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Rodrigo A. González et al., On the Relation between Discrete and Continuous-time Refined Instrumental Variable Methods.
To appear in IEEE Control Systems Letters (L-CSS), 2023, uploaded to Pure on May 31st, 2023

On the Relation between Discrete and Continuous-time Refined
Instrumental Variable Methods

Rodrigo A. González, Cristian R. Rojas, Siqi Pan, James S. Welsh

Abstract— The Refined Instrumental Variable method for
discrete-time systems (RIV) and its variant for continuous-time
systems (RIVC) are popular methods for the identification of
linear systems in open-loop. The continuous-time equivalent
of the transfer function estimate given by the RIV method
is commonly used as an initialization point for the RIVC
estimator. In this paper, we prove that these estimators share
the same converging points for finite sample size when the
continuous-time model has relative degree zero or one. This
relation does not hold for higher relative degrees. Then, we
propose a modification of the RIV method whose continuous-
time equivalent is equal to the RIVC estimator for any non-
negative relative degree. The implications of the theoretical
results are illustrated via a simulation example.

I. INTRODUCTION

System identification deals with the problem of obtain-
ing mathematical models of dynamical systems from data
[1]. A distinction is made between discrete-time (DT) and
continuous-time (CT) models. In DT system identification, it
is assumed that a complete description of the system can be
made by only observing its behavior at specific time instants.
On the contrary, CT system identification seeks models that
reflect the properties of the system for any moment in time.

There are two main approaches to CT system identifica-
tion: indirect and direct [2]. The indirect approach consists
in estimating a DT model with the data, and then converting
this model into continuous-time. On the other hand, the
direct approach does not use intermediate DT models. It is
known that the standard indirect approach leads to models
with relative degree one, independent of that of the strictly
proper CT system [3]; such issue does not arise in the direct
approach, since any number of zeros can be accommodated
without the need of an additional optimization step.

For either the direct or indirect approach, refined in-
strumental variable methods can be applied. The Refined
Instrumental Variable (RIV) method for DT systems and its
simplified embodiment (SRIV, [4]) are used for estimating
Box-Jenkins and output error models respectively, and the
CT equivalents of their estimated models are commonly used
for initializing the direct approach [5], [6]. Some of the most
celebrated direct methods are the CT variants of these esti-
mators, called RIVC and SRIVC [7]. The RIVC and SRIVC
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algorithms compute iterative instrumental variable steps by
prefiltering the data through CT filters, and are initialized
by the CT equivalent of the RIV or SRIV estimators in the
MATLAB Contsid Toolbox [8].

The RIV methods have been used for modeling climate
dynamics [9] as well as mechanical systems [10], and
extensions of these estimators have been proposed for LPV
[11], Hammerstein-Wiener [12] and unstable systems [13].
A comprehensive overview of these methods can be found in
[14]; however, such work overlooks a relation between the
converging points of the DT and CT RIV variants.

In this paper, we show that the indirect approach with
the RIV estimator provides the same estimate as RIVC at
convergence of its iterations (considering finite sample size)
for CT systems with relative degree one or zero. Although
this result no longer holds for higher relative degrees due
to parsimony issues, we propose a modification to the RIV
estimator, termed Adapted RIV (ARIV), that is shown to
extend this equivalence for any non-negative relative de-
gree. As a byproduct, we show that the ARIV estimator
can impose relative degree constraints in its CT equivalent
without additional optimization steps. The theoretical results
include the relationship between the simplified versions of
these estimators (SRIV and SRIVC) as a special case.

The remainder of the paper is organized as follows. In
Section II, we describe the system and model. Section III
presents the notation of the unified RIV estimator; this
estimator is later analyzed in Section IV, which contains the
main contributions. In Section V we provide a simulation
example, and we conclude the paper in Section VI.

