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The Non-Strict Projection Lemma
T. J. Meijer, T. Holicki, S. J. A. M. van den Eijnden, C. W. Scherer, and W. P. M. H. Heemels

Abstract—The projection lemma (often also referred to as the
elimination lemma) is one of the most powerful and useful tools in
the context of linear matrix inequalities for system analysis and
control. In its traditional formulation, the projection lemma only
applies to strict inequalities, however, in many applications we
naturally encounter non-strict inequalities. As such, we present,
in this note, a non-strict projection lemma that generalizes both
its original strict formulation as well as an earlier non-strict
version. We demonstrate several applications of our result in
robust linear-matrix-inequality-based marginal stability analysis
and stabilization, a matrix S-lemma, which is useful in (direct)
data-driven control applications, and matrix dilation.

Index Terms—Linear matrix inequalities (LMIs), parame-
ter elimination, data-driven control, semi-definite programming,
marginal stability

I. INTRODUCTION

L INEAR matrix inequalities (LMIs) have found their way

into a wide variety of control applications [1]. In parallel

to this adoption, an incredible collection of tools has been

developed that enables us to formulate LMIs for different and

increasingly complicated applications. The projection lemma

(PL), see, e.g., [2], [3], is a crucial part of this LMI toolkit,

which has been an enabler for developing powerful results,

such as, e.g., H∞ controller synthesis [2], robust control

design [1], [4], [5], and gain-scheduled control design [6], [7]

to name but a few. In fact, [5, Chapter 9] presents a unified

approach based on the projection lemma to solve 17 seemingly

different control problems, including the characterization of all

stabilizing controllers for a linear time-invariant (LTI) plant,

covariance control, H∞ control, L∞ control, LQG control,

and H2 control of LTI systems. It is also used to introduce

slack variables for reducing the conservatism in certain robust

control designs, see, e.g., [8], [9]. In other words, the PL has

had–without a doubt–a significant impact in the field of system

and control theory. All of the above developments are based on

the strict version of the projection lemma (strict in the sense of

strictness of the involved matrix inequalities). Given the impact
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of this strict projection lemma (SPL) and the emergence of

various control problems that call for non-strict versions of the

PL (see the discussion in Sections II and IV below), we will

formulate a non-strict generalization of this powerful result.

The classical projection lemma [1], [2], stated next, is

formulated in terms of strict inequalities.

Lemma 1. Consider the complex matrices U ∈ Cm×p and

V ∈ Cn×p and the Hermitian matrix Q ∈ Hp, there exists a

matrix X ∈ C
m×n such that

Q + UHXV + V HXHU ≻ 0, (1)

if and only if

UH

⊥QU⊥ ≻ 0 and V H

⊥QV⊥ ≻ 0, (2)

where, for any matrix, (·)
H

denotes its conjugate transpose

and (·)
⊥

denotes an arbitrary matrix with columns that form

a basis for its kernel (null space).

When replacing the strict inequalities (≻) in Lemma 1 by non-

strict inequalities (<), the implication (1) ⇒ (2) still holds,

however, the converse is no longer true in general. An earlier

non-strict version of the PL with additional conditions on U
and V under which the PL extends to non-strict inequalities,

see Lemma 2 below, was presented in [10, Lemma 6.3].

Lemma 2. Suppose U and V are such that

imUH ∩ imV H = {0}. (3)

Then, there exists X such that

Q + UHXV + UHXHV < 0,

if and only if

UH

⊥QU⊥ < 0 and V H

⊥QV⊥ < 0.

The result above, in which im (·) denotes the image of a

matrix, is shown to be useful in the context of, e.g., robust

control using µ-synthesis [10]. However, Lemma 2 only ap-

plies to matrices Q, U and V that satisfy the additional condi-

tion (3), which can be restrictive in many applications, such as

marginal/Lyapunov stability, as we will illustrate in Section II.

Another noteworthy observation regarding Lemma 2 is that it

does not include the SPL as a special case and, thus, Lemma 2

is not a true generalization of the SPL. Although there are prior

applications of the non-strict projection lemma, see, e.g., [3],

[11], the precise result and a rigorous proof are, to the best of

the authors’ knowledge, not found in the literature.

The main contribution of this note is to present a non-strict

projection lemma (NSPL) that (a) is general in the sense that

it applies to all matrices Q, U and V , and (b) generalizes

both the SPL and the non-strict formulation in Lemma 2.

