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Robustifying Event-Triggered Control to Measurement Noise

K.J.A. Scheres, R. Postoyan, W.P.M.H. Heemels

Abstract— While many event-triggered control strategies are
available in the literature, most of them are designed ignoring
the presence of measurement noise. As measurement noise
is omnipresent in practice and can have detrimental effects,
for instance, by inducing Zeno behavior in the closed-loop
system and with that the lack of a positive lower bound on
the inter-event times, rendering the event-triggered control
design practically useless, it is of great importance to address
this gap in the literature. To do so, we present a general
framework for set stabilization of (distributed) event-triggered
control systems affected by additive measurement noise. It
is shown that, under general conditions, Zeno-free static as
well as dynamic triggering rules can be designed such that
the closed-loop system satisfies an input-to-state practical set
stability property. We ensure Zeno-freeness by proving the
existence of a uniform strictly positive lower-bound on the
minimum inter-event time. The general framework is applied to
point stabilization and consensus problems as particular cases,
where we show that, under similar assumptions as the original
work, existing schemes can be redesigned to robustify them
to measurement noise. Consequently, using this framework,
noise-robust triggering conditions can be designed both from
the ground up and by simple redesign of several important
existing schemes. Simulation results are provided that illustrate
the strengths of this novel approach.

I. INTRODUCTION

In recent years, event-triggered control (ETC), see, e.g.,

[15], [20] and the references therein, has been studied

extensively as a resource-aware sampling paradigm, as an

alternative to periodic time-triggered control, reducing the

computational burden and/or the communication bandwidth

of the control strategies, while still ensuring important

closed-loop stability and performance properties. In ETC,

the sampling or transmission instants are decided on the basis

of well-designed state- or output-based triggering conditions,

rendering these instants not necessarily periodic. The general

idea in ETC is to allow more flexibility in the sampling and

communication processes and adapt the communication to

the system needs according to the desired objectives.

Most literature on ETC for continuous-time systems as-

sumes that perfect state or output information is available

for control, see, e.g., [24], [11]. In most physical systems,

this assumption is typically not satisfied as essentially all

sensors are susceptible to measurement noises. The presence

of measurement noises may cause the absence of a positive
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lower bound on the inter-event times, and, even Zeno be-

havior (an infinite number of transmission times in a finite

time interval) if not carefully handled, as demonstrated in,

e.g., [4]. If an ETC scheme exhibits Zeno behavior, it is

practically useless as it cannot be implemented and certainly

is not saving communication resources compared to time-

triggered periodic control. Therefore, establishing strong

Zeno-freeness is important, not only for implementability

and saving resources, as an analytic lower bound on the inter-

event times determines the worst-case scenario in terms of

resource utilization, but also for the stability analysis and

proofs to be complete and meaningful.

Few solutions have been proposed in the literature to

address this problem, see, e.g., [19], [1]. However, these rely

on restrictive assumptions on the noise signal, in particular,

the noise has to be differentiable and its derivative has to be

bounded in an L∞ sense. Moreover, the ensured input-to-

state stability (ISS) or Lp-stability of the closed-loop system

holds with respect to the noise and its time-derivative. When

dealing with real sensors, the differentiability condition and

global boundedness of the derivative of the noise may not

be natural assumptions. The observer-based approach in [17]

overcomes this issue, but these results only apply to linear

systems and involve multiple additional internal models,

thereby requiring extra processing power and energy to run.

An alternative result is studied in [22], where a periodic

event-triggered controller (PETC), in the sense that the

triggering rule is only evaluated at some periodically spaced

discrete instants, is run simultaneously with a continuous

event-triggered controller (CETC), and transmission occurs

when the triggering conditions of both controllers hold. The

downside to this particular method is that, if the state is

close to the origin, transmissions occur periodically, hence,

the communication benefit of ETC might not be preserved.

ETC design under measurement noise becomes even harder

when designing distributed event-triggered controllers for

consensus [20]. We are aware of only one work dealing with

measurement noise in this context, [13], where the control

input is integrated to estimate an upper-bound for the error.

Due to the use of an upper-bound on the error and the

use of an absolute fixed threshold condition, the amount

of controller updates (network bandwidth) required may

become relatively large compared to other ETC consensus

algorithms, see, e.g., [8]. With this in mind, there is a strong

need for event-triggered controllers applicable to systems

where the available output information is corrupted by (addi-

tive) measurement noise, where more natural conditions are

imposed on the type of noise signals.

In this context, we are interested in a general framework

to design event-triggered controllers robust to measurement

http://arxiv.org/abs/2209.00849v1
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noise. The framework that we present is based on space-

regularized (fixed threshold) ETC, see, e.g., [18], in line

with classical event generators, such as [24], [11], [9]. To

analyze the resulting ETC closed-loop system, we present a

new hybrid model, in which a jump models a transmission.

The model does not involve the derivative of the noise

as opposed to [19], [1]. This new model is instrumental,

and, based on it, we provide general prescriptive conditions,

under which both static and dynamic triggering rules can

be designed, to ensure an input-to-state practical stability

property, while ruling out Zeno phenomena. In particular, we

will show that applying space-regularization, i.e., enlarging

the “flow set” of the hybrid model, needs to be done with care

to ensure the existence of a strictly positive (semi-global)

minimum inter-event time, which only requires that an upper-

bound of the noise level is known. Our results apply to the

general scenario whereN plants, possibly interconnected, are

each controlled by an event-triggered controller. We thereby

cover both classical point stabilization problems (N = 1)

as in, e.g., [24], [11], [9], [7], where we also extend the

results to output-feedback control, and consensus problems

(N > 1) as in, e.g., [6], in a unified way. Moreover, we

explain how our framework leads to modifications of the

triggering rules presented in [24], [11] to ensure Zeno-

freeness in presence of measurement noise. We also apply the

framework to consensus seeking problems, where we show

that we can maintain “long” inter-event times even in the

presence of measurement noise. We show this, for instance,

for “robustified” versions of [8], [10]. Lastly, we present

numerical case studies to show the effectiveness of our

technique and to demonstrate the implications of applying

space-regularization.

This work generalizes the results of our preliminary ver-

sion [21]. Compared to [21], where only static state-feedback

controllers were considered, we include several extensions,

such as output-feedback controllers, more general holding

functions and dynamical disturbances. Moreover, the full

proofs are provided here, which are not available in [21].

The remainder of this paper is structured as follows.

In Section II, we present the preliminaries and notational

conventions. Section III contains the problem statement. We

present the hybrid model and the framework in Section IV.

The main results are given in Section V. We apply the

framework to case studies in Section VI. Finally, we illustrate

the obtained results numerically in Section VII, and provide

conclusions in Section VIII.

II. PRELIMINARIES

A. Notation

The sets of all non-negative and positive integers are de-

noted N and N>0, respectively. The fields of all reals and all

non-negative reals are indicated by R and R>0, respectively.

The identity matrix of size N × N is denoted by IN , and

the vectors in R
N whose elements are all ones or zeros are

denoted by 1N and 0N , respectively; the index of 0N or 1N

is dropped when clear from the context. The N ×M zero

matrix is denoted 0N,M . For N vectors xi ∈ R
ni , we use the

notation (x1, x2, . . . , xN ) to denote
[
x⊤1 x⊤2 . . . x⊤N

]⊤
.

Given a pair of square matrices A1, . . . , An, we denote by

diag(A1, . . . , An) the block-diagonal matrix where the main

diagonal blocks consist of the matrices A1 to An and all

other blocks are zero matrices. By 〈·, ·〉 and | · | we denote

the usual inner product of real vectors and the Euclidean

norm, respectively. For a measurable signal w : R>0 → R
nw ,

we denote by ‖w‖∞ := ess supt∈R>0
|w(t)| its L∞-norm

provided it is finite, in which case we write w ∈ L∞. A

function w : R>0 → R
nw is said to be càdlàg “continue à

droite, limite à gauche”, denoted by w ∈ PC, when there

exists a sequence {ti}i∈N with ti+1 > ti > t0 = 0 for all

i ∈ N and ti → ∞ when i → ∞ such that w is continuous

on (ti, ti+1) where limt↑ti w(t) exists for all i ∈ N>0 and

limt↓ti w(t) exists for all i ∈ N with limt↓ti w(t) = w(ti),
i.e., w is piecewise continuous, right continuous and left

limits exist for each ti, i ∈ N>0. Given a set W ⊆ R
nw ,

we denote by PCW the set of functions {w ∈ PC | w(t) ∈
W for all t ∈ R>0}. Note that continuous functions are

contained in PC, {ti}i∈N can be chosen arbitrarily then.

For any x ∈ R
N , the distance to a closed non-empty set

A is denoted by |x|A := miny∈A |x − y|. The interior of

a set A is denoted intA. Given a vector x ∈ R
nx and a

set A ⊆ R
nx × R

ny , Πx(A) denotes the projection of A
onto the x-plane R

nx , i.e., Πx(A) = {z ∈ R
nx | ∃y ∈

R
ny s.t. (z, y) ∈ A}. We consider K, K∞ and KL functions

as defined in [12, Chapter 3]. By ∧ and ∨ we denote the

logical and and or operators respectively.

B. Graph theory

A weighted graph G := (V , E , A) consists of a vertex

set V := {1, 2, ..., N}, a set of edges E ⊂ V × V and an

adjacency matrix A ∈ R
N×N . An ordered pair (i, j) ∈ E ,

with i, j ∈ V , is an edge from i to j. For an edge (i, j) ∈ E , i
is called the in-neighbor of j, and j is called the out-neighbor

of i. All (i, j) ∈ E have an associated weight, denoted αij ∈
R>0. The adjacency matrix A := (ai,j), i, j ∈ V of a graph

is defined as

ai,j :=

{
αij if (i, j) ∈ E ,

0 otherwise.
(1)

The set V in
i of the in-neighbors of i is defined as V in

i :=
{j ∈ V | (j, i) ∈ E } and the set of out-neighbors as

V out
i := {j ∈ V | (i, j) ∈ E }. An undirected graph

is a graph where, for any edge (i, j) ∈ E , (j, i) is also

in E . A sequence of edges (i, j) ∈ E connecting two

vertices is called a directed path. For a connected graph

G , there exists a path between any two vertices in V . The

in-degree is defined as dini :=
∑

j∈V in

i
αji and the out-

degree as douti :=
∑

j∈V out

i
αij . The in-degree matrix Din

and out-degree matrix Dout are diagonal matrices with dini
respectively douti as the ith diagonal element. A weight-

balanced digraph (directed graph) is a digraph where douti =
dini for all i. The Laplacian L of a graph G is defined as

L := Dout −A. For an undirected graph, Din := Dout.
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C. Hybrid systems

Based on the formalism of [12], we model hybrid systems

H(F, C, G,D,X,V) as
{

ξ̇ ∈ F (ξ, ν)

ξ+ ∈ G(ξ, ν)

(ξ, ν) ∈ C,
(ξ, ν) ∈ D, (2)

where ξ ∈ X ⊆ R
nξ denotes the state, ν an external

input taking values in V ⊆ R
nv , C ⊆ X × V the flow

set, D ⊆ X × V the jump set, F : X × V ⇒ R
nξ the

(set-valued) flow map and G : X × V ⇒ R
nξ the (set-

valued) jump map. Sets C and D are assumed to be closed.

