

RxInfer

Citation for published version (APA):
Bagaev, D., Podusenko, A., & de Vries, B. (2023). RxInfer: A Julia package for reactive real-time Bayesian
inference. Journal of Open Source Software, 8(84), Article 5161. https://doi.org/10.21105/joss.05161

Document license:
CC BY

DOI:
10.21105/joss.05161

Document status and date:
Published: 20/04/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.21105/joss.05161
https://doi.org/10.21105/joss.05161
https://research.tue.nl/en/publications/6386a944-a95f-4c33-9ed2-0c241b935b5d

RxInfer: A Julia package for reactive real-time
Bayesian inference
Dmitry Bagaev 1¶, Albert Podusenko 1, and Bert de Vries 1

1 Technical University of Eindhoven ¶ Corresponding author
DOI: 10.21105/joss.05161

Software
• Review
• Repository
• Archive

Editor: Jacob Schreiber
Reviewers:

• @dhvalden
• @alstat

Submitted: 03 January 2023
Published: 20 April 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Bayesian inference realizes optimal information processing through a full commitment to
reasoning by probability theory. The Bayesian framework is positioned at the core of modern AI
technology for applications such as speech and image recognition and generation, medical analy-
sis, robot navigation, and more. The framework describes how a rational agent should update
its beliefs when new information is revealed by the agent’s environment. Unfortunately, perfect
Bayesian reasoning is generally intractable, since calculations of (often) very high-dimensional
integrals are required for many models of interest. As a result, a number of numerical algorithms
for approximating Bayesian inference have been developed and implemented in probabilistic
programming packages. Successful methods include the Laplace approximation (Gelman et al.,
2015), variants of Monte Carlo (MC) sampling (Salimans et al., n.d.), Variational Inference
(VI) (Blei et al., 2017), Automatic-Differentiation Variational Inference (ADVI) (Kucukelbir et
al., 2017), and Black-Box Variational Inference (BBVI) (Bamler & Mandt, 2017).

We present RxInfer.jl, which is a Julia (Jeff Bezanson et al., 2012; J. Bezanson et al., 2017)
package for real-time variational Bayesian inference based on reactive message passing in a
factor graph representation of the model under study (Bagaev & Vries, 2021). RxInfer.jl
provides access to a powerful model specification language that translates a textual description
of a probabilistic model into a corresponding factor graph representation. In addition, RxInfer.jl
supports hybrid variational inference processes, where different Bayesian inference methods
can be combined in different parts of the model, resulting in a straightforward mechanism to
trade off accuracy for computational speed. The underlying implementation relies on a reactive
programming paradigm and supports by design the processing of infinite asynchronous data
streams. In the proposed framework, the inference engine reacts to new data and automatically
updates relevant posteriors.

Over the past few years, the inference methods in this package have been tested on many
advanced probabilistic models, resulting in several publications in highly ranked journals such
as Entropy (Podusenko, Kouw, et al., 2021; Şenöz et al., 2021), Frontiers (Podusenko, Erp,
Koudahl, et al., 2021), and conferences such as MLSP-2021 (Podusenko, Erp, Bagaev, et al.,
2021), EUSIPCO-2022 (Erp & Vries, 2022; Podusenko et al., 2022) and SiPS (Nguyen et al.,
2022).

Statement of need
Many important AI applications, including audio processing, self-driving vehicles, weather
forecasting, and extended-reality video processing, and others require continually solving an
inference task in sophisticated probabilistic models with a large number of latent variables.
Often, the inference task in these applications must be performed continually and in real
time in response to new observations. Popular MC-based inference methods, such as the No
U-Turn Sampler (NUTS) (Hoffman & Gelman, 2011) or Hamiltonian Monte Carlo (HMC)

Bagaev et al. (2023). RxInfer: A Julia package for reactive real-time Bayesian inference. Journal of Open Source Software, 8(84), 5161.
https://doi.org/10.21105/joss.05161.

