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A B S T R A C T

Cardiac magnetic resonance (CMR) image segmentation is an integral step in the analysis of cardiac function
and diagnosis of heart related diseases. While recent deep learning-based approaches in automatic segmentation
have shown great promise to alleviate the need for manual segmentation, most of these are not applicable to
realistic clinical scenarios. This is largely due to training on mainly homogeneous datasets, without variation
in acquisition, which typically occurs in multi-vendor and multi-site settings, as well as pathological data. Such
approaches frequently exhibit a degradation in prediction performance, particularly on outlier cases commonly
associated with difficult pathologies, artifacts and extensive changes in tissue shape and appearance. In this
work, we present a model aimed at segmenting all three cardiac structures in a multi-center, multi-disease
and multi-view scenario. We propose a pipeline, addressing different challenges with segmentation of such
heterogeneous data, consisting of heart region detection, augmentation through image synthesis and a late-
fusion segmentation approach. Extensive experiments and analysis demonstrate the ability of the proposed
approach to tackle the presence of outlier cases during both training and testing, allowing for better adaptation
to unseen and difficult examples. Overall, we show that the effective reduction of segmentation failures
on outlier cases has a positive impact on not only the average segmentation performance, but also on the
estimation of clinical parameters, leading to a better consistency in derived metrics.
1. Introduction

Accurate segmentation of cardiovascular magnetic resonance (CMR)
images is an essential step for heart structure and function assessment,
as well as a reliable diagnosis of major cardiovascular diseases [1].
In current-day clinical practice this procedure is typically performed
manually or semi-automatically, requiring significant input and cor-
rection from clinicians. However, recent developments in automating
this task have achieved a remarkable performance. These include ap-
proaches ranging from more classical techniques based on statistical
shape models or cardiac atlases to newer deep learning (DL) based
models, which have gradually outperformed previous state-of-the-art
methods [2]. However, most DL methods proposed in the literature
have been trained and evaluated using images acquired from single
clinical centers, utilizing similar imaging protocols and hardware. Con-
sequently, such models exhibit a significant drop in performance when
evaluated on unseen, out-of-distribution data such as abnormal and
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pathological cases not included in the training set, often characterized
by a considerable amount of outliers [3–5]. While typically defined as
erroneous or low quality sample, we refer to outliers as data samples ex-
hibiting rare conditions, under-represented in the training data, which
often occur at the deployment time. A rare occurrence of such classes
during training negatively affects model’s ability to adapt to their ap-
pearance at test time, leading to a significant degradation in prediction
performance and generalization ability. Although anatomical shape
constraints can improve segmentation performance in cardiac anatomy,
they may not work well with malformations caused by pathologies.
Collecting a large and diverse labeled training set for cardiovascular
disease patients to improve model performance is not scalable due
to acquisition requirements and patient privacy concerns. As a result,
research has shifted to methods that optimize model performance on
a target dataset without additional labeling. These methods include
domain adaptation and generalization algorithms, which aim to extract
vailable online 26 April 2023
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domain-independent features or data augmentation techniques to ex-
tend the data distribution [2,6,7]. Generative models are of particular
interest in this field, as they can synthesize missing data and features,
thus expanding the training set.

1.1. Challenges of CMR segmentation

A change in acquisition parameters causes CMR images to exhibit a
great variability in terms of contrast, texture and noise. On the other
hand, variation in patient characteristics causes significant divergence
in tissue shapes and sizes. Such diversity of imaging characteristics
is further intensified by changes in scanner models or vendors. The
appearance of pathology has a significant influence on the ventricle
morphological variation, resulting in unique tissue shapes and contrast,
often under-represented in datasets available for training. Ventricular
remodeling further causes changes in heart mass, geometry, function
and respiratory wall motion. Segmentation is most commonly hin-
dered by the appearance of dilated left and right ventricles, causing
increased wall thickness and regional wall abnormalities. Diseases such
as tetrology of fallot and defects in inter-atrial communication induce
challenges such as the overriding aorta, right ventricular outflow tract
obstruction and pulmonary stenosis. Moreover, segmentation difficul-
ties are caused by gray level inhomogeneities in the blood flow, as well
as the presence of papillary muscles and trabeculations, which exhibit
the same intensity levels as the myocardium. Finally, segmentation
complexity is largely affected by the slice level of the image, where
apical and basal slices are more difficult to segment compared to mid-
ventricular slices. Due to low MRI resolution, sizes of small structures
at the apex and base are often incorrectly estimated due to the vicinity
of the atria. Moreover, while the short-axis image orientation is typ-
ically used to develop segmentation algorithms due to its efficiency
for analyzing both ventricles, it is not fully optimized for the right
ventricle [8–10].

1.2. Related work

Recent attempts to handle issues with model robustness and a large
number of outliers propose training with images acquired from multiple
large cohorts; however, these do not explicitly evaluate the trained
models on completely unseen cohorts from other centers, nor directly
address the domain shift between cohorts [11–14]. Other research
focuses on image and latent space augmentation techniques on models
trained and evaluated mostly using single cohorts, with limited evalua-
tion on unseen cohorts [15–18]. However, such approaches are limited
by different standards in annotation operating procedures, experiments
conducted on private data, as well as the need for a training set
sufficiently large to model immense variability across subjects. As a
result, these models may perform poorly in clinical settings when faced
with a more heterogeneous subject population, including many outlier
cases.

Besides data augmentation, other techniques incorporating modi-
fications in model architectures have been proposed to improve the
robustness of DL models [12]. Solutions such as transfer learning [19]
have been successful, but are limited by the requirement to per-
form fine-tuning for each specific domain. Domain adaptation ap-
proaches [20] have shown promising results for image analysis ap-
plications [21,22], but their effects on out-of-domain data are incon-
clusive [23]. The M&Ms challenge provides a benchmark for testing
CMR segmentation algorithms on data from different centers and
scanner vendors [24]. Several approaches presented in the challenge
demonstrated improvements in domain adaptation, adversarial train-
ing, disentangled representation learning, and augmentation to im-
prove model generalization [24]. However, few studies have evaluated
the performance of such methods in the presence of diseased tissue and
outlier cases that hinder overall performance.
2