We refer to [12] for notions related to (2) such as hybrid

time domains or hybrid arcs. For a hybrid time domain

E, suptE := sup {t ∈ R>0 : ∃j ∈ N such that (t, j) ∈ E},

supj E := sup {j ∈ N : ∃t ∈ R>0 such that (t, j) ∈ E} and

supE := (suptE, supj E). We consider the notion of

solutions proposed in [14].

Definition 1 ([14]): Given ν ∈ PCV, a hybrid arc φ is a

solution1 to H, if

(S1) for all j ∈ N such that Ij := {t | (t, j) ∈
domφ} has nonempty interior, it holds that φ̇(t, j) ∈
F (φ(t, j), ν(t)) for almost all t ∈ int Ij and

(φ(t, j), ν(t)) ∈ C for all t ∈ int Ij ;

(S2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

(φ(t, j), ν(t)) ∈ D and φ(t, j + 1) ∈ G(φ(t, j), ν(t)).
We will also use the following definitions.

Definition 2: Given an input ν ∈ PCV, a solution φ is

called non-trivial, if domφ contains at least two points. We

say that φ is maximal, if there does not exist another solution

ψ to H for the same input ν such that domφ is a proper

subset of domψ (i.e., domφ ⊂ domψ, but domφ 6= domψ)

and φ(t, j) = ψ(t, j) for all (t, j) ∈ domφ. We denote the

set of all maximal solutions to H for input ν by SH(ν). We

say that the solution φ is complete, if domφ is unbounded,

and we say that it is t-complete, if supt domφ = ∞. We say

that H is persistently flowing if all maximal solutions for all

ν ∈ PCV are t-complete.

Remark 1: If C and D do not depend on the input ν,

the inputs can be taken as measurable functions instead of

piecewise continuous; see [14] for further insights on this

point.

In this paper, we are interested in systems H that are

persistently flowing and we focus on the stability notions

below.

Definition 3: For a persistently flowing hybrid system H,

a non-empty closed set A ⊂ R
nξ is input-to-state practically

stable (ISpS), if there exist γ ∈ K, β ∈ KL and d ∈ R>0

such that for any input ν ∈ PCV and any associated solution

ξ,

|ξ(t, j)|A 6 β(|ξ(0, 0)|A, t) + γ(‖ν‖∞) + d, (3)

for all (t, j) ∈ dom ξ. If (3) holds with d = 0, then A is

said to be input-to-state stable (ISS) for H.

To prove that a given non-empty, closed set A is IS(p)S, we

will use the following Lyapunov conditions; recall that, when

1This corresponds to the notion of e-solution, see [14, Definition 4.3].

C1 P1u1

ỹ1

ETM 1 ỹ1̂̃y . . .

CN PNuN

ỹN

ETM N ỹN̂̃y

Network

physical interconnection

Fig. 1: Networked control setup with Event-Triggering

Mechanism (ETM). ETM i determines when the current

noisy output ỹi is transmitted over the network.

H is persistently flowing, necessarily G(D) × V ⊂ C ∪ D,

otherwise, not all maximal solutions would be complete.

Proposition 1: Suppose H is persistently flowing and let

A ⊂ R
nξ be a non-empty closed set. If there exist V :

domV → R>0, α, α, α ∈ K∞, γ ∈ K and c ∈ R>0 such

that

i) Πξ(C ∪ D) ⊂ domV and V is continuously differen-

tiable on an open set containing Πξ(C),
ii) for any ξ ∈ X,

α(|ξ|A) 6 V (ξ) 6 α(|ξ|A),

iii) for all (ξ, ν) ∈ C and all f ∈ F (ξ, ν),

〈∇V (ξ), f〉 6 −α(|ξ|A) + γ(|ν|) + c,

iv) for all (ξ, ν) ∈ D and all g ∈ G(ξ, ν),

V (g)− V (ξ) 6 0,

then A is ISpS. If, moreover, c = 0 in item iii), then A is

ISS.

Sketch of proof Let ν ∈ PCV and ξ be an associated

solution to H, (t, j) ∈ dom ξ and 0 = t0 6 t1 6 . . . 6
tj+1 = t the jump times of ξ which satisfy dom ξ ∩
([0, t]× {0, 1, . . . , j}) = ⋃

i∈{0,1,...,j}

[ti, ti+1]× {i}. For each

i ∈ {1, 2, . . . , j} and for almost all s ∈ [ti, ti+1], item

3) of Proposition 1 implies that
〈
∇V (ξ(s, i)), ξ̇(s, i)

〉
6

−α(|ξ(s, i)|A) + γ(|ν(s)|) + c. Similar arguments as in [23,

Lemma 2.14] complete the proof as 1) V does not increase

at jumps due to item iv) of Proposition 1, 2) item ii) holds,

and 3) H is persistently flowing. �

III. PROBLEM FORMULATION

We consider a collection of N ∈ N>0 intercon-

nected plants P1, P2, . . . , PN . Each plant Pi, i ∈ N :=
{1, 2, . . . , N}, is equipped with a sensor that communicates

its measured output, which is affected by measurement noise,

to the controllers C1, C2, . . . , CN via a digital packet-based

network, see Fig. 1. Plant Pi, i ∈ N , has state xp,i ∈ R
nxp,i ,

ideal output yi ∈ R
ny,i and measured output ỹi ∈ R

ny,i ,
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affected by noise, with dynamics

Pi :





ẋp,i = fp,i(xp, ui, vi),

yi = gp,i(xp,i),

ỹi = gp,i(xp,i) + wi = yi + wi,

(4)

where ui ∈ R
nu,i is the control input of Pi, xp :=

(xp,1, xp,2, . . . , xp,N ) is the concatenated plant state, vi ∈
R

nv,i is a process disturbance, wi ∈ R
ny,i is the i-th

measurement noise, fp,i : Rnp × R
nu,i × R

nv,i → R
nxp,i

is continuous and gp,i : R
nxp,i → R

ny,i is continuously

differentiable, where np :=
∑

i∈N nxp,i
. Note that fp,i may

depend on the states of other plants, and, as such, physical

couplings are allowed, as illustrated in Fig. 1. We assume

that the process disturbances vi and the measurement noises

wi satisfy the following assumption.

Assumption 1: For each i ∈ N , vi ∈ L∞ ∩ PC and

wi ∈ PCWi
, where Wi :=

{
wi ∈ R

ny,i

∣∣ |wi| 6 wi

}
for

some known wi ∈ R>0.

Assumption 1 imposes natural boundedness conditions on

the process disturbance and the noise and it does not im-

pose restrictions on the existence or boundedness of their

derivatives, as was required in, e.g., [19], [1].

The controller Ci with state xc,i ∈ R
nxc,i and nxc,i

∈ N,

i ∈ N , is given by

Ci :

{
ẋc,i = fc,i(xc,i, ỹi, ̂̃y ),
ui = gc,i(xc,i, ỹi, ̂̃y ),

(5)

with fc,i : R
nxc,i ×R

ny,i ×R
ny → R

nxc,i and gc,i : R
nxc,i ×

R
ny,i × R

ny → R
nu,i continuous maps, ny :=

∑
i∈N ny,i

and where ̂̃y denotes the sampled “networked” version of the

outputs, which will be made more precise next. Note that

static controllers are included in (5) by taking nxc,i
= 0.

The i-th sensor, i ∈ N , broadcasts its output ỹi to the

controllers C1, C2, . . . , CN over the digital network. The

corresponding transmissions occur at time instants tik, k ∈ N,

which are generated by a local Event-Triggering Mechanism

(ETM), which is to be designed. Because of the packet-

based communication over the network, the i-th controller,

which depends on the outputs of Pj , j ∈ N , does not have

continuous access to ỹ := (ỹ1, ỹ2, . . . , ỹN), but only to its

estimate ̂̃y := ( ̂̃y 1, ̂̃y 2, . . . , ̂̃yN ) and to its local output ỹi.
When ETM i ∈ N , transmits the measured output of plant

i over the network, ̂̃y i is updated according to

̂̃y i((t
i
k)

+) = ỹi(t
i
k). (6)

In between transmissions the estimate evolves according to a

holding function fh,i : R
ny,i → R

ny,i , fh,i continuous, i.e.,

˙̂
ỹ i = fh,i( ̂̃y i). (7)

Consequently, each local controller that uses yi should im-

plement the holding function fh,i locally. Of course, when

a controller Cj does not depend on ỹi, Cj does not need

to generate ̂̃y i, but, to derive the model, we proceed as if it

would for the sake of notational convenience. The case of

a Zero-Order-Hold (ZOH), for instance, corresponds to the

choice fh,i = 0. For modeling purposes, we define ŷi and

ŵi, where

ŷi((t
i
k)

+) = y(tik),
˙̂yi = fh,i(ŷi + ŵi),

ŵi((t
i
k)

+) = w(tik),
˙̂wi = 0.

(8)

Hence, ŵi is the value of wi at the last transmission instant

of ETM i. Due to the aforementioned definitions, we obtain

that ̂̃y i = ŷi + ŵi.

We define the ideal network-induced error ei as the dif-

ference between the sampled output ŷi without measurement

noise and the current output yi without measurement noise:

ei := ŷi − yi. (9)

Note that ei is not known by the ETM, and therefore, cannot

be used by the corresponding local triggering condition

for determining tik, k ∈ N. Hence, we also define the

measured network-induced error ẽi as the difference between

the estimated output ̂̃y i and the current measured output ỹi,
which are both affected by noise, i.e.,

ẽi := ̂̃y i − ỹi = ei + ŵi − wi. (10)

The local ETM at plant i does have access to ẽi. We denote

the concatenated variables corresponding to (9) and (10) as

e := (e1, e2, . . . , eN ) and ẽ := (ẽ1, ẽ2, . . . , ẽN ), respectively.

We proceed by emulation and assume that the controllers

C1, C2, . . . , CN are designed such that, in closed loop with

the plants P1, P2, . . . , PN , the closed-loop system satisfies

an input-to-state stability property in the absence of a com-

munication network (i.e., under perfect communication in

the sense that ̂̃y = ỹ). We will formalize these properties

in Section V below. Based on these controllers, which can

be designed with any (nonlinear) design tool as long as the

assumption stated in Section V holds, our objective is to

determine the transmission times tik, k ∈ N, for any i ∈ N ,

based on suitable local ETMs, to ensure that:

(a) the combined closed-loop system (4), (5) satisfies an

input-to-state practical stability property in the presence

of measurement noise and process disturbances;

(b) there exists a strictly positive lower-bound on the time

between any two transmissions generated by ETM i,
i.e., for any initial condition there exists a Ti > 0 such

that tik+1 − tik > Ti for all k ∈ N, i ∈ N .

This problem formulation is further formalized in the next

section in terms of hybrid systems concepts.