1

https://orcid.org/0000-0001-9655-7986
https://orcid.org/0000-0003-0515-0465
https://orcid.org/0000-0003-0839-174X
https://doi.org/10.21105/joss.05161
https://github.com/openjournals/joss-reviews/issues/5161
https://github.com/biaslab/RxInfer.jl
https://doi.org/10.5281/zenodo.7774921
https://jmschrei.github.io/
https://orcid.org/0000-0003-4230-6625
https://github.com/dhvalden
https://github.com/alstat
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05161

sampling (Brooks et al., 2011), rely on computationally heavy sampling procedures that do
not scale well to probabilistic models with thousands of latent states. Therefore, MC-based
inference is practically not suitable for real-time applications. While the alternative variational
inference method (VI) promises to scale better to large models than sampling-based inference,
VI requires the derivation of gradients of the “variational Free Energy” cost function. For
large models, manual derivation of these gradients might not be feasible, while automated
“black-box” gradient methods do not scale either because they are not capable of taking
advantage of sparsity or conjugate pairs in the model. Therefore, while Bayesian inference is
known as the optimal data processing framework, in practice, real-time AI applications rely on
much simpler, often ad hoc, data processing algorithms.

Solution proposal
We present RxInfer.jl, a package for processing infinite data streams by real-time Bayesian
inference in large probabilistic models. RxInfer.jl implements variational Bayesian inference as
a variational Constrained Bethe Free Energy (CBFE) functional optimization process (Şenöz
et al., 2021). The underlying inference engine derives its speed from taking advantage of both
statistical independencies and conjugate pairings of variables in the factor graph. Inference
proceeds continually by an automated reactive message passing process on the graph, where
each message carves away a bit of the variational Free Energy cost function. Very often,
closed-form message computation rules are available for specific nodes and node combinations,
leading to much faster inference than sampling-based inference methods, and additionally
enables hierarchical composition of different models without need for extra derivations. These
properties distinguish RxInfer.jl from other popular Bayesian inference libraries in Julia, such
as Turing.jl (Ge et al., 2018), Stan.jl (Stan Development Team, 2022; Stan.jl Development
Team, 2022), and others, which are not designed to run inference continually in response to
new observations in real-time.

Overview of functionality
RxInfer.jl is an open source package, available at https://github.com/biaslab/RxInfer.jl, and
enjoys the following features:

• A user-friendly specification of probabilistic models. Through Julia macros, RxInfer.jl is
capable of automatically transforming a textual description of a probabilistic model to a
factor graph representation of that model.

• A hybrid inference engine. The inference engine supports a variety of well-known message
passing-based inference methods such as belief propagation, structured and mean-field
variational message passing, expectation propagation, expectation maximization, and
conjugate-computation variational inference (CVI) (Akbayrak et al., 2022).

• A customized trade-off between accuracy and speed. For each location (node and edge)
in the graph, RxInfer.jl allows a custom specification of the inference constraints on the
variational family of distributions in the CBFE optimization procedure. This enables the
use of different Bayesian inference methods at different locations of the graph, leading
to an optimized trade-off between accuracy and speed.

• Support for real-time processing of infinite data streams. RxInfer.jl is based on a reactive
programming paradigm that enables asynchronous data processing as soon as data
arrives.

• Support for large static data sets. The package is not limited to real-time processing
of data streams and also scales well to batch processing of large data sets and large
probabilistic models that can include hundreds of thousands of latent variables (Bagaev,
2021).

• RxInfer.jl is extensible. The public API defines a straightforward and user-friendly way
to extend the built-in functionality with custom nodes and message update rules.

Bagaev et al. (2023). RxInfer: A Julia package for reactive real-time Bayesian inference. Journal of Open Source Software, 8(84), 5161.
https://doi.org/10.21105/joss.05161.

2

https://github.com/biaslab/RxInfer.jl
https://doi.org/10.21105/joss.05161

• A large collection of precomputed analytical inference solutions. Current built-in function-
ality includes fast inference solutions for linear Gaussian dynamical systems, autoregressive
models, hierarchical models, discrete-valued models, mixture models, invertible neural
networks (Erp & Vries, 2022), arbitrary nonlinear state transition functions, and conjugate
pair primitives.

• The inference procedure is auto-differentiable with external packages, such as Forward-
Diff.jl (Revels et al., 2016) or ReverseDiff.jl.

• The inference engine supports different types of floating-point numbers, such as Float32,
Float64, and BigFloat.