b

In some cardiovascular disease assessment and segmentation ap-
plications, combining information from multiple modalities has been
effective. Using balanced-steady state free precession (bSSFP), late
gadolinium enhancement (LGE), and T2-weighted (T2w) contrasts for
myocardial pathology segmentation through multi-modal training can
reduce information uncertainty and improve clinical diagnosis, given
the visual variation of myocardial pathology [25,26]. Feature extrac-
tion from different tissue representations can help account for these
variations and reduce segmentation failures. However, this approach
requires multiple patient scans and large amounts of data for training.
One solution is using generative adversarial networks (GANs) designed
for image synthesis and style translation. Recent developments in the
area of GANs have paved the way towards a number of interesting
medical imaging applications, from style transfer to utilizing GAN-
like architectures for classification or segmentation [27–30]. However,
methods focused on medical image synthesis have captured the most
attention due to their ability to generate realistic-looking medical
images, thus having a potential to increase and vary the available
training data [31–35]. While a lot of research so far has focused on
improving the quality of image synthesis, a small amount of work
evaluates their applicability across different medical image analysis
tasks. Moreover, the application of GAN-synthesized images to address
algorithm robustness in the presence of out-of-domain images, as well
as on data undergoing variations in size, shape and contrast induced by
the presence of pathology, has rarely been explored. Utilizing GANs,
in conjunction with a multi-modal training approach that permits di-
verse visual representations of identical tissue images, shows potential
to enhance the precision of cardiac tissue segmentation when deal-
ing with constrained, heterogeneous, and imbalanced datasets lacking
comprehensive coverage of all potential cases.

1.3. Our contributions

Our work is motivated by the observed heterogeneity in multi-
vendor, multi-center and multi-disease cardiac MRI data, shown to
severely impact the accuracy of segmentation models. We identify the
main aspects that cause a domain shift between images of different
cardiac pathologies from different sources. We then simulate these
properties by applying a series of steps proposed in this work, with
the aim to improve the robustness of segmentation models to the
observed variations. To address variability in the FOV and heart size,
we introduce a heart region detection module that constrains visible
background tissue and centralizes the heart in the image. Further, we
use conditional GANs to augment the training with a large number of
highly realistic and diverse synthetic images with corresponding labels,
particularly focusing on generating enough pathological examples to
balance the ratio between pathological and normal cases. Finally, we
improve model regularization and robustness by combining the late
fusion segmentation approach with intensity transformations that em-
phasize tissue shape and provide variation in the visual representation
of each imaged tissue. We utilize this through a multi-modal training
approach, enabling us to extract complementary information from im-
ages that have undergone various transformations, shown effective in
reducing the prediction uncertainty and minimizing instances of large
segmentation failures.

Compared to our previous work in [36], we extend the proposed
method and experiments to (i) analyze the proposed pipeline’s effect on
model robustness using publicly available M&Ms-2 challenge data2 [24]
and show improved performance on outlier cases; (ii) demonstrate
the importance of outlier reduction on segmentation performance and
clinically-relevant parameters; (iii) use a conditional image synthesis
module to generate diverse images with corresponding labels to address

2 More information about the M&Ms-2 challenge and the data provided can
e accessed at https://www.ub.edu/mnms-2/.
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data availability limitations; (iv) utilize a variational auto-encoder to
increase pathological example diversity in the training set and address
mis-segmentation of diseased tissue; and (v) demonstrate the pipeline’s
ability to adapt to out-of-domain datasets.

2. Materials and methods

2.1. Method overview

The overview of the proposed pipeline is shown in Fig. 2, consisting
of (1) heart region detection module, (2) label-conditional image syn-
thesis with a variational autoencoder (VAE) for label deformation and
(3) late fusion-based segmentation module utilizing transformed ver-
sions of input images during training. We apply the proposed method
to both short-axis and long-axis cardiac MR images. In the following
sections, we motivate our design choices and introduce each component
of the pipeline, as well as the data used for training and validation.

2.2. Background

Synthesis: Previous works in [37,38] have shown the effectiveness
of using SPADE-based generators in translating input segmentation
labels to realistic CMR images. These are based on a mask-guided
image generation technique that employs spatially adaptive denor-
malization (SPADE) layers, reinforcing semantically-consistent image
synthesis [39]. The network is trained using paired images and cor-
responding labels, where SPADE layers have the ability to inject in-
formation from the segmentation map throughout the network and
thus guide the generator to correctly learn the translation between
the particular class and its appearance. Provided by labels at the
input during inference, the trained generator performs label-to-image
translation. However, recent work [40,41] suggests the importance of
producing comprehensive labels of all visible tissues in the image for
generating realistic MR images. Additionally, deforming these labels
can facilitate the creation of novel and previously unseen images,
wherein automated models like VAEs can introduce a wide range
of plausible and diverse deformations. Concurrently to the presented
work, Fernandez V. et al. [42] proposed brainSPADE framework which
includes a label generator based on a VAE model coupled with a latent
diffusion model [43] and a SPADE-based generator for generating
labeled brain data. Moreover, a constrained VAE has been proposed
in [44] to learn the latent representation of valid cardiac shapes that
can be used as post-processing to correct invalid cardiac shapes.

Late Feature Fusion: Existing methods for processing multi-modal
images with CNNs typically use early-fusion, combining modalities
from low-level features at the network input [45–47]. However, the
detection of inter-relations between low-level features from different
modalities is difficult due to the non-linear nature of these relationships
and the distinct statistical properties of each modality [48,49].

Recent methods propose deep architectures for multi-modal data
that fuse higher-level information from different modalities (late fu-
sion), as high-level representations are assumed to be more comple-
mentary [50–52]. This approach can be integrated with state-of-the-art
architectures, like the U-Net, using separate encoder layers for each
modality to disentangle information that would otherwise be fused
early on, allowing the network to capture distinctive inter-modality
relationships.

Hyper-dense connections, proposed in [50,53,54], can improve the
modeling of relationships between different streams by enabling the
learning of complex, discriminative features. They facilitate informa-
tion and gradient propagation through the entire network, reduce the
risk of overfitting, and enhance generalization.