IV. HYBRID MODEL

We model the overall system as a hybrid system H
as in Section II-C, for which a jump corresponds to the

broadcasting of one of the noisy outputs ỹi, i ∈ N , over

the network. We allow the local triggering (transmission)

conditions to depend on a local auxiliary variable denoted

ηi ∈ R>0, i ∈ N , as is the case in dynamic triggering [11],

[7]. The dynamics of ηi is designed in the following. We will

also consider static triggering conditions as a special case,

in which case ηi is not needed.
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We define η := (η1, η2, . . . , ηN ) ∈ R
N
>0, and stack the

variables x := (x1, x2, . . . , xN ) with xi := (xp,i, xc,i), e :=
(e1, e2, . . . , eN) and ŵ := (ŵ1, ŵ2, . . . , ŵN ) in

χ := (x, e, ŵ). (11)

The full state for H becomes ξ := (χ, η) = (x, e, ŵ, η) ∈
X, where X := R

nx × R
ny × W × R

N
>0, W := W1 ×

W2 × . . . × WN with Wi as defined in Assumption 1 and

nx :=
∑

i∈N

(
nxp,i

+ nxc,i

)
. We define the concatenated

exogenous inputs ν := (v, w) ∈ V, where V := V×W , V :=
R

nv,1 ×R
nv,2 × . . .×R

nv,N and with v := (v1, v2, . . . , vN )
and w := (w1, w2, . . . , wN ). The flow map F : X×V → X

can then be written as

F (ξ, ν) :=

(f(x, e, ŵ, v, w), g(x, e, ŵ, v, w),0ny
, Ψ̄(ỹ, ̂̃y , ẽ, u, η)).

(12)

Based on (4), (5) and (10), we obtain

f(x, e, ŵ, v, w) := (f1(x, e, ŵ, v1, w1), f2(x, e, ŵ, v2, w2),
. . . , fN(x, e, ŵ, vN , wN )), where fi : R

nx × R
ny × W ×

R
nv,i × R

ny,i → R
nx,i is given by

fi(x, e, ŵ, vi, wi) :=[
fp,i (xp, gc,i(xc,i, gp,i(xp,i) + wi, gp(xp) + e+ ŵ), vi)

fc,i (xc,i, gp,i(xp,i) + wi, gp(xp) + e+ ŵ)

]

with gp(xp) := (gp,1(xp,1), gp,2(xp,2), . . . , gp,N(xp,N )).
Based on (4), (7) and (10), we obtain g(x, e, ŵ, v, w) :=
(g1(x, e, ŵ, v1, w1), g2(x, e, ŵ, v2, w2), . . . ,
gN (x, e, ŵ, vN , wN )), where gi(x, e, ŵ, vi, wi) :=
fh,i(gp,i(xp,i) + ei + ŵi)− fy,i(x, e, ŵ, vi, wi) with

fy,i(x, e, ŵ, vi, wi) :=

∂gp,i
∂xp,i

fp,i (xp, gc,i(xc,i, gp,i(xp,i) + wi, gp(xp) + e+ ŵ), vi) .

The function Ψ̄ defines the dynamics of the

local triggering variables η, and it is defined

as Ψ̄(ỹ, ̂̃y , ẽ, u, η) := (Ψ̄1(η1, o1), Ψ̄2(η2, o2), . . . ,

Ψ̄N (ηN , oN )), where oi := (ỹi, ̂̃y , ẽi, ui) ∈ R
no,i with

no,i := 3ny,i + nu,i is the locally available information at

ETM i, and

Ψ̄i(ηi, oi) = Ψi(oi)− ϕi(ηi), (13)

with ϕi, i ∈ N , any class-K∞ function, and Ψi in (13) will

be constructed in the following.

The flow set C ⊆ X× V is given by

C :=
⋂

i∈N

Ci (14)

with

Ci := {(ξ, ν) ∈ X× V | ηi + θiΨi(oi) > 0} , (15)

where θi ∈ R>0 is a nonnegative tuning parameter. By

selecting a larger θi, the first triggering occurs earlier than

when θi is small, given the same initial condition, see [11,

Proposition 3.2], where this is shown for the particular case

of state-feedback and specific functions Ψi, i ∈ N , related

to [24]. Generally, enlarging θi results in faster convergence

but smaller inter-event times compared selecting θi smaller,

which allows to tune bandwidth usage versus performance,

see [11] for more details.

The jump set is given by

D :=
⋃

i∈N

Di (16)

with

Di :=
{
(ξ, ν) ∈ X× V | ηi + θiΨi(oi) 6 0

∧ Ψi(oi) 6 0
}
.

(17)

The jump map G : X× V ⇒ X is, for any (ξ, ν) ∈ X× V,

given by

G(ξ, ν) :=
⋃

i∈N

Gi(ξ, ν) (18)

with

Gi(ξ, ν) :=

{{
(x,Γie,Γiŵ + Γiw, η)

}
, when (ξ, ν) ∈ Di,

∅, when (ξ, ν) 6∈ Di,
(19)

where Γi := diag (∆i,1,∆i,2, . . . ,∆i,N ) with

∆i,j :=

{
0ny,j ,ny,j

, if i 6= j,

Iny,j
, if i = j,

(20)

and where Γi := Iny
−Γi. For future use, we use the compact

notation Fχ to denote the flow map of variable χ as

Fχ(χ, ν) :=
(
f(x, e, ŵ, v, w), g(x, e, ŵ, v, w),0ny

)
, (21)

and the jump map Gχ defined as

Gχ(χ, ν) :=
⋃

i∈N

{
(x,Γie,Γiŵ + Γiw)

}
. (22)

The maps Fχ and Gχ will be used to formulate suitable

conditions on the physical system (in absence of a network)

for the design of suitable event generators.

Because of the chosen modelling setup, in particular (8)

and (10), H does not depend on the time-derivative of w as

in [19], [1]. This modeling choice is instrumental to work

under more general and more natural assumptions on the

measurement noise, see Assumption 1.

To formalize objective (ii) stated at the end of Section III,

we introduce, for any solution ξ to H for ν ∈ PCV and

i ∈ N , the set

Ti(ξ, ν) :=
{
(t, j) ∈ dom ξ | (t, j + 1) ∈ dom ξ ∧ (23)

(ξ(t, j), ν(t)) ∈ Di ∧ (ξ(t, j + 1), ν(t)) ∈ Gi(ξ(t, j), ν(t))
}
.

In words, Ti(ξ, ν) contains all hybrid times belonging to the

hybrid time domain of a solution ξ to H given input ν at

which a jump occurs due to triggering condition i (Di and

Gi). The next (new) definition will be considered in place

of item (ii) at the end of Section III in the rest of this paper.

Definition 4: System H has a semi-global individual min-

imum inter-event time (SGiMIET) if, for all ∆ > 0 and all

i ∈ N , there exists a τ iMIET > 0 such that for any input
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v ∈ PCV and associated solution ξ with |ξ(0, 0)| 6 ∆, for

all (t, j), (t′, j′) ∈ Ti(ξ, ν),
t+ j < t′ + j′ =⇒ t′ − t > τ iMIET. (24)

If τ iMIET can be chosen independently of ∆ for all i ∈ N ,

then we say that H has a global individual minimum inter-

event time (GiMIET).

Definition 4 means that the (continuous) time between two

successive transmission instants due to a trigger of condition

i are spaced by at least τ iMIET units of time, and that τ iMIET

depends on the set of initial conditions in general.

Using the hybrid model H and the terminology in Defini-

tion 4, we can now formally state the problem formulation

at the end of Section III as follows: For a given non-empty

closed set A ⊂ R
nx ×R

ny ×W (describing a target set for

the state χ ∈ R
nx ×R

ny ×W), synthesize the functions Ψi,

i ∈ N , such that AH := {ξ ∈ X | χ ∈ A ∧ η = 0} is ISpS

w.r.t. AH and H has the SGiMIET property for all θi ∈ R>0,

i ∈ N .

V. MAIN RESULT

A. Main Assumption

As indicated in Section III, we assume that the controllers

Ci, i ∈ N , are designed such that the closed-loop system

satisfies suitable stability properties, as formalized below in

terms of the data of H. We show in Section VI how these

properties can be naturally obtained for several important

case studies.

Assumption 2: There exist α, α, α ∈ K∞, γ ∈ K, βi ∈ K
and continuous functions δi : R

no,i → R>0, where no,i =
3ny,i + nu,i, for all i ∈ N , a non-empty closed set A ⊂
R

nx × R
ny ×W and a continuously differentiable function

V : Rnx × R
ny ×W → R>0 such that

i) for any χ ∈ R
nx × R

ny ×W ,

α(|χ|A) 6 V (χ) 6 α(|χ|A), (25)

ii) for all χ ∈ R
nx × R

ny ×W and ν ∈ V,

〈∇V (χ), Fχ(χ, ν)〉 6− α(|χ|A) + γ(|ν|)
+

∑

i∈N

(βi(|ẽi|)− δi(oi)) ,
(26)

iii) for all χ ∈ R
nx × R

ny × W and ν ∈ V such that

(ξ, ν) ∈ D and g ∈ Gχ(χ, ν),

V (g)− V (χ) 6 0, (27)

iv) for every p > 0 and ν ∈ PCV, there exists q > 0 such

that for all φ ∈ SH(ν,B)2 with B := {ξ ∈ X | |ξ| 6 p},

|φ(t, j)| 6 q for all (t, j) ∈ domφ.

Items i)-iii) of Assumption 2 impose Lyapunov conditions

on the χ-system of H. In particular, items i) and ii) imply that

the χ-system satisfies an input-to-state dissipativity property

during flow w.r.t. the set A, which directly connects to the

controller robustly stabilizing A. This property may be estab-

lished by ignoring the network and treating ei as exogeneous

2SH(ν,B) denotes the set of maximal solutions φ for the hybrid system
H with φ(0, 0) ∈ B and input ν.

inputs. Item iii) implies that the Lyapunov function does not

increase at jumps. This condition directly holds when the

expression of V only involves x, for instance, as x evolves

continuously over time and is thus not affected by jumps. As

we will see in Section VI-B.2, in some existing ETC setups,

the Lyapunov function involves e and the auxiliary variables

ηi may be updated after a transmission (and not kept constant

as we do here). In such cases, item iii) is required to ensure

that transmissions do not destabilize the system. Items i)-iii)

of Assumption 2 imply that, in absence of a digital network

(and thus, ei = ẽi = 0 and ŵi = wi), the set A is input-to-

state stable with respect to inputs ν.

Item iv) is a boundedness property of the solutions to H;

this condition directly follows for many relevant cases from

items i)-iii) of Assumption 2, such as when A is compact,

or when Πx(A) is compact and a ZOH is employed. More

details are given in Section V-D, particularly Lemma 1. In

other cases, e.g., when Πx(A) is unbounded or when A is

not compact and a non-zero holding-function is used, the

dynamics of the system have to be exploited to establish item

iv) of Assumption 2, as we will show, e.g., in the consensus

case study in Section VI-B.

