temporal pattern.
The development of models and algorithms for automatically clustering temporal data
started to take shape during the late eighties and nineties across many research domains.
An early example of time series clustering is the work of Košmelj and Batagelj on applying
cross-sectional cluster algorithms to time series data (Košmelj, 1986; Košmelj and Batagelj,
1990). Nagin and Land (1993) proposed to model the heterogeneity using a mixture of
linear regression models. Not long thereafter, Muthén and Shedden (1999) proposed a
multilevel mixture model comprising heterogeneous clusters.

Clustering longitudinal data involves the automatic discovery of groups of subjects
who follow a similar longitudinal pattern over time. The population is then represented
by several common trends instead of a single general trend, with each trend representing
a proportion of the population heterogeneity. In the case of PAP therapy adherence,
researchers are interested in identifying various groups of patients who used the therapy in
a similar way over time. The discovery of distinct groups of patients could help in devising
more effective interventions tailored to a specific group of patients.

As is often the case, the population under investigation might not be composed of
distinct groups. Instead, differences between subjects may be the result of a complex
interaction of several possibly unobserved factors or even unknown factors. In these
cases, clustering is a valuable and pragmatic tool, as it provides a flexible approach to
representing the population through a finite number of clusters. This yields a more
detailed and meaningful description of the data than one would obtain from a single
general trend. When it comes to PAP therapy adherence, the population heterogeneity
is indeed attributable to a multitude of underlying factors. For example, the adherence
to therapy differs considerably between patients over time due to a large number of
behavioral, therapy-related, support and environmental factors (e.g., motivation, perceived
importance, and support of healthcare professionals and family (Cayanan et al., 2019;
Shapiro and Shapiro, 2010)). Several studies have identified patient clusters with different
patterns of therapy adherence (Aloia et al., 2008; Babbin et al., 2015; Wohlgemuth et al.,
2015).
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1.3 Challenges
We see the following challenges in longitudinal clustering: the cross-domain disconnect, the
comparison of methods, computational effort, and jointly accounting for other distributional
parameters over time. The literature on the topic of longitudinal clustering is rather
disconnected across different areas of research such as latent class analysis originating
from structural equation modeling, multilevel mixture modeling, and more traditional
cluster methods originating from the field of machine learning. This presents a challenge to
researchers who are searching the literature for applicable methods for their case study, as it
requires a familiarity with the different terminology being used between the fields. Unifying
the terminology would help with this, and so would the increased availability of review
papers and comparative studies that bridge the gap between the fields. Unfortunately,
there are relatively few cross-disciplinary comparisons of methods being done, with most
comparison papers evaluating the state-of-the-art methods within the respective field.
Currently, researchers would need to learn and combine different software packages to
conduct a cross-disciplinary comparison, which can require considerable effort. A unified
statistical software package incorporating several longitudinal cluster approaches could be
an instrument to bring together methods across domains. This would make it easier to
conduct comparison studies, as well as enable researchers to easily compare and evaluate
methods for their domain or specific case study.

The automatic identification of unobserved clusters brings about computational chal-
lenges. With each additional cluster that needs to be estimated, the number of possible
permutations by which subjects can be partitioned goes up drastically. Similarly, for
model-based approaches that estimate a parametric representation for each cluster, the
number of parameters and number of subject evaluations goes up with the number of
clusters, resulting in quadratic scaling. It is generally computationally infeasible to identify
the optimal solution during the estimation procedure for a dataset of any meaningful size.
Instead, cluster methods may be estimated repeatedly from different starting points in an
attempt to discover a better solution. Depending on the sample size, the computational
scaling may place a practical limitation on the number of clusters than can be estimated
within a reasonable amount of time. Moreover, the increasing complexity of such models
may result in a reduced convergence rate, therefore requiring an increasing number of
repeated estimations, further increasing the total time needed to identify a good solution.

In most applications of longitudinal clustering, there is an emphasis on only modeling
the mean response trajectories. However, under the expectation of subject heterogeneity,
accounting for heterogeneity in the variance or other aspects may prove equally important
to the identification of longitudinal clusters. Modeling the within-subject variance is of
particular interest, as it is often assumed to be constant over time and equal for subjects.
In the case of repeated measures data involving counts or time durations, there may be
an excessive number of zeros which should be modeled separately. Here, there may be
heterogeneity in the occurrence of zeros over time or between subjects, which could be
addressed through clustering.

1.4 Aim of the thesis
In this thesis, we aim to make the area of longitudinal clustering more accessible to applied
researchers by reducing the disconnect between the different areas of research on clustering



Section 1.4. Aim of the thesis 4

longitudinal data. We achieve this by providing a cross-disciplinary review, an extensive
comparison of different approaches to longitudinal clustering, and implementing statistical
software that facilitates a variety of longitudinal clustering approaches in a standardized
way. Secondly, we investigate how to jointly account for heterogeneity on other longitudinal
aspects in addition to the mean response. The proposed model extensions are applied to
two real-world datasets described below. We pay attention to the practical aspects of the
application of the different methods, in terms of flexibility, robustness, and computational
intensiveness.

1.4.1 Exploring heterogeneity in PAP therapy adherence
The topic of this thesis originates from a real-life case study involving patients that are
on therapy to treat their obstructive sleep apnea. Sleep apnea is a serious and common
chronic sleep disorder that is estimated to affect 1 in 5 people over the age of 65 years.
People suffering from sleep apnea experience frequent pauses in breathing during their
sleep, referred to as apneas. In case of obstructive sleep apnea (OSA), the apneas are
caused by an obstruction of the airway due to tissue collapse arising from the relaxation
of the airway during sleep. Untreated or undiagnosed sleep apnea is associated with
excessive daytime fatigue, increased risk for hypertension and heart failure, stroke and
myocardial infarction, and negative health outcomes like increased cardiovascular mortality
(Knauert et al., 2015). Untreated sleep apnea is costly for the healthcare system; spending
for treating undiagnosed sleep apnea patients is estimated to be $1,950 to $3,899 more
per patient per year than treating those that are diagnosed (Knauert et al., 2015). This
additional cost is the result of comorbidities being exacerbated by the sleep apnea condition.
Fortunately, there are treatment options available for sleep apnea. The gold standard for
obstructive sleep apnea treatment is positive airway pressure (PAP) therapy. Through the
application of positive airway pressure, the collapse of the airway is prevented, suppressing
the occurrence of apnea events. Treating OSA by PAP therapy, even when factoring in
treatment costs, can result in a 37% to 48% overall annual healthcare cost reduction,
already one year after initiating PAP therapy (Knauert et al., 2015). PAP therapy is a
highly effective treatment, but also presents some challenges to patients. To benefit from
the associated health improvements, patients should ideally use the therapy every time
they sleep, and for at least four hours. In addition, the therapy does not cure the patient
of the underlying cause for sleep apnea, therefore patients must continue to use the therapy
over time for as long as their OSA condition persists. In the United States of America,
patients are reimbursed for the continued use of the therapy if they can demonstrate
therapy adherence by day 90. However, reaching therapy adherence within 90 days is by
no means a guarantee that a patient will be successful in adhering to the therapy on the
long term.

Patients follow the PAP therapy in different ways. Whereas the majority of patients
successfully adopt the therapy, many patients struggle with adopting the therapy. Examples
of the different adherence trajectories exhibited by patients are shown in Figure 1.1. With
many patients abandoning the therapy eventually, managing patients through effective
interventions is key in improving adherence to therapy. Patients on PAP therapy represent
a highly heterogeneous group, with different behaviors and motivations for using the
therapy. Identifying groups of patients with different adherence patterns enables tailored
interventions, thereby improving the effectiveness of adherence management solutions.
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Figure 1.1: Examples of daily PAP therapy usage of four different patients over the first
90 days.

(a) Example patient with stable usage.
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(b) Example patient with variable usage.
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(c) Example patient exhibiting improvement
over time.
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(d) Example patient declining in usage over
time.
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Our goal is to model patient adherence over time, and to decompose the heterogeneity
using an approach for clustering longitudinal data. We model adherence not just on the
number of hours of usage per day, but we also model the skipped days of therapy as
a separate decision process. The patients, grouped by their pattern of adherence, can
then be analyzed and understood in more detail than the population level. Furthermore,
the specific adherence patterns can be linked to tailored interventions to optimize the
intervention effectiveness. An early example of an adherence cluster analysis is seen in
the work of Aloia et al. (2008), who explored patterns of adherence during the first year
of therapy among 71 OSA patients. They described the heterogeneity across patients in
terms of seven adherence patterns. Moreover, they performed an independent individual
time series analysis of all patients, providing further insights in the variation within each
of the identified groups. In this dissertation, we analyze several datasets comprising sleep
apnea patients on PAP therapy that are new to the therapy.

1.4.2 Understanding weekly new regional cases of COVID-19
In the second case study, we address the recent COVID-19 pandemic caused by the
SARS-CoV-2 virus. The World Health Organization declared COVID-19 a pandemic on
March 11, 2020. The impact of the virus on the health of people and the impact on the
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health care system cannot be understated. The ease with which the virus spreads has
posed serious challenges to countries across the world. The hospitalization rate and length
of stay of patients who are severely impacted by the virus can overload local or even
national health care systems. Local outbreaks can quickly expand to neighboring regions
if timely and rigorous measures are not taken to halt the spread.

Due to the exponential growth in the early stage, small differences in the reproduction
number (R0) can lead to large differences in the number of cases between regions over time.
As an example, consider the differences in the number of weekly new cases between counties
of the state of New York in the USA in Figure 1.2 (Dong et al., 2020) since the start of
the pandemic. The degree of measures needed may differ between regions, depending on
the number of current cases, and on regional factors that affect the effective reproduction
rate of virus. Examples of such relevant factors are population size, population density,
demographics, and behavioral and cultural norms (e.g., compliance to policy). As the
virus transcends regional (e.g., city, county, or provincial) borders, decision makers could
consider addressing similar regions at once.

In this dissertation, we explore the weekly number of new COVID-19 cases to see if
there are differences in heterogeneity between regions. We analyze data from over 3,100
counties of the USA across all 50 states from June 1 to September 13, 2020. The forecast
of the number of cases enables regulators and health system to take appropriate action.
Note that the number of new cases and the uncertainty thereof largely depend on the
current number of cases. We therefore take a particular interest in modeling the variance
as a function of the number of cases to provide more reliable predictive intervals.

With the aim of identifying regions with similar developments in the number of cases
over time, and considering the many possible factors at play, longitudinal clustering is
a valuable and pragmatic tool for this purpose. An added benefit of clustering is that
the approximate longitudinal county-specific developments can be easily visualized on a
map through showing the cluster assignment of each county. The approach has been used
in the analysis of the number of COVID-19 related deaths in the work of Maleki et al.
(2020), for example. Donnat and Holmes (2021) modeled the heterogeneity in R0. Lastly,
Alvarez et al. (2020) have applied time series clustering to compare the spread of the virus
across countries.

1.5 Outline
In Chapter 2, we provide a comprehensive introduction to longitudinal clustering. We have
grouped the methods into classes of similar approaches, and we describe the methods using
a unified terminology. The chapter summarizes the strengths, limitations, and extensions
of the most commonly used methods. We demonstrate each of the methods and assess
their performance on a synthetic dataset inspired by a case study exploring PAP therapy
adherence in sleep apnea patients.

In the third chapter, we evaluate and compare a selection of the methods presented in
Chapter 2 in detail. We investigate the differences between methods on synthetic data
generated under various scenarios. The data scenarios vary in the number of trajectories
and observations, within-cluster and within-trajectory variability, and the random effects
distribution. The methods are assessed both on trajectory classification accuracy and
the ability to recover the true shape of the cluster-representative trajectories. Moreover,
we compare the solutions identified by the methods in a real-life setting based on PAP
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Figure 1.2: Weekly new cases of 30 counties of the state of New York, USA, from March to
October 2020. Intermittent weeks with zero cases are not shown to improve visual clarity.
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therapy usage data.
Chapter 5 describes the design and functionality of the code framework that we have

developed for clustering longitudinal data in a standardized way. The framework is
implemented in the R package latrend and enables researchers to compare different
methods or implementations with minimal coding effort. We have applied the framework
in Chapter 6.

We also propose models for jointly assessing heterogeneity in the mean and other
aspects of interest. Here, we use a model-based approach using growth mixture modeling.
In Chapter 4, we propose a model which accounts for heterogeneity in adherence not
only in the mean, but also in the day-to-day variability, and the probability of patients
applying the therapy on a given day through hurdle modeling. This model provides a more
detailed description of adherence behavior over time compared to previous longitudinal
cluster analyses. In Chapter 6, the feasibility of recovering the clusters and heteroskedastic
relationship under the presence of a heterogeneous mean-variance relationship is assessed.
The models in this chapter are estimated using Bayesian inference. We evaluated the
proposed models on the COVID-19 case study.

Finally, we summarize the current state, our proposed approaches, and future work in
Chapter 7.
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Chapter 2

Clustering of longitudinal data:
a tutorial on a variety of
approaches

N.G.P. Den Teuling, S.C. Pauws, E.R. van den Heuvel
Submitted.

Abstract
During the past two decades, methods for identifying groups with different trends in
longitudinal data have become of increasing interest across many areas of research. To
support researchers, we summarize the guidance from the literature regarding longitudinal
clustering. Moreover, we present a selection of methods for longitudinal clustering,
including group-based trajectory modeling (GBTM), growth mixture modeling (GMM),
and longitudinal k-means (KML). The methods are introduced at a basic level, and
strengths, limitations, and model extensions are listed. Following the recent developments
in data collection, attention is given to the applicability of these methods to intensive
longitudinal data (ILD). We demonstrate the application of the methods on a synthetic
dataset using packages available in R.
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2.1 Introduction
The analysis of longitudinal data is prominent in correlational studies that look for
correspondence between observations of the same variables over extended period of time,
such as substance use or mental health in psychology, recidivism behavior in sociology,
and relapse or medication adherence in medicine. Longitudinal studies enable researchers
to assess and study changes over time of the variables of interest. With the increasing
capabilities of data collection and storage, more and more longitudinal studies are designed
to involve a large number of repeated measurements of the same variable per subject over
time. When a considerable number of observations are available, the data is commonly
referred to as intensive longitudinal data (ILD) (Walls and Schafer, 2006). ILD has the
advantage of allowing for a more granular assessment of change over time, especially at
the subject level.

Analyzing longitudinal data requires models that take the structure of the data into
account. The assessment of variability is key, as no two subjects are identical. In addition
to the presence of measurement variability within each subject, models should account for
differences (i.e., heterogeneity) between subjects. For example, in the analysis of therapy
adherence, subjects may exhibit considerably different levels of adherence over time. An
example of such a modeling approach is multilevel modeling. Here, the model describes
the mean trend (i.e., longitudinal pattern), and captures the differences between subjects
by modeling the subject-specific deviations from the trend.

In studies with considerable between-subject variability or non-normal deviations from
the trend, subjects may exhibit large deviations, to the point that the mean trend may
not be representative of the longitudinal patterns of the subjects (Hamaker, 2012). An
intuitive alternative approach is to represent the differences across subjects in terms of
a set of common trends. This way, the subject-specific deviations are reduced to the
nearest trend. This approach is generally referred to as longitudinal clustering and involves
the automatic discovery of groups of subjects with similar longitudinal characteristics.
Longitudinal clustering is of interest, for example, in behavioral studies, where subjects
can exhibit a range of behaviors that are due to various unobserved factors, resulting
in structural deviations. We shall use the level of adherence of sleep apnea patients to
positive airway pressure (PAP) therapy as the running example in this work. Factors such
as perceived importance, self-efficacy, personality traits, claustrophobia, and many more
have been shown to affect the level of adherence to PAP therapy (Cayanan et al., 2019),
resulting in a spectrum of longitudinal patterns across patients.

In this tutorial, we present a review of the literature on methods for clustering
longitudinal data. While there are several aspects to modeling longitudinal data, we focus
on the discovery of subgroups with different forms of longitudinal variations. Moreover,
we summarize the guidance from literature on how to conduct such a longitudinal cluster
analysis. Several types of methods have been proposed over the past two decades for
clustering longitudinal data. Our intent is to assist the reader in making an informed
decision on which method to apply in their cluster analysis, and to acquaint the reader
with the available methodologies for longitudinal clustering. We describe each method
along with its assumptions, advantages, and practical limitations. Secondly, we cover
the topic of model specification, with a focus on the number of clusters needed to best
represent the data. We survey the commonly used metrics and approaches to identify
the most appropriate number of subgroups. Lastly, the methods are demonstrated on a
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synthetic dataset inspired by a real-world example in the context of daily PAP therapy
adherence of patients with sleep apnea (Aloia et al., 2008). We will use this dataset to
highlight differences in the assumptions of the methods and the estimation, as well as to
show how to specify and apply each method.

The selection of methods has been based on prevalence and with the aim of creating a
varied selection with different strengths and limitations. The variety of methods enables
readers to select the most appropriate method for their case study. Moreover, we only
considered methods that are applicable for identifying univariate longitudinal patterns of
change and have a publicly available implementation in R. Relevant papers were identified
via keyword searches and the snowball method. While we present the methods for the
purpose of analyzing ILD, each of the methods are applicable to repeated measures data
to some degree. The application of longitudinal clustering is becoming more commonplace.
Based on a conservative keyword search1, we observe a considerable increase in the number
of publications concerning longitudinal clustering in different fields over time, from 37
publications in the nineties, to 273 publications between 2000–2009, and 1,257 publications
between 2010–2019.

Terminology As the scope of this review is intended to be interdisciplinary, we describe
the key terms used in this chapter, and list the commonly used alternative terms. We
explain the topic of longitudinal cluster analysis in the context of clustering subjects over
time, but the methodology applies equally well to any application involving repeated
measures data, e.g., modeling devices, animal growth, or accident rates.

At the subject level, the sequence of longitudinal observations is commonly referred to
as a trajectory, a time series, a temporal pattern, a curve, a trend, or a dynamic. Due
to the frequency of measurement in the case of ILD, measurements are not necessarily
equidistant in time. Moreover, subjects can have different non-corresponding times of
measurement, and the number of measurements may vary. With this in mind, we define
the trajectory of a subject i as a sequence of ni observations by

yi = {yi,1, yi,2, ..., yi,ni
}, (2.1)

where the observation yi,j is taken at time ti,j ∈ R.
By clustering, we refer to the definition of a cluster analysis from the field of machine

learning, specifically that of unsupervised learning, where data is grouped (i.e., clustered)
based on similarity to the other data points, and the group definitions and assignments
are not known in advance. In the field of statistics, a distinction is made between known
clusters and unobserved clusters. In the former case, subjects are stratified based on a
known nominal factor, for example, by assigning subjects to subgroups based on age or
sex. Unknown clusters are commonly referred to as latent (i.e., hidden) classes, groups,
profiles, or clusters. In this thesis, we use the term cluster as referring to the unobserved
type.

Longitudinal clustering can be regarded as a specific area of time series clustering that
is specifically concerned with the identification of common patterns of change or state
changes throughout a longitudinal study. Whereas the scope of time series clustering
extends to the modeling and assessment of any temporal similarity for any type of time

1A systematic search was performed per decade using Web of Science. Articles must contain the
keyword “longitudinal”, and one of the keywords “mixture”, “latent-class”, “clustering”, or “group-based”.
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series data (Aghabozorgi et al., 2015). Moreover, it includes the identification of temporal
subsequences within time series.

Overview The chapter is organized as follows. We begin by elaborating on the case
study in Section 2.2. In Section 2.3, we first summarize the concept of multilevel modeling
as a precursor to modeling subgroups. Furthermore, we explain the concept of clustering;
both philosophically and practically. The selected methods are described and demonstrated
in Section 2.4. We outline the recommended steps involving a longitudinal cluster analysis
in Section 2.5. Lastly, Section 2.6 discusses the findings from the case study in addition to
the general challenges, limitations, and future work of longitudinal clustering.

2.2 Case study
We use the case study to illustrate the longitudinal cluster methods, and to contrast the
strengths and limitations of the methods in a practical setting. The longitudinal methods
are applied to a synthetic dataset, which facilitates a more detailed comparison between
methods, and enables a fully reproducible and transparent demonstration. The data
is generated from the population characteristics and groups as reported by Aloia et al.
(2008), who investigated patterns of daily time on therapy among 71 obstructive sleep
apnea patients in their first year of therapy. The synthetic dataset and analysis code are
provided in the supplementary materials.

Sleep apnea is a common chronic disorder. Patients suffer from frequent paused or
diminished breathing during their sleep, resulting in fragmented sleep and overall poor
sleep quality. Sleep apnea is commonly treated using positive-airway pressure (PAP)
therapy. This involves a device that assists the patient in breathing during sleep by
supplying positive air pressure through a mask worn by the patient. Patients are required
to use the device every time they sleep. Considering the inconveniences and difficulties
patients can face with the therapy, some patients struggle to comply with the therapy
for longer periods of time, whereas others do well. The continuation of the therapy is
determined by many factors, e.g., the initial perception patients have of the therapy, the
coping ability of the patient, and social support (Weaver and Grunstein, 2008; Cayanan
et al., 2019). An effective treatment can only be ensured when patients are compliant
to the therapy, where the threshold for therapy compliance is usually set at 4 hours of
therapy per day, but PAP use for longer than 6 hours has been shown to have positive
effects (Weaver and Grunstein, 2008). The patterns of change in usage hours are therefore
of interest. Most past studies have treated the patient population as being homogeneous,
whereas others have attempted to stratify the population to address the differences in
therapy adherence over time between subjects (Aloia et al., 2008; Babbin et al., 2015).

Aloia et al. (2008) modeled the trajectories of daily hours on therapy of each patient
in terms of an intercept, slope, variance, autocorrelation, and number of attempted days.
Seven clusters were manually identified using two expert raters. The cluster of Good users
(24%) have a high number of therapy days and a high average hours of usage (6.6 hours).
Slow improvers (13%) have an initially low number of hours early in therapy but increased
over time, whereas the Slow decliners (14%) exhibit the opposite pattern. Variable users
(17%) have a lower average usage (5 hours) and showed fluctuations in adherence over time.
Occasional attempters (8%) have low attempt probability and low hours of use (3.2 hours),
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Table 2.1: Group coefficients for generating the trajectories. Values enclosed in parentheses
denote the standard deviation of the random effects. The attempt probability is conditional
on the patients still being on therapy. The early drop-outs and non-users are modeled to
stop prematurely at day 80 (30) and day 20 (10), respectively.

Cluster π β0 β1 × 102 β2 × 104 σ2 pattempt

Good users 24% 6.6 (.54) 0.0 (.16) 0.0 2.0 (.82) 97%
Slow improvers 13% 4.8 (1.0) 1.7 (.16) -0.30 3.6 (1.3) 94%
Slow decliners 14% 6.1 (.63) -1.9 (.14) 0.30 3.2 (.85) 77%
Variable users 17% 4.4 (.87) 0.96 (0.0) -0.30 3.4 (1.2) 82%

Occasional attempters 8% 3.2 (1.1) -0.30 (.91) 0.0 3.6 (1.8) 29%
Early drop-outs 13% 4.0 (1.1) -0.14 (1.0) -1.0 5.0 (2.6) 69%

Non-users 11% 2.5 (.93) -1.5 (1.0) -1.0 3.0 (1.7) 70%

Figure 2.1: The mean cluster trajectories of the generated dataset involving 500 patients.
Non-attempted days are included as zero-hour usage.

Early drop−outs

Good users

Occasional attempters

Non−users

Variable users

Slow decliners

Slow improvers

0

2

4

6

1 61 121 181 241 301 361
Day

H
ou

rs
 o

f u
se

but the patients did continue therapy. Lastly, a sizable proportion of patients prematurely
stopped with therapy, as represented by the Early drop-outs (13%) and Non-users (11%).

We utilize the reported patient and cluster statistics to generate 500 patient trajectories,
with each patient comprising at most 361 observations. The trajectories are generated
according to the original cluster proportions, and each trajectory is assigned a random
deviation in intercept and slope from its respective cluster. Considering the scope on
identifying patterns of change, we introduce a second-order term in the cluster trajectory
shapes to evaluate whether the methods can recover these shapes. The cluster coefficients
used to generate the trajectories are reported in Table 2.1. Due to the considerable
computation time of the mixture methods, we downsampled the generated data to a
biweekly average, resulting in 26 observations per patient, with 13,000 observations in
total. The cluster trajectories and downsampled individual trajectories are visualized in
Figure 2.1 and 2.2, respectively. Overall, 21% of biweekly observations are zero, and the
mean non-zero usage is 4.6 hours (σ = 2.1 hours).
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Figure 2.2: The generated 14-day averaged patient trajectories.
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2.2.1 Evaluation
All methods are evaluated in R 3.6.3 using freely available packages (R Core Team, 2022).
Each method is evaluated for 1 to 8 clusters to assess the number of clusters that correspond
to the most representative solution of each method. If available for the respective method,
we use the Bayesian information criterion (BIC) to guide the identification of the most
appropriate number of clusters per method. It is defined by BIC = p logn− 2 log L̂, where
L̂ denotes the likelihood of the candidate model, p is the number of model parameters,
and n are the number of observations. The BIC is one of the most widely used metrics
in longitudinal clustering (Van de Schoot et al., 2017). A lower BIC indicates a more
representative model for the data. The BIC includes a penalty factor for model complexity,
resulting in a higher score for a model with more parameters. If the BIC values are
similar between adjacent solutions, we base the final choice for the number of clusters
on a subjective analysis of the variety in patterns identified by the methods (Nagin and
Odgers, 2010a).

In case the BIC is not available for the respective longitudinal cluster method (i.e., there
is no model likelihood), we apply the average silhouette width (ASW) (Rousseeuw, 1987).
The ASW is a data-based measure of class separation. The silhouette value measures the
similarity of an object to the objects in its assigned cluster, relative to the similarity of
the other clusters. It is expressed as a score between -1 and 1, where a value towards 1
indicates a greater similarity to the assigned cluster. The ASW is obtained by averaging
the silhouette values of all trajectories. The topic of selecting the number of clusters is
discussed in more detail in Section 2.4.5.
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Figure 2.3: A linear mixed model derived from 12 trajectories with random intercept
∼ N(3, 5), random slope ∼ N(1/10, 1/100) and measurement error ∼ N(0, 1/10).

(a) Generated trajectories.
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(b) Estimated multilevel model.
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2.3 Background
Prior to performing an exploratory cluster analysis, it is worthwhile to consider the case
where the data comprises no clusters, i.e., the case where there is only a single cluster
(Greenberg, 2016; Bauer, 2007; Sher et al., 2011). We therefore begin by describing
regression modeling, and how regression models can capture heterogeneity without the
need for clusters.

Subjects can be considered as independent sources of variation, with each subject
having, for example, their own mean response level, change over time, or measurement
variability. Under this assumption, and given that subjects have a sufficient number of
observations (as is typically the case with ILD), subjects can be modeled independently
using established methods from the field of time series analysis (Liu, 2017). This is
referred to as a two-step or bottom-up approach. The individual time series are commonly
represented using linear regression or autoregressive models.

Aside from between-subject variability, there may be other sources of variation in the
data. One can think of the measurement device used by the subject having a certain
measurement error, which is shared across subjects using the same device. Another
common source of variability are the different sites at which measurements are collected.
Mixed modeling (Hartley and Rao, 1967; Laird, 1978) enables researchers to assess subject-
specific effects, and to decompose the variability in the data. It is also commonly referred
to as hierarchical modeling, random effects modeling, random coefficient modeling, and
variance component modeling. The model describes the population-level effects, referred
to as fixed effects, and describes a part of the subject-specific observations in terms of a
structural deviation from the fixed effects. The subject-specific deviations are a source of
variation as the deviations cannot be fully explained in terms of covariates, and therefore
are treated as random variables, also referred to as a random effects or latent variables.

A possible way of modeling longitudinal change is to incorporate time as a covariate
into the model. First- or second-order polynomials are commonly used to describe change
as a function of time. If more flexible curves are required, cubic splines or fractional
polynomials can be used. Figure 2.3 illustrates a first-order linear mixed model describing
the outcome of each individual over time by an intercept and slope, where the assessment
represents time.
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In linear mixed-effects modeling, the response is assumed to be normally distributed
(although extensions exist (Fitzmaurice et al., 2011)), and the fixed and random effects
are assumed to be a linear combination of covariates, giving

yi,j = xi,jβ + zi,jui + εi,j

ui ∼ N(0,Σ) (2.2)
εi,j ∼ N(0, σ2

ε).

Here, xi,j denotes the patient-specific covariates at time ti,j , and β are the respective
coefficients. The random effects design vector is denoted by zi,j , where the random effects
ui are jointly normally distributed with zero mean and variance-covariance matrix Σ,
and uncorrelated with εi,j . The measurement error is denoted by εi,j and is assumed
to be independently normally distributed with zero mean, a common variance σ2

ε , and
uncorrelated. Alternatively, the residuals can be modeled to be serially correlated (au-
tocorrelated), but more complex correlation structures are often not possible with the
inclusion of random effects due to identifiability problems.

Mixed modeling is advantageous over fitting individual regression models especially
for datasets with a small number of measurements per trajectory, as the estimates of
the subject-specific trajectory coefficients are more reliable due to the partial pooling
of information across subjects. Mixed effects models can be estimated with maximum
likelihood estimation. Alternatively, a Bayesian sampling approach can be taken. This
has the advantage that researchers can incorporate domain knowledge in each model
parameter, improving model estimation especially under small sample size due to the
ability to include prior knowledge (Spiegelhalter et al., 1994).

2.3.1 Meaning of clusters
A cluster analysis is generally exploratory in nature, meaning that the definitions of the
clusters, or even the number of clusters, are unknown and need to be estimated from
the data. There are two possible objectives to clustering, which determines how the
resulting clusters are interpreted. In most cases, the motivation for clustering comes from
the knowledge or expectation of considerable heterogeneity. In an indirect application
of clustering, clustering is used as a tool for approximating a heterogeneous population
in terms of a finite number of groups without any distributional assumption on the
heterogeneity. The identified subgroups may help in accounting for correlations between
longitudinal characteristics (e.g., the association between intercept and change over time).
This is applicable when the population heterogeneity cannot be adequately modeled using
a parametric approach such as multilevel modeling. Even in the case where a parametric
model can represent the heterogeneity, clustering may be preferred as this representation
of the heterogeneity can be easier to interpret (Sterba et al., 2012; Rights and Sterba,
2016).

An alternative reason for clustering is to test or develop theories on subgroups (Moffitt,
2003), referred to as a direct application of clustering. Here, the resulting clusters are
regarded as representing distinct population groups. Throughout the years however, the
approach has been criticized for the lack of a formal test or validation of results (Bauer and
Curran, 2003; Bauer, 2007). Overall, a direct application is only advisable under strong
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theoretic assumptions or highly distinct (i.e., separated) subgroups. Ideally, the clusters
are defined from theory, where clustering is applied as a confirmatory analysis, serving as
an empirical validation (Sher et al., 2011). In all other cases, an indirect application is a
more practical and lenient interpretation, and is therefore generally preferred (Nagin and
Odgers, 2010a; Sher et al., 2011; Skardhamar, 2010).

The challenge of accounting for heterogeneity also applies to the cluster models. An
intuitive approach to clustering involves describing the heterogeneity in terms of a number
of homogeneous subgroups. In contrast, modeling heterogeneity within clusters allows
for a more flexible representation of the overall heterogeneity. We illustrate the concept
visually in Figure 2.4, depicting a heterogeneous population in which each subject is
represented by a random variable in Figure 2.4a. The parametric approach, assuming a
normal distribution, is shown in Figure 2.4b.

Applying a cluster algorithm that models homogeneous clusters produces non-
overlapping bins (i.e., the clusters), represent a part of the heterogeneity, without any
assumption on the variability within the cluster. This is illustrated in Figure 2.4c,
where seven bins are used to represent the population density over the different values.
Due to the lack of overlap between classes, this segmentation arbitrarily improves the
approximation of the true distribution for an increasing number of bins.

Alternatively, a parametric model can be assumed for the heterogeneity within each
cluster. Such a model represents a mixture of distributions, referred to as a finite mixture
model (McLachlan and Peel, 2000). Figure 2.4d shows the density of the three normal
distributions that make up the mixture model. In this example, this was the true model
from which the data was generated. This approach has the advantage of requiring fewer
classes due to the ability to model outliers, but these models are more challenging to
specify and identify. Moreover, the overlap between classes increases as the number of
classes increases.

2.4 Methods
We have organized the methods for longitudinal clustering into three approaches, with
increasing model complexity. In the first approach, a cross-sectional cluster algorithm
is directly applied to the observations. The second approach comprises feature-based
estimation methods which model the trajectories independently, and cluster the trajectories
by the model representation. The third approach involves the use of a mixture model to
perform clustering using parametric group models. The methods are described under the
assumption that the number of clusters is part of the model specification.

2.4.1 Cross-sectional clustering
In a cross-sectional clustering approach, cluster algorithms or mixture methods that are
ordinarily applied to cross-sectional data with different variables are applied directly to the
longitudinal observations. Here, the trajectories (or objects, in a cross-sectional context)
are represented by a sequence of observations measured at fixed times t1, . . . , tn, with
yi = (yi,1, . . . , yi,n). Thus, each assessment moment tj represents a separate (random)
variable. This representation requires individuals to be measured at (almost) identical
assessment times across subjects, although the assessment times need not be equidistant.

Considering that cross-sectional methods do not model dependence between parameters,
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Figure 2.4: Representation of a heterogeneous distribution using different approaches. The
vertical gray lines in (b), (c) and (d) denote the class centers.

(a) The heterogeneous distribution.
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(c) Segmented representation of (a) us-
ing seven bins.
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applying cross-sectional methods to longitudinal data carries the assumption that the
observations are locally independent (i.e., the temporal ordering of the observations can be
ignored). Although this assumption does not hold in a longitudinal setting, it results in a
nonparametric trajectory model that can model sudden changes over time. The approach
is therefore especially useful in an exploratory analysis in case where the shape of the
cluster trajectories is unknown. Another reason why these methods are favorable for an
initial exploration is that they are orders of magnitude faster to compute compared to more
complex longitudinal models. The approach is also referred to as raw data-based approach
(Liao, 2005). While the approach is versatile, its applicability is limited to complete data
with identical assessment times across subjects, which are challenging requirements in
case of ILD. We describe two commonly used methods for cross-sectional clustering of
longitudinal data below. The methods are available in most statistical software packages
(e.g., in SPSS, SAS, Stata, and R), and have been used in practice.

2.4.1.1 k-means clustering

The aim of k-means clustering is to represent a set of objects in terms of a predefined
number of representative objects (MacQueen, 1967). It is essentially a quantization method,
and it is used in many fields, including machine learning, image processing, and signal
coding. In the analysis of longitudinal data, the methodology is referred to as k-means for
longitudinal data (KML), or longitudinal k-means analysis (LKMA). An early example of
this type of analysis can be found in the work of Gude and Odd (2000), who performed
a thorough longitudinal cluster analysis on patients with personality disorders receiving
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Figure 2.5: Example of k-means applied to 2D data comprised of three Gaussian clusters
with means for (y1, y2) of (0,0) for group A, (5,0) for group B, and (0,3) for group C, with
unit variance. The crosses denote the cluster centroids.
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treatment to identify groups of patients with different symptom distress over time. The
trajectories comprised three assessments of global symptom distress. They assessed the
cluster agreements between different random starting positions and performed post-hoc
analyses on the clusters which revealed correlations on other aspects of the patients.
Their work has been replicated recently by Jensen et al. (2014), with similar results.
KML has been used to identify adherence patterns in obstructive sleep apnea patients
undergoing nasal CPAP therapy (Wang et al., 2015). Furthermore, they investigated
the early prediction of the (ordered) adherence clusters using a cumulative logit model.
ANOVA F-tests were used to identify predictor variables that could aid in predicting the
adherence pattern. The KML methodology is implemented in the R package kml2, created
by Genolini et al. (2015).

In k-means, clusters are assumed to be homogeneous, as each representative object
defines the center of a cluster, referred to as the centroid. The cluster membership of
objects is determined by their nearest centroid. An example of k-means on synthetic 2D
data is given in Figure 2.5.

Assuming that the total variance consists of a within-cluster and between-cluster
variance component, minimizing the within-cluster variance ensures maximal separation
of the clusters. Thus, the k-means algorithm searches for the clustering {I1, I2, ..., IG}
that minimizes the within-cluster sum of squares, with each cluster Ig having one or more
objects. The objective function is described by

arg min
I1,...,IG

G∑
g=1

∑
i∈Ig

||yi − µ̂g||2, (2.3)

where µ̂g denotes the centroid of cluster g. Finding the optimal cluster assignments is
computationally infeasible as it requires iterating over all possible assignment combinations

2https://CRAN.R-project.org/package=kml

https://CRAN.R-project.org/package=kml
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for all objects. Instead, the algorithm uses a heuristic iterative approach. The solution is
sensitive to the choice of the initial centroids. The centroids can be selected, for example,
by selecting k objects at random as the centroids (MacQueen, 1967) or using the output
from a cluster algorithm such as agglomerative hierarchical clustering (as seen in the
analysis by Axén et al. (2011)). A method proposed by Arthur and Vassilvitskii (2007),
named k-means++, generally provides better starting conditions by selecting a disperse
set of centroids at random.

The k-means method assumes that the within-cluster variance is equal across clusters.
When the subgroups in the data have different variation, the estimated cluster boundaries
will likely be wrong, even when the centroids are estimated correctly. The challenge is
that cluster assignments can be problematic if many objects are relatively distant from the
respective cluster centroid (i.e. outliers), or being close to the cluster boundary in-between
clusters. An adaptation of k-means, named fuzzy c-means, addresses this concern by
using probabilistic cluster assignment based on the distance to the centroids (Dunn, 1973;
Bezdek, 1981). Another challenge is the presence of subject outliers, as these are not
represented by the cluster centroids. An example of this can be seen in Figure 2.4c on
page 18, where the tails of the distribution fall outside any of the bins. In some cases,
these outliers can affect the resulting cluster centers. This can be prevented by excluding
these subjects from the data (referred to as trimmed k-means).

An advantage of k-means is that the algorithm scales well and converges to a solution
relatively quickly. In some studies, the trajectories are stratified prior to clustering as a
way to guide the clustering process. An example of this approach is seen in the work of
Chen et al. (2007), where the authors evaluated patterns of change in self-reported back
pain over one year of time. The change in pain intensity over time, as computed using
linear regression, is used to stratify trajectories in three strata (decreasing, increasing, and
constant pain intensity), and clustering is performed within the strata.

Case study We use the R package kml (version 2.4.1) to cluster the trajectories (Genolini
et al., 2015). For each number of clusters, we run the estimation procedure 20 times, and
select the best solution from the repeated runs based on the BIC. The successive solutions
for an increasing number of clusters consistently improve the model fit, suggesting a
solution with many clusters. The package computes the BIC corresponding to the best
solutions for 2 to 8 clusters, as depicted in Figure 2.6a. There is a balance to be found
between the practical aspect of the number of clusters and the improvement in model fit.
Arguably, the three-cluster solution may be preferred as the latter solutions add relatively
little improvement. However, with the objective of identifying patterns of adherence and
the improved model fit, we visually assessed the remaining solutions.

We selected the seven-cluster solution because from this solution onward, the occasional
attempters were distinguished from the non-users. The identified cluster trajectories are
shown in Figure 2.6b. Although the number matches the true number of clusters, this
is only incidental, as KML failed to identify two cluster trajectory shapes correctly, and
this does not improve by introducing more clusters. Overall, the solution recovered most
of the cluster trajectories, demonstrating the benefit of a nonparametric approach in an
exploratory setting.
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Figure 2.6: KML case study analysis.
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2.4.1.2 Latent profile analysis

Latent profile analysis (LPA) is a statistical approach in which subjects are modeled to
belong to one of several unknown clusters (i.e., profiles) (Lazarsfeld et al., 1968; Vermunt
and Magidson, 2002). Furthermore, the measurement error is taken into account into the
probability of belonging to a certain class. LPA describes a mixture of profiles represented
by multivariate normal distributions, an approach also referred to as Gaussian mixture
modeling, or model-based clustering (Aghabozorgi et al., 2015). The method is also
commonly referred to as latent class analysis (LCA), although in some fields this name
specifically refers to a model involving categorical rather than continuous observations.

Similar to KML, LPA can be applied for the identification of longitudinal patterns
without any assumption on the shape by modeling the observations as locally independent
variables at the subject level (Feldman et al., 2009; Twisk and Hoekstra, 2012). This type
of application of LPA is sometimes specifically referred to as a longitudinal latent-profile
analysis (LLPA). The expected value of an observation at time tj depends on the cluster
membership. Given the cluster membership g, we have

yi,j = µg,j + εg,i,j , i ∈ Ig, (2.4)

where µg,j represents the cluster-specific mean at time tj , εg,i,j ∼ N(0, σg,j), and σg,j is the
cluster-specific standard deviation at time tj . The probability density of the observations
of subject i is computed by marginalizing over all G clusters, giving

f (yi) =
G∑

g=1
πg

n∏
j=1

ϕ (yi,j |µg,j , σg,j) , (2.5)

where ϕ(·) denotes the probability density function of the normal distribution, and πg

denotes the cluster proportion with πg > 0 and
∑G

g=1 πg = 1. To reduce the number of
parameters, the variance is commonly assumed to be equal across measurements over time,
i.e., σg,j = σg (Peugh and Fan, 2013).
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The model is usually estimated through maximum likelihood estimation using the EM
algorithm (McLachlan and Peel, 2000). Here, the data is sought to be explained in terms
of the unknown observation model θ = (π1, . . . , πG−1,µ1, . . . ,µG,σ1, . . . ,σG), and the
unknown cluster membership matrix z, where zi,g is the probability of patient i belonging
to cluster g conditional on θ. The algorithm takes an iterative approach, involving an
alternating estimation of z and θ, conditional on the other. In the E-step, the cluster
assignment probabilities are estimated from the given parameters θ and y. In the M-step,
the parameters θ are estimated given z. The iterations are repeated until the improvement
in log-likelihood is sufficiently low. The estimation must be initialized with some values
for θ. Here, random values can be used, or preferably, the output of a cluster model with
fewer parameters.

While LPA is more computationally expensive than KML, it allows for greater flexibility
in fitting the data due to the ability to account for cluster-specific variances, and even
time-specific variances (Magidson and Vermunt, 2002). LPA is available in many software
packages, including in Mplus3 (Muthén and Muthén, 1998–2012), Latent GOLD4

(Vermunt and Magidson, 2016), and the R package mclust5 (Scrucca et al., 2016).

Case study We estimate the LPA models using the mclust package (version 5.4.5) in
R (Scrucca et al., 2016) with cluster-specific diagonal covariance matrices. Ten repeated
runs were found to be sufficient in identifying the best solution per number of clusters
(determined by the BIC). The BIC per number of clusters is visualized in Figure 2.7a,
showing a considerable improvement up to four clusters. While the eight-cluster solution
compares favorably, it comprises a small clusters of only ten patients, which would limit
the power of a post-hoc analysis. Based on the BIC, one would ordinarily select the
four-cluster solution, as it provides a trade-off between a good fit and a lower number of
clusters. However, upon inspection of the successive solutions, the five-cluster solution
distinguishes the early drop-outs from the non-users, which would be of added value in an
exploratory analysis for patterns of adherence. Moreover, the solutions involving more
than five clusters comprise spurious empty clusters, or clusters which are too small to be
of practical use.

The cluster trajectories of the preferred five-cluster solution are shown in Figure 2.7b,
showing an emphasis on representing trajectories with lower usage due to the modeling of
cluster-specific and time-varying variances, because these decline over time for the early
drop-out and non-user groups.

2.4.2 Distance-based clustering
In a distance-based cluster approach, trajectories are clustered based on their pairwise
similarity, as measured by a user-specified dissimilarity metric, i.e., distance measure. This
approach comprises cluster methods for which the user can specify an arbitrary distance
metric. This enables fast experimentation with different measures of similarity suitable to
the application at hand. The distance between two trajectories y1 and y2 is defined by a
distance measure d(y1,y2). A commonly used measure is the Euclidean distance

3https://www.statmodel.com/
4http://www.statisticalinnovations.com/latent-gold-5-1/
5https://CRAN.R-project.org/package=mclust

https://www.statmodel.com/
http://www.statisticalinnovations.com/latent-gold-5-1/
https://CRAN.R-project.org/package=mclust
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Figure 2.7: LLPA case study analysis.

(a) BIC per solution (lower is better).

30,000

40,000

50,000

60,000

1 2 3 4 5 6 7 8

Number of clusters

B
IC

(b) The identified cluster trajectories.

E D

C

B

A

0

2

4

6

1 61 121 181 241 301 361

Day
H

ou
rs

 o
f u

se

Cluster
A (37%)
B (30%)
C (6%)
D (11%)
E (15%)

d(y1,y2) =
√∑

j

(y1,j − y2,j)2, (2.6)

which essentially yields a raw-data based approach. However, the advantage of a distance-
based approach is that domain knowledge can be taken into account in specifying the
distance measure to capture the relevant properties of the trajectories. The Euclidean
distance has been shown to be applicable to longitudinal data (Genolini and Falissard,
2010), resulting in cluster trajectories with arbitrary shapes, but conversely the measure
is sensitive to temporal offsets between subjects, and noise. Many alternative distance
measures have been suggested, including measures that account for temporal offsets (e.g.,
dynamic time warping), or reduce the complexity of the trajectory (e.g., piecewise-constant
approximation) (Aghabozorgi et al., 2015; Wang et al., 2013). Another advantage is that
the pairwise distances between trajectories yields a hierarchy which provides additional
information on the heterogeneity.

2.4.2.1 Agglomerative hierarchical clustering

Hierarchical clustering is a type of cluster method that identifies a hierarchy in a set of
objects based on a distance measure. The resulting hierarchy provides an ordering of the
objects based on their similarities, which can be a useful tool in visualizing a spectrum
of trajectories with different shapes. The number of clusters can be estimated from the
distance between hierarchical clusters (Islam et al., 2015).