As seen in Fig. 5, previous layer outputs across different streams are
concatenated at each subsequent layer per stream. The regularization
effect can be increased during training by shuffling densely connected
layer feature maps, concatenating them in a different order for each
3

Fig. 1. Variations in field-of-view, image contrast, anatomy, and pathology for SA and
LA images in the training set.

branch and layer [55]. Let 𝑥𝑙 and 𝐹𝑙 denote the output and mapping
function (e.g., convolution layer or block with non-linear activation) of
the 𝑙th layer, respectively. Typically, the output of the 𝑙th layer in CNNs
is derived by passing the output of the previous layer, 𝑥𝑙−1, through a
mapping function:

𝑥𝑙 = 𝐹𝑙(𝑥𝑙−1). (1)

In a densely connected network, this can be extended to

𝑥𝑙 = 𝐹𝑙([𝑥𝑙−1, 𝑥𝑙−2, 𝑥𝑙−3,… , 𝑥0]), (2)

indicating that all previous feature outputs are concatenated in a feed-
forward fashion. By introducing inter-stream hyper-dense connections
and feature shuffling, the output of the 𝑙th layer in a given stream 𝑠,
𝑥𝑠𝑙 , where we consider two streams only, can be defined as

𝑥𝑠𝑙 = 𝐹 𝑠
𝑙
(

𝜙𝑠
𝑙
(

𝑥1𝑙−1, 𝑥
2
𝑙−1, 𝑥

1
𝑙−2, 𝑥

2
𝑙−2,… , 𝑥10, 𝑥

2
0
))

, (3)

where 𝜙𝑠
𝑙 represents a feature map permutation function, responsible

for concatenating feature maps in a different order for each branch and
layer. Thus, the output of the 𝑙th layers in a two-stream network can
be represented as

𝑥1𝑙 = 𝐹 1
𝑙 ([𝑥

1
𝑙−1, 𝑥

2
𝑙−1, 𝑥

1
𝑙−2, 𝑥

2
𝑙−2,… , 𝑥10, 𝑥

2
0])

𝑥2𝑙 = 𝐹 2
𝑙 ([𝑥

2
𝑙−1, 𝑥

1
𝑙−1, 𝑥

2
𝑙−2, 𝑥

1
𝑙−2,… , 𝑥20, 𝑥

1
0]).

(4)

2.3. Data

The M&Ms-2 challenge data is comprised of 360 patients with a
variety of right-ventricle (RV) and left-ventricle (LV) pathologies, as
well as a control group, distributed as shown in Table 1. The data is
acquired using different 1.5T and 3.0T scanners from three different
manufacturer vendors (Siemens, GE, and Philips), with variations in
contrast and anatomy (see Fig. 1). The in-plane resolution of the
provided images varies between 0.78 to 1.57 mm, with slice thickness
ranging from 8.6 to 14 mm, resulting in a total number of slices varying
between 9 to 13 slices per short-axis image.

The training subset includes 160 cases with expert annotations for
RV and LV blood pool, as well as the LV myocardium (MYO). The
short-axis and long-axis view is provided for each patient. The training
set contains five different types of LV and RV pathologies, as well as
healthy subjects. The validation set contains 40 cases with 10 cases
of pathologies not present in the training set. The final algorithm is
evaluated on a separate test set containing 160 cases as outlined in
Table 1. We use the provided validation set for testing, increasing
the size of the testing set to a total of 200 patients (or 400 ED and
ES SA/LA images) while the evaluation and the development of the
algorithm is exclusively done on the training set alone. All images were
annotated by two annotators according to the same standard operating
procedure (SOP) used for the ACDC MICCAI 2017 challenge [11], while
maintaining consistency between short and 4 chambers long-axis in
basal and apical regions.
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Fig. 2. Proposed pipeline including the ROI detection module (left), image synthesis module (middle) with VAE-based label deformation, and image segmentation module (right).
Table 1
Distribution of the M&Ms-2 challenge data per pathology. Note that all values represent
the total number of studies, taken at both ED and ES phases.

Pathology Training Validation Testing

Dilated Right Ventricle (DRV) 0 5 25
Tricuspidal Regurgitation
(TRI)

0 5 25

Tetralogy of Fallot (FALL) 20 5 10
Interatrial Communication
(CIA)

20 5 10

Congenital Arrhythmogenesis
(ARR)

20 5 10

Dilated Left Ventricle (DLV) 30 5 25
Hypetrophic Cardiomiopathy
(HCM)

30 5 25

Normal (NOR) 40 5 30

2.4. Heart region detection module

Cardiac MR images acquired at different sites and from varying
scanner vendors, typically undergo changes in the acquisition protocol,
resulting in images of varying resolution and FOV. This leads to varying
heart sizes across different scans, where the heart often takes up only a
small portion of the image compared to the background. Experiments
show that neural networks trained on images of varying FOV, without
ensuring that there is an equal representation of different heart sizes in
the training set, often confuse background tissue for cardiac tissue and
lead to a large number of false positive predictions.

To address this, we train a regression-based convolutional neural
network (CNN), proposed in [36], to automatically detect a bounding
box encompassing the heart in both SA and LA images. The detected
bounding box is then used for cropping the full FOV images at inference
time. The CNN is trained in a supervised manner, with labels obtained
from ground truth masks available in the training set by computing
the smallest bounding box that fits the entire heart in the FOV and
expanding it by 25 voxels to include some background tissue. Before
generating the training labels, we resample all SA images to a median
spatial resolution of 1.25 × 1.25 × 10 mm3 and all LA images to a
spatial resolution of 1.25 × 1.25 mm2.

The inputs to the network are 1000 2D (256 × 256) mid-cavity SA
slices extracted from the training dataset and all LA slices, normalized
to intensity values in the range of [0,1]. The cropped SA and LA
images using the predicted bounding box are post-processed to the size
of 128 × 128 voxels and 176 ×176 voxels, respectively. A detailed
description of the architecture and training procedure is available in
Appendix A.
4

2.5. Synthesis module

As shown in Fig. 3, the synthesis module encompasses two models;
(a) label deformation via latent space manipulation in VAEs and (b)
image synthesis via label-conditional GANs. The conditional GANs
translate the ground truth labels to realistic images while the VAEs
produce new labels with anatomically plausible deformations.

2.5.1. Conditional image synthesis
The image synthesis model is comprised of a ResNet-based [56]

style encoder coupled with a label-conditional generator that uses
spatially adaptive normalization layers (SPADE) [39] throughout the
network architecture. The ResNet encoder is designed to extract style
information of the input image and provide it to the generator that
preserves the content of the input label map via the conditional SPADE
normalization layers. The input image is first fed to the ResNet encoder
including a set of convolutional blocks for downsampling and residual
blocks followed by two fully connected layers to extract the style
information in the bottleneck. This information is then passed to the
generator that consists of six SPADE residual blocks, each including
SPADE normalization layers that utilize corresponding segmentation
mask of the input image for modulating the activation [39].