Again, a broad range of examples of systems verifying

Assumption 2 are provided in Section VI. Items i), ii)

and iv) may be verified when designing the controllers

C1, C2, . . . , CN and holding functions fh,i, i ∈ N , at the

first step of emulation. The challenge is to design the local

triggering conditions to handle the potentially destabilizing

effect due to the measurement noise and the true network-

induced error ei in ẽi in item ii) of Assumption 2, which is

addressed in the next subsection.

B. Dynamic triggering rules

The next theorem explains how to design the dynamics of

the dynamic triggering variable η, in particular Ψi, i ∈ N , in

(13) to ensure the desired objectives based on Assumptions

1, 2. Its proof is provided in the appendix.

Theorem 1: Consider system H as given by (12), (15),

(17) and (19) and suppose Assumptions 1 and 2 hold. We

define for all i ∈ N , ξ ∈ X and all ν ∈ V

Ψi(oi) := δi(oi)− βi(|ẽi|) + ci (28)

with ci > βi(2wi) being a tuning parameter and wi and βi
come from Assumptions 1 and 2, respectively. System H
with (28) is persistently flowing, has a SGiMIET and the set

AH := {ξ ∈ X | χ ∈ A ∧ η = 0} is ISpS for all θi ∈ R>0,

i ∈ N .

Theorem 1 provides the expression of Ψi, i ∈ N , which

ensures that the ISS property of the set A guaranteed by As-

sumption 2 in the absence of the network, is approximately

preserved in the presence of the digital network. Moreover,

the existence of a strictly positive lower-bound on the inter-

event times of each triggering mechanism is guaranteed. The

interest of Theorem 1 lies in its basic nature, generality and

in revealing the main concepts as a “prescriptive framework,”

and we will show its broad applicability in several important

applications in Section VI.
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The expression of Ψi in (28) is based on so-called space-

regularization, as by introducing ci, we enlarge the flow

set to ensure the existence of a SGiMIET. While space-

regularization is well known in the hybrid systems literature

and has been used in different forms in event-triggered

control, see, e.g., [4], [9], [2], [18], the selection of ci has

to be done carefully in the presence of measurement noise,

because the Zeno-freeness a priori only holds if ci satisfies

the condition mentioned in Theorem 1.

A few remarks are in order. First, note that the con-

sequence of ci > βi(2wi) in Theorem 1 is that we

obtain a practical stability notion, i.e., the constant d in

(3) is non-zero, see Remark 3 below for more details.

Second, interestingly, Theorem 1 does not require to make

assumptions on the differentiability of wi, and a fortiori on

boundedness properties of ẇi, as was required in various

works in ETC considering measurement noise, see, e.g.,

[19], [1]. Additionally, we may exploit the structure present

in specific scenarios or ETC mechanisms to obtain less

conservative bounds for the parameters ci and, in some cases,

a global individual MIET (see Definition 4), as opposed to

a semiglobal one as in Theorem 1, as will be illustrated in

Section VI.

C. Static triggering rules

We can derive similar results when the triggering condi-

tions are static, i.e., when no variable ηi is used to define

the transmission instants. In this case, we obtain the hybrid

system Hs defined as

χ̇ = Fχ(χ, ν), (χ, ν) ∈ Cs,

χ+ ∈ Gχ(χ, ν), (χ, ν) ∈ Ds,
(29)

where
Cs :=

⋂

i∈N

Cs
i , Ds :=

⋃

i∈N

Ds
i (30)

with the sets Cs
i ,Ds

i as

Ds
i := {(χ, ν) ∈ R

nx × R
ny ×W × V | Ψi(oi) 6 0},

Cs
i := {(χ, ν) ∈ R

nx × R
ny ×W × V | Ψi(oi) > 0},

(31)

where Ψi(oi) 6 0 is a (local) static triggering condition,

which is designed according to the following result.

Corollary 1: Consider system (29) and suppose Assump-

tions 1 and 2 hold. We define for all i ∈ N , χ ∈ R
nx ×

R
ny ×W and ν ∈ V

Ψi(oi) := δi(oi) + ci − βi(|ẽi|) (32)

with ci > βi(2wi) a tuning parameter. The system Hs with

(32) is persistently flowing, has a SGiMIET, and the set A
is ISpS.

The proof of Corollary 1 follows similar steps as the proof

of Theorem 1, and is therefore omitted.

Remark 2: Corollary 1 and Assumption 2 allow us to

consider the special case where δi = 0 for some i ∈ N .

In this case, Ψi is given by Ψi(oi) := ci − βi(|ẽi|), with

ci > βi(2wi) a tuning parameter. Note that triggering

conditions of this form are often called absolute triggering

conditions or fixed threshold policies in the event-triggered

control literature, see, e.g., [4], [2], [18].

Remark 3: The parameters ci for i ∈ N in Theorem 1

and Corollary 1 are directly related to the constant d in the

ISpS definition (3). From the proof of Theorem 1, it follows

that (3) holds with d =
∑

i∈N ci, where ci comes from

(28). Hence, for a tighter ultimate bound on |ξ(t, j)|AH
, we

require that the ci’s are smaller. Recall, however, that due

to Theorem 1, ci is lower-bounded by βi(2wi), and thus

the infimum value of d is dmin =
∑

i∈N βi(2wi) to ensure

proper SGiMIET and for handling measurement noise. On

the other hand, selecting a small ci implies a small lower

bound on the inter-event times, i.e., that the constants τ iMIET

in (24) are small. Hence, this suggests a trade-off between

large lower bounds on the inter-event times and “asymptotic

closeness” to AH in terms of d, see (3), which is tunable via

the selection of ci, i ∈ N .

Remark 4: We recover as a particular case the result of

[4, Remark V.3] when we specialize our results to the same

setting, i.e., when a single linear plant model is considered

and ZOH devices are implemented. Indeed if βi is the

identity function as in [4], we recover the lower-bound

ci > 2wi in Theorem 1. The results here are more general

as they apply to a broad range of nonlinear and distributed

problem setups, as we will show in Section V below.

Remark 5: Due to the modeling similarities, this frame-

work can also be applied to [7] with minimal adjustments. In

[7], time-regularization is used to design triggers for classes

of nonlinear systems in absence of measurement noise. By

including this framework, these triggering techniques can be

made robust to measurement noise with minimal changes.

Due to the additional (notational) burden of including time-

regularization, and the fact that our technique works without

time-regularization, we opted to omit time-regularization

from this paper to ensure that the main message is not blurred

by too many technicalities. However, we would like to point

out that by using time-regularization, there is no need for

a (strictly positive) lower bound on the constants ci, and,

hence, we can obtain ISS properties in this case by selecting

ci = 0 for all i ∈ N . As will be demonstrated in Section

VII, including space-regularization may still be beneficial to

obtain more favorable inter-event times close to the desired

stability set A.

D. Boundedness of ξ

We provide the following lemma to ensure item iv) based

on items i)-iii) of Assumption 2 for several common cases.

Lemma 1: Consider system H as given by (12), (15), (17)

and (19), with the trigger dynamics as given by (28) in case

of dynamic triggering and (32) in case of static triggering.

When Assumption 1 and items i)-iii) of Assumption 2 hold,

and one of the following conditions is met:

• A is compact;

• Πx(A) is compact and fh,i = 0 for all i ∈ N ;

then item iv) of Assumption 2 also holds.

The proof of this lemma 1 is provided in the Appendix.

Other cases for which Assumption 2 is satisfied (without
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having the conditions of Lemma 1) are discussed in the next

section (e.g., the consensus case).

VI. CASE STUDIES

In this section, we revisit and extend several existing

event-triggering techniques of the literature to handle mea-

surement noise, exploiting the prescriptive framework laid

down in the previous sections. We want to stress that a

non-exhaustive sample of a few well-known techniques is

considered, however, many more can be handled given the

generality of our framework. To apply the framework, we

prove that Assumption 2 is verified, which allows us to then

directly apply Theorem 1 and Corollary 1. At the end of

this section, in Table I, the original triggering rules and their

(robustified) counterparts are summarized.

A. The nonlinear single-system case

In this section, we aim to stabilize the origin of a single

plant using a dynamic output-feedback controller, thereby

revisiting the techniques of [2], [24], [11], originally devel-

oped for static feedback laws ignoring measurement noise.

As such, we consider a single plant P and a single controller

C, i.e., N = 1 in Fig. 1, where the plant is given by

P :

{
ẋp = fp(x, u, v)

y = gp(xp)
(33)

and the ‘ideal’ non-networked feedback controller by

C :

{
ẋc = fc(xc, y)

u = gc(xc, y).
(34)

The plant and controller states are concatenated as x :=
(xp, xc), whose dynamics are then given by

ẋ = f(x, ε, v) :=

[
fp(xp, gc(xc, gp(xp) + ε), v)

fc(xc, gp(xp) + ε)

]
. (35)

where ε ∈ R
ny can be perceived as an additive measurement

error. We employ in this case a ZOH, i.e., fh = 0 in (7). We

assume that the following properties hold.

Assumption 3: Maps fp, fc and gc are locally Lipschitz

and gp is continuously differentiable. Additionally, there

exist locally Lipschitz α, α, α, ̺,∈ K∞, ϑ ∈ K, a locally

Lipschitz positive definite function ζ : R>0 → R>0 and a

continuously differentiable Lyapunov function W : Rn →
R>0 satisfying, for all x ∈ R

nx , w ∈ R
ny and v ∈ V ,

α(|x|) 6W (x) 6 α(|x|) (36)

and

〈∇W (x), f(x, ε, v)〉
6 −α(|x|)− ζ(|y|) + ̺(|ε|) + ϑ(|v|). (37)

Assumption 3 implies that the origin of ẋ = f(x, ε, v) is ISS

with respect to (ε, v). We derive the following result from

Assumption 3.

Proposition 2: Consider system (33) with controller (34)

and suppose Assumption 3 holds. Then all conditions of

Assumption 2 are met for A = {χ ∈ R
nx × R

ny × W |
x = 0} with β(s) = ̺(2s) for s > 0, δ(o) = ζ(12 |ỹ|) for

ỹ ∈ R
ny and V (χ) =W (x) as in Assumption 3.

Proof: We take V (χ) = W (x) for all χ = (x, e, ŵ) ∈
R

nx × R
ny × W . By Assumption 3, items i) and iii) of

Assumption 2 hold. Let χ = (x, e, ŵ) ∈ R
nx ×R

ny ×W . In

view of the definition of Fχ, (10) and (37),

〈∇V (χ),Fχ(χ, ν)〉 = 〈∇W (x), f(x, ẽ + w, v)〉
6 −α(|x|)− ζ(|y|) + ̺(|ẽ+ w|) + ϑ(|v|), (38)

where we take ε = ẽ+w, such that the input to the feedback

controller is ̂̃y = y+ ẽ+w. Next, we use the weak triangular

inequality, see [16], i.e., for any γ ∈ K, γ(a+ b) 6 γ(2a)+
γ(2b) for any a, b ∈ R>0, to obtain

〈∇V (χ), Fχ(χ, ν)〉
6 −α(|x|) − ζ(|y|) + ̺(2|ẽ|) + ̺(2|w|) + ϑ(|v|). (39)

From the weak triangular inequality we also obtain −ζ(|y|)−
ζ(|w|) 6 −ζ

(
1
2 (|y|+ |w|)

)
6 −ζ

(
1
2 |y + w|

)
= −ζ

(
1
2 |ỹ|

)
.