The usefulness of our result is demonstrated by applying it to

http://arxiv.org/abs/2305.08735v1
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derive LMI-based marginal stability conditions, which could

not be achieved using the SPL or Lemma 2. We also apply

the NSPL to a matrix dilation problem and to derive a useful

interpolation result with weaker assumptions than existing

results. Interestingly, as we will see, a matrix S-lemma, similar

to those developed in [12] for (direct) data-driven control,

follows naturally from the aforementioned interpolation result.

The remainder of this note is organized as follows. After

introducing notational conventions in Section I-A, we discuss

a motivating example, in Section II, for which the SPL and

Lemma 2 fall short. In Section III, we present the NSPL,

which forms our main contribution. Finally, we present several

applications of this NSPL in Section IV and conclusions in

Section V. All proofs are found in the Appendix.

A. Notation

The sets of real, complex and non-negative natural numbers

are denoted, respectively, R, C and N = {0, 1, 2, . . .}. We

denote R>0 = [0,∞) and R>0 = (0,∞). The sets of n-

dimensional real and complex vectors are, respectively, Rn

and Cn. Let (u, v) denote [uH vH ]H for any u, v ∈ Cn.

The sets of n-by-n Hermitian and symmetric matrices are

denoted by, respectively, Hn = {A ∈ Cn×n | A = AH}
and Sn = {A ∈ Rn×n | A = A⊤}. We use the symbol

⋆ to complete a Hermitian matrix, e.g.,
[

A B
⋆ C

]

=
[

A B

BH C

]

,

and I is an identity matrix of appropriate dimensions. For

a Hermitian matrix H ∈ H
n, H ≻ 0, H < 0 and

H ≺ 0 mean, respectively, that H is positive definite, i.e.,

xHHx > 0 for all x ∈ Cn \ {0}, positive semi-definite,

i.e., xHHx > 0 for all x ∈ Cn, and negative definite,

i.e., −H ≻ 0. We denote, respectively, the sets of such

matrices of size n-by-n as Hn
≻0 and Hn

<0 and their real-valued

counterparts as Sn≻0, Sn<0 and Sn≺0. For a complex matrix

A ∈ Cn×m, imA = {x ∈ Cn | x = Ay for some y ∈ Cm}
denotes its image, kerA = {x ∈ Cm | Ax = 0} its

kernel and A+ its (Moore-Penrose) pseudoinverse. Finally,

diag{A1, A2, . . . , An} denotes a block-diagonal matrix with

diagonal blocks Ai, i ∈ {1, 2, . . . , n}.

II. MOTIVATING EXAMPLE

Consider the discrete-time LTI system

xk+1 = Axk, (4)

where xk ∈ R
nx denotes the state at time k ∈ N. We are

interested in marginal stability of the system (4), i.e., whether,

for all x0, the solution xk is uniformly bounded in the sense

that there exists c ∈ R>0 such that ‖xk‖ 6 c‖x0‖ for all

k ∈ N. The system (4) is marginally stable, if and only if there

exists a symmetric matrix P ∈ Snx such that [13, p. 211]

P ≻ 0 and P −A⊤PA < 0, (5)

or, equivalently, if there exists S ∈ Snx such that

S ≻ 0 and S −ASA⊤
< 0, (6)

in which case V (x) = x⊤Px (with P = S−1) is a weak Lya-

punov function, i.e., V is positive definite, radially unbounded

and non-increasing along solutions to (4) [14], [15].

While (6) can be used to guarantee marginal stability of (4),

it cannot easily be extended to more complicated applications

such as synthesis or even robust control, e.g., when A is un-

certain, by applying (6) to the relevant closed-loop dynamics.

In the context of asymptotic stability, many different LMI-

based conditions have been proposed that not only guarantee

that (4) is asymptotically stable, but also accommodate such

more complicated applications, see, e.g., [16]–[19]. Many of

these results, see, e.g., [16]–[18] (or [20] for continuous time),

follow by application of the SPL. For illustrative purposes, we

consider the following condition: The system (4) is asymp-

totically stable if and only if there exist a symmetric matrix

S ∈ S
nx and a matrix X ∈ R

nx×nx such that [8]
[

S AX
⋆ X +X⊤ − S

]

≻ 0, (7)

which follows from the conditions S ≻ 0 and S−ASA⊤ ≻ 0,

which are necessary and sufficient for asymptotic stability, by

applying Lemma 1. To see this, note that (7) is (1) with

Q =

[

S 0
⋆ −S

]

, U⊤ =

[

0
I

]

and V ⊤ =

[

A
I

]

.

This condition is useful for stabilizing controller synthesis by

replacing A← A+BK and applying the linearizing change of

variables X = KY , where K is the to-be-designed controller

gain. What makes the condition in (7) even more powerful is

the absence of products between A and S, which enables a

natural extension to robust controller synthesis as presented

in, e.g., [16], [18], in which both A and S depend on some

uncertain parameter. Clearly, we cannot use the SPL to obtain

a non-strict counterpart to (7) that is also equivalent to (6).