II. SYSTEM AND MODEL SETUP

Consider the single-input single-output, linear and time-
invariant (LTI), asymptotically stable, CT system

x(t) =
B∗

c (p)

A∗
c (p)

u(t),

where p is the Heaviside operator (i.e., pu(t) = du(t)/dt),
and u(t) is the input. The numerator and denominator
polynomials B∗

c (p) and A∗
c (p) are coprime and given by

A∗
c (p) = a∗np

n + a∗n−1p
n−1 + · · ·+ a∗1p+ 1,

B∗
c (p) = b∗mpm + b∗m−1p

m−1 + · · ·+ b∗1p+ b∗0,

with a∗n ̸= 0, and n ≥ m. These polynomials are jointly
described by the parameter vector

θ∗
c =

[
a∗1, a∗2, . . . , a∗n, b∗0, b∗1, . . . , b∗m

]⊤
. (1)



A noisy output measurement is retrieved every h[s], i.e.,

y(kh) = x(kh) +
C∗(q)

D∗(q)
e(kh),

where q denotes the forward shift operator, e(kh) describes
a zero-mean white noise stochastic process of finite variance
that is uncorrelated with the input sequence u(kh), and

C∗(q) = 1 + c∗1q
−1 + c∗2q

−2 + · · ·+ c∗mc
q−mc ,

D∗(q) = 1 + d∗1q
−1 + d∗2q

−2 + · · ·+ d∗nd
q−nd ,

with the polynomial degrees satisfying nd ≥ mc. The
coefficients c∗i and d∗j are combined in a parameter vector
η∗ of the same form as θ∗

c in (1).
Based on N input and output data samples,

{u(kh), y(kh)}Nk=1, the goal is to determine a model
for G∗

c (p) := B∗
c (p)/A

∗
c (p) in the CT or DT domain, and

possibly of the noise filter H∗(q) := C∗(q)/D∗(q) also.

A. Discrete-time equivalent and inverse of sampling

Throughout this paper we assume that the input signal
is constant between samples, i.e., it has a zero-order hold
(ZOH) intersample behavior. Therefore, the system we intend
to model can be exactly described at the sampling instants
by its DT ZOH equivalent, which has the form

y(kh) = G∗
d(q)u(kh) +H∗(q)e(kh), (2)

with G∗
d(q) = B∗

d (q)/A
∗
d(q), where

A∗
d(q) = α∗

nq
n + α∗

n−1q
n−1 + · · ·+ α∗

1q + 1,

B∗
d (q) = β∗

nq
n + β∗

n−1q
n−1 + · · ·+ β∗

1q + β∗
0 .

The parameter vector associated with G∗
d(q) is denoted as θ∗

d
and has the same structure as θ∗

c but is formed by the DT
system parameters instead of the CT parameters. If the CT
system is strictly proper, then β∗

n = 0 and the last element
of θ∗

d is omitted. Note that, however, almost any strictly
proper CT system leads to β∗

n−1 ̸= 0. Although this fact is
well known [15], explicit results on the resulting DT relative
degree are difficult to find in the literature. For completeness,
the formal statement with its proof is presented next.

Proposition 2.1: Consider a strictly proper, LTI, CT sys-
tem G∗

c (p). The relative degree of the DT ZOH equivalent
of G∗

c (p) is r ≥ 1 if and only if y∗c (h) = y∗c (2h) = · · · =
y∗c ([r − 1]h) = 0 and y∗c (rh) ̸= 0, where y∗c (t) is the step
response of G∗

c (p) and h is the sampling period.
Proof: The DT ZOH equivalent ofG∗

c (p) is computed by

G∗
d(z)=(1− z−1)Z

{
y∗c (kh)

}
=

y∗c (h)

z
+
y∗c (2h)−y∗c (h)

z2
+
y∗c (3h)−y∗c (2h)

z3
+· · · .

Therefore, the transfer function G∗
d(z) has relative degree r

if and only if y∗c (rh)− y∗c ([r − 1]h) ̸= 0 and

y∗c (h)=y∗c (2h)−y∗c (h)= · · ·=y∗c ([r−1]h)−y∗c ([r−2]h)=0,

from which the statement follows.
The indirect approach to CT system identification requires

a link between the DT parameter vector θd and its CT

equivalent θc. This link is presented in Definition 2.1, which
is used for analyzing the relationship between discrete and
continuous-time refined instrumental variable methods.

