
 

Mining trading patterns of pyramid schemes from financial
time series data
Citation for published version (APA):
Lv, F., Wang, W., Han, L., Wang, D., Pei, Y., Huang, J., Wang, B., & Pechenizkiy, M. (2022). Mining trading
patterns of pyramid schemes from financial time series data. Future Generation Computer Systems, 134, 388-
398. https://doi.org/10.1016/j.future.2022.02.017

Document license:
TAVERNE

DOI:
10.1016/j.future.2022.02.017

Document status and date:
Published: 01/09/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1016/j.future.2022.02.017
https://doi.org/10.1016/j.future.2022.02.017
https://research.tue.nl/en/publications/b8291d23-38c7-4b8a-9bb0-fa007138ffc3


Future Generation Computer Systems 134 (2022) 388–398

m
v
i
c
t
o
m
m
s
g
p
o

s
a
c
t

(

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Mining trading patterns of pyramid schemes from financial time series
data
Fang Lv a,b, Wei Wang a,b, Linxuan Han a,b, Di Wang a,b, Yulong Pei c, Junheng Huang a,b,
Bailing Wang a,b,∗, Mykola Pechenizkiy c,∗

a School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China
b Cyberspace Security Institute, Harbin Institute of Technology, Weihai 264209, China
c Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

a r t i c l e i n f o

Article history:
Received 10 January 2021
Received in revised form 17 February 2022
Accepted 20 February 2022
Available online 11 March 2022

Keywords:
Financial time series data
Recursive data mining
Sequence de-noising
Contrast analysis
Trading patterns mining

a b s t r a c t

The current studies relating to pyramid schemes are mostly about qualitative analysis, whereas the
quantitative analysis is still rare owing to the insufficiency in knowledge of their specific trading
modes. Often, the trading modes of pyramid schemes are inconspicuous in financial data, making
it difficult to be identified in the data. In this study, we propose a quantitative framework for
mining trading patterns of pyramid schemes from financial time series data. The framework includes
two parts: Long Range Sequence De-noising (LoRSD) algorithm and Contrast Trading Pattern Mining
(Contrast TPM) algorithm. LoRSD distinguishes noise items by folding the statistical frequent items
and removes the infrequent items recursively. In Contrast TPM, we first identify the frequent one-
itemset by comparing the pyramid-related samples with the general samples. Subsequently, a random
model is added in the comparative analysis to generate the frequency conditions for mining pyramid
scheme patterns. Instead of setting user-defined support thresholds, we adopt contrastive samples
as benchmarks in determining the frequency conditions. Our extensive experiments on the financial
data set including behaviour of a real-world pyramid scheme demonstrate the effectiveness of our
framework in sequence de-noising and mining trading patterns of pyramid schemes from financial
time series data.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

A pyramid scheme generally refers to a hierarchical business
odel that recruits members via a promise of payments or ser-
ice for enrolling others into a scheme, rather than supplying
nvestments or sale of products [1]. This model can be used to
ommit fraud by funneling money from bottom to the top of
he pyramid. Pyramid scheme based scams differ in the number
f layers, the number of members in each layer or the pay-
ent rules, resulting in a very flexible structure. This structure
akes it hard to detect the abnormal trading behavior of pyramid
chemes, thereby allowing it spreads inconspicuously across the
lobe and threatening the global financial security [2]. In this
aper, we investigate the possibility of discovering the knowledge
f pyramid schemes from financial time series data.
In financial time series data, the trading activities of pyramid

cheme members can be classified into two parts: purchasing
ctivity (paying the membership due) and redeeming activity (re-
eiving the rebate). The payment follows a specific rule defined by
he pyramid scheme which stipulates that the amount of money

∗ Corresponding authors.
E-mail addresses: f.lyu.hit.tue@gmail.com (F. Lv), wbl@hit.edu.cn
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167-739X/© 2022 Elsevier B.V. All rights reserved.
that each member receives is determined by one’s level and the
dues that one paid, including one’s personal dues as well as dues
from one’s subordinate members. As illustrated in Fig. 1, for every
member, each redeeming activity is caused by one of the previous
purchasing activities, implying that the combination of member-
ship due and rebate occur frequently in the financial time series
data involving pyramid schemes. The payment due and rebate
together form what we hereinafter refer to as trading patterns
(TPs) of pyramid scheme. Even though the pyramid schemes can
be different in funneling dues and allocating rebates, they are in
consistence with TPs. Intuitively, discovering the TPs contributes
to the solution of discovering the knowledge of pyramid schemes.

Currently, there are many studies on pyramid schemes from
different perspectives. The TPs of the adoption of a known pyra-
mid scheme case is investigated in [3] within a diffusion-of-
innovation framework. The study of [4] concludes that the pyra-
mid schemes benefit only a small minority of investors while in-
creasing financial difficulties for the majority of participants and
causing severe social conflicts. The micro-structure and the net-
work construction process of the pyramid scheme is researched
by analyzing its finance flow network in [5]. In anomaly detection,
classifiers for detecting abnormal nodes [6] and communities [1]
are designed based on the characteristics in their financial data.

These studies have deepened our understanding of the pyramid

https://doi.org/10.1016/j.future.2022.02.017
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.02.017&domain=pdf
mailto:f.lyu.hit.tue@gmail.com
mailto:wbl@hit.edu.cn
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Fig. 1. An example of the trading principle of the pyramid schemes. A to E
epresent members from different levels. The solid lines represent the purchas-
ng activity (paying membership due (MD)) and the dashed lines represent the
edeeming activity (receiving the rebate (R). tpi (where i ∈ {1, 2, 3, 4}) and tr
espectively denote the time when paying membership due and receiving the
ebate. Note that {tp1, tp2} < tp3 < tp4 < tr . In the pyramid scheme example
hown above, members A and B are the subordinate members of C while C is
a subordinate member of D. A pays MDA to C at time tp1 and B pays MDB to
C at time tp2 . All the dues received by C (MDC ) from its subordinate members
(i.e., sum of MDA and MDB) are submitted to D at tp3 . At time tr , A, B, C and D
receive RA, RB, RC and RD respectively from E.

scheme from a broader perspective. Many of the current studies
focus on qualitative analysis [5] or case analysis [3] while there
have been limited quantitative studies [6,7] in the published
literatures, due to their insufficiency of the prior knowledge like
trading patterns to our best knowledge. In our study, we aim to
remove this hindrance by mining TPs from financial time series
data using sequential pattern mining techniques.

Sequential pattern mining [8,9] is a widely researched field for
extracting patterns from time series data or sequences. Among
the various definitions of sequential pattern, two that are of
interest to us are periodic pattern and episode pattern. Periodic
pattern refers to patterns that the number of events between two
occurrences of the pattern is never greater than the maximum
period threshold [10] while an episode is defined to be a partially
ordered set of events for consecutive and fixed-time intervals
in a sequence [11]. TPs overlap with the definitions of periodic
and episode patterns, because it refers to a partially ordered set
of events that periodically occur in both single time series and
the whole time series regardless of the period threshold con-
straint in periodic patterns and time interval in episode patterns.
For sequential pattern mining methods, the support threshold
could be user-defined or determined by contrast analysis, such as
contrasting different categories of samples. We employ contrast
analysis in determining the support thresholds for mining TPs,
considering TPs occur more frequently in the financial time series
data generated by pyramid scheme members than that of normal
accounts. To improve the efficiency of data mining methods,
many pruning strategies are used for reducing their search spaces.
For financial time series, de-noising the irrelevant items before
mining TPs is necessary, as the volume of amount items can be
infinite and many of them are infrequent.

Considering the characteristics of TPs discussed in Fig. 1 and
the differences among TPs, periodic patterns and episode pat-
terns, we propose a sequential pattern mining framework with
contrast analysis. This framework is composed of two compo-
nents: Long Range Sequence De-noising (LoRSD) algorithm for
sequence de-noising and Contrast Trading Pattern Mining (Con-
trast TPM) algorithm for pyramid pattern identification. The main
contributions of this article are summarized as follows:

• We propose a new sequence de-noising algorithm called
LoRSD with the intention of reducing the volume of the
itemset while maintaining the potential trading patterns.
389
LoRSD folds long range frequent sub-sequences while dis-
carding the infrequent items in each sequence.