Also the condition in (3) is not always satisfied and, hence,

we cannot apply Lemma 2 either. To see this, observe that,

if there exists x ∈ Rnx \ {0} with Ax = 0, then (0, x)
is contained in both imU⊤ and im V ⊤ and, hence, their

intersection is non-trivial. In the next section, we will present

a generalization of Lemma 2 after which we will revisit this

example in Section IV-A and derive a non-strict version of (7).

III. MAIN RESULT

The main contribution of this note, i.e., a non-strict gener-

alization of the well-known SPL, is stated below.

Theorem 1. There exists X such that

Q + UHXV + V HXHU < 0, (8)

if and only if

UH

⊥QU⊥ < 0 and V H

⊥QV⊥ < 0, (9)

and

kerU ∩ kerV ∩ {ξ ∈ C
p | ξHQξ = 0} ⊂ kerQ. (10)

It is worth mentioning that the proof of Theorem 1, which is

constructive, shows that, if U , V and Q are real-valued, then

also X satisfying (8) is real-valued. Interestingly, Theorem 1

generalizes the SPL (Lemma 1) because (2) implies that

kerU ∩ kerV ∩ {ξ ∈ C
p | ξHQξ = 0} = {0} ⊂ kerQ. (11)
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Observe also that, in contrast with Lemma 2, the equivalence

relation in Theorem 1 holds for any matrices Q, U and V
and that, thereby, Theorem 1 generalizes Lemma 2, which

holds only for matrices that satisfy (3). In fact, it follows, by

combining Theorem 1 and Lemma 2, that (3) and (9) together

must imply (10). To make this more insightful, we will now

show this fact directly (without using Theorem 1 or Lemma 2).

Suppose that (3) and (9) hold and let x ∈ kerU∩kerV be such

that xHQx = 0. Then, there exist ξ and η such that x = U⊥ξ
and x = V⊥η. It follows that 0 = xHQx = ξHUH

⊥
QU⊥ξ =

ηHV H

⊥
QV⊥η, which, using (9), implies that UH

⊥
Qx = 0 and

V H

⊥
Qx = 0. Hence, it holds that Qx ∈ kerUH

⊥
= (imU⊥)

⊥ =
(kerU)⊥ = imUH and, similarly, Qx ∈ imV H, i.e.,

Qx ∈ imUH ∩ imV H (3)
= {0}.

Thereby, (10) holds.

To make the conservatism introduced by (3) more concrete,

we provide an algebraic example below.

Example. Consider the matrices

Q =





3 1 −2
⋆ 1 −1
⋆ ⋆ 1



 , U⊤ =





1 0
1 1
0 1



 and V ⊤ =





1
0
−1



 .

The relevant annihilators are given by

U⊥ =
[

1 −1 1
]⊤

and V⊥ =

[

1 −1 1
0 1 0

]⊤

and it is straightforward to verify that

U⊤
⊥QU⊥ = 1 < 0 and V ⊤

⊥ QV⊥ =

[

1 −1
⋆ 1

]

< 0.

Here, imU⊤∩im V ⊤ = im
[

1 0 −1
]⊤
6= {0} such that (3)

does not hold. However, we can still use Theorem 1 to conclude

that there exists a matrix X satisfying (8), because (11) holds

and, thereby, (10) is satisfied. To see this, note that kerU ∩
kerV = kerU and U⊤

⊥
QU⊥ = 1 ≻ 0, such that there does

not exist a nonzero x ∈ kerU ∩ kerV with x⊤Qx = 0.

Although a rigorous proof has not been published before,

the NSPL has already proved useful in formulating LMI relax-

ations in robust control [11]. In the next section, we revisit the

motivating example from Section II, for which we showed that

the SPL and Lemma 2 did not apply, and utilize Theorem 1

to find a solution. We will also demonstrate applications of

Theorem 1 to matrix dilation theory, interpolation and a matrix

S-lemma, which is used in modern data-driven techniques.

IV. APPLICATIONS

In this section, we present several relevant applications of

Theorem 1. For each of the applications below, the crucial

steps in their respective proofs are achieved through the NSPL.

A. Marginal stability and stabilizability revisited

First, we revisit the motivating example discussed in Sec-

tion II, for which we demonstrated that neither the strict

projection lemma nor Lemma 2 could be applied. Using

Theorem 1 we derive a non-strict version of (7) that can

be used to test marginal stability of the system (4). The

resulting condition is presented in (P1.3), below, along with its

counterpart that can be used for observer synthesis in (P1.2).