Agglomerative hierarchical clustering (AHC) uses a bottom-up approach to identify
the hierarchical structure of the objects. Each of the objects start out as separate clusters.
The AHC approach is commonly used in combination with a post-hoc analysis to identify
factors that may differ between clusters. Babbin et al. (2015) investigated the daily time
on CPAP therapy of patients with obstructive sleep apnea to identify clusters of patients
with similar adherence trends. Other examples include the investigation of Hoeppner et al.
(2008) of daily smoking patterns after patients went through a reduction program, and
patterns of alcohol use (Harrington et al., 2014).
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Figure 2.8: Example of a dendrogram computed from longitudinal data comprising three
groups, each having three trajectories. The cluster trajectories are described by an intercept
and slope, with coefficients βA = (3,−0.3), βB = (2, 0), and βC = (0, 0.2), respectively.
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In AHC, the hierarchy is identified using a greedy approach, where at each step the
two most similar clusters are combined into a new cluster. This is repeated until a single
cluster remains containing all objects. The resulting hierarchy can be visualized in a
dendrogram. To illustrate, Figure 2.8 depicts the hierarchy of nine trajectories generated
from three different linear models.

Combining objects and clusters involves two distance measures. Firstly, a distance
measure d

(
yi,yj

)
is needed for determining the similarity of the trajectory of individual

i and individual j, with i ̸= j. Secondly, a distance measure between clusters Ir and Is is
needed, where a cluster Ig is the subset of individuals (out of all individuals I) that belong
to cluster g. The distance d (Ir, Is) is referred to as the linkage criterion, with r ̸= s.

An intuitive approach to measuring the distance between clusters is to measure the
average pairwise distances between the clusters. This is referred to as the unweighted
average linkage, and is computed by

d(Ir, Is) = 1
|Ir| · |Is|

∑
i∈Ir

∑
j∈Is

d(yi,yj).

Alternative linkage criteria which are commonly used include the minimum linkage
min{d(yi,yj) : i ∈ Ir, j ∈ Is}, centroid linkage, and Ward’s minimum variance method.

AHC provides a good trade-off between finding a reasonable hierarchy quickly, and
identifying the optimal hierarchy (i.e., the hierarchy that minimizes the overall distance).
However, the computation time quickly grows with the number of trajectories, due to the
pairwise distances that must be computed between all subjects.

Case study As all measurements across patients are aligned in the case study, we
can apply the Euclidean distance to compute the pairwise similarity between patient
trajectories. We then apply the agglomerative hierarchical cluster algorithm that is
available in R using the average linkage. For each number of clusters, the trajectory
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Figure 2.9: Case study analysis using AHC.
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(c) The identified cluster trajectories.
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assignments are obtained based on the identified hierarchy visualized in Figure 2.9a. The
solutions are compared using the ASW. As can be seen in Figure 2.9b, the ASW is
considerably lower for solutions with more than three clusters. A cluster solution with
an ASW above 0.5 is generally considered to have some consistent structure. In an
exploratory setting it may be worthwhile to forfeit this rule of thumb in favor of identifying
additional meaningful temporal patterns, given that the clusters are of sufficient size. In
this case however, the solutions with a larger number of clusters include clusters of outliers
comprising only a single trajectory (as can be seen from the hierarchy), so the three-cluster
solution is preferred.

The solution comprising three clusters is shown in Figure 2.9c. Here, the cluster
trajectories are computed by averaging across all trajectories that are assigned to it. The
solution provides a balanced representation of the seven groups, combined based on the
respective mean level.

2.4.3 Feature-based clustering
In a feature-based clustering approach, individual trajectories are described in terms of a
parametric model that captures the relevant characteristics. Here, each trajectory yi is
reduced to a set of model parameters bi = (bi,1,bi,2,, ..., bi,p) which can be regarded as the
p features of the trajectory. Clusters of trajectories with similar characteristics can then
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be identified by applying a cross-sectional cluster algorithm to the model parameters. The
appeal of a feature-based clustering approach is that researchers can incorporate domain
knowledge in defining the similarity between trajectories by using an appropriate model, or
by computing several independent characteristics. The characteristics may better capture
the differences between trajectories than a cross-sectional approach based on the shape
alone, resulting in more well-separated clusters (Wang et al., 2006). The approach is also
commonly referred to as a feature-based or model-based approach6 (Aghabozorgi et al.,
2015).

The second step of clustering is easy to implement and available in most statistical
software packages through the widespread availability of clustering algorithms such as
k-means. There are several strengths to the approach: especially within the context of ILD.
Firstly, the parametric representation of trajectories is naturally more robust to missing
observations, as the computed characteristics tend to be based on multiple observations.
Secondly, the approach can handle trajectories of varying lengths between individuals or
measured at different intervals (Wang et al., 2006). Lastly, the method scales well with
the amount of data, as the representation is of constant size independent of the number of
observations. Moreover, the trajectory representations only need to be computed once,
after which a cluster algorithm can be fitted to the feature data for varying settings as
part of the model selection.

2.4.3.1 Individual time series representations

Trajectories can be represented in many ways. An intuitive approach to describing each
trajectory is in terms of a linear model dependent on time (e.g., an intercept and slope),
as seen in multilevel modeling, where the individual trajectory representations can be
obtained from the estimated random effects and are then clustered using a cluster algorithm
(e.g., k-means (Twisk and Hoekstra, 2012)). While this is a useful approach when there
are relatively few observations per trajectory, independently estimating the representation
of each trajectory frees researchers of any assumptions on the population heterogeneity,
yielding a more detailed description of the heterogeneity (Liu, 2017). This approach is
referred to as an individual time series (ITS) analysis (Bushway et al., 2009; Greenberg,
2016; Liu, 2017).

An example of the ITS approach to clustering is seen in a method named anchored
k-medoids, created by Adepeju et al. (2019), where the trajectories are represented by
time-dependent linear regression models. The trajectories are then clustered based on the
coefficients using k-medoids. The k-medoids cluster algorithm is similar to k-means, but
uses one of the observations (i.e., objects) as the cluster center instead of an average across
observations. This is especially useful for ITS representations because the algorithm can
handle arbitrary distance metrics and does not require the computation of an average
cluster representation, which may not be sensible for some model coefficients or distance
metrics.

There are two advantages to the ITS approach. Firstly, the trajectory models can be
estimated independently, allowing for a trivial parallelization of the estimation process.
Secondly, the independent models do not need to account for any variability between
trajectories and are therefore easier to estimate than a multilevel approach. A disadvantage

6The term “model-based clustering” appears to be used for both feature-based clustering of model
parameters and mixture modeling.
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of modeling each trajectory independently is that there may be trajectories for which the
model fit is poor, resulting in clusters primarily containing poorly fitted models of which
the original trajectories may not be similar. A poor fit can be the result of a trajectory
not meeting the model assumptions, or the number of data points being insufficient
for the model. The possibility to combine multiple representations into a single model
vector provides additional challenges like those seen in cross-sectional clustering involving
high-dimensional data: The coefficients may need to be normalized to ensure that the
distance function is not disproportionately affected by coefficients of a higher magnitude.
On the other hand, a subset of coefficients may be deemed more important (Fulcher and
Jones, 2014).

In its simplest form, trajectories can be represented by summary statistics such
as the mean, standard deviation, skewness, range, degree of stationarity, periodicity,
autocorrelation, or entropy (Fulcher et al., 2013; Aghabozorgi et al., 2015). Another
practical approach is to categorize the response variable into a finite number of values
(i.e., states). Kiwuwa-Muyingo et al. (2011) modeled the adherence behavior of patients
undergoing medical treatment for HIV infection using a first-order Markov chain, modeling
the transitional probabilities of the non-adherent and adherence states. They used AHC
using Ward’s minimum variance method to cluster the transitional probability vectors.
A limitation of many of the statistical measures proposed is that they are under the
assumption that the statistical properties do not change over time. This can be resolved
by correcting for longitudinal changes, by estimating the properties over multiple segments
of the trajectory, or by fitting a linear model that represents the change over time.

In other cases, an abrupt change in the observations may be expected from domain
knowledge. Change points are for example modeled in the work of Axén et al. (2011),
who investigated patients diagnosed with non-specific low back pain. In this work, the
trajectories were modeled using two linear models which describe the early and late
trajectory, respectively, fitted using spline regression. The linear model coefficients, as
well as the estimated intersection point of the two lines, were used as inputs for the second
step clustering.

Wang et al. (2006) propose a set of nine statistical features for describing a trajectory:
Firstly, a trajectory can be decomposed into several components (Kendall et al., 1983);
a trend Tt (the long-term average level), a seasonal effect St, and a cyclic effect Ct

(also referred to as periodicity or frequency). Assuming that the components are not
proportional, a time series can be described using an additive model

yt = Tt + Ct + St + εt, (2.7)

where εt denotes the irregular component (i.e., the residual). Secondly, Wang et al. (2006)
suggest describing aspects of the measurement distribution in terms of the skewness
and kurtosis. Thirdly, the temporal structure of the data is expressed in terms of the
autocorrelation and a test for non-linearity, e.g., through a nonparametric kernel test or
neural network test. Lastly, the trajectory complexity is assessed using self-similarity (a
measure of long-term dependence) and other methods commonly used in describing chaotic
systems (e.g., the Lyapunov exponent, which is a measure of divergence in response to
small perturbations). Especially, the latter metrics require a sizable number of observations
per trajectory to be estimated reliably, so these are only suitable for ILD.

The irregular component εt describes the local changes of a trajectory. A straightfor-
ward way to describe the component is through a white noise process of zero mean and
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variance σ2, assuming independent and identically distributed observations. When the
local changes are assumed to correlate with past values, an autoregressive (AR) model is
typically used. This model regresses past values using a pth-order polynomial. Alterna-
tively, the model error may depend on previous errors, which can be described using a
moving average (MA) model of the past q error terms. Combining these two models, we
obtain an ARMA(p, q) model describing a stochastic process

yt = c+
p∑

i=1
ϕiyt−i +

q∑
j=1

θjϵt−j + ϵt, (2.8)

with c describing the model intercept, and ϕ1,...,p and θ1,...,q describing the parameters
of the AR and MA models, respectively. The model residuals are denoted by ϵt, and are
assumed independent and follow a normal distribution with zero mean and variance σ2

ϵ .
ARMA can be applied to non-stationary data by first applying one or more differencing
steps y′

t = yt − yt−1 to the data, in which case the approach is referred to as ARIMA
(where the I stands for integrated). ARIMA is mostly used in the economic and financial
domain for predicting future values, but it is also of use for process modeling (e.g., adaptive
control), and descriptive modeling (Jebb et al., 2015; Aloia et al., 2008). Kalpakis et al.
(2001) have proposed a distance measure for comparing ARIMA models, which are then
clustered using k-medoids. This approach could be regarded as a hybrid of the feature-
based and distance-based approaches to longitudinal clustering. Other useful methods for
describing stochastic processes are autoregressive conditional heteroskedasticity (ARCH),
Gaussian processes, and state space models (Fulcher et al., 2013).

Case study We model each patient independently on several aspects. Each trajectory
is represented in terms of an intercept βi,0, an orthogonal polynomial of degree two with
coefficients (βi,1, βi,2), a residual error σε,i, and the log-number of attempted days logNi.
This yields the patient representation bi = (bi,1 = βi,0, bi,2 = βi,1, bi,3 = βi,2, bi,3 = σε,i,
bi,4 = logNi). The patient representation vectors bi are scaled to ensure zero mean and
unit variance across the features. We compute a distance matrix using the Euclidean
distance, and then apply k-medoids using the cluster package7 (version 2.1.0) (Maechler
et al., 2019) to obtain clusters which are represented by one of the computed representation
vectors. As with the AHC analysis, we evaluate cluster solutions using the ASW.

The inclusion of irrelevant features can negatively affect the cluster separation. It is
therefore important to select the relevant aspects. Moreover, the approach is sensitive
to spurious estimates of the patient-specific coefficients, as only a limited number of
observations are available. These aspects reduce the separation between clusters, resulting
in a lower ASW. We investigated different subsets of the patient representation vector
by assessing the highest observed ASW. This revealed that the inclusion of bi,3 = σε,i

negatively affected cluster separation, and should be excluded. This is despite the fact
that the data was generated with some degree of group-specific variance. It was found
that the residual error is often underestimated, likely resulting from overfitting of the
polynomial trajectory of some of the patients.

The ASW per number of clusters for the final model bi = (bi,1 = βi,0, bi,2 = βi,1, bi,3 =
βi,2, bi,3 = logNi) is displayed in Figure 2.10a. The highest ASW of 0.49 is obtained for

7https://CRAN.R-project.org/package=flexmix

https://CRAN.R-project.org/package=flexmix
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Figure 2.10: Case study analysis using feature-based clustering.
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(b) The identified cluster trajectories.
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the seven-cluster solution. The cluster trajectories visualized in Figure 2.10b were obtained
by averaging across the respective trajectories. The solution matches the ground truth,
demonstrating the ability to recover the underlying clusters when the relevant longitudinal
aspects are used.

2.4.4 Mixture modeling
Mixture models describe a distribution in terms of a set of underlying distributions, under
the assumption that the distribution comprises different data-generating processes or
random variables. Usually, the submodels assume the same parametric distribution, but
with different coefficients. An example of a mixture distribution comprising normals was
shown in Figure 2.4d on page 18. In a statistical analysis setting, mixture models comprise
a set of regression models. Here too, the submodels tend to have an identical specification.

The basic idea behind a longitudinal mixture model is to fit a mixture distribution
to the longitudinal observations yi. Thus the mixture model density f (yi|θ) with model
parameters θ = (π,θ1, . . . ,θG) is defined by

f (yi|θ) =
G∑

g=1
πgf (yi|θg) . (2.9)

Here, f (yi|θg) denotes the conditional density of yi given that i belongs to cluster g.
The cluster membership of individual trajectories is unknown and therefore treated as
being probabilistic. The probability of a random subject belonging to cluster g is denoted
by πg, where 0 ≤ πg ≤ 1 and

∑
g πg = 1. This can also be interpreted as the cluster

proportion. The posterior probability of a subject belonging to a given cluster is computed
by normalizing the respective cluster density over all clusters by

Pr(yi|i ∈ Ig,θ) = πgf (yi|θg)∑G
g′=1 πg′f (yi|θg′)

. (2.10)
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While the cluster assignments are probabilistic, meaning that a subject can belong to any
cluster with a certain probability, the subject is usually assumed to belong to the cluster
with the highest posterior probability.

The effect of baseline covariates on the cluster membership can be explored by including
a multinomial logistic regression component for πg. For a vector of covariates xi of subject
i, the cluster membership probability is computed by

πg(xi) =
exp(ηgxi)∑G

g′=1 exp(ηg′xi)
, (2.11)

where ηg denotes the multinomial regression coefficients for cluster g. For the purpose
of model identifiability, the last cluster is used as the reference, with ηG = 0. In the
remainder of the overview, we assume a model without cluster membership covariates for
brevity.

The estimation of these mixture models follow the same approach as the EM algorithm
described in subsection 2.4.1.2 on LPA, as this is a type of mixture model as well. The
important distinction is that the mixture models presented in this section allow for an
arbitrary number of measurements per trajectory, and at arbitrary moments in time.

2.4.4.1 Group-based trajectory modeling

Similar to the concept of methods such as k-means or LPA, group-based trajectory
modeling (GBTM8) describes the population heterogeneity via a set of homogeneous
clusters, where subjects are only represented by their respective cluster trajectory (Nagin
and Odgers, 2010a; Nagin and Tremblay, 2005). In contrast, GBTM represents the
trajectories using a parametric model. It can be regarded as a multilevel model with
nonparametric random effects (i.e., a finite number of random effect values, representing
the clusters), which is especially useful when random effects are non-normal or correlated
(Rights and Sterba, 2016). The model is easy to interpret due to its distinct cluster
trajectories. The method is also referred to as latent-class growth analysis or modeling
(LCGA, LCGM), semi-parametric group-based modeling (SGBM), TRAJ9, and sometimes
as nonparametric multilevel mixture modeling (NPMM).

The method originates from the field of criminology. Two decades ago, Nagin and Land
(1993) suggested a model for describing developmental trajectories in individuals for whom
the number of yearly crimes was measured in relation to age. They proposed a longitudinal
Poisson mixture model for separating the trajectories, comprising count data, into distinct
clusters. In a later paper, Nagin (1999) presented GBTM as a flexible method for identifying
distinct trajectories in a set of longitudinal measurements. Furthermore, models were
proposed that assume (censored) normal data or binary data for the observations. Its
applications extend further than the domain it was originally created for. GBTM has been
applied in the field of psychology, medicine (Nagin and Odgers, 2010a; Franklin et al.,
2013), and ecology (Matthews, 2015), among others.

A GBTM describes the trajectories using a linear model. The design vector at time
ti,j is denoted by xi,j . The cluster trajectories are often modeled using polynomials. As
an example, xi,j =

(
1, ti,j , t2i,j

)
describes a second-order polynomial time trajectory. The

8Abbreviated as GTM in some articles.
9Named after the macro in SAS, PROC TRAJ.
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trajectories as modeled by a GBTM, given membership to a specific cluster g, are described
by

yi,j = xi,jβg + εg,i,j , i ∈ Ig, (2.12)

where βg denotes the cluster-specific regression coefficients, and the residual error εg,i,j is
assumed to be independently normally distributed with zero mean and variance σ2

g . The
marginal mean is computed by

E(yi,j) =
G∑

g=1
πgxi,jβg. (2.13)

The GBTM parameters and clusters are estimated by maximizing the likelihood of the
model for a given number of clusters G using the EM algorithm. Missing observations
tend to be assumed missing at random and are therefore ignored. The model can be
adapted to fit a wide variety of response distributions. It has also been used to model
data under a censored normal, zero-inflated Poisson, logistic, or beta distribution (Jones
and Nagin, 2007; Elmer et al., 2018).

Jones and Nagin (2007) proposed the estimation of confidence intervals on cluster
membership probabilities and trajectories using Taylor-series expansion. Nielsen et al.
(2014) proposed an alternative to model estimation and selection using a cross-validation
error methodology. Nagin et al. (2018) extended the GBTM to account for multiple
outcome trajectories, in which the outcomes are assumed to be conditionally independent.
This is found to be favorable to the alternative of clustering each outcome separately and
then combining the results.

There are a couple of disadvantages to modeling trajectories through polynomials.
Firstly, the possible shapes a polynomial may represent is limited, so the model may
not be able to fit the longitudinal shape. Secondly, higher-order polynomials tend to
overfit the data or produce spurious shapes. Researchers should therefore be careful in
interpreting the shapes in detail. As a more reliable alternative, Francis et al. (2016)
proposed smoothing the cluster trajectories using a cubic B-spline. They observed an
improved model fit while allowing for more flexible cluster trajectories.

Overall, GBTM is applicable to ILD in many aspects. The model can handle missing
data, observations measured at different times, and estimation is relatively fast due to the
low number of parameters involved. In addition, the probabilistic nature of the model has
been shown to make it suitable for real-time prediction, where cluster membership and
the expected trajectory can be computed as new observations become available (Elmer
et al., 2019).

Implementations of GBTM are available in SAS10 (Jones et al., 2001), Stata10(Jones
and Nagin, 2013), Mplus11 (Muthén and Muthén, 1998–2012) and OpenMx12 (Boker
et al., 2011), and in R via the lcmm13 (Proust-Lima et al., 2017), crimCV14, flexmix15

(Grün and Leisch, 2008), or mixtools16 (Benaglia et al., 2009) package, among others.
10The plugin is available at http://www.andrew.cmu.edu/user/bjones
11https://www.statmodel.com
12http://openmx.psyc.virginia.edu
13https://CRAN.R-project.org/package=lcmm
14https://CRAN.R-project.org/package=crimCV
15https://CRAN.R-project.org/package=flexmix
16https://CRAN.R-project.org/package=mixtools

http://www.andrew.cmu.edu/user/bjones
https://www.statmodel.com
http://openmx.psyc.virginia.edu
https://CRAN.R-project.org/package=lcmm
https://CRAN.R-project.org/package=crimCV
https://CRAN.R-project.org/package=flexmix
https://CRAN.R-project.org/package=mixtools
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Table 2.2: Single-cluster analysis using mixed modeling with a normalized time covariate.
Here, σ0, . . . , σ3 represent the square root of the diagonal of the covariance matrix Σ.

Model degree σ0 σ1 σ2 σ3 σε BIC

0 2.5 - - - 0.79 33,433
1 2.2 1.4 - - 0.63 29,205
2 2.1 4.4 3.2 - 0.58 27,375
3 2.0 8.7 6.3 4.1 0.57 27,146

Figure 2.11: GBTM case study analysis.
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Case study Prior to the GBTM analysis, we investigate the appropriate trajectory
representation by evaluating mixed models with different polynomial degrees in the fixed
and random effects. We normalize the 26 measurement times by scaling the range from
[1, 351] to [0, 1] for numeric stability. The mixed models and GBTMs are estimated with
the R package lcmm (version 1.7.8), developed by Proust-Lima et al. (2017). The model fit
and variance components are reported in Table 2.2. The residual standard error and BIC
indicate an improved fit with a higher order polynomial. While the model with polynomial
representation of degree 3 achieves the best fit, the improvement over the second-degree
model is relatively small. In consideration of the linear increase in the number of model
parameters with an increasing number of clusters, we settle for a quadratic representation.

We estimate the GBTM solutions using a grid search with 20 random starts to identify
a good starting position during model optimization. As depicted in Figure 2.11a, the
model fit improves with an increasing number of clusters. Judging from the change in
improvement from one solution to the next, a three- or four-cluster solution is preferred.
Upon visual inspection of both solutions, we opt for the four-cluster solution due to the
addition of the cluster trajectory similar to the Variable users group in the ground truth.

The four cluster trajectories are shown in Figure 2.11b. Overall, this solution adequately
captures the heterogeneity of the data. Cluster B (32%) represents the non-users, early
drop-outs, and occasional attempters. Cluster C (34%) comprises the slow improvers and
good users. The remaining clusters match the ground truth.
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2.4.4.2 Growth mixture modeling

Growth mixture modeling (GMM) extends GBTM with the inclusion of parametric random
effects, enabling a better fit to the data under the assumption of within-cluster variability
(Verbeke and Lesaffre, 1996; Muthén and Shedden, 1999; Muthén et al., 2002; Muthén,
2004). The method is also described as a longitudinal latent-class mixed model, a multilevel
mixture model, or a finite mixture of mixed models. GMM has been applied across many
domains in the past decade. Although GMM is commonly applied and described in the
structural equation modeling framework, we present it in a mixed-modeling approach to
be consistent with the notation of the previous sections. The longitudinal observations,
conditional on belonging to cluster g, can be described by the linear mixed model specified
in Equation 2.2 on page 16 with

yi,j = xi,jβg + zi,jug,i + εg,i,j , i ∈ Ig

ug,i ∼ N(0,Σg) (2.14)
εg,i,j ∼ N(0, σ2

ε,g).

where the symbols have the same meaning as defined for the mixed model, but are
cluster-specific. The marginal mean of a GMM is thus given by

E(yi,j |ug,i) =
G∑

g=1
πg

[
xi,jβg + zi,jug,i

]
. (2.15)

The model parameters are commonly estimated using maximum likelihood estimation
(MLE) via the expectation-maximization (EM) algorithm. Due to the large degrees of
freedom, the iterative EM procedure is unlikely to find the optimal solution, and instead
tends to converge towards suboptimal solutions. A better solution can be found by fitting
the model many times from random starting points and selecting the best fit from these
candidates. Alternatively, the solution of simpler models is used as a starting point, e.g.,
using a GBTM (Jung and Wickrama, 2008).

Although GMM is suitable for ILD much like GBTM, it is considerably slower to
compute due to the number of model parameters growing drastically with the number
of clusters. Consider that each cluster has a new set of parameters βg, Σg, and σ2

ε,g, in
addition to the cluster-specific random variables ug,i (Twisk and Hoekstra, 2012). The
model complexity is typically reduced to speed-up estimation by assuming that certain
parameters are identical across the different clusters (e.g., the residuals and variances).
These challenges also inspired a different approach to performing a covariate analysis.
While these could be included into the GMM, for larger datasets it is more practical
to estimate an unconditional GMM, followed by a multinomial logistic regression of the
covariates based on the subject cluster membership, referred to as a three-step approach
(Asparouhov and Muthén, 2014). We address the three-step approach in a more general
context in Section 2.5.

Bayesian estimation In a Bayesian approach, the model parameters θ of the GMM
are treated as a random variable, whereas in MLE a point estimate is obtained (Gelman
et al., 2013). The posterior distribution of the model parameters given the data can be
computed using Bayes’ rule
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Pr(θ|Y ) = Pr(Y |θ)Pr(θ)
Pr(Y ) , (2.16)

where Y denotes the dataset, Pr (Y |θ) denotes the likelihood of observing the data under
the given model, Pr (θ) denotes the prior information about the model parameters, and
Pr(Y ) denotes the evidence for the model. As Pr(Y ) is constant over θ, it suffices to
consider Pr (θ|Y ) ∝ Pr (Y |θ) · Pr (θ) for statistical inference. Bayesian inference is most
beneficial when informative priors can be provided, as the ability to incorporate domain
knowledge into the parameter estimation through priors improves model estimation under
low sample sizes (Gelman et al., 2013). However, specifying informative priors could be
challenging in an exploratory cluster analysis setting, especially when a large number of
clusters is sought out.

Compared to MLE, Bayesian inference allows for the estimation of more complex models
involving a large number of parameters, for which numerical integration is infeasible (Ansari
et al., 2000). In a comparison between MLE and Bayesian estimation, Depaoli (2013) found
that the Bayesian approach resulted in an improved recovery of the model parameters.
Serang et al. (2015) demonstrated the improved parameter recovery and smaller standard
errors for estimating nonlinear trajectories, applied to reading development trajectories of
children, although they noted an increase in convergence problems.

Due to the identical definition of the clusters in the mixture, the cluster ordering (i.e.,
labels) can change freely during sampling, referred to as the label switching problem. This
presents a problem when attempting to interpret the cluster-specific posterior distribution
samples. A possible solution to label switching is to add constraints to the model to ensure
identifiability, such as enforcing an ordering on the cluster intercepts β1,0 < β2,0 < ... <
βG,0 (Sperrin et al., 2010).

Advanced applications Growth mixture modeling is a powerful and flexible statistical
approach for exploratory analyses, which is likely why the method has been applied
extensively by researchers throughout the past two decades. Moreover, the model is
applicable to ILD for the same reasons as GBTM. An example of an ILD application
is seen in the work of Shiyko et al. (2012), who proposed an approach to applying a
Poisson-GMM to ILD to investigate patient’s daily number of smoked cigarettes. Many
researchers have adapted GMM to meet their analysis needs. We highlight some of the
proposed extensions here.

Type of response The method can be applied to different types of data such as
binary, categorical, ordinal, count, and zero-inflated data, requiring different distributions
for the response (Muthén and Asparouhov, 2009). Proust-Lima et al. (2009) demonstrated
a joint application of GMM in modeling multiple longitudinal outcomes with time-to-event
data. While the response distribution can be determined from the data, the distribution
of the random effects is more difficult to establish, as wrongly modeling the within-
cluster heterogeneity simply results in additional clusters (Bauer, 2007). The assumption
of normally distributed subgroups has been reconsidered in recent years. Alternative
distributions such as a skewed-normal or skewed-t have been proposed to account for
the skewness and thickness of the tails of the random effects distribution, resulting in a
GMM which is more robust to non-normal groups and group outliers (Lu and Huang,
2014; Muthén and Asparouhov, 2015; Wei et al., 2017). A disadvantage of support for



Section 2.4. Methods 35

thicker tails is that it results in an even larger overlap between clusters than is already
the case for a mixture of normals.

Trajectory representations Many researchers have explored different temporal
shapes and structures. Grimm et al. (2010) investigated nonlinear trajectories in the
reading development of children using specific functions. Nonlinear trajectories have
also been estimated using regularized polynomials (Shedden and Zucker, 2008), fractional
polynomials (Ryoo et al., 2017), and splines (Marcoulides and Khojasteh, 2018; Ding, 2019).
Researchers have also accounted for sudden changes over time using piecewise trajectory
representations, referred to as a piecewise GMM (PGMM) (Li et al., 2001). PGMMs have
also been proposed to handle multiple change points, change points determined by the
model (Liu et al., 2018; Ning and Luo, 2018), and subject-specific change points (Lock
et al., 2018). The intervals between change points can also be regarded as a possible state
change. In a multiphase or sequential-process GMM (Kim and Kim, 2012; Reinecke et al.,
2015), the latent class membership is estimated per interval. State change patterns can
then be assessed using latent transition models (Collins and Lanza, 2010).

Missing data Longitudinal datasets often comprise missing observations. In most
analyses, missing data is assumed to be missing completely at random. However, it is
not uncommon for the missing-data mechanism to affect the longitudinal data process,
resulting in biased estimates if unaccounted for (Little, 1995). This can happen, for
example, in case of loss to follow-up or due to subject-specific factors. Over the past
decade, adaptions to GMM have been proposed to account for different missing data
mechanisms. For example, Lu et al. (2011) applied a Bayesian approach to modeling a
GMM where the missing data mechanism is conditional on the cluster membership and
observed covariates. A detailed overview of adaptations to model missing-data mechanisms
is provided by Enders (2011) and Muthén et al. (2011). As the assumptions for the type
of missing data are inherently untestable, it is desirable to conduct a sensitivity analysis.
Bruckers et al. (2018) provide an overview of models for handling non-ignorable subject
dropout, and show how the estimation of different missing-data models can be used to
determine the reliability of the cluster results in relation to different assumptions.

Software GMM is available through several modeling programs, e.g., Mplus (Muthén
and Muthén, 1998–2012), Latent GOLD (Vermunt and Magidson, 2016), and the R
packages OpenMx (Boker et al., 2011), lcmm (Proust-Lima et al., 2017), mixAK17(Komárek
and Komárková, 2014), flexmix (Grün and Leisch, 2008), and mixtools (Benaglia et al.,
2009). GMM can be estimated using a Bayesian approach in several software packages,
including OpenBUGS18 (Lunn et al., 2009), Jags19 (Depaoli et al., 2016), and Stan20

(Carpenter et al., 2017), all of which have interfaces to R. In R, specific Bayesian models
are implemented, for example, in mixAK (Komárek and Komárková, 2014), and brms21

(Bürkner, 2017).
17https://CRAN.R-project.org/package=mixAK
18http://openbugs.net
19http://mcmc-jags.sourceforge.net
20http://mc-stan.org
21https://CRAN.R-project.org/package=brms

https://CRAN.R-project.org/package=mixAK
http://openbugs.net
http://mcmc-jags.sourceforge.net
http://mc-stan.org
https://CRAN.R-project.org/package=brms
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Figure 2.12: GMM case study analysis.
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Case study The GMM analysis follows the same steps as the GBTM analysis, and
the same software is used to estimate the model. We therefore refer to Table 2.2 for the
exploration of the trajectory shape using a single-cluster mixed model. We employ a
quadratic GMM with cluster-specific random patient intercepts, and cluster-independent
structured covariance matrices. We found that a grid search with 20 random starts was
sufficient for consistently arriving at the best solution. The resulting model BICs are
shown in Figure 2.12a, indicating that the best model fit is obtained at the seven-cluster
solution. The cluster trajectories thereof are shown in Figure 2.12b, showing a close match
with the ground truth insofar the cluster trajectories can be represented using second-order
polynomials.

2.4.4.3 Time-varying effect mixture modeling

In regression analysis, the associations between the covariates and outcome are typically
modeled as being constant over time. In practice however, associations may change over
time, resulting in a lack of understanding of the true temporal association if this change is
not accounted for. In a varying-coefficient model (VCM), the dynamic association between
covariates is modeled using smooth functions (Hastie and Tibshirani, 1993). VCM has
been applied in longitudinal studies, in which covariates are modeled with one or more
time-varying coefficient functions denoted by β(·). In this form, the model is referred to as
a time-varying coefficient model (TVCM), time-varying effect model (TVEM), or dynamic
generalized linear model. The individual trajectory is described by

yi,j =
Q∑

q=0
xq,i,jβq(ti,j) + εi,j , (2.17)

where x0,i,j = 1, β0 denotes the time-varying intercept over time, and βq denotes the
temporal association between the covariate xq,i,j and time. Furthermore, the residuals εi,j

are assumed to be normally and independently distributed with zero mean and variance
σ2. The coefficient functions are described through smooth continuous functions (i.e.,
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the first-order derivative is continuous), and can capture nonlinear longitudinal relations
between the covariates and time. Note that in the absence of covariates, the model
comprises a single coefficient function that captures the longitudinal trajectory. TVEM is
a promising approach for ILD, as the large volume of data enables the identification of
more complex dynamic associations (Tan et al., 2012).

Over the years, several approaches have been suggested for the estimation of coefficients
for the smoothing functions for the coefficients. Spline regression is used to describe the
function by a piecewise polynomial (typically of order 2 or 3) over a given series of intervals
(Liang et al., 2003; Hoover et al., 1998). The interval boundaries, referred to as knots,
need to be selected carefully based on the data. An alternative approach named spline
smoothing does not require selection of intervals, but is much more computationally
intensive (Hoover et al., 1998; Hastie and Tibshirani, 1993). A more recent approach
involving P-splines takes the middle ground, using a penalty factor to prevent overfitting
while ensuring a smooth fit (Song and Lu, 2010; Tan et al., 2012). Splines are described
through a linear model, and consequently, a TVEM describes a linear model of which the
model parameters can be estimated using ordinary least-squares (OLS).

Mixtures of VCMs or TVEMs have been proposed for handling heterogeneity, where
the different groups are represented through clusters-specific coefficient functions (Lu and
Song, 2012; Dziak et al., 2015; Huang et al., 2018; Ye et al., 2019). Lu and Song (2012) used
an approach similar to GMM, where a random intercept and slope are included to model
within-cluster heterogeneity. However, the use of linear random effects in combination
with nonlinear cluster trajectories may be limiting, as the nonlinear changes remain
homogeneous within cluster. Dziak et al. (2015) proposed an alternative model which
they named MixTVEM, given by

yi,j =
Q∑

q=0
xq,i,jβg,q(ti,j) + εg,i,j , i ∈ Ig. (2.18)

The measured outcome yi,j is assumed to be normally distributed when conditioned on
the cluster variable. The model is similar to GBTM, but accounts for cluster heterogeneity
using an AR-1 model with measurement error. Huang et al. (2018) proposed a mixture of
VCMs with flexible mixing proportions and dispersion, enabling the modeling of these
aspects over a covariate, e.g., time.

The parameters of the model can be estimated using the EM algorithm (Dziak et al.,
2015) or a Bayesian approach (Lu and Song, 2012). The optimization procedure for
MixTVEM is initialized by assigning random posterior probabilities to the classes. Dziak
et al. (2015) recommend to run the procedure for at least 50 random starts as the
optimization may converge on different solutions, or fail to converge altogether. Due to
the needed repeated runs, the tuning of the penalty factor, and the relative complexity of
the model, the method is highly computationally intensive to estimate, as noted by Yang
et al. (2019).

Case study The MixTVEM models are estimated using the R code provided by Dziak
et al. (2015)22 (version 1.2). P-splines of a third degree polynomial order are used with
six interior knots, spaced equally over time. The model is fitted from 20 random starts

22https://github.com/dziakj1/MixTVEM

https://github.com/dziakj1/MixTVEM
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Figure 2.13: MixTVEM case study analysis.
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to obtain good starting conditions, although on a few occasions, a rerun was needed due
to convergence problems. Moreover, the single-cluster estimation consistently failed due
to observations with zero variability from the non-users, which we resolved by adding a
negligible amount of perturbation to the measurements with zero hours. The BICs of the
selected solutions are depicted in Figure 2.13a, showing different levels of model fit to the
data across the number of clusters. We select the solution involving four clusters as it best
captures the different patterns of change over time.

The four cluster trajectories are visualized in Figure 2.13b. Cluster C (36%) comprises
the good users and the slow improvers. Cluster B (29%) represents the variable users and
slow decliners. Cluster A (16%) and D (18%) comprise the non-users, early drop-outs,
and occasional attempters. However, the presence of the occasional attempters appears to
have affected both cluster trajectories, such that neither matches the ground truth.

2.4.5 Number of clusters
The determination of the number of clusters is a prominent topic in the field of cluster
analysis, as the number of clusters is usually part of the model definition and can greatly
affect the resulting solution. However, there is no consensus on how to identify the true
number of clusters. This is largely attributable to the different types of cluster analyses;
each having different purposes, expectations, and applications (Von Luxburg et al., 2012).
The identification of the number of clusters is part of a broader search for the appropriate
cluster model, which we shall refer to as model selection. Interestingly, considerable
attention is given in the literature to the identification of the number of clusters, over the
more general topic of ensuring the overall best model specification, referred to as model
selection. This is arguably justifiable in a longitudinal context under the assumption that
the trajectory models are sufficiently flexible. We summarize the many approaches and
metrics used for identifying the number of clusters.

Model metrics Although no tests exist for the number of clusters or the presence of
clusters, approximate likelihood ratio tests (LRT) enable researchers to test whether the
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model with G + 1 clusters describes the data statistically significantly better than the
identically specified model with G clusters. Commonly used variants are the Vuong-Lo-
Mendell-Rubin (VLMR) LRT (Lo et al., 2001), the adjusted Lo-Mendell-Rubin (aLMR)
LRT (Lo et al., 2001), and the bootstrap LRT (BLRT) (McLachlan and Peel, 2000).
These approaches are useful on smaller datasets for preventing overfitting. However, the
tests tend to result in the identification of too many clusters (i.e., overextraction) on
large datasets, where smaller changes between models are statistically but not practically
significant (Grimm et al., 2017). A similar concept is seen in difference-like criteria, which
measure the relative improvement between successive cluster solutions (Vendramin et al.,
2010). Along similar lines, Grimm et al. (2017) have applied k-fold cross-validation for
model selection based on how well the model represents previously unseen data (in terms
of the likelihood).

The most applied approach involves the estimation of a cluster model for a range of
number of clusters. A metric is then used to identify which of the models provides the
best fit. Information criteria strike a balance between model fit (the likelihood) and model
complexity (the number of model parameters). These model metrics can also be used to
compare across model specifications, selecting the model that minimizes the metric.

Metrics for identifying the number of clusters have been studied extensively for GMM
and GBTM (Nylund et al., 2007; Feldman et al., 2009; Klijn et al., 2017; Tofighi and
Enders, 2008). Overall, the findings are mixed, likely due to the different settings (e.g.,
sample size, cluster separation, noise) under which these evaluations have been performed
(Grimm et al., 2017). Overall, the BIC is commonly used for the class enumeration in
GBTM and GMM. The BLRT has been demonstrated to be a reliable alternative (Nylund
et al., 2007; McNeish and Harring, 2017).

Malsiner-Walli et al. (2016) proposed a metric based on the occurrence of empty
clusters in a mixture model with many clusters, where the true number of clusters is
determined based on the number of non-empty clusters. This approach has the advantage
of only requiring a single model to be fitted. Nasserinejad et al. (2017) experimented
with this metric for different thresholds for the number of trajectories that constitute a
non-empty cluster. Another metric of interest is the entropy of the posterior probability
matrix, as a measure of cluster separation (i.e., probabilities should be close to either zero
or one).

Bayesian metrics Different criteria have been proposed for models estimated through
Bayesian inference. They make use of the posterior distribution of the model coefficients.
One of the more commonly used criteria is the deviance information criterion (DIC),
introduced by Spiegelhalter et al. (2002). Its use has not been without criticism. For
example, there exist multiple definitions of the DIC, each with a different interpretation
(Celeux et al., 2006). Spiegelhalter et al. (2014) have summarized and addressed the
concerns. Recent alternative criteria are the widely applicable AIC (WAIC), and Pareto-
smoothed importance sampling using leave-one-out cross validation (PSIS-LOO) (Vehtari
et al., 2017).

Cluster criteria Criteria for cluster algorithms tend to assess the solution based on the
underlying data and assume a hard partitioning of the data. The advantage of such an
approach is that it is independent from the method that was used, making it possible to
assess the model fit across cluster methods. The criteria tend to contrast the within-cluster
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variability against the between-cluster variability to assess the separation between clusters,
as seen, e.g., the Calinski-Harabasz (CH) and Davies-Bouldin criteria. As an example,
Todo and Usami (2016) found the CH criterion to perform better for model selection
than BIC in a latent profile analysis. Another commonly used criterion is the ASW. A
comprehensive overview of commonly used cluster criteria is provided by Vendramin et al.
(2010).

Upper bound The upper bound on the largest number of clusters to be evaluated is
based on multiple factors. Firstly, prior knowledge may give researchers reasons to expect
the true number of clusters to be below a certain number. Computational factors are also
at play (Nasserinejad et al., 2017), as the model computation time scales non-linearly
with an increasing number of clusters for complex models, making the evaluation of a
larger number of clusters impractical. Along similar lines, the increasing model complexity
with an increasing number of clusters tends to result in more frequent occurrences of
convergence issues. The largest number of clusters that can be estimated is also limited
by the sample size, considering that all submodels must comprise enough trajectories to
obtain reliable estimates (Sterba et al., 2012). Studies involving a small sample size are
therefore naturally limited to identifying a lower number of clusters. Similarly, having
many clusters limits the power of a post-hoc cluster comparison.

Subjective assessment Researchers have argued against the optimization of a sole
metric for the identification of the number of clusters, as it is rather mechanical in nature,
and disregards the domain-dependent aspect of the analysis (Nagin et al., 2018). Moreover,
the commonly used metrics tend to focus on discerning a sufficiently improved model fit,
however, a better model may fit aspects of the heterogeneity which are not of interest
for the purpose of the analysis (Van Den Bergh and Vermunt, 2019). This issue can
occur in datasets with considerable overlap between clusters, where the introduction of
additional clusters may consistently improve the model fit, albeit with diminishing returns.
Due to the non-linear nature of these diminishing improvements, there tends to be a
point or region where the marginal improvement drops. The identification of this turning
point, representing the preferred number of clusters, creates room for subjectivity into the
decision. This approach, often assessed visually, is commonly referred to as the "elbow
method". It is used, for example, by Dziak et al. (2015) in their MixTVEM analysis, to
assess the relative improvement in terms of the BIC.

Arguably, the choice of metric or metrics involves a domain-dependent decision. As the
choice of the best metric may not be clear-cut, taking into consideration multiple metrics
can provide a more reliable result (Ram and Grimm, 2009). However, because fit metrics
capture different aspects of the model fit, it is inevitable that some of the metrics disagree
on the optimal number of clusters.

Hierarchical models There is a practical limit to the number of clusters that can be
used to approximate the heterogeneity, for it becomes increasingly difficult to produce
unique labels for each of the clusters (Sterba et al., 2012). Instead of identifying an
independent set of clusters, one can search for a cluster tree hierarchy using a hierarchical
cluster algorithm, where each cluster is further explained in terms of subclusters. In
this way, an arbitrary level of granularity can be obtained up to the subject level. This
approach can be estimated through a cross-sectional or feature-based approach using an
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agglomerative hierarchical cluster algorithm. In recent years, Van Den Bergh and Vermunt
(2017) proposed a top-down parametric approach based on GBTM, named latent-class
growth trees (LCGT). They identified the root of the hierarchy using a standard GBTM
analysis and metric, but subsequent clusters are fitted using a two-cluster GBTM until no
more significant improvement is obtained. Another advantage of the approach is that the
tree accounts for classification error, as opposed to the hard partitioning used in traditional
hierarchical cluster algorithms. Furthermore, covariates can be included for comparison or
cluster membership prediction through a three-step estimation approach (Van Den Bergh
and Vermunt, 2019).

Nonparametric mixture models A promising alternative to the post-hoc identification
of the number of clusters, or model selection in general, is seen in nonparametric modeling,
where only a single model is estimated. Here, the model complexity is grown as needed
to represent the data in an infinite parameter space. In such a model, the number of
clusters G is part of the model parameters to be estimated (Richardson and Green, 1997;
Green and Richardson, 2001). This model can be realized using a Bayesian approach
by placing a Dirichlet process (DP) (Ferguson, 1973) prior on the number of clusters G.
The DP mixture model (DPMM) describes the observations as a function of the model
parameters θ provided by the DP (Lo, 1984). It has been applied to clustering gene
expression data (Sun et al., 2017). Heinzl and Tutz (2013) demonstrated that a DPMM
could also be estimated with an EM algorithm instead of MCMC, although they did not
compare between estimation algorithms. DPMMs can be estimated in R for example via
the DPpackage23 by Jara et al. (2011) or the BClustLonG24 package by Sun et al. (2017).

2.5 Guidelines for conducting a longitudinal cluster
analysis

Many decisions are involved in a longitudinal cluster analysis. The need for guidelines
comes not only from obtaining reliable results, but also comes from ensuring proper
reporting to enable reproducible research. Unfortunately, the exploratory and domain-
dependent nature of clustering inevitably means that there is no single formal process or
method that covers all applications and purposes (Nagin and Odgers, 2010a). Instead, the
analysis should be adapted to the research questions or intended application of the model.
Guidelines can still play a role here, as there are common themes to any longitudinal
cluster analysis.

We broadly outline the typical aspects and approaches involved in a longitudinal cluster
analysis. We focus on the guidance given by researchers on the topic of mixture modeling,
as these typically parametric models tend to involve many decisions (Nagin and Odgers,
2010a). We summarize the steps as follows:
1. Analyze the model variables. The type of longitudinal response (e.g., categorical,

ordinal, continuous) and the distribution thereof (e.g., normal, Poisson, zero-inflated,
truncated) should be understood. In addition, the distribution of the covariates should
be investigated, as outliers may skew the results.

