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ABSTRACT: Epoxy resins constitute a very significant portion of all high-
performance plastics due to their excellent thermal and mechanical properties
that appear in a wide range of applications. Nevertheless, traditional epoxy
networks show limitations regarding chemical recycling due to their covalently
crosslinked structures. The current methods to recycle epoxy resins are not
indeed through sustainable ways, but this issue could be solved by developing
smart monomers with functional groups, which can be switched between
polymerized and depolymerized states. Herein, we developed two bio-based
liquid monomers based on vanillin structures containing aldehyde, acetal, and
oxirane-ring functionalities. These monomers were polymerized in solvent-
free conditions using commercially available diamines, resulting in double-
dynamic imine-acetal-containing thermosets. These networks combine the excellent properties of the traditional epoxy systems and
dynamic polymers. Most importantly, such thermosets were fully depolymerized into vanillin, which can be reused for the
preparation of original epoxy monomers, and a mixture of well-defined polyols, which was upcycled into high-performance
polyurethane.
KEYWORDS: epoxy, imine, chemical recycling, upcycling, vanillin

■ INTRODUCTION
Epoxy resins constitute a significant portion of all high-
performance thermosets due to their excellent thermal and
mechanical properties that appear in a wide range of
applications such as aerospace and automotive industries,
high-performance adhesives, coatings, floorings, and wind
turbine blades.1,2 Seventy-five percent of the current epoxy-
based crosslinked polymers are traditionally cured from the
commercially available diglycidyl ether of bisphenol A
(DGEBA).3 Due to its high aromatic content and rigidity,
the epoxy thermosets produced with this monomer have
excellent thermal and mechanical properties.4,5 However, this
petroleum-based monomer is synthesized from bisphenol A
(BPA), which is known as a reprotoxic and endocrine
disruptor.6 Consequently, there is a huge demand for
exchanging DGEBA with monomers obtained from bio- or
renewable sources.7 Vanillin and its derivatives are therefore
great candidates for incorporation into the epoxy networks due
to their rigid aromatic structures.8

More importantly, superior mechanical and thermal proper-
ties of traditional epoxy resins result in significant limitations in
their closed-loop recycling and reprocessability options.9,10 A
large amount of such epoxy resins and their carbon fiber-
reinforced composites are therefore landfilled or incinerated,
which creates vital problems such as waste of resources and
environmental pollution.11,12 Current viable methods to
reduce the epoxy waste include mechanical recycling, pyrolysis,

and chemical and thermal degradation.9,13 Mechanical
recycling is applied on an industrial scale, and grinded
materials could be used as cheaper reinforcers in the new
composites.14 Except mechanical recycling, all other methods
are basically based on degradation of the network and require
harsh conditions (i.e., high temperature, high pressure, etc.),
demonstrating that they are energy-intensive and harmful to
the environment and degraded products are very complex
mixtures of oligomers that cannot be reused or upcycled.15−21

Given that the ultimate purpose of recycling is to reduce the
carbon footprint of plastics, one has to consider the technical
feasibility and economic viability (i.e., total energy con-
sumption of the recycling) when discussing the recycling
options. An innovative design of monomers and the target
polymers will enable circularity, which is useful in many
environmental and economic aspects.22 Incorporation of
dynamic and cleavable imine or acetal bonds to achieve
dynamic crosslinking provides an interesting approach to
circularity.23−31 For instance, a vitrimeric vanillin-based epoxy
network, which was hardened with isophorone diamine,
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showed a tensile strength at 65.0 MPa with a 4.4% elongation
at break, which had reprocessability without loss of mechanical
performance, and could be degraded into oligomeric structures
under acidic conditions.32 In another work, a series of acid-
degradable vanillin-based epoxy vitrimers were prepared with
Jeffamine D-400 and isophorone diamine and the solution of
the acid-degraded products was upcycled into a composite film
with responsive structural color.33 Similarly, a vanillin-based
epoxy vitrimer cured with 4,4′-methylenebiscyclohexanamine
showed a tensile strength of 81 MPa, which could be easily
reprocessed, and carbon fibers could be recovered non-
destructively upon treatment with dilute acid from its carbon
fiber composites.34 In another approach, an imine-containing
di-epoxy monomer was developed, which was then poly-
merized with 4,4-diaminodiphenylmethane to obtain a high-
performance network with a Tg of 206 °C and a tensile
strength of 122 MPa.35 However, in above-mentioned systems,
the polymerization was performed in organic solvents (i.e.,
DMF and DCM) due to the selection of solid monomers,
which is in contradiction with the principles of green chemistry
and limits its applications in industry.
Even though closed-loop recycling for bio-based epoxy-