• We devise algorithm Contrast TPM for mining TPs under our
defined contrast frequency conditions, which are formalized
by contrasting time series from different categories instead
of employing user-defined support thresholds.

• We conduct extensive experiments on the financial time
series data set of a realistic pyramid scheme, demonstrating
the effectiveness of LoRSD and Contrast TPM on mining
trading patterns of pyramid schemes.

The remainder of this paper is organized as follows. We dis-
cuss the related work in Section 2. In Section 3, we first describe
the definitions and the problem in mining trading patterns. Sec-
ondly, the proposed framework containing LoRSD and Contrast
TPM components is introduced in detail. In Section 4, we con-
struct experiments to evaluate our framework, and Section 5 is
our conclusion.

2. Related works

Our research aims to mine TPs from financial time series data,
which are mainly related to three aspects of studies: periodic pat-
tern mining (PPM), serial episode mining and contrast sequential
pattern mining.

The PPM is to discover valid periodic patterns in a time-
related data set [12]. The mining strategies and the constraints
of periodic vary from the difference of applications. In [13], the
periodic occurrence was used as a criterion for the proposed
periodic high-utility sequential patterns miner (PHUSPM), which
could be used to discover all periodic patterns with high profits
in the sequential database. In the process of periodic, PHUSPM
merges the multiple sequences into a single sequence and then
employs the LQS-Tree [14] and two pruning strategies for mining
pattern effectively. However, PHUSPM does not guarantee the pe-
riodicity of patterns in all sequences. There were many research
works for studying the periodicity of patterns in each sequence
with consideration of their frequencies in the sequences [10,15],
e.g., Philippe et al. [10] defined the periodic pattern when the pe-
riodicity appears in a certain ratio of sequences. Instead of mining
frequent patterns, other studies focused on mining user-defined
periodic patterns [16] appeared, e.g., the algorithm MRCPPS [15]
could be used to find rare correlated periodic patterns in multiple
sequences depending on the defined mining constraints and data
structure. MRCPPS has been successful in discovering all rare
correlated periodic patterns, however, its user-defined support
thresholds make the obtained patterns have a widely varied
periodicity. The pattern-growth algorithm SPP-Growth [17] was
proposed to discover patterns with a stable periodicity.

The serial episode [18], representing an ordered sequence of
event types, is one of the two categories of the episode patterns.
It has been of great interest in many practical applications [19–
21] for its ability in capturing causative chains of event types
in the data. In alarm management [21], episode mining was
applied in discovering the possible combination of the alerts. A
meaningful serial episode should correspond to different type of
ordered events in different applications, therefore, many occur-
rence counting strategies have been studied, such as minimal
occurrences [22], non-overlapping occurrence [23,24], and with
utility measure [25]. Avinash et al. [24] proposed a depth-first
search based algorithm for closed serial episode discovery with
gap and span constraints. Intuitively, the thresholds of these user-
defined strategies influence the effective and time complexity of
episode mining methods directly.

A discriminative sequential pattern [26] (a kind of contrast
pattern) refers to a sub-sequence that possess significant differ-
ences in occurrence frequency in sequences of different classes.
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Table 1
The instance of trading sequences.
SID Sequences

s1 (d1, d2, d3, d4, d5, d1, d3, d2, d7)
s2 (d1, d3, d5, d7, d1, d2)
s3 (d2, d4, d6, d3, d6, d2, d4)
s4 (d4, d5, d2, d1, d3)

Discriminative sequential pattern mining has been one widely
researched topic, such as in detection [27], classification [28] and
behavior analysis domain [29]. In order to understand the inter-
nal relationship between taxpayers’ sequential behaviors, Zheng
et al. [29] proposed a contrast sequential pattern (CSP) mining
approach by using a novel CSP-tree structure. To alleviate the
general issue, high false positive of current methods, He et al. [9]
integrated multiple hypothesis testing correction process into
the pattern mining process. Considering the redundancy issue,
He et al. [30] presented a conditional discriminative sequential
pattern mining for removing subset-induced redundant patterns
by imposing an additional constraint on the redundancy of each
pattern with respect to its sub-patterns.

In Summary, the major steps of sequential pattern mining
ethods are: pruning searching space, determining the support

hreshold and optimizing the mining process. Instead of using
onstrains for reducing searching space in the process of pattern
ining (like gap constrains), in this paper, we prune the infre-
uent items before mining TPs. TPs mining cannot be solved by
xisting episode or periodic pattern mining methods, as TPs do
ot simply belong to each of them. Specifically, the TPs mining
ethod should satisfy the contrast frequency and ordering re-
uirements. Different from the contrast analysis used in [9], we
resent a suitable filtering criteria strategy [29] for mining TPs.
oreover, we generate series of contrast frequency conditions
n the basic of sequential analysis without using user-defined
upport thresholds.

. The framework for mining TPs

In this section, we build a framework for mining trading
atterns based on contrast analysis. Firstly, we state the prob-
ems and definitions following the overview of our framework.
econdly, we construct the LoRSD and the Contrast TPM algo-
ithms respectively. Finally, we analyze the complexity of our
ramework.

.1. Problem statements

A trading time series data set containing N data series is
represented as SN = {s1, s2, . . . , sN}, where sk ∈ SN denotes
the kth time series. Given sk = (dk1, dk2, . . . , dkmk ), where dkj,
j ∈ [1,mk], denotes an item. All the unrepeated items in the set
{dij}, i = 1, 2, . . . ,N , j = 1, 2, . . . ,mi, form an itemset D, and sk
is regarded as a chronologically arranged list of items. Omitting
the time stamp, sk can be simply seen as a sequence. The format
of trading sequences in our scenario, for example, can be shown
in Table 1.

For sk, its length equals the sum of the occurrence of each
item in it. Notably, here, each item in Sk (as shown in Table 1)
represents only one element and cannot be a set of elements. This
formation is different from the sequences that were introduced in
the work of many other researchers. For instance, in [31], some
of the items in sx = (⟨a⟩, ⟨a, b, c⟩, ⟨a, c⟩, ⟨d⟩, ⟨c, f ⟩) just represent
a single element (e.g., ⟨a⟩, ⟨d⟩), while others contain several
elements (e.g., ⟨a, b, c⟩). To specify the characteristics of trading
patterns in pyramid schemes, we firstly state the definitions of
trading sequence and trading item respectively.
390
Definition 1 (Trading Sequence). A trading sequence sa = (e1, e2,
. . . , en) denotes the chronological ordered trading record of an
account a ranging from timestamp at1 to atn, where ek ∈ sa
represents the kth payment amount from or to account a, which
occurs at timestamp atk.

Definition 2 (Trading Item). Given an itemset D, formed by the
whole trading sequences, an item is called a discriminating trad-
ing item if it is an element in the purchasing due set ΦMD or
redeeming rebate set ΦR, here ΦMD ⊂ D and ΦR ⊂ D.

As mentioned in Section 1, a sequential pattern is a sub-
sequence from sequences that satisfies filtering criteria about
frequency of occurrence in sequences. Given a trading sequence
sa, the ordered item list sα = (a1, a2, . . . , am) is called one of
its sub-sequences if there exist integers 1 ≤ j1 < j2 < · · · <
jm ≤ n such that a1 = ej1 , a2 = ej2 , am = ejm . Intuitively, in
trading sequences, the occurrence of TPs are relatively frequent
in sequences formed by pyramid scheme members (positive se-
quences) than that of non-pyramid scheme members (negative
sequences). To discover the TPs that distinguish positive and
negative sequences, we constrain TPs with contrast conditions as
below.

Definition 3 (Trading Patterns). A sub-sequence sµ = (pi1 , pi2 ,
. . , pik ) is a trading pattern if (1) ∀pij ∈ ΦMD

⋃
ΦR; (2) it occurs

ore frequently in positive sequence set SP = {sap1 , sap2 , . . . , sapN }

than in negative sequence set SN = {san1 , san2 , . . . , sanM }, where
sapn ∈ SP and sanm ∈ SN are the trading sequences of a pyramid
scheme account apn and a normal account anm respectively.