23https://CRAN.R-project.org/package=DPpackage
24https://CRAN.R-project.org/package=BClustLonG

https://CRAN.R-project.org/package=DPpackage
https://CRAN.R-project.org/package=BClustLonG
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2. Investigate the missing data mechanism. This step is crucial for ILD, where the
varying continuous measurement times may be underlying to patterns of missingness. An
advantage of clustering is that for a missing data mechanism related to the longitudinal
outcome, this is handled by the clusters. Data is therefore usually assumed to be
missing at random (MAR). Missing not at random (MNAR) data has been handled by
using pattern mixture models.

3. Model the data as a single cluster. Prior to the cluster analysis, it is good
practice to understand the performance of the single-cluster case (Ram and Grimm,
2009; Van de Schoot et al., 2017). If the single-cluster model achieves a good fit, there
may be little added value from complicating the analysis by introducing additional
clusters. Alternatively, the heterogeneity could be assessed by comparing the coefficients
obtained from separate models for each trajectory if the sample size allows for it. The
single-cluster model may also be of use for identifying the approximate trajectory shape.

4. Provide a rationale for clustering. Ideally, the analysis is justified by theory or
domain knowledge (e.g., previous studies) that strongly hint at the existence of clusters.
This step also pertains to the way the clusters are interpreted, i.e., whether to use
direct or indirect clustering.

5. Identify the best model. This step is by far the most intricate, both in terms of
number of decisions and computation time. In view of exploring the data heterogeneity,
it is preferable to start with a model that does not account for covariates other than
time (Vermunt, 2010), referred to as the unconditional model. An example of method
and model selection is found in the analysis by Feldman et al. (2009). The choice of
method, model specification, estimation method, and the selected number of clusters
all affect the model fit to the data. As such, arriving at the final model may involve
several iterations of the following substeps:
(a) Choose the cluster method. The methods have different strengths and lim-

itations in terms of, e.g., flexibility in modeling trajectory shapes, capability to
model heterogeneity, sample size requirements, and computational scalability. It
is worthwhile to weigh these aspects in deciding on the method to use.

(b) Choose the estimation approach and method. Cluster models can be
challenging to estimate, as estimation algorithms may be unable to identify the
optimal solution in the vast parameter space. It is therefore recommended to
perform repeated runs with different random starting values, and to select the
model with the best fit from the candidate models (Jung and Wickrama, 2008;
Sher et al., 2011; McNeish and Harring, 2017). Moreover, it is worthwhile to
experiment with different estimation methods for improved convergence (e.g., by
increasing the number of iterations) and computational efficiency. The estimation
algorithm may fail to converge, or the identified solution is invalid due to various
reasons (e.g., out-of-bound coefficients, or empty clusters).

(c) Specify and select the most appropriate model. This typically manual
process involves many decisions, including the specification of the trajectory shape
(e.g., polynomial, or spline), the distribution of the response variable, any covariates,
the shared parameters between clusters (e.g., the covariance matrix), and cluster
heterogeneity. These decisions can be guided by domain knowledge or by metrics
for assessing the improved fit to the data. In particular, the trajectory shapes
can be explored using a cluster model with a nonparametric representation of
the cluster trajectory (Todo and Usami, 2016). Alternatively, the task of model
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specification and selection can be considerably simplified by using regularized or
nonparametric models.

(d) Identify the number of clusters. There are many approaches to identify the
number of clusters, as described in 2.4.5. Typically a forward selection approach
is used where a cluster model is fit and evaluated for an increasing number of
clusters (Van de Schoot et al., 2017). One or more metrics, possibly taking into
account domain knowledge, are used to gauge the best number of clusters.

(e) Assess the model adequacy. The model fit can be assessed from the residual
observation errors of the model, which may reveal structural deviations (Wang
et al., 2005; Feldman et al., 2009; Lennon et al., 2018). Adequacy may also be
considered in terms of model parsimony, as similar clusters or clusters representing
only a small proportion of the trajectories add little value to the overall model fit.
The separation between clusters can be evaluated through the cluster membership
probability matrix (Nagin, 2005), or by comparing the cluster trajectories and the
variability within clusters (either visually or by the means or coefficients) (Feldman
et al., 2009; Nagin and Odgers, 2010a; Lennon et al., 2018). It is also worthwhile
to assess the standard errors or confidence interval of the model coefficients for
meaningful effects.

(f) Validate the model. Longitudinal cluster models can involve many parameters
as the number of parameters scales linearly with the number of classes, and thus the
models are sensitive to overfitting (i.e., may not generalize well) on small datasets.
If a model is estimated on random subsets of the data (e.g., via bootstrapping)
and yields the same solution, this is indicative that the estimation of the model is
robust. Preferably, the model is evaluated on a holdout (i.e., validation) sample
(Frankfurt et al., 2016), or using a k-fold cross-validation approach. Here, the data
is split into k folds, where k− 1 folds are used for training, and the remaining fold
is used for testing. It is a useful approach for model evaluation or selection under
a more limited sample size (Grimm et al., 2017). Overall, we observe few examples
in literature where this step is performed, nevertheless, it is advisable to assess
the robustness of the selected model, as an overspecification or overextraction of
the number of clusters may result in a model that does not generalize well.

6. Analyze covariates. In many analyses, the association of the longitudinal patterns
with other variables is of interest. Covariates may be included to explain the cluster
membership or the variability within and between clusters. There are different ways to
go about analyzing these effects. In a one-step approach, the covariates are included in
the model specification in step 5c. The inclusion of covariates into the model results in
a more complex model which may be difficult to estimate, leading to convergence issues
or long estimation times. Moreover, the interpretation of the identified longitudinal
patterns becomes more difficult, as the clusters are based on more than the longitudinal
change over time. In a standard three-step approach, the longitudinal cluster model
is first estimated without covariates to establish the underlying latent groups. In
the second step, individual trajectories are assigned to a cluster. In the third step,
the covariates are analyzed. The last step can be approached in several ways. A
post-hoc analysis for comparing covariates between clusters is commonly done either
by comparing the means of covariates between clusters using ANOVA, or by predicting
cluster membership using multinomial logistic regression. However, it is important to
correct for the uncertainty in cluster assignments when comparing covariates between
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clusters (Vermunt, 2010; Bakk et al., 2013). A more detailed overview of the different
estimation approaches is given by Van de Schoot et al. (2017).

7. Interpret the findings. The implication of the identification of clusters depends
on the type of cluster application. A substantial overlap between clusters may still
yield meaningful findings in an indirect application yet discredit the existence of truly
distinct clusters for a direct application of clustering. Similarly, a predictive application
of the model with high accuracy depends on a large separation between clusters. Most
importantly, researchers should consider whether the identified clusters or differences
between clusters are statistically and practically meaningful.

With so many decisions involved in the analysis, reporting these decisions is of the utmost
importance. Van de Schoot et al. (2017) developed a comprehensive 21-item checklist
based on the consensus of 27 experts, referred to as the guidelines for reporting on
latent trajectory studies (GRoLTS), with the aim of improving the transparency and
replicability of the analysis. Complementary to the guidelines summarized above, the
checklist recommends reporting the software and version that was used to perform the
analysis, and to make the analysis source code available. While we will not repeat the
other items, we encourage the reader to read the GRoLTS in full.

Van de Schoot et al. (2017) conducted a preliminary analysis of the state of reporting
in the literature by applying GRoLTS to a selection of studies. They selected 38 papers
that used latent-class trajectory modeling for identifying patterns of post-traumatic
stress symptoms after a traumatic event. On average, the papers only met nine of the
requirements, with the most complete paper meeting fifteen requirements. We believe
these findings help to quantify the broader problem across domains of a lack of sufficient
reporting. Guidelines such as GRoLTS are therefore valuable and practical tools towards
achieving greater transparency, with more interpretable and reproducible findings.

2.6 Discussion
The case study highlights the differences and similarities between the evaluated approaches
to longitudinal clustering. The most apparent contrast is the different number of clusters
of the best solutions (either determined by a cluster metric or manual assessment). The
discrepancy is largely attributable to the different trajectory representations and within-
and between-cluster assumptions of the methods. All methods converged on a solution for
each of the requested number of clusters. Moreover, the solutions for four clusters or less
were highly similar across methods.

The synthetic case study data comprised considerable between- and within-patient
variability. Despite this, the relatively straightforward KML and LLPA approaches yielded
useful solutions. While LLPA uses the same nonparametric representational approach as
KML, the identified cluster trajectories were different. LLPA does account for variability
at each day allowing it to distinguish trend on the basis. In the case study that resulted
into detecting drop-outs from attempters. Both methods are fast to compute and involve
a minimal number of modeling decisions and are therefore practical approaches for quickly
obtaining a sense of the variability in trajectory shapes in a heterogeneous dataset. There
are similarities to the solutions of KML and GBTM, where KML is preferably for non-linear
trajectories (Genolini and Falissard, 2010). However, the ability to incorporate domain
knowledge into a GBTM analysis makes it suitable to assess heterogeneity even under
small sample size (Feldman et al., 2009; Twisk and Hoekstra, 2012).
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The solutions found by GBTM and MixTVEM were similar. However, MixTVEM is
more flexible yet conservative in the trend shapes due to its regularization, which is generally
preferable. The differences observed between the GBTM and GMM solutions demonstrate
the importance of the model specification. Because of the large variation in intercept
between patients, GBTM needs more clusters to represent the many different patient
trajectory intercepts, whereas GMM can accommodate larger variability in intercepts
into a single cluster, leaving more clusters to model other temporal differences (e.g.,
slope). However, this advantage comes at the cost of a more complex model, resulting
in significantly longer computation times, and possibly convergence problems, as evident
from the considerably longer computation time of GMM over GBTM (Feldman et al., 2009;
Twisk and Hoekstra, 2012). In a comparison between KML and GMM, it was found that
GMM is preferred (Twisk and Hoekstra, 2012); this was the case even for a small sample
size (Martin and von Oertzen, 2015). In contrast, under the presence of homogeneous
subgroups, Verboon and Pat-El (2022) found that KML performed better than GMM for
datasets with few observations per trajectory, and marginally better under more sufficient
data conditions. Overall, in the case study, the feature-based approach and GMM most
closely approximated the true group trajectories from which the data was generated.

With the relatively recent attention for ILD, the number of studies evaluating the
methods on this type of data is limited, however. This is unfortunate as ILD presents
new challenges with respect to the volume of data, missing data, model complexity, and
higher computational demands. Many methods scale poorly with an increasing number of
clusters, placing practical limitations on the model complexity and volume of the data. In
case of large sample size or large number of observations, this provides a serious practical
limit on the maximum number of clusters that can be estimated. An almost inevitable
problem associated with ILD is the missingness of data. Patterns for missingness. We
only briefly touched upon this topic.

Due to the broad scope of this tutorial, we cannot possibly cover all areas of research
on methods for longitudinal clustering. Nevertheless, we do wish to mention some of these
unaddressed areas. We restricted the scope to a single outcome, whereas for example, KML,
GBTM and GMM have extensions that support multivariable longitudinal outcomes, also
referred to as joint trajectories. Furthermore, with the aim of presenting the commonly used
approaches to longitudinal clustering, we may have omitted several alternative approaches.
For example, we only briefly touched upon the field of functional data analysis. This is a
class of methods that attempt to represent the data in terms of smooth functions, a method
to which TVEM is related. There has been an increasing interest in further modeling
sources of variation in the data by modeling subject-specific variability in addition the
mean level, referred to as joint mean-variance modeling. As seen in the LLPA case study
demonstration, this can have an impact on the identified clusters. In other applications,
trajectories may be expected to change cluster membership over time. Here, the clusters
represent different unobserved states in which the subject resides over time. Here, a latent
transition analysis can be used to model the transitions between clusters (Collins and
Lanza, 2010).

2.7 Summary
The area of longitudinal clustering has gained much traction over the past two decades.
We have attempted to present a comprehensive guide on how longitudinal cluster analyses
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can be conducted, with an emphasis on the different methods which are available for
this purpose. Clustering is a powerful tool for exploratory purposes, but such analyses
should be performed thoughtfully. We encourage researchers to experiment with different
methods and model specifications to identify the most appropriate model for the data,
and to report the steps and decisions that were part of the analysis to ensure interpretable
results.

Supplementary materials
The dataset and R code used in each of the examples is available online at
https://github.com/niekdt/demo-clustering-longitudinal-data.

https://github.com/niekdt/demo-clustering-longitudinal-data
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Appendix
2.A Strengths and limitations per approach

Table 2.3: High-level comparison between approaches.

Approach Strengths Limitations

Cross-
sectional

clustering

• Fast to compute
• Algorithm implementations are

widely available
• Nonparametric cluster trajectory

representation

• Observation moments must be
aligned across trajectories

• Requires complete data
• Sensitive to measurement noise

(Green, 2014)

Distance-
based

clustering

• Versatile; many available distance
metrics, which could also be com-
bined

• The distance matrix only needs to
be computed once

• Fast to evaluate for a large number
of clusters

• Only practical up to a limited num-
ber of trajectories, as the number of
pairwise distances to compute grows
quadratically with the number of tra-
jectories

• No robust cluster trajectory repre-
sentation (centroid trajectory may
not be insightful)

• Some distance metrics require
aligned observations (e.g., Eu-
clidean)

Feature-
based

clustering

• Versatile; longitudinal features can
be arbitrarily combined into a tra-
jectory model

• Fast to compute
• Can incorporate domain knowledge
• Compact trajectory representation

• Generally requires ILD to ensure a
reliable estimation of the features
per trajectory

• Feature estimates may be unreliable
for trajectories that cannot be rep-
resented

Mixture
modeling

• Parametric cluster trajectory repre-
sentation

• Versatile; choice of latent-class
model, trajectory model, latent-class
membership model

• Compact trajectory representation
• Relatively low sample size require-

ment, both in number of trajecto-
ries, and number of observations per
trajectory (Martin and von Oertzen,
2015)

• Domain knowledge can be incorpo-
rated

• Can assess the association of exter-
nal variables or distant outcomes

• Computationally intensive
• Number of parameters typically

scales linearly with the number of
clusters

• The estimation procedure may not
converge to a good solution; many
random starts are needed
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2.B Strengths and limitations of mixture models

Table 2.4: High-level comparison between the described mixture models.

Approach Relative strengths Relative limitations

GBTM • Fast to compute
• Few parameters
• Easy to interpret

• Sensitive to outliers
• Poor fit, as individual trajectories

are not modeled
• Tends to overestimate the number of

clusters (Twisk and Hoekstra, 2012)

GMM • Within-cluster heterogeneity
• Fewer clusters needed to repre-

sent heterogeneity (Muthén and As-
parouhov, 2015)

• Random effects allow for cluster tra-
jectories with a lower emphasis on,
e.g., intercept.

• Forecast individual trajectories

• Slow to compute (Twisk and Hoek-
stra, 2012)

• Requires many random starts (Mc-
Neish and Harring, 2017)

• Convergence issues (Twisk and
Hoekstra, 2012)

• Clusters can overlap considerably
(Feldman et al., 2009)

• Sensitive to the specified distribu-
tion of the random effects

MixTVEM • Easy to interpret
• Assess time-dependent association

of external variables
• Penalized splines result in less spu-

rious temporal patterns

• Slow to compute (Yang et al., 2019)
• Requires tuning of penalization fac-

tor
• Convergence issues (Yang et al.,

2019)
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Chapter 3

A comparison of methods for
clustering longitudinal data
with slowly changing trends

N.G.P. Den Teuling, S.C. Pauws, E.R. van den Heuvel
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Abstract
Longitudinal clustering provides a detailed yet comprehensible description of time profiles
among subjects. With several approaches that are commonly used for this purpose,
it remains unclear under which conditions a method is preferred over another method.
We investigated the performance of five methods using Monte Carlo simulations on
synthetic datasets, representing various scenarios involving polynomial time profiles. The
performance was evaluated on two aspects: The agreement of the group assignment to
the simulated reference, as measured by the split-join distance, and the trend estimation
error, as measured by a weighted minimum of the mean squared error (WMMSE). Growth
mixture modeling (GMM) was found to achieve the best overall performance, followed
closely by a two-step approach using growth curve modeling and k-means (GCKM).
Considering the model similarities between GMM and GCKM, the latter is preferred
for large datasets for its computational efficiency. Longitudinal k-means (KML) and
group-based trajectory modeling were found to have practically identical solutions in the
case that the group trajectory model of the latter method is correctly specified. Both
methods performed less than GMM and GCKM in most settings.

https://dx.doi.org/10.1080/03610918.2020.1861464
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3.1 Introduction
The connectivity, storage, and sensor solutions of today enable researchers to collect many
data points from subjects over any period of time. The larger volume of data collected
presents both new opportunities and challenges for longitudinal data analysis when it
comes to understanding the data. Notably, a higher number of subjects allows for a
data-driven exploration under the assumption of heterogeneity for subgroups of subjects
with different trends (i.e., group trajectories). It is then important to profile subjects into
different subgroups. While longitudinal cluster analyses have typically comprised only a
small number of repeated measurements over time per subject (e.g., less than ten), there
is a growing availability of high-frequent longitudinal datasets, referred to as intensive
longitudinal data (ILD) (Walls and Schafer, 2006). This type of data enables the estimation
of subject-specific trajectories, especially under the presence of high within-subject or
between-subject variability. Moreover, the increased number of observations allow for the
estimation of more time-sensitive changes.The application of longitudinal clustering spans
many domains, including criminology, sociology, medicine, and ecology. Recent examples
of applications include the identification of subgroups with different cigarette smoking
patterns with the aim of predicting health outcome (Lee et al., 2016), and describing
adolescent substance use trajectories and its association to leisure experience (Weybright
et al., 2016).

Longitudinal data often comprises trajectories with different observation times, or a
different number of observations. ILD comes with additional challenges over repeated
measurements data, such as the high volume of data, modeling the dynamics or volatility
of trajectories, and accounting for strong correlations due to measurements being close in
time.

As demonstrated by past ILD applications, traditional methods are generally applicable
to ILD despite the increased volume of data, although they may not address all challenges.
For example, Shiyko et al. (2012) applied growth mixture modeling to ILD for the flexible
identification of patterns of smoking cessation behavior of up to 29 days to account for
the correlation between observations. Babbin et al. (2015) explored patterns of ILD
comprising daily therapy usage among patients undergoing sleep apnea treatment during
the first six months of therapy. They used a non-parametric trajectory representation,
allowing for high flexibility in the shape of the group trajectories. Lastly, Ernst et al.
(2019) analyzed ecological momentary assessments of subjects, assessing their emotional
state three times per day over a period of 30 days. Subgroups with different emotion
dynamics were discovered by clustering subjects based on individual vector autoregressive
model coefficients.

The methods that have been introduced over the past two decades for the purpose of
longitudinal clustering can be divided into three categories: Firstly, the naive approach
clusters on the observations, in which the temporal relation between the measurements is
not modeled. Secondly, a two-step approach that first describes subject trajectories in
terms of a statistical model or other metrics (which can be regarded as dimensionality
reduction), and then clusters on the model parameters. Lastly, the mixture model approach
describes the clusters using a mixture of statistical models (Muthén and Shedden, 1999).

Considering the different methods for longitudinal clustering that are available, the
question of which method is preferred for a given context arises naturally. In most
published applications, the rationale for selecting a particular longitudinal cluster method
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is not provided. This could be because alternative methods were not considered, or because
the existing body of work on comparisons between methods did not address the relevant
context.

Some combinations of methods have been compared, with contradicting findings, sug-
gesting that the optimal method depends on the scenario being considered. Martin and von
Oertzen (2015) compared growth mixture modeling (GMM) against naive approaches such
as longitudinal k-means (KML) on synthetic data comprising five repeated measurements,
and two or three groups. They found that GMM outperforms the other methods even
for small sample size. Feldman et al. (2009) preferred the group-based trajectory model
(GBTM) over GMM due to the complexity of the latter, and the convergence problems
that arise from it (Frankfurt et al., 2016). They noted similarities in performance between
longitudinal latent class analysis (LLCA) and GBTM, in contrast to Twisk and Hoekstra
(2012), who found LLCA to be more similar to KML and a two-step approach involving
clustering the random effects of a mixed model. Overall, there seems to be a preference
for mixture-based methods, but considering the different approaches to mixture models,
the results are not conclusive.

Most of the comparison studies investigate longitudinal data involving 4-6 repeated
measurements, with few studies exceeding 10 measurements. It is questionable whether
these findings generalize to ILD. For example, having an increased number of observations
per trajectory enables a more reliable estimation of longitudinal change under a higher
degree of variability, which some methods will benefit more from than others. Moreover,
with a growing number of observations per trajectory, a faster but less data-efficient
method may become preferable over a better but considerably more computationally
demanding method.

In a recent study, Verboon and Pat-El (2022) compared the performance of KML,
GMM, and a three-step approach referred to as traj in terms of the recovery of the latent
classes and the membership of the trajectories. They simulated stable, linear, and quadratic
group trajectories, with the trajectories deviating at random at each measurement moment
from the respective group trajectory. Under this scenario of homogeneous groups, KML
was found to perform the best, with GMM performing nearly equally well under enough
observations (10). The performance of the traj method was found to be consistently lower
than the other two methods.

We contribute to the existing body of work by evaluating the performance of five
longitudinal clustering methods in an exploratory setting, applied to many scenarios
comprising group trajectories that smoothly and slowly change over time. The methods
are longitudinal k-means, a mixed-effects model combined with k-means, group-based
trajectory modeling, growth mixture modeling, and time-varying effect mixture modeling.
These methods are chosen because they take different approaches to clustering, are
commonly used in applications, or are applicable in an exploratory setting without prior
knowledge on the clusters. We investigate how well the methods are able to identify the
underlying groups (in terms of subject assignments) and group trajectories in each of
these scenarios. In addition, we assess the sensitivity of the methods to different forms
of heterogeneity. Specifically, we simulate different forms of within-group heterogeneity,
using normal and log-normal distributions for the random effects. The scenarios involve
many permutations on the different levels of within-group variability, sample sizes, number
of observations, and levels of heteroskedasticity of the residual variance. Lastly, we study
the effect of a proportional measurement error on the model estimation and assess the
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reliability of selecting the correct number of groups per method. The simulated datasets
comprise heterogeneous subgroups with varying degrees of overlap, described by quadratic
group trajectories. This establishes a ground truth against which the output of the methods
can be evaluated. The comparison also serves as a benchmark for the computation time
with respect to the number of trajectories, number of observations, and number of groups.
In view of the exploratory nature, the mixture methods are all estimated using maximum
likelihood estimation instead of a Bayesian approach. In addition to the simulation study,
a case study involving therapy compliance of sleep apnea patients is included to relate the
findings from the simulations to a real-life setting.

The rest of the chapter is organized as follows. Section 3.2 briefly describes the selected
methods. The simulation scenarios are described in Section 3.3. In Section 3.4, the
simulation results are reported, along with the description and results of the case study.
The resulting findings and recommendations are discussed in Section 3.5, and conclusions
are given in Section 3.6.

3.2 Methods
We denote a trajectory of subject i ∈ I of the available set of subjects I with T measure-
ments by yi = (yi,1, yi,2, . . . , yi,T ), where the measurement yi,j is recorded at time ti,j .
We denote the ILD ψi(t) for individual i ∈ I by Eyi,j = ψi(ti,j) with yi,j the measurement
at time ti,j , with j = 1, 2, ..., T , and with ψi a continuous function ψi : R+ → R. We will
focus on polynomial time profiles: ψi(t) =

∑p
r=0 βi,rt

r. Alternatively, we may also study
piecewise linear profiles when we apply naive clustering methods, but these profiles would
be developed over groups of participants. At a subject level the piece-wise linear model is
defined by

ψi(t) =
T∑

r=1
(αi,r + βi,rt)1(ti,r−1,ti,r](t) (3.1)

with restrictions αi,r = αi,r−1+βi,r−1ti,r. The two-step approach and the mixture methods
allow for the inclusion of covariates, but this is not evaluated in this work.

Longitudinal k-means Longitudinal k-means (KML) is a commonly used naive ap-
proach (Genolini and Falissard, 2010). The vectors of observations are assumed to be
of equal length and aligned, i.e., ta,j = tb,j for a, b ∈ I, j = 1, . . . , T . The vectors are
passed as observations to the k-means clustering algorithm (MacQueen, 1967; Genolini
and Falissard, 2010). The k-means algorithm aims to find the partitioning I1, I2, . . . , IG

with
⋃G

g=1 Ig = I and Ig ∩ Ih = ∅ when g ̸= h, that minimizes the within-cluster variance,
which in term maximizes the between-cluster variance. The objective function is given by

arg min
I1,I2,...,IG

G∑
g=1

∑
i∈Ig

||yi − µ̂g||2, (3.2)

with µ̂g the mean vector of the group elements, i.e., µ̂g = |Ig|−1∑
i∈Ig

yi, where summation
is performed element-wise. The algorithm uses an iterative approach to arrive at a solution.
Starting from a random partitioning, the algorithm refines the partitioning at each iteration
until the solution cannot be further improved, i.e., converges. In the case of KML, the
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resulting cluster centers represent the group trajectory of each cluster. The resulting
groups are assumed to be homogeneous, i.e., subjects belonging to a given group are
assumed to follow the group trajectory µ̂g.

Two-step clustering We represent the two-step clustering approach by modeling the
trajectories using a growth curve model (GCM), and clustering the subject parameter
estimates (i.e., the random effects) using k-means (MacQueen, 1967). We will refer to
this method as GCKM. This method is also described in the comparison of Twisk and
Hoekstra (2012). The GCM is estimated in a mixed model framework (Laird and Ware,
1982). The model represents the longitudinal dataset in terms of a single group trajectory
(i.e., the fixed effects), and for each subject, their deviation from this trajectory (the
random effects). The trajectories are typically described by a polynomial of order 1 or 2
(Nagin and Odgers, 2010a). A trajectory described in terms of a polynomial of order K
and random effects in all terms is given by

yi,j =
K∑

k=0
βk,it

k
i,j + εi,j , (3.3)

βk,i = αk + ζk,i.

Here, αk represents the kth order coefficient of the polynomial trajectory, ζk,i denotes the
random effect of subject i for the kth coefficient (i.e., the between-subject variability),
and εi,j denotes the measurement error (within-subject variability). The random effects
are assumed to be multivariate normally distributed with zero mean, possibly with an
unstructured variance-covariance matrix, and uncorrelated with the measurement error ε.
The measurement error is assumed to be independently normally distributed with zero
mean and common variance, although an autoregressive correlation structure would be
possible too. The model is estimated using maximum likelihood (ML) estimation (Verbeke
and Molenberghs, 2000). Alternatively, the model parameters can be inferred using a
Bayesian approach (Gelman et al., 2013).

The random effects ζk,i of each trajectory can be predicted using the best linear
unbiased predictors (BLUPs), and they are passed to the k-means algorithm as input
vectors yi =

(
ζ̂0,i, ζ̂1,i, . . . , ζ̂K,i

)
. The estimation of the input vectors is independent of the

number of groups to be identified in the second step and therefore needs to be performed
only once. Scaling or standardization may be required to ensure equal weights across the
BLUPs, depending on the difference in size of the variance components of ζk,i. Similarly,
covariates could be included into the model as additional random effects to account for
other factors and can be clustered accordingly.

Group-based trajectory modeling A group-based trajectory model (GBTM) de-
scribes a longitudinal dataset in terms of a mixture of group trajectories, without regard
of within-group variability (Nagin and Land, 1993; Nagin and Odgers, 2010a). This draws
similarities to k-means in the sense that the subjects in a group are assumed to follow the
group profile, but in the case of GBTM these profiles can be smooth (Nagin and Tremblay,
2005). GBTM is also commonly referred to as latent class growth analysis (LCGA), and
semi-parametric group-based modeling (SGBM) (Nagin, 1999).
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For a given trajectory yi, its observations are described by the group trajectory of
group g as follows:

y
(g)
i,j =

K∑
k=0

α
(g)
k tki,j + εi,j , (3.4)

where α(g)
k denotes the kth coefficient for the polynomial of group g, and εi,j describes

the residual at time ti,j . In this setting the subject trajectories ψi(ti,j) are all the same to∑K
k=0 α

(g)
k tki,j in (3.4) when subject i belongs to group Ig. The residual is assumed to be

independently normally distributed with zero mean. The marginal mean of a GBTM is
given by

E(yi,j) =
G∑

g=1
π(g)

K∑
k=0

α
(g)
k tki,j . (3.5)

Here, π(g) denotes proportion of group g, with 0 ≤ π(g) ≤ 1 and
∑

g π
(g) = 1. The

model is fitted to the data using ML estimation. The appeal of GBTM comes from
the relatively simple group model, combined with a parametric approach that enables
researchers to incorporate domain knowledge. Moreover, other factors can be corrected
for by the inclusion of time-variant and time-invariant covariates into the model, both in
the time profile and the proportion for group g (Nagin and Odgers, 2010a).

Growth mixture modeling Growth mixture modeling (GMM) is a method for iden-
tifying heterogeneous subgroups in the data using a mixture of growth curve models
(Verbeke and Lesaffre, 1996; Muthén et al., 2002; Muthén and Shedden, 1999). It is a
generalization of GBTM by taking the coefficients α(g)

k in (3.4) to be subject-specific,
essentially introducing a mixed-effects model in each group g. Thus, a given trajectory yi

is described by group g by

y
(g)
i,j =

K∑
k=0

β
(g)
k,i t

k
i,j + ε

(g)
i,j , (3.6)

β
(g)
k,i = α

(g)
k + ζ

(g)
k,i .

The group-dependent fixed effects are denoted by α(g)
k . In any case, the model complexity

of GMM significantly exceeds that of GBTM due to the additional estimation at group
level of the random effects ζ(g)

k,i , residual ε(g)
i,t , and the variance-covariance matrix. In

practice, it is desirable to restrict or share some of the parameters across groups to reduce
the challenge of finding a numerical solution. The residual is assumed to be independently
and normally distributed with zero mean, and uncorrelated with ζ(g)

k,i . The random effects
are assumed to be normally distributed with zero mean but may be correlated within
group g (but not with random effects across groups). The marginal mean of a GMM is
computed by (3.4) for E

(
ζ

(g)
k,i

)
= 0, with group proportion π(g) defined as before.

GMM is commonly used for its flexibility, enabling researchers to specify the random
effects and relations between them, in addition to the inclusion of covariates (Frankfurt
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et al., 2016). However, this may come at the cost of a greater difficulty in identifying the
most appropriate model.

Mixed time-varying effect modeling In a time-varying effect model (TVEM) (Tan
et al., 2012), the regression coefficients that describes the relation between covariates and
outcome can vary over time. The relation between time and outcome is described by a
smooth function ψ(t), thus longitudinal trajectories can be described by the intercept-only
TVEM given by

yi,j = ψ(ti,j) + εi,j . (3.7)

The ψ function is modeled using a penalized spline (referred to as a P-spline) (Song and
Lu, 2010). A P-spline represents a series of time intervals using low-order polynomials
with smooth transitions between intervals. A smooth fit is ensured by imposing a penalty
on the second derivative. The P-splines can be represented as a linear model and therefore
estimated efficiently using ordinary least-squares (Ruppert, 2002), although smoothing can
also be obtained by introducing random effects for the time variable (Lu and Song, 2012).

We evaluate the mixture model proposed by Dziak et al. (2015), named MixTVEM,
which comprises a mixture of TVEMs. Thus a smooth function ψ(g) of splines is estimated
for group g and π(g) represents a proportion for group g. Its flexible trajectory estimates
make it suitable for intensive longitudinal data, and as an exploration tool for uncovering
unforeseen trajectories. The method is a semi-parametric version of GBTM or GMM,
depending on whether random effects are considered. Dziak et al. suggest the inclusion of
a first-order autoregressive (AR) structure as an alternative to random effects, as this is
less computationally intensive and allows for constant heteroskedasticity over time. The
correlation between any two measurements yi,j and yi,j′ is given by ρ|ti,j−ti,j′ |, where ρ
denotes AR-1 component. For numerical estimation purposes, they introduce an additional
variance component that is proportional to the AR-1 component, referred to as the nugget
effect, given by

cov (yi,j , yi,j′) = σ2
ρρ

|ti,j−ti,j′ | + σ2
ε . (3.8)

The ratio of the measurement variance σ2
ε to the total variance σ2

ρ + σ2
ε is assumed to be

fixed across groups.

3.2.1 Number of groups
Determining the number of subgroups to describe the data is a well-known problem in
cluster analysis. In practice, clusters are rarely distinct, meaning that the subgroups are
not well-separated, and it is therefore difficult to cluster every subject without error. Nagin
and Odgers (2010a) suggest to combine the use of an objective criterion for determining
the number of groups with domain knowledge to arrive at a reasonable solution. For the
mixture methods, the Bayes information criterion (BIC) appears to be generally applicable
(Nagin and Odgers, 2010a; Nylund et al., 2007; McNeish and Harring, 2017; Dziak et al.,
2015). For consistency, we use the BIC for KML and GCKM too. The likelihood of a
k-means solution can be computed by regarding the clusters as a mixture of spherical
Gaussians, enabling the computation of the BIC (Pelleg and Moore, 2000).
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A recommended alternative to the BIC is the bootstrapped likelihood ratio test (BLRT),
which is regarded as a more suitable criterion than the BIC (Nylund et al., 2007; Jung and
Wickrama, 2008; Tolvanen, 2007). The BLRT is a computationally intensive criterion, as
it requires the estimation of the model on each of the generated bootstrap samples (with a
recommendation of 500 bootstrap samples). We will therefore first conduct a preliminary
evaluation on GBTM and GMM before evaluating the other methods. The evaluation on
GBTM and GMM compares how the BLRT performs on models assuming homogeneous
subgroups and heterogeneous subgroups, respectively.

An increase in BIC score of more than 10 is considered to be of significance, meaning that
the additional description it provides warrants increased model complexity by introducing
an additional group (Raftery, 1995; Frankfurt et al., 2016). A robust alternative to this
approach, commonly referred to as the elbow method, investigates the relative improvement
in the objective function for a lower number of groups. The improvements tend to decline
with an increasing number of groups, but often with a turning point (i.e., the elbow)
(Hardy, 1994). While this method is usually assessed visually, we approximate it by
estimating a piecewise-linear change point model such that it can be evaluated on the
many datasets and scenarios automatically. The model comprises a variable change point
and is optimized to maximize the fit to the BIC points over the different number of groups.

3.2.2 Computer software
All methods are evaluated in R 3.4.2 (R Core Team, 2022), running on Intel Xeon E5-2660
(2.6 GHz) processors. The implementation of KML was based on version 2.4.1 of the kml
package (Genolini et al., 2015). GCKM was evaluated by estimating a GCM using the
lcmm package (version 1.7.8) (Proust-Lima et al., 2017), and clustering the random effects
using the kml package1. The lcmm package is also used to evaluate GBTM and GMM.
For the implementation of MixTVEM, we use an R script2 that has been made available
by Dziak et al. (2015) (version 1.1), and run it with the default settings. Preliminary
tests indicated that MixTVEM generally performed better with the inclusion of the AR-1
structure, and we therefore used it in all evaluations.

The estimation of the models can be a challenging task due to the large number of
parameters involved, a problem that grows with the number of groups. The iterative
optimization procedures converge to a local optimum, depending on the starting position.
This is an issue sometimes observed in GBTM (Skardhamar, 2010; Twisk and Hoekstra,
2012), and especially in GMM (Twisk and Hoekstra, 2012; McNeish and Harring, 2017).
The accepted approach in dealing with this involves many repeated random starts (e.g.,
100 random starts, although the number depends on the data and model complexity)
after which the estimation proceeds with the most likely start (Jung and Wickrama, 2008;
McNeish and Harring, 2017), which is a time-wise costly procedure indeed. In view of the
many scenarios under which the mixture methods need to be evaluated, we settled for
20 random starts to reduce the computation time. A preliminary evaluation suggested
that this does not have a practically significant effect on the performance. For KML and
GCKM, the k-means++ algorithm is used for selecting a better starting position, with 25
repeated runs (Arthur and Vassilvitskii, 2007).

1Although the random effects are not longitudinal data, the kml package was used here to ensure an
identical application of k-means.

2Version 1.1, available at https://www.methodology.psu.edu/downloads/mixtvem/.

https://www.methodology.psu.edu/downloads/mixtvem/
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3.3 Simulation
We evaluate the methods across different scenarios using Monte Carlo simulations3.
The scenarios comprise multiple settings, with each method being evaluated on each
permutation of settings on 100 synthetic datasets. The generated group trajectories are
consistent between scenarios and settings for the respective number of groups in the data
(unless mentioned otherwise). This enables a comparison between scenarios with a higher
sensitivity to the effect of changing settings (Burton et al., 2006), with the advantage of
requiring fewer simulations.

The datasets are generated using growth curve models describing second-order polyno-
mial trajectories, to comprise a mixture of heterogeneous groups. The measurement times
are evenly spaced between [0, 1]. The group trajectory y(g) is represented by the model
from Equation 3.3 for K = 2. The three fixed effects (that is, the intercept α(g)

0 , slope
α

(g)
1 , and quadratic term α

(g)
2 ) are sampled from a uniform distribution between -1 and 1.

Thus for some datasets we have well-separated group trajectories, and for other datasets
there will be overlapping group trajectories. The random effects ζ(g)

0 , ζ(g)
1 and ζ(g)

2 for the
subjects in each group follow a normal distribution (unless mentioned otherwise) with
zero mean and standard deviation of 0.1, 0.2, or 0.3 in the simulation scenarios involving
low, medium, and high variability, respectively. For the residuals, we have εi,j ∼ N(0, σ2),
with a standard deviation of 0.01 or 0.1, representing negligible noise and considerable
noise, respectively. An example of how a dataset with relatively well-separated group
trajectories can vary in difficulty depending on the settings is illustrated in Figure 3.1.

We generate groups of different sizes (i.e., number of subjects), whilst ensuring that
the smallest group is of sufficient size to be detected. This is achieved by using group
proportions π(g) ∝ √

g, normalized by a factor of
∑G

g=1
√
g. In the datasets containing six

groups, the smallest and largest groups comprise 9% and 55% of the subjects, respectively.

3.3.1 Design
In the first scenario, we investigate how the methods perform given that the number
of groups is correctly specified. We compare the performance of the methods under
each permutation of settings involving sample size, number of repeated observations,
within-group variability, unexplained variability, and number of groups. Drawing from
previous research on sample size requirements of the mixture models (Loughran and
Nagin, 2006; Nylund et al., 2007; Tolvanen, 2007), we evaluate the sample size at three
levels (N = 200, 500, 1000). The effect of the number of repeated observations on the
performance is evaluated at settings (T = 4, 10, 25). The random effects are evaluated
for three levels of within-group variability, sampled from a normal distribution with
(σζk

= 0.1, 0.2, 0.3 where σζ0 = σζ1 = σζ2). Lastly, the within-subject variability is
investigated using two levels of white noise (σε = 0.01, 0.1), while keeping the variability
between subjects constant.

Secondly, we assess the impact of model misspecification on the identification of
subgroups. It is known that the model fit of a LME model is sensitive to the assumption
on normality in the random effects (Verbeke and Lesaffre, 1996; Muthén and Asparouhov,
2009), but it remains to be seen how this affects the grouping when random effects

3The Mersenne Twister algorithm is used for random number generation (Matsumoto and Nishimura,
1998).
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Figure 3.1: Two example datasets for low and high within-group variability and measure-
ment error, respectively. The datasets each contain 100 trajectories of 10 observations.
The black lines denote the three group trajectories.
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are lognormal. The datasets comprise random effects ζ(g)
k ∼ lognormal(µ, 1

2 ) with µ =
log(0.15), log(0.30), and log(0.45) for low, medium, and high variability, respectively. The
variability of these scenarios approximately corresponds to the similarly named scenarios
involving normally distributed random effects. The positive range on the distribution
would mean that the group trajectory is the trajectory with the lowest coefficients. We
ensure the group trajectory is representative by centering the random effects around zero
by subtracting the median exp(µ) (0.15, 0.30 and 0.45 for the three settings, respectively).

Similarly, we also study the effect of a misspecified measurement error by introducing
proportional within-subject variability (heteroskedastic), a feature that was observed in
the case study. Here, the measurement error is specified as εi,j ∼ N

(
0,max(0.01, c · ỹi,j)2)

with scaling factors c = (0.01, 0.03, 0.05). In this scenario, we take α(g)
0 ∼ U(1, 3) to ensure

that the proportional deviation c · ỹi,j exceeds the minimum standard deviation of 0.01 in
most cases. An example dataset is shown in Figure 3.2.

In the last scenario we assess the preferred fit of each method in terms of the number
of groups that achieves the best result according to the model selection criteria described
below. Some of the methods may produce a better fit for a different number of groups
than the correct number due to differences in the group representation. We generate
100 datasets for each number of groups ranging from 3 to 5, on which the methods are
evaluated for 2 to 7 groups. We investigate how well the methods perform at recovering
the true number of groups using the BIC, under a low and high random effect variability
with σζ = {0.1, 0.3}, respectively.
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Figure 3.2: Example dataset for the proportional noise scenario, with c = 0.05, σζ = 0.1.
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3.3.2 Evaluation
Although the large number of datasets precludes a subjective analysis on the fit of the
methods, as is commonly done in applications (Nagin and Odgers, 2010b), the evaluation
provides a balanced assessment across different group trajectories and scenarios. We
evaluate the fit of the methods to each dataset using three metrics, namely the correctness
of the trajectory group membership, the group trajectory, and the number of groups.
Cases in which the model could not be estimated are excluded from the evaluation, and
we report how often this happens.

NSJ First and foremost, the group assignments of the N trajectories are compared
to their true group membership. The split-join distance introduced by Van Dongen
(2000) measures the similarity between the partitions A and B in terms of the number
of subset reassignments that are needed to project the partition onto the other, and
back. The partitions comprise sets of subjects that are in the same group g, denoted
by A = {a1, a2, ..., aG} and B = {b1, b2, ..., bG}. We have ag = Ig with

⋃G
g=1 Ig = I and

Ig ∩ Ih = ∅ when g ̸= h, and the same holds for bg. The number of groups may differ
between the partitions. The number of matching assignments between A and A ∩ B is
denoted by NA(B) and computed by

NA(B) =
∑
a∈A

max
b∈B

|a ∩ b|, (3.9)

where |a∩ b| denotes the number of subjects that occur in both sets. The distance between
the partitions is asymmetric, with

d(A,A ∩ B) = N −NA(B),
d(B,A ∩ B) = N −NB(A). (3.10)

It can be seen that if A contains sets which are proper subsets of a set of B, then the
projection from A onto B requires fewer adjustments with respect to these elements than
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vice versa. A distance of 0 implies that the partition is a subpartition (Van Dongen,
2000), which makes the metric suitable for comparing partitions with a different number
of groups. Combining the pairwise distances, we obtain the split-join distance

d(A,B) = d(A,A ∩ B) + d(B,A ∩ B) (3.11)

The scale of the metric is dependent on the sample size. To evaluate the split-join distance
across simulation scenarios with different sample sizes, we use the normalized metric

NSJ(A,B) = d(A,B)
2N , (3.12)

which expresses the distance on a scale from 0 to 1 (lower is better). We will refer to this
metric as the normalized split-join (NSJ) distance.

WMMSE While a low NSJ score is expected to be associated with a good fit of the
group trajectories, there are cases in which this need not be the case. For example, in the
case of overlapping groups it is still possible to obtain proper group trajectory fits, yet there
is uncertainty on the subject group membership, impacting the NSJ score. We therefore
assess the fit of the group trajectories as a secondary metric. The group trajectories are
compared in terms of the mean squared error (MSE) at each observation in time. A
challenging aspect of this evaluation is that there is no guaranteed one-to-one mapping
between the group and reference group trajectories. We therefore associate each group
trajectory y

(g)
group with the nearest reference group trajectory yref , and weigh the score by

the group proportion π(g). The score, which we shall call the weighted minimum MSE, is
denoted by

WMMSE = 1
T

G∑
g=1

π(g) min
g′∈Gref

T∑
j=1

(
y

(g)
group,j − y

(g′)
ref,j

)2
, (3.13)

with Gref = {1, 2, ..., Gref}, and Gref refers to the true number of groups in the dataset.
Due to the relatively small scale of the observed values and the resulting small observation
error, the reported WMMSE values are multiplied by 1000.

3.4 Results
3.4.1 Simulations
Numerical convergence

We observed problems with the model estimation across the simulation scenarios. The
main effects are reported in Table 3.1. Any convergence issues of GCKM were established
by the GCM in the first step, considering that the k-means algorithm is guaranteed to
converge. Due to the higher number of parameters in a GMM, it is numerically less
stable than KML, GCKM and GBTM. Nevertheless, only MixTVEM exhibits significant
convergence problems across scenarios, with an overall nonconvergence rate of 26%. The
convergence problems appear to only occur for a large number of observations, independent
of the other simulation settings. Whereas a negligible number of problems occur at T = 4
(0.22%), for an increasing number of T the convergence problems worsen, with 14% at
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T = 10, and already 78% at T = 25. Moreover, the rate of convergence problems increases
with the number of groups, with 4.8% at 2 groups and 18% at 6 groups for T = 10.
A comparison of MixTVEM configurations revealed that the convergence issues mostly
occurred when the AR-1 structure was included, although it is unclear why the estimation
is affected for a higher number of repeated observations.

Table 3.1: Percentage of convergence issues across all scenarios and datasets.

