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a b s t r a c t

This paper extends the work of Pimentel et al. (2015), presenting an estimator of
Kendall’s τ for bivariate zero-inflated count data. We provide achievable bounds of our
proposed estimator and suggest how to estimate them, thereby making the estimator
useful in practice.
©2023 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Zero-inflated data naturally appears in many applications such as health care and ecology (Moulton and Halsey, 1995;
rab et al., 2012). Analyzing zero-inflated data is challenging as the high amount of observations in zero invalidates
tandard statistical techniques. For example, assessing the level of dependence between two zero-inflated random
ariables becomes a difficult task as standard rank-based measures of association such as Kendall’s τ and Spearman’s
cannot be applied directly due to the large amount of tied values in zero making any tie-breaking adjustment

nsatisfactory (Hollander and Wolfe, 2013). The importance of deriving consistent estimators of popular association
easures, such as Kendall’s τ and Spearman’s ρ, for bivariate zero-inflated distributions motivated recent work on the

opic. In Pimentel (2009) and Pimentel et al. (2015), the authors focused on zero-inflated continuous distributions and
roposed new estimators for Kendall’s τ with reduced bias. Denuit and Mesfioui (2017) derived lower and upper bounds
f the newly introduced estimator, making its interpretation possible as a measure of the strength of dependence. The
bundance of zero-inflated count data in practice, e.g., zero-inflated Poisson-type data, makes it crucial to define measures
f dependence that can handle discreteness of the data as well as it being zero-inflated. In this paper we extend the work
f Pimentel et al. (2015) and propose a new estimator of Kendall’s τ for bivariate random variables with zero-inflated
iscrete distributions. We complete the picture by deriving the theoretical lower and upper bounds of the proposed
stimator, and we compare them with the bounds obtained by Denuit and Mesfioui (2017) for Pimentel’s estimator. As
n illustration, we show the performance of our proposed estimator in several simulated scenarios based on zero-inflated
oisson distributions. The paper is structured as follows: Section 2 introduces the notation and basic concepts. In Section 3,
e present our proposed estimator, and we discuss its attainable theoretical bounds in Section 4. In Section 5, we evaluate
he performance of the estimator via a simulation study. We end with a discussion and conclusion section in Section 6.
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2. Background and notation

We consider two independent copies (X̃1, Ỹ1) and (X̃2, Ỹ2) of the random vector (X, Y ) with joint cumulative distribution
function H . Kendall’s τ is defined as the probability of concordance minus the probability of discordance (Kendall, 1938).
For continuous random vectors, this definition results in τ = P[(X̃1 − X̃2)(Ỹ1 − Ỹ2) > 0] − P[(X̃1 − X̃2)(Ỹ1 − Ỹ2) < 0] =

2P[(X̃1 − X̃2)(Ỹ1 − Ỹ2) > 0] − 1. When X and Y assume values in the non-negative integers, Kendall’s τ also depends on
the probability of ties, i.e., τ = 2P[(X̃1 − X̃2)(Ỹ1 − Ỹ2) > 0] − 1 + P[X̃1 = X̃2 or Ỹ1 = Ỹ2]. The non-continuous case has
extensively been studied in Denuit and Lambert (2005), Mesfioui and Tajar (2005), Nešlehová (2007), Nikoloulopoulos
and Karlis (2008), and Nikoloulopoulos and Karlis (2009), where the authors also give closed-form formulas to calculate
Kendall’s τ for general discrete distributions when the distribution is completely known.

We denote as τ̂ the standard estimator of Kendall’s τ computed by replacing the probability of concordance and
discordance with the corresponding sample frequencies, which is by counting the number of concordant and discordant
pairs and divide by the total number of pairs (Kendall, 1938). In case of ties, i.e., repeated values in the sample, there are
pairs that are neither concordant nor discordant. To account for this, an adjusted version of the estimator of Kendall’s
τ which excludes the tied pairs from the count has been proposed (Kendall, 1945). We denote this by τb. To define
our theoretical framework, we use a similar notation as in Pimentel et al. (2015) and Denuit and Mesfioui (2017). We
consider two non-negative random variables X and Y that follow two discrete distributions (e.g., Poisson) with extra
positive probability mass at zero, i.e., the cumulative distribution function (cdf) of X , F , and of Y , G, can be written as
follows

F (s) =

{
0, if s < 0
(1 − πF ) + πF · F̃ (s), if s ≥ 0

G(t) =

{
0, if t < 0
(1 − πG) + πG · G̃(t), if t ≥ 0

where, F̃ and G̃ are discrete distribution functions (e.g., Poisson), while for Pimentel et al. (2015) they are continuous. The
probabilities (1 − πF ) and (1 − πG) represent the extra zero inflation of the distribution. Since F̃ and G̃ are discrete, the
total probability mass in zero is equal to (1 − πF ) + πF · F̃ (0) for X , and (1 − πG) + πG · G̃(0) for Y .