A large collection of examples is available at https://biaslab.github.io/RxInfer.jl/stable/
examples/overview/.

Example usage
In this section, we show a small example based on Example 3.7 in Sarkka (Särkkä, 2013),
where the goal is to track in real-time the state (angle and velocity) of a simple pendulum
system. The differential equations for a simple pendulum can be written as a special case of a
continuous-time nonlinear dynamic system where the hidden state 𝑥(𝑡) is a two-dimensional

vector [𝑥
(1)

𝑥(2)] ≡ [𝛼𝑣] with 𝛼 and 𝑣 being the angle and velocity, respectively, and the state

transition function 𝑓(𝑥) = [𝑥(1) + 𝑥(2)Δ𝑡
𝑥(2) − 𝑔 ⋅ sin(𝑥(1))Δ𝑡]. For more detailed derivations we refer

interested reader to Särkkä (2013).

We use the RxInfer’s @model macro to specify the probabilistic model. We use the @meta macro
to specify an approximation method for the nonlinearity in the model, the @constraints macro
to define constraints for the variational distributions in the Bethe Free Energy optimization
procedure, and the @autoupdates macro to specify how to update priors about the current
state of the system. Finally, we use the rxinference function to execute the inference process,
see Figure 1. The inference process runs in real time and takes 162 microseconds on average
per observation on a single CPU of a regular office laptop (MacBook Pro 2018, 2.6 GHz Intel
Core i7).

`g` is the gravitational constant

f(x) = [x[1] + x[2] * Δt, x[2] - g * sin(x[1]) * Δt]

We use the `@model` macro to define the probabilistic model

@model function pendulum()

Define reactive inputs for the `prior`

of the current angle state

prior_mean = datavar(Vector{Float64})

prior_cov = datavar(Matrix{Float64})

previous_state ~ MvNormal(mean = prior_mean, cov = prior_cov)

Use `f` as state transition function

state ~ f(previous_state)

Assign a prior for the noise component

noise_shape = datavar(Float64)

noise_scale = datavar(Float64)

noise ~ Gamma(shape = noise_shape, scale = noise_scale)

Define reactive input for the `observation`

observation = datavar(Float64)

Bagaev et al. (2023). RxInfer: A Julia package for reactive real-time Bayesian inference. Journal of Open Source Software, 8(84), 5161.
https://doi.org/10.21105/joss.05161.

3

https://biaslab.github.io/RxInfer.jl/stable/examples/overview/
https://biaslab.github.io/RxInfer.jl/stable/examples/overview/
https://doi.org/10.21105/joss.05161

We observe only the first component of the state

observation ~ Normal(mean = dot([1.0, 0.0], state), precision = noise)

end

@constraints function pendulum_constraint()

Assume the `state` and the `noise` are independent

q(state, noise) = q(state)q(noise)

end

@meta function pendulum_meta()

Use the `Linearization` approximation method

around the nonlinear function `f`

f() -> Linearization()

end

function pendulum_experiment(observations)

The `@autoupdates` structure defines how to update

the priors for the next observation

autoupdates = @autoupdates begin

prior_mean = mean(q(state))

prior_cov = cov(q(state))

noise_shape = shape(q(noise))

noise_scale = scale(q(noise))

end

results = rxinference(

model = pendulum(),

constraints = pendulum_constraint(),

meta = pendulum_meta(),

autoupdates = autoupdates,

data = (observation = observations,),

initmarginals = (

We assume a relatively good prior for the very first state

state = MvNormalMeanPrecision([0.5, 0.0], [100.0 0.0; 0.0 100.0]),

And we assign a vague prior for the noise component

noise = Gamma(1.0, 100.0)

),

We indicate that we want to keep a history of estimated

states and the noise component

historyvars = (state = KeepLast(), noise = KeepLast()),

keephistory = length(observations),

We perform 5 VMP iterations on each observation

iterations = 5,

We start the inference procedure automatically

autostart = true

)

return results

end

Bagaev et al. (2023). RxInfer: A Julia package for reactive real-time Bayesian inference. Journal of Open Source Software, 8(84), 5161.
https://doi.org/10.21105/joss.05161.