Definition 2.1 (Inverse ZOH transformation): Given any
DT transfer function described by θd, we define the inverse
ZOH transformation by f : R2n+1 → R2n+1;θd 7→ θc =
f(θd). The vector f(θd) is of the form (1) with m = n that
describes the transfer function Cc(pI−Ac)

−1Bc+Dc, where
Cc=

[
β0− βn

αn
, β1− βnα1

αn
, . . . ,βn−1− βnαn−1

αn

]
, Dc=βn/αn,

and where Ac ∈ Rn×n with Bc ∈ Rn×1 are computed by

[
Ac Bc
0 0

]
=

1

h
log





0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
−1
αn

−α1

αn

−α2

αn
. . . −αn−1

αn

1
αn

0 0 0 . . . 0 1




.

In case βn = 0 (i.e., the DT model is strictly proper), we
know that bn = 0 and we thus consider f to be the mapping
between the strictly proper models only.

The function f is known to be well-defined and bijective
when 1) there is no negative real pole in the DT transfer
function associated with θd, and 2) the sampling radian
frequency π/h is larger than twice the largest imaginary
part of the poles related to f(θd) [16]. The functions f and
f−1 are well-defined and differentiable in the domain where
these two conditions hold, thus leading to its Jacobian matrix
∂f/∂θd being non-singular at any point of that domain [17].

III. REFINED INSTRUMENTAL VARIABLES: A UNIFIED
NOTATION

The motivation behind refined instrumental variables is
to solve the non-convex optimization problem of maximum
likelihood estimation by iterations stemming from a pseudo-
linear regression. For brevity, similar to [14], here we jointly
introduce the RIV (for DT identification) and RIVC (for CT
identification) estimators via a unified notation.

We define ξ as the unified operator (i.e., q for the RIV esti-
mator and p for RIVC), and the unified subscript (·)ν , where
ν ∈ {d, c} depending on whether the RIV or RIVC estimator
is considered. Assuming that the jth iteration of the system
parameters estimate, θν,j (with model Bν,j(ξ)/Aν,j(ξ)), is
given, the jth noise model iteration of the RIV and RIVC
estimators is obtained by fitting an ARMA model to the esti-
mated noise sequence {y(kh)−[Bν,j(ξ)/Aν,j(ξ)]u(kh)}Nk=1.
This procedure gives the noise model Cj+1(q)/Dj+1(q),
represented by the noise model parameter vector ηj+1.

There are several ways to fit an ARMA model to obtain
ηj+1. In this work we consider the prediction error method
[1]. Formally, we define the function that links θν,j and ηj+1

as gν : Rn+m+1→Rmc+nd ;θν,j 7→ ηj+1 = gν(θν,j), where

gν(θν,j)= argmin
η

N∑
k=1

[
D(q,η)

C(q,η)

(
y(kh)−Bν,j(ξ)

Aν,j(ξ)
u(kh)

)]2
.

Remark 3.1: The notation C(q,η) and D(q,η) is used to
stress the dependence of these polynomials on the parameter



vector η. Similarly, in the sequel we use Aν(ξ,θν,j) and
Bν(ξ,θν,j) interchangeably for Aν,j(ξ) and Bν,j(ξ).

After the noise model iteration is computed, an RIV step
is proposed for minimizing gν(θν,j) upon convergence [14].
The jth system model iteration is given by

θν,j+1 =

[
1

N

N∑
k=1

φ̂ν,f (kh,θν,j)φ
⊤
ν,f (kh,θν,j)

]−1

×
[
1

N

N∑
k=1

φ̂ν,f (kh,θν,j)yν,f (kh,θν,j)

]
, (3)

where the matrix being inverted is called the modified
normal matrix. The filtered regressor φν,f (kh,θν,j), filtered
instrument φ̂ν,f (kh,θν,j) and filtered output yν,f (kh,θν,j)
are respectively1given by

φν,f (kh,θν,j)=
Dj+1(q)

Cj+1(q)

[
−ξ

Aν,j(ξ)
y(kh), . . . ,

−ξn

Aν,j(ξ)
y(kh),

1

Aν,j(ξ)
u(kh), . . . ,

ξm

Aν,j(ξ)
u(kh)

]⊤
,

φ̂ν,f (kh,θν,j)=
Dj+1(q)

Cj+1(q)

[
−ξBν,j(ξ)

A2
ν,j(ξ)

u(kh), . . . ,

−ξnBν,j(ξ)

A2
ν,j(ξ)

u(kh),
1

Aν,j(ξ)
u(kh), . . . ,

ξm

Aν,j(ξ)
u(kh)

]⊤
,

yν,f (kh,θν,j)=
Dj+1(q)

Cj+1(q)

1

Aν,j(ξ)
y(kh). (4)

In case the noise model is not estimated and thus set to unity
(i.e., Cj(q) = Dj(q) = 1) the iterations in (3) describe the
SRIV and SRIVC estimators [4], [7].