Following (Denuit and Lambert, 2005), for two independent copies (X̃1, Ỹ1) and (X̃2, Ỹ2) of the random vector (X, Y )
with underlying copula C , we define PC (tie) = P(X̃1 = X̃2) + P(Ỹ1 = Ỹ2) − P(X̃1 = X̃2, Ỹ1 = Ỹ2). Then, we indicate with
pUt11 = PM (tie) and pLt11 = PW (tie) the probability that either X1 or Y1 are tied when the joint distribution of (X, Y ) is
the upper (lower) Fréchet–Hoeffding bound M (W). We denote by X10 a positive random variable distributed as X given
that Y = 0, X11 a positive random variable distributed as X given that Y > 0. Similarly, Y01 is a positive random variable
distributed as Y given that X = 0, and Y11 a positive random variable distributed as Y given that X > 0. We also consider
X1 a random variable distributed as X given X > 0 (whose distribution is F̄ ), and Y1, analogously (with corresponding
distribution Ḡ). In addition, we define the following probabilities: p00 = P[X = 0, Y = 0], p01 = P[X = 0, Y > 0],
p10 = P[X > 0, Y = 0], p11 = P[X > 0, Y > 0], p∗

1 = P[X10 > X11], p∗

2 = P[Y01 > Y11], and define τ11 as Kendall’s τ of
(X1, Y1), i.e., away from zero. Then, the association measure τH for the random vector (X, Y ) considered in Pimentel et al.
(2015) is given by the following formula:

τH = p211τ11 + 2(p00p11 − p01p10) + 2p11[p10(1 − 2p∗

1) + p01(1 − 2p∗

2)] (1)

Pimentel et al. (2015) suggested an estimator τ̂H of Eq. (1) by replacing all probabilities of the formula with the
corresponding sample frequencies, and, since no ties are expected away from zero, by substituting τ11 with the standard
estimator τ̂ of Kendall’s τ calculated from data on X and Y where X and Y are both positive. In addition, Denuit and
Mesfioui (2017) proved that the attainable bounds of the association measure τH only depend on the zero-inflation
probabilities p1 = P[X = 0] and p2 = P[Y = 0]. Specifically, the bounds are given by the following formulas

τ
upper
H =

{
1 − p22, when p1 ≤ p2
1 − p21, when p1 ≥ p2

(2)

τ lower
H =

{
−2(1 − p1)(1 − p2), when 1 − p1 − p2 < 0
(1 − p1 − p2)2 − 2(1 − p1)(1 − p2), when 1 − p1 − p2 > 0

(3)

Although τH was not designed for zero-inflated count data, a natural question arises whether or not it is sufficient to
replace the estimator of τ11 with τb in Eq. (1) to obtain an estimator of Kendall’s τ that also works for such a data. The
result established in the next section shows that this is not the case, and further adjustments are needed.

3. Estimator of Kendall’s τ for zero-inflated count data

The association measure studied in Pimentel et al. (2015) is based on a separation of the zero-inflated part from the
continuous part of the distribution. Pimentel et al. (2015)’s estimator is interesting since, on the one hand, it accounts for
the ties in zero and, on the other hand, it acts as the standard estimator of Kendall’s τ away from zero. Our approach is
based on a similar idea of decomposing the association measure around zero and away from zero. However, due to the
discrete nature of the zero-inflated count data away from zero, the estimator proposed by Pimentel et al. (2015) cannot be
applied directly without further adjustments due to the non-zero probability of ties within the margins. The next result
tackles this issue and establishes Kendall’s τ for zero-inflated count data.
2
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Theorem 1. We define the probabilities of ties within the margins as p†
1 = P[X10 = X11], and p†

2 = P[Y01 = Y11]. Then
Kendall’s τ is given by the following relation

τA = p211τ11 + 2(p00p11 − p01p10) + 2p11[p10(1 − 2p∗

1 − p†
1) + p01(1 − 2p∗

2 − p†
2)]. (4)

The proof of this theorem is straightforward and is similar to Pimentel (2009). Based on the definition of Kendall’s
au, we derived the expressions for the probability of concordance and discordance respectively using the law of total
robabilities. The complete proof is given in the supplementary file. As suggested in Pimentel et al. (2015), an estimator

ˆA of τA can be obtained by replacing probabilities with their estimates based on relative frequencies, while τ11 with the
tandard tie-corrected Kendall’s τ estimator τb (Kendall, 1945). Moreover, consistency and asymptotic normality of the
stimator τ̂A follows directly from the same arguments presented in Pimentel et al. (2015) for the estimator of τH .