imine resins was achieved through depolymerization into
oligomeric structures in most of the previous works, a full
depolymerization toward the initial building blocks has not
been demonstrated.36−43 There are several studies based on
acetal-containing epoxy networks synthesized from petroleum-
based DGEBA in which recovery of monomers or reinforcing
agents could be achieved upon acidic depolymerization;44−47

however, synergistic use of dynamic acetal and imine
functionalities has never been exploited in epoxy systems.
Obviously, there is a need for high-performance epoxy systems
based on bio-renewable monomers, which could achieve
closed-loop recycling.48 Therefore, herein, we developed two
liquid epoxy precursors, which are lignin derived, based on
vanillin bearing acetal, aldehyde, and oxirane functionalities,
which could be cured with commercial diamines under solvent-
free, green conditions (Scheme 1). The obtained vanillin-based

recyclable epoxy networks have tensile strength in the range
between 50 and 70 MPa, whereas their elongation at break
values lie between 10 and 20%. In addition, the epoxy
networks built herein could be reprocessed readily and
depolymerized under mild acidic conditions. Due to
simultaneous hydrolysis of acetal and imine groups, an initial
building block, vanillin, can be obtained in high yield and
purity. Given that its production from lignin requires harsh
conditions with low yields,49 our work provides an easy and

elegant pathway to recover vanillin. As a side product of acidic
depolymerization, we obtained a mixture of well-defined
polyols, which could be upcycled into high-performance
thermosetting polyurethane.

■ RESULTS AND DISCUSSION
Structure Characterization of C2 and C4. The

syntheses of monomers C2 and C4 were performed using a
catalyst-free, click-type addition reaction between vanillin and
vinyl ether precursors.50 The structures of the monomers were
confirmed by 1H and 13C NMR (Figures S1−S4), which was
supported by FTIR (Figure 1). As indicated by the 1H NMR

spectra (Figures S1 and S3), C2 and C4 gave one singlet
belonging to their aldehydic protons at δ = 9.87 ppm, whereas
their acetal protons appeared as quartets of doublets at δ =
5.59 and 5.54 ppm for C2 and C4, respectively. Due to the
stereocenter on the oxirane ring, the same carbon protons
(protons g and k for both monomers) were not equivalent and
split into two peaks. Furthermore, aromatic aldehyde
stretching (C=O) at 1682 cm−1, O−C−O stretching of the
acetal moiety at 1265 cm−1, C−H stretching of the oxirane ring
at 3060 cm−1, and C−O stretching of the oxirane ring at 911
cm−1 were observed for both monomers, proving the successful
incorporation of the epoxide ring to the vanillin moiety via
acetal formation (Figure 1).51,52

Curing and Characterization of Vanillin-Derived
Epoxy Networks. All networks were cured in bulk, solvent-
free, single-step conditions. A homogeneous mixture of
monomers was heated to 100 °C under N2 flow for 24 h.
Figure 1 shows the FTIR spectra of the cured networks and
monomers. Upon curing, the aldehyde stretching vibration at
1682 cm−1 disappeared, whereas the imine peak was observed
at 1641 cm−1. Furthermore, the appearance of comparably
wide −O−H stretching peaks between 3600 and 3100 cm−1

and a significant decrement of the intensity of the C−H
stretching of the oxirane ring at 3060 cm−1 showed that
networks were formed successfully.

Scheme 1. Synthesis Pathway toward Vanillin-Based Epoxy
Networks

Figure 1. Normalized FTIR spectra of epoxy monomers and
networks.
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Thermal and Mechanical Characterization of Epoxy
Networks. Thermal properties of the networks were studied
by thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC) under nitrogen flow. Figure 2A,B indicates

the TGA and DSC thermograms of the epoxy networks. All
networks showed good thermal stability under N2 with two
main degradation steps, and their onset degradation temper-
atures (Td5%) ranged between 251 and 279 °C (Table 1 and

Figure S5). Furthermore, their 30% weight loss (Td30%) was
observed between 318 and 339 °C (Table 1). C4-based
networks have slightly better thermal stabilities (Td5% and
Td30%) than C2-based networks when comparing the same
amine spacers. Additionally, the char residues of C2Xy and
C4Xy are 39.9 and 38.5%, respectively, which are significantly
larger than those for C2Cy (10.1%) and C4Cy (6.2%) at 800
°C. This was attributed to the higher aromatic content in the
former.53,54