Proposition 1. The following statements are equivalent:

(P1.1) The system (4) is marginally stable.

(P1.2) There exist a symmetric positive-definite matrix P ∈
S
nx

≻0 and a matrix X ∈ Rnx×nx such that

[

P A⊤X⊤

⋆ X +X⊤ − P

]

< 0. (12)

(P1.3) There exist a symmetric positive-definite matrix S ∈
S
nx

≻0 and a matrix X ∈ Rnx×nx such that

[

S AX
⋆ X +X⊤ − S

]

< 0. (13)

Moreover, any matrix X satisfying (12) or (13) is non-singular.

Although this is not the main focus of this note, let us elaborate

somewhat on the conditions obtained in Proposition 1. All

statements in Proposition 1 are equivalent, however, each

is useful in different applications. For instance, (P1.1) can

be used to verify marginal stability of a given system (4),

whereas (P1.2) is useful for observer synthesis by replacing

A← A+LC and applying the linearizing change of variables

ZL = XL. Similarly, (P1.3) can be used for controller

synthesis by substituting A ← A + BK and performing the

linearizing change of variables KX = ZK . Due to the fact

that no products between A and P or S appear, both (P1.2)

and (P1.3) can be used, following the same development as

in [16], to synthesize polytopic/switched observers/controllers

for polytopic or switched linear systems, while guaranteeing

marginal stability of the closed-loop (or estimation error)

system using a polytopic/switched weak Lyapunov function.

B. Interpolation and the matrix S-procedure

We can also apply the NSPL to derive the interpolation

result below, which is a version of [11, Lemma A.2] with

slightly weaker assumptions.

Lemma 3. Let R ∈ Sm≺0 and

P =

[

Q S
⋆ R

]

∈ S
n+m

with Q− SR−1S⊤ < 0. Then, for any z ∈ Rn and w ∈ Rm,

there exists some matrix ∆ ∈ Rm×n such that

w = ∆z and

[

I
∆

]⊤

P

[

I
∆

]

< 0, (14)

if and only if
[

z
w

]⊤

P

[

z
w

]

> 0. (15)

Interpolation results, such as the one in Lemma 3, have

been used to formute LMI relaxations in robust control [11].

Interestingly, Lemma 3 can also be used to derive the matrix

S-lemma below.
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Lemma 4. Let M ∈ Sn+m and

N =

[

N11 N12

⋆ N22

]

∈ S
n+m,

with N22 ≺ 0 and N11−N12N
−1

22 N⊤
12 < 0. Then, the following

statements are equivalent:

(L4.1)

[

I
Z

]⊤

M

[

I
Z

]

≻ 0 for all Z with

[

I
Z

]⊤

N

[

I
Z

]

< 0.

(L4.2) There exists α > 0 such that M − αN ≻ 0.

Lemma 4 is essentially [12, Corollary 12] without the require-

ment that N is non-singular. Similar non-strict results, see,

e.g., [12], [21], have proved instrumental in recent (direct)

data-driven control applications, see, e.g., [12], [21]–[24],

which, in turn, demonstrates the relevance of the NSPL, also

for data-driven control applications.

C. Matrix dilations

Finally, we indicate that Theorem 1 also has applications in

matrix (or operator) dilation theory [25], such as in the result

stated below.

Lemma 5. Let A ∈ Rm×n, B ∈ Rm×p and C ∈ Rq×n. Then,

there exists D ∈ Rq×p with
∥

∥

∥

∥

[

A B
C D

]
∥

∥

∥

∥

6 1, (16)

if and only if

∥

∥

[

A B
]∥

∥ 6 1 and

∥

∥

∥

∥

[

A
C

]∥

∥

∥

∥

6 1. (17)

A proof based on Theorem 1 can be found in the Appendix.

V. CONCLUSIONS

In this technical note, we presented a non-strict generaliza-

tion of the projection lemma. This non-strict projection lemma

was shown to include both the strict projection lemma and an

earlier non-strict version of the projection lemma as special

cases, thereby showing that our contribution generalizes these

existing results. In addition, we showed several applications

of this novel non-strict projection lemma, for which existing

results could not be applied. One such application is analyzing

marginal stability (or performing marginal stabilization) of

discrete-time LTI systems, for which we derived several LMI-

based conditions. The resulting stability conditions are such

that they can be used for controller and observer synthesis.