Method Did not Empty Solitary Totalconverge groups groups
KML 0.0% 0.0% 0.11% 0.11%

GCKM 0.0% 0.0% 0.09% 0.09%
GBTM 0.28% < 0.01% 0.08% 0.36%
GMM 0.04% 2.0% 0.90% 3.0%

MixTVEM 26% 2.5% 4.3% 31%

A converged fit is not necessarily without problems. A group can be empty if the
posterior class probability of all trajectories is greater for other groups. In the simulations,
these problems only occur at a considerable rate for GMM (2.0%) and MixTVEM (2.5%).
GMM primarily exhibits this problem for higher number of groups, with 5.5% at 6 groups
across scenarios, whereas hardly any problems occur at 2-4 groups (< 0.48%). Furthermore,
the problem more often occurs with low measurement error (8.8%), compared to high
measurement error (3.8%). A possible explanation for this discrepancy is that the higher
measurement error provides additional possible group trajectories due to the increased
overlap between trajectories. Log-normally distributed random effects result further in
an increased number of solutions with empty groups. The scenario with log-normally
distributed random effects at 6 groups with low measurement error exhibits empty groups
in 21% of all converged cases. In MixTVEM, the problem occurs mostly in the setting with
25 observations (34% of converged cases), whereas it occurs infrequently (1% of converged
cases) at 10 observations.

Another possible problem with a solution is the presence of groups consisting of a single
subject trajectory, assuming that such a solution is not meaningful in practice (in the
simulations it is not considered to be meaningful). We refer to this as a solitary group. In
GMM, this occurs relatively often only for a higher number of groups (3.8% for 6 groups,
while below 0.01% for 2 groups), under log-normally distributed random effects (5.9% at
6 groups), and especially when the number of groups does not match the true number
of groups (9.0% at 6 groups). For MixTVEM, solitary groups occur frequently on data
comprising 25 observations (20%), whereas for 10 observations only 5.3% of converged
cases have solitary groups. Independent of the number of observations, solitary groups
occur more often on log-normal data (15% compared to 2.6% on the normal data), and
with smaller sample size (7.3% for N = 200, compared to 2.1% for N = 1000).

Computation time

We assess how well the methods scale relative to an increasing volume of data and
increasing number of parameters. To illustrate how the methods scale differently, the
effects of the number of groups and number of observations on computation time are
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Figure 3.3: Computation time per model (in seconds) over the number of groups and
observations.
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visualized in Figure 3.3. The effect of sample size is not shown because all methods scale
in computation time with respect to sample size in the same way. The base computation
time differs considerably between methods. Whereas k-means requires only 1 second on
average per dataset run, GMM takes 9 minutes. This is largely due to GMM comprising a
more complex computational problem. MixTVEM stands out from the mixture methods
with computation times of over 1 hour on average, likely due to its relatively unoptimized
implementation compared to the mature R packages available for GBTM and GMM.
However, MixTVEM scales relatively well with an increasing number of observations
compared to GMM, GBTM and GCKM, suggesting that the method may be favorable
for a larger number of observations, given a more optimized implementation. As a result
of the independent assessment of the methods in each scenario, the first step of GCKM
was recomputed each time, and therefore the computation time is higher than it would be
in practice, because the results of the first step could be reused. KML is least impacted
among the methods by the inclusion of additional groups and observations. The GCM
computation in the first step of GCKM accounts for most of the computation time of the
method, hence the near-constant time over the number of groups, and the similar scaling
to the mixture methods along the number of observations.

3.4.1.1 Group assignment for the correct number of groups

The methods are assessed across simulation settings for all possible combinations. This
results in 270 unique cases4 to be evaluated per method on 100 datasets generated with
normally distributed random effects and normal residual. We first evaluate the correctness
of the assignment of subject trajectories using the NSJ distance. The main effects of each

4We arrived at 270 cases by evaluating all permutations of 5 different number of groups, 3 sample sizes,
3 values for the number of observations, 3 random effect deviations, and 2 measurement errors.
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of the independent factors (that make up the settings) are assessed by means of a linear
model. Runs in which a model did not converge are excluded. The results are reported in
Table 3.2. Due to the small standard errors below 0.01, all differences between methods
can be considered statistically significant and we do not report on this further. Instead,
we focus on the practical significance of the score differences.

The overall NSJ scores show that GMM and GCKM perform significantly better on
average than the other models, with scores of 0.084 and 0.10, respectively. In contrast,
KML, GBTM, and MixTVEM achieve an average score of approximately 0.21. By
comparing the NSJ of KML and GBTM across the main effects, it becomes clear that
their results are identical. Although MixTVEM obtains a similar average score, it deviates
from the other two methods in some settings, in particular for the number of observations.

The number of possible assignment errors increases with the number of groups. The
performance declines at a similar rate across methods for an increasing number of groups.
To put the NSJ scores into perspective, the expected NSJ by random assignment, assuming
correct group proportions, are 0.41, 0.58, 0.67, 0.72, and 0.76, for G = 2, ..., 6, respectively.
In this respect, all methods perform significantly better than random grouping even for a
larger number of groups.

GCKM and GMM benefit from a larger sample size, and number of observations
under the presence of noise, where GCKM approaches the performance of GMM with an
increased number of observations. MixTVEM often fails to find a proper fit for T = 25,
in addition to the convergence problems reported above. The size of the random effects
has a considerable impact on the difficulty of the dataset, yet the differences between the
methods are relatively stable. The performance of KML, GBTM, and MixTVEM are
unaffected by the presence of measurement error, while GCKM and GMM are negatively
affected by it. Still, GCKM and GMM outperform the other methods even in these
conditions.

3.4.1.2 Group trajectory estimation with the correct number of groups

In addition to the group assignment accuracy, we investigate the estimation of the group
trajectories. The results are reported in Table 3.3. Overall, GCKM and GMM achieve
the best group trajectory estimates. The methods have near-identical performance on
average, and the same holds for KML and GBTM. Comparing the findings with the NSJ
scores of Table 3.2, it is evident that on average a lower NSJ is associated with a better
group trajectory fit (i.e., lower WMMSE). In contrast, the group trajectory estimation of
GCKM improves with an increasing number of observations, surpassing GMM at T = 25,
even though this is not reflected in the NSJ scores. Another discrepancy is observed in the
worsening WMMSE scores for MixTVEM with an increasing number of groups compared
to KML and GBTM, whereas this pattern is not visible when assessing the NSJ scores.
This indicates that MixTVEM can achieve a similar subject assignment despite worse
group trajectory estimates. The high average WMMSE of MixTVEM arises from the poor
model fit at T = 25, whereas for fewer observations the WMMSE of MixTVEM is not
significantly different from KML and GBTM.

All methods except MixTVEM benefit from an increased sample size, with GCKM
and GMM showing the greatest relative improvement. The magnitude of variation of the
random effects affects all methods, but KML and GBTM in particular (with a WMMSE
of 32 at σζ = 0.3 compared to 1.4 at σζ = 0.1). Moreover, the associated error with an
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Table 3.2: Effects of the scenario settings on group assignment per model, averaged over
100 datasets, as measured by the NSJ distance (lower is better). The ’All’ row reports the
average performance over all cases.

KML GCKM GBTM GMM MixTVEM
All .21 .10 .21 .084 .22

Number of groups G
2 .10 .039 .10 .034 .088
3 .17 .069 .17 .058 .17
4 .23 .097 .23 .083 .24
5 .27 .13 .27 .11 .28
6 .30 .15 .30 .14 .30

Sample size N
200 .22 .099 .22 .087 .22
500 .21 .097 .21 .085 .22

1000 .21 .093 .21 .081 .21
Number of observations T

4 .20 .11 .20 .090 .19
10 .21 .096 .21 .085 .18
25 .22 .085 .22 .078 .28

Random effects deviation σζ

.1 .084 .040 .085 .027 .13

.2 .22 .088 .22 .078 .21

.3 .33 .16 .33 .15 .31
Measurement error σε

.01 .21 .064 .21 .064 .20
.1 .21 .13 .21 .10 .23

increasing number of groups differs significantly per level of σζ . Notably, the fit of GCKM
is considerably less accurate than GMM with σζ = 0.1 for a low number of observations
(T = 4).

3.4.1.3 Proportional measurement error

We assess the sensitivity of the methods on longitudinal observations with a proportional
measurement error. The performance of the methods is shown in Table 3.4 and 3.5 in
terms of the NSJ and WMMSE. The methods are evaluated on datasets comprising 2-6
groups, with a standard deviation on the random effects of 0.1 and 0.3.

The results on group assignments follow the observations from the earlier experiment of
Table 3.2 involving two levels of heteroskedasticity, with KML and GBTM being insensitive
to the level, and GMM and GCKM benefiting from lower degrees of heteroskedasticity
(GCKM from 0.14 to 0.072, GMM from 0.11 to 0.071). MixTVEM shows a relatively small
improvement of -0.03 for lower error. Overall, the performance of the models is similar to
those on the homoskedastic residual variance. In case of the group trajectory estimation
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Table 3.3: Effects of group trajectory estimation error across simulation scenarios, measured
by the WMMSE multiplied by 1000.

KML GCKM GBTM GMM MixTVEM
All 15 3.5 15 3.4 38

Number of groups G
2 10 1.4 10 .14 27
3 13 2.4 13 1.8 32
4 15 3.5 15 3.4 38
5 17 4.5 17 5.0 44
6 19 5.5 20 .6.7 49

Sample size N
200 16 4.6 16 4.4 38
500 15 3.7 15 3.6 38

1000 14 2.1 14 2.2 38
Number of observations T

4 15 4.4 16 3.1 15
10 15 3.3 15 3.3 15
25 15 2.7 15 3.8 83

Random effects deviation σζ

.1 1.4 .87 1.4 1.7 19

.2 12 2.2 12 2.6 36

.3 32 7.3 32 5.9 59
Measurement error σε

.01 15 2.3 15 3.4 32
.1 15 4.6 15 3.4 44

error, the result appears to be unaffected by the level of heteroskedasticity.

3.4.1.4 Log-normal groups

The results of the scenarios involving log-normally distributed random effects are reported
in Table 3.6 and 3.7 in terms of the NSJ and WMMSE, respectively. The scores are
compared to those under the standard scenario of Table 3.2 and 3.3, respectively. Overall,
all methods except MixTVEM achieve a worse performance compared to the standard
scenario. Especially GMM is significantly impacted, although it is the best performing
method regardless, indicating the importance of the correct specification of the subgroup
distribution.

In terms of group trajectory estimation, KML, GCKM and GBTM achieve the best
estimates, with an error of 24. GMM has a higher error of 37 on average compared to
GCKM, especially for larger between-group variation. MixTVEM performs relatively
poorly across all scenarios.
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Table 3.4: Averaged effects of group assignment error (NSJ) under proportional measure-
ment error.

KML GCKM GBTM GMM MixTVEM
Proportional measurement error c

.01 .21 .072 .21 .071 .17

.03 .21 .10 .21 .089 .19

.05 .21 .14 .21 .11 .20

Table 3.5: Averaged effects of the group trajectory estimation error (WMMSE ×1000)
under proportional measurement error.

KML GCKM GBTM GMM MixTVEM
Proportional measurement error c

.01 16 .2.3 16 3.2 15

.03 16 3.8 17 3.4 16

.05 17 5.3 17 3.6 18

3.4.1.5 Finding the number of groups

We investigate how well the methods can identify the simulated number of groups using the
BLRT and BIC. We generated datasets comprising 500 trajectories across 2 to 5 groups,
and evaluated the methods with a specification of the number of groups ranging from 2 to
7 groups. We consider two scenarios involving low and high within-group heterogeneity
(σζ = 0.1 and σζ = 0.3, respectively). Each of the scenarios is evaluated with 100 generated
datasets, resulting in a total of 800 evaluations per method.

Table 3.8 reports the proportion of correct cases and cases in which the optimal solution
was off by one group when using BICmin or BICelbow. The results are computed across the
two settings for σζ . The NSJ and WMMSE criteria serve as a reference for the number of
groups needed to optimally match the group membership assignment and group trajectory
fit, respectively. Due to model limitations, it is possible for a criterion to exceed these
values. The results of the BLRT evaluation are shown in Table 3.9.

GMM has the highest number of correct cases across all criteria; in particular with
the BLRT and BICmin. The BLRT outperforms BICmin, correctly identifying the number
of groups in 86% of datasets, as opposed to 71% using BICmin. In contrast, GBTM
consistently (99.9%) overestimates the number of groups with both criteria. The same
pattern of overestimation is observed when applying BICmin for KML, GCKM, and
MixTVEM. In view of these findings and the computationally intensive aspect of BLRT,
we therefore do not evaluate the BLRT for the other methods.

KML, GBTM and MixTVEM achieve far better results using BICelbow, and come
close to the performance with the NSJ as a reference. The solutions of KML and GBTM
for minimum WMMSE tend to be closer to the correct number of groups than for the
NSJ, indicating that the closest approximation of the group trajectories does not always
correspond to a correct group assignment.

The magnitude of σζ has a significant effect on the proportion of correct cases, as
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Table 3.6: Averaged effects of group estimation (NSJ) under log-normally distributed
random effects.

KML GCKM GBTM GMM MixTVEM
All .26 .14 .26 .14 .23
Log-normal random effects mean exp(µζ)

.15 .13 .060 .13 .051 .13

.30 .28 .13 .27 .14 .24

.45 .37 .22 .36 .23 .31
Measurement error σε

.01 .26 .11 .25 .12 .22
.1 .26 .17 .26 .16 .24

Table 3.7: Averaged effects of group trajectory estimation error (WMMSE ×1000) under
log-normally distributed random effects.

KML GCKM GBTM GMM MixTVEM
All 25 25 25 37 51
Log-normal random effects mean exp(µζ)

.15 .6.3 6.8 6.6 7.9 17

.30 23 .21 23 29 46

.45 45 47 45 74 89
Measurement error σε

.01 25 25 .25 36 55
.1 25 25 25 38 46

can be seen from Table 3.10 and Table 3.9. KML and GBTM are most affected by the
large within-group variability, with respect to both the group assignment (from 70% to
15%) and group trajectory fit (from 82% to 26%). GMM achieves a correctness of 93%
under low variability for both BLRT and BICmin. Under high variability, the performance
degrades to 49% when using BICmin but only to 79% when using BLRT.

Overall, the performance of the methods is consistent between the NSJ and WMMSE
criteria except for GCKM, in which the group trajectory estimation does not improve
under lower variability. The decrease in performance over σζ is less prominent in the BIC
results, demonstrating that the approach is relatively robust. For high variability, the
correct cases of KML and GBTM for BICelbow even exceed those of the reference criteria.

3.4.2 Case study
We investigate the usage data of sleep apnea patients undergoing positive airway pressure
(PAP) treatment. Weaver et al. (2007) have demonstrated the importance of sufficient
usage of CPAP therapy, where increasing daily usage was associated with a better outcome.
Four hours of usage per day is considered to be the minimum for adequate treatment.
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Table 3.8: Percentage of cases in which the solution as determined by the respective
criterion corresponds to the true number of groups, computed across all cases. The
NSJ and WMMSE provide a reference to how often the optimal fit in terms of group
membership assignment and group trajectory fit correspond to the correct number of
groups.

Group
KML GCKM GBTM GMM MixTVEM

error

−1 32% 29% 32% 20% 29%
RefNSJ 0 43% 63% 42% 71% 37%

+1 1.2% 0.17% 1.0% 1.8% 13%
−1 17% 9.8% 16% 6.5% 20%

RefWMMSE 0 55% 61% 53% 66% 41%
+1 10% 19% 11% 20% 19%

−1 0% 15% 0% 22% 17%
BICmin 0 0% 30% 0% 71% 28%

+1 33% 17% 34% 0% 25%
−1 32% 35% 32% 32% 30%

BICelbow 0 42% 46% 41% 55% 36%
+1 7.2% 2.7% 7.5% 1.1% 13%

Table 3.9: Percentage of cases in which the solution determined by the BLRT corresponds
to the correct number of groups.

Scenario Method
Group error

< −1 −1 0 +1 > 1

All
GBTM 0% 0% < 1% < 1% 99%
GMM < 1% 7.3% 86% 5.3% < 1%

σζ = .1
GBTM 0% 0% < 1% 1.0% 99%
GMM < 1% < 1% 93% 5.3% 0%

σζ = .3
GBTM 0% 0% 0% 0% 100%
GMM 1.0% 14% 79% 5.3% < 1%
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Table 3.10: Percentage of cases with the correct number of groups according to the
respective criterion.

σζ KML GCKM GBTM GMM MixTVEM

RefNSJ
.1 71% 75% 70% 90% 49%
.3 15% 51% 14% 52% 24%

RefWMMSE
.1 83% 58% 80% 75% 50%
.3 27% 64% 26% 56% 33%

BICmin
.1 0% 7.7% 0% 93% 40%
.3 0% 53% 0% 49% 16%

BICelbow
.1 50% 52% 49% 44% 37%
.3 34% 40% 33% 37% 34%

Many patients struggle to accommodate to the therapy, resulting in much lower hours of
use, or an abandonment of the therapy, whereas other patients may improve over time.
Other patients establish a preferred number of hours of usage early on and remain constant
over time. In identifying the common longitudinal patterns of usage, we can describe
patients in greater detail and quantify the occurrence of certain patterns. Previous studies
have investigated these patterns using a two-step approach (Aloia et al., 2008; Babbin
et al., 2015).

The daily usage data was collected from a retrospective observational study in the US
over the past six years, comprising 2,686 patients diagnosed with sleep apnea and being on
therapy for the first time. The average age of the patients is 60 years (σ = 15 years). We
focus on the first 6 months of therapy, including only patients with at least 6 months of
data (1,745 patients). Days on which the device data is missing indicate that the therapy
was not used and are therefore represented by usage of zero hours (accounting for 30% of
all days). Given that patients used the therapy, the mean daily usage is 6.3 hours (σ = 2.7
hours). Due to the computational requirements of the mixture methods, we downsample
the usage data into weekly averages, resulting in 25 observations per patient.

In this exploratory analysis, we are primarily interested in identifying groups of patients
that exhibited a change in usage over time, and the patterns of change associated with
these groups. We consider the mean level of usage to be of less relevance when it is above 4
hours is this is generally regarded as the minimum for adherence. The balance in relevance
of the mean level of usage is challenging to capture in a single metric. We therefore we
apply a hybrid approach, basing our decision of the preferred number of groups on a
combination of the model information criterion and model results (Van de Schoot et al.,
2017). We use the BIC as a starting point towards determining the ideal solution. The
solutions close to the preferred number of groups indicated by the BIC are then evaluated
regarding the clinical interpretation of the group trajectories (Feldman et al., 2009). A
solution involving more groups is preferred only if it contains a group trajectory exhibiting
change or a low mean level of usage not present in solutions with a fewer number of groups.
Moreover, the solution needs to have groups of considerable size (greater than 5%). Lastly,
we assess the confidence in trajectory assignments to the groups, which we measure using
relative entropy (Van de Schoot et al., 2017; McNeish and Harring, 2017).
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Figure 3.4: Case study analysis using KML.
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KML

We apply KML as described in Section 3.2.2. Due to the low running time, we can evaluate
the method on 1 to 8 groups in a short amount of time, with even the eight-groups solution
requiring only 11 seconds to compute. The sequence of BIC values of Figure 3.4a show
a consistent but diminishing improvement of the model fit over an increasing number of
groups.

We select the solution comprising 6 groups because it provides a balance between the
level of detail by which the patients are described, and the number of group trajectories
involved. The group trajectories are depicted in Figure 3.4b. The confidence in the
classification of the trajectories is strong, with a relative entropy of 0.96. Most patients
appear to follow a near-constant trajectory, with the group trajectories A (6.7 hours), B
(4.8 hours), C (0.6 hours), and D (8.6 hours) comprising 80% of all patients. With respect
to adherence, group B is of particular interest due to variability around the compliance
threshold of 4 hours. The proportion of patients with near-zero usage (group C) accounts
for 19% of all patients. This group, together with group E, describes patients that either
stop using the therapy or use it infrequently. Group F describes patients that start out as
non-compliant but improve their usage throughout the therapy.

GCKM

The trajectory coefficients underlying the GCKM method are obtained using a GCM with
3rd-order orthogonal polynomial random effects. We selected this model by fitting growth
curve models of increasing complexity to the data and selecting the model that minimizes
the BIC. The model choice is further supported by the group trajectories found by KML
in Figure 3.4b. The k-means algorithm is applied in the same way as was done with KML.
The first step of the approach, involving the estimation of the GCM, only needs to be done
once. This took only 89 seconds, followed by k-means clustering, of which we evaluated
the solutions from 1 to 8 number of groups.

We choose the solution involving eight groups, which is shown in Figure 3.5b. Despite
the large number of groups, some groups are of considerable size. Group A, B, and C
already comprise 68% of patients, meaning that the remaining groups capture trajectories
that occur less frequently. The relative entropy is 0.86, indicating a good separation
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Figure 3.5: Case study analysis using GCKM.
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of groups. The group trajectories of each of the three major groups is near-constant,
with an average usage of 7.7 hours, 5.1 hours, and 0.87 hours, respectively. The latter
trend represents patients who were mostly non-compliant throughout the 6 months of
therapy, accounting for 19% of patients. Group D describes patients (8%) that were
non-compliant at the start of therapy but improved later. The remaining groups describe
group trajectories with periods of non-compliance at specific moments in time.

GBTM

The GBTM model is initialized using 50 random starts, and the best candidate model
is estimated until either convergence or 500 iterations are reached. We fit GBTMs with
3rd-order orthogonal polynomial group trajectories, based on the reasoning provided in
the GCKM analysis described above. In total, the estimation of two groups takes about
6 minutes, whereas the eight-groups model takes almost 2 hours of computation time.
The 2 hours of computation time consist of 80 minutes for estimating the random starts,
and 39 minutes for optimizing the final model. A converged solution was obtained for all
evaluated number of groups.

We arrive at the solution in Figure 3.6b, representing 6 group trajectories. With a
relative entropy of 0.96, the solution exhibits a strong separation of groups. About 82%
of patients are assigned to one of the four near-constant group trajectories (B, C, E, F).
Group B represents patients with near-zero usage (0.60 hours on average), comprising
20% of all patients. Group A and D describe patients who are mostly compliant at the
start and drop off later, and vice versa.

GMM

We apply GMMs with polynomial group trajectories of degree 3, based on the reasoning
that was provided in the GCKM analysis. Furthermore, we specify a random intercept,
and a shared diagonal variance-covariance matrix across the latent classes. This is done
to limit the added complexity of the model, in view of the large sample size. The model is
initialized using 50 random starts, and the best candidate model is iterated until either
convergence or 500 iterations are reached. Despite the restrictions imposed on the model,
the model estimation remains numerically challenging. This is evident from the time
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Figure 3.6: Case study analysis using GBTM.
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Figure 3.7: Case study analysis using GMM.
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needed for the model to converge. Whereas the two-class model requires 8 minutes of
computation time, the eight-class model takes 4.5 hours to compute. Although GMM
converged for all evaluated number of groups, the solution for five and six groups was
rather poor, having 7 empty groups.

We choose the solution with 7 groups, primarily because the solutions involving a
lower number of groups have a group comprising 70% of all patients, with a constant
trajectory and large between-patient variability. The preferred solution is shown in Figure
3.7b and consists of two large groups (C and F) describing patients with near-constant
usage. Group C is the largest group (50% of all patients) and describes a constant usage
around 6 hours. Despite the large number of groups, the relative entropy is high, with a
value of 0.93.

MixTVEM

We initialize the model with 50 random starts to ensure a good fit. In contrast to the
simulations, we do not include the autocorrelation term here. This was done to reduce
the running time, which even with this simplification requires 7 hours to arrive at the
2-groups solution, and 36 hours with 8 groups. Across the different solutions, the group
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Figure 3.8: Case study analysis using MixTVEM.
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trajectories discovered by MixTVEM are mostly constant, likely due to the penalization
factor and the variability between patients.

It is not until 8 groups that the solution contains multiple curved group trajectories.
The group trajectories are shown in Figure 3.8b. The relative entropy of 0.97 indicates a
strong confidence in the classification of the trajectories. Group C, D, E, F and G (66%
in total) represent constant usage over time. Out of these, groups G (14%) describes
patients with near zero-hour usage. Group A (11%) contains a wide range of trajectories,
considering its large within-group variability, and it is questionable whether the group
trajectory is representative. Group B and H (23% in total) represent patients who decline
or increase over time, respectively.

Evaluation In general, it is difficult, if not impossible, to establish with certainty
whether the data truly comprises heterogeneous subgroups, as the observed subgroups
could be an artifact from model misspecification (Bauer, 2007). In a more practical
approach, referred to as an indirect application of clustering, the data is not assumed to
comprise distinct subgroups, but instead comprises a complex spectrum which can be
discretized into subgroups for ease of analysis and reporting (using e.g., KML or GBTM)
(Nagin and Odgers, 2010a). None of the methods found a solution involving distinct
groups, so it is difficult to establish which method achieved the best result. If one regards
it as a segmentation problem, where the within-group error should be minimized, KML or
GBTM would be preferable. On the other hand, GMM and GCKM focus on grouping
similar trajectory shapes (i.e., the coefficients), resulting in larger groups of subjects with
similar trajectories, and consequently more groups with varying shapes. Nevertheless, the
confidence in the classification of the trajectories, as indicated by the relative entropy,
was found to be high for all methods, despite the many groups. Care should be taken
in interpreting these varying shapes, as the edges of the polynomial group trajectories
may not be representative of the underlying data, but instead could be an artifact of the
limited representation (Sher et al., 2011). Using a spline representation, such as the one
used in MixTVEM, results in more reliable trajectory estimates.
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3.5 Discussion
We evaluated the ability of longitudinal clustering methods to identify group trajectories
in synthetic datasets with known groups, displaying different slowly changing longitudinal
patterns. The performance of the methods was assessed in terms of the group assign-
ment agreement (via NSJ) and the group trajectory estimation error (via WMMSE).
Each combination of conditions involving sample size, number of repeated observations,
within-group variability, unexplained variability, and number of groups was explored.
This approach allows for an objective assessment of each method, and of the degree to
which performance is affected by the conditions. Although it may seem unreasonable to
represent real-life datasets by relatively simple synthetic datasets comprising heterogeneous
subgroups around a polynomial group trajectory (Raudenbush, 2005; Bauer, 2007), this
is exactly how GMM analyses are commonly specified in practice. A similar simulation
approach has been undertaken, for example, by Martin and von Oertzen (2015), and
McNeish and Harring (2017). While we only evaluated each permutation of settings on
100 synthetic datasets, the actual number of evaluated datasets is much greater, primarily
due to the different number of groups across settings. In the scenario involving group
assignment with the correct number of groups, 27,000 cases were evaluated.

In the simulations, GMM and GCKM significantly outperform the other methods across
all scenarios, both in terms of group assignment and estimation of the group trajectories.
The NSJ distances of the other methods were approximately twice as high, meaning that
twice as many trajectories were misclassified. The WMMSE was about 4 times higher,
which suggests that the other methods were considerably worse at recovering the shape of
the group trajectories. The good performance of GMM is not unexpected, after all, the
heterogeneous subgroups are its best-case scenario. Moreover, similar findings have been
reported in the comparison by Martin and von Oertzen (2015), although they did not
evaluate GCKM. In contrast, in the simulation study of Verboon and Pat-El (2022), it
was found that KML was more robust than GMM and yielded overall better results. We
believe this is due to the homogeneous subgroups simulated in their study, whereas we
assessed the performance under heterogeneous subgroups. Such a scenario would be an
ideal case for KML and GBTM.

We found that the performance of GMM is closely matched with the two-step approach
of GCKM, with the benefit that the computation time of the latter is two orders of
magnitude lower. With GCKM being on-par with GMM, the discrepancy in performance
of KML and GCKM demonstrates the benefit of dimensionality reduction in the first
step, describing the characteristics of the trajectory more concisely. These results contrast
with the findings by Twisk and Hoekstra (2012), who concluded that KML and GCKM
gave similar results. KML and GBTM were found to have near-identical solutions under
all scenarios. This relates to the conclusion of Feldman et al. (2009), who found that
longitudinal latent class analysis (LLCA), a method that could be regarded as a naive
clustering approach such as KML, obtains similar results to GBTM. Our findings suggest
that, in general, KML is the preferred choice over GBTM because of its considerable
flexibility in describing the trajectories, lower computation time, and better scaling.
However, GBTM is preferred when the data contains missing or non-aligned observations,
when there is prior knowledge on the shape of the group trajectories, or when covariates
are to be included into the trajectories.

MixTVEM performed marginally better than KML and GBTM (a difference in NSJ
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distance of -0.02) for 4 and 10 observations, despite its group trajectory estimation error
being approximately 2.5 times higher. Its poor performance for 25 observations raised the
overall average NSJ distance above the other methods, however. Due to its performance
in our simulation and its computational burden, we consider the other methods to be
preferable. In contrast to our findings regarding MixTVEM, Yang et al. (2019) found that
MixTVEM works well in most cases in identifying the number of groups and the group
trajectories, even for a larger number of observations. The difference in findings could be
due to the higher level of subgroup heterogeneity in our simulations.

Having evaluated the effect of sample size under various settings, all methods except
MixTVEM marginally benefited from an increased sample size. This is in agreement with
previous studies (Martin and von Oertzen, 2015; Peugh and Fan, 2012). Interestingly,
the sample size requirements did not go up with an increasing number of groups (up to
6). This indicates that for datasets with sufficiently distinct group trajectories, a small
sample size of 200 trajectories may suffice. Although GMM and GCKM produced similar
results, a shortcoming of GCKM becomes evident when comparing the performance across
different number of observations. GMM performs relatively well under a low number of
observations, whereas GCKM benefits from having more observations to obtain reliable
estimates of the random effects. Due to the similar performance to GMM for a higher
number of observations, and a better run time scaling with model complexity, GCKM is
the favorable option for ILD, due to computational speed.

The assessment of the optimal solution based on the NSJ distance showed that KML,
GCKM, GBTM and especially GMM were able to represent the underlying groups well for
datasets with low within-group variability. Under larger within-group variability however,
only GCKM and GMM were able to do this to a satisfactory degree. Optimizing for
the WMMSE, it was found that especially KML and GBTM excel in representing the
true underlying group trajectories, although they are surpassed by GCKM and GMM on
datasets involving large within-group variability.

Applying GMM in combination with either the BIC or BLRT resulted in the correct
selection of the number of groups at a high rate. The BLRT outperformed the BIC
in the scenario with high within-group heterogeneity (79% against 49%), whereas the
recovery rate was identical under low within-group heterogeneity (93%). The selection
of the number of groups turned out to be more difficult for the other methods (around
50% for low group variability) when applying the same metrics. In particular, KML and
GBTM tended to consistently overestimate the number of groups when minimizing the
BIC (and BLRT in case of GBTM), which is an observation that has also been noted by
others (Twisk and Hoekstra, 2012; Feldman et al., 2009). While minimizing the BIC is
recommended for GBTM by some (Nylund et al., 2007; Frankfurt et al., 2016), we found
that better results were obtained across scenarios by applying the elbow method on the
BIC.

The scenario involving a proportional measurement error confirms the insensitivity
to measurement error of KML and GBTM that was observed in the standard scenario.
The performance of GCKM and GMM degrades with increasing heteroskedasticity, but
even under high measurement error the methods perform better than KML, GBTM and
MixTVEM.

The evaluation of the log-normally distributed groups demonstrated that the group
assignment accuracy of all methods except MixTVEM degraded, although only slightly.
GMM showed the highest relative degradation in performance, indicating sensitivity of the
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performance to the correct specification of the model, though not substantively (Kreuter
and Muthén, 2008). The group trajectory estimation error is elevated for all methods.
Most notably, GMM exhibited large group trajectory estimation errors compared to the
standard scenario, significantly exceeding the errors of GCKM, KML, and GBTM.

Regarding the evaluation of the case study, the various group trajectories identified by
the methods demonstrate a strong level of heterogeneity in the level of therapy adherence
among patients over time. All methods identified groups resembling stable users, improving
users, and declining users. There is a compelling agreement between KML and GBTM.
The similarity of the group trajectories is apparent from Figure 3.4b and 3.6b, and further
confirmed by the low WMMSE of 0.91. Consequently, the group assignment agreement is
high as well, with an NSJ of only 0.023. In contrast, the NSJ between KML and GCKM
is 0.38. The results of GCKMW are closest to those of GMM (NSJ = 0.19, WMMSE =
25), although not as close as the simulation results would suggest. MixTVEM appeared
to be conservative in its estimation of the group trajectories, resulting mostly in constant
trajectories whereas the other methods showed a more varied range of curves. This is
likely a consequence of the regularization term.

Although mixture methods are numerically challenging to estimate, GBTM and GMM
experienced few convergence problems on the synthetic datasets. This convergence rate of
GMM is in contrast to our case study evaluation, as well as from experiences described
by others (Tolvanen, 2007; Feldman et al., 2009; Twisk and Hoekstra, 2012; Frankfurt
et al., 2016; McNeish and Harring, 2017), where GMM was found to exhibit convergence
problems, especially for more complex specifications. It is for this reason that GBTM is
the recommended method by Frankfurt et al. (2016). The discrepancy in convergence
rate could be due to the satisfaction of all assumptions of the model for the synthetic
data, whereas on real-life datasets the groups, if they exist, the subgroups are more
heterogeneous. Moreover, we applied GMM with a shared variance-covariance matrix,
resulting in a less complex model. The solutions of GMM comprising one or more empty
groups could be partly due to a few synthetic datasets comprising duplicate groups, i.e.,
groups with nearly the same group trajectory. Therefore, these datasets effectively have
a lower true number of groups. MixTVEM exhibited convergence problems, especially
for a larger number of observations, independent of the other simulation settings. The
cause of the frequent convergence problems (78% at 25 observations) is unclear. On the
same topic, the numerical complexity increases significantly for the mixture models with
an increasing number of observations, which results in poor scalability of these methods
on ILD. In fitting a GMM or GBTM with four or 25 observations, we observed a ten-fold
increase in computation time. On this aspect, GCKM and KML have a clear advantage.

3.6 Conclusion
The simulations showed that GMM and GCKM outperform KML, GBTM, and MixTVEM
on datasets comprising heterogeneous subgroups. In view of the strong assumption of
heterogeneous subgroups, the other methods cannot be ruled out in real-life situations for
explaining heterogeneity. KML and GBTM were found to have nearly identical results
when the group trajectory of GBTM were properly specified, suggesting that KML could
provide a good starting point for a GBTM analysis. MixTVEM suffered from significant
convergence problems at 25 observations, so under the evaluated specification, GBTM
would be preferred. Overall, GMM was found to perform best. Considering the close
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results between GMM and GCKM however, we recommend GCKM in ILD applications
due to its computational efficiency and scaling.
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Appendix
3.A Case study models
KML

Table 3.11: KML group trajectory parameters for the selected solution.

Group g
A B C D E F

π(g) 28% 21% 19% 12% 10% 9%
µ̂g,1 6.2 4.6 1.9 8.0 4.7 2.9
µ̂g,2 6.6 4.6 1.5 8.4 4.9 2.6
µ̂g,3 6.7 4.8 1.2 8.5 4.9 2.2
µ̂g,4 6.7 4.9 1.0 8.4 5.0 2.1
µ̂g,5 6.7 4.8 .88 8.5 4.9 1.8
µ̂g,6 6.7 4.8 .70 8.5 4.8 1.7
µ̂g,7 6.8 4.8 .60 8.5 4.5 1.8
µ̂g,8 6.8 4.8 .50 8.6 4.3 1.9
µ̂g,9 6.7 4.8 .49 8.6 4.0 1.8
µ̂g,10 6.8 5.0 .43 8.7 4.0 1.9
µ̂g,11 6.8 4.8 .41 8.7 3.5 2.0
µ̂g,12 6.8 4.8 .41 8.7 2.9 2.4
µ̂g,13 6.8 4.9 .42 8.7 2.6 2.4
µ̂g,14 6.7 4.9 .43 8.7 2.1 2.6
µ̂g,15 6.7 4.9 .42 8.8 2.1 2.7
µ̂g,16 6.8 4.8 .40 8.8 1.8 3.0
µ̂g,17 6.7 4.8 .33 8.7 1.5 3.4
µ̂g,18 6.7 4.9 .27 8.7 1.3 3.7
µ̂g,19 6.8 5.0 .25 8.6 1.3 4.0
µ̂g,20 6.8 4.9 .29 8.6 1.1 4.0
µ̂g,21 6.8 4.7 .30 8.7 1.1 4.4
µ̂g,22 6.8 4.7 .31 8.7 .95 4.1
µ̂g,23 6.5 4.7 .32 8.6 1.0 4.2
µ̂g,24 6.6 4.7 .36 8.6 1.0 4.2
µ̂g,25 6.5 4.7 .48 8.6 1.1 4.1
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GCKM

Table 3.12: GCKM group trajectory parameters for the selected solution.

Group g
A B C D E F G

π(g) 44% 23% 9% 8% 5% 5% 5%
ζ

(g)
0 5.7 3.0 5.1 3.6 4.1 4.1 4.9
ζ

(g)
1 7.0 -44 130 -160 -320 270 -240
ζ

(g)
2 -.81 23 -120 190 40 68 -170
ζ

(g)
3 .31 -10 56 -37 150 -150 -4.7

GBTM

Table 3.13: GBTM group trajectory parameters for the selected solution. The standard
error is reported in brackets.

Group g
A B C D E F

π(g) 10% 20% 29% 9% 12% 21%

β
(g)
0 2.8 .60 6.7 2.9 8.6 4.7

(.044) (.021) (.025) (.035) (.033) (.028)
β

(g)
1 -320 -67 6.0 170 21 -3.7

(7.6) (3.8) (3.3) (7.8) (4.6) (5.1)
β

(g)
2 22 48 -22 78 -23 -13

(5.8) (3.6) (3.0) (6.3) (4.5) (3.8)
β

(g)
3 78 -20 4.8 -73 3.9 -.94

(5.4) (3.6) (3.0) (5.8) (4.5) (3.8)
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GMM

Table 3.14: GMM group trajectory parameters for the selected solution. The standard
error is reported in brackets.

Group g
A B C D E F G

π(g) 5% 5% 50% 6% 4% 27% 3%

β
(g)
0 2.7 5.4 6.4 4.9 3.5 1.7 3.3

(.19) (.19) (.071) (.18) (.22) (.11) (.26)
β

(g)
1 -420 220 16 -290 380 -86 77

(8.9) (7.2) (2.3) (7.1) (7.6) (3.5) (9.0)
β

(g)
2 150 -170 -5.9 -190 79 37 310

(7.0) (7.3) (2.1) (6.4) (7.4) (3.2) (11)
β

(g)
3 88 73 .93 17 -180 -14 -24

(6.9) (6.6) (1.9) (6.8) (7.2) (3.1) (9.0)

MixTVEM

Table 3.15: MixTVEM group trajectory parameters for the selected solution. Here, B(g)
c (t)

denote the group-specific spline basis function coefficients (Dziak et al., 2015).

Group g
A B C D E F G

π(g) 11% 15% 17% 16% 14% 6% 14%

B
(g)
1 (t) 5.3 4.6 5.8 4.6 6.9 8.4 2.2

B
(g)
2 (t) 5.7 4.1 6.2 4.7 7.4 8.8 1.2

B
(g)
3 (t) 6.1 3.5 6.3 4.8 7.6 9.1 .45

B
(g)
4 (t) 6.4 2.9 6.3 4.6 7.7 9.2 .24

B
(g)
5 (t) 6.4 2.2 6.3 4.5 7.6 9.3 .21

B
(g)
6 (t) 6.2 1.6 6.3 4.5 7.7 9.3 .21

B
(g)
7 (t) 5.9 1.2 6.4 4.5 7.7 9.3 .14

B
(g)
8 (t) 5.5 .98 6.4 4.4 7.7 9.3 .13

B
(g)
9 (t) 5.0 1.0 6.4 4.3 7.7 9.3 .23

B
(g)
10 (t) 4.5 1.1 6.3 4.2 7.7 9.2 .34
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A latent-class heteroskedastic
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Abstract
Sleep apnea patients on CPAP therapy exhibit differences in how they adhere to the
therapy. Previous studies have demonstrated the benefit of describing adherence in
terms of discernible longitudinal patterns. However, these analyses have been done on a
limited number of patients and did not properly represent the temporal characteristics and
heterogeneity of adherence. We illustrate the potential of identifying patterns of adherence
with a latent-class heteroskedastic hurdle trajectory approach using generalized additive
modeling. The model represents the adherence trajectories on three aspects over time:
the daily hurdle of using the therapy, the daily time spent on therapy, and the day-to-day
variability. The combination of these three characteristics has not been studied before.
Applying the proposed model to a dataset of 10,000 patients in their first three months
of therapy resulted in nine adherence groups, among which 49% of patients exhibited a
change in adherence over time. The identified group trajectories revealed a non-linear
association between the change in the daily hurdle of using the therapy, and the average
time on therapy. The inclusion of the hurdle model and the heteroskedastic model into
the mixture model enabled the discovery of additional adherence patterns, and a more
descriptive representation of patient behavior over time. Therapy adherence was mostly
affected by a lack of attempts over time, suggesting that encouraging these patients to
attempt therapy daily, irrespective of the number of hours used, could drive adherence.
We believe the methodology is applicable to other domains of therapy or medication
adherence.

https://dx.doi.org/10.1186/s12874-021-01407-6
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4.1 Background
For clinical efficacy, patients need to adhere to the prescribed medical treatment. The
degree to which patients are successful in adhering to their treatment depends on the
condition, dosing frequency, treatment duration, and many other factors (Lettieri et al.,
2017). Another aspect of interest is the change in adherence over time, of which an
improved understanding can contribute to the early prediction of non-adherence and help
in selecting the appropriate intervention. Patient adherence can either be modeled in terms
of a common time trend from which patients exhibit random structural deviations, or as a
stratified analysis comprising subgroups of patients with specific longitudinal patterns.

In this work we explore the longitudinal therapy adherence patterns that obstructive
sleep apnea (OSA) patients exhibit during their first three months of continuous positive
airway pressure (CPAP) therapy. Identifying common patterns of adherence provides
population-level insights on how patients typically use the therapy. It may guide new
interventions for targeting the specific adherence behaviors, or help durable medical
equipment providers with substantiating their reimbursement claims.

OSA is a chronic disorder involving frequent pauses in breathing during sleep. The
disorder is common in the adult population, with the prevalence ranging from 9% to 38%
(Senaratna et al., 2017) and increasing with age. The apneas in OSA arise from a collapse
of tissue in the airway during sleep. The severity of the condition is typically measured
in terms of the number of breathing disturbances per hour of sleep, referred to as the
apnea-hypopnea index (AHI), where in severe cases of OSA these disturbances occur over
30 times per hour of sleep. Consequently, excessive daytime sleepiness, reduced quality of
life, and increased risk of cardiovascular disease are among the side effects associated with
OSA if left untreated (Kendzerska et al., 2014).

CPAP is the first-line therapy for treating OSA. However, in order for the treatment
to be effective, patients need to use it daily. The benefits of CPAP (e.g., reduced daytime
sleepiness) can diminish after as early as one omitted day (Kribbs et al., 1993). Furthermore,
the dose-response relation between hours of usage and daytime sleepiness has been found
to be linear, showing improved outcomes with up to 7 hours of usage per day (Weaver
et al., 2007). The level of adherence to the therapy is quantified in terms of the daily
number of hours the treatment was used.

While most patients (66%) succeed in adjusting to CPAP therapy, others fail to start,
give up early, or abandon the therapy within a couple of weeks or months (Rotenberg et al.,
2016). Moreover, the consistency in the number of hours used varies between patients. On
some days, patients do not initiate therapy, these days are referred to as intermittent days
or non-attempts. The complexity of adherence is evident from the numerous factors that
have been identified to be indicative of future CPAP (non-)adherence to some degree. This
includes demographic factors such as age, sex, BMI, and socioeconomic class (Shapiro and
Shapiro, 2010), and equipment-related factors such as the device type (e.g., continuous or
automatic PAP), device features (e.g., heated humidification), and therapy-related side
effects, e.g., mask discomfort, leakage, or skin abrasion (Wickwire et al., 2013). Moreover,
psychological factors have been identified (Shapiro and Shapiro, 2010), for example the
knowledge of patients about the therapy, the belief in ability to control one’s health,
the perceived risk and health benefit of the therapy, and motivation. In addition to the
individual factors, external factors such as family, physician, health care professionals and
facility all play a role in adherence (Shapiro and Shapiro, 2010).
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Earlier studies have handled the heterogeneity of adherence by stratifying the patients
on well-defined criteria. An example of this is found in the study by Weaver et al.
(1997), in which they observed a bimodal distribution for CPAP attempt consistency,
with approximately half of the patients being highly consistent (over 90% attempted
days). Wohlgemuth et al. (2015) stratified patients based on the percentage of nights
of usage, nights of usage above 4 hours, average nightly usage, and other factors. For
each of these factors, the average was computed over the therapy duration, resulting in
a cross-sectional cluster analysis. Using latent class analysis, they identified groups of
non-adherers, attempters, and adherers.

Other studies have explored how adherence changes over time across patients, with
a focus on the daily time spent on therapy. Aloia et al. (2008) investigated first-year
CPAP therapy adherence among 71 patients in detail by visualizing individual daily
time on therapy and manually grouping similar trajectories on time series characteristics
(intercept, variance, slope, autocorrelation, and length). They found seven patterns
of adherence. However, a limitation of their approach is that a manual evaluation is
infeasible for a large number of patients. Babbin et al. (2015) performed a similar time
series analysis on 161 patients over 180 days, but they used an automated approach for
clustering the adherence trajectories. The trajectories were classified into four clusters
using agglomerative hierarchical clustering of the daily time on therapy as independent
variables. They identified significant differences between groups on patient characteristics
in a post-hoc analysis. Wang et al. (2015) applied k-means among 76 patients, identifying
three adherence patterns over the first 12 weeks of CPAP therapy. They showed that
patients belonging to the cluster with poor adherence could be distinguished reliably from
the other clusters at baseline.

Overall, these studies have yielded varying adherence patterns of interest over different
ranges of time. However, these analyses involved fewer than 250 patients, which puts
an upper bound on the number of groups that can reliably be detected and limits the
power of the post-hoc group comparison. With respect to modeling the temporal aspect
of adherence, the studies demonstrate the added value of describing adherence in terms of
the attempts made and the mean level of usage, as well as the day-to-day variability in
time on therapy.