. Attainable bounds for τA

Kendall’s τ cannot reach the theoretical bounds ±1 if there is a discrete component in the random vector. In light of
his, knowing the attainable bounds of the estimators of Kendall’s τ is crucial to assess the strength of association of the
ata. To make our proposed estimator τA of Eq. (4) useful in practice, we derive the range of admissible values for τA in
erms of the marginal distributions of X and Y . To do so, we follow the approach of Denuit and Mesfioui (2017), which is
ased on the property of monotonicity of Kendall’s τ with respect to the concordance order (Denuit and Lambert, 2005;
esfioui and Tajar, 2005).

roposition 1. The lower and upper bounds of the association measure τA of Eq. (4) are given by

τ
upper
A =

{
(1 − p22) − (1 − p2)2pUt11 − 2(p2 − F (s̃ − 1))(F (s̃) − p2), if p1 ≤ p2
(1 − p21) − (1 − p1)2pUt11 − 2(p1 − G(t̃ − 1))(G(t̃) − p1), if p1 ≥ p2

τ lower
A =

⎧⎨⎩
−2(1 − p1)(1 − p2) if 1 − p1 − p2 < 0
p21 + p22 − 1 + (1 − p1 − p2)2 · pLt11 + 2[(F (s̃′) + p2 − 1)(1 − p2 − F (s̃′ − 1))+

+(G(t̃ ′) + p1 − 1)(1 − p1 − G(t̃ ′ − 1))], if 1 − p1 − p2 > 0

here s̃ is a point such that F (s̃) > p2 and F (s̃− 1) ≤ p2, and s̃′ is a point such that F (s̃′)+ p2 − 1 > 0 and F (s̃′)+ p2 − 1 ≤ 0
analogously for t̃ and t̃ ′).

We notice that the points s̃, s̃′, t̃ , t̃ ′ and the corresponding expressions are closely related to the joint probability
xpressed in terms of the Fréchet–Hoeffding bounds min{F (x),G(y)}, and max{F (x) + G(y) − 1, 0}. The complete proof of
roposition 1 is available in the supplementary file. Although the bounds reported in Proposition 1 appear to be more
nvolved than the bounds reported in Denuit and Mesfioui (2017), they correspond to the ones established in Denuit and
esfioui (2017) when the part away from zero is continuous (see Remark 1 in the supplementary file). Moreover, it is still
ossible to estimate them from the data. The probabilities of zero-inflation of X and Y , i.e., p1 and p2, can be replaced by the
orresponding relative frequencies. The values pUt11 and pLt11 are both dependent on the (joint) distribution. Nevertheless,
s noticed in Denuit and Lambert (2005), they can be replaced by their own lower bound max(P[X1 = X2],P[Y1 = Y2]),
hich can be readily estimated from the sample without the knowledge of the distributions. Therefore, an estimator of a
lightly wider range of τA can be constructed by substituting pUt11 and pLt11 with the maximum sample frequency of X1 or
1 being tied. Finally, the remaining values in the formulas, i.e., F (s̃), F (s̃−1), F (s̃′), F (s̃′ −1), and the analogous quantities
or G, can be estimated via the empirical cdfs of X and Y .