In contrast to [37,38], our approach alleviates the need for pro-
viding multi-tissue segmentation masks for high-quality synthesis by
adding the ResNet style encoder network. Moreover, to introduce
anatomical variations, random elastic deformation and morpholog-
ical dilation are applied on the segmentation masks in a previous
work [36]. Despite the benefits of label deformation through morpho-
logical operations, the heart anatomy of the synthesized subjects is not
necessarily anatomically plausible. We tackle this by a VAE-based label
deformation approach, described below.

2.5.2. VAE-based label deformation
Instead of elastically deforming the labels as in [36], we propose a

deep-learning based label deformation using Variational Autoencoders
(VAEs) aiming to learn the underlying factors of heart geometries from
the ground truth and in turn provide us with more plausible heart
deformations via label encoding and latent space manipulation. The
VAE model encodes the shape information of the heart in a compressed
manner in the latent space during training. We add random perturba-
tions to the latent code of the original label and then perform label
reconstruction by feeding the manipulated latent code to the decoder
network. More precisely, to ensure that the latent information is not
destroyed, a noise vector is generated from a truncated normal distribu-
tion characterized by the statistics of the latent vector (mean, standard
deviation, minimum, and maximum). This noise vector is added to the
latent vector, resulting in a slight perturbation of the latent vector
without compromising its information content. This manipulation of
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Fig. 3. Synthesis module consisting of (a) a VAE to learn the deformations of the heart
shapes to generate a deformed label given the input label and (b) a label conditional
GAN model to translate the deformed label to a synthetic image given the input style
image.

the latent code changes the heart geometry of the reconstructed label.
The rationale behind this approach is that we attempt to directly
manipulate the learned geometrical features of the input label in the
latent space rather than randomly deform the labels in the image space.

The input of the VAE model is a one-hot encoding version of the
label map including four channels for cardiac classes and background.
The encoder part of the model includes four convolutional blocks with
three convolutional layers each followed by batch normalization (BN)
and LeakyReLU activation function. The encoded features are fed to
four sequential fully connected layers to output the parameters of a
Gaussian prior over the latent representation. The decoder part of
the model is comprised of four convolutional blocks each with one
up-sampling layer followed by two convolutional layers with BN and
LeakyReLU. The last additional block of the decoder includes one
convolutional layer followed by BN and another convolution with four
channel outputs and Softmax activation function. The VAE model is
trained using a weighted combination of cross-entropy loss as the re-
construction loss and Kullback–Leibler divergence (KLD) with a weight-
ing factor of 𝛽 for regularization of the latent space capacity [57].
We experimentally identify the size of the latent vector (𝑛𝑧 = 16)
and weight of KLD (𝛽 = 15) by inspecting the quality of the label
reconstruction and the outcome of latent code manipulation.

2.5.3. Synthesis strategy
Two identical image synthesis models are trained using LA and

SA cardiac MR images. To augment and balance the data using these
trained synthesis models, the following strategies are devised. For each
vendor-specific subset, the outlier cases are identified based on the end-
diastolic or end-systolic volume for the RV calculated using the ground
truth label of the SA images. These outlier cases, separated from the rest
of the population, are used for image synthesis. For balancing the ratio
between outlier cases and the rest of the population, we add different
perturbations in the form of Gaussian noise to the corresponding latent
space of each label to manipulate labels. This is done in a way that
we eventually create roughly 2000 synthesized cases including 50%
outliers and 50% the rest of cases. We follow the same strategy for the
data from each scanner vendor.

The same strategy is not optimal for LA images as we observe
anatomical distortions when noise is added to the latent space of the
LA slice. We hypothesize this might be due to having a limited number
of LA slices compared to SA stacks and consequently not learning a
rich latent space for coherent sampling and accurate reconstruction.
Instead, we interpolate between the latent codes from end-diastolic
and end-systolic phases of the same subject and feed the interpolated
latent codes to the decoder to reconstruct the intermediate shapes.
We additionally apply elastic deformation to create more anatomical
variations for the LA images.
5

Fig. 4. Examples of contrast-transformed SA and LA training images per vendor
(Philips, GE and Siemens). Transformations include: (a) histogram standardization to GE
images, (b) histogram standardization to Philips images, (c) histogram standardization
to Siemens images, (d) a Laplacian operator, (e) a combination of solarization and
posterization and (f) TV-based filtering.

2.6. Segmentation module

2.6.1. Contrast transformations to enhance heart shape features
Segmenting heterogeneous data is challenging due to intensity vari-

ations caused by diverse acquisition protocols, signal weighting tech-
niques, and hardware. Applying image appearance transformations
during training can introduce contrast diversity, prevent overfitting,
and prioritize the model’s optimization towards the target tissue’s
geometry.

We select a set of six contrast transformations per image, each fed
into a separate encoding path during training of the late fusion model.
First, we match the intensities of images to those representative of
each scanner vendor by utilizing histogram standardization [58]. To
that end, we generate a standardized set of image histogram landmarks
per vendor, used as a reference for matching the histograms of each
image at both training and testing time. Next, we apply Total Variation
(TV) based denoising [59] to discard high frequency image components
and emphasize tissue shape. The scale of the TV filter is controlled
by changing the smoothing parameter 𝛼, where 𝛼 ∈ [0.1, 15]. To
additionally emphasize tissue edges and flatten the image, while re-
taining the general appearance, we apply a combination of solarization
and posterization. Finally, we calculate the Laplacian of the image to
highlight regions of rapid intensity changes and outline major object
shapes. The effect of each transformation can be observed in Fig. 4,
resulting in a sequence of six augmented images. Note that both real
and synthetic images undergo the same procedure during training.

2.6.2. Network architecture
Inspired by late fusion approaches (Section 2.2), we modify the nnU-

net [60] architecture to include multiple encoder layers processing each
transformed image (Section 2.6.1) fed at the input in a separate path,
as shown in Fig. 5. The extracted features by each encoder are then
fused at the bottleneck, allowing the network to learn complementary
information between different transformations of each image and a
better representation of their inter-relationships.
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Fig. 5. Overview of the late fusion multi-encoder U-Net proposed in this work. (1)
At both training and testing time, the network processed 6 transformed variations
of the input SA or LA image through separate encoder paths with (2) hyper-dense
dense connectivity used between the layers, within and across paths (dotted lines).
Merged features are passed through the decoding path to produce the final LA and SA
segmentation maps.