We represent the adherence over time by combining the different approaches taken in
previous studies. We model the daily time on therapy using latent-class distributional
regression with time as a continuous covariate. Here, the daily patient usage is modeled
as a two-stage process, where the daily action of initiating therapy is modeled over time
as a hurdle that patients must pass before the time on therapy is modeled. Moreover, we
model how the expected mean and variability of time on therapy changes over time. To
the best of our knowledge, such an approach has not yet been used for modeling therapy
adherence in patients (with sleep-disordered breathing). Hurdle modeling is typically used
in areas involving count data, such as economics, epidemiology, healthcare utilization, and
ecology. We will identify patterns of adherence in the therapy data on these three aspects
by estimating a latent-class hurdle trajectory model, using a generalized additive modeling
(GAMLSS) approach (Rigby and Stasinopoulos, 2005). Furthermore, we compare several
CPAP therapy-related external variables between groups, following a three-step approach
(Bolck et al., 2004; Vermunt, 2010).
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4.1.1 Data
In the present study we analyze retrospective data collected from patients in the United
States who are on CPAP therapy and registered for and made use of the DreamMapper
application made available by Philips Respironics. The DreamMapper application is
available on mobile and the web, with the purpose of supporting patients in their first
months of PAP therapy (Hardy et al., 2017) and is free to use. Patients can connect
their CPAP device or manually upload their CPAP device data to the DreamMapper
application to gain insights into their therapy. We obtained CPAP device data from 37,235
patients who have manually uploaded data via Bluetooth or SD card to the DreamMapper
application during their first 90 days of therapy and have consented to the use of their
uploaded data for research. From the available dataset, we selected a random sample of
10,000 patients to conduct the regression analyses1.

Patients included in the obtained dataset all meet the following criteria: Firstly, the
patients started therapy and manually uploaded data between May 2017 and April 2018.
Secondly, the patients started within a week of their DreamMapper registration date
with CPAP therapy and were first-time users of the therapy. This was determined by
the absence of other user accounts created by them in potentially previous times. Lastly,
only patients who have uploaded therapy data beyond their first 90 days of therapy were
included. This ensures that they have been on therapy for at least 90 days, regardless of
the number of days the therapy was used.

It is important to note that due to the 90-day therapy requirement, the typical level
of adherence in our data is higher than what would be expected from a more general
patient population. We focus on patients having been on therapy for at least 90 days
for two reasons. Firstly, the lack of information on the reason for the data flow stopping
means that we could not distinguish between patients who abandoned therapy and those
who stopped uploading data but continued their therapy. Secondly, clustering trajectories
while including patients of shorter therapy durations confounds the patterns of adherent
patients with those who abandoned therapy. Considering that the interpretation and
possible applications are different for these two cases, it is preferable to analyze and model
the cases separately. Furthermore, this simplifies the required model for our analysis, as
we do not need to account for censoring or different drop-out durations.

The available data per patient consists of daily aggregated CPAP device data, and
a motivation assessment filled in on a voluntary basis. Patient demographics and other
relevant baseline information such as the pretreatment AHI are not available for analysis.
In addition to the daily amount of time patients were on therapy (the mask-on time, in
seconds), as recorded by the CPAP device, we will compare the average residual AHI,
average leakage, and pressure settings to identify differences between the identified groups.
The motivation assessment is solicited at the very beginning of therapy, during onboarding.
Patients are asked to rate their motivation to treat their sleep apnea condition on a scale
from 1 to 10, where a 10 represents the highest possible level of motivation. A total of
2,973,759 observation days are available. Missing device data on intermittent days of
therapy is assumed to be due to no attempt being made to use the therapy, as technical
errors are deemed to be rare.

We computed the summary statistics on the complete dataset. On days during which
1This random subset was selected due to computational considerations in the cluster analysis for

models with a large number of clusters (up to 10).
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patients used the therapy, the time on therapy is approximately normally distributed with
a mean of 6.7 hours (SE 0.003) and a standard deviation of 2.1 hours (SE 0.001). The
distribution is slightly left-skewed, with a skewness of -0.40 (SE 0.001). Remarkably, the
average usage is considerably higher than the estimate of 5.8 hours by Hardy et al. (2017)
for patients who use the DreamMapper application in their first 90 days of therapy, which
we suspect can be attributed to our exclusion of patients that stopped engaging with the
app or their therapy before day 90. On average, patients did not use the therapy on 11.3%
of days. To correctly model adherence over time, we therefore include these intermittent
days as observations with zero hours on therapy. However, this leads to a response variable
with an excess of zeroes. The overall distribution of time on therapy is shown in Figure
4.1, where intermittent days are represented by the vertical black line at zero.

Figure 4.1: Distribution of time on therapy, with intermittent days represented by zero
hours.
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The time on therapy ranges from 0 to 23 hours, but measurements exceeding 15
hours (0.05%) were removed because these relatively extreme values were considered to be
unreliable measurements of the actual usage and could affect the model estimation. To
improve the robustness of the post-hoc analysis, extreme values from other covariates were
removed for the same reason, using conservative thresholds based on the lower and upper
0.01% of values. In total, fewer than 1% of observations are affected by these processing
steps.

4.2 Methods
4.2.1 Hurdle model
The excess zeroes that are present in the data cannot be ignored. In count data, this is
typically addressed using a zero-inflated model (Dietz and Böhning, 2000), which models
the increased probability of observing zeroes, in addition to the zeroes expected from the
response distribution, e.g., a Poisson distribution. However, in the present study, the
counts of the number of seconds on therapy are more closely represented by a normal
distribution with a strictly positive domain (e.g., the log-normal or truncated normal
distribution). Additionally, in this context, zeroes have only one interpretation, namely
that of the therapy not being initiated on a given day. If we regard initiating treatment



Section 4.2. Methods 86

as a hurdle that patients need to overcome daily, we can model the initiation of therapy
as a two-step process. This approach is referred to as hurdle modeling. It is generally
applicable when a response variable is conditional on the occurrence of an event, with
distinct values.

A hurdle model comprises a finite mixture of a point mass at zero, and a distribution
with positive domain. Excess zeroes in a count variable can arise from a significant
hurdle or a factor preventing the event from happening. This can also happen when
the time available for counting the events is too short relative to the frequency of the
event occurring. Lee et al. (2014) investigated the risk of miscarriage in women with
sleep-disordered breathing using truncated Poisson hurdle regression. Hurdle modeling
is not restricted to count data, as it can be applied with any distribution that does not
contain the hurdle response value (e.g., a truncated distribution). Saberi et al. (2011)
investigated the percentage of HIV medication non-adherence using a Gamma hurdle
model.

Let yi = {yi,1, yi,2, ..., yi,Ji
} denote the adherence trajectory of patient i ∈ I consisting

of Ji = 90 observations, for any patient from the set of available patients I. Here, yi,j

denotes the time on therapy of patient i on the jth measurement at time tj . The daily
hurdle of initiating therapy can be modeled with a Bernoulli process with probability

Pr (Hi,j = hi,j) =
{
νj hi,j = 0
1 − νj hi,j = 1

, (4.1)

where hi,j ∈ {0, 1} denotes whether the hurdle is overcome for patient i at time tj , and
νj ∈ (0, 1) represents the probability of failing to pass the hurdle at time tj .

Truncated normal hurdle model Except for models involving two-sided truncation,
as seen in double hurdle modeling, examples of left-sided truncated normal distributions
are few in number. Cragg (1971) first proposed a truncated normal hurdle model for
modeling the consumer demand of durable goods, to account for periods of time during
which no purchases of goods were made. For observations where the hurdle is passed (i.e.,
hi,j = 1), we assume the time on therapy yi,j to be normally distributed with strictly
positive values. The probability density function (PDF) is given by

fN(y;µ, σ) =
ϕ
(

(y−µ)
σ

)
1 − Φ

(−µ
σ

) y > 0 (4.2)

and zero otherwise, where ϕ(·) is the standard normal PDF, Φ(·) is the standard normal
CDF, and µ and σ are the mean and standard deviation of the non-truncated normal
distribution. If X has a normal distribution, the moments of the truncated normal
distribution are then given by (Burkardt, 2014)
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E(X|X > 0) = µ+ σ
ϕ( −µ

σ )
1 − Φ( −µ

σ )
, (4.3)

E(X2|X > 0) = µ2 + 2σµ
ϕ( −µ

σ )
1 − Φ( −µ

σ )
+ σ2

[
−µ
σ ϕ( −µ

σ )
1 − Φ( −µ

σ )
+ 1
]
,

E(X3|X > 0) = µ3 +
[
3σµ2 − µσ2 + σ3] ϕ( −µ

σ )
1 − Φ( −µ

σ )
+ 3σ2µ

[
−µ
σ ϕ( −µ

σ )
1 − Φ( −µ

σ )
+ 1
]
. (4.4)

The time on therapy for patient i at time tj is distributed as

Pr (yi,j ≤ y) = νj + (1 − νj)FN (yi,j , µj , σj) (4.5)

with y ∈ R and FN the truncated normal distribution function.
The truncated normal hurdle distribution described here, denoted by TNH, is repre-

sented by three parameters. We allow each of the parameters to change over time. As
such, each patient i at the jth observation at time tj is represented by the probability νj of
failing to pass the hurdle, the expected conditional mean µj and standard deviation σj . In
a single-group analysis the hurdle and conditional time on therapy essentially operate on
disjoint data, and therefore can be estimated separately, using logistic regression to model
the hurdle, and truncated normal regression for the conditional time on therapy. However,
this does not hold when the terms across the models are assumed to be correlated, or
when a mixture of hurdle models is being estimated.

4.2.2 Generalized additive modeling for location, scale and shape
GAMLSS is a method for modeling a numerical univariate response variable in terms
of a general parametric distribution. Whereas generalized additive modeling (GAM)
and generalized linear modeling (GLM) can only handle exponential family distributions
and assume a variance as a function of the mean with a constant scaling factor (Nelder
and Wedderburn, 1972; Hastie and Tibshirani, 1990), GAMLSS can describe parametric
response distributions by their mean (i.e., location µ), variance (i.e., scale σ) and shape (e.g.,
skewness and kurtosis) in terms of linear predictors and additive functions. Furthermore,
through the inclusion of a distributional parameter for the excess zeros, hurdle and
zero-inflated distributions can be handled.

GAMLSS was proposed by Rigby & Stasinopoulos (Rigby and Stasinopoulos, 2001,
2005), and developed into a framework implemented in various packages in R (Akantziliotou
et al., 2002; Stasinopoulos and Rigby, 2007). To describe our model in terms of GAM, let
y⊤

i = (yi,1, . . . , yi,Ji) denote the longitudinal measurements of a patient i ∈ I among the
sets of patients I, with yi,j ∼ TNH(µi,j , σi,j , νi,j). Each of the distributional parameters
can be described by a linear model, describing the J =

∑
i∈I Ji observations across all

patients. The PDF of the complete model is given by fY (yi,j ;µi,j , σi,j , νi,j). For brevity,
the predictor vector of length J for the kth distribution parameter is denoted by dk, with
d1 = µ, d2 = σ, and d3 = ν. The general random effects GAMLSS model (Rigby and
Stasinopoulos, 2009) for the kth distributional parameter is given by
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gk (dk) = Xkβk +
Mk∑

m=1
Zk,mγk,m, (4.6)

where gk(·) denotes the monotonic link function for the respective distribution parameter.
The linear additive terms of the model are represented by a J ×Lk design matrix denoted
by Xk for Lk fixed effects, with coefficients β⊤

k = (βk,1, . . . , βk,Lk
). The J × Qk,m

design matrix Zk,m models the random effects with γk,m as a vector of Qk,m random
variables. These random effects also allow for (penalized) smoothing as a function of
an explanatory variable, e.g., cubic splines, P-splines, and fractional polynomials. An
advantage of GAMLSS is that the random effects can be included in any of the distributional
parameters, although this comes at the cost of increased computational complexity.

We limit the model complexity by only representing each distributional parameter using
a linear parametric representation. In addition, the hierarchical nature of the longitudinal
data needs to be considered. Patients have different levels of expected usage, variance, and
attempts, arising from factors such as sleep schedule, quality of sleep, and tolerance to the
therapy. We can account for these patient-specific differences by partitioning the random
effects design matrix into patient-specific matrices. We only consider the case of Mk = 1
(i.e., a random intercept model for each distributional parameter), so we therefore omit the
m subscript from the notation hereafter. The patient-specific random effects design matrix
Zk,i of order Ji ×Qk are concatenated to yield Z⊤

k =
[
Z⊤

k,1 | Z⊤
k,2 | · · · | Z⊤

k,|I|

]
(Rigby and

Stasinopoulos, 2009). The random effects vector is denoted by γk,i = (γk,1,i, . . . , γk,Qk,i),
with γk,i ∼ N(0,Σk) for each of the distribution parameters, where Σk is the variance-
covariance matrix for the random effects of the respective distribution parameter.

Although we observe a marginally better fit using smoothing functions of time, modeling
change using linear additive terms is preferred in this analysis for its lower complexity,
and greatly reducing computation time. We therefore model each of the distributional
parameters using a second-order polynomial dependent on time. The identity link function
suffices for the mean µi,j , whereas a log link is used for the variance σi,j to ensure positive
values. The hurdle probability νi,j is modeled using logistic regression by assuming a logit
link g3(νi,j) = log

(
νi,j

1−νi,j

)
. Accordingly, the random effects model is given by

µi,j = β1,0 + β1,1ti,j + β1,2t
2
i,j + Z1,i,jγ1,i,

log σi,j = β2,0 + β2,1ti,j + β2,2t
2
i,j + Z2,i,jγ2,i,

log νi,j

1 − νi,j
= β3,0 + β3,1ti,j + β3,2t

2
i,j + Z3,i,jγ3,i. (4.7)

We will use this model to compare against the mixture model described in the next section.

Latent-class modeling

The findings from previous studies on CPAP adherence suggest a complex, non-normal
distribution of adherence patterns (Aloia et al., 2008; Babbin et al., 2015). We therefore
opt for a non-parametric approach to modeling the heterogeneity, by describing the patient-
specific deviations from the population mean in terms of a finite number of structural
deviations. In a cross-sectional data context, this approach is commonly referred to as finite
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mixture modeling (McLachlan and Peel, 2000). This has the added benefit of accounting
for the (possibly non-linear) relationship between the distributional parameters through
the different clusters. An association can be expected between the attempt probability
and the mean level of usage.

Growth mixture modeling (GMM) is an approach to modeling longitudinal change (i.e.,
a growth curve), accounting for patient heterogeneity by assuming each patient belongs to
one of several unobserved (i.e., latent) classes (Verbeke and Lesaffre, 1996; Muthén and
Shedden, 1999; Muthén et al., 2002). The class models include patient-specific random
effects; therefore the approach essentially assumes the heterogeneous data to consists of a
set of heterogeneous subgroups.

The appeal of allowing for patient-specific deviations within the latent classes is that
it enables an emphasis on the change of adherence over time as opposed to the expected
average time on therapy. Without a random intercept, most of the group trajectories
would be representing the differences in mean time of therapy, resulting in many constant
group trajectories. To a lesser degree, patients may also exhibit different levels in their
attempt probability and conditional standard deviation. However, in consideration of
the increased model complexity with an increasing number of latent classes, we opt for
simplifying the class model. We therefore only include a random intercept γ(g)

i ∼ N(0, σγ)
for the mean level. Each latent class is described by a model, where the model for class g
is described by

µ
(g)
i,j = η

(g)
1,i,j = β

(g)
1,0 + β

(g)
1,1ti,j + β

(g)
1,2 t

2
i,j + γ

(g)
i ,

log σ(g)
i,j = η

(g)
2,i,j = β

(g)
2,0 + β

(g)
2,1ti,j + β

(g)
2,2 t

2
i,j ,

log
ν

(g)
i,j

1 − ν
(g)
i,j

= η
(g)
3,i,j = β

(g)
3,0 + β

(g)
3,1ti,j + β

(g)
3,2 t

2
i,j . (4.8)

Each of these class models represents a proportion of the overall heterogeneity in the data.
The overall model is given by

f(yi,j ; Θ,π) =
G∑

g=1
πgfg

(
yi,j ; β

(g)
1 ,β

(g)
2 ,β

(g)
3 , σγ

)
(4.9)

where Θ = {θ(1), . . . ,θ(G)} comprises the group model parameters, fg denotes the model
for group g, and π is the vector of group proportions πg for group g with πg ≥ 0 and∑

g πg = 1. The class assignment of patients is probabilistic, which contrasts with other
approaches such as longitudinal k-means (KML) where the cluster edges are well-defined
but arbitrarily selected due to the distance measure used (Genolini and Falissard, 2010).

A few studies have used a similar approach in the context of hurdle modeling. Maruotti
(2011) proposed a longitudinal latent-class hurdle mixed effects model that accounts for
missing data patterns arising from drop-outs. They applied the model for the analysis of
skin cancer counts, of which the data had a considerable number of missing measurements,
in addition to zero inflation. Moreover, Ma et al. (2018) used a log-normal hurdle mixture to
identify patterns of factors contributing to vehicle crash rates. To the best of our knowledge
no studies have used a hurdle approach with within-class heterogeneity using GAMLSS
up to now, in particular when combined with class-specific temporal heteroskedasticity.
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4.2.3 Model estimation
The analysis is performed in R 3.5.0 (R Core Team, 2022) using version 5.1-2 of the
gamlss package (Rigby and Stasinopoulos, 2005) for the implementation of GAMLSS. The
GAMLSS model is fitted using the RS algorithm proposed by Rigby and Stasinopoulos
(1996). The algorithm maximizes the (penalized) maximum likelihood of the full model
using expectation maximization (EM). The estimation of the random patient factor is
based on penalized quasi-likelihood. The zero-truncated normal distribution is available in
the gamlss.tr package (version 5.1-0) (Stasinopoulos and Rigby, 2018) and was adapted
to account for excess zeros by the parameter ν.

We estimate the mixture model specified in Equation 6.1 using a nonparametric maxi-
mum likelihood (NPML) approach (Aitkin, 1996; Einbeck and Hinde, 2006), as implemented
in the gamlssNP() function in the package gamlss.mx (version 4.3-5) (Stasinopoulos et al.,
2017). This approach describes the data heterogeneity through a non-parametric density
function comprising a finite mixture (Laird, 1978; Einbeck and Hinde, 2006; Stasinopoulos
et al., 2017). The marginal likelihood for the data is given by

f(y; Θ,π) =
∏
i∈I

G∑
g=1

πg

Ji∏
j=1

fg

(
yi,j ; θ(g)

) . (4.10)

Here, the group parameters θ(g) represent the mass points of the non-parametric density,
occurring with probability (i.e., the masses) π1, . . . , πG, respectively.

Each trajectory is assumed to have been generated by one of the group models, however,
the true group membership is unknown. The membership of the trajectory yi to group g is
indicated by δi,g, with δi,g = 1 if the trajectory belongs to group g, and δi,g = 0 otherwise.
The vector of group indicators for the trajectory i is denoted by δi = (δi,1, . . . , δi,G). We
denote the set of all indicator vectors across patients by δ. With this, the likelihood of the
model with specified group memberships δ, referred to as the complete model, is given by

L(y,Θ,π, δ) = f(y, δ) (4.11)
= f(y|δ)f(δ)

=
∏
i∈I

f(yi|δi)f(δi)

=
∏
i∈I

G∏
g=1

πδi,g
g

Ji∏
j=1

fg (yi,j)δi,g

 .
Here, the parameters Θ and π were left out for conciseness. A more detailed derivation is
provided by Stasinopoulos et al. (2017). The log-likelihood of the complete model is given
by

ℓc =
∑
i∈I

G∑
g=1

δi,g log πg +
∑
i∈I

G∑
g=1

Ji∑
j=1

δi,gfg(yi,j). (4.12)

The complete model with G classes is equivalent to a weighted regression model over
repeated data observations for g = 1, ..., G with an additional covariate indicating the
class membership. The observations are weighted by the posterior probability
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wi,g = π̂i,g =
πg

∏Ji

j=1 fg

(
yi,j ; θ(g)

)
∑G

g′=1 πg′
∏Ji

j=1 fg′

(
yi,j ; θ(g′)

) . (4.13)

The latent class proportions of the mixture model are computed from the respective
average posterior probability, given by

π̂g = 1
|I|
∑
i∈I

wi,g. (4.14)

The EM algorithm is initialized by fitting a fixed-effects GAMLSS model. In the
E-step, the patient weights are updated, followed by the maximization of the weighted
GAMLSS model likelihood in the M-step. The optimization process is halted when the
reduction in the deviance, computed as D = −2 logL, falls below a certain threshold. In
the analysis, we use a lenient threshold of 0.3, which we determined to provide sufficiently
stable results due to the large amount of data, while halting relatively quickly. Details on
the algorithm and the initialization are given by Einbeck and Hinde (2006). We observed
stable solutions across repeated random starts, which is in agreement with findings by
other researchers (Aitkin, 1996; Einbeck and Hinde, 2006). Nevertheless, the model does
fail to converge sometimes so repeated random starts are recommended.

4.2.4 Evaluation
Prior to the mixture modeling analysis, we explore several mixed models based on Equation
4.7, with polynomial random effects

∑P
p=0 γk,p,it

p
i,j of order P in the predictor ηk of the

respective distributional parameter. In addition, we estimate a fixed effects model as a
baseline.

We assess the model fit of the models by investigating the standardized residuals
for normality, using a detrended quantile-quantile (Q-Q) plot. The different models are
compared using the Akaike information criterion (AIC). The AIC measures the amount of
information lost about the data by the model representation while penalizing overfitting.
It is defined as AIC = 2m− 2 logL, where m is the number of model parameters, and L is
the likelihood of the model. This is a specific case of the generalized Akaike information
criterion (GAIC) (Akaike, 1983), which is recommended for comparing non-nested models
(Rigby and Stasinopoulos, 2005). Only models that converged successfully are evaluated.
Likelihood ratio tests were considered but yielded consistent p-values of zero for any
improvement in AIC due to the large sample size, and therefore we do not report them
in the results section. Lastly, we measure the separation between classes in terms of the
relative entropy (Muthén, 2004), given by

relative entropy = 1 −
∑∑G

g=1 −π̂(g)
i log π̂(g)

i

|I| logG . (4.15)

For the selected mixture model, we compare the subgroups to create distinct descriptors
of the groups, and to highlight meaningful differences between the groups in terms of
adherence. We assess the group trajectories on each of the distributional parameters
visually. Furthermore, we explore whether the groups differ on any of the other available
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covariates of interest, which are the residual AHI, leakage, pressure settings, and motivation
score. Here, each patient is assigned to the most likely group (i.e., modal assignment).

Although the additional covariates could have been included in the GAMLSS mixture
model, this was omitted for practical reasons because the computation time would increase
considerably. Furthermore, preliminary tests on a random subset of 1,000 patients yielded
mostly the same groups as the mixture model without the inclusion of an additional
covariate. We therefore apply a three-step approach, where in the first step the mixture
model is estimated (i.e., the measurement model). In the second step, each patient is
assigned to their most likely group. Lastly, the patient groups are compared on the
covariates of interest. The means are compared using ANOVA F-tests, whereas the
medians of skewed distributions are compared using the Kruskal-Wallis test. Due to the
large sample size of this study, even small differences between groups are statistically
significant. Instead, we will only highlight practically significant differences that are
deemed clinically relevant.

The three-step approach has been shown to lead to biased estimates on the effects of
external variables (Vermunt, 2010). We therefore considered the modified Bolck-Croon-
Hagenaars (BCH) approach, which applies a correction for the misclassification errors
(Vermunt, 2010; Bakk et al., 2013). However, when applied to the case study at hand,
we observed that the correction did not result in a meaningful difference in the mean
estimates between groups, nor different conclusions on statistical significance. This is
likely attributable to the large sample size, and low misclassification error due to the large
number of observations per trajectory.

4.3 Results
The model fits for different degrees of polynomials (P = 0, 1, 2), and the fixed effects model
are reported in Table 4.1 in terms of the AIC. An increasing order of the random effects
is associated with an improved model fit. However, the model involving the quadratic
random effects failed to converge despite repeated random starts. The detrended Q-Q
plot of the linear random effects model shown in Figure 4.2 indicates that the residual
deviations from the normal distribution are closely concentrated around zero, suggesting
that the normalized quantile residuals are approximately normally distributed. However,
the pattern of negative deviation at the tails indicates the presence of many outliers, i.e.,
heavy tails.

Table 4.1: The single-group model estimates.

Random effects in ηk AIC
None 4,070,897

Constant 3,267,326
Linear 3,209,083

Quadratic Did not converge



Section 4.3. Results 93

Figure 4.2: Detrended Q-Q plot of the single-group model with linear random effects.
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4.3.1 Number of groups
We determine the best fitting mixture model for 1 to 10 classes. For each number of
groups, ten models were fitted using random starts, out of which the model with the lowest
AIC was selected. Overall, the solutions among the repeated random starts, in the cases
where convergence was reached, are stable. This is consistent with observations by Aitkin
(1999) for this type of estimation.

Figure 4.3: Metrics for the model solutions for 1 to 10 groups.
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The AIC of the best model for each number of groups is shown in Figure 4.3a. The
monotonically decreasing curve suggests a consistent but diminishing improvement in
model fit with an increased number of groups. With the aim of exploring the various ways
in which patients adhere to the therapy, and in consideration of the sufficient amount of
data for a post-hoc analysis, a solution involving many groups is justified, and supported
by the AIC and likelihood ratio test (p ≪ 0.01). An alternative solution of interest would
be the solution involving three groups, which is the solution at which the improvements in



Section 4.3. Results 94

the consecutive models start to diminish.
We choose the nine-groups solution because it provides a better fit than solutions

involving fewer groups, as indicated by the AIC. The eight-groups solution lacks the group
trajectory exhibiting considerably increase in usage over time which is present in the
solution with nine groups. On the other hand, the ten-group solution is almost identical
to the preferred solution, except for an additional constant group trajectory which we
deem to be not of interest.

The computation time increased considerably with an increasing number of groups,
up to the point where model estimation is no longer practical. Whereas the single-group
model takes 34 minutes to compute on an Intel Xeon E5-2660 (2.6 GHz) processor, the
five-groups model needed 34 hours on average, and the ten-group models completed only
after 228 hours on average. The average computation time for each number of groups is
shown in Figure 4.3b. The models involving nine groups or less either converged within
50 outer iterations or failed to convergence. The ten-groups models converged within 78
iterations.

4.3.2 Adherence groups
The nine group trajectories are shown in Figure 4.4 for each of the distributional parameters,
with the model coefficients shown in Table 4.2. The means of the group trajectories are
reported for day 1, 45 and 90 in Table 4.3.

The value range of the group trajectories for the mean time on therapy is surprisingly
narrow, with only a 3.5-hour difference between the lowest and highest group. The small
proportion of patients that fall outside of this range are accounted for by the random
intercept in the group models. The difference between the mean group trajectories is
especially small in relation to the day-to-day standard deviation of usage, with standard
deviations ranging between 0.84 and 2.4 hours. In addition, there is a considerable spread
within groups on the mean intercept, with σγ = 1.5 hours. Despite of the high day-to-day
variability, the large number of observations available per patient allows for a reliable
classification, as indicated by the high relative entropy of 0.93.

The group trajectories show a gradual change in mean usage over time, which is
possibly due to patients changing their usage at different moments throughout the therapy.
In contrast, the changes in attempt probability are more profound, with a significant
group of patients that tend to nearly cease the therapy within the first month. Overall,
the attempt probability and its change over time differ considerably between groups, with
some groups achieving near-perfect consistency in daily attempts (99%), and other groups
using the therapy sporadically (attempts on 15% of days) towards day 90. Several of
the groups exhibit a small increase in usage variability over time. In some groups, this
change in variability appears to coincide with a change in mean usage, possibly indicating
a mean-variance relationship. In general, the group trajectories with higher usage have
lower variability.

Group A, B, and C represent highly consistent users, making up the majority of patients
(51%). Group B (12%) and C (23%) represent patients that have no trouble adhering to
therapy, with a consistent average attempt probability of 99%, usage averaging around 7
hours, and having the lowest day-to-day variability of all groups. The discerning factor
between the groups is the day-to-day variability of group C of 1.3 hours, compared to the
even lower standard deviation of 0.90 hours for group B. The patients of group A (16%)



Section 4.3. Results 95

Figure 4.4: The identified group trajectories for each distributional parameter.
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Table 4.2: Group trajectory coefficients.

Group π̂g
logit ν µ log σ

β2,0 β2,1 β2,2·103 β1,0 β1,1 β1,2·103 β2,0 β2,1·102 β2,2·104

A Variable users 16% -4.2 .0032 .093 7.1 -.015 .093 .52 .10 .0057
B Consistent users 12% -4.1 -.015 .18 7.4 -.0021 .012 -.11 -.31 .36
C Good users 23% -4.1 -.025 .26 7.1 -.0034 .023 .29 -.36 .39
D Stable decliners 13% -2.6 .018 -.031 6.3 -.014 .090 .29 -.064 .20
E Strugglers 8% -1.3 .042 -.46 5.3 -.012 .17 .65 -.15 .12
F Improvers 8% -2.0 -.015 -.014 5.2 .035 -.19 .79 -.88 .57
G Variable decliners 9% -2.8 .014 .029 6.6 -.018 .096 .84 -.011 .13
H Dropouts 6% -2.3 .032 .15 5.6 -.020 .053 .68 -.49 .69
I Early dropouts 5% -1.1 .11 -.94 5.0 -.044 .47 .60 -.13 .29

Table 4.3: The group trajectories at day 1, 45 and 90.

Group Attempt probability 1 − ν Mean time µ (h) SD time σ (h)

Day 1 Day 45 Day 90 Day 1 Day 45 Day 90 Day 1 Day 45 Day 90

A Variable users 99% 98% 96% 7.1 6.7 6.5 1.7 1.8 1.9
B Consistent users 98% 99% 98% 7.4 7.3 7.3 .90 .84 .90
C Good users 98% 99% 99% 7.1 7.0 7.0 1.3 1.2 1.3
D Stable decliners 93% 87% 78% 6.3 5.9 5.8 1.3 1.4 1.5
E Strugglers 79% 59% 77% 5.3 5.1 5.6 1.9 1.8 1.9
F Improvers 88% 93% 97% 5.2 6.4 6.8 2.2 1.7 1.6
G Variable decliners 95% 90% 80% 6.6 6.0 5.8 2.3 2.4 2.6
H Dropouts 91% 65% 15% 5.6 4.9 4.3 2.0 1.8 2.2
I Early dropouts 75% 11% 17% 5.0 3.9 4.8 1.8 1.8 2.0

achieve nearly the same consistency in attempts as group B and C, but show a decrease
in usage of half an hour throughout the therapy. Moreover, the standard deviation is
considerably higher at 1.8 hours. In terms of usage, group D (13%) and G (9%) follow a
trajectory similar to group A, but have a reduced number of attempts by day 90 from 94%
to 80%. The difference between these two groups lies in their day-to-day variability. With
a standard deviation of around 2.5 hours, patients in group G have the highest variability
of all groups by far. Group E, F, H, and I represent struggling patients (for a total of 27%
of patients, with 8%, 8%, 6% and 5% respectively). These patients tend to have a lower
average usage already at the start of therapy. Whereas the patients from group F improve
with time, the usage of the other groups either remains constant or decreases over time.
The strugglers in group E exhibit a stable usage over time, but a diminished number of
attempts around the second month of therapy. Group H and I comprise patients who
decrease in number of attempts, the separating factor between the groups is the time at
which attempts are no longer made or only occur sporadically.

We assess the fit of the mixture model to the data using the detrended Q-Q plot shown
in Figure 4.5. The normalized quantile residuals closely follow a normal distribution,
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except for the heavy tails, indicating that the data contains considerable outliers with
respect to expected group trajectory. The deviation around 1.3 can primarily be attributed
to observations from patients of the early-dropouts group I, suggesting that more group
trajectories are needed to adequately describe the trajectories of these patients, or that a
different model is needed for this specific group.

Figure 4.5: Detrended Q-Q plot of the preferred mixture solution.
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4.3.3 Group comparison
We compare the identified groups on the covariates described in Section 4.1.1 based on
the measurements in the first week, and across all 90 days of therapy. The group mean
and median values for each covariate, along with the standard deviation and interquartile
range respectively, are reported in Table 4.4. The median attempted days, time on therapy
and day-to-day variability are reported for reference. The proportion of compliant days
was determined by the number of days with time on therapy exceeding 4 hours out of 90
days. The pressure-related covariates were only available in 675 patients. The minimum
and maximum CPAP pressure settings remained unchanged in 81% of patients, therefore
the median values in week 1 are not reported. Already in the first week of therapy, group
A, B and C comprise relatively more compliant patients than the other groups, with most
patients achieving daily compliance. This is in contrast to group E and I with a respective
proportion of only 57% and 43%. All groups except F (the improvers) show a decline in
compliant days over time. The decline is considerable for the drop-out groups H and I,
which can be attributed to the reduced number of attempts over time.

With respect to the residual AHI, the median and lower percentiles between groups is
minute. In contrast, the differences at the 75th percentile and higher are more pronounced,
where the AHI of groups E, H and I is higher by 1 event/hour. It is worth noting that
only the early drop-outs group (I) do not show a decrease in AHI relative to the first week.
As patients with consistently high AHI may have abandoned the therapy prematurely, we
also investigate the average proportion of patient residual AHI measurements exceeding 15
events/hour across the groups (referred to as high residual AHI in Table 4.4). Differences
between the groups are present from week 1 onward, notably between the more adherent
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groups (A-D) and the other groups. Even more so, the differences are greater in the
period following the first week, with the groups exhibiting struggling or drop-out behavior
(groups E, H, I) having over twice the rate of high residual AHI compared to the adherent
groups A, B and C.

Leakage was found to be practically identical between groups. We therefore also
investigated cases of high leakage. For the high leak analysis, the available research data
did not allow for an adjustment of the relevant factors for leakage (most importantly, the
type of mask used). Instead, we therefore evaluated the within-patient leakage variability.
We computed the standard deviation of the day-to-day differences in leakage for each
patient (referred to as SD leakage in Table 4.4). Leakage variability was found to be
highest in the drop-out groups (H and I), and lowest in the consistent-users group (B).
The drop-out groups (H and I) tend to have a higher proportion of patients with the
lowest possible minimum CPAP pressure of 5 cmH2O compared to the other groups. This
could be due to these groups comprising patients with a less severe form of sleep apnea, or
a suboptimal device configuration. The motivation score provided by patients during the
first week of therapy ranges from 1 to 10. There are considerable proportional differences
between groups. The drop-out and struggling groups have a higher proportion of patients
who rated their motivation below 4. Conversely, patients in groups with the highest level
of adherence, B and C, patients were more likely to be motivated from the start.
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Table 4.4: Unadjusted group estimates for the covariates (between-patient standard devia-
tion enclosed in parentheses). The median is reported for covariates with a considerably
skewed distribution (lower and upper quartiles enclosed in brackets).
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4.4 Discussion
Previous studies have explored CPAP adherence patterns using relatively small datasets
involving fewer than 250 patients. Moreover, the behavioral characteristics on which the
clusters in these studies are based are more limited in scope, with most studies using the
time on therapy as the response to cluster on (Babbin et al., 2015; Wang et al., 2015).
Although the number of clusters that could be found in these studies was largely limited by
sample size (as pointed out by Wohlgemuth et al. (2015)), the fewer model characteristics
and lower granularity of measurements have likely also played a role. Despite the different
selection of patients, characteristics, and therapy duration, some agreements can be found
with other studies on the mean usage over time. In particular, constant and declining
patterns of usage are commonly found.

The proposed latent-class hurdle model based on GAMLSS allows for a more detailed
description of adherence over time in OSA patients undergoing CPAP therapy, modeling
changes in attempts, time on therapy, and day-to-day variability in a single model. The
nine identified group trajectories emphasize the complexity surrounding CPAP therapy
adherence. A narrow majority of patients who used the DreamMapper application (51%)
exhibited a stable adherence pattern across the first 90 days of therapy, with the most
distinguishing characteristic being the day-to-day variability. Other patients exhibit a
change over time, typically a decline. The group trajectories involving a change over time
have similar characteristics in the first week of therapy, suggesting that there are other
factors involved that determine how the patient adherence shifts over time. Identifying
these contributing factors presents opportunities for early interventions (D’Rozario et al.,
2016).

We have identified several possible contributing factors. The largest differences were
observed in the motivation score. This score, assessed in the first week of therapy, showed
large proportional differences, where patients with low motivation are more likely to belong
to the drop-out groups. Including additional psychosocial factors studied in literature
would likely help to explain the observed group trajectories further (Crawford et al., 2014;
Cayanan et al., 2019). The comparison of residual AHI yielded only minor differences
in median AHI between groups. However, the differences were more pronounced in the
upper quartile, indicating that struggling and drop-out groups may comprise a subgroup
of patients with a higher residual AHI. This is further demonstrated by the different
occurrence rates of high residual AHI, with the strugglers and drop-out groups having
over twice the rate compared to the most adherent groups. Similarly, variability in leakage
was found to differ after the first week of therapy, with the drop-out groups having the
highest variability in leakage.

It was essential to model the conditional mean usage by a random intercept because of
the variability in intercept between patients with the same change over time. This variance
component was not needed for the attempt probability as the patterns of the drop-out and
declining groups are much more distinct from the other groups. Although the inclusion of
day-to-day variability in the model resulted in the identification of additional groups, the
day-to-day variability showed little change over time in most patients, with the improvers
from group F being the notable exception.

All group trajectories remained above the minimum compliance threshold of 4 hours,
suggesting that even in the group with the lowest average time on therapy (group I,
the early drop-outs), patients met the threshold on average. Our findings suggest that



Section 4.5. Discussion 101

across groups, therapy adherence is mostly affected by a decrease in attempts over time,
suggesting that the focus on encouraging patients to attempt the therapy daily is more
important than increasing the hours of usage above the compliance threshold.

It is important to note that because most patients that abandon the therapy do so
within 90 days, our results are biased towards the more adherent patients. We suspect
this is why the groups with average usage below 4 hours identified by Babbin et al. (2015),
Wang et al. (2015) and Wohlgemuth et al. (2015) were not found in our analysis. On a
similar note, our estimates of therapy factors such as AHI or leakage are also likely to be
lower, as significant issues on these aspects could contribute to patients abandoning therapy.
Furthermore, due to the selection of patients who used the DreamMapper application, the
findings may not be representative of the general sleep apnea population (Hardy et al.,
2017).

The residual analysis showed that the model fits the data adequately, with only the
tails of the distribution departing from a normal distribution. The heavy tails could
likely be accounted for by including more random effects into the class models, allowing
a greater range of patient-specific deviations from the group trajectory. Alternatively, a
truncated distribution with a heavier tail than the truncated normal distribution (e.g.,
the t-distribution) could be used. The choice for the normal distribution was a trade-off
between model complexity and model fit, as both proposed alternatives would increase
the model complexity and estimation time considerably.

Due to the excessive computation time for the nine- and ten-class models, we restricted
the regression analyses to a random subset of 10,000 patients out of the available 37,235
patients. To ensure that this would not affect our results, we conducted a preliminary
analysis where we visually determined that the group trajectories were sufficiently stable
from random samples comprising 5,000 patients each. Considering the large number of
data points per patient, a feature-based approach could have possibly provided a similar
solution in a significantly shorter amount of time. In such an approach, the patient
trajectories are estimated independently, after which latent class analysis is performed on
the trajectory coefficients.

Bearing in mind the high day-to-day variability observed within patients, the model fit
could be improved further if factors can be determined that explain some of the observed
variability. Moreover, the hurdle model assumes that the occurrence of intermittent
days are independent events while the factors that affect attempts may last several days
(e.g., illness). Modeling intermittent days as a state change lasting one or more days
could provide an improved description, especially for patients who are struggling with the
therapy.

Overall, the proposed methodology provides a detailed description of patient adherence
behavior over time, especially in comparison to earlier studies. Our approach is useful to
researchers, clinicians, and durable medical equipment (DME) providers for discovering
common patterns of adherence in their (sub)population of interest, and gaining insights
into how adherence behavior differs between patients. Moreover, such insights could help
DME providers better identify the risk of overpay in reimbursement claims based on
adherence levels. Lastly, the proposed model can be used to assign new patients to the
most likely adherence pattern, enabling the detection of behaviors of interest. Identifying
problematic patterns of adherence may help in better recognizing and targeting patients
who are struggling with the therapy.
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4.5 Conclusion
We have demonstrated the feasibility and benefits of applying a latent-class heteroskedastic
hurdle trajectory model to adherence data with a large number of patients. The inclusion
of the hurdle model and the heteroskedastic model into the mixture model enabled the
discovery of additional adherence patterns, and a more descriptive representation of patient
behavior over time. Most importantly, the analysis revealed a strong non-linear association
between the progression of attempts over time, and the average time on therapy. The
methodology presented here can be applied to behavioral data in other domains involving
the tracking of compliance over time.
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latrend: A framework for
clustering longitudinal data

N.G.P. Den Teuling S.C. Pauws E.R. van den Heuvel
Submitted.

Abstract
Clustering longitudinal data is a useful way to explore differences between subjects
on their change over time for a measurement of interest. Various R packages have
been introduced throughout the years for identifying clusters of longitudinal patterns,
summarizing the variability between subject trajectories in terms of one or more common
trends. We introduce the R package latrend as a framework for the unified application of
methods for longitudinal clustering, enabling comparisons between methods with minimal
coding. The package also serves as an interface to commonly used packages for clustering
longitudinal data, including dtwclust, flexmix, kml, lcmm, mclust, mixAK, and mixtools.
This enables users to easily compare different approaches, implementations, and method
specifications. Furthermore, users can build upon the standard tools provided by the
framework to quickly implement new cluster methods, enabling rapid prototyping. We
demonstrate the functionality and application of the latrend package on a synthetic
dataset based on the therapy adherence patterns of patients with sleep apnea.



Section 5.1. Introduction 104

5.1 Introduction
In this work, we consider the case where subjects are measured on the same variable
repeatedly over a period of time. This type of data is referred to as longitudinal data. No
two subjects are identical, and therefore observations made across subjects may develop
differently over time. Modeling the variability between subjects leads to an improved
understanding of the different trajectories that may occur.

Usually, a longitudinal dataset is represented by a single general trend, i.e., an average
representative trajectory indicating the expected change over time. Here, subjects exhibit a
random deviation from the general trend. However, there may be observed and unobserved
factors that contribute to structural deviations, causing a single general trend to be an
inadequate representation of the trajectories. In other cases, the distribution of random
deviations is difficult to model parametrically. In both situations, multiple common trends,
i.e., longitudinal clusters, may provide a better representation of the data (Hamaker, 2012).
The number of clusters or the definition of the clusters is typically not known in advance
and needs to be estimated from the data.

An example of a domain where modeling the between-subject variability is of interest
is in the monitoring of therapy adherence of patients with sleep apnea undergoing positive
airway pressure (PAP) therapy. Here, therapy adherence is measured in terms of the
number of hours of sleep during which the therapy is used, recorded daily. Patients exhibit
different levels of adherence to the therapy, depending on many factors such as their sleep
schedule, motivation, self-efficacy, and the perceived importance of therapy (Cayanan et al.,
2019). Moreover, patients may exhibit a different level of change over time, depending on
their initial usage and their ability to adjust to the therapy. Due to the many possibly
unobserved factors involved, researchers have used longitudinal clustering to summarize
the between-subject variability in terms of longitudinal patterns of therapy adherence
(Babbin et al., 2015; Den Teuling et al., 2021; Yi et al., 2022).

Clustering longitudinal data is a practical approach for exploring the variability between
subjects. This variability is summarized in terms of a manageable number of common
trends, which are identified in an unsupervised manner from the data using a cluster
algorithm. Such an approach is especially useful for exploring datasets involving a large
number of trajectories, where a visual inspection of the trajectories would be impractical. In
essence, the data is assumed to comprise several groups, each with a different longitudinal
data generating mechanism. It differs from cross-sectional clustering due to the need to
account for the dependency between observations within subjects, and the presence of
temporal correlation of the repeated measurements.

A number of packages have been created in R (R Core Team, 2022) that can be used
for clustering longitudinal data. However, for researchers analyzing a novel case study,
choosing the best method or implementation is not straightforward. This is partly due
to a lack of guidelines on how the most appropriate method should be selected, but also
due to the inherent exploratory nature of such an analysis. Considering that each of these
packages have been created to fulfill a gap in the capabilities of other already existing
implementations or approaches, there is value in comparing the results for the case study
at hand. Be that as it may, the evaluation of different approaches across packages is
an activity of significant effort, as the method inputs, estimation procedure, and cluster
representations differ greatly between packages.

The aim of the latrend package is to facilitate the exploration of heterogeneity in
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longitudinal datasets through a variety of cluster methods from various fields of research
in a standardized manner. The package provides a unifying framework, enabling users
to specify, estimate, select, compare, and evaluate any supported longitudinal cluster
method in an easy and consistent way, with minimal coding. Most importantly, users
can easily compare results between different approaches, or run a simulation study. The
latrend package is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=latrend and on GitHub at https://github.com/phi
lips-software/latrend.

A second key aim of the package is extensibility so that users can adapt the framework
or methods to their needs. Users are able to extend the framework with new methods
or add support for another existing method by creating a new implementation of the
framework interface. The effort in implementing new methods is considerably reduced
due to the standard longitudinal cluster functionality provided by the framework.