A big search space caused by redundant items is a vital obsta-
cle to discover patterns effectively. In discriminative sequential
pattern mining methods, many pruning strategies [29,32] were
proposed for solving redundancy issues by using different pattern
evaluation measures or adopting different pattern searching data
structures [30]. The pruning methods in the search space formed
by trading sequences are even trickier than that in the widely
researched sequences. The two major reasons are (1) a large ca-
pacity itemset caused by a lot of rare items, such as fractions and
big trades; and (2) the existence of disturbing frequent amounts
that occur frequently than others naturally, such as 100,500. Time
complexities of the subsequent pattern mining algorithms would
be increased by a large searching capacity, meanwhile. Further-
more, the mining efficiency would be reduced by the disturbing
items. A beforehand sequence de-noising process enables the
sequential pattern mining to perform on a relatively pure data set.
The left of Fig. 2 illustrates the process of our sequence de-noising
algorithm with the related definition given below.

Problem 1 (Sequence De-noising). Given trading sequences S =

{s1, s2, . . . , sM}, the task of sequence de-noising is to remove the
irrelevant items from each sm ∈ S to make it short while retaining
the trading items.

This is a general statement. Especially, in our study, it is worth
noting that,

• De-noising sequences without disrupting the structure of
sequences before knowing the ultimate trading patterns
is a difficult task. Moreover, the definition of irrelevant
item for trading patterns is ambiguous. Therefore, the re-
mained items should occur frequently in the sub-sequences
of trading sequences.

• To solve this problem, we introduce recursive data mining
(RDM) method [33] into our sequence de-noising (LoRSD)
algorithm because it extracts long range frequent sub-
sequences without using any prior knowledge.
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Fig. 2. The framework for mining trading patterns of pyramid schemes.
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1

After being de-noised by LoRSD algorithm, the trading se-
uences that consist of the most trading items are ideally suited
or mining TPs comparing to the raw sequences. The process
f mining TPs is shown in the right of Fig. 2 containing two
ontinuous phrases: (1) extracting the trading items, and (2)
ining trading patterns. The two components of our framework
re discussed in details in the following parts separately.

.2. Sequence de-noising algorithm

The optimal result of the above-mentioned sequence de-
oising method is that all of the trading items are retained while
he whole irrelevant items are eliminated. To achieve this goal,
e propose a long range sequence de-noising (LoRSD) algorithm.
The RDM [33] algorithm is one of the most suitable fuzzy

attern mining methods and pattern mining methods for sequen-
ial noisy data [34,35]. The idea of RDM is originally proposed
o distinguish the roles of communicators in a social group by
iscovering the statistically dominant sequential patterns from
tream data. The key properties of RDM algorithm [36] include:
1) no restriction on gap intervals of the items in a sequential
attern, which retains the related items to the greatest extent, (2)
olerant of approximate matching, which can be used to eliminate
he noise items without excessive pruning, and (3) the recursive
ining process, because of which the structure of the sequences

s preserved. The three properties match exactly with the require-
ents of sequences pretreatment for the subsequent TPs mining.
herefore, the idea of RDM is used in solving Problem 1.
LoRSD is a hierarchical mining process containing two pro-

esses: folding process and unfolding process (see the left part
f Fig. 2). The folding process conducts recursively with each
ecursion contains two steps. Firstly, the statistically significant
equential patterns are recorded and assigned by new tokens
or the next loop. In details, given a trading sequence sa ∈ S
nd itemset D, for an item d ∈ D at each index position in
sa ∈ S, LoRSD works on its created sub-sequences sfw which
s fragmented by a sliding window w = (l, g) to select its dom-
nant replacement from the candidate sub-sequence set. Here, l
enotes the length of w, and g denotes the maximum number of
ildcards in w. A wildcard is a symbol for replacing any item in a
ub-sequence. The number of wildcards in w ranges from 0 to g in
he process of obtaining the dominant replacement of sfw . Hence,
he dominant replacement of sfw is the one candidate with the
ighest significance score srfw .

r
fw =

∏(l−r)
k=1 P(xk) (1)

(Ra)(l−g)

391
here, P(xk) means the probability of item xk over S, and Ra =
1
|I| represents the random distribution of each item over S. The
ower exponent l−r implies that only the non-wildcard items are
onsidered (i.e., both P(xk) and Ra of the wildcard equal 1). A sfwdr
s considered to be a valid candidate sub-sequence of sfw if its
ignificance score srfwdr is bigger than the threshold β . According
to the number of r , the d ∈ D in each index position of sa ∈ S will
generate a valid candidate sub-sequence set fwd. In this paper, β
is set as an empirical value 10−5 for our data set.

Secondly, LoRSD operates on the re-written sequences until
it reaches the stop condition. Given the dominant sub-sequences
FW of S, we iterate over each index position in sa ∈ s by
checking whether its dominant sub-sequence fwd ̸= ∅, if so
we replace the sub-sequence fragment (starts from the current
position till after l items) with fwd, otherwise move to the next
positions. In addition, the dominant sub-sequences are labeled as
new symbols for next loop, meanwhile, the items that are not
replaced for more than k loops are tagged as noise items (labeled
by another wildcard N).

LoRSD repeats the former two steps till there are no more
dominant sub-sequences from the current loop. In this hierarchi-
cal folding process, a long range combination of items (containing
wildcards and new symbols) can be folded into a sliding window
and will be considered as a dominant sub-sequence no matter
how big the intervals of the items in the original sequence are. For
simplify, we introduce how LoRSD uses RDM in solving Problem 1
in Algorithm 1. For more details refer to [33].

Algorithm 1 LoRSD Algorithm

Input: S, l, g , k, β
L, SDL, noiseItems, tokenItems;

utput: SPru, pruneItems
1: SDL == S
2: while SDL is not updated do
3: Valids = getValid(SDL, l, g, β)
4: tokenItems = getDominants (Valids, L, l, g)
5: tokenItems = tandem(SDL, tokenItems, L)
6: SDL = replaceTokens(SDL, tokens)
7: noiseItems, SDL = foldNoise(SDL, k)
8: end while
9: SPru = unfold(SDL, noiseItems, tokenItems)
0: return SPru, noiseItems

As shown in Algorithm 1 from Line 3 to 6, LoRSD generates
dominant sub-sequences of SDL in loop L. For the item in each
index position of s ∈ SDL, LoRSD generates its candidate valid sub-
sequence and then select the one with the highest significance
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ore as its dominant sub-sequence. The neighboring dominant
ub-sequences are connected to tandems if possible. Afterward,
DL is replaced by the ultimate dominant sub-sequences by car-
rying out a traversal operation. Line 7 explains the process of
marking the noise items with an N . In the unfolding process
line 9), LoRSD flattens SDL from the last loop with the stored
ominant sub-sequences. In this algorithm, the optimal values of
arameters g, l, k vary with data sets. We discuss how to select
he optimal values in Section 4.4.

.3. Contrast TPM algorithm

Given noise-free trading sequences, the target of this section is
o mine TPs (Definition 3). In this section, we propose a Contrast
PM algorithm on the basis of contrast analysis without using
ser-defined support parameters.
Determining the support thresholds is a vital component for

attern mining methods [15,37]. Similar to [9], we employ the
ifference between positive samples and comparable data in min-
ng TPs. Specifically, Contrast TPM obtains trading items by min-
ng frequent one-items (i.e., Definition 4), and then discover TPs
y mining frequent ordered multiple-items (i.e., Definition 5).

efinition 4 (Frequent One-itemset). Given negative sequences SN
nd positive sequences SP , On = {p1, p2, . . . , pn}, pi ∈ SN

⋃
SP is

alled a frequent one-itemset if ∀pi ∈ On satisfies,

(SP, pi)/f (SN, pi) > α. (2)

here, f (x, y) is a function for calculating the frequency of y in x,
is the threshold coefficient, meaning α∗ f (SP, pi) is the frequent

hreshold of pi.