Furthermore, we extend the standard convolutional layers into a
convolutional block, consisting of two convolutional and linear units,
with batch normalization (BN) applied between each convolution and
leaky rectified linear unit (ReLU). We add a short residual connection
to sum the input with the output from the second convolutional layer,
followed by leaky ReLU to generate the output. Each encoding path
consists of five convolutional blocks, with four max-pooling layers.
Finally, to improve the modeling of relationships between different
streams and promote the learning of highly complex, but more discrim-
inative features, we adopt hyper-dense connections between multiple
streams and feature map shuffling. Thus, as discussed in Section 2.2
and shown in Fig. 5, each transformed representation of the input
image is processed in a separate path, while dense connections occur
not only between the pairs of layers within the same path, but also
between those across different paths. As a result, the proposed network
has complete flexibility to learn more intricate combinations between
transformed images across all levels of abstraction, both within and
between them. Note that separate networks are trained for SA and LA
segmentation, respectively.

2.6.3. Training procedure
All SA images used for training are first resampled to a median

pixel spacing of 1.25 × 1.25 × 10 mm3. Similarly, a resolution of
1.25 × 1.25 mm2 is used for resampling LA images. This is followed
by a 98th percentile normalization to an intensity range from [0, 1]. All
training images are further cropped to reduce the FOV to the region
of interest (heart), as described in Section 2.4, while the heart region
detection module is used at inference time. This results in all SA and
LA images cropped to the size of 128 × 128 voxels and 176 × 176
voxels, respectively. Finally, all images are processed to form a set of
six different contrast-transformed images (see Section 2.6.1), at both
training and testing time. If used for augmentation, synthetic images
are pre-processed in the same manner as described above.

After pre-processing, each encoding path is fed with batches of
60 128 × 128 images for training the SA segmentation model and
batches of 20 176 × 176 images for the LA model. When training with
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both real and synthetic data, we ensure that each training batch has
a minimum of 50% real images to prevent overfitting on the synthetic
data. To further increase robustness during training, we employ data
augmentation in the form of random vertical and horizontal flips (𝑝 =
0.5), random rotation by integer multiples of 𝜋

2 (𝑝 = 0.5), random
scaling with a scale factor of s ∈ [0.8, 1.2] (p = 0.2), mirroring (𝑝 = 0.3)
and random elastic deformations (𝑝 = 0.3). All augmentations are
applied on the fly during training.

To train the network, we use a weighted sum of the categorical
cross-entropy and Dice loss with Adam optimizer, starting at a learning
rate of 1 × 10−4 and a weight decay of 5 × 𝑒−5. The training of all models
converges in 500 epochs, where the initial learning rate is reduced by a
factor of 5 if the validation loss does not improve by at least 5 × 10−3 for
the last 50 epochs. We apply early stopping on the validation set and
select the model with the highest accuracy, to avoid overfitting. We
train each model (LA and SA) using a five-fold cross-validation on the
training set and use them as an ensemble to produce final predictions
on the validation and test sets. The implementation was done in Pytorch
using an Nvidia TITAN XP GPU with 12 GBs of RAM.

2.6.4. Post-processing
We perform a connected component analysis on the predicted labels

and remove all but the largest connected component per class, which
handles most false positive predictions. Since test images are both
resampled and cropped, we first restore the original size using the
cropping parameters predicted by a heart region detection module and
perform bilinear upsampling to recover the original resolution.

3. Experiments

Experiment setup: We train the proposed pipeline on all images
provided as a part of the M&Ms-2 training data, consisting of 70, 64
and 26 studies acquired from Siemens, Philips and GE scanners, respec-
tively, and augment the training set with synthetic images generated
using the method described in Section 2.5. All studies consist of LA and
SA images, at both end-diastolic and end-systolic phases, whereby we
train two separate networks per image view (LA vs. SA images). The
segmentation performance of the proposed pipeline is compared to the
baseline model, which is a single-channel nnU-Net [60] combined with
heart region detection module. The model is trained on all available
real training images from the dataset in a 5-fold cross-validation setup,
using the standard augmentation set-up as proposed in [60], without
any additional synthetic images.

Overall analysis: The obtained results are evaluated on the unseen
test set, containing images acquired across all 3 scanners that have not
been previously utilized for the training of any pipeline component. We
assess the performance both qualitatively and quantitatively, in terms
of standard metrics, such as the Dice score and Hausdorff distance. This
is further supported by deriving clinical indicators, such as ventricular
volumes and ejection fraction to further assess the benefits of the
proposed approach. Detailed discussion is provided in Section 4.2.

Analysis per pathology: Since the major focus of this work is
accurate segmentation of cardiac tissue in patients affected by geomet-
rical and textual complexities appearing due to cardiac pathology, we
evaluate the proposed pipeline across different diseases available in the
test set. In total, we report the results on 160 patient studies, grouped
per disease, as well as the normal subjects (seen in Table 1), for both
SA and LA images, available in Section 4.3.

We perform additional evaluation on out-of-domain data, namely
the short-axis ACDC and M&Ms-1 challenge data (Appendix B) to
study the robustness of the proposed method. Detailed results are dis-
cussed in Section 4.4. Finally, to study the impact of different pipeline
components on segmentation performance, we conduct an ablation ex-
periment by removing one or several elements of the proposed method.
All models are evaluated across the whole test set in terms of the Dice
score for both SA and LA images, with results available in Section 4.5.
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Fig. 6. Random synthetic examples for outlier and normal cases with corresponding labels, stratified into different scanner vendors for short-axis slices. More synthesis examples
can be found at https://github.com/sinaamirrajab/CMRSynthVAE.
Table 2
Segmentation performance comparison between the baseline and the proposed model in this work, evaluated on short-axis (SA) and long-axis (LA) test images, across all cardiac
tissues. Numbers listed in the table are the means and standard deviations of Dice (DSC) and Hausdorff Distance (HD) scores. DSC and HD values indicated in bold are those
which are significantly higher compared to the baseline performance, according to the Wilcoxon signed-rank test for 𝑝 < 0.01.