Currently, a total of 18 methods for longitudinal clustering are supported. To provide
support for such a variety of approaches, the latrend package interfaces with an extensive
set of packages that provide methods that are applicable for clustering longitudinal
data, including akmedoids (Adepeju et al., 2020), crimCV (Nielsen, 2018), dtwclust
(Sardá-Espinosa, 2019), flexmix (Grün and Leisch, 2008), funFEM (Bouveyron, 2015), kml
(Genolini et al., 2015), lcmm (Proust-Lima et al., 2017), mclust (Scrucca et al., 2016),
mixAK (Komárek, 2009), and mixtools (Benaglia et al., 2009). In this way, we build
upon the cluster packages created by the R community. Support has also been added for
MixTVEM; a mixture model proposed and implemented as an R script by Dziak et al.
(2015).

To the best of our knowledge, such a comprehensive package does not yet exist in the
context of clustering longitudinal data. The latrend package has similar aspirations as
the flexmix package, which also provide extensible framework for (multilevel) clustering.
However, the scope of our package is purposefully broader, to facilitate users to apply
approaches from various fields of research. Our framework is agnostic to the specification,
estimation, and representation used by the methods.

The chapter is organized as follows. A short overview of different approaches to
clustering longitudinal data is given in Section 5.2. In Section 5.3, the design principles
and high-level structure of the framework are described. The usage of the package is
demonstrated in Section 5.4. Section 5.5 describes three ways in which users can implement
their own cluster methods. Lastly, a summary and future steps are presented in Section
5.6.

5.2 Methods
We will briefly describe the general approaches to clustering longitudinal data. Moreover,
we summarize the main strengths of these approaches. For brevity, we do not go into
the specifics of any particular package. We refer to the accompanying articles of these
packages for further details.

We begin by describing the aspects which all the approaches have in common. Let the
repeated observations of the trajectory from subject i be denoted by

yi = (yi,1, yi,2, ..., yi,Ji
),

where yi,j is a numerical value of some variable of interest, ti,j is the measurement time,

https://CRAN.R-project.org/package=latrend
https://github.com/philips-software/latrend
https://github.com/philips-software/latrend
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and Ji is the number of observations of trajectory yi for subject i.
Any method for clustering longitudinal data approximates the dataset heterogeneity

in terms of a set of K clusters, with each cluster representing a segment of the between-
subject heterogeneity. These clusters may be discovered by identifying groupings of similar
subjects, based on their trajectory. Typically, a cluster method is estimated for a given
number of clusters, specified by the user. Here, users apply a cluster method for a different
number of clusters to determine the most appropriate number of clusters for the respective
data.

Each cluster represents a proportion of the population, denoted by πk. The vector
of cluster proportions is denoted by π = (π1, π2, ..., πK), with πk > 0 and

∑K
k=1 πk = 1.

Subjects are generally assumed to belong to a single cluster. Therefore, many cluster
methods partition the subjects into k mutually exclusive sets I1, I2, ..., IK , where Ik

denotes the set of subjects to belong to cluster k, with
⋃K

k=1 Ik = I. Depending on the
application, it may be desirable to identify a representation for each cluster, also referred
to as the cluster center, which provides a summary of the cluster. This representation
may be obtained from the averaged representation of all the subjects assigned to the
respective cluster, by designating a representative subject, or through the internal cluster
representation used by the method, if applicable.

If two clusters overlap, there is an inherent uncertainty in the cluster membership of
subjects. Some methods account for this uncertainty by estimating the probability or
degree (i.e., weight) to which subjects belong to each cluster, depending on their similarity
to the respective cluster. In case of well-separated clusters, this subject weight may be
practically zero for the other available clusters.

A commonly used type of probabilistic cluster model is the finitemixture model,
described by

f(yi) =
K∑

k=1
πkf(xi,θk), (5.1)

where f(·) denotes the density function, θk the representational parameters for cluster k.
Using this model, the probability of a subject belonging to cluster k, denoted by πi,k, is
determined from the posterior probability given the subject data and model parameters,
given by

Pr(k|yi,xi,Θ) = πi,k = πkf(yi|xi,θk)∑
k′ πk′f(yi|xi,θk′) . (5.2)

In applications where each subject is assumed to belong to one cluster, subjects are
typically assigned to the cluster with the highest subject-specific posterior probability,
referred to as modal assignment.

5.2.1 Cross-sectional clustering
Cross-sectional cluster algorithms group objects together based on similarity, measured
through a set of object characteristics also referred to as features. In cluster algorithms
such as k-means, these features are assumed to be independent, although this is generally
not a strict requirement. When applied to longitudinal data, the features represent the
different moments in time. The temporal independence assumption of the observations
yields a non-parametric description of the trajectories. This makes it a useful approach
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for an exploratory analysis without any prior assumptions on the shape of the trajectories.
However, the approach does come with some limitations on the type of longitudinal data.
Firstly, the observations must be aligned between trajectories, i.e., taken at the same
respective moment in time. Secondly, there must be an equal number of observations per
trajectory. Consequently, missing observations should be imputed.

An example of a cross-sectional approach is longitudinal k-means (KML). KML applies
the k-means cluster algorithm directly to the observations. The cluster trajectories are
determined by the averaged observations of trajectories assigned to the respective cluster.
The method is implemented in the kml package (Genolini et al., 2015).

A cross-sectional mixture approach is seen in longitudinal latent profile analysis (LLPA),
otherwise known as longitudinal latent class analysis (Muthén, 2004). Here, latent profile
analysis, more commonly referred to as a Gaussian mixture model, is used to describe each
moment in time as a normally distributed random variable. A dataset with trajectories
each comprising J observations is thus described by J independent normals, each modeling
the response distribution at a different moment in time tj , giving

f(yi) =
K∑

k=1
πk

N∏
j=1

ϕ(yi,j |µk,j , σk,j). (5.3)

Gaussian mixture models, and thereby LLPA, can be estimated using, for example, the
mclust package (Scrucca et al., 2016).

5.2.2 Distance-based clustering
As an alternative to clustering based on the repeated measurements directly, distance-
based cluster algorithms operate on the pairwise dissimilarity between objects, using a
(dis)similarity measure. Such methods take a pairwise dissimilarity matrix as input, where
the choice of the dissimilarity metric is left to the user. Examples of cluster algorithms
that use this approach include k-medoids and agglomerative hierarchical clustering. Given
the trajectories of subject a and b, the dissimilarity metric is denoted by d(ya,yb). As an
example, the Euclidean distance

d(ya,yb) =
√∑

j

(yb,j − ya,j)2.

may be used as the dissimilarity metric.
The approach is commonly used for time series clustering1, and the list of available dis-

similarity metrics that have been proposed over the past decades is extensive (Aghabozorgi
et al., 2015). The advantage of distance-based clustering over cross-sectional clustering is
that the dissimilarity measure allows for the assessment of the trajectories beyond directly
comparing observations. Raw data metrics such as the Euclidean distance assume that the
observations are perfectly aligned, whereas in dynamic time warping, the shift in temporal
alignment between trajectories is corrected. Other metrics compute the distance based on
a different representation, such as the autocorrelation, spectral components, entropy, or a
time series model. Many dissimilarity metrics are implemented in the dtwclust package
(Sardá-Espinosa, 2019).

1Clustering longitudinal data can be regarded as a special case of time series clustering where the time
series have a common starting point.
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5.2.3 Model-based clustering
In model-based clustering, the longitudinal dataset is modeled by a regression model
comprising a mixture of submodels. It is also referred to as latent-class trajectory modeling.
This approach comprises a versatile class of (semi-)parametric methods. Most importantly,
the shape of the trajectories can be represented using a parametric model, requiring fewer
parameters compared to a non-parametric approach. Measurements can be taken at
different times between subjects, and covariates can be accounted for. Moreover, users can
incorporate assumptions into the modeling of the trajectories and clusters, such as the
distribution of the response variable, the within-cluster variability, and heteroskedasticity.

A straightforward example of model-based clustering involves modeling the population
as a mixture of cluster trajectory models. This is referred to as group-based trajectory
modeling (GBTM) or latent-class growth analysis (LCGA). It is essentially a mixture of
linear regression models, with

yi,j = xi,jβk + εi,j,k for i ∈ Ik, (5.4)

where xi,j is the N ×B design matrix of B terms, βk are the B group-specific coefficients,
and εi,j,k is the normally distributed residual error with zero mean and variance σ2. The
design matrix contains covariates of time, enabling the model to describe the change in
response over time. External covariates can be included to further explain the dependent
variable.

The expected value of a measurement yi,j for the model in Equation 5.4 is given by

E(yi,j) =
K∑

k=1
πk[xi,jβk]. (5.5)

GBTM is available, for example, in the packages lcmm (Proust-Lima et al., 2017) and
crimCV (Nielsen, 2018).

A popular form of model-based clustering that does consider within-cluster variability
is growth mixture modeling (GMM) (Muthén, 2004), which represents a mixture of linear
mixed models. The within-cluster variability is modeled through subject-specific random
effects, e.g., a random intercept. This allows researchers to assess the deviations between
subjects within a cluster. The linear mixed model for cluster k is given by

yi,j = xi,jβk + zi,juk,i + εi,j,k for i ∈ Ik. (5.6)

Here, zi,j is the N × U design matrix for the U random effects, and uk,i are the subject-
specific random coefficients for cluster k. The random effects are assumed to be normally
distributed with mean zero and variance-covariance matrix Σk. The marginal mean is
computed by

E(yi,j |ui) =
K∑

k=1
πk[xi,jβk + zi,juk,i]. (5.7)

GMM is available in packages such as lcmm (Proust-Lima et al., 2017), mixtools (Benaglia
et al., 2009), and mixAK (Komárek, 2009).

A challenge with this approach is the large number of parameters that need to be
estimated, which typically increases linearly with the number of clusters. The estimation
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may fail to converge or may yield empty clusters. This is usually handled by repeatedly
fitting the model with random starts, or by providing better starting values for the
coefficients.

5.2.4 Feature-based clustering
In a feature-based approach, each trajectory is independently represented by a set of
temporal characteristics (i.e., features, coefficients). The trajectories are then clustered
based on the feature values using a cross-sectional algorithm. This is equivalent to applying
a distance-based approach with a model-based dissimilarity metric but has the advantage
of allowing users to combine arbitrary features. The approach is used, for example, by the
anchored k-medoids algorithm provided by the akmedoids package. Here, the trajectories
are represented using linear regression models, and are clustered based on the model
coefficients (Adepeju et al., 2020). Compared to the rather time-intensive model-based
clustering approach, the trajectory models only need to be estimated once. A disadvantage
compared to model-based clustering is that the reliability of the trajectory coefficients
depends on the available data per trajectory. This approach therefore generally requires a
larger number of observations per subject to yield similar results.

5.2.5 Identifying the number of clusters
Due to the exploratory nature of clustering, the number of clusters is typically not known.
Moreover, most of the cluster methods require the user to specify the number of clusters.
The preferred number of clusters for the respective method can be determined by estimating
the method for an increasing number of clusters, followed by comparing the solutions
by means of an evaluation metric. In such a comparison for a particular method, the
interpretation of the metric is consistent across the solutions, as they all originate from
the same method specification.

Many metrics are available, depending on the type of method that is being applied.
For example, in distance-based methods, the solutions are typically evaluated in terms
of the separation between clusters. Cluster separation is measured by the distance
between trajectories or cluster trajectories, e.g., using the average Silhouette width (ASW)
(Rousseeuw, 1987) or the Dunn index (Arbelaitz et al., 2013). In contrast, a model-
based approach typically has no notion of the distance between trajectories, but instead
measures the likelihood of the overall model on the given the data, enabling the use
of likelihood-based evaluation such as the Bayesian information criterion (BIC), Akaike
information criterion (AIC), or likelihood ratio test (van der Nest et al., 2020). Specific to
cluster regression methods where the longitudinal observations are modeled at the subject
level, assessing the solution in terms of the residual errors of the trajectories may be of
interest. Examples of such metrics include the mean absolute error (MAE) and root mean
squared error (RMSE). For probabilistic assignments these metrics may be weighted by the
posterior probability of the trajectories, denoted by WMAE and WRMSE, respectively.

Overall, the preferred metric depends on the type of method under consideration and
the case study domain. Users are advised to follow recommendations from literature for
the respective method. Moreover, it is advisable to use the evaluation metric merely
as guidance in identifying the preferred solution, as a trade-off between the number of
clusters and the interpretability of the solution. Lastly, it is worthwhile to factor in domain
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knowledge into the selection of cluster solutions (Nagin et al., 2018).

5.2.6 Comparing methods
The approaches may yield considerably different results, arising from fundamental differ-
ences in the temporal representation and similarity criterion of the methods. We provide
a high-level summary of strengths and limitations of the approaches in Table 5.1, which
helps to guide the user towards an initial selection of applicable approaches relative to the
case study at hand. Note that even for methods of the same type of approach, results may
differ depending on how the trajectories are represented, trajectory similarity is measured,
or how clusters are formed. Considering that the most suitable approach or method is
typically not known in advance, it is advisable to evaluate and compare the solutions
between methods to identify the most suitable method for the respective case study. The
resulting solutions can then be compared using an external evaluation metric.

A useful starting point in comparing the preferred solutions between methods is to
evaluate the similarity between the cluster partitions. After all, if both candidate methods
find a similar cluster partition, this would indicate that both methods find the same
grouping despite representational differences. In contrast, if the cluster partitions are
dissimilar, it may suggest that either a hybrid approach could be of interest, or that one
method is preferred over the other.

The similarity between cluster partitions of two methods can be assessed using partition
similarity metrics such as the adjusted Rand index (ARI) (Hubert and Arabie, 1985),
variance of information, or the split-join index. These metrics are applicable to any method
and are even applicable when the solutions have a mismatching number of clusters. In
some case studies, a ground truth may be available in the form of a reference cluster
partition. Partition similarity metrics such as the ARI may then be used to identify the
solution that most closely resembles the ground truth. Alternatively, users may obtain a
partial ground truth by manually annotating a subset of the trajectories based on domain
knowledge.

For methods that have a longitudinal representation of the clusters, it can be insightful
to assess the similarity between the cluster trajectories. A possible metric for this is the
weighted minimum mean absolute error (WMMAE) (Den Teuling et al., 2021), which
evaluates the WMAE for each cluster with its nearest cluster. It is defined as

WMMAE = 1
J

K∑
k=1

πk min
k′∈{1,...,K}

J∑
j=1

|yk,j − ŷk′,j |

 , (5.8)

where J is the number of observations in cluster trajectory ŷk, and ŷk,j denotes the
predicted expected value of the cluster trajectory at time tj . The reference cluster
trajectory observations are denoted by yk,j . The interpretation of the value of the
WMMAE is relative to the scale of the response variable.

Solutions may be compared further by assessing the compactness of the clusters or the
separation between clusters on a common distance metric, for example using the average
Silhouette width or the Dunn index. This is useful to identify the method that is best at
identifying distinct subgroups.
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Table 5.1: Summary of the general strengths of limitations of the different approaches to
longitudinal clustering.

Approach Strengths Limitations
Cross-

sectional
• No assumptions on the shape of
the cluster trajectories
• Low sample size requirement
• Very fast to estimate
• Suitable for initial exploration

• Requires time-aligned
trajectories of equal length
• Requires complete data
• Does not account for the
temporal relation of observations

Distance-
based

• Flexible in the choice of distance
metric(s)
• Trajectory distance matrix only
needs to be computed once
• Fast to estimate

• Distance matrix computation is
not practical for a large number of
trajectories
• Pairwise comparison of
trajectories is more sensitive to
noise
• Many distance metrics require
time-aligned trajectories

Model-
based

• Low sample size requirements
due to inclusion of parametric
assumptions
• Can handle missing data
• Can handle trajectories of
unequal length and variable time
• Can account for covariates
• Relatively robust to trajectories
that do not fit the representation

• May be challenging to estimate
(convergence problems)
• Computationally intensive to
estimate

Feature-
based

• Temporal features only needs to
be computed once
• Very fast to estimate
• Fast alternative to model-based
approach given a sufficiently large
sample size

• Sensitive to trajectories that do
not fit the representation
• Trajectory-independent feature
estimation is more sensitive to
observational outliers



Section 5.3. Software design 112

5.3 Software design
We begin by providing a high-level description of the framework, outlining the main
functionality of the classes. The software is built on an object-oriented paradigm using
the S4 system, available in the methods package (R Core Team, 2022). We have chosen
to use the S4 paradigm over S3 due to the more complete set of object-oriented features,
including class inheritance, object validation, and method signatures. Functions defined
by the package are in camel case unless a generic function is already available in base R.
A schematic representation of the framework classes is shown in Figure 5.1. While we
explain the functionality of the classes and what kind of information the classes store, we
avoid describing the internal structure of the classes to the slot level, as these should not
be directly accessed or modified by users unless stated otherwise.

The framework is designed to provide a standardized way of specifying, estimating,
and evaluating different longitudinal cluster methods, ensuring ease of use regardless of the
underlying cluster package being used. This is achieved by defining two main interfaces.
Firstly, there is an interface for method specification and estimation, and secondly, there
is an interface for representing the estimated method. To enable user extensions with
minimal coding, the two interfaces are defined through abstract base classes. These classes
provide basic functionality, from which the user can extend certain functions as needed by
creating a subclass. For brevity and to distinguish the method specification more clearly
from the fitted method, the abstract class for the method specification and estimation
interface is named lcMethod, whereas the abstract class for the fitted method interface
is named lcModel. Here, the word “model” should be taken in the broadest sense of
the word, where any resulting cluster partitioning represents the data, and thereby is
regarded as a model of said data. For example, users can specify a GMM through a
lcMethodLcmmGMM object, specifying the GMM and the estimation settings. The resulting
estimated GMM is represented by a lcModelLcmmGMM object.

The latrend() function is the main function of the framework by which users can
estimate cluster models, taking a lcMethod object and dataset as input, and applying
the estimation procedure defined in the lcMethod object to the input data. Another
advantage of having stand-alone estimation functions is that it enables standard validation
of the inputs and outputs, which otherwise would need to be implemented for each method.
Moreover, it ensures all methods take the same data format as input. While in most cases
the complete dataset is used for method estimation, different resampling techniques may
be of interest for obtaining a more robust solution, or for validating a solution, i.e., model.
The resampling techniques are independent from the method being applied, and therefore
this functionality is encapsulated into separate estimation functions in the framework,
prefixed by ‘latrend’.

We have selected the data.frame in long format as the internal data representation, as
is common in R. Here, each row represents an observation for a trajectory at a given time,
possibly for multiple covariates. The trajectory and time of an observation are indicated
in separate columns. This format can represent irregularly timed measurements, a variable
number of observations per trajectory, and an arbitrary number of covariates of different
types. Since not all datasets are readily available in this format, the latrend() estimation
functions handle data input by calling the generic transformLatrendData() function.
Currently, this transformation is only defined for matrix input. Users can implement the
method to add support for other longitudinal data types.
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Figure 5.1: Class diagram of the framework. Standard S3 methods and private class slots
and are not shown.

lcModel

model : ANY
tag : ANY

initialize() : lcModel
clusterTrajectories() : data.frame
clusterProportions() : numeric
converged() : logical|numeric
metric() : numeric
externalMetric() : numeric
getCall() : call
getName() : character
getLcMethod() : lcMethod
fitted() : numeric|matrix
fittedTrajectories() : data.frame
residuals() : numeric|matrix
predict() : data.frame|list
predictForCluster() : numeric
postprob() : matrix
predictPostprob() : matrix
predictAssignments() : factor
strip() : lcModel
trajectories() : data.frame
trajectoryAssignments() : factor
summary() : lcSummary
plot()
plotClusterTrajectories()
plotFittedTrajectories()
plotTrajectories()

lcModels

subset() : lcModels
min() : lcModel
max() : lcModel
metric() : data.frame
externalMetric() : numeric|matrix
plot()
plotMetric()

lcMethods

list

lcApproxModel

lcMethod

initialize() : lcMethod
compose() : lcMethod
validate() : logical|character
prepareData() : data.frame
preFit() : environment
fit() : lcModel
postFit() : lcModel
strip() : lcMethod
evaluate() : lcMethod
update() : lcMethod
getName() : character
getArgumentDefaults() : list

lcMatrixMethod

0..* 1

0..* 1

lcSummary

show()

1

1

5.3.1 The lcMethod class
The lcMethod class has two purposes. The first purpose is to record the method specifi-
cation, defined by the method parameters and other settings, referred to as the method
arguments. The second purpose is to provide the logic for estimating the method for the
specified arguments and given data. lcMethod objects are immutable. Users only interact
with a lcMethod object for retrieving method arguments, or for creating a new specification
with modified arguments. This functionality is provided by the base lcMethod class.

The base lcMethod class stores the method arguments in a list, inside the arguments
slot. The method arguments can be of any type. The names of subclasses are prefixed by
‘lcMethod’. Subclasses can validate the model arguments against the data by overriding
the validate() function. Due to the specific internal structure of a lcMethod object,
constructors are defined for creating lcMethod objects of a specific class for a given
set of arguments. In lcMethod implementations that are a wrapper around an existing
cluster package function, the method arguments are simply passed to the package function.
The required arguments and their default values are obtained from the formal function
arguments of the package function at runtime.

The evaluation of the method arguments is delayed until the method estimation process
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is started. This enables a lcMethod object to be printed in an easily readable way, where
the original argument expressions or calls are shown, instead of the evaluation result. This
is useful when an argument takes on a function or complex data structure, and it reduces
the memory footprint when a large set of method permutations is generated and serialized,
such as in a simulation study.

The estimation process is divided into six steps that process the method arguments,
prepare and validate the data, and fit the specified method. The steps are implemented
through six generic functions: prepareData(), compose(), validate(), preFit(), fit(),
and postFit(). All functions except for fit() are optional.
1. The prepareData() function transforms the training data into the required format

for the internal method estimation code. By default, data is provided in long format
in a data.frame. For most implementations, no transformation is therefore needed.
Cluster methods for repeated-measures data typically require data to be transformed
to matrix format, however.

2. The compose() function evaluates the method arguments and returns an updated
lcMethod object with the evaluated method arguments. The function can also be used
for modifying or even replacing the original lcMethod object for the remainder of the
estimation process. This is useful when a method is a special case of a more general
method and intends to conceal derivative or redundant arguments from the base class.

3. The validate() function enables evaluated method arguments to be checked against
the input data. This can be used, for example, for checking whether the data contains
the covariates specified in the method formula, or whether an argument has a valid
value. For implementations which wrap an underlying package function, this validation
is usually not needed as the underlying package already performs validation of the
input.

4. The preFit() function is intended for processing any arguments prior to fitting. In
order for these results to be persistent, they should be returned in an environment
object, which will be passed as an input to the fit() function.

5. The fit() function is where the internal method is estimated for the given specifi-
cation to obtain the cluster result. This function is also responsible for creating the
corresponding lcModel object. The running time of this function is used to determine
the method estimation time.

6. The postFit() function takes the outputted lcModel from fit() as input, enabling
post-processing to be done. This is used, for example, for computing derivative statistics,
or for reducing the memory footprint by stripping redundant data fields from the internal
model representation. Preferably, this function is implemented such that it can be called
repeatedly, allowing for updates to fitted methods without requiring re-estimation.

These functions are called by the lcMethod estimation functions (i.e., the functions prefixed
by ‘latrend’) in the order in which they are listed above. There are several advantages to
this design. Firstly, the structure enables the method estimation process to be checked
at each step. Secondly, splitting the estimation logic into processing steps encourages
shorter functions with clearer functionality, resulting in more readable code. Thirdly,
the steps enable optimizations in the case of repeated method estimation, for which the
prepareData() function only needs to be called once. Lastly, in case of an update to
the lcModel post-processing step, the postFit() function can be applied to previously
obtained lcModel objects.
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Table 5.2: The list of currently supported methods for clustering longitudinal data, in
alphabetical order. The methods in the bottom row represent generic approaches which
can be adapted.

Class Method Source
lcMethodAkmedoids Anchored k-medoids akmedoids
lcMethodCrimCV Group-based trajectory modeling of count data crimCV
lcMethodDtwclust Dynamic time warping dtwclust
lcMethodFlexmix Interface to FlexMix framework flexmix
lcMethodFlexmixGBTM Group-based trajectory modeling flexmix
lcMethodFunFEM funFEM funFEM
lcMethodGCKM Feature-based clustering using growth curve mod-

eling and k-means
lme4

lcMethodKML longitudinal k-means kml
lcMethodLcmmGBTM Group-based trajectory modeling lcmm
lcMethodLcmmGMM Growth mixture modeling lcmm
lcMethodLMKM Feature-based clustering using linear regression

and k-means
lcMethodMclustLLPA Longitudinal latent profile analysis mclust
lcMethodMixAK_GLMM Mixture of generalized linear mixed models mixAK
lcMethodMixtoolsGMM Growth mixture modeling mixtools
lcMethodMixtoolsNPRM Non-parametric repeated measures clustering mixtools
lcMethodMixTVEM Mixture of time-varying effects models R script2

lcMethodRandom Random partitioning
lcMethodStratify Stratification rule
lcMethodFeature Feature-based clustering

5.3.1.1 Supported methods

An overview of the currently available methods that can be specified is given in Table
5.2. The lcMethodGCKM class implements a feature-based approach, based on representing
the trajectories through a linear mixed model specified in the lme4 package (Bates et al.,
2015). Additionally, a partitioning of trajectories can be specified without an estimation
step through the lcModelPartition and lcModelWeightedPartition classes, providing
trajectories with a cluster membership or membership weight, respectively.

5.3.1.2 Extended fitting

In general, cluster methods are more challenging to estimate for a greater number of
clusters, which may result in the fit procedure failing to find a suitable solution. For
example, the estimation algorithm may fail to converge. Even if a solution is obtained, it
could comprise one or more clusters with only a few trajectories whereas a more efficient
representation may exist. These issues can often be alleviated through the repeated
estimation of the method with a different initialization each time. The best obtained
result can then be used as the final output of the fit procedure.

Several special methods are defined that can be used to extend the fit procedure of the
methods described above. These methods, prefixed by lcFit, alter the fit procedure of the
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assigned underlying method. For example, the lcFitConverged() function defines the fit
procedure of the underlying method to be repeated until a converged result is obtained.
The lcFitRepMin() and lcFitRepMax() functions adapt the fit procedure to estimate
the underlying method a fixed number of times and then return the best result according
to the given metric.

5.3.2 The lcModel class
The lcModel class represents the estimated cluster solution. It is designed to function
as any other model fitted in R (e.g., lm() from the stats package). Users can apply the
familiar functions from the stats package where applicable, including the predict(),
fitted(), and residuals() functions. Furthermore, lcModel objects support functions
for obtaining the cluster representation, such as the cluster proportions, sizes, names, and
trajectories.

The base lcModel class facilitates basic functionality such as providing a solution
summary and providing functionality for computing predictions or fitted values. The two
most important functions that characterize the class are the predict() and postprob()
functions. These functions are used to derive the cluster trajectories, the posterior
probabilities of the trajectories, and cluster proportions.

The base class stores information regarding the model, including the estimated
lcMethod object, the call that was used to estimate the method, the date and time when
the method was estimated, the total estimation time, and a text label for differentiating
solutions. Users should not update the slots of the base class directly, except for the tag
slot, which is intended as a convenient way of assigning custom meta data to the lcModel.

The names of subclasses are prefixed by ‘lcModel’. Subclasses generally have little need
for adding new slots, as most of the functionality resides inside the class functions, such
that results and statistics are computed dynamically. This enables fitted lcModel objects
to be modified retroactively, e.g., for correcting implementation errors that are discovered
at a later stage.

In the subclasses that are based on an underlying package implementation, the lcModel
class serves as a wrapper around the underlying package solution representation. Any
abstraction layer inevitably limits some of the capabilities of the underlying packages.
Therefore, the internal representation is therefore exposed to the user via the getModel()
function. This enables users to still benefit from the specialized functionality provided by
the underlying package. We encourage users to check the documentation of the original
packages to identify which additional functionality is available for a specific method.

5.3.3 The metric interfaces
There is a vast number of metrics available in literature. To provide access to as many met-
rics as possible, and to enable users to add missing metrics as needed, we define an interface
for the computation of metrics. Users can replace or extend the metrics with custom
implementations. To ensure a consistent output across all metrics, the output of metric
functions must be scalar. Currently, the framework supports any of the applicable metrics
from the packages clusterCrit (Desgraupes, 2018) and mclustcomp (You, 2018). The list
of supported internal and external metrics is obtained via the getInternalMetricNames()
and getExternalMetricNames() functions, respectively. Metrics can be added or updated
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via the defineInternalMetric() and defineExternalMetric() functions.

5.4 Using the package
We illustrate the main capabilities of the package through a step-by-step demonstration
of an exploratory longitudinal cluster analysis on the PAP.adh dataset that is included
with the package. The demonstration involves the estimation and comparison of several
methods for longitudinal clustering. The goal of the analysis is to identify the common
patterns of adherence and to establish the most suitable method for the data out of those
considered. For brevity, the description of the package function arguments used in the
demonstration below is limited to the main arguments. We refer users to the package
documentation to learn more about other optional arguments.

The PAP.adh synthetic dataset comprises PAP therapy adherence data of 301 patients
in their first 91 days of therapy. The patients were synthesized from one of three clusters,
closely resembling the real-life clusters identified by Yi et al. (2022). For each patient, the
average hours of PAP therapy usage is recorded for each week of therapy. The data is
represented by a data.frame in long format, with each row representing the observation
of a patient at a specific week (1 to 13).
library("latrend")
data("PAP.adh")
head(PAP.adh)
## Patient Week UsageHours Group
## 1 1 1 6.298703 Adherers
## 2 1 2 5.916080 Adherers
## 3 1 3 5.022241 Adherers
## 4 1 4 5.788624 Adherers
## 5 1 5 4.758154 Adherers
## 6 1 6 4.222821 Adherers

The Patient column indicates the trajectory to which the observation belongs. The
UsageHours column represents the averaged hours of usage in the respective therapy week,
denoted by the Week column. The true cluster membership per trajectory is indicated by
the Group column.

Throughout the analysis, there are several occasions during which the trajectory
identifier and time columns would need to be specified. Instead of passing the column
names to each function, we can set the default index columns using the options mechanism.
Keep in mind that this is only recommended during interactive use.
options(latrend.id = "Patient", latrend.time = "Week")

We can visualize the patient trajectories using the plotTrajectories() function,
shown in Figure 5.2. As the ground truth is known in our synthetic example, we specified
the cluster membership of the trajectories via the cluster argument, resulting in a
stratified visualization.
plotTrajectories(PAP.adh, response = "UsageHours", cluster = "Group")



Section 5.4. Using the package 118

Figure 5.2: The trajectories from the PAP.adh dataset, by reference group.
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5.4.1 Specifying methods
We first specify the methods to be evaluated. The first method of interest in this case
study is KML, selected for its flexibility in identifying patterns of any shape. The KML
method is available in the framework through the lcMethodKML class, which serves as a
wrapper around the kml() function of the kml package (Genolini et al., 2015). The KML
method is specified through the lcMethodKML() constructor function.
kmlMethod <- lcMethodKML(response = "UsageHours", nClusters = 2)
kmlMethod
## lcMethodKML specifying "longitudinal k-means (KML)"
## time: getOption("latrend.time")
## id: getOption("latrend.id")
## nClusters: 2
## nbRedrawing: 20
## maxIt: 200
## imputationMethod:"copyMean"
## distanceName: "euclidean"
## power: 2
## distance: function() {}
## centerMethod: meanNA
## startingCond: "nearlyAll"
## nbCriterion: 1000
## scale: TRUE
## response: "UsageHours"

Note that any unspecified arguments have been set to the default values defined by the
kml package. The method arguments can be accessed using the or [[ operator. Requested
arguments are evaluated unless disabled by the argument eval = FALSE. As can be seen in
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the method output below, the time index column is obtained from the options mechanism
by default.
kmlMethod$time
## [1] "Week"
kmlMethod[["time", eval = FALSE]]
## getOption("latrend.time")

Next, we specify the other methods of interest. We use a variety of approaches that are
applicable to this type of data. We evaluate a feature-based approach based on LMKM
as implemented in lcMethodLMKM, a distance-based dynamic time warping approach via
lcMethodDtwclust based on the dtwclust package, and the model-based approaches
via the lcMethodLcmmGBTM and lcMethodLcmmGMM methods based on the lcmm package
(Proust-Lima et al., 2017). For LMKM, we model the trajectories using B-splines. We
specify the distance-based approach using dynamic time warping. Lastly, GBTM and
GMM are specified with an intercept-slope model for the cluster trajectories, and a
shared diagonal variance-covariance matrix. The GMM defines a random patient intercept.
Note that for methods supporting formula input, the response variable is automatically
determined from the response of the formula.
library("splines")
lmkmMethod <- lcMethodLMKM(formula = UsageHours ~ bs(Week))
dtwMethod <- lcMethodDtwclust(response = "UsageHours",

distance = "dtw_basic")
gbtmMethod <- lcMethodLcmmGBTM(fixed = UsageHours ~ Week,

mixture = ~ Week, idiag = TRUE)
gmmMethod <- lcMethodLcmmGMM(fixed = UsageHours ~ Week,

mixture = ~ Week, random = ~ 1, idiag = TRUE)

The method arguments of a lcMethod object cannot be modified. Instead, a new
specification is created from the existing one with the updated method arguments. Any
lcMethod object can be used as a prototype for creating a new specification with new,
modified, or removed arguments using the update() function. As an example, if we would
like to respecify KML to identify three clusters, this can be done by updating the existing
specification as follows:
kml3Method <- update(kmlMethod, nClusters = 3)

As the number of clusters is generally not known in advance, we need to fit the methods
for a range of number of clusters. Generating specifications for a series of argument values
can be done via the lcMethods() function, which outputs a list of updated lcMethod
objects from a given prototype. We specify each method for up to six clusters, limited by
the computational runtime, using:
kmlMethods <- lcMethods(kmlMethod, nClusters = 1:6)
lmkmMethods <- lcMethods(lmkmMethod, nClusters = 1:6)
dtwMethods <- lcMethods(dtwMethod, nClusters = 2:6)
gbtmMethods <- lcMethods(gbtmMethod, nClusters = 1:4)
gmmMethods <- lcMethods(gmmMethod, nClusters = 1:4)
length(gmmMethods)
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## [1] 4

5.4.2 Fitting methods
Using the previously created method specifications, we can estimate the methods for the
PAP.adh data. For estimating a single method, we can use the latrend() function. The
function optionally accepts an environment through the envir argument for evaluating
the method arguments within a specific environment. The output of the function is the
fitted lcModel object.
lmkm2 <- latrend(lmkmMethod, data = PAP.adh)
summary(lmkm2)

## Longitudinal cluster model using lmkm
## lcMethodLMKM specifying "lm-kmeans"
## time: "Week"
## id: "Patient"
## nClusters: 2
## center: `meanNA`
## standardize: `scale`
## method: "qr"
## model: TRUE
## y: FALSE
## qr: TRUE
## singular.ok: TRUE
## contrasts: NULL
## iter.max: 10
## nstart: 1
## algorithm: `c("Hartigan-Wong", "Lloyd", "Forgy", "M
## formula: UsageHours ~ bs(Week)
##
## Cluster sizes (K=2):
## A B
## 69 (22.9%) 232 (77.1%)
##
## Number of obs: 3913, strata (Patient): 301
##
## Scaled residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.0213 -0.7493 0.2314 0.0000 0.7260 2.4355

Instead of needing to update a method prior to calling latrend(), the arguments
to be updated can also be passed directly to latrend(). Here, we estimate the LMKM
method for three clusters.
lmkm3 <- latrend(lmkmMethod, nClusters = 3, data = PAP.adh)
Alternatively, we can achieve the same result by updating the previously estimated
two-cluster solution.
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lmkm3 <- update(lmkm2, nClusters = 3)

5.4.2.1 Batch estimation

The latrendBatch() function estimates a list of method specifications. This is useful for
evaluating a method for a range of number of clusters, as we have defined above using
the lcMethods() function. Another use case is the improvement of model convergence
and the estimation time by tuning the control parameters. Optimizing such parameters
may yield considerably improved convergence or considerably reduced estimation time
on larger datasets. Many of the methods have settings for the number of random starts,
maximum number of iterations, and convergence criteria. However, because such control
settings are specific to each method, we will not cover this.

The inputs to the latrendBatch() function are a list of lcMethod objects, and a list
of datasets. The output is an lcModels object, representing a list of the fitted lcModel
objects for each dataset. A seed is specified to ensure reproducibility of the examples.
lmkmList <- latrendBatch(lmkmMethods, data = PAP.adh, seed = 1)
lmkmList
## List of 6 lcModels with
## .name .method seed nClusters
## 1 1 lmkm 762473831 1
## 2 2 lmkm 1762587819 2
## 3 3 lmkm 1463113723 3
## 4 4 lmkm 1531473323 4
## 5 5 lmkm 1922000657 5
## 6 6 lmkm 1985277999 6

When printing a lcModels object, the content is shown as a table of method specifica-
tions. By default, only arguments which differ between the models are shown. The table
can also be obtained as a data.frame by calling as.data.frame(). We now fit the other
methods in the same manner.
dtwList <- latrendBatch(dtwMethods, data = PAP.adh, seed = 1)

For the repeated estimation of more computationally intensive methods, we can
speed up the process by using parallel computation. By setting parallel = TRUE, the
latrendBatch() function will use the parallel back-end of the foreach package (Microsoft
and Weston, 2022). To make use of this functionality, we first need to configure the parallel
back-end:
nCores <- parallel::detectCores(logical = FALSE)
if (.Platform$OS.type == "windows") {

doParallel::registerDoParallel(parallel::makeCluster(nCores))
} else {

doMC::registerDoMC(nCores)
}
The methods can then be estimated in parallel using:
kmlList <- latrendBatch(kmlMethods,

data = PAP.adh, parallel = TRUE, seed = 1)
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gbtmList <- latrendBatch(gbtmMethods,
data = PAP.adh, parallel = TRUE, seed = 1)

gmmList <- latrendBatch(gmmMethods,
data = PAP.adh, parallel = TRUE, seed = 1)

5.4.3 Evaluation
5.4.3.1 Assessing a cluster result

A cluster result is useful only when it describes the data adequately. There are various
aspects on which the cluster result can be evaluated, depending on the method and analysis
domain:
• The identified solution may not be reliable when the method estimation procedure did

not converge. Convergence can be checked via the converged() function.
• The cluster solution may comprise empty clusters or clusters with a negligible proportion

of trajectories. In such case, re-estimating the method may yield a better solution.
Alternatively, one should consider fitting the method with a lower number of clusters.

• The cluster trajectories may be assessed visually to determine whether the identified
patterns are sufficiently distinct.

• The prediction error may help to determine to which degree trajectories are represented
by one of the clusters.
As shown in the previous section, the summary of an lcModel object shows the method

arguments values, cluster sizes, cluster proportions, cluster names, and the standardized
residuals. By default, the residuals are computed from the difference between the reference
values and the predictions outputted by fitted(), conditional on the most likely trajectory
assignments. For methods that do not provide trajectory-specific predictions, the fitted
values are determined from the cluster trajectories.

The cluster trajectories can be obtained using the clusterTrajectories() func-
tion, returning a data.frame. The cluster trajectories can be plotted via plot() or
plotClusterTrajectories(). The three-cluster LMKM solution is visualized in Figure
5.3. For parametric cluster methods, a more concise representation of the model can be
obtained from the model coefficients, using coef().
plot(lmkm3, size = 1)

Assigning descriptive names to the clusters can help to increase the readability of
the cluster result, which is especially useful for solutions with many clusters. The
clusterNames() function can be used to retrieve or change the cluster names.
clusterNames(lmkm3) <- c("Struggling", "Increasing", "Decreasing")

The most likely cluster for each of the trajectories is obtained using the
trajectoryAssignments() function, which outputs a factor with the cluster
names as its levels. For soft-cluster representations, the cluster assignments are determined
by the cluster with the highest probability, based on the posterior probability matrix.
An alternative approach can be specified through the strategy argument. For example,
the which.weight() function assigns a random cluster weighted by the proportions.
The which.is.max() function from the nnet package3 returns the most likely cluster,

3https://CRAN.R-project.org/package=nnet

https://CRAN.R-project.org/package=nnet
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Figure 5.3: The cluster trajectories of the three-cluster solution identified by LMKM,
created using plot(lmkm2).
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breaking ties at random.
The posterior probability matrix can be obtained from the postprob() function. For

probabilistic methods, it can be used to gauge the cluster separation, i.e., the certainty
of assignment. The posterior probability is also important in the post-hoc analysis for
accounting for the uncertainty in cluster assignment.

When it comes to longitudinal representation, the minimum functionality that is
available for all lcModel objects is the prediction of the cluster trajectories at the given
time points. The prediction has been implemented for packages which lack this functionality.
For non-parametric methods such as KML or LLPA, linear interpolation is used when
time points are requested which are not represented by the cluster centers.The available
functionality differs between methods.

All lcModel objects support the standard R model functions fitted(), residuals(),
and predict(). These functions are primarily of interest for methods that have a notion
of a group or individual trajectory prediction error, such as for the model-based approaches
like GBTM and GMM. The fitted() function returns the expected values for the response
variable for the data on which the model was estimated. By default, only the values for
the most likely cluster are given. However, for clusters = NULL, a matrix of predictions
is outputted, where each column represents the predictions of the respective cluster.

The predict() function computes trajectory- and cluster-specific predictions for the
given input data.
predict(lmkm3,

newdata = data.frame(Week = c(1, 10), Cluster = "Decreasing"))

## Fit
## 1 4.222478
## 2 5.797659
predict(lmkm2, newdata = data.frame(Biweek = c(1, 10),

Cluster = "Decreasing"))

## Fit
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Figure 5.4: The Dunn index (higher is better), and WMAE (lower is better) metrics for
each of the KML solutions from 1 to 6 clusters
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## 1 5.468127
## 2 4.605169
The predictPostprob() and predictAssignments() functions compute the posterior
probability and cluster membership for new trajectories, respectively. As this is not a
common use case for cluster methods, most of the underlying packages do not provide
this functionality. For demonstration purposes, we have implemented the functionality for
the lcModelKML class.

Using the metric interface defined in Section 5.3.3, we can compute a variety of internal
metrics through the metric() function:
metric(lmkm3, c("MAE", "RMSE", "Dunn", "ASW"))
## MAE RMSE Dunn ASW
## 0.76616319 0.97932759 0.07708328 0.33597008

With a model-based regression approach, another aspect that is worthwhile to assess
are the residuals of the predicted values. This can be investigated, for example, through a
visual inspection using a quantile-quantile (Q-Q) plot, available via the qqPlot() function,
to assess whether the prediction errors approximately follow a normal distribution.

5.4.3.2 Identifying the number of clusters

Using one or more internal metrics of interest, we can assess how the data representation
of a method improves or worsens for an increasing number of clusters. In this case study,
we will use the Dunn index as the primary metric for the choice of the number of clusters.
The change in metrics for an increasing number of clusters can be visualized via the
plotMetric() function, and can help to determine the preferred solution. For brevity, we
will only provide a detailed view for the KML method. We plot the Dunn index, WMAE,
and estimation time (in seconds) for the six KML solutions as follows:
plotMetric(kmlList, c("Dunn", "WMAE", "estimationTime"))

The resulting plot is shown in Figure 5.4. The Dunn index and WMAE show a rather
convincing improvement for an increasing number of clusters4.

4The Dunn index is not defined for a one-cluster solution.
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Moreover, we observe that the estimation time increases with the number of clusters. This
can be a practical consideration when deciding on the preferred method to use. For much
larger datasets, it may be useful to conduct a preliminary analysis on a subset of the data
for possibly ruling out methods which are too computationally intensive in relation to the
results.

We can obtain the metric values for each of the models by calling the metric()
function.
metric(kmlList, c("Dunn", "WMAE", "estimationTime"))
## Dunn WMAE estimationTime
## 1 NA 1.4261264 0.86
## 2 0.10737225 0.7850566 1.25
## 3 0.09944419 0.6523208 1.47
## 4 0.11353357 0.6081128 1.69
## 5 0.13487175 0.5619086 1.88
## 6 0.13196444 0.5197172 2.05
As the preferred solution corresponds to the highest Dunn index, we can obtain the
respective model by calling the max() function on the lcModels list object.
kmlBest <- max(kmlList, "Dunn")
Alternatively, we can select the preferred model using the subset() function. By specifying
the drop = TRUE, the lcModel object is returned instead of a lcModels object.
kmlBest <- subset(kmlList, nClusters == 5, drop = TRUE)

The identification of the number of clusters is a form of model selection. The same
approach can therefore be used for identifying the best cluster representation, e.g., evaluat-
ing different formulas for a parametric model, or selecting a different method initialization
strategy.

5.4.3.3 Comparing methods

The optimal number of clusters according to the internal metric can be different for other
methods or specifications thereof. Depending on the cluster representation, some methods
may require fewer or more clusters to represent the heterogeneity to the same degree. By
concatenating the lists of fitted methods, we can create a metric plot that is grouped by
the type of method as follows:
allList <- lcModels(lmkmList, kmlList, dtwList, gbtmList, gmmList)
plotMetric(allList, name = c("Dunn", "WMAE", "BIC", "estimationTime"),

group = '.method')

The WMAE and BIC between GBTM and KML are almost the same, possibly
indicating that the methods find a similar solution. If the solutions are found to be
practically identical, then one could actually prefer KML due to its considerably favorable
computational scaling with the number of clusters.