. Simulation study

The theoretical results developed in this work hold for arbitrary zero-inflated count data. As an illustration, we here
onstruct a simulation study based on various parameter choices for zero-inflated Poisson distributions. In particular, to
nvestigate the performance of our proposed estimator, we conducted a Monte-Carlo simulation study based on 1000
epetitions. Namely, we computed the values of the estimators of τ , the adjusted version of τH with τ11 estimated via τb
ue to the discrete nature of our data, and τA for N pairs generated from two correlated zero-inflated Poisson distributions
oined through the Fréchet copula C(u, v) = (1 − ρ)uv + ρ min(u, v), where u, v, ρ ∈ [0, 1] (Nelsen, 2006). Thus, the
arameters of the full distribution are five, i.e., πF , πG, λF , λG, ρ, where ρ is the copula parameter, πF is the probability
ass spread according to a Poisson distribution with mean parameter λF (analogously for πG and λG), and 1−πF represents

he additional probability mass in zero which does not originate from the Poisson distribution of X (same for 1 − πG).
e selected multiple scenarios representative of various characteristics of the samples. In particular, we considered

hree values for the copula parameter ρ = 0.2, 0.5, 0.8 depicting different strengths of association, two proportions
F = πG = 0.2, 0.8 for the probability mass associated with the Poisson distributions, and three combinations for the
oisson mean parameters (λF , λG) = {(2, 2); (2, 8); (8, 8)} corresponding to different levels of probability of ties away
rom zero. We conducted our analysis in R (R Core Team, 2017) and made the code available as supplementary material.
e used the standard R function cor() to compute the tie-corrected version of τ (namely τ ), and we implemented the
b

3
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Table 1
Comparison of the estimators’ performance under various simulation scenarios and sample
size N = 150. The reported MSE∗ is the standard MSE multiplied by a factor of 102 ,
calculated based on the true value of τ computed according to Nikoloulopoulos and Karlis
(2009).

πF = πG ρ True τ τ̂H τ̂A

Mean MSE∗ Mean MSE∗

0.20 0.07 0.07 0.11 0.06 0.12

λF = 2, λG = 2
0.20 0.50 0.16 0.16 0.17 0.15 0.17

0.80 0.26 0.25 0.21 0.25 0.21

0.20 0.15 0.24 1.16 0.15 0.38
0.80 0.50 0.37 0.46 1.23 0.40 0.48

0.80 0.62 0.72 1.21 0.69 0.77

0.20 0.07 0.06 0.12 0.06 0.12

λF = 2, λG = 8

0.20 0.50 0.16 0.16 0.17 0.15 0.18
0.80 0.26 0.25 0.21 0.25 0.21

0.20 0.15 0.20 0.63 0.14 0.40
0.80 0.50 0.36 0.42 0.65 0.38 0.41

0.80 0.61 0.67 0.57 0.65 0.40

0.20 0.08 0.07 0.13 0.07 0.14

λF = 8, λG = 8

0.20 0.50 0.18 0.18 0.19 0.17 0.19
0.80 0.29 0.28 0.23 0.28 0.23

0.20 0.16 0.18 0.47 0.15 0.41
0.80 0.50 0.40 0.44 0.50 0.41 0.42

0.80 0.69 0.73 0.39 0.72 0.33

estimators of τA and τH , which was also not available. In this regard, the meaning of the variable X10 and Y10 (respectively
X11 and Y11) in Pimentel et al. (2015) are subject to interpretation. In particular, in Pimentel et al. (2015), X10 is defined
as a variable with a conditional distribution of X given that Y = 0. Though, based on the steps of our proof and the
notation chosen by the authors, we believe that X10 should be a positive random variable, i.e., only the continuous part
of X , with a conditional distribution X given that Y = 0 to result in a correct formulation for Eq. (1). We implemented
both interpretations for X10 and selected the one that performs the best (which in fact corresponds to X10 being a positive
variable). We recall that, for a bivariate (zero-inflated) discrete distribution, we can calculate the true value of Kendall’s
τ as given in Nikoloulopoulos and Karlis (2009). Therefore, we compute the mean square error (MSE) of the estimators
of τ , τH , and τA based on the true value of τ , and identify the best one through the smallest MSE. Table 1 shows the
results of our simulation study for our chosen parameter values and samples of size N = 150. We investigated various
sample sizes, i.e., N = 150, 300, 1000, and did not find significant differences in the behavior of the estimators. We also
tested N = 50,100, and we noticed that such small sample sizes resulted in a lower number of admissible repetitions due
to a higher probability of generating samples with less than two untied couples away from zero. Thus, we only present
the case N = 150 in the paper. Given the poor performances of τb in all the considered scenarios, we decided not to
report it in the table. As expected, the estimators of τH and τA are comparable in their performance when (1) most of the
probability mass is in zero for both variables, i.e., for πF = πG = 0.2, and (2) there is a limited proportion of ties within
the margins away from zero, i.e., (λF , λG) = (8, 8). In the other cases, our proposed estimator τ̂A outperforms the adjusted
version of τ̂H . A visual representation of the performance of the estimators for selected parameter settings is presented in
Fig. 1. From the boxplots of Fig. 1, we can conclude that τ̂A is generally close to the true value of τ (the constant horizontal
line in the plots), while τ̂H tends to overestimate it when the zero-inflation is mild (e.g., πF = πG = 0.8). Collectively,
our analysis demonstrates that replacing τ11 in Eq. (1) by τb is not enough to ensure accurate performances, and our
adjustment accounting for the probability of ties within the margins is needed when dealing with zero-inflated count
data. Besides looking at the performance of the estimators, we also investigated their attainable bounds. We estimated the
range of τH as suggested in Denuit and Mesfioui (2017) and the bounds of τA as described in Section 4. For comparison, we
pplied Proposition 1 and find the theoretical bounds of τA for our specific marginal distributions (Zero-Inflated Poisson).
he results are reported in Table 2. The estimated ranges for τH and τA are very similar to each other and close to the
heoretical bounds of τA when a small probability mass is spread away from zero. When zero-inflation is limited, our
stimated bounds are sharper than the ones derived in Denuit and Mesfioui (2017), as expected. We observe that the
ounds get closer to the theoretical ones as the number of ties away from zero decreases (i.e., when λF and λG increase).
his can be explained by noticing that we are not computing exact estimates of the bounds of Proposition 1, as we are
sing a looser approximation for the attainable bounds of τ11. Nevertheless, such non-parametric estimators of the bounds
re close enough to the theoretical bounds, and can certainly be used in practice to interpret the strength of association
f an estimate of τ without the need to make assumptions on the underlying distributions.
A