View Method Dice HD

LV MYO RV LV MYO RV

SA Baseline 0.941 (0.05) 0.881 (0.06) 0.923 (0.07) 9.36 (9.22) 13.93 (12.76) 11.71 (10.84)
Proposed 0.959 (0.02) 0.907 (0.04) 0.938 (0.03) 6.42 (4.38) 9.37 (5.88) 8.62 (6.07)

LA Baseline 0.947 (0.07) 0.871 (0.08) 0.902 (0.08) 5.04 (4.87) 7.42 (7.21) 7.78 (7.18)
Proposed 0.958 (0.03) 0.901 (0.03) 0.924 (0.04) 4.07 (2.09) 5.27 (3.31) 5.81 (3.42)
4. Results

4.1. Image synthesis results

As discussed in Section 2.5.3, we balance out the number of outlier
and normal cases in the final synthetic data by applying a different
number of deformations (by adding Gaussian noise to the latent space)
on each group. Randomly generated examples from each group are
shown in Fig. 6.

Fig. 7 shows the RV and LV volumes at ED and ES phases for the real
and synthetic data distribution to inspect how the synthetic population
changes the heart cavity distribution of subjects. Each subject is repre-
sented as a point with different shape and color for its corresponding
scanner vendor. We can observe a gap between subjects in the real data
distribution (indicated with black oval) that is filled with generated
subjects in the synthetic data distribution as a result of deforming labels
and synthesizing more subjects for each real subject. Moreover, the
number of samples near the mean of the distribution are increased,
resulting in a densely populated area covered by synthetic subjects with
normal ranges of ventricular volumes.

4.2. Segmentation results

Table 2 shows the quantitative results in terms of Dice and HD
scores obtained by the proposed pipeline compared to the baseline
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model, across SA and LA images available in the test set. The obtained
results suggest significant improvements in segmentation performance
across most tissues, except for the LV in LA images, which we ascribe
to relative consistency of LV shape over the long-axis view. However,
visual observation suggests improvements in patients with dilated left
ventricle (LVD) and hypertrophic cardiomyopathy (HCM), which both
cause changes in LV shape and appearance. Additional observation of
score distribution, depicted in Fig. 8, suggests a significant reduction in
the number of outlier predictions by the proposed approach across both
SA and LA views. This has a particular impact on the segmentation of
the right-ventricular (RV) blood-pool and myocardium (MYO), whereby
visual observation of delineations implies that the existing outliers
predicted using the baseline mostly relate to false positive predictions,
specifically in relation to over-estimation of both the LV and RV blood-
pool, which further causes the under-segmentation of the myocardium.

Further inspection suggests that over-segmentation mainly occurs in
the basal region of the heart, whereby the baseline model falsely pre-
dicts the presence of the RV and other tissues, particularly at the bound-
ary of the pulmonary artery and the right atrium. Under-segmentation
by the baseline commonly occurs at the apex of the heart, where en-
docardium appears smaller and tissue boundaries are less well-defined.
The presence of dense papillary muscles at the apex often causes further
difficulties for accurate segmentation. The observations obtained by
visual inspection are confirmed by quantitative evaluation performed
across heart regions, shown in Fig. 9. Compared to mid-ventricular

https://github.com/sinaamirrajab/CMRSynthVAE
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Fig. 7. Distribution of the RV and LV volumes at ED and ES for real and synthetic data. Each subject is represented as a marker (with different colors and shapes indicating the
corresponding scanner vendor).
Fig. 8. Segmentation performance of the proposed and baseline models on (a) SA and
(LA) images available in the test set, across three cardiac tissues (LV, MYO and RV)
in terms of Dice and Hausdorff distance (HD) scores.
8

Fig. 9. Segmentation performance of proposed and baseline models in SA images across
basal, mid-ventricular and apical heart regions, calculated per cardiac tissue.

slices there is an evident performance drop around both the base and
the apex of the heart, which is noticeably improved by the proposed
approach. We hypothesize the improvement largely stems from aug-
mentation with synthetic data, where we focus on including a vast array
of examples with variable appearance of tissues in the basal and apical
regions of the heart, as well as simulating the effects of heart pathology
on cardiac tissue appearance and the presence of artifacts. However, a
moderate performance drop when segmenting both ends of the heart
compared to the mid-ventricular region, obtained by the proposed
approach, suggests that under- and over-segmentation at the base and
the apex of the heart is still not a completely resolved problem.

To gain more insight into the value and importance of outlier reduc-
tion achieved by the proposed segmentation method, we evaluate three
automatically derived clinical parameters with reference to manually
derived ones using the available ground truth segmentation masks.
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Fig. 10. Correlation and Bland–Altman plots of RV functional parameters generated
from manual and automatically predicted segmentation masks using the baseline (first
row) and proposed (second row) models.

Fig. 11. Correlation and Bland–Altman (rightmost) plots of LV functional parameters
generated from manual and automatically predicted segmentation masks using the
baseline (first row) and proposed (second row) models.

Namely, we derive the RV (Fig. 10) and LV (Fig. 11) end-diastolic (EDV)
and end-systolic (ESV) volumes, as well as the ejection fraction (EF)
from segmentations obtained by both the proposed and baseline model
across the entire test set.

Correlation plots of baseline and proposed ED and ES RV volumes in
Fig. 10 show significant improvements in both EDV and ESV correlation
acquired from the proposed method, which leads to better agreement
between manual and automatically quantified EF compared to the
baseline. Similar effects are observed in Fig. 11 for all three clinical
parameters related to the LV. These results can largely be attributed
to a smaller number of outlier predictions, which in turn decrease
the difference between the calculated ED and ES volumes compared
to those derived from ground-truth labels. Moreover, the remaining
outliers are still relatively close to the acceptable range of deviation,
which reduces their overall impact on calculated ED and ES volumes,
as well as the ejection fraction.

4.3. Analysis per pathology

To gain additional insight into the performance of the segmen-
tation methods analyzed in this study, we stratify the quantitative
analysis per pathology, as shown in Fig. 12. Fig. 12 depicts Dice
scores achieved by the baseline and proposed methods, extracted per
tissue across SA images. Overall, we note consistent improvements
9

Fig. 12. Average segmentation performance of the baseline and proposed models across
SA test images, derived per disease, in terms of Dice score per tissue.

in segmentation performance across all tissue, with more prominent
gains in the case of myocardium (MYO) and right-ventricular (RV)
blood-pool segmentation. In fact, statistically significant improvements
in MYO segmentation, according to the paired Wilcoxon signed-rank
test (𝑝 < 0.01), are obtained for SA cases undergoing defects related
to arrhythmogenic cardiomyopathy (ARR), tetrology of fallot (FALL),
dilated left ventricle (LVD), dilated right ventricle (RVD), tricuspidal
regurgitation (TRI), as well as on healthy patients (NOR). Likewise,
statistically significant increase in Dice scores for RV segmentation are
observed for patients suffering from inter-atrial communication (CIA),
tetrology of fallot (FALL), dilated left ventricle (LVD) and dilated right
ventricle (RVD). However, segmentation over LV shows only slight
improvements, mostly related to outlier reduction, with statistically
significant differences observed for patients with defects in tetrology
of fallot (FALL), dilated left ventricle (LVD), as well as dilated right
ventricle (RVD).