Remark 3.2: In the expressions above we have introduced
a mixed notation of CT filters with sampled signals for
the case ν = c, ξ = p (i.e., for the RIVC and SRIVC
estimators). If G(p) is a CT filter and x(kh) is a sampled
signal, then G(p)x(kh) implies that the signal x(kh) is being
interpolated using a ZOH, and the resulting output of the
filter is sampled at t = kh.

Given the parameter estimate vector θ̄d obtained from the
RIV iterations (3) at convergence as j tends to infinity for a
fixed N , the associated CT parameter vector (i.e., the indirect
approach estimate) is simply given by f(θ̄d).

IV. RELATION BETWEEN DISCRETE-TIME AND
CONTINUOUS-TIME REFINED INSTRUMENTAL VARIABLE

METHODS

Before stating the main theoretical results of this paper,
we present two assumptions:

Assumption 4.1: The system G∗
c (p) is proper (n ≥ m) and

asymptotically stable, with A∗
c (p) and B∗

c (p) being coprime.
Assumption 4.2: For all j sufficiently large, Ad,j(q) has

no negative real zero in the RIV algorithm, and the sampling

1Note that φν,f , φ̂ν,f and yν,f have a subscript f to stress the
prefiltering process that must be performed. Also, note that for simplicity
we have not written the dependence of these signals on the noise model.

frequency π/h is larger than twice the largest imaginary part
of the zeros of Ac,j(p) in the RIVC algorithm.
While both assumptions are standard in the analysis of RIV
algorithms (see, e.g., [18], [19]), the asymptotic stability
of G∗

c (p) may not be needed in case the identification is
performed in closed-loop, although a more involved filtering
technique must be implemented [13]. Furthermore, Assump-
tion 4.2 is equivalent to requiring the inverse ZOH transfor-
mation f to be well defined along the iterative process. This
will typically be the case if the sampling period is chosen
adequately and the model iterations do not diverge.

Theorem 4.1 shows that for models with relative degree
zero or one, the RIV method with inverse ZOH transforma-
tion f provides the same model as the RIVC method upon
convergence as the number of iterations j tends to infinity
for a fixed and finite sample size N .

Theorem 4.1: Consider the RIV and RIVC estimators
described in Section III, and assume that upon convergence
in iterations (j → ∞) for a fixed sample size, their modified
normal matrices are non-singular. Furthermore, assume that
Assumptions 4.1 and 4.2 are satisfied, and that m = n − 1
or m = n. Then, the RIVC and RIV methods have the same
number of limiting points and they are linked by θ̄c = f(θ̄d),
where θ̄c and θ̄d are the limiting point(s) of the RIVC and
RIV methods, respectively.

Proof: Any limiting point θ̄d = limj→∞ θd,j of the
RIV iterations must satisfy

θ̄d =

[
1

N

N∑
k=1

φ̂d,f (kh, θ̄d)φ
⊤
d,f (kh, θ̄d)

]−1

×
[
1

N

N∑
k=1

φ̂d,f (kh, θ̄d)yd,f (kh, θ̄d)

]
.

Provided the modified normal matrix is non-singular, the
condition above reduces to

N∑
k=1

φ̂d,f (kh, θ̄d)
[
yd,f (kh, θ̄d)−φ⊤

d,f (kh, θ̄d)θ̄d
]
= 0. (5)

After some algebraic manipulations, we can see that

φ̂d,f(kh, θ̄d)=
D(q,gd(θ̄d))

C(q,gd(θ̄d))

∂

∂θd

Bd(q,θd)

Ad(q,θd)
u(kh)

∣∣∣∣
θd=θ̄d

, (6)

and

yd,f (kh,θ̄d)−φ⊤
d,f (kh, θ̄d)θ̄d =

D(q,gd(θ̄d))

C(q,gd(θ̄d))

(
y(kh)− Bd(q, θ̄d)

Ad(q, θ̄d)
u(kh)

)
. (7)

Replacing (6) and (7) in (5) leads to
N∑

k=1

D(q,gd(θ̄d))