4
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Fig. 1. Boxplots of τH (red) and τA (blue) over 1000 simulations for six different parameter settings and fixed ρ = 0.5. The constant horizontal line
n the plots represents the true value of τ .

Table 2
Estimates of the lower and upper bounds of τH and τA for the simulated scenarios, sample
size N = 150, and averaged across 1000 runs.

πF = πG Bounds τH Bounds τA Theoretical bounds τA

λF = 2, λG = 2 0.20 [−0.06, 0.29] [−0.06, 0.29] [−0.06, 0.31]
0.80 [−0.81, 0.90] [−0.76, 0.84] [−0.75, 0.78]

λF = 2, λG = 8 0.20 [−0.07, 0.32] [−0.07, 0.32] [−0.07, 0.31]
0.80 [−0.86, 0.90] [−0.82, 0.85] [−0.80, 0.77]

λF = 8, λG = 8 0.20 [−0.08, 0.35] [−0.08, 0.35] [−0.08, 0.36]
0.80 [−0.92, 0.96] [−0.89, 0.92] [−0.87, 0.90]

6. Conclusion

In this paper, we built on previous results presented in Pimentel et al. (2015) by proposing an adjusted estimator of
endall’s τ that can tackle both zero-inflated continuous and count data. We made the proposed estimator interpretable

and useful in practice by deriving its theoretical attainable bounds and suggesting a way to estimate them. Our theoretical
results were paired with a simulation study, where we analyzed the estimators’ performance in various settings based on
zero-inflated Poisson distributions. A more extensive simulation study with other discrete distributions can be done by
adjusting the simulation code provided as supplementary material or made upon request. Overall, our proposed estimator
is more flexible and preferable in practice since it coincides with the estimator proposed by Pimentel et al. (2015) if there
are no ties within the margins, while it outperforms it if the zero-inflation is mild.

This paper was motivated by the need for ad hoc statistical methods to quantify association between zero-inflated count
ata. In this work, we mostly focus on point estimates. In a follow-up paper, we plan to derive confidence intervals and
overage probabilities to investigate the convergence rate to normality. We will also apply the proposed estimator to real
atasets. Another natural follow-up of the work presented here would be to derive a suitable estimator for Spearman’s ρ in
ase of zero-inflated count data. Preliminary results on the topic for the continuous zero-inflated case have been presented
n Pimentel (2009) and Mesfioui and Trufin (2022), while Mesfioui et al. (2022) recently analyzed the attainable bounds
f Spearman’s ρ when at least one variable is discrete. However, more research and investigations are needed to derive
or Spearman’s ρ the same tools now available for Kendall’s τ .

ata availability

We have attached the R code for the simulation study as a supplementary file.
5
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The complete proofs of Theorem 1 and Proposition 1 are available online.
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spl.2023.109858.
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