We explore the best solution of each method further to better understand how the
cluster representations differ between the methods. We can select the preferred lcModel
object corresponding to the selected number of clusters for each of the methods using the
subset() function.
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Figure 5.5: The Dunn index (higher is better), WMAE (lower is better) and BIC (lower is
better) for each of the methods and number of clusters
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kmlBest <- subset(kmlList, nClusters == 5, drop = TRUE)
dtwBest <- subset(dtwList, nClusters == 5, drop = TRUE)
gbtmBest <- subset(lmkmList, nClusters == 4, drop = TRUE)
lmkmBest <- subset(lmkmList, nClusters == 3, drop = TRUE)
gmmBest <- subset(gmmList, nClusters == 3, drop = TRUE)

We can then assess the pairwise ARI, described in Section 5.2.6, between each method
using the externalMetric() function. Calling this function on a lcModels list returns a
dist object representing a distance matrix. We therefore create a list of the best lcModel
for each method, by which we can then determine the pairwise ARI as follows:
bestList <- lcModels(KmL = kmlBest, DTW = dtwBest,

LMKM = lmkmBest, GBTM = gbtmBest, GMM = gmmBest)
externalMetric(bestList, name = "adjustedRand") |> signif(2)

## KmL DTW LMKM GBTM
## DTW 0.39
## LMKM 0.45 0.38
## GBTM 0.34 0.24 0.61
## GMM 0.49 0.40 0.92 0.60
With all pairwise ARI being at least 0.24, all methods demonstrate some degree of similarity
between each other. In particular, the very high ARI of approximately 0.92 between GMM
and LMKM implies that the methods grouped the trajectories in a highly similar way.

Secondly, we compare the similarity of the cluster trajectories between the methods
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using the WMMAE described in Section 5.2.6. The easiest way to compare methods is
to compare the cluster trajectories visually. However, this approach is only practical on
smaller datasets or solutions with few clusters. As a more scalable alternative, we can use
external metrics to measure the pairwise similarity between the cluster trajectories of the
methods.
externalMetric(bestList, name = "WMMAE") |> signif(2)

## KmL DTW LMKM GBTM
## DTW 0.100
## LMKM 0.130 0.130
## GBTM 0.110 0.110 0.029
## GMM 0.130 0.130 0.038 0.036
The mean absolute error of 0.029 between the cluster trajectories of GBTM and LMKM is
negligible compared to the residual error estimated by GBTM (SD = 1.0), which indicates
that both methods have identified practically the same cluster trajectories. The same
applies to GMM and LMKM.

5.4.4 Cluster validation
Assessing the stability and reproducibility of a cluster method can help to determine
whether the identified cluster solution generalizes beyond the data that was used to estimate
the method. This is especially relevant for more complex cluster methods involving a large
number of parameters, which may not generalize well to new data. This primarily pertains
to the number of clusters the method is estimated for, as the number of parameters
increases linearly with the number of clusters. Even relatively simple methods can overfit
the data when the representation comprises too many clusters in relation to the sample
size.

5.4.4.1 Cluster stability

Many of the estimation algorithms may identify a different solution during each run,
depending on the starting values for the model parameters. Hence, it is important to
run the estimation repeatedly to identify the best solution. This also helps to assess the
stability of the model estimation. Repeated estimation can be done via the latrendRep()
function, where the number of repetitions is specified via the .rep argument. Similar to
latrend(), the method arguments can be updated within the function. The function
returns a lcModels object, comprising a list of lcModel objects.
kmlRepList <- latrendRep(kmlMethod, data = PAP.adh,

nClusters = 5, .rep = 5, .parallel = TRUE)
summary(metric(kmlRepList, c("Dunn", "WMAE")))

## Dunn WMAE
## Min. :0.1047 Min. :0.5599
## 1st Qu.:0.1349 1st Qu.:0.5610
## Median :0.1349 Median :0.5617
## Mean :0.1288 Mean :0.5618
## 3rd Qu.:0.1349 3rd Qu.:0.5619
## Max. :0.1349 Max. :0.5647
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Which suggests that the solutions found by KML for the given number of clusters has
a small degree of variability, which should be considered during the evaluation of the
preferred number of clusters.

5.4.4.2 Comparison to ground truth

We now consider the case where a method is evaluated in a simulation study. In such
a study, the ground truth is known, and we can directly evaluate the accuracy of the
predicted trajectory cluster memberships of the estimated method. As we have shown in
the previous subsection, the ARI can even be used when the number of clusters differs.

We can obtain the vector of trajectory cluster membership of the PAP.adh from the
Group column by selecting the first cluster name of each trajectory, since the cluster
membership is stable over time. We then create a lcModelPartition from the computed
membership vector. In the case where the ground truth contains uncertainty on the
cluster membership, the lcModelWeightedPartition class could be used. By default, the
lcModelPartition generates the cluster representations from the means of the trajectories
assigned to the respective cluster.
refAssignments <- aggregate(Group ~ Patient, data = PAP.adh,

FUN = head, n = 1L)
refAssignments$Cluster = refAssignments$Group

refModel <- lcModelPartition(data = PAP.adh,
trajectoryAssignments = refAssignments, response = "UsageHours")

refModel
## Longitudinal cluster model using part
## lcMethod specifying "undefined"
## no arguments
##
## Cluster sizes (K=3):
## Adherers Improvers Non-adherers
## 162 (53.8%) 56 (18.6%) 83 (27.6%)
##
## Number of obs: 3913, strata (Patient): 301
##
## Scaled residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.894748 -0.643670 -0.009533 0.000000 0.634893 3.590377
We can now compare our selected method solutions to the reference solution using the
ARI.
externalMetric(bestList, refModel, name = "adjustedRand", drop = FALSE)

## adjustedRand
## KmL 0.4756201
## DTW 0.3925777
## LMKM 0.8996308
## GBTM 0.5800669
## GMM 0.9775104



Section 5.4. Using the package 129

This shows that, for this synthetic dataset, GMM achieved the best result out of the
methods considered, with an ARI of 0.98. This result is expected, as Yi et al. (2022) used
a GMM to identify the clusters from which the PAP.adh dataset is simulated. GBTM and
especially LMKM achieved a good recovery as well. It is quite likely that GBTM, KML
and DTW would have obtained an improved ARI for a greater number of clusters than
what was evaluated.

5.4.4.3 Internal validation

A cluster method can also be validated internally, where the model is trained on subsets of
the data. The framework includes two resampling techniques for this purpose: bootstrap
sampling and cross validation. Such a validation approach can also be used for a more
robust type of model selection (Lord et al., 2017).

Bootstrap sampling Bootstrap sampling, also referred to as bootstrapping, involves
the repeated estimation of a model on random subsets of the data. These data subsets are
obtained by sampling trajectories with replacement. Instead of obtaining a single optimal
cluster solution for a dataset, each random subset will have slightly different optimal
solutions. This variability between samples can provide an indication of the stability of
the cluster model on the overall data (Hennig, 2007).

The latrendBoot() function applies bootstrapping to the given method specification.
The samples argument determines the number of times the data is resampled, and a model
is estimated. Setting the seed argument ensures that the same sequence of bootstrap
samples is generated when redoing the bootstrapping procedure. The output is a lcModels
list containing the model for each sample. The estimated methods each have a different
call for the data argument such that the original bootstrap training sample can be
recreated as needed. This avoids the need for models to store the training data. As an
example, we compute 20 bootstrap samples5 (i.e., repeated fits) in parallel as follows:
kmlMethodBest <- update(kmlMethod, nClusters = 5)
kmlBootModels <- latrendBoot(kmlMethodBest, data = PAP.adh,

samples = 10, seed = 1, parallel = TRUE)
head(kmlBootModels, n = 3)
## List of 3 lcModels with
## .name .method data
## 1 1 kml bootSample(PAP.adh, "Patient", 762473831L)
## 2 2 kml bootSample(PAP.adh, "Patient", 1762587819L)
## 3 3 kml bootSample(PAP.adh, "Patient", 1463113723L)
## seed
## 1 1062140483
## 2 185557490
## 3 934902099

We can now assess the stability of the solutions across the models in terms of metrics
of interest. Here, we assess the mean convergence rate, and the quantiles of the WMAE
and Dunn metrics.

5In practice, a much greater number of bootstrap samples is recommended (at least 100).
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bootMetrics <- metric(kmlBootModels, c("converged", "Dunn", "WMAE"))
mean(bootMetrics$converged)

## [1] 1
summary(bootMetrics$Dunn)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1351 0.1477 0.1506 0.1570 0.1688 0.1852
summary(bootMetrics$WMAE)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5289 0.5490 0.5553 0.5534 0.5587 0.5736
As can be seen from the output, there is quite some variability between the estimated
solutions across bootstrap samples. This suggests that we should consider estimation with
repeated random starts to identify a better and more stable solution.

Lastly, we can compute a similarity matrix for an external metric of interest, containing
the pairwise similarity for each model pair.
wmmaeDist <- externalMetric(kmlBootModels[1:10], name = "WMMAE")
summary(wmmaeDist)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.01392 0.06029 0.07294 0.06841 0.07934 0.11060
Showing that there is only a small degree of discrepancy in the cluster trajectories between
bootstrap samples.

Cross validation Cross validation (CV) is used to obtain a nearly unbiased estimate
of the predictive power of a model, which is useful when the dataset is too small for an
independent validation set. This is done by drawing k independent patient folds from the
dataset. Each of the k folds are used for testing the model which was trained on the other
k − 1 folds. The latrendCV() function applies k-fold CV for a method specification. The
folds argument determines the number of folds. Setting the seed ensures that the same
folds are generated across runs. The function output a lcModels list with k lcModel
objects. Like the estimated bootstrap models, the outputted models have a modified data
call that returns the respective fold data.
kmlFoldModels <- latrendCV(kmlMethodBest, data = PAP.adh,

folds = 10, seed = 1, parallel = TRUE)

The function only estimates the models on the k − 1 folds. Users should evaluate the
model on the appropriate test data as they see fit. The test data for a model can be
obtained using:
testData1 <- createTestDataFold

(PAP.adh, model.data(kmlFoldModels[[1]]))
This validation scheme can only be used for models which have an implementation
of predict(), predictPostprob() or predictAssignments() for new trajectory data.
Currently, this is implemented for lcModelKML and lcModelMclustLLPA.
To compute the performance metric on a single fold, we can use the predictAssignments()
function to obtain the predicted cluster assignments for the trajectories in the test data of
the first fold.
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predAssign <- predictAssignments(
kmlFoldModels[[1]], newdata = testData1)

mclustcomp::mclustcomp(as.integer(predAssign),
as.integer(testData1$Group), types = "adjrand")

## types scores
## 1 adjrand 0.6413792

Now that we have shown how to compute the performance on a single fold, we can
generalize this to compute the ARI for each fold. We take the list of lcModel objects for
each fold, and iterate over the folds to compute a data.frame with the predicted and
reference trajectory assignments.
resultsList <- lapply(kmlFoldModels, function(model) {

testData = createTestDataFold(PAP.adh, model.data(model))
data.frame(Pred = predictAssignments(model, newdata = testData),

Ref = testData$Group)
})
foldResultsTable <- data.table::rbindlist(resultsList, idcol = "Fold")
foldScores <- foldResultsTable[, mclustcomp::mclustcomp(

as.integer(Pred), as.integer(Ref), "adjrand")$scores,
keyby = Fold]$V1

mean(foldScores)
## [1] 0.5313103
sd(foldScores) / sqrt(length(foldScores)) # standard error

## [1] 0.03956681
We obtain a mean ARI of 0.53 ± 0.04, which is close to our performance estimate of 0.48
on the full dataset.

5.5 Implementing new methods
One of the main strengths of the framework is the standard way in which methods
are specified, estimated, and evaluated. These aspects make it easy to compare newly
implemented methods with existing ones. Using the base classes lcMethod and lcModel,
new methods can be implemented with a relatively minimal amount of code, enabling
rapid prototyping.

5.5.1 Stratification
The simplest form of clustering is the stratification of the dataset based on a known factor.
This can be the response variable, or any other measure available for each trajectory.
This is useful for case studies where there is prior knowledge or expert guidance on how
the trajectories should be grouped: Either by another factor (e.g., age or gender), or a
characteristic of the trajectory (e.g., the intercept, slope, average, or variance).

A stratification approach can be specified using the lcMethodStratify() function,
which takes an R expression as input. The expression is evaluated within the data.frame
at the trajectory level during the method estimation, so any column present in the data
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can be used. The expression should resolve to a number or category, indicating the stratum
for the respective trajectory.

As an example, we stratify the trajectories by thresholding on the mean hours of usage.
This expression returns a logical value which determines the cluster assignment. For
categorizing trajectories into more than two clusters, the cut() function can be used. The
cluster trajectories are computed by aggregating the trajectories of each cluster at the
respective time points. By default, the average is computed, but an alternative center
function can be specified via the center argument.
stratMethod <- lcMethodStratify(response = "UsageHours",

stratify = mean(UsageHours) > 4)
stratModel <- latrend(stratMethod, data = PAP.adh)
clusterProportions(stratModel)

## A B
## 0.3156146 0.6843854

5.5.2 Feature-based clustering
Feature-based clustering is a flexible and fast approach to clustering longitudinal data,
with an essentially limitless choice of trajectory representations. The framework includes a
generic feature-based clustering class named lcMethodFeature for quickly implementing
this approach.

A lcMethodFeature specification requires two functions: A representation function
outputting the trajectory representation matrix, and a cluster function that applies a
cluster algorithm to the matrix, returning an lcModel object. To illustrate the method,
we represent each trajectory using a linear model, and we cluster the model coefficients
using k-means. In the representation step, lm() is applied to each trajectory, and the
model coefficients are combined into a matrix with the trajectory-specific coefficients on
each row. We parameterize the lcMethod implementation by enabling the user to define a
formula argument. The representation function is as follows:
repStep <- function(method, data, verbose) {

repTraj <- function(trajData) {
lm.rep <- lm(method$formula, data = trajData)
coef(lm.rep)

}
dt <- as.data.table(data)
coefData <- dt[, as.list(repTraj(.SD)), keyby = c(method$id)]
coefMat <- as.matrix(subset(coefData, select = -1))
rownames(coefMat) <- coefData[[method$id]]
coefMat

}
We implement the cluster step to return a lcModelPartition object based on the

cluster assignments outputted by kmeans(). We have parameterized the function by
obtaining the number of clusters for k-means from the nClusters model argument. The
cluster function is as follows:
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clusStep <- function(method, data, repMat, envir, verbose) {
km <- kmeans(repMat, centers = method$nClusters)
lcModelPartition(response = responseVariable(method),
method = method, data = data,
trajectoryAssignments = km$cluster, center = mean)

}
We can now specify and estimate the feature-based method, including the additionally
required arguments. Comparing the estimated model to the preferred KML model, we see
that the solutions have a relatively high degree of overlap.
tsMethod <- lcMethodFeature(response = "UsageHours",

formula = UsageHours ~ Week, representationStep = repStep,
clusterStep = clusStep)

tsModel <- latrend(tsMethod, data = PAP.adh, nClusters = 5)
externalMetric(tsModel, kmlBest, "adjustedRand")

## adjustedRand
## 0.4859513
externalMetric(tsModel, kmlBest, "WMMAE")
## WMMAE
## 0.1083389

5.5.3 Implementing a method
We will describe the high-level steps that are involved in adding support for a method
to the framework, so that users can extend or implement new methods to address their
use case. Considering the number of lines of code for even a relatively simple cluster
model, we do not cover a complete example here. Instead, we only outline the typical set
of functions (fit(), getArgumentDefaults(), getName(), getShortName()) that need
to be implemented, together with any relevant input and output assumptions of these
functions. A step-by-step example of implementing a statistical method in the framework
can be found in the vignette included with the package.

The implementation of a method requires a new lcMethod class to be created, which we
will name lcMethodExample here. Usually, a lcModel class needs to be implemented for
representing the representation of the fitted method, which we will name lcModelExample
here. If the method estimation only outputs a partitioning, then the lcModelPartition
class may be used instead.

5.5.3.1 Extending the method class

Defining a new method involves creating a subclass of the lcMethod class, defining its
default arguments, its name, and any logic needed for the fitting procedure. We start by
defining the lcMethodExample class.
setClass("lcMethodExample", contains = "lcMethod")

Any method can be specified by instantiating the respective class through the new()
function. It is recommended to rely on the object initialization mechanism of the base
lcMethod class for this, as it takes care of collecting all arguments and adding default
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values for missing arguments. Defining new method arguments in custom class slots
would hinder users from passing specialized or new optional arguments to the underlying
estimation call.

Given that the base class handles the initialization of our lcMethodExample class,
all we need to do is to define the default argument values in a named list. By adding
formals(stats::kmeans) to the named list, our method will inherit all arguments from
the kmeans() function.
setMethod("getArgumentDefaults", "lcMethodExample", function(object) {

c(
formals(stats::kmeans),
time = quote(getOption("latrend.time")),
id = quote(getOption("latrend.id")),
nClusters = 2,
callNextMethod()

)
})
Method arguments can be of any class. However, we recommend that methods are specified
using scalar arguments. This results in a more easily readable method summary, and
greatly simplifies the permutation of argument options in a simulation study.

For identification purposes, it is recommended to specify a name and an abbrevi-
ated name for the method. This can be done by implementing the getName() and
getShortName() functions, returning the names as character.
setMethod("getName", "lcMethodExample",

function(object) "simple example method")

setMethod("getShortName","lcMethodExample",function(object) "example")

We can now specify our example method by instantiating an object through the new()
function, providing optional arguments as additional inputs.
new("lcMethodExample", nClusters = 3)

## lcMethodExample specifying "simple example method"
## iter.max: 10
## nstart: 1
## algorithm: c("Hartigan-Wong", "Lloyd", "Forgy", "Ma
## trace: FALSE
## time: getOption("latrend.time")
## id: getOption("latrend.id")
## nClusters: 3

Lastly, the relevant steps of the estimation process outlined in Section 5.3.1 need to
be implemented. At the very least, we need to define a fit() function which uses the
lcMethodExample object passed via the method argument and the data to estimate the
specified model. The function returns a new lcModelExample object based on the internal
model.
setMethod("fit", "lcMethodExample",

function(method, data, envir, verbose, ...) {



Section 5.5. Implementing new methods 135

fittedRepresentation <- CODE_HERE
new("lcModelExample", data = data, model = fittedRepresentation,

method = method,
clusterNames = make.clusterNames(method$nClusters)

)})
In case an external estimation function should be called with the defined method arguments,
one can apply as.list() to the lcMethod object to obtain a named list of argument
values. The external function can then be called using do.call().

Checking for missing arguments and for the correct argument type or valid values
avoids late and confusing errors during the estimation process. It is therefore recommended
to implement a validation mechanism of the method specification. This can be done by
assigning a validation function to the class via setValidity() as part of the S4 system,
or by implementing validate(). The latter function allows for easier validation as all
arguments are already evaluated, and the arguments can be validated against the input
data.

5.5.3.2 Extending the model class

We begin by defining the lcModelExample class. One can consider adding slots for
representing, for example, the representational coefficients.
setClass("lcModelExample", contains = "lcModel")

The postprob() function is used to determine the cluster assignments and cluster propor-
tions, so every lcModel subclass should provide it. In case of hard-cluster models, the
posterior probability consists of zeros and ones.
setMethod("postprob", "lcModelExample", function(object) {

ppMatrix <- CODE_HERE
colnames(ppMatrix) <- clusterNames(object)
return (ppMatrix)

})
The predict.lcModel() function is relatively complex due to the different types of

inputs and outputs it supports. As these cases generalize across methods, the lcModel
class provides a suitable standard implementation. For implementing new lcModel
classes, it is therefore advisable to implement the predictForCluster() function instead
of predict(), as it is called by predict.lcModel(). This function should provide a
prediction for each row of the data.frame of the newdata argument, conditional on the
given cluster membership.
setMethod("predictForCluster", "lcModelExample",

function(object, newdata, cluster, ...) {
predData <- CODE_HERE
return (predData)

})
Lastly, implementing the predictPostprob() function enables the model to predict

the posterior probability for new data. The output should be a matrix matching the
number of rows of newdata and indicating the cluster-specific probabilities in the respective
columns.
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setMethod("predictPostprob", "lcModelExample",
function(object, newdata, ...) {

ppMat <- CODE_HERE
colnames(ppMat) <- clusterNames(object)
return (ppMat)

})
It is also possible to override the predictAssignments() function. However, the default
function already uses the output of predictPostprob(), so overriding it is only of use
for implementing a more extensive or method-specific classification strategy.

5.6 Summary and outlook
The latrend package facilitates the standardized yet flexible exploration of heterogeneity
in longitudinal datasets, with a minimal amount of coding effort. The framework provides
functionality for specifying, estimating, and assessing models for clustering longitudinal
data. The package builds upon the efforts of the R community by providing an interface
to the many methods for clustering longitudinal data across packages. Perhaps most
importantly, the latrend package makes it easy to compare between any two cluster
methods, enabling users to identify the most suitable method to their use case. To ensure
transparent and reproducible research, all decisions and settings that are relevant to the
analysis should be reported. A useful checklist for reporting on latent-class trajectory
studies is provided by Van de Schoot et al. (2017), which is also relevant to longitudinal
cluster analyses in general.

Users can implement new methods within the framework or add support for other
packages, enabling rapid prototyping for the case study at hand. Additionally, the standard
functionality provided by the framework also reduces the effort needed in implementing a
longitudinal cluster model.

We encourage the framework to be used as a first exploratory step in clustering
longitudinal data, after which the identified preferred method can then be applied directly
from the original package, which typically provides special tools or options not provided
by the framework. To illustrate one such limitation, consider the initialization or prior
specification of a longitudinal cluster model. This is generally an important aspect of
model estimation that can improve the identified model solution but is challenging to
facilitate in a standardized way.

Although the package allows for the automatic comparison and selection across methods
through various metrics, it is advisable to assess whether the identified cluster solution
is meaningful. It is a useful practice to consider domain knowledge when evaluating the
solution (Nagin, 2005), both in the choice of metrics as well as the interpretation of the
clusters. For example, in some applications, the change over time is more of interest
than the mean level, and vice versa. Along similar lines, a solution comprising a very
small cluster (i.e., with few subjects) provides little additional descriptive power of the
heterogeneity, unless the presence of outliers is of significant interest.

The framework is currently focused on the modeling of a single continuous response
variable, whereas some of the supported cluster packages already support multivariate
trajectory modeling. The possible support for multivariate trajectories has been accounted
for in the design of the software. Similarly, while the single response is required to
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be numerical, support could be added for categorical outcomes such as those used in
longitudinal latent class analysis. These features are planned for a future version.

Overall, we intend the framework to bridge the different approaches to clustering
longitudinal data that exist from the various areas of research. We encourage users and
package developers to create interfaces for their methods, as the availability of a standard
framework for performing a longitudinal cluster analysis lowers the barrier to evaluating
and comparing methods for applied researchers.

Computational details
The examples and figures in this paper were obtained using R 4.2.2 (R Core Team, 2022)
with the packages latrend 1.5.1, ggplot2 3.4.0 (Wickham, 2016), and data.table 1.14.6
(Dowle and Srinivasan, 2020). The KML method was estimated based on the kml 2.4.1
package. The distance-based method utilized the dtwclust 5.5.11 package. The GBTM
analysis was performed based on the lcmm 2.0.0 package, with the parallel computation
achieved using the foreach 1.5.2 package.

R and all packages used within the article and the latrend package are available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.

Acknowledgments
The development of this framework builds upon the work of the R community. The authors
would like to express their appreciation for the numerous longitudinal cluster packages
that have been developed, as these packages have made R a versatile platform for clustering
longitudinal data. Moreover, we gratefully incorporated many of the cluster metrics by
using the packages clusterCrit (Desgraupes, 2018) and mclustcomp (You, 2018).

https://CRAN.R-project.org/


138

Chapter 6

Latent-class trajectory
modeling with a heterogeneous
mean-variance relation

N.G.P. Den Teuling, F. Ungolo, S.C. Pauws, E.R. van den Heuvel
Submitted.

Abstract
This work investigates the benefit of addressing heteroskedastic residual variances across
trajectories with the purpose of finding clusters of longitudinal trajectories. We propose
models that account for class-specific heteroskedasticity through a mean-variance relation
or random residual variance, thereby accounting for trajectory-specific variance. The
latent-class trajectory models we evaluate are an extension of growth mixture models
(GMM). We assess the estimation bias of the model parameters and the recoverability
of the number of latent classes under various data-generating models and settings by
means of a simulation study. Furthermore, we show the empirical applicability of these
models by analyzing the time-varying number of COVID-19 cases across counties in the
United States. Overall, the class-specific mean-variance could be reliably estimated by the
proposed models in datasets comprising 250 trajectories. In addition, we have found that
the extended GMM accounting for the residual random variance had an improved group
trajectory estimation over the standard GMM.
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6.1 Introduction
Longitudinal data collection provides opportunities for assessing change over time within
a population, and for exploring the differences between and within subjects. Such hetero-
geneous data can be analyzed using a linear mixed modeling (LMM) (Hartley and Rao,
1967; Laird and Ware, 1982) approach. However, if the heterogeneity is structured or too
complex to model parametrically, a more flexible approach may be desirable. Growth
mixture models (GMM) (Muthén, 2004) are a common approach for describing population
heterogeneity in terms of a finite number of latent classes, each representing a group
trajectory from which subjects may deviate within the classes (Bauer, 2007). This model
can be represented as a mixture of LMMs, each representing a latent class. Whereas the
expected value of trajectories is modeled in detail, simpler assumptions are typically made
about the residual error, assuming homoskedasticity and homogeneity.

Ignoring the variance structure can potentially lead to an inadequate estimation of
the mean, as well as wrong conclusions about the estimated model (Carroll, 2003). In
particular, if the residual error scale differs structurally between subjects but is unaccounted
for, it can result in biased estimates of the trajectory coefficients and variance components
(Enders and Tofighi, 2008) and affect model selection accuracy (Diallo et al., 2016). In
contrast, by accounting for residual heteroskedasticity, one may obtain additional latent
classes of interest, as a new dimension of heterogeneity is considered (Foulley and Quaas,
1995; De Kort et al., 2017). Finally, modeling the variance structure yields more reliable
prediction intervals for the mean trajectories (Davidian and Giltinan, 1993).

A source of such heteroskedasticity is the presence of a mean-variance relation, as seen
in data with observations spanning orders of magnitude. For instance, this can happen
when analyzing count data due to its lower bound of zero. Examples include the mean
number of weekly alcoholic drinks in a study on alcoholic dependence (Zhu et al., 2017),
and the abundance of species or the count of the number of observed species in ecological
research (Tsou, 2011). If the heteroskedasticity due to the mean-variance relationship is
not accounted for, the estimate of the mean could be affected (Foulley, 2004).

Modeling approaches for residual heteroskedasticity are underrepresented in research,
especially those regarding GMMs. Researchers tend to focus on identifying latent classes
with respect to changes in the mean level of the response variable over time, while the
possible dynamics of within-subject variance are overlooked. Few papers have investigated
the joint modeling of the mean and variance in a multilevel mixture model such as GMM.
For instance, De Kort et al. (2017) investigated heteroskedastic multilevel mixture models
with a smooth or step function for the variance. They found that ignoring heteroskedasticity
under nonlinearity resulted in a biased estimation of the regression relation. Moreover, it
is key to evaluate different functions, as the residual variance relation is sensitive to the
specified heteroskedastic function. Diallo et al. (2017) assessed the performance of GMM
with a time-varying covariate under time-dependent variance. They concluded that such
heteroskedasticity only had a minimal effect on the model selection of GMM.

In this work, we explore the application of GMM under two forms of variance. First,
we investigate the GMM with class-specific mean-variance relations as an exploratory tool
for when the degree to which the variance depends on the mean is suspected to vary within
the population. Accounting for a mean-variance relation is necessary since variability may
depend on the level of the measurement, which is common in the life sciences. Then,
we explore the application of GMM accounting for random residual variance (that is,
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subject-specific deviations from the class-specific variance). The random residual variance
is used to deal with heteroskedasticity that is unrelated to the measurement level, but
related to individual characteristics that are not necessarily measured. It is not always
clear why certain people show very stable trajectories, and others show a greater variability
over time.

We investigate the estimation of the group trajectories, mean-variance relations, and
random residual variance. In addition, we assess the impact of the estimation when
ignoring the mean-variance relation or random residual variance present in the dataset.
The proposed models are estimated by means of a fully Bayesian analysis. The posterior
distribution is estimated by using Hamiltonian Monte Carlo sampling (Neal, 2011). We
show that the specification of these models can be done in a straightforward way.

We illustrate the models to the analysis of the number of confirmed COVID-19 cases
across counties in the United States of America over time. The geographic, demographic,
cultural and regulatory differences between counties are likely to contribute to this
heterogeneity. In addition, the variability in the daily cases depends on the number of
contagious people and may therefore affect the variability around growth trajectories in
confirmed cases over time. We expect that the mean and variance are related in some
form, and we will evaluate different mean-variance coefficients between latent classes.

This chapter is organized as follows. We describe the growth mixture models in Section
6.2. Section 6.4 describes the simulation study and the results thereof. The case study
analysis is described in Section 6.5. Section 6.6 concludes.

6.2 Models
For a given set of independent subjects I, let yi = (yi,1, · · · , yi,ni) denote the trajectory
of subject i ∈ I with ni measurements over time and yi,j ∈ R. Individuals may have a
different number of observations over time, and the time at which a measurement yi,j was
taken, denoted by ti,j , may differ between trajectories. Absent observations are assumed
to be missing at random.

We identify two sources of variability; the between-subject variability and the within-
subject variability, which can be handled using LMM (Laird and Ware, 1982). We
approximate the heterogeneity between subjects using a mixture of LMMs (Verbeke and
Lesaffre, 1996; McLachlan and Peel, 2000). Here, each of the class models represents a
different data-generating process for the trajectories. We assume that each trajectory
originates from one of the classes and does not change class membership over time. Given
that a subject i belongs to class k, the trajectory yk,i follows the class-specific LMM given
by

yk,i = αk + Xiβk + Zibk,i + εk,i

bk,i ∼ MVN(0,Σk)
εk,i ∼ N(0, σ2

ε,k).
(6.1)

Here, Xi ∈ Rni×p and Zi ∈ Rni×q denote the known design matrices for the fixed and
random effects, respectively, comprising an intercept, covariates dependent on ti,j , and
possibly other covariates. The class-specific fixed-effects coefficients are denoted by βk.
The random effects bk,i are typically assumed to be normally distributed with zero mean
and a class-specific q × q variance-covariance matrix Σk. For simplicity, we assume the
random effects to be independent, representing Σk as a diagonal matrix with diagonal
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σb,k = {σ1,k, . . . , σq,k}. Lastly, the residual errors εk,i are assumed to be independent
from the random effects, and normally distributed with εi,k ∼ N(0, σ2

ε,k). In other
applications, the residual variance component is represented by a variance-covariance
matrix Λk imposing, for example, a correlation structure such as an autoregressive model.
More elaborate correlation structures for the residuals in the presence of random effects
may lead to non-identifiability issues (Regis et al., 2019).

The mixture of class models are weighted according to the probability Pr (Ci = k) = πk

of a subject i belonging to class k, where π = {π1, ..., πK} with
∑K

k=1 πk = 1 and πk > 0.
For a trajectory with unknown class assignment or for the marginal distribution, the
trajectory is modeled as the weighted sum of models with

yi ∼
K∑

k=1
πkMVN(Xiβk,ZiΣkZT

i + Λk). (6.2)

It should be noted that the class-specific residual variance σ2
ε,k in the GMM of Equation

6.1 already accounts for some degree of heteroskedasticity.

6.2.1 GMM with mean-variance relation
In heteroskedastic models, the residual variance of subjects is modeled using a variance
function. This function typically describes the variance in terms of one or more explanatory
variables or the subject mean. In case the variance function is not known, model selection
could be used to evaluate several candidates (Ledwina and Mielniczuk, 2010). As an
alternative, a non-parametric or semi-parametric approach to describing the variance
function has been shown to perform well (Carroll, 1982; Fan and Yao, 1998; Liitiäinen
et al., 2010).

We focus on modeling a mean-variance relation as this comprises a parsimonious model
for residual heteroskedasticity, suitable in an exploratory setting. Accounting for class-
specific heteroskedasticity including explanatory variables would introduce considerable
challenges, both in terms of model specification and the number of parameters to be
estimated. We regard this work as a precursor to including other variance functions in an
exploratory mixture modeling setting (Tong and Wang, 2005; Ledwina and Mielniczuk,
2010).

To the best of our knowledge, no other researchers have explored a heterogeneous
mean-variance relation through a GMM. Here, we consider the function g(µi,j ,ϕ), with
the mean of the trajectory described by µi,j = Xi,jβk + Zi,jbk,i, ϕ a vector of unknown
parameters, and g a known function. Nevertheless, the literature on mean-variance
modeling in mixed regression analysis provides useful insights that likely translate to a
mixture setting. Sugasawa and Kubokawa (2017) explored the modeling of an unknown
mean-variance relation through arbitrary variance functions.

The mean-variance function g(µi,j ,ϕ) is usually modeled under the assumption of a
positive mean, where µi,j ∈ R+. This allows for a direct linear relation to the variance,
e.g., assuming g(µi,j ,ϕ) = ϕ0 + ϕ1µi,j (Davidian and Giltinan, 1993) or a power relation
g(µi,j ,ϕ) = ϕ0µ

ϕ1
i,j .

In this work, we consider a more generally applicable mean-variance relation allowing
for µi,j ∈ R. Specifically, we model the mean-variance relation as a multiplicative effect
on the base variance, assuming the power relation log σε,k,i,j = γ0,k + µk,i,jγ1,k. Here,
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γ0,k represents the baseline class variance, and γ1,k is the base for the class-specific mean-
variance power relation. The advantage of this relation is that it allows for negative
values of µk,i,j , and only requires the estimation of one additional coefficient over a
homoskedastic model. In addition, exp [2γ1,k] has the intuitive interpretation as the
amount of proportional change of σ2

ε,k,i,j per unit change of µk,i,j .
The resulting model, which we shall refer to as MV-GMM, is given by

yk,i = µk,i + εk,i

µk,i = αk + Xiβk + Zibk,i

log σε,k,i = γ0,k + µk,iγ1,k

bk,i ∼ MVN(0,Σk)
εk,i|bk,i ∼ N(0,σ2

ε,k,i),

(6.3)

where µk,i represents the true mean individual trajectory with E
(
yk,i|bk,i

)
= µk,i. By

modeling a class-varying mean-variance relation, the model accounts for a correlation
between the longitudinal profile (i.e., latent class) and the strength of the mean-variance
association.

A key aspect of estimating the mean-variance relation is the accuracy of the estimate
of µk,i. We therefore propose to specify random effects for all fixed effects, i.e., Zi = Xi,
ensuring a better estimation of the trajectory-specific mean µk,i. This considerably
increases the dimensionality of the model compared to models with fewer random effects
in the mean. Nevertheless, the simulation study in Section 6.4 shows that the estimation
strategy of this work can handle such high-dimensionality.

6.2.2 GMM with random residual variance
In growth mixture modeling, a large emphasis is placed on representing the subject
heterogeneity on the expected response. This is justified by the argument of ergodicity,
that is, the expectation or observation that no two subjects are the same, and therefore
no two subjects follow exactly the same trajectory. For the same reason, it can be argued
that the heterogeneity in the variance across subjects should also be considered (Hamaker,
2012). We therefore consider a GMM with a random residual variance effect that may be
independent or partially dependent with respect to the random effect used in the mean
response. The random effect included in the variance structure accounts for subject-specific
systematic errors (Carroll, 2003). The joint estimation of the mean and variance structures
requires more data due to the larger number of degrees of freedom. Fortunately, with the
increase in the typical sample size of longitudinal datasets, these models can be estimated
reliably. As such, random residual variance models are becoming more commonplace
(Hamaker et al., 2018).

We focus on modeling the residual variance per subject assuming that the subject
variance is time-invariant. Each subject is assumed to have their own magnitude of
variability, regarded as a systematic deviation from the group-level variability. The
deviation is included as an unconstrained coefficient ωk,i in the log-linear model for the
subject-specific variance, and is assumed to be normally distributed. Therefore, the
random residual variance scaling factor exp [ωk,i] follows a lognormal distribution. This
log-linear model for residual variance has also been used by (Hedeker et al., 2012) in a
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single-class setting. The model, which we shall refer to as RV-GMM, is outlined in relation
to the GMM of equation (6.1):

log σε,k,i = γ0,k + ωk,i

(ωk,i, bk,i) ∼ MVN(0,Σk)
εk,i|ωk,i, bk,i ∼ N(0,σ2

ε,k,i).
(6.4)

Here, Σk denotes the covariance structure of the scale of the random residual variance and
random effects for the mean. The estimation of this model turns out to be computationally
more demanding due to the addition of |I| random variables representing the trajectory-
specific variances per latent class.

6.2.3 GMM with mean-variance relation and random residual
variance

The reasoning provided for the specification of the RV-GMM from the argument of
ergodicity applies equally to the MV-GMM. Therefore, we combine the previously described
models into one that accounts for both the heterogeneous residual variance and a mean-
variance relation within groups. We refer to this model as random-mean-variance GMM
(RMV-GMM). The model for the residual variance is given by

log σε,k,i = γ0,k + µk,iγ1,k + ωk,i (6.5)

where the variance is modeled as a multiplicative effect of the baseline coefficient γ0, the
estimated mean, and the random residual variance.

6.3 Estimation
The fully Bayesian analysis of this work focuses on the estimation of the posterior
distribution of the parameter vector Θ, conditional on the observable data y and X,
denoted as Pr(Θ|y,X). Since Pr(Θ|y,X) cannot be obtained in closed form, we estimate
it by using samples from this distribution. Due to the complexity of the models hereby
presented, we use Hamiltonian Monte Carlo (HMC, (Neal, 2011)), implemented using
Stan1. It uses the No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014), which
automatically tunes the HMC.

HMC requires the computation of the gradient of the log-posterior. Stan addresses
this aspect by providing reverse-mode automatic differentiation. The use of HMC has
several benefits over more traditional sampling algorithms such as Gibbs sampling and the
Metropolis-Hasting (MH) algorithms (Monnahan et al., 2016). Indeed, the algorithm has
a greater sampling efficiency, requiring fewer iterations to converge. The HMC sampler
allows for a more efficient exploration of the posterior distribution, which is a critical
aspect when dealing with high-dimensional models with correlated parameters.

1Stan is a freely available open-source program that can estimate complex statistical models, such as
hierarchical models, on large datasets. It is available at https://mc-stan.org.

https://mc-stan.org
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6.3.1 Model inference
As Stan does not support discrete parameters, the discrete latent class assignments are
marginalized out of the model. An advantage of this approach is that the tails of the
multimodal distributions are better explored, as the assignment to each class is considered
in every iteration. In order to speed up the posterior sampling, we avoid the integration
of the random effects on location and scale by treating the random effects as nuisance
parameters. Here, we make use of the capability of HMC to sample efficiently in high-
dimensional space. An added benefit of specifying the model in this way is that the
different GMMs are straightforward to implement in Stan.

We denote the set of all parameters and random variables for the sth draw from
the posterior distribution by Θ(s) = {π, b,ω,θ1, . . . ,θK}. Here, π is the vector of class
proportions, θ

(s)
k = {αk,βk, γ0,k, γ1,k,Σk} are the class-specific parameters, and b and ω

represent the random effects of the trajectories and residuals. For brevity, we omit the
sample number indicator when denoting the model parameters. The conditional likelihood
for any given draw from the posterior distribution Pr(Θ|y,X) ∝ Pr(Θ) Pr(y|Θ,X) is
computed by

L(s)
c = Pr(y|Θ,X)

=
∏
i∈I

K∑
k=1

Pr(Ci = k) Pr(yi|Ci = k,Θ,X)

=
∏
i∈I

K∑
k=1

[πkf(yi|θk, bi,k, ωi,k,X)]

=
∏
i∈I

K∑
k=1

πk

Ni∏
j=1

f(yi,j |θk, bi,k, ωi,k,X)

 ,
(6.6)

where Ci denotes the class membership of trajectory i. The posterior probability π̂i,k of a
trajectory i belonging to class k at any given draw is computed by normalizing the class
likelihood over all classes, with

π̂i,k = Pr (Ci = k|yi,Θ,Xi)

= Pr (yi|Ci = k,Θk,i,Xi) Pr(Ci = k)∑K
k′=1 Pr (yi|Ci = k′,Θk′i,Xi) Pr(Ci = k′)

.
(6.7)

The posterior classification of trajectory i corresponds to the class with the highest
associated posterior probability, given by ĉi = arg max

k
π̂i,k.

We center the covariates vector X and the response variable y to improve sampling
efficiency, following the guide provided by Stan developers (Stan Development Team,
2020b). More precisely, we center the response variable around zero to y′

i = yi − ȳ
(here, ȳ denotes the mean response across all trajectories) and do the same with the
p-dimensional vector of covariates. Then, we decorrelate the centered covariates using a
thin QR decomposition. In this way, the design matrix is decomposed into an orthogonal
N × p matrix Q′ with uncorrelated columns, and an upper-triangular p × p matrix R′

such that X ′ = Q′ · R′. We normalize the matrices by scaling to Q = Q′√N − 1 and
R = R′/

√
N − 1 (Stan Development Team, 2020b). The expected value for the centered
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response, with Zi = Xi, is given by

E(y′
i,k) = α̃k + X ′

i (βk + bk,i)
= α̃k + QiR (βk + bk,i)
= α̃k + Qi

(
β̃k + b̃k,i

)
,

(6.8)

with adjusted intercept α̃k, fixed effects coefficients β̃k = Rβk, and b̃k,i ∼ MVN
(
0, Σ̃k

)
.

Note that for K = 1, we have α̃1 ≃ 0. We restrict the random effects to be independently
distributed with respect to the decomposed scale for simplicity, that is, Σ̃k = σ̃2

kI, with
σ̃2

k denoting the scales of the random effects. The linear transformation from the original
model does not affect the likelihood of the model, nor the residual scale. The original
intercept αk and fixed effects coefficients βk are recovered via αk = α̃k − Qβ̃k + ȳ and
βk = R−1 · β̃k. The variance-covariance matrix on the original scale is obtained as
Σk = R−1Σ̃k

(
R−1)T .

Label switching Without a defined ordering of classes, there are K! possible class
permutations yielding the same likelihood. This presents a challenge during sampling and
model comparison, referred to as the label switching problem (Richardson and Green,
1997). We therefore constrain the class ordering by an increasing order on the class
intercepts, with α̃1 < α̃2 < . . . < α̃K (Richardson and Green, 1997). This is achieved by
mapping the ordered intercepts to an unconstrained vector δ of log-increments (Carpenter
et al., 2017). Using the constrained class ordering, the mixing of classes across the MCMC
iterations occurs less frequently. We use a model-agnostic approach, which consists of
relabeling the classes based on the posterior probabilities π̂(s)

i,k of the trajectories using the
ECR algorithm2 (Rodríguez and Walker, 2014; Papastamoulis, 2016).

Convergence Parameter convergence is assessed using the potential scale reduction
factor (PSRF) (Gelman et al., 1992), where a value below 1.1 is considered to be acceptable
(Gelman et al., 2013).

6.3.2 Prior specification
We specify weakly informative priors for the model parameters Θ, meaning that we set
priors that are reasonable in a general exploratory setting. Specifically, a Dirichlet prior is
used on the class proportions with π ∼ Dir(a1, . . . , aK). In general, it is recommended to
use values of ak ≥ 1 to avoid empty classes (Frühwirth-Schnatter, 2006), so we specify
ak = 1 ∀k to allow for variable class proportions. We specify the class-specific priors
to be equal across classes. The decomposed and centered intercepts α̃ and fixed-effects
coefficients β̃k are assumed to follow a standard normal distribution. A generalized half-
t(3, 0, 1) prior is used for the scale of the shared independent random effects σb,1, . . . , σb,p

and σω and for the residual error σε,k of GMM. The log-linear model intercept γ0 for RV-
GMM, MV-GMM and RMV-GMM is assumed to follow a standard normal distribution. In
order to avoid overestimating the mean-variance association, we assume γ1,k ∼ t(3, 0, 0.1).

2We apply ECR with iterative relabeling strategy 1.
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6.3.3 Model selection
The number of mixture components K is learnt through a model selection procedure which
identifies the model with the lowest marginal value of the Widely Applicable Information
Criterion (WAIC) (Watanabe, 2009). The WAIC generalizes the use of the AIC to models
with complex hierarchical layers as is the case for the models of this work. The WAIC is
given by

WAIC = −
∑
i∈I

log
[

1
S

S∑
s=1

f
(

yi|Θ(s)
)]

+ pWAIC, (6.9)

pWAIC = 2
∑
i∈I

[
log
(

1
S

S∑
s=1

f
(

yi|Θ(s)
))

− 1
S

S∑
s=1

log f
(

yi|Θ(s)
)]
, (6.10)

f(yi|Θ) =
K∑

k=1
πk

∫
f(yi|Θk)f (bk,i|Σk) dbk,i, (6.11)

where f
(

yi|Θ(s)
)

denotes the density for subject i, and pWAIC penalizes the model for
the effective number of parameters (Gelman et al., 2013).

The conditional likelihood we used for inference is a numerical trick to recover the
parameters, as it is more efficient from a sampling point of view. However, for model
selection, it is preferable to use the marginal likelihood (Tong et al., 2022). The full
marginal likelihood of subject i is given in Equation 6.11 for GMM and MV-GMM,
requiring an integration over the random effects bk,i. For the marginal likelihood of
RV-GMM and RMV-GMM, an additional integration over ωk,i is needed.

Since the integral of Equation 6.11 cannot be solved in closed form for MV-GMM
and RMV-GMM, we compute it by means of an approximation. For the sth MCMC
sample Θ(s), we use draws of bk,i from a distribution parameterized by the covariance
of the random effects Σ(s)

k . The likelihood is computed conditional on the respective
subject belonging to their most likely class during the sth sample, denoted by ĉ(s)

i . The
approximation is computed by

f
(

yi|k = ĉ
(s)
i ; Θ(s)

)
=
∫
f
(

yi|k = ĉ
(s)
i ; Θ(s)

k

)
f (bk,i|Σk) dbk,i (6.12)

≈
1
M

M∑
m=1

f
(

yi|b
(m)
k,i ; k = ĉ

(s)
i ; Θ(s)

k

)
, (6.13)

where M denotes the number of draws for b
(m)
k,i ∼ f

(
b

(s)
k,i |Σk

)
. The marginal likelihood

of each subject can therefore be computed in constant time, independent from the number
of classes estimated by the model.