The support threshold of each one-item is dynamically deter-
ined by the trading sequences, containing positive and negative
equences.
As discussed in Section 1, TPs should satisfy the order-prese-

ving requirement of trading items stemming from the concomi-
ance of receiving rebates with paying membership dues. For in-
tance, given a trading pattern ⟨md, r⟩, the event of submittingmd
riggers the event of receiving b, and not vice versa. Moreover, the
o-occurrence of trading items is more frequently in the trading
equences of pyramid schemes than that in random sequences.
ence, in addition to the negative sequences, the random model
s applied into the frequency conditions of multiple-items. The
ormulation of our frequent ordered multiple-itemset is given as
elow.

efinition 5 (Frequent Ordered Multiple-itemset). Given SP , the
revious itemset Mk and comparison model λ, Mk+1 = {mi,j =

i, j⟩|i, j ∈ Mk}, is called a frequent ordered multiple-itemset if
ach ∀mi,j satisfies the following contrast frequency conditions,

(SP(mi,j)) ⋗ 𭟋(λ(mi,j)) (3)

where 𭟋(x) represents a function family for calculating the fre-
quency of event x under different conditions, and SP(y), λ(y)
enote the events that y occurs in SP and λ respectively, and ⋗
xplains the comparison operator.

In Definition 5, 𭟋 and ⋗ constrain the frequent conditions
rom both high co-occurrence and order-preserving perspectives.
otably, its conditions do not constrain the gap or interval be-
ween items in different with most of the current studies [24,37].
or mi,j, to guarantee its relatively frequent co-occurrence in
P comparing to in λ, the coming three conditions need to be
atisfied: C1 (Condition 1)), in SP , at least one of its item occurs
ore frequently than its random probability (shown in Eq. (4));
), the co-occurrence frequency of i, j in the same sequences is
2
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higher than the joint possibility of i and j in a random model
(shown in Eq. (5)); C3), the difference between the sequence
distributions of i and j is less than a random value (shown in
Eq. (6)).

max(CSP (i), CSP (j)) > CR(x) (4)
SCSP (i, j)

LS
> PrSP (i) ∗ PrSP (j) (5)

min(SCSP (i), SCSP (j))
max(SCSP (i), SCSP (j))

>
min(SCR(i), SCR(j))
max(SCR(i), SCR(j))

(6)

here, x, i, j denote random event, event i and event j respec-
ively; (i, j) represent the event that i and j occur in the same
equence, called co-occurrence. For SP , CSP (x) represents the total
umber of times event x occurs in the whole data set, SCSP (x)
eans the number of sequences that contain x (these two no-

ations also apply to the random model R). Not ably, 𭟋 comply
ith the non-overlapping constraint [38] in the counting of the
ccurrence of multiple-items.
To guarantee the concomitant occurrence of i and j, mi,j should

atisfies the coming three order-preserving conditions: C4), the
wo events of (i, j) occur in a specific order in most sequences,
nsuring i and j are the antecedent and consequent items of a
rading pattern respectively. In short, the frequency of event (j|i)
s higher than its random probability (shown in Eq. (7)); C5), if
sequence contains a i, then it tends to contain a j as well. In
ther words, the conditional probability of (i, j) in sequences is
igher than that in the whole data set (shown in Eq. (8)); C6), the
o-occurrence of i and j shows a higher probability in keeping the
rder ⟨i, j⟩. Briefly, the distribution of (j|i) to (i, j) in sequences is
igher than that in the whole data set (shown in Eq. (9)).

CSP (j|i) > CSP (i, j)/2 (7)
SCSP (i, j)
SCSP (i)

>
CSP (i, j)
CSP (i)

(8)

SCSP (j|i)
SCSP (i, j)

>
CSP (j|i)
CSP (i, j)

(9)

To sum up, the former defined contrast conditions guarantee
the relative higher co-occurrence frequency of ordered multiple-
items in both an individual sequence and the whole data set,
meanwhile, satisfy the requirement of order-preserving of fre-
quent one-items. By following Definition 4 and 5, Contrast
TPM algorithm conducts the frequent one-itemset mining and
multiple-itemset mining processes successively. The TPs are sepa-
rated from the others without using user-defined certain support
thresholds by using contrast analysis. The workflow of Contrast
TPM algorithm is shown in Algorithm 2.

As shown in Algorithm 2, Contrast TPM contains two phases:
frequent one-itemset mining (Line 1 to 7) and frequent ordered
multiple-itemset mining (Line 8 to 16). In the first phase, the
frequency of each item in positive and negative sequences is
calculated (Line 1) and then is used for determining whether it
is a discriminative frequent item (Line 2). Subsequently, in the
second phase, the PrefixSpan idea [39] is used for mining the
frequent multiple-items (two-items for the trading patterns of
pyramid schemes) that satisfy Definition 5.

3.4. Computational complexity

The complexities of the two algorithms of our framework are
analyzed below.

• Sequence De-noising algorithm. In RDM process, the worse
case time complexity of the folding process is Θ(N logw N ) [40]
where N, w are the length of sequences and size of the
sliding window respectively.
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Algorithm 2 Contrast TPM algorithm

Input: SN , SP , α, µ, ν
Output: FreOne,FreMulItems
1: FP1, FN1 = getFrequency(SN, SP)
2: FreOneItems(FP1, FN1, α)
3: for ∀pi ∈ FP1 do
4: if pi ⊨ Formula (2) then
5: FreOne.append(pi)
6: end if
7: end for
8: PrefixSpanMulItems(FreOne, SP, SN, µ, ν)
9: Proj = getProjections(FreOne, SP)

10: getStatistics(Proj, SP, SN)
11: return SCSP , CSP , SCSN , CSN
12: for all Proj do
13: if Proj ⊨ Definition 5 then
14: FreMulItems.append(Proj)
15: end if
16: end for

• Contrast TPM algorithm. There are two phases in this algo-
rithm. The time complexity of frequent one-itemset mining
is linear to the number of items in positive and negative
sequences, which is O(M). For the second phase, the Pre-
fixSpan method saves a lot of memory space comparing to
other data structures. The time complexity of this phase is
linear with the respect to the number of sequential patterns
O(Mk) (for the worst-case scenario that M items remain), k
means the length of the multiple-item.

n summary, the framework is approximately linear to the vol-
me of items of each process. Therefore, the more effective the
revious process is, the more efficient the current one will be.

. Experiments

In this section, we evaluate the effectiveness of our proposed
lgorithms empirically. we first introduce the data set and ex-
erimental settings, then discuss our experimental results in the
rading pattern mining task.

.1. Data set

We use a real-world trading data set, relating to a pyramid
cheme organization, from a security institution in China. The
perational organism of this specific pyramid scheme case is
iscussed comprehensively in [1]. In brief, the participants must
pend 3800 yuan to 69,800 yuan to purchase 1–21 virtual prod-
cts (so as to qualify for membership), and all members are
rganized into 5 levels for collecting dues and receiving rebates.
ur data set covers the time series trading records of 2275 bank
ccounts. Each record is a chronological trading sequence that
onsists of the transactions starting from the time when the
ccount was activated. The trading sequences of these bank ac-
ounts are labeled as positive (formed by pyramid scheme mem-
ers) and negative (formed by normal accounts) by providers
ccording to the forensic evidences. The trading items and trad-
ng patterns are frequent in the positive sequences whereas are
parse in the negative sequences, the details of which are listed in
able 2 and Table 3 respectively. As shown in Table 2, the num-
ers of transaction amounts and average lengths of sequences in
hese two kinds of samples are similar. The number of purchasing
ues is 43 in total, 2 of which are rounded from other dues
see Table 3). Furthermore, the sophisticated trading behaviors
393
Table 2
Statistics of positive and negative sequence samples.
Sample Number of

sequences
Number of
transaction amounts

Average length
of sequences

Positive 846 4630 54.9
Negative 1804 4144 40.8

are concluded into unit items (i.e., A, B) and times of them. For
instance, the purchasing due 69800 is composed of one time
of 3800 (i.e., unit A) and 20 times of 3300 (i.e., unit B). The
relationship between the two units of redeeming rebates is or,
hich means only one unit is used for calculating the rebates
with the time decided by the correlated purchasing due).

.2. Experimental setup

To the best of our knowledge, no existing methods can be di-
ectly used to identify trading patterns of pyramid schemes from
ime series financial data. However, some existing techniques
an be extended for our problem, we select the following two
epresentative periodic sequential pattern mining methods as our
aselines for demonstrating the effectiveness of our proposed
ramework.