4

https://doi.org/10.21105/joss.05161

0.0 2.5 5.0 7.5 10.0
−5.0

−2.5

0.0

2.5

Time (in s)

Pe
nd

ul
um

an
gl

e
(in

ra
di

an
s)

Real signal
Noisy observations

Inferred states

1.8 2.0 2.2 2.4
0.0

0.2

0.4

0.6

Figure 1: The inference results for the pendulum example. X-axis represents time 𝑡 (in seconds). Y-axis
represents the current angle of the pendulum (in radians) at time 𝑡. Real (unobserved) signal is shown in
blue line. Observations are shown as orange dots. The inference results are shown as green line with
area, which represents posterior uncertainty (one standard deviation). The inference process runs in real
time and takes 162 microseconds on average per observation on a single CPU of a regular office laptop
(MacBook Pro 2018, 2.6 GHz Intel Core i7).

Acknowledgments
The authors gratefully acknowledge contributions and support from colleagues in the BIASlab
in the Department of Electrical Engineering at the University of Eindhoven of Technology.

References

Akbayrak, S., Şenöz, İ., Sarı, A., & de Vries, B. (2022). Probabilistic programming with
stochastic variational message passing. International Journal of Approximate Reasoning,
148, 235–252. https://doi.org/10.1016/j.ijar.2022.06.006

Bagaev, D. (2021). ReactiveMP.jl: A Julia package for automatic Bayesian inference on a factor
graph with reactive message passing. Zenodo. https://doi.org/10.5281/ZENODO.6365000

Bagaev, D., & Vries, B. de. (2021). Reactive Message Passing for Scalable Bayesian Inference.
arXiv:2112.13251 [Cs]. http://arxiv.org/abs/2112.13251

Bamler, R., & Mandt, S. (2017). Structured Black Box Variational Inference for Latent Time
Series Models. arXiv:1707.01069 [Cs, Stat]. http://arxiv.org/abs/1707.01069

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. (2017). Julia: A Fresh Approach to
Numerical Computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Bezanson, Jeff, Karpinski, S., Shah, V. B., & Edelman, A. (2012). Julia: A Fast Dynamic
Language for Technical Computing. arXiv:1209.5145 [Cs]. https://doi.org/10.48550/arXiv.
1209.5145

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational Inference: A Review
for Statisticians. Journal of the American Statistical Association, 112(518), 859–877.
https://doi.org/10.1080/01621459.2017.1285773

Bagaev et al. (2023). RxInfer: A Julia package for reactive real-time Bayesian inference. Journal of Open Source Software, 8(84), 5161.
https://doi.org/10.21105/joss.05161.

5

https://doi.org/10.1016/j.ijar.2022.06.006
https://doi.org/10.5281/ZENODO.6365000
http://arxiv.org/abs/2112.13251
http://arxiv.org/abs/1707.01069
https://doi.org/10.1137/141000671
https://doi.org/10.48550/arXiv.1209.5145
https://doi.org/10.48550/arXiv.1209.5145
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.21105/joss.05161

Brooks, S., Gelman, A., Jones, G., & Meng, X.-L. (Eds.). (2011). Handbook of markov chain
monte carlo. Chapman; Hall/CRC. https://doi.org/10.1201/b10905

Erp, B. van, & Vries, B. de. (2022). Hybrid Inference with Invertible Neural Networks in
Factor Graphs. 2022 30th European Signal Processing Conference (EUSIPCO), 1397–1401.
https://doi.org/10.23919/EUSIPCO55093.2022.9909873

Ge, H., Xu, K., & Ghahramani, Z. (2018). Turing: A language for flexible probabilistic
inference. International Conference on Artificial Intelligence and Statistics, AISTATS
2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, 1682–1690. http:
//proceedings.mlr.press/v84/ge18b.html

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2015).
Bayesian Data Analysis (3rd ed.). Chapman; Hall/CRC. https://doi.org/10.1201/b16018

Hoffman, M. D., & Gelman, A. (2011). The no-u-turn sampler: Adaptively setting path
lengths in hamiltonian monte carlo. arXiv. https://doi.org/10.48550/ARXIV.1111.4246