Thus,

〈∇V (χ), Fχ(χ, ν)〉
6− α(|x|) − ζ(|y|)− ζ(|w|) + ̺(2|ẽ|)
+ ̺(2|w|) + ζ(|w|) + ϑ(|v|)

6− α(|x|) − ζ
(
1
2 |ỹ|

)
+ ̺(2|ẽ|) + γ(|ν|)

(40)

for some γ ∈ K and where we recall that ν = (v, w). Hence

item ii) of Assumption 2 holds. Since Πx(A) = {0} (which

is compact) and fh = 0, item iv) of Assumption 2 holds as

well due to Lemma 1.

Proposition 2 implies that, for any bounded measurement

noise as defined by Assumption 1, the trigger dynamics

defined in Theorem 1 and the static trigger defined in

Corollary 1 render the origin of the closed-loop system ISpS

with the SGiMIET property.

As a special case of Proposition 2, when the output of the

system is the full state, i.e., when y = xp, and when the

controller is static, i.e., when u = k(xp) as in [24], [11], the

conditions on Assumption 3 can be relaxed as follows.

Assumption 4: The maps fp and k are Lipschitz continu-

ous on compacts. Additionally, there exist α, α, α, ζ,∈ K∞,

ϑ ∈ K and a continuously differentiable Lyapunov function

W : Rn → R satisfying, for any x ∈ R
nx ,

α(|x|) 6W (x) 6 α(|x|),
〈∇W (x),f(x, ε, v)〉 6 −α(|x|) + ̺(|ε|) + ς(|v|), (41)

implying that the origin of ẋ = f(x, ε, v) is ISS with respect

to ε and v.

We derive the following result from Assumption 4.

Corollary 2: Consider system ẋ = fp(x, u, v) with con-

troller u = k(x) and suppose Assumption 4 holds. Then

all conditions of Assumption 2 are met for A = {χ ∈
R

nx × R
ny × W | x = 0} with β(s) = ̺(2s) for s > 0,

δ(o) = σα(12 |ỹ|) for ỹ ∈ R
nx , with σ ∈ (0, 1) a tuning

parameter, and V (χ) =W (x) as in Assumption 4.
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Proof: Let x ∈ R
nx . By noting that y = x, we obtain,

for any σ ∈ (0, 1),

−α(|x|) =− (1 − σ)α(|x|) − σα(|x|)
=− (1 − σ)α(|x|) − σα(|y|). (42)

The result is then obtained by following similar steps as the

proof of Proposition 2.

Remark 6: Corollary 2 is a generalization of the setting

considered in [2], [24], [11], towards the inclusions of

measurement noise as well as process disturbances. Indeed, if

the measurement noise and process disturbances are absent,

we recover the exact cases as [2], [24], [11]. Thus, triggers

designed by these methods can be made robust to measure-

ment noise (and process noise) by applying the presented

framework.

Remark 7: For a single system (i.e. when N = 1), the

event-triggered system H has a global MIET when the

system and controller dynamics are linear.

B. Consensus for multi-agent systems

A specific field of interest for ETC is consensus of multi-

agent systems. We study several event-triggering control

schemes in this context next. We focus on single integrator

systems, where each plant Pi, which we call agent in this

section, has dynamics ẋi = ui, with xi, ui ∈ R, and the

output yi = xi. However, the ideas in this paper apply to

more general settings as well.

For a network topology described by a connected weight-

balanced digraph G with Laplacian L, it is known that agents

achieve consensus when the ideal (static) control law

ūi =
∑

j∈V in
i

(xi − xj), (43)

with V in
i the in-neighbors of agent i, is applied, see [5].

In vector notation, this is written as ū = −Lx, where ū :=
(u1, u2, . . . , uN ) and L is the Laplacian matrix of the graph.

We use the noisy sampled states for each agent instead of

the actual states, resulting in the actual control law

ui =
∑

j∈V in
i

(̂̃y i−̂̃y j) =
∑

j∈V in
i

(xi+ei+ŵi−xj−ej−ŵj), (44)

written in vector notation as

u = −L(x+ e+ ŵ). (45)

Hence, the closed-loop system dynamics are

ẋ = −Lx− Le− Lŵ. (46)

We employ a ZOH as the holding function, which results in

the dynamics for the hybrid system as

Fχ(χ) = (−Lx− Le− Lŵ, Lx+ Le+ Lŵ,0N ). (47)

We are interested in stability properties of the consensus set

A :=
{
χ ∈ R

N2 ×W | x1 = x2 = . . . = xN

}
. (48)

We show that the results of Section V can be applied

to render the ETC schemes of [10], [8], [3] robust to

measurement noise.

1) Decentralized strategy for undirected graphs [10]: For

this case we consider an undirected, connected graph. The

event generator is of particular interest, since the original

paper does not show that solutions are Zeno-free, as noted

in [20]. By applying the proposed results, we can design

robust distributed triggering rules such that the system H
has the SGiMIET property and thus does not exhibit Zeno

behavior.

We consider the Lyapunov function candidate W (x) =
1
2x

⊤Lx for x ∈ R
N . Note that, due to the undirected graph,

L⊤ = L. Using (46), for all x ∈ R
N ,

〈∇W (x), f(x, e, ŵ)〉 = −(x+ e+ ŵ)⊤L⊤Lx

=− (x+ e+ ŵ)⊤L⊤L(x+ e + ŵ − e− ŵ)

=− u⊤u− u⊤L(e+ ŵ)

=− u⊤u− u⊤L(ẽ+ w),

(49)

where we use (10) to substitute e+ ŵ by ẽ + w. Following

[10], using Young’s inequality, we obtain for some a ∈
(0, 1

2Ni
), where Ni denotes the number of neighbors for

agent i, i.e., Ni = cardV in
i , that

〈∇W (x), f(x, e, ŵ)〉 6
∑

i∈N

−(1−2aNi)u
2
i+

1
a
Ni

(
ẽ2i + w2

i

)
.

(50)

Similarly, by using the first expression in (49), we can also

bound it as

〈∇W (x), f(x, e, ŵ)〉 6
∑

i∈N

−(1−2aNi)z
2
i+

1
a
Ni

(
ẽ2i + w2

i

)

(51)

where zi := Lix, and Li denotes the i-th row of the matrix

L. With these preliminaries in place, we are ready to state

the next proposition, with which we show that Assumption

2 holds.

Proposition 3: Assumption 2 holds for (22) and (47) with

A as defined in (48) with βi(s) =
1
a
Nis

2 and δi(oi) = σi(1−
2aNi)u

2
i , where Ni denotes the number of neighbors of

agent i and a ∈ (0, 1
2Ni

), σi ∈ (0, 1) are tuning parameters.

Proposition 3 implies that, for any bounded measurement

noise as defined by Assumption 1, the triggering conditions

defined by Theorem 1 and Corollary 1 render the hybrid

system H ISpS w.r.t. AH with the SGiMIET property.

Proof: We use the Lyapunov function V (χ) =W (x) =
x⊤Lx for any χ = (x, e, ŵ) ∈ R

N2 × W . According to

[8, Lemma 1], for this Lyapunov function, there exist 0 <
β < β such that β|χ|A 6 V (χ) 6 β|χ|A, hence item i) of

Assumption 2 holds. Additionally, item iii) holds as x is not

affected by jumps. For item ii) of Assumption 2, let x ∈ R
N

and recall that (50) and (51) hold. Moreover, note that ui as

in (44) is included in oi as it is locally available. Then, for

any σi ∈ (0, 1), it holds that

〈∇V (χ), Fχ(χ)〉 = 〈∇W (x), f(x, e, ŵ)〉
6

∑
i∈N −(1− σi)(1− 2aNi)z

2
i +

1
a
Niw

2
i

− σi(1− 2aNi)u
2
i +

1
a
Niẽ

2
i

6 −α(|χ|A) + γ(|w|) +∑
i∈N −σi(1 − 2aNi)u

2
i +

1
a
Niẽ

2
i

(52)



10

for some α ∈ K∞ and γ ∈ K, where α can be obtained

from [20, (3)] and the sandwich bounds. Hence, item ii) of

Assumption 2 holds. To prove that item iv) of Assumption

2 holds, we cannot use Lemma 1. However, observe that

x̄ = 1
N

∑
i∈N xi is invariant under the dynamics (46) as

the graph is undirected, i.e., ˙̄x = 0, and hence, S :=
{x ∈ R

N | x̄ = 1
N

∑
i∈N xi} is forward invariant for

a fixed x̄ ∈ R
N . Let p > 0 and ν ∈ PCV. Items i)-

iii) of Assumption 2 are sufficient to prove (3) (with the

disregard of t-completeness), see the proof of Lemma 1.

Since S ∩Πx(A) =
{
x ∈ R

N | x1 = . . . = xN = x̄(0, 0) =
1
N

∑
i∈N

xi(0, 0)
}

is compact when |ξ(0, 0)| is bounded, it is

trivial to see that the x-part of the trajectories x(t, j) lie in a

compact set for all |ξ(0, 0)| 6 p. Due to the use of the ZOH,

the network-induced error is then necessarily upper-bounded

by the maximum of the distance between two points in the

compact set of trajectories of x and the value of e(0, 0) (see

the proof of Lemma 1, case 2). Since this set is compact, the

network-induced error cannot grow unbounded. Moreover,

ŵ ∈ W which is compact. Lastly, Πη(AH) = {0}, therefore,

η remains bounded over the trajectories of the hybrid system

due to the ISpS properties. Hence, there exists a q > 0
such that for all (maximal) solutions with |ξ(0, 0)| 6 p,

|ξ(t, j)| 6 q for all (t, j) ∈ dom ξ. Thus, item vi) of

Assumption 2 holds, and all items of Assumption 2 are

satisfied.
2) Decentralized strategy including time-regularization

for undirected graphs [8]: Here we consider the setup of [8]

without transmission delays to avoid blurring the exposition

with too many technicalities. For this case we consider an

undirected, connected graph. For the scheme of [8], we

require that each agent has an internal clock, τi ∈ R>0, such

that τ̇i = 1 on flows and τ+i = 0 at any triggering instant of

agent i, i.e., the clock is reset if agent i transmits its state. We

denote the hybrid system in which these clocks are integrated

in H with Hclock. Hence, the state for the hybrid system can

be written as ξ = (χ, τ, η) where χ = (x, e, ŵ) is as before

in (11), and τ := (τ1, τ2, . . . , τN ).
To prove that Assumption 2 holds in order to be able to

apply Theorem 1 and Corollary 1, we analyze the Lyapunov

function candidate W (x) = 1
2x

⊤Lx for any x ∈ R
N . Based

on a similar procedure as in Section VI-B.1, we can deduce

that

〈∇W (x), f(x, e, ŵ)〉
6

∑

i∈N

−(1− 2aNi)u
2
i +

1
a
Ni

(
e2i + ŵ2

i

)
(53)

and

〈∇W (x), f(x, e, ŵ)〉
6

∑

i∈N

−(1− 2aNi)u
2
i +

1
a
Ni

(
e2i + ŵ2

i

)
. (54)

Combining the two inequalities (53) and (54) results in

〈∇W (x), f(x, e, ŵ)〉

6
∑

i∈N

−diz2i − σiu
2
i + (γ2i − µi)e

2
i +

1

a
Niŵ

2
i , (55)

see also [8], with di := ̺(1−2aNi), σi := (1−̺)(1−2aNi)

and γi :=
√

1
a
Ni + µi and where a ∈ (0, 1

2Ni
), ̺ ∈ (0, 1)

and µi ∈ R>0 are tuning parameters. Additionally, we define

ωi(τi) :=





{1}, when τi ∈ [0, τ iMIET),

[0, 1], when τi = τ iMIET,

{0}, when τi > τ iMIET,

(56)

with constant τ iMIET as

τ iMIET = −
√
αiσi
γi

arctan

(
(λ2i − 1)

√
αiσi

λi(αiσi + 1)

)
, (57)

where αi, λi ∈ (0, 1) are tuning parameters.