• MPFPS [10] considers the periodicity of patterns in each
sequence and their frequencies in the overall database. It
defines the periodic pattern in a sequence and sequence pe-
riodic ratio for the whole database with using upper-bound
as a pruning strategy for reducing the search space.

• MRCPPS [15] focuses on discovering rare correlated periodic
patterns in multiple sequences.

• Contrast TPM(Ci). This is a series of variations of our Contrast
TPM algorithm, each of which ignores one of the conditions
in Definition 5 (e.g., i = 1 denotes the first condition is
ignored).

.3. Metric methods

The effectiveness and efficiency of the algorithms are com-
ared by measures of number of patterns and coverage. The
efinitions of these two metrics vary along with the specific
unction of each testing parameter. Therefore, we give the explicit
efinitions in the corresponding parts of this paper separately.
ccording to the definition of TPs, we only discover the or-
ered multiple-items with length no more than 2 items by using
ur Contrast TPM algorithm, while for the other methods, the
ength of the obtained patterns is determined by how their al-
orithms work. On MPFPS, we operate the mining process using
readth-first search strategy with the parameters as maxStd =

0, minRA = 0.01, maxPer = 45, minSup = 2. The reason is that
ith such a setting, MPFPS achieves the best trade-off between
ffectiveness and efficiency. For MRCPPS, the optimal parameters
re set as maxSup = 50, maxStd = 50, minBond = 0.01, minRa =

.01. We determine the optimal values for the parameters in our
ramework through empirical experiments in the coming section.

.4. Effectiveness study

In this section, we test how parameter settings influence the
ffectiveness of our proposed pyramid pattern mining framework
nd then determine their optimal values. To demonstrate the
obustness of the optimal parameters, the time series data is split
nto a training set and a testing set by a time point of observation,
ach of which is used for determining the optimal values and
erify their efficacy in general financial time series data. The
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Table 3
Statistics of trading items containing purchasing items and redeeming items.
Trading
activities

Total number of
trading items

Number of
unit A

Times of A Composition
operator

Number of
unit B

Times of B

purchasing 43(2) 1 N ∈ [0, 1] + 1 N ∈ [0, 20]
redeeming 102 12 N+

∈ [1, 11] or 2 N+
∈ [1, 21]
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Fig. 3. Coverage w.r.t. l.

ivision time point is set to the timestamp that is half a year
go till the end of our data set, referring to the certification of
he time-sensitive attribute of pyramid scheme behaviors in [41].
iven the training set, the optimal parameters are selected based
n the two self-defined metrics. Subsequently, we evaluate the
obustness of these optimal values on testing data.

.4.1. Parameter analysis
There are four influential parameters in our framework, three

f which are l, g , k that come from the LoRSD algorithm and the
ther one is α of Contrast TPM algorithm. The metrics are named
s number of patterns and coverage, where patterns represent
he trading item (shown in Table 3) and coverage represents the
umber of retained items or the ratio of it to the entire original
temset. In this section, We analyze the four parameters on the
raining data separately.

Varying l
Given g = 1, we examine the effect of l from LoRSD in the

ffectiveness of de-noising. The ideal outcome of the de-noising
rocess is that most non-trading items are pruned while all the
rading items remain.

The influence of the variation of l on the effectiveness is tested
by varying k from 1 to 4, and the results are shown in Fig. 3. For
k ∈ 1, 2, 3, 4, the variation tendencies of the curves in each k are
similar (shown in Fig. 3(a)). For each k, the numbers of missed
trading items show three changing phases, it reduces sharply
when l increases from 2 to 3, and then the declining trend slows
down, and then it turns to an upward trend.

Fig. 3(b) illustrates the influence of the variation of l to the
number of remained items when varying k from 1 to 4. The
curves show a similar shape along while changing l. It increases
rapidly when raising l from 2 to 4, and turns to a relatively slow
increasing speed after that. In short, the number of patterns and
coverage change reversely with l raising. Therefore, a proper l
should retain more trading items while prunes more non-trading
items. Even though when l = 2, the coverage reaches the min-
imum value 599, the number of missed trading items increases
up to 40 (i.e., 27.2% of trading items) which is undesirable. In
addition, in the situation of raising l from 4 to 6, take k = 2 as an
example, the missed trading items reduce from 4 to 1, however,
the coverage enlarges from 7349 to 10855. Given l = 5, most of
ks reach their minimum numbers of missed patterns. Therefore,
to trade-off these two indicators, we select l = 5 as the optimal
parameter for LoRSD.
Varying k

394
Fig. 4. Varying k and g .

Given l = 5, we test how different loop gaps for de-noising
influence the effectiveness of the number of patterns and cov-
erage. As shown in Fig. 4(a), the two curves both increase with
varying k from 1 to 2, and decelerate the growth in the following
ituations. The optimal value of the parameter k is 1. The result
ignifies LoRSD performs best when it replaces the noise items
hat have not been covered in the former one loop into the noise
ymbol.
Varying g
Given k = 1, the number of wildcard g relies on l, of which

he value ranges from 1 to l − 1. In this section, we test how g
nfluences the coverage of LoRSD. As shown in Fig. 4(b), in the
direction, the coverage arguments obviously with increasing

, which is correspond with the conclusion in 4.4.1. In the x
irection, the number of remained trading items for ∀l ∈ [6, 7]
ecreases slightly with changing g from 1 to 2, while keeps the
ame for l ∈ [3, 4, 5]. For l ∈ [6, 7], the coverage contains the
ame number of trading items when g is increased from 3 to l−1.
he fluctuation of l = 7 shows a tiny reduction in the coverage
ccompanies by raising g from 2 to 3. The results indicate that
he numbers of remained trading items change positively with
, while negatively with g (iff given l). Therefore, for l = 5, the
ptimal value of g is 1.

arying α

Contrast TPM conduct the pattern mining process on the de-
noised training data, which is generated by the LoRSD algorithm
with the optimal parameters (e.g., l = 5, k = 1, g = 1).
During the pattern mining process, a parameter α is used as a
ratio support threshold for mining relative frequent one-items
in positive samples compared to negative ones. We analyze the
effectiveness of α while varying it from 0.7 to 1.5, and report the
results in Fig. 5.

As is shown in Fig. 5, the x axis represents the values of α, y
xes replay the number of missed trading items and the ratio of
he remained trading items for a given α (x-axis). The K-shape
of the two curves indicates that they are negatively correlated.
The ratio decreases sharply with increasing α from 0.5 to 1.1,
meanwhile, the number of missed trading items augments at
a relatively slow speed. For the training data set, α = 0.8 is
seen as the optimal trade-off between computational complexity
(coverage ratios) and accuracy (remained trading items). In this
situation, more items containing trading items are remained,
enabling the high effectiveness of the whole TPs mining process.
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Table 4
Numbers and coverage of the mined patterns.
Methods Total patterns

(one-items)
Trading items Binomial

patternsa
TPs Multiple

patternsb
TP
ratio (%)

MPFPS 4231(176) 34 59 0 1 0
MRCPPS 574227(721) 79 218 7 1160 3.21
Contrast TPM 44458(2019) 105 1010 359 – 35.54

aDenotes the multiple-items in the length of 2, of which both two items are trading items.
bDenotes the multiple-items longer than 2, in which more than 1/2 items are trading items.
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Fig. 5. Numbers of missed trading items and coverage w.r.t. α.

4.4.2. Robustness analysis
The optimal parameters on training data should be robust

on general financial time series data. The efficacy of the opti-
mal parameters is confirmed by comparing their performances
on testing data. To demonstrate the robustness of the optimal
parameters, we search for the optimal values of LoRSD on testing
data and then compare the performance differences of these two
sets of optimal parameters.

Analyzing the optimal parameters on testing data
The performance of different l and k on testing data is shown

in Table 5, in which the attributes items and coverage represent
the number of missed trading items and the number of retained
amount items (figures in thousands).