C(q,gd(θ̄d))

∂

∂θd

Bd(q,θd)

Ad(q,θd)
u(kh)

∣∣∣∣
θd=θ̄d

×

D(q,gd(θ̄d))

C(q,gd(θ̄d))

(
y(kh)− Bd(q, θ̄d)

Ad(q, θ̄d)
u(kh)

)
= 0. (8)

The existence of the inverse ZOH transformation
for θ̄d is ensured by Assumption 4.2. Since the



ZOH equivalence relation is exact at the sampling
instants [20], the equality [Bd(q, θ̄d)/Ad(q, θ̄d)]u(kh) =
[Bc(p, f(θ̄d))/Ac(p, f(θ̄d))]u(kh) holds for all k ∈ N. By
the same argument, we find that gd(θ̄d) = gc(f(θ̄d)).
Moreover, the chain rule for gradients yields

∂

∂θd

Bd(q,θd)

Ad(q,θd)
u(kh)

∣∣∣∣
θd=θ̄d

=
∂

∂θd

Bc(p, f(θd))

Ac(p, f(θd))
u(kh)

∣∣∣∣
θd=θ̄d

=
∂f

∂θd

∣∣∣∣
θd=θ̄d

∂

∂θc

Bc(p,θc)

Ac(p,θc)
u(kh)

∣∣∣∣
θc=f(θ̄d)

. (9)

Note that ∂f/∂θd is non-singular thanks to f and f−1 being
continuous and differentiable in the domain of interest due
to Assumption 4.2. Such matrix does not depend on N and
can therefore be factored out of the sum in (8) thanks to the
linearity of the transfer functions. Thus, (8) is equivalent to

N∑
k=1

D(q,gc(f(θ̄d)))

C(q,gc(f(θ̄d)))

∂

∂θc

Bc(p,θc)

Ac(p,θc)
u(kh)

∣∣∣∣
θc=f(θ̄d)

×

D(q,gc(f(θ̄d)))

C(q,gc(f(θ̄d)))

(
y(kh)− Bc(p, f(θ̄d))

Ac(p, f(θ̄d))
u(kh)

)
= 0.

On the other hand, by following the same arguments to derive
(8) but for the RIVC method, any limiting point θ̄c satisfies

N∑
k=1

D(q,gc(θ̄c))

C(q,gc(θ̄c))

∂

∂θc

Bc(p,θc)

Ac(p,θc)
u(kh)

∣∣∣∣
θc=θ̄c

×

D(q,gc(θ̄c))

C(q,gc(θ̄c))

(
y(kh)− Bc(p, θ̄c)

Ac(p, θ̄c)
u(kh)

)
= 0.

By comparing the characterizations of θ̄d and θ̄c, we con-
clude that the limiting points of the RIV and RIVC estimators
are linked by θ̄c = f(θ̄d).

Corollary 4.1: Under the same assumptions as in The-
orem 4.1, the SRIVC and SRIV methods have the same
number of limiting points and they are linked by θ̄c = f(θ̄d),
where θ̄c and θ̄d are the limiting point(s) of the SRIVC and
SRIV methods, respectively.

Proof: Direct by fixing Cj(q) = Dj(q) = 1 in the
proof for Theorem 4.1.

Remark 4.1: The non-singularity of the modified normal
matrices of the refined instrumental variable methods de-
pends on the persistence of excitation order of the input,
as well as the amount of over-parametrization, if any [19].
General conditions for the non-singularity of this matrix
have not been addressed in the literature, although sufficient
conditions for the generic non-singularity of such matrix for
the SRIVC method can be found in [18]. Similar conditions
can be derived for the SRIV estimator, although they are
outside the scope of this work.

Theorem 4.1 shows that, under similar initialization condi-
tions, the indirect and direct approaches with refined instru-
mental variables approach the same estimate at convergence
in iterations when m = n − 1 or m = n. This theorem
only applies for such values of m since only in these two
cases there is a bijection between the CT and DT models
(corresponding to f or its reduced version). In such scenarios,
one could argue that it is useless to perform the RIVC

iterations with the RIV estimate as an initialization point,
as it is done in some applications of the RIVC method [6].
However, it has been noted in [21] that the CT equivalent of
the RIV estimator can fail to deliver reliable models, usually
in the presence of fast sampling or stiff systems. Possible
discrepancies between both methods when m = n − 1 or
m = n can be explained by

• Ill-conditioning of the Jacobian ∂f/∂θd: for stiff sys-
tems this matrix can be severely ill-conditioned, which
can affect the convergence of the iterative procedure
of the RIV estimator. Also, instability of the estimates
can arise more frequently within the iterations, thus
requiring ad-hoc stabilization steps [13].