We show again that Assumption 2 holds.

Proposition 4: Assumption 2 holds for (22) and (47) with

A⋆ =
{
(χ, τ) ∈ R

2N ×W × R
N
>0 | xi = xj for all

i, j ∈ N ∧ e = 0 ∧ τ ∈ R
N
>0

}
, (58)

βi(ẽi, τi) = (1−ωi(τi))× γ2i

(
1

αiσi
λ2i + 1

)
ẽ2i and δi(oi) =

(1 − αi)σiu
2
i , where di, ̺, σi, γi come from (55) and τi, ωi

from (57) and (56), respectively.

Proposition 4 implies that, for any bounded measurement

noise as defined by Assumption 1, the ETMs defined by

Theorem 1 render the hybrid system Hclock ISpS w.r.t.

AHclock
= {(χ, τ, η) ∈ R

2N × W × R
N
>0 × R

N
>0 | (χ, τ) ∈

A⋆ ∧ η = 0}. Let us note that, due to the inclusion of the

timer-dependent function ωi in the triggers, the system has a

GiMIET (instead of a SGiMIET) in this particular case, and,

as it cannot have finite escape times, is therefore persistently

flowing. Additionally, there is no requirement (i.e., no lower

bound) on the space-regularization constants ci, and, in fact,

if ci = 0 for all i ∈ N , we obtain ISS w.r.t. AHclock

(instead of ISpS). The choice specific choice of ωi where

ωi(τi) is set-valued when τi = τ iMIET makes the function

outer semi-continuous, which ensures well-posedness of the

hybrid system, see [12, Theorem 6.30]. The fact that ωi

is set-valued does not matter for solutions, as ωi is only

set-valued at a measure zero set, hence via Carathéodory’s

existence theorem we still have solutions in the extended

sense, i.e., any solution satisfies the differential equation

almost everywhere.

Proof: We are interested in the stability of the set A⋆

in (58). To this end, we analyze the Lyapunov function, for

any (χ, τ) ∈ R
2N ×W × R

N
>0,

U(χ, τ) =W (x) +
∑

i∈N

γiφi(τi)e
2
i (59)

with
dφi
dτi

= −ωi(τi)γi

(
1

αiσi
φ2i (τi) + 1

)
(60)

and initial condition φi(0) = λ−1
i where λi ∈ (0, 1) is a tun-

ing parameter. Strictly speaking U is Lipschitz and not con-

tinuously differentiable and the generalized Clarke derivative

should be used here. However, as τ̇i = 1, 〈∇U(χ, τ), Fχ(χ)〉
exists almost everywhere, and thus Proposition 1 hold almost

everywhere, hence we continue with slight abuse of notation
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by writing the derivative of U as if it was continuously differ-

entiable. The constant τ iMIET is chosen such that φi(τ
i
MIET) =

λi, which ensures that φi(τi) > λi for all τi ∈ R>0. As

stated in [8], there exist α1, α2 ∈ K∞ such that α1(|χ|A) 6
U(ξ) 6 α2(|χ|A), hence, item i) of Assumption 2 holds. For

any (χ, τ) ∈ R
2N ×W × R

N
>0,

〈∇U(χ, τ), Fχ(χ)〉

6 〈∇W (x), f(x, e, ŵ)〉+
∑

i∈N

γi
dφi
dτi

e2i + 2γiφieiui

6
∑

i∈N

−diz2i − σiu
2
i + (γ2i − µi)e

2
i +

1

a
Niŵ

2
i

+ γi
dφi
dτi

e2i + γ2i
1

αiσi
φ2i e

2
i + αiσiu

2
i

6
∑

i∈N

−diz2i − µie
2
i +

1

a
Niŵ

2
i

− (1 − αi)σiu
2
i + (1− ωi(τi))γ

2
i

(
1

αiσi
λ2i + 1

)
e2i .

(61)

Due to (10), we can upper-bound e2i as

e2i =(ẽi − ŵi + wi)
2

=ẽ2i + ŵ2
i + w2

i − 2ẽiŵi + 2ẽiwi − 2ŵiwi

=ẽ2i + ŵ2
i + w2

i − 2(ei + ŵi − wi)ŵi

+ 2(ei + ŵi − wi)wi − 2ŵiwi

=ẽ2i − ŵ2
i − w2

i + 2ŵiwi − 2eiŵi + 2eiwi

6ẽ2i − ŵ2
i − w2

i + ŵ2
i + w2

i + 2κie
2
i +

1

κi

(
ŵ2

i + w2
i

)

= ẽ2i + 2κie
2
i +

1

κi

(
ŵ2

i + w2
i

)
(62)

for any κi ∈ R>0. Then, we select κi such that

κi :=
ϑiµi

2

(
γ2i

(
1

αiσi
λ2i + 1

))−1

(63)

for some ϑi ∈ (0, 1). With this, we deduce from (61) that

〈∇U(χ, τ), Fχ(χ)〉

6
∑

i∈N

−diz2i − µie
2
i +

1

a
Niŵ

2
i − (1− αi)σiu

2
i

+ (1− ωi(τi))γ
2
i

(
1

αiσi
λ2i + 1

)
e2i

6
∑

i∈N

−diz2i − (1 − ϑi)µie
2
i +

1

a
Niŵ

2
i +

1

κi

(
ŵ2

i + w2
i

)

− (1− αi)σiu
2
i + (1 − ωi(τi))γ

2
i

(
1

αiσi
λ2i + 1

)
ẽ2i

6 α(|χ|A⋆) +̟(|w|) +
∑

i∈N

−(1− αi)σiu
2
i

+ (1 − ωi(τi))γ
2
i

(
1

αiσi
λ2i + 1

)
ẽ2i . (64)

for some ̟ ∈ K, and, indeed, item ii) of Assumption 2

holds. Additionally, for any (χ, τ) ∈ R
2N ×W × R

N
>0 and

(g, τ+) ∈ Gχ(χ,w),

U(g, τ+)− U(χ, τ) = −γiλie2i 6 0, (65)

and item iii) of Assumption 2 also holds. To prove that

item iv) of Assumption 2 holds, we refer to the proof of

Proposition 3, as the set S := {x ∈ R
N | x̄ = 1

N

∑
i∈N xi}

is also forward invariant for fixed x̄ in this case.

The terms related to ŵi have been absorbed in the function

̟, as its L∞-norm can be bounded as

‖ŵi‖∞ 6 ‖wi‖∞, (66)

hence, we can obtain a similar condition as (3) based on

‖wi‖∞.

The fact that τi in theory may grow unbounded as t→ ∞
is not an issue, as the value of U(χ, τ) is not affected by τi
when τi > τ iMIET. Hence, we could take the dynamics of τi
as τ̇i = ωi(

1
2τi), which would not affect the system behavior,

but it would ensure that τi ∈
[
0, 2τ iMIET

]
. Since, in that case,

all states would remain bounded, the satisfaction of item iv)

of Assumption 2 is not affected by our initial choice of the

dynamics for τi and the fact that A∗ is unbounded in τ .

Due to the inclusion of the timer ωi in the function βi,
by definition Ψi(oi) > 0 for all τi ∈ [0, τ iMIET], hence,

the system has a GiMIET. Thus, the system is persistently

flowing and Hclock is IS(p)S w.r.t. AHclock
. Moreover, due to

the GiMIET, we do not require the lower-bound on ci. When

ci = 0 is selected for all i ∈ N , the system Hclock is ISS.

Remark 8: Equation (65) in the proof of Proposition 4

implies that we can modify the reset of ηi as

η+i (oi) := ηi + γiλi (max [|ẽi| − 2w, 0])
2
. (67)

As a result we use an estimated lower bound for ei, i.e.,

ηi(oi)
+ 6 ηi + γiλie

2
i , (68)

so that item iii) of Assumption 2 still holds, while only using

locally available information (i.e. ẽi and not ei). This may be

of interest, as increasing ηi after a reset directly increases the

inter-event times. Hence, by modifying the reset, the average

inter-event time may become significantly larger when the

initial condition is sufficiently far from the consensus set.

3) Decentralized strategy for weight-balanced digraphs

[3]: In the case of [3], we consider a network topology

described by weight-balanced digraphs. Hence, this scheme

requires a less restrictive network topology compared to

Sections VI-B.1 and VI-B.2.

Proposition 5: Assumption 2 holds for (22) and (47)

with βi(s) =
(

d2

i

ϑi
+ γi

)
s2 for any s > 0 and δi(oi) =

σi(1− ϑi)u
2
i , where di denotes the degree of agent i, ϑi :=∑

j∈V out
i
αij̺ij , γi :=

∑
j∈V in

i

αji

̺ji
, and with ̺ij > 0 (chosen

such that ϑi ∈ (0, 1)) and σi ∈ (0, 1) tuning parameters.

Proof: We start by analyzing the Lyapunov function

V (χ) = 1
2x

⊤L⊤x for any χ ∈ R
2N × W . Due to the

properties of L, item i) of Assumption 2 holds. Additionally,

items iii) holds trivially. Note that from [3, (13)], we know

that for any additive disturbance ε ∈ R
N and any x ∈ R

N ,

it holds that

〈∇V (χ), Fχ(x, ǫ,0N )〉 6
∑

i∈N

−(1− 1
2ϑi)u

2
i−diεiui+ 1

2γiε
2
i

(69)
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Fig. 2: The undirected communication topology used in the

numerical examples.

with ϑi :=
∑

j∈V out
i
αij̺ij , di the degree of agent i, γi :=∑

j∈V in
i

αji

̺ji
and where ̺ij > 0 are tuning parameters. Recall

that αij denotes the weights corresponding to the graph. By

substitution of ε = e+ ŵ = ẽ+ w in (69), we obtain

〈∇V (χ), Fχ(χ)〉
6

∑

i∈N

−(1− 1
2ϑi)u

2
i − di(ẽi + wi)ui +

1
2γi(ẽi + wi)

2.