The optimal value of l, denoted as lf , on testing data can
be determined by analyzing its relation with items and cover-
age. As discussed in Section 4.4.1, with the increase of l, the
number of missed trading items and coverage change to two
inverse directions. The lf should be the best trade-off of these
wo indicators. For l = {2, 3}, the minimum items is 16 meaning
0.88% of trading items are missed. Even though the coverage
eets the expectation, missing too many trading items will lead

o a low recall of the subsequent pattern mining algorithm. For
= {6, 7}, the majority of the cases are high in coverage and low
n items, this may lead to their low accuracies in pattern mining.
n contrast, the two indicators of l = {4, 5} reach an acceptable
alance. Therefore, lf is set as 4 or 5.
Given l = {4, 5}, we search for the optimal value of k, denoted

s kf , by considering items and coverage at the same time. When
= 4, the items of k = 2 reaches its minimum, and coverage does
ot increase obviously comparing to the cases of k = {1, 3, 4}.

When l = 5, the items reduce with enlarging k, while the
coverage shows a general rising trend. Therefore, k = {1, 2}
generates the best trade-off results.

Robustness of the optimal l and k
As discussed above, the optimal parameters on training set

and testing set are Opp = {lp = 5, kp = 1} and Opf = {lf =

4, 5}, k = {1, 2}} respectively. In this case, Op is a subset of
f p

395
Fig. 6. Performances of the two Optimal αs.

pf , meaning that the two optimal parameters of training data
orks well on the testing data.

obustness of the optimal α

The optimal α of one de-noised data set is considered to be
obust if it works well on the other de-noised data set. Given
he testing data, LoRSD generates two sets of de-noised trading
equences by using Opf and Opp respectively. We analyze the
obustness of α by comparing its performance in two de-noised
ata sets.
Take Opf = {lf = 4, kf = 2} as an instance, the performances

f α with Opf and Opp are depicted in Fig. 6. The performances
f α show almost the same changing trend and overlapping in
ost values. This indicates that α is robustness to Opf and Opp.
oreover, given α = 0.8, i.e. the optimal α on training data, the

wo metrics in Fig. 6 show a good trade-off on testing data. It
eans that α is not sensitive to data set.

.5. Efficiency study

This section estimates the efficiency of Contrast TPM by con-
ucting statistical analysis on the results of pattern mining, and
hen tests the efficiency of patterns in detecting fraud bank ac-
ounts.

.5.1. Efficiency of pattern mining
In this subsection, we execute these four algorithms (i.e.,

PFPS, MRCPPS, Contrast TPM, Contrast TPM(Ci)), under their op-
imal setting situations, in mining trading patterns. Here, Contrast
PM and Contrast TPM(Ci) are inputted with de-noised sequences
nd others are fed with original trading sequences. The number of
btained patterns are given in Table 4, from where the coverage
f the results are derived (shown in Tables 5 and 6). The coverage
s expounded by the recall and precision [42].

As indicated in Table 4, Contrast TPM derives 44175 fre-
uent patterns containing 2019 frequent one-items and 42439
inomial-item patterns. The results cover 105 trading items and
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Table 5
The performances of l and k on testing data.
l k

1 2 3 4

Items Coverage Items Coverage Items Coverage Items Coverage

2 46 0.624 46 0.624 46 0.624 46 0.624
3 19 3.357 17 3.591 16 3.695 16 3.735
4 10 6.047 6 6.310 7 6.276 7 6.191
5 7 7.477 5 7.835 5 7.605 5 7.621
6 6 8.583 6 8.829 7 8.821 7 8.829
7 4 9.077 4 9.401 4 9.383 4 9.383
Table 6
Recall and precision of different methods.
Methods One-item

recall (%)
Binomial
recall (%)

TPs
recall (%)

One-item
precision (%)

Binomial
precision (%)

MPFPS 23.45 0.67 0 19.32 8.14
MRCPPS 54.48 2.49 0.16 10.54 3.90
Contrast TPM 72.41 15.2 13.52 5.2 2.57
Table 7
Comparing the series of Contrast TPM algorithms.
Contrast TPM Binomial

recall (%)
TPs
recall (%)

Binomial
precision (%)

TPs
precision (%)

Dominant
ratio (%)

C1 12.80 8.6 2.55 0.855 33.57
C2 7.48 5.36 1.97 0.706 35.82
C3 15.86 10.81 2.41 0.822 34.07
C4 18.09 15.96 0.69 0.303 44.11
C5 0.09 5.02 1.92 0.548 28.50
C6 8.73 7.52 1.942 0.837 43.08
Our 15.2 13.52 2.57 1.141 44.39
t
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1010 (binomial) trading patterns. In particular, the number of
trading patterns up to 359, meaning that 35.54% the whole
trading patterns are discovered. The coverage of Contrast TPM is
expounded by the Recall and Precision in Table 6, in which the
frequent one-itemset, binomial pattern set, and trading pattern
set are analyzed respectively. For one-itemset, the recall rates
of Contrast TPM and MRCPPS are close, and the precision rates
of Contrast TPM is far below those of MPFPS and MRCPPS. The
reason is principal that Contrast TPM takes one-item mining as a
precursor, aiming to remain as many as feasible relative frequent
items for the subsequent multiple-item mining process. For the
sequential patterns, Contrast TPM recalls 15.2% binomial patterns
which is far exceed than those of MRCPPS and MPFPS, however,
its precision is less than the others. The small precision value
of binomial is caused by its large volume of frequent binomial
patterns. In spite of the low precision of binomial patterns,
Contrast TPM achieves the highest precision and recall rates in
trading patterns.

To illustrate the effectiveness of the frequent conditions, a
eries of vibrant versions of Contrast TPM are evaluated with
he coverage metric. The dominant ratio is an another impor-
ant metric for evaluating the efficiency of the algorithms, as it
eans the proportion of TPs to binomial patterns. As shown in
able 7, we display the performances of these six algorithms in
ining binomial patterns and TPs to demonstrate the necessity
f considering them into mining TPs. Without the co-occurrence
onditions (i.e., C1, C2, C3), the algorithms, on average, achieve
igher precision values comparing with others. Particularly, omit-
ing C1, the algorithm gains the second highest precision. The
mportance of order-preserving condition is confirmed by omit-
ing C4, in which the algorithm obtains the second highest recalls
alues both on binomial patterns and TPs. The best precision and
ominant ratio of Contrast TPM demonstrating the rationality of
ur contrast frequent conditions.
396
4.5.2. Efficiency in fraud detection
The trading sequences of a pyramid scheme members im-

ply obvious periodic trading action and contain specific trading
amounts. In other words, a trading sequence that with high cover-
age of TPs is more likely generated by a pyramid scheme account.
Therefore, the TPs obtained from Contrast TPM can be used as
classification features for identifying the fraud bank accounts
from normal accounts. To guarantee the credibility of our results,
this section starts with a discussion about the generality of our
data set.

Performance of methods with different l and k on testing data
The trading behaviors of a bank account can be extracted into

hree categories of features: (1) transaction statistical features,
.g., transaction amount, transaction frequency; (2) network be-
avioral features, e.g., number of the counterparty; (3) periodic
ehavioral features, e.g., the monthly ratio of total income to
xpenditure.
The differences and similarities of the pyramid scheme ac-

ounts and normal accounts on these three kinds of features have
een fully discussed in our previous study [43]. The conclusion
s drawn that there is no statistically significant difference be-
ween positive and negative trading sequences. Take the periodic
ehavior feature as an instance, 13 monthly periodic features
re constructed, and then conduct null hypothesis significance
esting is conducted for evaluating the differences among the two
ample sets. Given significance level α = 0.05, the result shows
only one of the 13 p-values is bigger than α. The experiments
demonstrate that our data is a general data set, and there is
no obvious difference between the positive and negative trading
sequences.

2. Detecting pyramid scheme members
The trading sequence of a normal account rarely contains

binomial patterns, in contrast, that of a pyramid scheme member
is more likely in containing the binomial patterns. Therefore, the
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Table 8
Performances of different classifiers in using the binomimal patterns as features
Algorithm Accuracy Recall Precision F1 Score

Decision Tree 0.777 0.872 0.823 0.847
Random Forest 0.787 0.893 0.837 0.864
Extra Tree 0.806 0.888 0.838 0.862
Baseline [43] 0.934 0.7783 0.7893 0.7838

binomial patterns can be considered as attributes for identifying
pyramid scheme accounts.