6.3.4 Software
We conduct a simulation study and analyze a case study using R 3.6.1 (R Core Team,
2022), running on Intel Xeon E5-2660 processors. The code used is available in the
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supplementary materials. The R package rstan (version 2.19.3) (Stan Development Team,
2020a) was used to interface with Stan.

The models were implemented in the longitudinal clustering framework of the latrend
package (version 1.5.0) (Den Teuling, 2022). The label.switching package (version 1.8)
created by Papastamoulis (2016) was used for the implementation of the ECR algorithm
for dealing with the label switching problem described in Section 6.3.1.

6.4 Simulation study
We investigate the performance of our clustering approach in the presence of heteroskedas-
ticity through a simulation study. We assess the ability of the MV-GMM and RMV-GMM
models in identifying the heterogeneous mean-variance relations of the latent classes,
assuming that the number of classes is known. Furthermore, we explore the effects of
misspecification of the mixture model, where we consider type I and type II errors for
heteroskedasticity arising from a mean-variance relation or latent variance. These aspects
are evaluated by estimating GMM, MV-GMM, RV-GMM, and RMV-GMM on a set of
simulated datasets under different data-generating processes.

In a second simulation study, we evaluate the identification of the number of classes
for GMM, MV-GMM and RMV-GMM under different class separation conditions, the
presence of a mean-variance relation, and the presence of random residual variance.

6.4.1 Settings
We evaluate the GMM, MV-GMM, RV-GMM and RMV-GMM models on datasets
comprising 250 trajectories, each having ten observations with ti drawn from a Unif [0, 2]
distribution. We consider scenarios involving two and three classes, where each trajectory
is generated according to a particular class. The class proportions are given by πk ∝

√
k,

yielding classes of different sizes3. Each of the simulation scenarios is evaluated on 500
randomly generated datasets.

The group trajectories of the expected value for each class are generated from second-
order polynomials. We distinguish between two degrees of class separation. In the first
case, referred to as Partial overlap (PO), two of the group trajectories have a similar
intercept, and diverge over time. This results in a significant overlap of the expected
values of the trajectories of both classes around the intercept. In the second case, named
Full overlap (FO), two group trajectories start at approximately the same intercept and
have a similar time profile. This results in a large overlap between the two classes, and
thus there is almost no class separation on the mean. In this scenario, the classes can only
reliably be recovered through the heterogeneous mean-variance relation. The coefficients
of the group trajectories under the different data scenarios are reported in Table 6.1.
For simplicity, we specify independent random effects for the parameters in the time
profiles with equal scale within each of the classes. We generate the trajectories with a
moderate degree of within-class heterogeneity, with σb = {.16, .071, .032}. The standard
deviation for the Gaussian noise is also set to be equal across classes, with σε,k = .05
for the homoskedastic scenarios, and σγ,0,k = log(.05) accordingly for the heteroskedastic

3In the case of two classes, 104 trajectories (41.6%) are assigned to class A, and 146 (58.4%) trajectories
are assigned to class B. With three classes, 60 trajectories (24%) will be assigned to class A, 85 trajectories
(34%) to class B, and 105 trajectories (42%) to class C.
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Table 6.1: Group trajectory coefficients used for generating the datasets. Each row
represents the coefficients for a different class.

Classes Dataset
Partial overlap Full overlap

2 β =
[

−.25 1 −.15
0 0 0

]
β =

[
−.25 1.1 −.2

0 .9 −.2

]

3 β =

−.25 1 −.15
0 0 0

1.25 0 −.35

 β =

−.25 1.1 −.2
0 .9 −.2

1.25 0 −.35


Figure 6.1: Generated datasets comprising 100 trajectories, based on the four sets of group
trajectories provided in Table 6.1. The thick lines denote the group trajectories.
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scenarios. A visualization of the generated trajectories and group trajectories for the
different data scenarios is shown in Figure 6.1.

We evaluate the models on datasets with and without a heterogeneous mean-variance
relation. In the scenarios with data showing a mean-variance relation, we use γ1 = {.6, 0}
and γ1 = {.6, .3, 0} for data with two and three classes, respectively. An example of a
dataset showing a class-varying mean-variance relation is shown in Figure 6.2. Finally,
we consider the effect of the presence of high random residual variance, with σω = .3 and
γ0 ≡ log σε.

For the second simulation study on the identification of the number of classes, we
simulate 200 datasets for each condition, where observations come from two classes. The
models are estimated for K = 1, 2, 3 and the best number of classes as identified by the
model selection procedure described in Section 6.3.3 is counted.
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Figure 6.2: An example dataset with a heterogeneity in the mean-variance relation. Fifty
trajectories were generated with high random scale, high noise, and low class-specific
mean variance settings. Note that one of the classes has no mean-variance relation and is
therefore depicted by a horizontal line in (b).

(a) The generated trajecto-
ries. The thick lines denote
the group trajectories.
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(b) The trajectory-specific stan-
dard deviation σε,i,k, depen-
dent on the mean.
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6.4.2 Evaluation
We only consider converged models in the evaluation, that is, models for which the
posterior samples of each parameter were deemed to have converged according to the
PSRF criterion, described in Section 6.3. For each scenario, we evaluate the trajectory
classification agreement using the adjusted Rand index (ARI) (Hubert and Arabie, 1985).
A score of 1 indicates a perfect agreement, whereas a score of 0 indicates an agreement
that is no better than random chance. A perfect recovery of the trajectory classes is not
expected in the scenarios under consideration, due to the large overlap between classes.
We investigated our approaches under extreme settings to check their robustness. Finally,
we analyze the mean absolute error of the posterior mean with respect the true parameter
value.

Convergence On rare occasions, the class intercept parameters were found to be
strongly correlated during HMC sampling, resulting in poor parameter recovery. We
therefore discard estimated models which exhibited highly correlated (|ρ| > .95) samples
between the intercepts. We consider a sampled model to have converged when all model
parameters converged, and the intercept parameters are not correlated. Across all scenarios,
a converged result was achieved in 92% of all simulated datasets.

6.4.3 Results
6.4.3.1 Trajectory classification agreement

The average trajectory classification agreement in each of the scenarios is reported in
Table 6.2. In the partial overlap scenarios, all models achieved a good recovery (ARI >
0.80) of the trajectory class membership, regardless of the presence of heteroskedasticity.
The recovery of MV-GMM, RV-GMM and RMV-GMM are on par or better than GMM,
indicating that the models are not sensitive to the absence of the assumed mean-variance
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Table 6.2: Trajectory classification agreement (adjusted Rand index) per model across the
simulation scenarios. The RRV column indicates whether random residual variance was
simulated.

Overlap K MV RRV
Model

GMM
RV-

GMM
MV-

GMM
RMV-
GMM

Partial 2 No No .86 .86 .86 .85
Yes .85 .85 .83 .84

Yes No .83 .84 .87 .87
Yes .82 .84 .85 .86

3 No No .92 .92 .92 .92
Yes .91 .92 .88 .92

Yes No .91 .92 .93 .93
Yes .91 .91 .90 .92

Full 2 Yes No .035 .030 .30 .22
Yes .032 .029 .22 .10

3 Yes No .55 .55 .66 .64
Yes .55 .54 .63 .57

relation or random residual variance. Under the presence of a mean-variance relation,
MV-GMM and RMV-GMM outperformed the other models, suggesting that the methods
can make use of the additional information about the trajectories. However, MV-GMM
showed to be sensitive to the presence of random residual variance. This is apparent in
the three-class scenario with residual random variance, where MV-GMM obtained an
ARI of 0.88 compared to 0.91 by GMM. Overall, RMV-GMM outperformed or matched
the performance of the other models in almost all partial overlap scenarios, even in the
absence of random residual variance.

In the full overlap scenarios, MV-GMM and RMV-GMM consistently outperformed
GMM and RV-GMM. The latter two models could not discern between the two classes
for which the group trajectories fully overlap, as indicated by the ARI that is near zero.
MV-GMM outperformed RMV-GMM in all four settings, even in the scenarios involving
residual random variance, with a sizable difference in ARI of 0.12 and 0.06 for two and
three classes, respectively.

6.4.3.2 Parameter estimation

The bias in the estimation of the intercept and slope are reported in Table 6.3. We
first explore the partial overlap scenario without a mean-variance relation. RV-GMM
consistently achieved the lowest bias across the scenarios. For two classes, all models
achieved practically the same level of bias (±0.005). In the three-class scenarios with
random residual variance, MV-GMM exhibited an increased bias, especially in the intercept
of the first class (+0.08).

In the scenario with partial overlap and the presence of a mean-variance relation,
MV-GMM and RMV-GMM performed marginally better (±0.005) than the other two
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methods on the two-class datasets. In the three-class datasets, no method obtained a
clearly better parameter recovery than another model. Across all scenarios, GMM showed
a slightly higher bias on average.

The greater difficulty of the full overlap scenario is apparent from the relatively high
magnitudes of biases for the intercept and slope of the first class compared to the previous
scenarios. MV-GMM and RMV-GMM achieved a considerably lower bias in these scenarios
(50% lower bias for most parameters), as the models benefit from the additional information
from the mean-variance relation. Remarkably, MV-GMM outperformed RMV-GMM even
under the presence of random residual variance. This is especially prominent in the
three-class datasets, where the intercept bias differs by 0.2.

As shown in Table 6.4, the bias of the mean-variance relation for MV-GMM and
RMV-GMM was within acceptable levels in nearly all scenarios. Notably, the absence of a
mean-variance relation was correctly identified by both models (bias below 0.04). Here,
RMV-GMM outperformed MV-GMM under the presence of random residual variance with
a consistent bias below 0.015. Under the presence of a mean-variance relation, both models
achieved a satisfactory recovery with a bias below 0.05 in nearly all cases. In the full
overlap scenarios, the presence of random residual variance presents a challenge to both
models, resulting an increased bias of 0.1. MV-GMM performed well under the absence of
residual random variance, with bias below 0.06 across the parameters. RMV-GMM did
not outperform MV-GMM under the presence of random residual variance. The recovery
was especially poor in the three-class dataset for the first class (bias of -0.26).

The bias in the parameters of the random residual variance for RV-GMM and RMV-
GMM is reported in Table 6.5. In the absence of a mean-variance relation in the data,
both random heteroskedastic models only had a relatively small bias (0.05) under constant
variance. Both models correctly identified the random residual variance scale when present,
with a bias below 0.007. In the presence of a mean-variance relation, RV-GMM tends
to adjust for the heteroskedasticity with a larger residual variance scale, resulting in a
large bias above 0.20. In contrast, RMV-GMM correctly accounted for the mean-variance
relation, resulting in approximately the same level of minimal bias as in the partial overlap
scenarios without a mean-variance relation.

6.4.4 Identification of number of classes
The convergence rates for each of the models in the different scenarios is shown in Table
6.6. Whereas all models converged consistently for K = 1, the convergence rate for models
with additional classes appears to be attributable to the ability of the model to discern
between the classes. For this reason, all models achieved a good convergence rate for
K = 2 on the partial overlap datasets (> 94%), but some models failed to converge in the
more challenging scenarios under full class overlap. MV-GMM was able to consistently
converge in the full overlap scenario under a heterogeneous mean-variance relation (99%),
and RMV-GMM also showed a relatively high convergence rate (76%). Across the models
estimated for K = 3, convergence rates are low especially in the full overlap datasets
(2.3%–27%). The low convergence for three classes did not appear to affect the model
selection, as we observed identical enumeration rates between the converged models and
non-converged models across all scenarios (data not shown).

The model selection rates are shown in Table 6.7. All models performed well on the
partial overlap datasets involving a mean-variance relation, achieving high rates (93% or
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Table 6.3: Bias of the intercept and slope for the models across scenarios. The RRV
column indicates whether random residual variance was simulated.
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Table 6.4: Bias of the mean-variance coefficients γ1 = {γ1,k} for k = 1, . . . ,K across
scenarios for MV-GMM and RMV-GMM, denoted by the MV and RMV columns, respec-
tively.

Partial overlap Partial overlap + MV Full overlap + MV

K RRV Par. MV RMV MV RMV MV RMV
2 No γ1,1 .0063 .0075 .0078 .0063 -.026 -.099

γ1,2 -.0010 -.0029 -.015 -.012 .011 .045
Yes γ1,1 .0053 .013 .031 .0069 .14 -.16

γ1,2 .016 -.015 -.065 -.021 -.081 .071
3 No γ1,1 .0010 .0028 -.017 -.022 -.055 -.13

γ1,2 -.0089 -.0097 -.027 -.026 -.023 -.029
γ1,3 .0024 .0010 .0015 -.0025 .013 .045

Yes γ1,1 .032 .0088 .0010 -.022 .11 -.26
γ1,2 -.026 -.014 -.028 -.045 -.017 -.046
γ1,3 .029 -.0051 -.020 -.0042 -.11 .086

Table 6.5: Bias of the random residual variance scale coefficient σω across scenarios for
RV-GMM and RMV-GMM, denoted by the RV and RMV columns, respectively.

Partial overlap Partial overlap + MV Full overlap + MV

K RRV RV RMV RV RMV RV RMV
2 No .050 .050 .25 .052 .26 .12

Yes -.0058 -.0064 .082 -.0068 .086 .037
3 No .058 .057 .21 .059 .21 .089

Yes -.0045 -.0053 .057 -.0059 .059 .022



Section 6.5. Case study 154

Table 6.6: Convergence rate during estimation of the models for different values of K, with
the data comprising two classes. The "Hsk." column indicates the type of heteroskedasticity
under which model selection was simulated.

Overlap Hsk. Model K = 1 K = 2 K = 3
Partial MV GMM 100% 100% 41%

MV-GMM 99% 98% 43%
RMV-GMM 100% 80% 38%

RRV GMM 100% 99% 30%
MV-GMM 100% 94% 70%

RMV-GMM 100% 98% 41%
Full MV GMM 100% 32% 8.3%

MV-GMM 100% 99% 28%
RMV-GMM 100% 76% 23%

RRV GMM 100% 17% 2.3%
MV-GMM 100% 63% 27%

RMV-GMM 100% 20% 5.7%

more) of identifying the correct number of classes. GMM showed to be insensitive to het-
eroskedasticity under well-separated classes, as it performed well in both the mean-variance
and residual random variance cases, with selection rates of 96% and 98%, respectively.
MV-GMM often overestimated the number of classes (79%) under the presence of residual
random variance. For the datasets with fully overlapping class trajectories, MV-GMM
and RMV-GMM were able to consistently recover the number of classes, indicating that
the models can discern the heterogeneity in the mean-variance relation between classes.
As expected, GMM identified only a single class on practically all full-overlap datasets, as
there was practically no difference in the class trajectories. Similarly, under the absence
of a mean-variance relation, the two classes are not discernible, and one therefore would
expect all models to identify only a single class. MV-GMM often (84%) overestimated the
number of classes here.

6.5 Case study
We use the proposed models to explore the heterogeneity in the number of weekly confirmed
COVID-19 cases per county throughout the United States of America. The purpose of
the analysis is to identify in which ways the number of cases has changed over time
per county. Providing insights into the historical developments of different counties can
support decision makers in tailoring policies to similar counties. By county, we refer to
counties and county-equivalent administrative regions. We consider the 15-week period
starting from June 1st to September 13th, 2020, which we selected for the relatively
stagnant growth surrounding the period.

Across the many counties in the USA, we expect to find heterogeneity in the number
of cases over time. Such heterogeneity could arise from different policies per county,
geographical factors, and demographic factors. Similarly, there may be heterogeneity in
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Table 6.7: Model selection rates across data scenarios and models. The "Hsk." column
indicates the type of heteroskedasticity under which model selection was simulated. The
column K in bold represents the expected number of classes for the respective data
scenario.

Overlap Hsk. Model K = 1 K = 2 K = 3
Partial MV GMM 0.0% 96% 4.0%

MV-GMM 0.0% 100% 0.0%
RMV-GMM 0.0% 93% 7.0%

RRV GMM 0.0% 98% 2.0%
MV-GMM 0.0% 21% 79%

RMV-GMM 0.0% 98% 2.0%
Full MV GMM 99% 1.0% 0.0%

MV-GMM 0.0% 99% 1.0%
RMV-GMM 0.0% 96% 4.0%

RRV GMM 100% 0.0% 0.0%
MV-GMM 16% 76% 8.0%

RMV-GMM 100% 0.0% 0.0%

the variance between counties. Modeling county-specific variability has the advantage
of providing more reliable prediction intervals. Lastly, we expect to see differences in
heteroskedasticity between classes, because the variability in number of new cases directly
depends on the number of infectious people. For example, considering the case of a county
with few infected people with one or two new cases per day, against a city with thousands
of infectious people, and hundreds of new cases per day.

6.5.1 Data
The case data is obtained from the COVID-19 Data Repository by the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University (Dong et al., 2020)4. The
repository comprises daily cumulative confirmed cases and deaths aggregated from US
public health departments at the state and county level. We include data from all fifty
states, and the District of Columbia, comprising a total of 3,150 counties. We exclude 29
counties where no cases were reported during the period of interest5. In order to compute
the normalized number of cases, counties for which the population size was unavailable in
the dataset were therefore also excluded, which occurred in only seven counties6.

On 5,787 observation days (1.73%), the cumulative number of confirmed cases are lower
than the preceding day, likely arising from later corrections. We address overreporting by
applying a centered median filter with a window of 3 days, which leaves the data unaffected
if the daily total counts numbers are monotonic. For count corrections that were applied
after more than one day, we truncate any observations exceeding future observations.

4Available at https://github.com/CSSEGISandData/COVID-19.
5No cases were reported in counties across Alaska (2), Hawaii (1), Massachusetts (2), Nevada (1),

Texas (1), and Utah (22).
6Population size data was absent from one county in Massachusetts, and six counties in Utah.

https://github.com/CSSEGISandData/COVID-19
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We use the corrected daily cumulative confirmed new cases of COVID-19 per county to
compute the number of new cases per week. This was needed as many counties only provide
updates on specific days of the week. The weekly number of new cases are computed
from the difference in cumulative cases between Sundays. Across counties, 17% of weeks
had zero new cases within the time period of interest. The median weekly number of
new cases, ignoring zeros, is 64.6 per 100,000 inhabitants, with the 99th percentile at 555
new cases per 100,000 inhabitants. The highest observed number of weekly new cases is
approximately 10,000 per 100,000 inhabitants.

Lastly, it is necessary to address the difference in the numbers between counties of
several orders of magnitude. We therefore model the logarithm of the weekly normalized
new cases per 100,000 inhabitants instead. Using this representation, the group trajectories
are representative across counties, as changes in the number of cases are modeled relative
to the order of magnitude. We treat observation days with zero new cases as having 0.5
cases per 100,000 inhabitants. This ensures that the zero-case observations are not too
distant in magnitude from the other observations. The range of the processed data is
[−0.693, 9.21].

6.5.2 Model specification
We model the log-normalized new cases over time using the GMM, MV-GMM, and RMV-
GMM models as defined in Equation 6.1, Equation 6.3, and Equation 6.5, respectively.
We apply uninformative priors, computed in the same way as defined for the models used
in the simulation study. In view of the volume of data, most of the priors will have little
effect on the posterior distribution.

In a preliminary analysis, we observed a poor fit when using the second-order polynomial
representation as was used in the simulation studies. We therefore opt for using a basis
spline (B-spline) of degree 3 (Hastie and Tibshirani, 1990). Each county trajectory is
therefore represented by a piecewise second-order polynomial function. The B-spline
provides a smoother fit while being able to account for more shapes than a polynomial of
the same degree. We evaluate GMM for both a shared and class-specific residual error
scale. We tested the MV-GMM and RMV-GMM models with class-specific residual error
scales as well, but the sampling was not stable in three- and four-class models. Here,
the sampling of the residual scale parameter would often diverge for one of the classes.
We therefore specify a shared residual error scale parameter, as done in the simulation
analysis.

We sample each of the models for 1 to 4 classes. We restricted the maximum number to
four classes due to the computational time needed especially for RMV-GMM considering
the large sample size.

6.5.3 Model evaluation
We evaluate each model using multiple Markov chains, which enables a reliable assessment
of convergence and diagnosis of the posterior distribution (Gelman et al., 1992). As the
possibility for multimodality increases with the number of latent classes, an increasing
number of Markov chains were used (up to 20). A solution was determined to be reliable
when the same solution was found in multiple chains. We report the model parameters
in terms of the mean posterior estimates, and 80% highest density intervals (HDI). We
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Figure 6.3: The model fit for each of the models, across the different number of classes
(lower is better).
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compare the models using the same approach as the model selection analysis above. As
recommended by Van de Schoot et al. (2017), we measure the classification agreement
of the model for individual trajectories. This is typically assessed using relative entropy,
which is a measure of class separation in terms of the uncertainty of the class-specific
posterior probabilities. A score of 0 indicates that the assignment of counties to classes
is maximally uncertain (i.e., uniform posterior class probabilities), whereas a score of 1
indicates a perfect separation between classes (i.e., each county is assigned to a single
class).

6.5.4 Results
Number of classes The WAIC for each of the class solutions is shown in Figure 6.3.
Although the single-class models already account for heterogeneity, all models achieve
an improved fit with an additional number of classes. The importance of accounting for
heteroskedasticity in this case study is evident from the considerable improvement in
WAIC between the GMM with shared variance and the GMM with class-specific variance.
Even more so, the MV-GMM and RMV-GMM models provide a significantly better fit
than the GMM model, demonstrating the value of modeling the mean-variance relation
in this case study. MV-GMM and RMV-GMM achieve a similar fit for the three- and
four-class solutions. We therefore manually compare these solutions between the models.
The solutions of RMV-GMM comprise one or two small classes with a proportion below
5% which did not capture a sufficiently distinguishing longitudinal aspect. In contrast,
the class proportions of the MV-GMM solutions are relatively balanced. We select the
four-class MV-GMM solution as the preferred solution due to the significant improvement
in WAIC, the introduction of a relatively distinct class over the three-class solution, and
the consistency of the class allocations across the chains.

Preferred solution The four group trajectories identified by MV-GMM are shown in
Figure 6.4, ordered by the number of new weekly cases in the last week. The relative
entropy of 0.82 indicates the classes are well-separated (Diallo et al., 2016). Figure 6.5
shows the expected standard deviation for the respective mean of each class over time.
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Figure 6.4: The estimated group trajectories for the preferred solution.

(a) Log-scale.
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(b) Original scale.
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The point estimates of the model coefficients and the 80% HDI are shown in Table 6.8.
Class A (22%) represents counties with a considerable increase in the number of cases

over time, with a decreasing standard deviation as the number of infectious people becomes
greater. Class B (30%) and class C (28%) follow almost exactly the same trend, but
counties in class C have a 50% higher standard deviation in relation to the mean. Class D
(20%) comprises counties with relatively few cases and high uncertainty on a week-to-week
basis.

The classified counties are visualized on a map in Figure 6.6. Despite the independent
classification of counties, the map shows strong regional similarities, with neighboring
counties tending to belong to the same cluster. These findings could be used to create a
minimal set of tailored policies, each addressing specific intercounty and interstate regions
of the USA with a similar development in cases.

6.6 Discussion
In this work, we compared the performance of different growth mixture models under
heteroskedasticity arising from heterogeneous mean-variance relations and random residual
variance. We evaluated four GMM variants: the standard GMM, a GMM accounting for
random residual variance between trajectories, a GMM that accounts for a heterogeneous
mean-variance relation, and a GMM that handles both aspects. We demonstrated the
feasibility of recovering the correct number of classes and the group trajectories under
these conditions. Notably, we obtained these results on datasets of only 250 trajectories
with ten observations, which is relatively small compared to other longitudinal clustering
studies. Although we did not investigate the impact of the sample size, it is likely that the
recovery of the group trajectories will improve with a greater number of observations and
trajectories, as has been shown in previous simulation studies (Den Teuling et al., 2021;
Martin and von Oertzen, 2015). MV-GMM and RMV-GMM were able to correctly identify
the heterogeneous mean-variance relations or absence thereof in all but the most difficult
scenario involving full class overlap with random residual variance. Moreover, the group
trajectory recovery of MV-GMM and RMV-GMM in the absence of heteroskedasticity
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Figure 6.5: The estimated group trajectories for the preferred solution with the predicted
standard deviation on the expected value.

●

●

●

●

●
●

●
●

● ● ● ● ● ● ●

C (28%) D (20%)

A (22%) B (30%)

Ju
n−07

Ju
n−21

Ju
l−05

Ju
l−19

Aug−02

Aug−16

Aug−30

Sep−13

Ju
n−07

Ju
n−21

Ju
l−05

Ju
l−19

Aug−02

Aug−16

Aug−30

Sep−13

1

10

100

1

10

100

0

2

4

6

0

2

4

6

Date

W
ee

kl
y 

ne
w

 c
on

fir
m

ed
ca

se
s 

/ 1
00

,0
00

 in
ha

bi
ta

nt
s

log

Figure 6.6: The counties of the USA as classified by MV-GMM. Counties colored in white
either had no available data or had no recorded cases throughout the selected period.
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was not negatively affected, suggesting that the model can be used in an exploratory
setting where the presence thereof may not be known in advance. Under the presence
of high random residual variance, MV-GMM overestimated the number of classes due
to the mean-variance relation being used to explain the heterogeneity in the variance
between trajectories. Fortunately, this issue can be detected from the classes having
similar coefficients of variation. As an alternative to using RMV-GMM, this issue may be
alleviated by constraining the coefficient of variation to be considerably different between
classes.

For GMM, group trajectory estimation was marginally affected in the presence of
heteroskedasticity, but this did not affect the trajectory class-membership recovery in the
partial overlap scenarios. In the full overlap scenarios, the standard GMM consistently
underestimated the number of classes, demonstrating the benefit of accounting for class-
specific heteroskedasticity through MV-GMM or RMV-GMM. The group trajectory
estimation of RV-GMM in the partial overlap scenarios was on par with the models that
did account for a mean-variance relation, suggesting it is a suitable model for exploratory
analyses where a mean-variance relation is not expected.

Previous studies have investigated the estimation of heteroskedastic mixture models
with variance functions. Accounting for heteroskedasticity is important for obtaining
correct prediction intervals. The selection of the correct variance functions remains a
challenge, especially when accounting for a different function per class. MV-GMM requires
only one additional parameter per class compared to other models that account for
heteroskedasticity. It therefore could serve as a practical starting point for the evaluation
of heterogeneous heteroskedasticity with a dependency on the mean.

The sampling of the mixture models using NUTS was found to be exceptionally stable
despite the multimodality of the posterior distribution and overlapping classes. Label
switching was not observed within Markov chains, thus it only needed to be addressed
between Markov chains. While this makes the samples of the Markov chains easy to
interpret, it prevents the sampling algorithm from fully exploring the posterior. As such,
more Markov chains need to be sampled to properly assess the extent of multimodality.

In the case study, the MV-GMM and RMV-GMM were found to better model the
data than GMM. Notably, the strength of the mean-variance relation was found to differ
significantly between classes, yielding different prediction intervals per county. The models
underestimated the group trajectory close to zero weekly cases due to the excess number
of lower-truncated observations. A zero-inflated mixture model accounting for the excess
number of case-free days may have provided a better fit and more reliable estimates for
this class of counties. RMV-GMM generally described the data better than the other two
models in case of the one- and two-class solutions. However, for three and four classes,
the estimate of the mean-variance relation was not stable in one of the classes, resulting
in poor convergence across parameters.

We conducted the simulation study with the models as the data generating processes. It
therefore remains unclear how well the mean-variance models handle the misspecification
of, for example, the random effects and the mean-variance relation. The case study
comprised these aspects and provided a positive indication in this regard. We opted to
apply random effects to all fixed effects to reliably model the trajectory-specific means, but
a more parsimonious random effects model (i.e., fewer random effects) may have sufficed.
The normal distribution is a favorable choice for the random effects from the perspective
of the central limit theorem, but in case of a skewed distribution may result in group
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trajectory estimation errors and an overextraction of the number of classes (Den Teuling
et al., 2021; Van Horn et al., 2012; Bauer and Curran, 2003).

Overall, we recommend the application of MV-GMM as a first exploratory step when
heteroskedasticity is suspected or of interest, as it is parsimonious compared to other models
that account for heteroskedasticity. If such heteroskedasticity is established, then the
RMV-GMM could be fitted thereafter to establish the significance of the mean-variance
relations. In case that only random heteroskedasticity is suspected, the RV-GMM is
preferable over GMM. Due to multimodality, it is strongly recommended to fit the model
repeatedly and to compare the respective models on parameter convergence, model fit
(WAIC), and the obtained group trajectories and class proportions. In case of the absence
of a mean-variance relation, we recommend the application of RV-GMM over GMM in
applications with considerable within-subject variance, as the former yielded a consistently
better group trajectory estimation in our simulation study.

Supplementary materials
The Stan code used to specify the various models, as well as the R code that has been
used to run the simulation study and perform the case study analysis, can be found at
https://github.com/niekdt/meanvar-clustering-longitudinal-data.

https://github.com/niekdt/meanvar-clustering-longitudinal-data
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Appendix
6.A Case study
Table 6.8: Point estimates (posterior means), 80% HDI, and PSRF of the model parameters
of the preferred solution.

Par. Mean Lower bound Upper bound R̂

πA .22 .21 .23 1.00
πB .31 .29 .32 1.00
πC .28 .26 .29 1.01
πD .20 .19 .21 1.00
βA,0 .023 -.10 .15 1.03
βA,1 4.5 4.2 4.8 1.01
βA,2 5.0 4.8 5.1 1.00
βA,3 4.3 4.2 4.5 1.01
βB,0 2.7 2.7 2.8 1.01
βB,1 2.1 2.0 2.2 1.02
βB,2 1.8 1.7 1.9 1.01
βB,3 1.4 1.3 1.4 1.04
βC,0 3.0 2.7 2.8 1.03
βC,1 1.8 1.6 1.9 1.01
βC,2 1.7 1.6 1.8 1.00
βC,3 .87 .78 .94 1.04
βD,0 .42 .33 .53 1.02
βD,1 1.8 1.5 2.1 1.01
βD,2 1.9 1.7 2.1 1.00
βD,3 2.1 2.0 2.3 1.02
ϕ0 .68 .66 .69 1.00
ϕ1,A -.25 -.26 -.25 1.02
ϕ1,B -.46 -.47 -.46 1.00
ϕ1,C -.30 -.30 -.29 1.00
ϕ1,D .017 .0082 .026 1.00
σβ,0 .84 .82 .86 1.04
σβ,1 .35 .34 .36 1.00
σβ,2 .29 .28 .30 1.01
σβ,3 .27 .26 .27 1.01



163

Chapter 7

Discussion and future work

Through the clustering of longitudinal data, researchers can obtain a better understanding
of the differences between subjects over time within a heterogeneous population. The
identification of groups of subjects with similar longitudinal characteristics is a pragmatic
and valuable tool for providing a more detailed description of the population than a general
common trend or average. The resulting clusters may also be helpful for addressing a
specific proportion of the population. For example, it can be used for the improvement
of PAP therapy adherence management for sleep apnea patients, where it facilitates
better triage and patient-tailored intervention, leading to improved adherence and health
outcomes. As another example, the incidence of COVID-19 across regions in a country
can be better understood by identifying regions with similar developments over time. This
could help policy makers to identify regions that would benefit from the same policies,
thereby minimizing the overall number of required policies.

In this thesis, we present a comparison of various methodologies for clustering lon-
gitudinal data, and we propose extensions for jointly clustering the variance and other
distributional aspects over time. We selected, applied, and adapted methods for the
analysis of patient PAP therapy adherence during the first three months of therapy, and
the incidence over time of COVID-19 across regions of the United States of America.
Furthermore, we have created statistical software, named latrend1, that provides a frame-
work for researchers to compare different approaches for clustering longitudinal data in a
standardized way, and evaluating new methods.

7.1 The current state
Researchers have a vast selection of methods at their disposal for exploring and modeling
data heterogeneity using longitudinal clustering. However, adjacent academic disciplines
have their own terminology, their own idiosyncratic use of tools and methods, and journals
with different focus areas. This makes it difficult for researchers to familiarize themselves
with the broad range of methods that are available for clustering longitudinal data. For
that reason, we have created a broad scoping review in Chapter 2 of different approaches
to longitudinal clustering, presented in the form of a tutorial. Here, we categorized the

1The latrend R package is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=latrend and on GitHub at https://github.com/philips-software/latrend.

https://CRAN.R-project.org/package=latrend
https://CRAN.R-project.org/package=latrend
https://github.com/philips-software/latrend
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available methods into general approaches ranging from a naive cross-sectional approach to
a model-based approach. The chapter contains a demonstration for each of the approaches
in a case study, involving one or more methods and noting similarities and differences
between the clusters identified by the methods.

With applicable methods originating from different and disconnected areas of research,
there are relatively few cross-disciplinary comparison studies. We aimed to provide
guidelines for researchers in determining the appropriate method depending on the type of
longitudinal dataset. In Chapter 3, we therefore investigated the similarities, strengths, and
limitations of different approaches in a simulation study and on a real-life case study. We
have demonstrated that longitudinal k-means (KML) and group-based trajectory modeling
(GBTM) yield similar clusters, given that the shape of the trends was correctly specified
for GBTM. This suggests that KML is favorable for use as an initial exploratory analysis,
and may be followed up by GBTM once there is more clarity on the expected shape of the
trends. Our findings also suggest that the feature-based GCKM method could be a viable
alternative to growth mixture modeling (GMM) when applied to intensive longitudinal
data. The case study showed that the resulting clusters may differ greatly depending
on the choice of method. This highlights the importance on the choice of methods, but
even more so that researchers should be careful in interpreting the clusters from such an
analysis as being distinct or the only possible representation. Applying multiple methods
with different assumptions provides insights about the population heterogeneity from
different angles.

In setting up the simulation and case studies of Chapter 2 and 3, we observed the
difficulty of dealing with the different inputs and outputs of the respective R package of
each of the methods. This presents a considerable barrier to researchers when it comes
to comparing and evaluating different methods on a longitudinal dataset with the aim
of identifying the most suitable method. We therefore developed a general framework
to facilitate a standardized way of estimating and analyzing methods for clustering
longitudinal data, regardless of the type of approach or underlying software used. The
resulting software, named latrend, is described in Chapter 5. To the best of our knowledge
such a generic framework for clustering longitudinal data does not yet exist. The software
currently supports 18 methods and can be extended further by the user. Researchers
can now evaluate and compare different methods originating from various R packages
with minimal coding effort. We expect the software will contribute to the awareness and
accessibility of a variety of methods to researchers who are not yet familiar with the field.

7.2 Proposed approaches
For most of the methods that we have discussed, the similarity between trajectories is
determined by the mean value over time. However, as we have demonstrated in Chapter 4
and 6, accounting for heterogeneity on multiple longitudinal aspects may yield a more
accurate representation of the trajectories, and can considerably affect the result of the
cluster analysis. In both chapters, we used a model-based approach based on GMM, which
was done for two primary reasons: Firstly, the approach has an intuitive interpretation
as a set of heterogeneous subgroups. Fewer clusters are then needed to capture high
and complex heterogeneity compared to methods that assume homogeneous clusters like
KML or GBTM. Secondly, the regression approach used by GMM can be extended to
distributional regression for modeling the mean, and other (longitudinal) aspects such
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as heteroskedasticity. With these two chapters, we filled some of the gaps regarding the
estimation of GMM under the presence of different types of heteroskedasticity: temporal
heteroskedasticity, a mean-variance relation, and subject-specific random residual variance.

Previous studies have demonstrated considerable heterogeneity in patient PAP therapy
adherence, but have done so using either methods with low temporal granularity, or by
only modeling the aggregated hours of usage over time. In Chapter 4, we aimed to explore
the heterogeneity of daily patient PAP therapy adherence in their first three months
of therapy in much more detail. Here, we jointly modeled the daily hours of usage of
patients on three longitudinal aspects (attempt probability, mean hours of usage, and
usage variability). Our approach was based on distributional regression, specified using a
GMM approach based on a mixture of generalized additive models for location, scale and
shape (GAMLSS).

The choice of GMM was further motivated by the case study. In PAP therapy, any
daily usage above 4 hours is generally regarded as sufficient, whereas a large part of the
heterogeneity comprises subjects around 6 hours of usage. Considering that we were
interested in identifying clusters of patients that exhibited different changes in usage over
time, the mean subject level was therefore of less interest than the relative changes in usage
over time. This aspect is addressed through the inclusion of a subject-specific random
intercept. This consequently lowers the contribution of the patient intercept to the model
fit, resulting in fewer clusters that merely differ on the mean level of usage. Arguably, a
feature-based approach where patient trajectories are estimated independently could have
yielded similar results in a significantly shorter amount of time. This approach comes
with its own caveats however, as researchers need to put effort into the assessment and
handling of model estimation errors for a proportion of subjects.

Our case study analysis revealed a non-linear relation between attempt probability
and usage time, demonstrating of the importance of using a hurdle modeling approach
for describing PAP therapy adherence data. The modeling of heteroskedasticity as a
function of time also turned out to be of added explanatory power. For the identified
clusters which exhibited a change over time, a corresponding change in variance over
time was observed, suggesting the presence of heterogeneous mean-variance relation in
the population. Overall, the methodology could be of interest in other areas of therapy
adherence research as well.

Lastly, in Chapter 6 we explored the impact of heterogeneity in the heteroskedasticity on
the estimation of GMM. We proposed extensions to GMM for handling heteroskedasticity
under a heterogeneous mean-variance relation, subject-specific random residual variance,
and a combined model. Through a simulation study, we showed that the proposed models
were able to reliably recover the heteroskedasticity in most scenarios. Moreover, we found
that under the absence of a mean-variance relation, the relevant models did not wrongly
identify such a relation. These findings suggest that the models are suitable for exploratory
purposes on populations where heterogeneity is expected on location and scale. With
these promising results, we applied the models to a real-life case study, exploring the
heterogeneity of the number of new COVID-19 cases across all counties in the USA. The
results showed geographically correlated clusters exhibiting different levels of variance.
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7.3 Future work
In this work we compared different methods for clustering longitudinal data and proposed
some extensions for modeling distributional heterogeneity. Yet, many interesting research
questions remain. For instance, in the scoping review of Chapter 2 and the comparison
study in Chapter 3, we applied a selection of the most common methods. However, we
did not touch upon all available domains for clustering longitudinal data, such as methods
from the field of functional data analysis. More cross-disciplinary comparison studies are
needed. This connects different areas of research, to the benefit of all domains. Having
access to a broader choice of methods enables researchers to identify a more suitable
method, but also increases the difficulty of identifying such method.

Few studies address heterogeneity in combination with heteroskedasticity other than
assuming a different constant variance per cluster. Modeling heteroskedasticity is primarily
useful for ensuring cluster- or subject-specific confidence intervals around the prediction of
the mean, a task that is generally not the focus in clustering. Yet, as we have shown in
Chapter 4 and 6, modeling the variance can affect the resulting clusters, and may lead to
new insights about the population. The field would benefit from a greater focus on jointly
modeling longitudinal characteristics, involving the location, scale, and other relevant
longitudinal aspects. With the increasing availability of ILD, modeling developments, and
increase in computational capabilities, such models have become feasible to estimate.

The heteroskedastic mixture models proposed in Chapter 6 achieved a favorable recovery
of the parameters with low bias even under homoskedasticity. The simulation study was
conducted under the assumption of the correct specification of the mean-variance relation
(if any), but in real-world studies the exact relation is unlikely to be known. It remains
unclear how the model behaves under the misspecification of the mean-variance relation,
and whether the correct relation can be recovered.

Data collection and storage capabilities are growing faster than the computational
capabilities. The computational efficiency of methods needs to be improved. Some of the
more traditional methods have poor computational scaling with sample size. Even today,
the estimation of some multilevel mixture models on intensive longitudinal datasets is
infeasible due to the long computation times involved. Challenges with respect to the
computation time have been a recurring topic throughout this thesis, as we have sought
the limit in terms of dataset sizes in Chapter 4 and 6 that are still practical to estimate in
terms of computation time.

One such computational optimization is the dimensionality reduction of traditional
model-based methods. Here, trajectories are represented through model coefficients instead
of the raw measurements. The unpooled estimation of trajectories is more susceptible to
estimation errors, but under a large number of observations this problem should be less of
a concern. We have shown in Chapter 3 that a feature-based approach can achieve similar
results to GMM. It should be noted that this was observed under perfect model data
conditions in which all subject trajectories could be represented by the same trajectory
model. In practice, we have seen that the feature-based approach is sensitive to outliers
(i.e., trajectories that do not meet the model assumptions), resulting in erroneous coefficient
estimates which at best is identified as latent classes of outliers, and at worst results in a
misrepresentation of the underlying data structure. A feature-based approach involving
Bayesian (regularized) inference may provide a useful direction here, enabling the mixture
model to consider the uncertainty of the estimation of the trajectory model coefficients.
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In this thesis, we have contributed to a better understanding of the strengths and
limitations of the various methods for longitudinal clustering, which will benefit researchers
in better exploring longitudinal data heterogeneity. We hope that our overview, comparison
study and software contribute to an improved connection between the different fields of
research that are addressing clustering longitudinal data. The proposed models that we
have demonstrated in the case studies may inspire to broaden the scope of longitudinal
clustering: accounting for heterogeneity in other relevant longitudinal aspects besides the
expected value.
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Summary

On approaches for clustering longitudinal data, with extensions for modeling
therapy adherence of sleep apnea patients

Longitudinal data comprises repeated measurements over time of subjects or other
independent sources. Longitudinal studies are commonly used in domains such as
sociology, psychology, medicine, and ecology. For example, researchers may be interested
to learn how patients change their level of adherence to a treatment over time. Using
longitudinal data measured from many subjects, researchers can discern between the
natural differences between subjects and the subject-specific variability between their
measurements over time. Historically, the collection of longitudinal data has been difficult
and costly, resulting in studies with a few fixed moments of measurement for a limited
number of subjects. However, with the improved data collection and storage capabilities,
longitudinal datasets are becoming larger, both in terms of the number of subjects, and the
number of measurements per subject. This growing volume of data presents new analysis
opportunities. Having more measurement moments enables temporal characteristics to
be modeled in more detail, and having a greater number of subjects allows for a more
detailed exploration of population heterogeneity. In this thesis, we investigated different
approaches to clustering longitudinal data, and we proposed extensions to modeling
therapy adherence and counts data.

Clustering longitudinal data is a flexible way to explore differences in changes over time
within a population. Subjects are grouped based on the similarity of their longitudinal
characteristics such as the expected average over time, thereby representing the population
in terms of a manageable number of clusters. This thesis was motivated by the study of
daily therapy adherence in sleep apnea patients on positive airway pressure (PAP) therapy.
Each patient follows the therapy in a unique way due to a mix of factors, including
behavioral, therapy-related, support and environmental factors. For example, patients
may differ considerably in their number of treated days, mean hours of usage, changes
over time, day-to-day variability, and other longitudinal aspects. To better understand
the common ways in which patients follow their therapy, we explore a more detailed
longitudinal representation of patient adherence and population heterogeneity. A second
case study of interest is the spread of COVID-19 across counties in the United States of
America. Here, clustering the weekly number of new cases helps to group counties based
on similarities in the development over time. This allows for the discovery of discrepancies
between geographical regions and may provide policy makers with guidance on which
regions to enact a specific set of policies.

In this thesis, we review and compare various approaches to clustering longitudinal data
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and provide recommendations on the applicability of certain methods. We have created
software that features a general framework for clustering longitudinal data, supporting
the common approaches and methods. Secondly, we propose extensions to a model-based
approach in order to account for population heterogeneity on multiple longitudinal aspects.
We bring special attention to assessing and accounting for a heterogeneous mean-variance
relation and the presence of subject-specific random residual variance.

In Chapter 2 we provide an overview of commonly used approaches for clustering
longitudinal data. We demonstrated the selection of methods on a synthetic dataset
allowing for a transparent comparison. In Chapter [comparison], we thoroughly compared
a selection of methods in many scenarios, contributing to a better understanding of the
strengths and limitations of the methods, and the similarities between them. Growth
mixture modeling was found to be preferred in the simulation study and case study, with
a feature-based alternative achieving promising results on intensive longitudinal datasets.
With the software that we have developed, described in Chapter 5, we have contributed
to a facilitating a more standardized approach to performing longitudinal cluster analyses.
This allows researchers to experiment more easily with methods from different disciplines
or evaluate new methods, with minimal coding.

Chapter 4 proposes a model-based approach to modeling heterogeneity in PAP therapy
adherence on multiple longitudinal aspects. We apply a hurdle modeling approach for
representing skipped therapy days, and we modeled the mean and variance of daily hours
of usage over time. The identified adherence profiles demonstrated the benefit of our
approach, as the identified adherence profiles revealed considerable differences on all
aspects. Notably, the hurdle modeling approach revealed a strong association between
the likelihood of reaching adherence and skipped therapy days. Overall, PAP therapy
adherence was mostly affected by skipped attempts rather than a low average hours of
usage. The proposed methodology is applicable to other domains that involve the tracking
a level of adherence over time.

Lastly, in Chapter 6 we explored the heterogeneity in heteroskedasticity in more detail,
proposing mixture models accounting for a heterogeneous mean-variance relationship,
and additional heterogeneity in the variance. Ignoring the mean-variance relation was
found to only have a marginal effect on the parameter bias. However, the identification
of the number of classes and the class recovery of trajectories was found to be severely
impacted under scenarios with high variance. We applied the models for the analysis of
weekly new COVID-19 cases across counties, showing an improved fit from the inclusion
of a heterogeneous mean-variance relationship. This model allowed for a more condensed
representation of the COVID-19 developments, and provided more reliable predictive
intervals due to the improved modeling of the variance.
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