The scores obtained on RVD and TRI cases are of a particular
interest, as these are completely unseen during training, suggesting that
the proposed method has the ability to compensate for unseen diseases.
The improvement in segmentation of patients undergoing RVD and TRI
further leads to enhanced derivation of clinical parameters, as seen in
Fig. C.2 and Fig. C.3 for both the LV and RV, respectively (Appendix
C). Similar trends are observed in LA images (see Fig. C.1) across RV
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Fig. 13. Qualitative visualization of segmentation results in challenging cases under-
going different cardiac disease, outlining the improvement in segmentation when using
the proposed pipeline compared to the baseline. Each row presents a single patient,
where we showcase one SA slice, as well as the LA view of the heart corresponding to
the same patient. Model predictions are compared to the ground truth, shown in the
column marked as GT.

And MYO segmentation, with more moderate improvement across the
LV.

Fig. 13 shows some challenging segmentation cases across differ-
ent pathologies present in the test set for both SA images and their
LA counterparts. Patients undergoing arrhythmogenic cardiomyopathy
often exhibit right ventricular dilatation and scarring in the myocardial
area. This is commonly reflected by difficulties in segmenting both the
RV and MYO, as shown in Fig. 13, which can be tackled by utilizing the
proposed pipeline. Similar results are observed for patients suffering
from interatrial communication defects (CIA), where RV dilatation
is typical. Hypertrophic cardiomyopaty (HCM) is often found in the
middle septum at the midventricular level, as well as in the inferior
region at the apical region [61], as shown in Fig. 13. In these cases,
the baseline model often under-segments the RV, but also struggles
with over-segmenting the myocardium. Finally, a dilated right ventricle
presents another typical case of under-segmentation, especially in slices
towards the base and apex of the heart. However, the proposed pipeline
shows noticeable improvement in handling such examples.

4.4. Evaluation on external datasets

To demonstrate the robustness of the proposed pipeline, we perform
an additional evaluation on a completely different set of out-of-domain
CMR images. These include data acquired from ACDC [11] and M&Ms-
1 [24] challenges, which we use to directly test both the baseline
and the proposed models and report the results in terms of Dice and
Hausdorff distance scores. We do this without additionally re-training
or adapting the models to new data.

A description of both datasets is available in Appendix B. Since only
the training data from the ACDC Challenge dataset is available publicly,
consisting of ED and ES images from 100 subjects, we utilize this as our
test set. However, the evaluation on the M&Ms-1 data is done on the
actual test data provided by the challenge organizers, consisting of 80
ED and ES subjects (a total of 160 images) from four different vendors.
It is important to note that the evaluation of this experiment is only
performed for SA images, since both challenges do not contain LA data.
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While there is an evident domain shift between the ACDC and
M&Ms-1 data compared to the M&Ms-2 data used for the training
of the complete pipeline, we still observe a significant improvement
when utilizing the proposed multi-modal approach and augmenting
the training set with synthetic images, as seen in Table 3. A large
portion of the ACDC dataset contains pathological cases, where we
observe significant improvements in performance, particularly when
segmenting RV and MYO. However, we hypothesize that additional
improvements in performance could be achieved if the training was
adapted to those datasets specifically, especially the synthesis module,
as the current approach is specifically tailored to M&Ms-2 data.

4.5. Ablation study

We perform an ablation study to understand the value of different
pipeline components on segmentation performance. Therefore, we train
the following models: (i) U-Net + BB, a regular single encoder nnU-
Net with Bounding Box (BB) detection, corresponding to the baseline
model; (ii) U-Net + BB+ IT, a model similar to (i) but augmented
with the same set of intensity transformations (IT) as in the late-fusion
model; (iii) U-Net + BB + IT + Synth, a model similar to (ii) with
added synthetic data (Synth) at training time, generated as described
in Section 2.5; (iv) LF-U-Net + BB, a dense late fusion (LF) approach
combined with bounding box detection and (v) LF-U-Net + BB +
Synth, a dense late fusion approach proposed in this paper. All models
are trained using the procedure in Section 2.6.3. Additional insight into
the effects of multi-stream connections and the type of transformations
used on the segmentation performance is available in Appendix D,
Table 1.

The obtained results across the entire M&Ms-2 test data, for both SA
and LA images, are outlined in Table 4. We start observing significant
improvements in performance with the addition of synthetic images,
generally related to patients with dilated right and left ventricles,
hypertrophic cardiomyopathy and arrhythmogenic cardiomyopathy.
However, we do not observe any improvement in segmentation among
healthy patients, which we hypothesize is due to the fact we focus the
augmentation process on diseased patients and abnormal heart shapes.
On the other hand, introducing a late-fusion approach, combined with
hyper-dense connections, demonstrates some performance improve-
ment in those cases. In LA images, the addition of synthetic images
has a significant effect on right ventricle segmentation, where visual
observation suggests improvements on patients with severe changes in
RV shape due to underlying pathologies.

The late fusion model used in this study leads to more refined
segmentations of the LV and MYO in SA and LA images, respectively
with consistent improvements in images with visible artifacts, as well
as in cases with low contrast between tissues. Adding synthetic data
to the late-fusion model (LF-U-Net + BB + Synth) yields further
improvements, mostly around the RV area, as well as the myocardium.
Augmentation with synthetic data tends to reduce the amount of vari-
ation between the predictions, leading to better reliability and stability
of segmentations. This is particularly manifested when evaluating the
trained models across patients with pathologies unseen during train-
ing, such as the tricuspidal regurgitation (TRI) and the dilated right
ventricle. Similar results can be observed across LA images, where the
proposed model tackles both under- and over-segmentation across all
tissues, noticeable in single-encoder models. This is most obvious when
studying the delineations across the LV and MYO. Largest improve-
ments in performance are obtained across the patients suffering from
dilated RV and TRI — the unseen cases during training, suggesting
that both synthetic data and better modeling of relationships between
differently transformed images aid with tackling the changes in both
heart shape and appearance due to the presence of pathological tissue.
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Table 3
Segmentation performance comparison between the baseline and the proposed model in this work, evaluated on short-axis (SA) images acquired from the M&Ms-1[24] and ACDC
[11] challenges (Appendix B). The evaluation is performed over all three cardiac tissues, in terms of Dice and Hausdorff Distance (HD) scores. Values indicated in bold are those
which are significantly higher compared to the baseline performance, according to the Wilcoxon signed-rank test for 𝑝 < 0.01.