The glass transition temperatures obtained from DSC
(Tg,DSC) were 36 and 55 °C for C4Xy and C4Cy, whereas
the Tg of the C2Xy and C2Cy were 47 and 63 °C, respectively

(Figure 2B and Table 1). Reducing the carbon spacer from 4
to 2 within the same amine spacer resulted in a decrease in the
flexibility of the backbone, which elevated the Tg. Conversely,
C2Xy showed lower glass transition temperatures than C2Cy
though having an aromatic amine spacer. A similar trend was
obtained between C4Xy and C4Cy, which is consistent with
the previously published literature.55,56

Thermomechanical properties of the networks were
determined by DMA (Figure 2C, Figure S6, and Table 1).
The storage moduli of the C4Cy and C4Xy networks at 30 °C
(E30′) were found to be 1273 and 1966 MPa, respectively.
Conversely, the values for the C2Cy and C2Xy networks were
larger (2050 MPa for C2Cy and 2406 MPa for C2Xy). This
could be attributed to the flexibility/rigidity and the ratio of
the aromatic units.57 As the aromatic unit ratio increases and
the chain length decreases, the stiffness of the material
increases, which results in a larger storage modulus.
Furthermore, the maxima of the tan δ vs temperature plots
were denoted as Tg values of the networks (Figure 2C and
Table 1). The values obtained from DMA followed the same
trend with the results from DSC. Additionally, C4Cy and
C2Cy gave the lower intensities for tan δ curves showing the
slower movement of these networks compared with C4Xy and
C2Xy due to their higher rigidity.34 Furthermore, the
calculated crosslinking densities of the networks were 985.03,
943.61, 745.05, and 697.27 mol/m3 for C2Cy, C2Xy, C4Cy,
and C4Xy, respectively. As expected by their structures, C2Cy
and C2Xy have significantly higher crosslinking densities due
to the shorter aliphatic chain on C2 compared with C4. The
gel fractions obtained in THF and DMF were in the range of
76 to 100%, which supported high crosslinking densities
obtained by DMA (Table S1).
The mechanical characterization of the epoxy networks was

performed with tensile tests (Figure 2D and Figure S7). The
tensile strength of the new networks ranged from 50 to 70
MPa with 10−20% elongation. Accordingly, the C2Xy network
had the highest tensile strength of 72.7 MPa with an elongation
at break of 13.9%, while the C2Cy network gave a tensile
strength of 55.3 MPa with a 12.3% elongation at break. The
same trend was obtained in the tensile strength values of C4Xy
(56.5 MPa) and C4Cy (49.0 MPa). Clearly, the use of shorter
chains had a positive impact on the tensile strength values and
a decrease in elongation at break due to the decreased
flexibility.35 The Young modulus of C2Xy was 1249.6 MPa,
whereas that of C2Cy, C4Xy, and C4Cy was 918.7, 1136.7,
and 928.0 MPa, respectively. This clearly indicated that the use
of an aromatic amine hardener resulted in stiffer networks,
which supports the storage modulus trend.
Reprocessability of the Networks. Traditional epoxy

networks are highly crosslinked thermosets with permanent
covalent bonds; consequently, it is not possible to reshape or
reprocess them.52,58,59 Since imine and acetal functional groups
are known to be dynamic and reversible,23,60,61 the designed
epoxy networks could be potentially malleable. The vitrimeric
behavior of the networks was investigated with stress-relaxation
experiments (Figure 3 and Figure S8). By changing the
diamine hardener and alkyl spacer, a significant difference in
relaxation times was observed at 120 °C with τ* = 730 s for
C2Cy, 14.5 s for C2Xy, 679 s for C4Cy, and 4.6 s for C4Xy.
The activation energy (Ea) was calculated using the Arrhenius
equation and found to be 53.0 kJ/mol for C2Cy, 40.2 kJ/mol
for C2Xy, 55.0 kJ/mol for C4Cy, and 36.7 kJ/mol for C4Xy,
which is typical for polyimine-based structures.62,63 Apparently,

Figure 2. Thermal and mechanical characterization of the epoxy
networks: TGA (A), DSC (B), DMA (C), and tensile tests (D).