Given the binomial patterns (in the volume of 51978) are
btained from Contrast TPM, the one-hot encoding method is
dopted to generate the feature vector for each account. After-
ard, three classifiers are selected in testing the performance of
he obtained patterns, which are Decision Tree, Random Forest,
nd Extra Tree respectively. The baseline is the best result of iden-
ifying the pyramid scheme members by using the features gener-
ted in [43]. Each classifier conducts 10-fold cross-validation and
ecords the average results on testing data set in Table 8. Taking
inomial patterns as the classification features, all of the three
lassifiers perform better than the baseline in Recall, Precision,
nd F1 Score.
In summary, the classification performance of TPs demon-

trates that Contrast TPM works well in the fraud detection
ask.

. Conclusion

In this paper, we investigate the possibility of discover knowl-
dge for quantitative research about pyramid schemes from fi-
ancial time series data. We propose a sequential pattern mining
ramework for identifying trading patterns of pyramid schemes,
hose result can be used for subsequent detection tasks. In
ur framework, contrast analysis is employed in determining
he frequency conditions to reduce the reliance on user-defined
upport thresholds. The infrequent items is de-noised by LoRSD
lgorithm without destroying the structures of the original trad-
ng sequences. Contrast TPM conducts trading pattern mining
n the noise-free trading sequences by using contrast analysis.
he contrast frequent one-itemset is found out firstly, based on
hich trading patterns are discovered under the conditions of
o-occurrence and order-preserving. The extensive experiments
n a real-world data set demonstrate the performance of LoRSD
nd Contrast TPM in sequence de-noising and trading patterns
ining. The results indicate that the inconspicuous activities of
yramid schemes are predictable with the help of sequential
attern mining techniques.

RediT authorship contribution statement

Fang Lv: Conceptualization, Methodology, Writing – origi-
al draft. Wei Wang: Investigation, Writing – review & editing.
inxuan Han: Software. Di Wang: Data Curation, Formal analy-
is. Yulong Pei: Metrology. Junheng Huang: Validation, Super-
ision. Bailing Wang: Resources, Data curation, Funding acquisi-
ion. Mykola Pechenizkiy: Supervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
397
Acknowledgments

The work of this paper is supported by the National Key R&D
Program of China (2021YFB2012400); the Fundamental Research
Funds for the Central Universities, China (Grant No. HIT.NSRIF.
2020098).

References

[1] P. Feng, D. Sun, Z. Gong, A case study of pyramid scheme finance flow
network based on social network analysis, Sustainability 11 (16) (2019)
4370.

[2] J. Moisander, C. Groß, K. Eräranta, Mechanisms of biopower and ne-
oliberal governmentality in precarious work: Mobilizing the dependent
self-employed as independent business owners, Hum. Relat. 71 (3) (2018)
375–398.

[3] S. Bosley, K.K. McKeage, Multilevel marketing diffusion and the risk
of pyramid scheme activity: The case of fortune hi-tech marketing in
montana, J. Public Policy Mark. 34 (1) (2015) 84–102.

[4] L. Schiffauer, Dangerous speculation: The appeal of pyramid schemes in
rural Siberia, Focaal 2018 (81) (2018) 58–71.

[5] J. Xiong, A method of mining key accounts from internet pyramid selling
data, Teh. Vjesn. 26 (3) (2019) 728–735.

[6] F. Lv, W. Wang, Y. Wei, Y. Sun, J. Huang, B. Wang, Detecting fraudulent
bank account based on convolutional neural network with heterogeneous
data, Math. Probl. Eng. 2019 (1) (2019) 1–11.

[7] F. Lv, J. Huang, W. Wang, Y. Wei, Y. Sun, B. Wang, A two-route CNN model
for bank account classification with heterogeneous data, PLoS One 14 (8)
(2019) 1–22.

[8] Y. Wu, Y. Tong, X. Zhu, X. Wu, NOSEP: Nonoverlapping sequence pat-
tern mining with gap constraints, IEEE Trans. Cybern. 48 (10) (2017)
2809–2822.

[9] Z. He, S. Zhang, J. Wu, Significance-based discriminative sequential pattern
mining, Expert Syst. Appl. 122 (2019) 54–64.

[10] P. Fournier-Viger, Z. Li, J.C.-W. Lin, R.U. Kiran, H. Fujita, Efficient algorithms
to identify periodic patterns in multiple sequences, Inform. Sci. 489 (2019)
205–226.

[11] K.-Y. Huang, C.-H. Chang, Efficient mining of frequent episodes from
complex sequences, Inf. Syst. 33 (1) (2008) 96–114.

[12] J.-S. Yeh, S.-C. Lin, A new data structure for asynchronous periodic pattern
mining, in: Proceedings of the 3rd International Conference on Ubiquitous
Information Management and Communication, in: ICUIMC ’09, Association
for Computing Machinery, New York, NY, USA, 2009, pp. 426–431.

[13] T. Dinh, V.-N. Huynh, B. Le, Mining periodic high utility sequential patterns,
in: Asian Conference on Intelligent Information and Database Systems,
Springer International Publishing, Springer, Manhattan, New York, 2017,
pp. 545–555.

[14] T.H. Duong, D. Janos, V.D. Thi, N.T. Thang, T.T. Anh, An algorithm for mining
high utility sequential patterns with time interval, Cybern. Inf. Technol. 19
(4) (2019) 3–16.

[15] P. Fournier-Viger, P. Yang, Z. Li, J.C.-W. Lin, R.U. Kiran, Discovering rare
correlated periodic patterns in multiple sequences, Data Knowl. Eng. 126
(2020) 101733.

[16] Y.S. Koh, S.D. Ravana, Unsupervised rare pattern mining: a survey, ACM
Trans. Knowl. Discov. Data (TKDD) 10 (4) (2016) 1–29.

[17] P. Fournier-Viger, P. Yang, J.C.-W. Lin, R.U. Kiran, Discovering stable
periodic-frequent patterns in transactional data, in: International Con-
ference on Industrial, Engineering and Other Applications of Applied
Intelligent Systems, Springer-Verlag, Springer, Berlin, Heidelberg, 2019, pp.
230–244.

[18] H. Mannila, H. Toivonen, Verkamo, A. Inkeri, Discovery of frequent episodes
in event sequences, Data Min. Knowl. Discov. 1 (3) (1997) 259–289.

[19] M. Wang, Y. Wu, M. Tsai, Exploiting frequent episodes in weighted suffix
tree to improve intrusion detection system, in: 22nd International Confer-
ence on Advanced Information Networking and Applications - Workshops,
Aina Workshops 2008, IEEE, Japan, Okinawa, 2008, pp. 1246–1252.

[20] A. Ng, A.W.-c. Fu, Mining frequent episodes for relating financial events
and stock trends, in: Advances in Knowledge Discovery and Data Mining,
Springer, Berlin, Heidelberg, 2003, pp. 27–39.

[21] A.A. Ramaki, M. Amini, R.E. Atani, RTECA: Real time episode correlation
algorithm for multi-step attack scenarios detection, Comput. Secur. 49
(2015) 206–219.

[22] H. Ohtani, T. Kida, T. Uno, H. Arimura, Efficient serial episode mining with
minimal occurrences, in: Proceedings of the 3rd International Conference
on Ubiquitous Information Management and Communication, in: ICUIMC
’09, Association for Computing Machinery, New York, NY, USA, 2009, pp.
457–464.

[23] H. Zhu, P. Wang, X. He, Y. Li, W. Wang, B. Shi, Efficient episode mining with
minimal and non-overlapping occurrences, in: 2010 IEEE International
Conference on Data Mining, 2010, pp. 1211–1216.

[24] A. Achar, I. A., P. Sastry, Pattern-growth based frequent serial episode
discovery, Data Knowl. Eng. 87 (2013) 91–108.

http://refhub.elsevier.com/S0167-739X(22)00060-7/sb1
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb1
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb1
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb1
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb1
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb2
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb2
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb2
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb2
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb2
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb2
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb2
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb3
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb3
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb3
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb3
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb3
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb4
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb4
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb4
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb5
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb5
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb5
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb6
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb6
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb6
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb6
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb6
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb7
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb7
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb7
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb7
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb7
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb8
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb8
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb8
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb8
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb8
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb9
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb9
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb9
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb10
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb10
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb10
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb10
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb10
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb11
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb11
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb11
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb12
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb12
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb12
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb12
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb12
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb12
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb12
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb14
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb14
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb14
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb14
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb14
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb15
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb15
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb15
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb15
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb15
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb16
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb16
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb16
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb18
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb18
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb18
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb19
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb19
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb19
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb19
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb19
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb19
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb19
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb20
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb20
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb20
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb20
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb20
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb21
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb21
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb21
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb21
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb21
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb23
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb23
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb23
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb23
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb23
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb24
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb24
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb24


F. Lv, W. Wang, L. Han et al. Future Generation Computer Systems 134 (2022) 388–398
[25] P. Fournier-Viger, P. Yang, J.C.-W. Lin, U. Yun, HUE-span: Fast high utility
episode mining, in: J. Li, S. Wang, S. Qin, X. Li, S. Wang (Eds.), Advanced
Data Mining and Applications, Springer International Publishing, Cham,
2019, pp. 169–184.