They may be further extended to accommodate synthesis for

polytopic/switched linear systems using a polytopic/switched

weak Lyapunov function to guarantee marginal stability for

the corresponding closed-loop system. We also demonstrate

applications of our results to dilation theory as well as in-

terpolation, where, for the latter, we show that the matrix S-

lemma, which proves instrumental in the context of (direct)

data-driven control, naturally follows.

REFERENCES

[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix
inequalities in control theory, ser. Studies in Applied Mathematics.
SIAM, 1994, vol. 15.

[2] P. M. Gahinet and P. Apkarian, “A linear matrix inequality approach
to H∞ control,” Int. J. Robust Nonlinear Control, vol. 4, no. 4, pp.
421–448, 1994.

[3] C. W. Scherer and S. Weiland, “Linear matrix inequalities in control,”
2000, Lecture Notes, Dutch Inst. Syst. Control, Delft.

[4] A. Packard, K. Zhou, P. Pandey, and G. Becker, “A collection of robust
control problems leading to LMI’s,” in 30th IEEE Conf. Decis. Control,
1991, pp. 1245–1250.

[5] R. E. Skelton, T. Iwasaki, and K. M. Grigoriadis, A unified algebraic

approach to linear control design. Taylor & Francis, 1998.

[6] A. Packard, “Gain scheduling via linear fractional transformations,” Syst.

Control Lett., vol. 22, no. 2, pp. 79–92, 1994.

[7] P. Apkarian and P. Gahinet, “A convex characterization of gain-
scheduled H∞ controllers,” IEEE Trans. Autom. Control, vol. 40, no. 5,
pp. 853–864, 1995.

[8] M. C. de Oliveira, J. C. Geromel, and J. Bernussou, “Extended H2 and
H∞ norm characterizations and controller parametrizations for discrete-
time systems,” Int. J. Control, vol. 75, pp. 666–679, 2002.

[9] Y. Ebihara, D. Peaucelle, and D. Arzelier, S-variable approach to LMI-
based robust control. Springer, 2015.

[10] A. Helmersson, “Methods for gain scheduling,” Ph.D. dissertation,
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APPENDIX

A. Preliminaries

Lemma 6 (Schur complement [1, p. 8, 28]). Let Q ∈ Hm,

R ∈ Hn and S ∈ Cm×n. It holds that
[

Q S
⋆ R

]

< 0, (18)

if and only if R < 0, Q−SR+SH < 0 and S(I−RR+) = 0.

If R is non-singular, (18) holds if and only if R < 0 and

Q− SR−1SH < 0.

Lemma 7 (S-lemma [1, p. 24]). Let M,N ∈ Sn and suppose

that there exists some x̄ ∈ R
n such that x̄⊤Nx̄ > 0. Then, the

following statements are equivalent:

(L7.1) x⊤Mx > 0 for all x ∈ Rn \{0} such that x⊤Nx > 0.

(L7.2) There exists α > 0 such that M − αN ≻ 0.

Lemma 8 (Finsler’s lemma [26, Theorem 2.2], [27]). Let

M,N ∈ Sn. Then, the following statements are equivalent:

(L8.1) x⊤Mx > 0 for all x ∈ Rn \{0} such that x⊤Nx = 0.

(L8.2) There exists α ∈ R such that M − αN ≻ 0.

B. Proof of Theorem 1

Necessity: Suppose there exists X ∈ Cm×n such that (8)

holds. It follows, by projection, that

UH

⊥

(

Q+ UHXV + V HXHU
)

U⊥ = UH

⊥QU⊥ < 0,

and

V H

⊥

(

Q+ UHXV + V HXHU
)

V⊥ = V H

⊥QV⊥ < 0.

Thus, we conclude that (9) is satisfied. It remains to show

that (10) holds. Let x ∈ kerU ∩kerV ∩{ξ ∈ Rp | ξHQξ = 0}
and let S ∈ Hn

<0 be any square matrix with SHS = Q +

UHXV + V HXHU . Then,

‖Sx‖2 = xH(Q+ UHXV + V HXHU)x = xHQx = 0,

from which we obtain

0 = Sx = SSx = (Q+ UHXV + V HXHU)x = Qx,

or, equivalently, x ∈ kerQ, such that (10) holds.