Table 1. Thermal and Mechanical Properties of the Epoxy
Networksa

C2Cy C2Xy C4Cy C4Xy

Td5% (°C) 258 251 279 263
Td30% (°C) 318 333 339 338
R800 (%) 10.1 39.9 6.2 38.5
Tg,DSC (°C) 63 47 55 36
Tg,DMA (°C) 78 65 63 56
E30′ (MPa) 2050 2406 1273 1966
νe (mol/m3) 985.03 943.61 745.05 697.27
σm (MPa) 55.3 ± 1.1 72.7 ± 0.8 49.0 ± 0.6 56.5 ± 3.1
εb (%) 12.3 ± 2.0 13.9 ± 1.8 18.6 ± 1.8 21.5 ± 0.8
E (MPa) 918.7 ± 54.7 1249.6 ± 91.7 928.0 ± 51.7 1136.7 ± 75.1
aTd5% and Td30%: temperatures of 5 and 30% weight loss, respectively.
R800: char residue at 800 °C. Tg,DSC and Tg,DMA: glass transition
temperatures obtained from DSC and DMA, respectively. E30′:
storage modulus at 30 °C obtained from DMA. νe = crosslinking
densities obtained by DMA. σm, ultimate tensile strength; εb,
elongation at break; E, Young’s modulus.
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the use of a rigid cycloaliphatic hardener resulted in higher Tg
and therefore higher activation energies and longer relaxation
times as compared with a slightly more flexible hardener, which
is consistent with the previously published literature.28,64,65 It
is also noteworthy to emphasize that the calculated Ea values
are much lower than similar structured vanillin-based epoxy-
imine networks (90−103 kJ/mol).32,34
Furthermore, to prove the malleability of the material, we

tried to remold the network with the highest Tg (C2Cy).
Remolding was performed by hot-pressing the chopped pieces
of the C2Cy film with a 75 kN pressure at 120 °C for 1 h,
which was followed by vacuum drying for 12 h at 80 °C. The
FTIR spectra and the mechanical properties before and after
the reprocessing procedure did not show any significant
difference, proving the excellent reprocessing ability of the
networks (Figure 3C−E and Figures S9 and S10). Indeed, after
the first hot-pressing cycle, we observed a significant increase
in the Young modulus from 918.7 to 1381.7 MPa along with a
decrease in elongation at break from 12.3 to 7.3% while
keeping the tensile strength nearly constant (55.3 MPa before
press and 56.5 MPa after press). This could be attributed to
the plasticizer effect by the remaining trace amount of water

present before the first hot-pressing cycle.63 Upon second
reprocessing, the tensile properties were nearly identical with a
tensile strength value of 54.9 MPa, an elongation at break of
6.2%, and a Young’s modulus of 1221.2 MPa. Also, the Tg
(DMA) was slightly raised from 78 to 84 °C after second
reprocessing possibly due to the complete removal of a trace
amount of water within the matrix (Figure S10).
Closed-Loop Recycling and Upcycling. The incorpo-

ration of reversible imine and acetal bonds into the epoxy
network enables efficient chemical depolymerization and thus
paves the way for establishing a partial closed-loop recycling
scheme. As a proof of concept, we performed the
depolymerization of C4Cy and C4Xy in the mixture of
THF/1 M HCl (2/8 by volume) at 65 °C (Figure 4 and Figure
S11).
A full depolymerization was observed within 2 h for both

cases. After liquid−liquid extraction with chloroform, vanillin
was obtained as a pure solid with 93 and 91% yields from the
depolymerization of C4Cy and C4Xy networks, respectively
(Figure S12). The remaining water-soluble, acidic part was
neutralized with 2 M NaOH. After removal of water from the
mixtures, the solids were dispersed in DMF and filtered to
remove salts. The obtained parts are a mixture of well-defined
polyols and a minor amount of diamine, which could not be
separated due to the similar polarity and solubility. The
stretching peaks of carbonyl compounds at 1682 cm−1

(aldehyde) and 1641 cm−1 (imine) were not observed in the
polyols. Also, the peak at 1265 cm−1 belonging to the acetal
structure disappeared (Figure S13). It could be concluded that
the depolymerization took place efficiently. Moreover, ESI-MS
showed that the epoxy networks depolymerized into well-
defined structures (Figures S14−S16 and Tables S2 and S3).
Following the acidic hydrolysis of the networks, we directly