[26] G. Dong, J. Li, Efficient mining of emerging patterns: Discovering trends and
differences, in: Proceedings of the Fifth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, in: KDD ’99, Association
for Computing Machinery, New York, NY, USA, 1999, pp. 43–52.

[27] Y. Fan, Y. Ye, L. Chen, Malicious sequential pattern mining for automatic
malware detection, Expert Syst. Appl. 52 (2016) 16–25.

[28] D. Fradkin, F. Mörchen, Mining sequential patterns for classification, Knowl.
Inf. Syst. 45 (3) (2015) 731–749.

[29] Z. Zheng, W. Wei, C. Liu, W. Cao, L. Cao, M. Bhatia, An effective contrast
sequential pattern mining approach to taxpayer behavior analysis, World
Wide Web 19 (4) (2016) 633–651.

[30] Z. He, S. Zhang, F. Gu, J. Wu, Mining conditional discriminative sequential
patterns, Inform. Sci. 478 (2019) 524–539.

[31] J. Han, J. Pei, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, M. Hsu, Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern
growth, in: Proceedings of the 17th International Conference on Data
Engineering, IEEE, Washington, DC, USA, 2001, pp. 215–224.

[32] Y. Kameya, An exhaustive covering approach to parameter-free mining
of non-redundant discriminative itemsets, in: Big Data Analytics and
Knowledge Discovery, Springer International Publishing, Cham, 2016, pp.
143–159.

[33] V. Chaoji, A. Hoonlor, B.K. Szymanski, Recursive data mining for role
identification, in: Proceedings of the 5th International Conference on Soft
Computing As Transdisciplinary Science and Technology, Association for
Computing Machinery, New York, NY, United States, 2008, pp. 218–225.

[34] Y. Abboud, A. Brun, A. Boyer, C3Ro: An efficient mining algorithm of
extended-closed contiguous robust sequential patterns in noisy data,
Expert Syst. Appl. 131 (2019) 172–189.

[35] T.-Y. Wu, J.C.-W. Lin, U. Yun, C.-H. Chen, G. Srivastava, X. Lv, An efficient
algorithm for fuzzy frequent itemset mining, J. Intell. Fuzzy Systems 38
(5) (2020) 5787–5797.

[36] E. Nissan, An overview of data mining for combating crime, Appl. Artif.
Intell. 26 (8) (2012) 760–786.

[37] X. Ji, J. Bailey, G. Dong, Mining minimal distinguishing subsequence
patterns with gap constraints, Knowl. Inf. Syst. 11 (3) (2007) 259–286.

[38] B. Ding, D. Lo, J. Han, S.-C. Khoo, Efficient mining of closed repetitive
gapped subsequences from a sequence database, in: 2009 IEEE 25th
International Conference on Data Engineering, IEEE, Piscataway,NJ, 2009,
pp. 1024–1035.

[39] J. Han, J. Pei, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, M. Hsu, Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern
growth, in: Proceedings of the 17th International Conference on Data
Engineering, IEEE, Washington, DC, USA, 2001, pp. 215–224.

[40] M. Akra, L. Bazzi, On the solution of linear recurrence equations, Comput.
Optim. Appl. 10 (2) (1998) 195–210.

[41] W. Wang, J. Tian, F. Lv, G. Xin, Y. Ma, B. Wang, Mining frequent pyra-
mid patterns from time series transaction data with custom constraints,
Comput. Secur. 100 (2021) 1–15.

[42] D.M. Powers, Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation, J. Mach. Learn. Technol. 2 (1)
(2011) 37–63.

[43] F. Lv, J. Huang, W. Wang, G. Xin, B. Wang, Detecting pyramid scheme ac-
counts with time series financial transactions, in: IEEE Third International
Conference on Data Science in Cyberspace, 2018, pp. 722–728.

Fang Lv (Lyu) is currently a Ph.D. candidate in the
school of Computer Science of Technology, Harbin In-
stitute of Technology, China. She received her Master
degree in the School of Computer Science and Tech-
nology from Harbin Institute of technology, in 2015.
Her research interests include financial security, data
mining.

Wei Wang is an assistant Professor in the school
of Computer Science of Technology, Harbin Institute
of Technology, China. She received her Ph.D. degree
in the School of Computer Science and Technology
from Harbin Institute of technology, in 2015. Her main
interests include data mining, machine learning and
nature language process.
398
Linxuan Han is currently a bachelor in the school of
Computer Science and Technology, Harbin Institute of
Technology, China. His research interests includes data
mining and pattern recognition.

Di Wang is currently a bachelor in the school of
Computer Science and Technology, Harbin Institute of
Technology, China. His research interests includes Ant
algorithm analysis and machine learning.

Yulong Pei is an assistant professor with Department
of Mathematics and Computer Science, Eindhoven Uni-
versity of Technology (TU/e). He received his Ph.D. in
Computer Science from TU/e in February 2020. His
research interests cover graph mining, network embed-
ding, and text mining. He has published several papers
in top conferences and journals. He has served as the
PC member of top-tier conferences and the regular
reviewer for prestigious journals.

Junheng Huang is an Associate Professor in the school
of Computer Science and Technology, Harbin Institute
of Technology, China. He received his Master degree
from the School of Mathematics and Statistics, Lanzhou
university, in 1990. His main research interests in-
clude financial security, data mining and social network
analysis.

Bailing Wang is a professor in the school of Computer
Science of Technology, Harbin Institute of Technology,
China. He received his Ph.D. degree from the School
of Computer Science and Technology from Harbin
Institute of technology, in 2006. His main research
interests include financial security, information security
and cyber networks.

Mykola Pechenizkiy is full professor, chair of Data
Mining at the Department of Mathematics and Com-
puter Science, TU Eindhoven. He received his PhD
from University of Jyvaskyla, Finland in 2005. His
main expertise is in predictive analytics on data evolv-
ing over time. He studies foundations of robustness,
safety, trust, reliability, scalability, interpretability and
explainability of AI. He collaborates with industry on
developing novel techniques for informed, accountable
and transparent predictive and prescriptive analytics.

http://refhub.elsevier.com/S0167-739X(22)00060-7/sb25
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb25
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb25
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb25
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb25
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb25
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb25
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb27
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb27
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb27
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb28
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb28
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb28
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb29
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb29
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb29
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb29
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb29
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb30
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb30
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb30
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb31
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb31
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb31
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb31
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb31
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb31
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb31
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb32
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb32
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb32
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb32
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb32
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb32
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb32
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb34
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb34
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb34
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb34
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb34
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb35
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb35
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb35
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb35
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb35
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb36
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb36
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb36
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb37
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb37
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb37
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb38
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb38
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb38
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb38
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb38
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb38
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb38
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb39
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb39
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb39
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb39
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb39
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb39
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb39
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb40
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb40
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb40
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb41
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb41
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb41
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb41
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb41
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb42
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb42
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb42
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb42
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb42
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb43
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb43
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb43
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb43
http://refhub.elsevier.com/S0167-739X(22)00060-7/sb43

	Mining trading patterns of pyramid schemes from financial time series data
	Introduction
	Related works
	The framework for mining TPs
	Problem statements
	Sequence de-noising algorithm
	Contrast TPM algorithm
	Computational complexity

	Experiments
	Data set
	Experimental setup
	Metric methods
	Effectiveness study
	Parameter analysis
	Robustness analysis

	Efficiency study
	Efficiency of pattern mining
	Efficiency in fraud detection


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