• Misspecification of the intersample behavior in the
RIVC method: If the intersample behavior used for
prefiltering the input in the RIVC method does not
match with the nature of the DT equivalents in the
RIV estimator, then both methods will deliver different
results in general.

• Choice of initialization: Convergence is not guaranteed
for finite samples, and the estimators may converge to
(different) local minima if poorly initialized.

A. The Adapted RIV estimator

The indirect and direct approaches no longer produce the
same estimates for m < n− 1, since they propose different
model structures. It has been noted in [6] that the indirect
approach will typically lead to worse results when m < n−1.
However, it is possible to establish a link between the indirect
and direct procedures if the filtered instrument and regressor
vectors of the RIV method are appropriately modified. In the
sequel, we consider the system parametrization

G∗
d(q) =

∑m
i=0 N

∗
d,i(q)γ

∗
i

A∗
d(q)

with parameter vector ρ∗
d = [α∗

1, . . . , α
∗
n, γ

∗
0 , . . . , γ

∗
m]⊤, and

where N∗
d,i(q) are the numerator polynomials of the DT

equivalents of pi/A∗
c (p). This novel parametrization is such

that its numerator coefficients γ∗
i correspond exactly to

those of the numerator polynomial of its CT equivalent.
By leveraging the state-space description of pi/A∗

c (p), it is
possible to show that

N∗
d,i(q) = α∗

ne
⊤
i+1adj(qI− eA

∗
c h)(I− eA

∗
c h)e1,

where adj(·) denotes the adjugate matrix, ej is the jth
column of the identity matrix of appropriate size, and A∗

c
is the state matrix of the CT equivalent of G∗

d(q), written as

A∗
c =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−1
a∗
n

−a∗
1

a∗
n

−a∗
2

a∗
n

. . .
−a∗

n−1

a∗
n

 .

Note that the N∗
d,i(q) polynomials are in general of order n−1

due to Proposition 2.1, and they satisfy N∗
d,i(1)=0 for i > 0.

The vector ρ∗
d is related to θ∗

c via f for the denominator



coefficients, and via the identity map for the numerator
coefficients. This transformation will be denoted as f̃ and
it is bijective in the same domain as f in Definition 2.1.

Definition 4.1 (Adapted RIV and SRIV estimators): We
define the Adapted RIV (ARIV) estimator with noise model
iterations given by ηj+1 = g̃d(ρd,j), with

g̃d(ρd,j) = argmin
η

N∑
k=1

[
D(q,η)

C(q,η)

×
(
y(kh)−

∑m
i=0 Nd,i(q,ρd,j)γi,j

Ad(q,ρd,j)
u(kh)

)]2
, (10)

and system model iterations (3) with filtered output (4),
but where the filtered regressor and instrument vectors are,
respectively, given by

φd,f (kh,ρd,j)=
Dj+1(q)

Cj+1(q)

[
−q

Ad,j(q)
y(kh), . . . ,

−qn

Ad,j(q)
y(kh),

Nd,0,j(q)

Ad,j(q)
u(kh), . . . ,

Nd,m,j(q)

Ad,j(q)
u(kh)

]⊤
, (11)

φ̂d,f (kh,ρd,j)=
Dj+1(q)

Cj+1(q)

[
−Md,1,j(q)

A2
d,j(q)

u(kh), . . . ,

−Md,n,j(q)

A2
d,j(q)

u(kh),
Nd,0,j(q)

Ad,j(q)
u(kh), . . . ,

Nd,m,j(q)

Ad,j(q)
u(kh)

]⊤
,

(12)

with Nd,l,j(q) and Md,r,j(q) (l = 0, . . . ,m, r = 1, . . . , n)
being, respectively, the numerator polynomials of the DT
equivalents of pl/Ac(p, f̃(ρd,j)) and

[p, . . . , pn, 0, . . . , 0]
∂ f̃(ρd)

∂αr

∣∣∣∣
ρd=ρd,j

Bc(p, f̃(ρd,j))

A2
c (p, f̃(ρd,j))

.