determined the total hydroxyl/amine value for the mixtures
(492 mg KOH/g for the polyol mixture of depolymerized
C4Cy and 380 mg KOH/g for the polyol mixture of
depolymerized C4Xy). Such polyols could be utilized in the
synthesis of value-added polyurethanes (Figure 4); this process
is defined as upcycling.66 Polyurethanes are a very important
class of high-performance polymers due to their wide range of
application areas such as adhesives, sealants, flexible and rigid
foams, coatings, insulation, and elastomers.67,68 Also, they can
be readily recycled by several chemical recycling methods such
as glycolysis and acidolysis.69,70 The polyol mixture obtained
from the depolymerization of C4Xy was reacted stoichio-
metrically with an isocyanate prepolymer of 12.4% NCO
content based on 4,4′-methylenediphenyl diisocyanate (MDI)
and poly(propylene glycol) having a molecular weight of 2000
g/mol to form a crosslinked polyurethane network. The
characterization of the film was performed using FTIR (Figure
S17). The disappearance of the isocyanate stretching vibration
(N=C=O) at 2259 cm−1 and the formation of −N−H
stretching at 3293 cm−1 proved the successful incorporation
of the polyol in the final polyurethane. The formed
polyurethane was further characterized using TGA, DMA,
and mechanical testing (Figure S18). The onset thermal
degradation of the upcycled polyurethane was 249 °C, whereas
the glass transition temperatures were −32 and 126 °C. The
lower Tg is dominated by the soft segments (PPG 2000), and
the higher Tg is dominated by the hard segments, which is
mainly based on the reaction product of MDI and upcycled
polyol structures. It is a transparent, tough material with Young

Figure 3. Normalized stress-relaxation curves of C2Cy (A). The
stress-relaxation curves of the other networks are provided in the
Supporting Information (Figure S8). Fitted curve for C2Cy between
1000/T and characteristic relaxation time (ln τ*) according to the
Arrhenius law (B). Comparison of the FTIR spectra (C) and
mechanical properties (D) of as-synthesized and reprocessed C2Cy.
Photographs of the reprocessing cycle of C2Cy (E): chopping off the
C2Cy film into small pieces, followed by reprocessing via hot-pressing
at 120 °C and 75 kN pressure for 1 h. The university logos were
adapted with the permission from the Eindhoven University of
Technology.
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modulus, stress at break, and elongation at break values of
263.4 MPa, 85.8 MPa, and 208.2%, respectively.

■ CONCLUSIONS

Two monomers for recyclable, upcyclable, and malleable epoxy
systems were developed based on vanillin structures bearing
aldehyde, acetal, and oxirane-ring functionalities. Polymer-
ization of these monomers was performed in bulk without use
of any organic solvents, thanks to their liquid state, which is in
line with the principles of green chemistry. Curing this
monomer with common, commercial epoxy hardeners (i.e.,
diamines) resulted in high-performance, dual-dynamic imine-
acetal-containing thermosetting materials, which combines the
excellent properties of the traditional epoxy systems and
dynamic networks. The tensile strength values of the epoxy
networks herein are in the range of 50−70 MPa, which are
comparable to the commercial epoxy systems. As an advantage,
the end thermosetting material is malleable and could be fully
depolymerized into the vanillin monomer, achieving a partial
closed-loop recycling and yielding well-defined value-added
polyols. Such polyols could be upcycled into polyurethanes
with excellent properties. This kind of epoxy resins could have
a great potential for the development of composites that could
be recycled.

■ EXPERIMENTAL SECTION
Materials. Chemicals were used as received without further

purification. Vanillin, epichlorohydrin, ethylene glycol vinyl ether,
tetrabutylammonium bromide, and sodium hydroxide were obtained
from Merck, whereas m-xylylenediamine and 4,4′-methylenebis-
(cyclohexylamine) were purchased from Tokyo Chemical Industry
(TCI). 4-Hydroxybutylvinylether, poly(propylene glycol) (MW =
2000 g/mol), and 4,4′-methylenediphenyl diisocyanate (MDI) were
obtained from BASF. Ethyl acetate, petroleum ether, dimethylforma-
mide (DMF), and toluene were purchased from Biosolve B.V.
Deuterated CDCl3 was obtained from Cambridge Isotope Labo-
ratories for 1H NMR and 13C NMR analyses. 2-((2-(Vinyloxy)-
ethoxy)methyl)oxirane (VE2) and 2-((4-(vinyloxy)butoxy)methyl)-
oxirane (VE4) were synthesized using the reported procedures.71

Methods. The 1H NMR and 13C NMR spectra were recorded on
a Bruker UltraShield (400 MHz) using CDCl3 as the solvent. Mass
spectroscopy of the compounds was performed with a Bruker
Autoflex III TOF/TOF MALDI analyzer and LCQ Fleet ESI-MS
(Thermo Fisher Scientific). The FTIR spectra were recorded on a
Thermo Scientific NICOLET iS20 FTIR spectrometer as an average
of 8 scans over the wavenumber range of 450−4000 cm−1.
TGAs were performed using a TA Instruments TGA550, in which

5−10 mg of the samples was heated from 100 to 800 °C under N2
atmosphere. DSC measurements were performed on a TA Instru-
ments Q2000. The samples (5−15 mg) were placed in an Aluminum-
Hermetic pan. The experiments were carried out from −50 to 180 °C
at a rate of 10 °C/min under N2 atmosphere. Glass transition
temperatures (Tg) were determined by taking the midpoint of the
reversible endotherm of the second heating.