Sufficiency: Suppose that (9) and (10) hold. Let T ∈
Cp×p be a non-singular matrix, partitioned as T =
[

T1 T2 T3 T4 T5

]

with

im
[

T1 T3 T4

]

= kerU, (19)

im
[

T2 T3 T4

]

= kerV, (20)

im
[

T3 T4

]

= kerU ∩ kerV, (21)

imT4 = kerU ∩ kerV ∩ kerQ. (22)

By congruence transformation with T , (8) holds if and only if

Y := THQT + (UT )HXV T + (V T )HXHUT < 0. (23)

Using (22), W := THQT , partitioned according to T , reads

W =













W11 W12 W13 0 W15

⋆ W22 W23 0 W25

⋆ ⋆ W33 0 W35

0 0 0 0 0
⋆ ⋆ ⋆ 0 W55













. (24)

Similarly, using (19), (20) and (22), the term (UT )HXV T
in (23) reads as

(UT )HXV T =













0
(UT2)

H

0
0

(UT5)
H













X













(V T1)
H

0
0
0

(V T5)
H













H

. (25)

It follows from (19) and (20), respectively, that
[

UT2 UT5

]

and
[

V T1 V T5

]

are full column rank. Using (24) and (25),

Y in (23) reads as




Y1 0 Y2

⋆ 0 0
⋆ ⋆ Y3



 = (26)













W11 W12 +KH W13 0 W15 +MH

⋆ W22 W23 0 W25 + L
⋆ ⋆ W33 0 W35

0 0 0 0 0

⋆ ⋆ ⋆ 0 W55 +N +NH













< 0,

where
[

K L
M N

]

=

[

(UT2)
H

(UT5)
H

]

X
[

V T1 V T5

]

.

Observe that, since
[

UT2 UT5

]

and
[

V T1 V T5

]

are full

column rank,

X =

[

(UT2)
H

(UT5)
H

]+ [

K L
M N

]

[

V T1 V T5

]+
, (27)

satisfies (8) for any K , L, M and N that satisfy (26). In the

remainder of this proof, we construct such K , L, M and N .

First, we construct K that renders Y1 in (26) positive semi-

definite. To this end, note that, due to (9), (19) and (20),
[

W11 W13

⋆ W33

]

< 0 and

[

W22 W23

⋆ W33

]

< 0. (28)

It also follows from (10) that

x⊤Qx 6= 0, for all x ∈ kerU ∩ kerV with x /∈ kerQ,

and, thus, by construction of T3 and using (28), it holds that

W33 = TH

3 QT3 ≻ 0.

Hence, we can apply Lemma 6 to (28) to obtain

W11 −W13W
−1

33 WH

13 < 0 and W22 −W23W
−1

33 WH

23 < 0.
(29)

Since W33 ≻ 0, Lemma 6 reveals that Y1 < 0 if and only if

[

W11 W12 +KH

⋆ W22

]

−

[

W13

W23

]

W−1

33

[

W13

W23

]H

< 0.

By (29), K = −WH

12 + W23W
−1
33 WH

13 renders the latter

inequality valid and, hence, Y1 < 0.

Next, we apply Lemma 6 to see that (26) is equivalent to

Y1 < 0, Y3 − Y H

2 Y +
1 Y2 < 0 and Y H

2 (I − Y1Y
+
1 ) = 0.

We have already constructed a matrix K such that Y1 < 0.

Let us now construct L and M such that Y H

2 (I−Y1Y
+
1 ) = 0,

which, due to the symmetry of Y1Y
+

1 , is equivalent to (I −
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Y1Y
+

1 )Y2. Hence, it suffices here to construct L and M such

that we can write Y2 as Y2 = Y1P̃ for some P̃ , i.e.,




W15 +MH

W25 + L
W35



 =





W11 W13W
−1

33 WH

23 W13

⋆ W22 W23

⋆ ⋆ W33



 P̃ , (30)

where we have substituted the K that we constructed earlier.

A particular choice of P̃ , L and M that satisfies (30) is

P̃ =





0
0

W−1

33 W35



 ,

[

MH

L

]

=

[

−W15 +W13W
−1
33 W35

−W25 +W23W
−1
33 W35

]

.

It remains to construct N such that

0 4 Y3 − Y H

2 Y +

1 Y2 = W55 +N +NH − Y H

2 Y +

1 Y2, (31)

which we achieve by choosing N = αI with α > 0
sufficiently large to ensure that (31) holds. Since we have

found K , L, M and N for which (26) holds, X as in (27)

satisfies (8), which completes the proof.

C. Proof of Proposition 1

(P1.2): It is well-known, see, e.g., [13, p. 211], that (P1.1)

is equivalent to the existence of P ∈ S
nx

≻0 satisfying (5), which

is equivalent to the existence of P ∈ S
nx

≻0 such that (9) holds

with

Q =

[

P 0
⋆ −P

]

, U⊥ =

[

I
0

]

and V⊥ =

[

−I
A

]

.