(70)

By applying Young’s inequality, we derive

〈∇V (χ), Fχ(χ)〉

6
∑

i∈N

−(1− ϑi)u
2
i +

1

2

(
d2i
ϑi

+ γi

)
(ẽi + wi)

2.
(71)

As, for any p, q ∈ R, it holds that 1
2 (p+ q)2 6 p2 + q2, we

obtain

〈∇V (χ), Fχ(χ)〉

6
∑

i∈N

−(1− ϑi)z
2
i +

(
d2i
ϑi

+ γi

)
ẽ2i +

(
d2i
ϑi

+ γi

)
w2

i ,

(72)

where zi = Lix with Li the i-th row of matrix L. Note that

the constants ̺ij are chosen such that ϑi ∈ (0, 1). Then, for

any σi ∈ (0, 1), it holds that

〈∇V (χ), Fχ(χ)〉 6
∑

i∈N

−(1−σi)(1−ϑi)z2i+
(
d2i
ϑi

+ γi

)
w2

i

− σi(1− ϑi)u
2
i +

(
d2i
ϑi

+ γi

)
ẽ2i , (73)

and item ii) of Assumption 2 also holds with δi(oi) and βi(s)
as specified in Proposition 5. To prove that item iv) of As-

sumption 2 holds we refer to the proof of Proposition 3 (due

to the graph being weight-balanced, x̄ is also invariant under

the dynamics in this case). Hence, all items of Assumption

2 are satisfied.

A comparison between the original ETM and robustified

one for measurement noise of several examples in this section

are summarized in Table I.

VII. NUMERICAL EXAMPLES

In this section, we illustrate the results of Sections VI-B.1-

2 with N = 8 agents that are connected as described in Fig.

2. In both cases we include uniformly distributed piecewise

constant noise in the interval 10−4 · [−1, 1] as measurement

noise, hence, wi = 1 · 10−4 for all i ∈ N . The noise is

sampled at a rate of 1 ·104Hz and a ZOH is applied between

samples.

TABLE I: Comparison of the original triggering rules vs.

the modified ones to be robust to measurement noise using

Theorem 1.

[24], [11] Ψ(o) = σα(|x|)− ̺(|e|) (static)

Modified Ψ(o) = σα( 1
2
|x̃|)− ̺(2|ẽ|) + c with c > ̺(4w)

[10] Ψi(oi) = σi(1− aNi)u2

i − 1

a
Nie

2

i (static)

Modified Ψi(oi) = σi(1− 2aNi)u2

i − 1

a
Niẽ

2

i + ci

with ci >
4

a
Niw

2

i

[8] Ψi(oi) =(1− αi)σiu
2

i

− (1− ωi(τi))γ
2

i

(
1

αiσi
λ2

i + 1
)
e2i ,

σi = (1 − ̺)(1 − aNi)

Modified Ψi(oi) =(1− αi)σiu
2

i + ci

− (1− ωi(τi))γ
2

i

(
1

αiσi
λ2

i + 1
)
ẽ2i ,

σi = (1 − ̺)(1 − 2aNi)

with ci > 0

[3] Ψi(oi) = σi(1− 1

2
ϑi)u

2

i + dieiui −
1

2
γie

2

i

Modified Ψi(oi) = σi(1− ϑi)u2

i −
( d2i
ϑi

+ γi
)
ẽ2i + ci

with ci >

(
d2i
ϑi

+ γi

)
4w2

i
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Fig. 3: Evolution of the states (top) and inter-event times (bottom) of the
MAS using the dynamic trigger obtained by applying Corollary 1 to Proposi-
tion 3 with ci = 0 and initial condition x(0, 0) = (8, 6, 4, 2,−2,−4,−8).

A. Decentralized static ETM of Proposition 3

To illustrate the results of Proposition 3, we select σi =
0.5 for all i ∈ N and a = 0.1. Note that, for these

parameters, maxi(βi(2wi)) = 1.2 · 10−6, hence we select

ci > 1.2 · 10−6 to guarantee Zeno-freeness. We demonstrate

the results of Corollary 1, i.e., we apply static triggering.

Two cases are simulated, first with no space-regularization

for all i ∈ N (i.e. ci = 0), to demonstrate that we

indeed obtain Zeno-like behavior, and second with ci =
2 · 10−6 > maxi(βi(2wi)). In Fig. 3, the evolution of the

states xi, i ∈ N and the corresponding inter-event times

for ci = 0 are shown for the initial condition x(0, 0) =
(8, 6, 4, 2,−2,−4,−6,−8), e(0, 0) = 0N , ŵ(0, 0) = w(0)
and η(0, 0) = 0N . Fig. 4 depicts the same simulations for

ci = 2 · 10−6.
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Fig. 4: Evolution of the states (top) and inter-event times (bottom) of
the MAS using the dynamic trigger obtained by applying Corollary 1
to Proposition 3 with ci = 2 · 10−6 and initial condition x(0, 0) =
(8, 6, 4, 2,−2,−4,−8).

We note that when ci = 0 for all i ∈ N , we indeed obtain

“Zeno-like” behavior, i.e., the inter-event times converge

to zero. If the space-regularization constant ci is designed

properly (e.g. as in Fig. 4), we can see that indeed the inter-

event times close to the consensus set remain relatively large,

and desirable behavior for the overall system is obtained.

B. Decentralized dynamic ETM of Proposition 4

For the simulation of the dynamic triggering condition of

Proposition 4, the tuning parameters of [8] are used, i.e.,

̺ = µi = ǫη,i = 0.05, a = 0.1 and αi = 0.5 for all i ∈ N .

We thus obtain γi = 4.478 and σi = 0.76 for agents i ∈ N
with two neighbors (i.e., Ni = 2, thus agents P1, P4, P6 and

P7) and γi = 5.482 and σi = 0.665 for agents i ∈ N with

three neighbors (i.e., Ni = 3, thus agents P2, P3, P5 and

P8). We choose λi = 0.2 for all agents. For these values, we

obtain τ iMIET = 0.1562 for agents i ∈ N for which Ni = 2
and τ iMIET = 0.1180 for agents i ∈ N for which Ni = 3.

We demonstrate the results of Theorem 1, i.e., we apply

dynamic triggering. Two cases are simulated, first with no

space-regularization for all i ∈ N , for which we obtain

ISS w.r.t. the consensus set, second with space-regularization

constant ci = 1 ·10−5 for all i ∈ N , for which we have ISpS

w.r.t. the consensus set. To compare with the results to [8]

(not considering measurement noise), in all cases we select

θi = 0. In Fig. 5, the evolution of the states xi, i ∈ N , with

ci = 0 and the corresponding inter-event times are shown for

the initial condition x(0, 0) = (8, 6, 4, 2,−2,−4,−6,−8),
e(0, 0) = 0N , ŵ(0, 0) = w(0), τ(0, 0) = 0N and η(0, 0) =
0N . Fig. 6 depicts the same simulations for ci = 1 · 10−7.

From Fig. 5 and 6 we can make a few observations. For

ci = 0, close to the consensus set the inter-event times

are generally close to τ iMIET. This can be explained from

the observation that, in these cases, η+i = 0 and ui is

generally small, and consequently, the increase in ηi for

τ ∈ [0, τ iMIET) is limited. Additionally, we observe that
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Fig. 5: Evolution of the states (top) and inter-event times (bottom) of the
MAS using the dynamic trigger obtained by applying Theorem 1 to Proposi-
tion 4 with ci = 0 and initial condition x(0, 0) = (8, 6, 4, 2,−2,−4,−8).
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Fig. 6: Evolution of the states (top) and inter-event times (bottom) of
the MAS using the dynamic trigger obtained by applying Theorem 1
to Proposition 4 with ci = 1 · 10−7 and initial condition x(0, 0) =
(8, 6, 4, 2,−2,−4,−8).

by selecting a ci > 0, the inter-event times are generally

significantly larger than the enforced minimum inter-event

time. Moreover, because there is no lower-bound on ci,
a relatively small ci is often sufficient to obtain desirable

average inter-event times. We want to stress that this is a

beneficial aspect of this particular scheme, since in general

there are constraints on the minimum size of the space-

regularization constants ci to ensure Zeno-freeness.

Even though the inclusion of ci leads to ISpS instead

of ISS properties, applying space-regularization leads to

triggering conditions that are not only robust to measurement

noise, but also have, on average, larger inter-event times

for the considered simulations. Since ISS only leads to

asymptotic behavior of the consensus set for vanishing noise,

and since most measurement noise is non-vanishing, practical

stability or ISpS with larger inter-event times may be more
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desirable when having communication limitations in mind.

In Fig. 7, the distance of the solution to the consensus

set is depicted. We note that even though the inter-event

times are more favorable if we apply space-regularization,

the remaining distance to the consensus set has the same

order of magnitude, which underlines the effectiveness of

applying both space- and time-regularization at the same

time.

VIII. CONCLUSIONS

In this paper, we presented a general “prescriptive” frame-

work for set stabilization of event-triggered control systems

affected by measurement noise. It is shown how, by careful

design, to obtain both dynamic and static triggering con-

ditions that render a closed set input-to-state (practically)

stable with a guaranteed positive (semi-)global individual

minimum inter-event time. Key to obtaining this framework

is a novel hybrid model that describes the behavior of

event-triggered control systems and the careful application

of space-regularization. Due to this model and the space-

regularization, differentiability conditions are not required on

the measurement noises, as opposed to the existing works in

the literature. The strengths and generality of the framework

were demonstrated on several interesting event-triggered

control problems, such as the stabilization of the origin for

single-plant systems and consensus problems for multi-agent

systems, robustifying them for measurement noise.

APPENDIX

The first step in proving Theorem 1 and Lemma 1 is

to ensure the satisfaction of the Lyapunov conditions in

Proposition 1. To this end, we introduce the Lyapunov

function candidate U , defined for all ξ ∈ X, where we recall

that X = R
nx × R

ny ×W × R
N
>0, as

U(ξ) := V (x) +
∑

i∈N

ηi. (74)

The following lemma will be useful in the sequel.

Lemma 2: Consider system H as given by (12), (15),

(17), (19), and (28). When Assumption 1 and items i)-iii)

of Assumption 2 are satisfied, items i)-iv) of Proposition 1

are also satisfied.

Proof: Recall that V is continuously differentiable by

Assumption 2, hence the function U is also continuously

differentiable. Since Πξ(C ∪ D) ⊆ X and U is continuously

differentiable, item i) of Proposition 1 holds. Recall that

AH := {ξ ∈ X | χ ∈ A ∧ η = 0}. Due to item i) of

Assumption 2, there exist functions α1, α2 ∈ K∞ such that

for all ξ ∈ X

α1(|ξ|AH
) 6 U(ξ) 6 α2(|ξ|AH

) (75)

and thus item ii) of Proposition 1 holds. Next, we have for

all ξ ∈ X and ν ∈ V,

〈∇U(ξ), F (ξ, ν)〉 6 〈∇V (χ), Fχ(χ, ν)〉 +
∑

i∈N

Ψ̄i(oi)

(13),(26),(28)

6 −α(|χ|A) + γ(|ν|) +
∑

i∈N

(
ci − ϕi(ηi)

)

6 −αd(|ξ|AH
) + γ(|ν|) + c (76)

with c :=
∑

i∈N ci and for some αd ∈ K∞. Hence, item iii)

of Proposition 1 holds. In view of (19) and (27), we note

that for all (ξ, ν) ∈ D and g ∈ G(ξ, ν),

U(g)− U(ξ) 6 0, (77)

thus, item iv) of Proposition 1 also holds.