Figure 4. Schematic representation of depolymerization of C4Xy, partial closed-loop recycling toward vanillin, and upcycling into polyurethane.
Some of the polyol structures are omitted for clarity. All possible polyol structures are shown in Figure S16. The university logos were adapted with
the permission from the Eindhoven University of Technology.
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Dynamic mechanical analysis (DMA) measurements were
performed on a TA Instruments DMA850. The experiments were
carried out from −80 to 150 °C at a heating rate of 3 °C/min under
an oscillatory strain of 0.1% and a frequency of 1 Hz. The glass
transition temperature (Tg) was recorded as the maximum value of
tan δ. The presence of crosslinking networks in the epoxy systems was
proved by the storage modulus value at the rubbery plateau using the
following equation:32

=E RT3 e (1)

where E′ corresponds to the storage modulus of the resin at the
rubbery plateau (Tg + 40 °C), R refers to the universal gas constant,
and T is the absolute temperature.
The crosslinking densities obtained by DMA were further

supported by gel fraction experiments. All monomers, hardeners,
and possible oligomers are soluble in THF and DMF; therefore, gel
fraction experiments were conducted in both solvents using the static
method. Gel fractions were calculated using the equation below,
where GF stands for gel fraction, W0 refers to the initial weight of the
thermoset, and W1 is the weight of the thermoset after drying:

32

= x
W
W

GF 100 1

0 (2)

Stress-relaxation analysis was performed on a Discovery TA
Instruments HR20. The relaxation modulus (G(t)) was followed
over different time periods for a constant applied strain of 1% at the
constant temperature (from 110 to 140 °C). The relaxation modulus
(G) was normalized by the initial value (G0.1s or G1s).
The total hydroxyl/amine value of the polyol mixture was

determined by using a Metrohm 916 Ti-Touch titrator according to
the ASTM E222-17 standard method. The experimental free
isocyanate content of the prepolymer was determined by using a
Metrohm 916 Ti-Touch titrator according to the ASTM D5155-19
standard method.
Synthesis of the Monomers. 2-((2-(Vinyloxy)ethoxy)methyl)-

oxirane (VE2) and 2-((4-(vinyloxy)butoxy)methyl)oxirane (VE4)
were synthesized using the reported procedure with slight
modification.71

2-((2-(Vinyloxy)ethoxy)methyl)oxirane (VE2). Ethylene glycol
vinyl ether (35.24 g, 0.40 mol) and tetrabutyl ammonium bromide
(4.2 g, 13 mmol) were dissolved in 240 mL of the toluene/NaOH (50
wt %) mixture (1:1 by volume) in a 250 mL three-necked round-
bottom flask equipped with a reflux condenser, an Ar inlet, and a
dropping funnel, and the mixture was cooled to 0 °C. Epichlorohydrin
(59.28 g, 0.64 mol) was added dropwise over 1 h. After completion of
the addition, the reaction temperature was raised to room
temperature and the mixture was allowed to stir for 24 h at this
temperature under Ar flow. The reaction mixture was extracted with
distilled water and dried over magnesium sulfate. Upon removal of the
solvent, the crude product was purified upon distillation under
reduced pressure to give a colorless liquid with a yield of 54.8 g,
95.0%. 1H NMR (400 MHz, chloroform-d) δ 6.50 (dd, J = 14.3, 6.8
Hz, 1H), 4.20 (dd, J = 14.3, 2.2 Hz, 1H), 4.02 (dd, J = 6.8, 2.2 Hz,
1H), 3.88−3.70 (m, 5H), 3.45 (dd, J = 11.7, 5.9 Hz, 1H), 3.18 (ddt, J
= 5.7, 4.1, 2.8 Hz, 1H), 2.81 (dd, J = 5.0, 4.1 Hz, 1H), 2.62 (dd, J =
5.0, 2.7 Hz, 1H).13C NMR (101 MHz, CDCl3) δ 151.83, 86.88,
72.16, 69.85, 67.34, 50.93, 44.31. MS (ESI-TOF) m/z: [2 M + Na+]+
calculated for C14H24NaO6+ 311.15, found 311.17.
2-((4-(Vinyloxy)butoxy)methyl)oxirane (VE4). 4-Hydroxybutylvi-