Upon convergence in iterations, the resulting DT model
is given by (

∑m
i=0 Nd,i(q, ρ̄d)γ̄i)/Ad(q, ρ̄d), where ρ̄d =

limj→∞ ρd,j and γ̄i = limj→∞ γi,j . The Adapted SRIV
(ASRIV) estimator is defined as the ARIV estimator but with
a fixed noise model Cj(q) = Dj(q) = 1.

Theorem 4.2: Consider the ARIV algorithm in Definition
4.1 and the RIVC estimator in Section III, and assume that
upon convergence in iterations for a fixed sample size, their
modified normal matrices are non-singular. If Assumptions
4.1 and 4.2 are satisfied, then the ARIV and RIVC estimators
have the same number of limiting points and they are linked
by θ̄c = f̃(ρ̄d), where θ̄c and ρ̄d are the limiting point(s) of
the RIVC and ARIV methods, respectively.

Proof: At convergence, a limiting point ρ̄d of the ARIV
iterations must satisfy (5), however now

yd,f (kh, ρ̄d)−φ⊤
d,f (kh, ρ̄d)ρ̄d

=
D(q, g̃d(ρ̄d))

C(q, g̃d(ρ̄d))

(
y(kh)−

∑m
i=0 Nd,i(q, ρ̄d)γ̄i
Ad(q, ρ̄d)

u(kh)

)
=

D(q,gc(f̃(ρ̄d)))

C(q,gc(f̃(ρ̄d)))

(
y(kh)− Bc(p, f̃(ρ̄d))

Ac(p, f̃(ρ̄d))
u(kh)

)
.

After some algebraic manipulations, it can be noted that the
entries of φ̂d,f (kh, ρ̄d) satisfy

−Md,r(q, ρ̄d)

A2
d(q, ρ̄d)

u(kh) =
∂

∂αr

Bc(p, f̃(ρd))

Ac(p, f̃(ρd))

∣∣∣∣
ρd=ρ̄d

for r = 1, . . . , n, and

Nd,l(q, ρ̄d)

Ad(q, ρ̄d)
u(kh) =

∂

∂γl

∑m
i=0 Nd,i(q,ρd)γi
Ad(q,ρd)

u(kh)

∣∣∣∣
ρd=ρ̄d

=
∂

∂γl

Bc(p, f̃(ρd))

Ac(p, f̃(ρd))

∣∣∣∣
ρd=ρ̄d

for l = 1, . . . ,m. Therefore, by the chain rule for gradients
(cf. (9)),

φ̂d,f (kh, ρ̄d) =

D(q,gc(f̃(ρ̄d)))

C(q,gc(f̃(ρ̄d)))

∂ f̃

∂ρd

∣∣∣∣
ρd=ρ̄d

∂

∂θc

Bc(p,θc)

Ac(p,θc)
u(kh)

∣∣∣∣
θc=f̃(ρ̄d)

.

The rest of the proof follows the same lines as the proof of
Theorem 4.1 after (9) and is therefore omitted.

Corollary 4.2: Under the same assumptions as in Theo-
rem 4.2, the ASRIV and the SRIVC estimators have the same
number of limiting points, and they are linked by θ̄c = f̃(ρ̄d),
where θ̄c and ρ̄d are the limiting point(s) of the SRIVC and
ASRIV methods, respectively.

Proof: Direct from fixing Cj(q) = Dj(q) = 1 in the
proof for Theorem 4.2.

In summary, the ARIV method in Definition 4.1 provides a
DT estimator whose CT equivalent model has a fixed relative
degree n−m. This implementation has the advantage of en-
forcing smoothness properties of the CT system directly into
the DT estimate, without the need of additional optimization
steps such as in [3]. The proposed method closes the gap
between DT and CT refined instrumental variable methods,
since the CT equivalent of the ARIV estimator corresponds
exactly to the RIVC estimator for a finite sample size.