Since we have not established that the system is persis-

tently flowing, we cannot claim that AH is IS(p)S, however,

the bound (3) of Definition 3 holds w.r.t. AH as long as the

solution is defined (i.e., for all (t, j) ∈ dom ξ). A similar

argument can be constructed for the hybrid system Hs given

by (21), (22), (30) and the static triggering condition (32).

A. Proof of Theorem 1

Due to Lemma 2, we are left with proving that all maximal

solutions to H are complete and that H has a SGiMIET,

which implies that H is persistently flowing. We continue

with proving completeness of maximal solutions first.

1) Completeness of maximal solutions: To prove that

all maximal solutions are complete, we use the following

proposition, which is taken from [14, Proposition 9], using

closedness of C.

Proposition 6: Consider the hybrid system H in Section

IV where Ψi is given by (28). Given an input ν ∈ PCV, there

exists a non-trivial solution φ to H with φ(0, 0) = ξ ∈ X if

and only if (ξ, ν(0)) ∈ D or

(VC) there exist ǫ > 0 and an absolutely continuous function

z : [0, ǫ] → R
nx such that z(0) = ξ, ż(t) ∈

F (z(t), w(t)) for almost all t ∈ [0, ǫ] and (z(t), w(t)) ∈
C for all t ∈ [0, ǫ].

If (VC) holds for all ξ ∈ R
nx and all ν ∈ PCV with

(ξ, ν(0)) ∈ C \ D, then for all ν ∈ PCV every maximal

solution φ ∈ SH(ν) satisfies exactly one of the following

properties:

(a) φ is complete;

(b) φ is not complete and “ends with flow”: domφ is

bounded and the interval IJ := {t : (t, J) ∈ domφ}
with J = supj domφ is open to the right, and there

does not exist an absolutely continuous function z :
IJ → X satisfying ż(t) ∈ F (z(t), ν(t)) for almost all

t ∈ IJ and (z(t), ν(t)) ∈ C for all t ∈ int IJ , and such

that z(t) = φ(t, J) for all t ∈ IJ ;
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(c) φ is not complete and “ends with a jump” or a “dis-

continuity” of w: domφ is bounded with (T, J) :=
sup domφ ∈ domφ, (φ(T, J), ν(T )) 6∈ C ∪ D.

Let ν ∈ PCV and (ξ, ν(0)) ∈ C\D be given. To ensure com-

pleteness of φ ∈ SH(ν), we first prove that (VC) holds. Let

t1 > t0 = 0 denote the time at which the first discontinuity

in ν occurs. There exists an ǫ1 ∈ (0, t1) such that v and w are

continuous on [0, ǫ1]. Since F in (12) is continuous in both

the state and time, we can use Peano’s existence theorem

to conclude that there exist (possibly multiple) solutions z
to ż(t) ∈ F (z(t), ν(t)) with z(0) = ξ defined on [0, ǫ2]
where ǫ2 6 ǫ1. Next, we have to show that the solutions

z(·) remain in C on [0, ǫ] for some ǫ ∈ (0, ǫ2]. We write

z = (x, e, ŵ, η). Observe that if we have for all i ∈ N that

ηi(0) > 0, |ŵi(0)| < wi and ηi(0) + θiΨi(oi(0)) > 0 then

certainly the solution will remain in Ci for some nontrivial

time window due to the “gap” to the boundary of C in (15)

and continuity of solutions. Consider all M ⊆ N for which

one of these inequalities does not hold and let i ∈ M. For

i ∈ M and since ξ ∈ C \ D we can distinguish three cases,

which may or may not hold simultaneously:

1) ηi(0) + θiΨi(oi(0)) = 0 and Ψi(oi(0)) > 0 (implying

that θi = 0),

2) ηi(0) = 0 and ηi(0)+θiΨi > 0 (implying that Ψi > 0),

3) |ŵi(0)| = wi.

For cases 1) and 2), we note that η̇i(0) = Ψ̄i(ηi(0), oi(0)) =
Ψi(oi(0)) > 0. Recall that x, e, ŵ, η and w are continuous

on the interval [0, ǫ2]. Since ηi(0) = 0, Ψ̄i is continuous, and

Ψi(oi) > 0 for some nontrivial time window, we find that

ηi > 0 on this time window by means of the comparison

lemma, and consequently ηi + θiΨi(oi) > 0 on some time

window. For case 3), we note that, in view of (8), ˙̂w = 0.

Consequently, in all cases, there exists ǫ′i ∈ [0, ǫ2] such that

z(t) ∈ Ci for any t ∈ [0, ǫ′i]. Since C is the intersection of

C1, . . . , CN with N ∈ N>0, there exists ǫ > 0 such that

z(t) ∈ C for any t ∈ [0, ǫ].
Since (VC) holds for (ξ, ν(0)) ∈ C\D and ν ∈ PCV, there

exists a non-trivial solution to H for any ξ and ν ∈ PCV with

(ξ, ν(0)) ∈ C ∪ D. Hence, any maximal φ satisfies exactly

one of the three cases (a)-(c) in Proposition 6.

Item (b) cannot occur due to item iv) of Assumption 2,

as the states of the hybrid system remain bounded for all

(t, j) ∈ domφ, hence, there are no finite escape times.

Item (c) only occurs if either G(D) × V 6⊂ C ∪ D or if

(ξ(T, J), ν(T )) 6∈ C ∪D due to a discontinuity in w. For the

former, we note that C∪D = X×V. In view of (19), we note

that ŵ+
i = wi if i broadcasts its state and ŵ+

i = ŵi otherwise.

Additionally, η+i = ηi. Consequently, G(D) × V ⊂ C ∪ D.

Furthermore, since C ∪ D = X × V, item (c) cannot occur

due to a discontinuity in signal w, since by Assumption 1,

w(t) ∈ W for all t > 0. Thus we deduce that φ is complete.

Since ν and φ ∈ SH(ν) have been arbitrarily selected, we

have proved that all maximal solutions are complete. Next

we show that maximal solutions are also t-complete.
2) t-completeness and SGiMIET: We prove t-

completeness by showing that system H has the SGiMIET

property. We proceed by examining the time between

two successive jumps generated by triggering condition

i ∈ N . To do so, note that the “static triggering condition”

Ψi(oi) 6 0 always holds when the (mixed) dynamic

triggering condition ηi + θiΨi(oi) 6 0 ∧ Ψi(oi) 6 0 is

satisfied. Let ν ∈ PCV, ∆ > 0 and φ ∈ SH(ν,B) with

B = {Ξ ∈ X | |Ξ| 6 ∆}. Since ηi(t, j) > 0 for all

(t, j) ∈ domφ, we analyze when Ψi(oi) 6 0, i.e., when

δi(oi) + ci − βi(|ẽi|) 6 0 (78)

holds to under-estimate the inter-event times generated by

triggering condition i. Since δi takes non-negative values

only, we can under-estimate the inter-event times for trig-

gering condition i by analyzing when

ci 6 βi(|ẽi|), (79)

i.e., when |ẽi| > β−1
i (ci). Note that we can upper-bound the

right-hand side of the latter inequality, in view of Assumption

1, as

β−1
i (ci) 6 |ẽi| 6 |ei|+ |wi|+ |ŵi| 6 |ei|+ 2wi. (80)

Hence, we can under-estimate the inter-event times by ana-

lyzing when

β−1
i (ci)− 2wi = |ei|. (81)

Recall that, by the condition on ci in Theorem 1, we have

ci > βi(2wi), thus, the left-hand side of (81) is strictly

positive. In view of (81), we define

ci := β−1
i (ci)− 2wi > 0. (82)

Since |ei| is set to 0 after a transmission due to triggering rule

i, the inter-event time for triggering rule i is lower bounded

by the time it takes for |ei| to grow from 0 to ci in view

of (81). Note that the bound in (82) is not dependent on

actual values of wi, only on the upper-bounds presented

in Assumption 1. In the following, we provide a lower-

bound on this inter-event time. In view of Lemma 2, we

have that there exists a q > 0 such that |φ(t, j)| 6 q
for all (t, j) ∈ domφ. Since F in (12) is continuous and

‖ν‖∞ is finite by Assumption 1, there exists µ > 0 such

that |F (φ(t, j), ν(t))| 6 µ for all (t, j) ∈ domφ. Thus,

for almost all j ∈ N>0 and almost all t ∈ Ij where

Ij = {t : (t, j) ∈ dom ξ},
d|ei(t)|

dt
6 µ. Consequently, the

time between any two transmissions generated by triggering

rule i is larger than or equal to ci/µ. Hence, H has the

SGiMIET property and all maximal solutions are t-complete.

In other words, H is persistently flowing.

Since the system is persistently flowing, combined with

the result of Lemma 2, we also have that H is ISpS w.r.t.

the set AH according to Proposition 1. �

Proof of Lemma 1

Let ν ∈ PCV and p > 0 be given. Using Lemma 2, we

establish that for all ξ ∈ SH(ν,B) with B := {Ξ ∈ X |
|Ξ| 6 p}, |ξ(t, j)|AH

6 λ for all (t, j) ∈ dom ξ, where

λ > 0 depends on p, ‖ν‖∞ and c in (76). For the first

case, i.e., when A is compact (and thus AH is compact),

the set S := {Ξ ∈ X | |Ξ|AH
6 λ} is compact. Since

ξ(t, j) ∈ S for all (t, j) ∈ dom ξ, there exists q > 0 such
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that |ξ(t, j)| 6 q for all (t, j) ∈ dom ξ, hence, item iv) of

Assumption 2 is satisfied. For the second case, i.e., when

Πx(A) is compact and a ZOH is employed, we have that

|x(t, j)|Πx(A) 6 λ for all (t, j) ∈ dom ξ due to (3). Hence,

since Πx(A) is compact, there exists a r > 0 such that

|x(t, j)| 6 r for all (t, j) ∈ dom ξ. Since all maps gp,i in

(4) are continuous, there exists s > 0 such that |y(t, j)| 6 s
for all (t, j) ∈ dom ξ, and, consequently, |ỹ(t, j)| 6 s̄ for

all (t, j) ∈ dom ξ, where s̄ = s + wi. Moreover, due to

the ZOH, ei(t, j) is the difference between two points on

the trajectories of ỹi(t, j) after the first jump. Consequently,

there exists a ς > 0 (possibly dependent on e(0, 0)) such that

|e(t, j)| 6 ς for all e(0, 0) ∈ Πe(B) and all (t, j) ∈ dom ξ.

Lastly, ŵ ∈ W , which is compact, and |η(t, j)| 6 λ due to

(3) (as Πη(AH) is compact). Thus, since ξ = (x, e, ŵ, η),
there exists q > 0 such that |ξ(t, j)| 6 q for all (t, j) ∈
dom ξ. �
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