nylether (23.24 g, 0.20 mol) and tetrabutyl ammonium bromide (2.1
g, 6.5 mmol) were dissolved in 120 mL of the toluene/NaOH (50 wt
%) mixture (1:1 by volume) in a 250 mL three-necked round-bottom
flask equipped with a reflux condenser, an Ar inlet, and a dropping
funnel, and the mixture was cooled to 0 °C. Epichlorohydrin (30.64 g,
0.33 mol) was added dropwise over 1 h. After completion of the
addition, the reaction temperature was raised to room temperature
and the mixture was allowed to stir for 24 h at this temperature under
Ar flow. The reaction mixture was extracted with distilled water and
dried over magnesium sulfate. Upon removal of the solvent, the crude

product was purified upon distillation under reduced pressure to give
a colorless liquid with a yield of 32.7 g, 94.8%. 1H NMR (399 MHz,
chloroform-d) δ 6.46 (dd, J = 14.3, 6.8 Hz, 1H), 4.17 (dd, J = 14.4,
1.9 Hz, 1H), 3.97 (dd, J = 6.8, 1.9 Hz, 1H), 3.75−3.67 (m, 3H), 3.53
(m, 2H), 3.38 (dd, J = 11.5, 5.8 Hz, 1H), 3.14 (ddt, J = 5.8, 4.2, 2.8
Hz, 1H), 2.79 (dd, J = 5.0, 4.1 Hz, 1H), 2.61 (dd, J = 5.0, 2.7 Hz,
1H), 1.81−1.62 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 152.03,
86.46, 71.59, 71.24, 67.84, 51.02, 44.42, 26.40, 25.94. MS (ESI-TOF)
m/z: [2 M + Na+]+ calculated for C18H32NaO6+ 367.25, found 367.21.
3-Methoxy-4-(1-(2-(oxiran-2-ylmethoxy)ethoxy)ethoxy)-

benzaldehyde (C2). Vanillin (4.93 g, 32.4 mmol) and 2-((2-
(vinyloxy)ethoxy)methyl)oxirane (7.01 g, 48.6 mmol) were mixed
in a 100 mL three-necked round-bottom flask equipped with a reflux
condenser and an Ar inlet, and the mixture was heated to 95 °C for 24
h under Ar flow. After cooling to room temperature, the obtained
crude product was purified using column chromatography with ethyl
acetate and petroleum ether as eluents. The C2 monomer was
obtained as a yellow liquid with a yield of 5.05 g, 52.6%. 1H NMR
(400 MHz, chloroform-d) δ 9.87 (s, 1H), 7.42 (m, 2H), 7.28 (s, 1H),
5.59 (q, J = 5.4 Hz, 1H), 3.92 (s, 3H), 3.91−3.87 (m, 1H), 3.79−3.61
(m, 4H), 3.38 (m, 1H), 3.12 (m, 1H), 2.77 (t, J = 4.4 Hz, 1H), 2.63−
2.52 (m, 1H), 1.59 (d, J = 5.4 Hz, 3H).13C NMR (101 MHz, CDCl3)
δ 191.14, 151.62, 150.95, 131.33, 126.30, 117.02, 109.96, 100.83,
72.06, 70.58, 65.14, 56.11, 50.91, 44.27, 19.95. MS (MALDI-TOF)
m/z: [M + Na+]+ calculated for C15H20NaO6+ 319.12, found 319.12.
3-Methoxy-4-(1-(4-(oxiran-2-ylmethoxy)butoxy)ethoxy)-

benzaldehyde (C4). Vanillin (3.79 g, 24.9 mmol) and 2-((4-
(vinyloxy)butoxy)methyl)oxirane (6.43 g, 37.3 mmol) were mixed
in a 100 mL three-necked round-bottom flask equipped with a reflux
condenser and an Ar inlet, and the mixture was heated to 95 °C for 24
h under Ar flow. After cooling to room temperature, the obtained
crude product was purified using column chromatography with ethyl
acetate and petroleum ether as eluents. The C4 monomer was
obtained as a yellow liquid with a yield of 5.52 g, 68.4%. 1H NMR
(399 MHz, chloroform-d) δ 9.87 (s, 1H), 7.41 (m, 2H), 7.22 (d, J =
8.0 Hz, 1H), 5.53 (q, J = 5.4 Hz, 1H), 3.92 (s, 3H), 3.80−3.73 (m,
1H), 3.69 (dd, J = 11.5, 3.0 Hz, 1H), 3.49 (m, 3H), 3.33 (dd, J = 11.5,
5.8 Hz, 1H), 3.11 (ddt, J = 5.8, 4.1, 2.8 Hz, 1H), 2.78 (t, J = 5.0, 4.1
Hz, 1H), 2.58 (dd, J = 5.0, 2.7 Hz, 1H), 1.66−1.61 (m, 4H), 1.57 (d, J
= 5.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 191.14, 151.88,
150.88, 131.11, 126.32, 116.62, 109.95, 100.73, 71.58, 71.25, 65.85,
56.11, 50.99, 44.35, 26.48, 26.39, 20.02. MS (MALDI-TOF) m/z: [M
+ Na+]+ calculated for C17H24NaO6+ 347.15, found 347.15.
Preparation of Epoxy Networks. Epoxy-imine networks were