To complete the key step in this proof, we aim to apply

Theorem 1. We can take U =
[

0 I
]

and V =
[

A I
]

. Next,

we will show that if (9) holds, then also (10) holds. To this

end, it suffices to show that (11) holds. Let x ∈ kerU ∩kerV
with x⊤Qx = 0. Note that x ∈ kerU implies that x = (y, 0)
for some y ∈ Rnx . Moreover, (y, 0)⊤Q(y, 0) = y⊤Py = 0
implies that y = 0, since P ≻ 0 and, thus, (11) holds. By

Theorem 1, we find that P ∈ S
nx

≻0 satisfies (5) if and only if

there exists X ∈ Rnx×nx such that
[

P 0
⋆ −P

]

+

[

0
I

]

X
[

A I
]

+

[

A⊤

I

]

X⊤
[

0 I
]

< 0. (32)

Thus, (P1.1) and (P1.2) are equivalent. To see that X sat-

isfying (12) is non-singular, we note that (12) implies that

X +X⊤ < P ≻ 0, which holds only if X is non-singular.

(P1.3): The proof is completed using (6) and following the

same steps as for (P1.2) with P ← S and A← A⊤.

D. Proof of Lemma 3

Necessity: Suppose there exists ∆ ∈ Rm×n for which w =
∆z. It immediately follows that (15) holds, since

[

z
w

]⊤

P

[

z
w

]

= z⊤
[

I
∆

]⊤

P

[

I
∆

]

z
(14)

> 0.

Sufficiency: Suppose that (15) holds. If z = 0, this

inequality reads as w⊤Rw > 0, which, due to R ≺ 0, implies

that w = 0. Then, by choosing ∆ = −R−1S⊤, we infer

w = ∆z and, by assumption,
[

I
∆

]⊤

P

[

I
∆

]

= Q− SR−1S⊤
< 0.

Next, suppose z 6= 0. Using Lemma 6 (Schur complement)

and R ≺ 0, the desired inequality in (14) can be expressed as
[

Q+ S∆+∆⊤S⊤ ∆⊤

⋆ −R−1

]

< 0. (33)

To guarantee w = ∆z, we must have, for some H ∈ Rm×n,

∆ = wz+ +H(I − zz+). (34)

It follows, by substituting (34) into (33), that there exists ∆
satisfying (14), if and only if there exists H such that

Ψ+ U⊤HV + V ⊤H⊤U < 0, (35)

with U =
[

S⊤ I
]

, V =
[

I − zz+ 0
]

and

Ψ =

[

Q+ Swz+ + (Swz+)⊤ (wz+)⊤

⋆ −R−1

]

.

The key step of this proof is done by applying Theorem 1 to

find that a matrix H satisfying (35) exists, if and only if (9)

and (10) hold (with Q← Ψ). We introduce the annihilators

U⊥ =

[

I
−S⊤

]

and V⊥ =

[

z 0
Rw I

]

.

We have U⊤
⊥
ΨU⊥ = Q− SR−1S⊤ < 0, by assumption, and

V ⊤
⊥ ΨV⊥ =
[

z⊤Qz + z⊤Sw + (z⊤Sw)⊤ + w⊤Rw 0
⋆ −R−1

]

(15)

< 0.

Next, we show that (10) holds. Since z 6= 0, we have

kerU ∩ kerV = im

[

Iz
−S⊤z

]

= im

[

I
−S⊤

]

z. (36)

It follows from (36) that there exists x ∈ kerU ∩ kerV \ {0}
such that x⊤Ψx = 0 if and only if

z⊤
[

I
−S⊤

]⊤

Ψ

[

I
−S⊤

]

z = ‖(Q−SR−1S⊤)
1

2 z‖2 = 0, (37)

where we used the fact that, by assumption, Q−SR−1S⊤ < 0.

It follows that x⊤Ψx = 0 for any x ∈ kerU ∩ kerV and,

hence, (10) holds if kerU ∩ kerV ⊂ kerΨ. We have

Ψ

[

U
V

]

⊥

=

[

Q+ Swz+

wz+ +R−1S⊤

]

z =

[

Qz + Sw
w +R−1S⊤z

]

. (38)

From (15) and the fact that R ≺ 0, we have

0 6

[

z
w

]⊤

P

[

z
w

]

= z⊤Qz + z⊤Sw + w⊤S⊤z + w⊤Rw,

= (w +R−1S⊤z)⊤R(w +R−1S⊤z) 6 0,

and, hence, w = −R−1S⊤z. Substitution in (38) yields

Ψ

[

U
V

]

⊥

=

[

(Q− SR−1S⊤)z
0

]

(37)
= 0,

such that (10) holds. We apply Theorem 1 to conclude that

there exists H satisfying (35) and, thus, ∆ in (34) satis-

fies (14).
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E. Proof of Lemma 4

(L4.2)⇒ (L4.1): Suppose that (L4.2) holds. Then, for all

Z ∈ Rm×n such that
[

I Z⊤
]

N
[

I Z⊤
]⊤

< 0, we have

[

I
Z

]⊤

M

[

I
Z

]

≻ α

[

I
Z

]⊤

N

[

I
Z

]

< 0.