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017). Automatic
Differentiation Variational Inference. Journal of Machine Learning Research, 18(1), 430–474.
http://www.jmlr.org/papers/volume18/16-107/16-107.pdf

Nguyen, H. M. H., Erp, B. van, Senoz, I., & Vries, B. de. (2022). Efficient Model Evidence
Computation in Tree-structured Factor Graphs. 2022 IEEE Workshop on Signal Processing
Systems (SiPS), 6. https://doi.org/10.1109/SiPS55645.2022.9919250

Podusenko, A., Erp, B. van, Bagaev, D., Şenöz, İsmail, & Vries, B. de. (2021). Message
Passing-Based Inference in the Gamma Mixture Model. 2021 IEEE 31st International
Workshop on Machine Learning for Signal Processing (MLSP), 1–6. https://doi.org/10.
1109/MLSP52302.2021.9596329

Podusenko, A., Erp, B. van, Bagaev, D., şenöz, Ï., & Vries, B. de. (2022). Message
Passing-based Inference in Switching Autoregressive Models. 2022 30th European Signal
Processing Conference (EUSIPCO), 1497–1501. https://doi.org/10.23919/EUSIPCO55093.
2022.9909828

Podusenko, A., Erp, B. van, Koudahl, M., & Vries, B. de. (2021). AIDA: An Active Inference-
based Design Agent for Audio Processing Algorithms. arXiv:2112.13366 [Cs, Eess, Stat].
https://doi.org/10.3389/frsip.2022.842477

Podusenko, A., Kouw, W. M., & Vries, B. de. (2021). Message Passing-Based Inference
for Time-Varying Autoregressive Models. Entropy, 23(6), 683. https://doi.org/10.3390/
e23060683

Revels, J., Lubin, M., & Papamarkou, T. (2016). Forward-Mode Automatic Differentiation in
Julia. arXiv:1607.07892 [Cs]. http://arxiv.org/abs/1607.07892

Salimans, T., Kingma, D. P., & Welling, M. (n.d.). Markov Chain Monte Carlo and Variational
Inference:Bridging the Gap. Bridging the Gap, 9.

Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press. ISBN: 978-
0-415-55809-9

Şenöz, İ., Laar, T. van de, Bagaev, D., & Vries, B. de. (2021). Variational Message
Passing and Local Constraint Manipulation in Factor Graphs. Entropy, 23(7), 807. https:
//doi.org/10.3390/e23070807

Stan Development Team. (2022). Stan modeling language users guide and reference manual,
version 2.31. https://mc-stan.org

Stan.jl Development Team. (2022). Stan modeling language in julia, version 10.3.2. https:
//github.com/StanJulia/Stan.jl

Bagaev et al. (2023). RxInfer: A Julia package for reactive real-time Bayesian inference. Journal of Open Source Software, 8(84), 5161.
https://doi.org/10.21105/joss.05161.

6

https://doi.org/10.1201/b10905
https://doi.org/10.23919/EUSIPCO55093.2022.9909873
http://proceedings.mlr.press/v84/ge18b.html
http://proceedings.mlr.press/v84/ge18b.html
https://doi.org/10.1201/b16018
https://doi.org/10.48550/ARXIV.1111.4246
http://www.jmlr.org/papers/volume18/16-107/16-107.pdf
https://doi.org/10.1109/SiPS55645.2022.9919250
https://doi.org/10.1109/MLSP52302.2021.9596329
https://doi.org/10.1109/MLSP52302.2021.9596329
https://doi.org/10.23919/EUSIPCO55093.2022.9909828
https://doi.org/10.23919/EUSIPCO55093.2022.9909828
https://doi.org/10.3389/frsip.2022.842477
https://doi.org/10.3390/e23060683
https://doi.org/10.3390/e23060683
http://arxiv.org/abs/1607.07892
https://doi.org/10.3390/e23070807
https://doi.org/10.3390/e23070807
https://mc-stan.org
https://github.com/StanJulia/Stan.jl
https://github.com/StanJulia/Stan.jl
https://doi.org/10.21105/joss.05161

	Summary
	Statement of need
	Solution proposal
	Overview of functionality
	Example usage
	Acknowledgments
	References