prepared in solvent-free conditions, where a homogeneous mixture of
monomers was heated to 100 °C in an inert environment for 24 h.
C2Cy. The C2Cy network was prepared by homogenizing the bulk

mixture of C2 (3.50 g, 11.8 mmol) and 4,4′-methylenebis-
(cyclohexylamine) (1.86 g, 8.9 mmol) at room temperature. The
resultant liquid was cured in a N2 oven at 100 °C for 24 h.
C2Xy. The C2Xy network was prepared by homogenizing the bulk

mixture of C2 (3.49 g, 11.8 mmol) and m-xylylenediamine (1.20 g,
8.8 mmol) at room temperature. The resultant liquid was cured in a
N2 oven at 100 °C for 24 h.
C4Cy. The C4Cy network was prepared by homogenizing the bulk

mixture of C4 (3.0 g, 9.3 mmol) and 4,4′-methylenebis-
(cyclohexylamine) (1.46 g, 6.9 mmol) at room temperature. The
resultant liquid was cured in a N2 oven at 100 °C for 24 h.
C4Xy. The C4Xy network was prepared by homogenizing the bulk

mixture of C4 (2.09 g, 6.4 mmol) and m-xylylenediamine (0.66 g, 4.8
mmol) at room temperature. The resultant liquid was cured in a N2
oven at 100 °C for 24 h.
Reprocessing of the C2Cy Network. The C2Cy film was

chopped into small pieces. Remolding was performed by hot-pressing
the chopped pieces with a 75 kN pressure at 120 °C for 1 h, which
was followed by vacuum drying for 12 h at 80 °C. This process was
performed twice to observe the changes in the structure and
mechanical properties caused by hot-pressing.
Depolymerization of Epoxy Networks. The network film (4 g)

(C4Cy or C4Xy) was cut into small pieces and dispersed in 40 mL of
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the solvent mixture containing THF/1 M HCl (2/8 by volume). The
mixture was heated to 65 °C until a clear solution was obtained
(roughly within 2 h). Following that, THF was evaporated and the
acidic aqueous part was extracted with chloroform (2 × 20 mL). The
chloroform layer was then separated and dried with MgSO4. After
filtration and evaporation of the organic solvent, vanillin was obtained
as a pure solid (1.20 g, 93% for C4Cy and 1.28 g, 91% for C4Xy). 1H
NMR (399 MHz, CDCl3) δ 9.83 (s, 1H), 7.50−7.34 (m, 2H), 7.05
(d, J = 8.5 Hz, 1H), 6.16 (s, 1H), 3.97 (s, 3H) (Figure S12). The
remaining acidic aqueous solution, which was free of vanillin, was
neutralized with 2 M NaOH, and water was evaporated under
reduced pressure. The solid residue was sonicated in DMF and then
filtered. A viscous liquid was obtained upon evaporation of the
organic solvent, which contains the mixture of constituent diamine
and well-defined polyols (Figures S15 and S16).
Synthesis of the Isocyanate Prepolymer. Poly(propylene

glycol) (MW = 2000 g/mol) (28 g) and 4,4′-methylenediphenyl
diisocyanate (MDI) (22 g) were reacted in bulk conditions at 80 °C
under continuous Ar flow for 2.5 h. The reaction product with a free
isocyanate content of 12.4% was used without any further purification.
Synthesis of the Upcycled Polyurethane. The polyol mixture

obtained from the depolymerization of C4Xy (1.0 g) was dissolved in
DMF (7.5 mL) in a stainless steel metal mold. In another vial, the
isocyanate prepolymer with an NCO content of 12.4% (2.4 g) was
dissolved in DMF (7.5 mL) and was added to the polyol solution
dropwise and stirred vigorously. The reaction solution was placed in a
N2 oven at 80 °C for 12 h, and the resultant film was dried in a
vacuum oven at 80 °C overnight.
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