(L4.1)⇒ (L4.2): Suppose that (L4.1) holds. By Lemma 3,

for any x = (w, z) such that x⊤Nx > 0, there exists Z ∈
Rm×n such that

w = Zz and

[

I
Z

]⊤

N

[

I
Z

]

< 0. (39)

Firstly, we consider the case where N has at least one

positive eigenvalue. Take any x = (w, z) 6= 0 such that

x⊤Nx > 0 and let Z be as in (39). It follows, by (L4.1),

that
[

I Z⊤
]

M
[

I Z⊤
]⊤
≻ 0 and, hence,

0 < z⊤
[

I
Z

]⊤

M

[

I
Z

]

z
(39)
= x⊤Mx. (40)

Thus, (L7.1) holds and we can apply Lemma 7 to conclude

that (L4.2) holds. Secondly, we consider the case where N has

no positive eigenvalues, i.e., N 4 0. Take any x = (w, z) 6= 0
such that x⊤Nx = 0 and let Z be as in (39). Again, it follows,

by (L4.1), that
[

I Z⊤
]

M
[

I Z⊤
]⊤
≻ 0. Thus, (40) holds

and we can apply Lemma 8 to conclude that there exists some

α ∈ R such that M − αN ≻ 0. If α ∈ R>0, we are done.

Otherwise, since N 4 0, we obtain αN < 0 and, thus,

M − 0 ·N = M ≻ αN < 0, (41)

which completes our proof as well.

F. Proof of Lemma 5

The norm inequality (16) can be expressed as an LMI,

which, using Lemma 6, can be, equivalently, expressed as

0 4









I 0 A B
⋆ I C D
⋆ ⋆ I 0
⋆ ⋆ ⋆ I









= Q+ U⊤DV + V ⊤D⊤U, (42)

with

Q =









I 0 A B
⋆ I C 0
⋆ ⋆ I 0
⋆ ⋆ ⋆ I









, U =









0
I
0
0









⊤

and V =









0
0
0
I









⊤

.

We introduce the relevant annihilators

U⊥ =









I 0 0
0 0 0
0 I 0
0 0 I









and V⊥ =









I 0 0
0 I 0
0 0 I
0 0 0









. (43)

Necessity: By assumption, (42) holds. It follows that

U⊤
⊥QU⊥ =

[

I A B
⋆ I 0
⋆ ⋆ I

]

< 0 and V ⊤
⊥ QV⊥ =

[

I 0 A
⋆ I C
⋆ ⋆ I

]

< 0,

(44)

which implies the norm inequalities in (17).

Sufficiency: Suppose (17) holds, which is equivalent

to (44). It remains to show that (10) holds, such that we can

apply the NSPL which finishes the proof. To this end, note

that (44) implies, using Lemma 6, that
[

I A
⋆ I

]

< 0,

[

I −BB⊤ A
⋆ I

]

< 0 and

[

I − C⊤C A
⋆ I

]

< 0.

(45)

Let x = (x1, x2, x3, x4) ∈ kerU ∩ kerV with x⊤Qx = 0.

Due to (43), we have x2 = 0 and x4 = 0. It follows that

0 = x⊤Qx =

[

x1

x3

]⊤ [

I A
⋆ I

] [

x1

x3

]

(45)
=

∥

∥

∥

∥

∥

[

I A
⋆ I

]
1

2

[

x1

x3

]

∥

∥

∥

∥

∥

2

,

which implies that
[

I A
⋆ I

] [

x1

x3

]

= 0. (46)

Next, we observe that

0
(45)

4

[

x1

x3

]⊤ [

I −BB⊤ A
⋆ I

] [

x1

x3

]

(46)
= −‖B⊤x1‖

2, (47)

from which we conclude that B⊤x1 = 0. Similarly, we infer

from (45) that Cx3 = 0. Combining (46), B⊤x1 = 0 and

Cx3 = 0, we obtain

Qx =









I 0 A B
⋆ I C 0
⋆ ⋆ I 0
⋆ ⋆ ⋆ I

















x1

0
x3

0









=









x1 +Ax3

Cx3

A⊤x1 + x3

B⊤x1









= 0. (48)

Hence, we can apply the NSPL to conclude that there exists

D ∈ Cq×p satisfying (16).
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