B. The Adapted RIVC estimator

The analog problem of the previous subsection for CT
system identification consists of directly identifying a CT
system whose DT equivalent has relative degree n−m > 1.
This problem arises if the system is known to have a fixed
number of sample time-delays. Instead of computing a time-
delayed CT system, which typically requires iterative non-
convex optimization steps, a computationally-cheap approach
that directly imposes sample time-delays in the estimated
transfer function can be obtained by an adapted form of the
RIVC estimator, similar to Definition 4.1. In this case, we
must parameterize the CT system as

G∗
c (p) =

∑m
i=0 N

∗
c,i(p)ν

∗
i

A∗
c (p)

with parameter vector ρ∗
c = [a∗1, . . . , a

∗
n, ν

∗
0 , . . . , ν

∗
m]⊤, and

where N∗
c,i(p) are the numerator polynomials of the CT

equivalent of qi/A∗
d(q). The noise model is computed from

an ARMA estimation step similar to (10), while the sys-
tem parameter vector ρ∗

c can be estimated from a refined



TABLE I
MEAN SQUARE ERRORS OF THE PARAMETERS FOR THE METHODS SRIV AND RIV, AND THEIR ADAPTED COUNTERPARTS ASRIV AND ARIV.

Method α1 α2 α3 α4 β0 β1 β2 β3 d1 c1
SRIV 4.06e-5 3.05e-4 3.16e-4 4.81e-5 9.61e-4 4.25e-3 3.40e-3 5.59e-4 - -

ASRIV 2.46e-5 2.50e-4 3.64e-4 6.71e-5 9.69e-6 1.05e-4 8.79e-5 1.56e-5 - -
RIV 3.97e-5 3.00e-4 3.15e-4 4.81e-5 9.58e-4 4.25e-3 3.42e-3 5.60e-4 6.83e-5 1.13e-4

ARIV 2.23e-5 2.02e-4 2.65e-4 4.55e-5 4.84e-6 5.32e-5 4.39e-5 7.91e-6 6.82e-5 1.13e-4

instrumental variable procedure with filtered regressor and
instrument vectors given by CT variants of (11) and (12).
We omit the full expressions due to space constraints.

V. SIMULATION EXAMPLE

To provide an example of the theoretical results, we
consider the Rao-Garnier benchmark system [22]

G∗
c (p) =

−4p+ 1

0.000625p4 + 0.003125p3 + 0.255p2 + 0.26p+ 1
,

with noise model H∗(q) = (1 + 0.4q−1)/(1 − 0.7q−1).
Considering a sampling period h = 0.05[s], the DT
equivalent of G∗

c (p) has a parameter vector given by θ∗
d =

[−1.069,0.546,−1.979,1.65,0.991,2.665,−2.241,−1.268]⊤.
The input is a ZOH-interpolated multisine with angular
frequencies ω = 1, 1.9, 2.1, 18, 22 [rad/s], and the white
noise e(kh) filtered by H∗(q) has variance equal to 6,
which gives a signal-to-noise ratio of approximately 26
[dB]. If a DT model is sought, then one can use the RIV
and SRIV estimators described in Section III. However,
DT identification methods that offer more flexibility than
these two are the ASRIV and ARIV methods, since these
algorithms can adjust for the smoothness of the CT step
response via the relative degree enforcement of the CT
equivalent transfer function estimate.

Table I shows the mean square error (MSE) of each pa-
rameter when performing 500 Monte Carlo runs of N = 104

samples each, with varying noise realizations. While being
competitive or marginally better in terms of the MSE of
the denominator parameters, the ASRIV and ARIV methods
can identify the numerator parameters with at least one
order of magnitude less of MSE compared to their non-
adapted counterparts. We note that this improvement has
been achieved using only discrete-time tools; the ASRIV and
ARIV methods are in fact equal at convergence to the DT
equivalents of the estimates obtained from the SRIVC and
RIVC methods, respectively.

VI. CONCLUSIONS

In this paper, we proved that the CT equivalent of the RIV
estimator shares the same limiting points with the RIVC
estimator for relative degrees one and zero. Such relation
fails for m < n−1 since the indirect approach generally does
not produce an estimate with the desired model structure. We
also introduced the Adapted RIV estimator, which provides
the correct relative degree in its CT equivalent. Under a
similar logic, it is shown that it is also possible to adapt
the RIVC estimator such that its DT equivalent has relative
degree greater than one by construction. These adapted
estimators provide the missing link between the refined
instrumental variable methods in the DT and CT domain.
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