Model Dice HD

LV MYO RV LV MYO RV

M&Ms-1 (n = 160) Baseline 0.908 (0.05) 0.799 (0.05) 0.873 (0.07) 12.04 (8.6) 16.04 (9.1) 13.77 (8.1)
Proposed 0.925 (0.03) 0.821 (0.04) 0.901 (0.04) 7.81 (3.8) 11.34 (5.6) 11.84 (6.2)

ACDC (n = 200) Baseline 0.955 (0.03) 0.868 (0.03) 0.922 (0.05) 7.69 (5.2) 9.51 (7.5) 16.49 (15.9)
Proposed 0.962 (0.01) 0.891 (0.02) 0.934 (0.03) 5.62 (3.3) 7.61 (5.2) 11.45 (4.9)
Table 4
Segmentation performance comparison between the baseline and the proposed model in this work, as well as the models trained with different elements of the proposed pipeline,
according to the ablation experiment described in Section 4.5. Each model is evaluated on original short-axis (SA) and long-axis (LA) test images, across all cardiac tissues. Numbers
listed in the table are the means and standard deviations of Dice score. Dice values indicated in bold are those which are significantly higher compared to the baseline performance,
according to the Wilcoxon signed-rank test for 𝑝 < 0.01.

Method Short-Axis (SA) Long-Axis (LA)

LV MYO RV LV MYO RV
U-Net + BB (Baseline) 0.941 (0.05) 0.881 (0.06) 0.923 (0.07) 0.947 (0.07) 0.871 (0.08) 0.902 (0.08)
U-Net + BB + IT 0.945 (0.04) 0.886 (0.05) 0.925 (0.05) 0.949 (0.07) 0.874 (0.06) 0.907 (0.07)
U-Net + BB + IT + Syn 0.950 (0.04) 0.891 (0.06) 0.931 (0.04) 0.951 (0.06) 0.879 (0.05) 0.911 (0.08)
LF U-Net + BB 0.953 (0.03) 0.898 (0.05) 0.934 (0.05) 0.954 (0.05) 0.885 (0.04) 0.919 (0.06)
LF U-Net + BB + Syn (Proposed) 0.959 (0.02) 0.907 (0.04) 0.938 (0.03) 0.958 (0.03) 0.901 (0.03) 0.924 (0.04)
5. Discussion

5.1. Result analysis

In this work, we propose a pipeline designed to tackle the segmenta-
tion of pathological CMR images across multiple views (SA and LA) and
sources. We provide a comprehensive analysis of the proposed pipeline
and compare its performance to the baseline model, widely used in the
literature (nnU-Net). The obtained results demonstrate the ability of the
proposed pipeline to reduce the performance gap between the outlier
cases, riddled by artifacts and shape deformation caused by underlying
pathologies, and cases similar to those available at training time.

While outlier cases are typical and commonly found across many
medical imaging tasks, they are more prominent in pathological data,
owing to limitations in representation and number of cases. This par-
ticularly affects data-hungry deep learning algorithms, known to fail
on cases poorly represented during training. However, the method
proposed in this work can tackle such cases more effectively, leading to
a notable decrease in the number of outliers during segmentation. This
in turn has a significant impact on not only the average segmentation
performance, but also the derivation of clinically relevant metrics
characterizing heart function. In fact, we demonstrate significant im-
provements in levels of agreement and bias reduction for the left- and
right-ventricular ejection fraction across all cases available at inference
time. Outlier reduction has shown to be consistent throughout all
pathologies and cardiac tissues. Further investigation suggests that out-
liers occurring in this dataset belong to images with large differences in
appearance and contrast compared to the majority of images available
at training time, as well as those containing higher levels of noise and
artifacts. However, cases with severe tissue deformation and occlusion
due to the presence of pathologies represent the most challenging cases
during segmentation, largely addressed by the proposed approach.

We further show that using conditional GANs holds a lot of promise
for the generation of missing data and addressing data scarcity, which
is emphasized when dealing with pathological patients. In fact, careful
generation of images varying in contrast and tailored to different
cardiac diseases can significantly improve model generalization and
reduce class imbalance, common in regular datasets skewed towards
non-pathological images. We demonstrate the impact of the synthetic
images on the distribution of heart cavity samples in the training
set, which we hypothesize increases the representation of challeng-
ing cases during training and leads to a more stable segmentation
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performance, even in the presence of unseen diseases. The proposed o
synthesis approach can be adapted to any type of scarce data, such as
rare pathologies, whereby only a small subset of such data is needed
for training a synthesis module that can expand the training set with
artificial patients of varying appearance.

Although data augmentation with more extreme intensity transfor-
mations has recently shown to positively influence the regularization
and generalization of DL-based methods, as well as reduce overfitting,
we show that combining such transformations using a multi-path ap-
proach aids the network with learning complementary information and
fosters better data representation, enhancing the networks’ discrimina-
tive power. Moreover, enhancing the flow of information between the
multi-path layers through dense connections shows further benefits in
obtaining a more accurate segmentation. Visual observation suggests
that this improvement is particularly related to the segmentation of
small structures (such as the tissue at the apex of the heart) or at
region boundaries, where single encoder networks tend to struggle at
differentiating between tissues.

Performance analysis across different pathologies in both SA and
LA images reveals additional insights about the behavior of different
models evaluated in this study. We observe that baseline models are
prone to over-segmentation, particularly in the basal regions, where
they falsely predict the presence of either the RV or the whole heart.
This is usually caused by blood movement-related artifacts, low tissue
contrast or occlusion due to specific diseased tissue. Additional difficul-
ties appear in cases where the myocardial muscle does not completely
enclose the blood pool and exhibits variability in shape, becoming
non-circular. Furthermore, we note that the proposed method tends
to exhibit more significant improvements in terms of the HD scores,
which is primarily the result of outlier reduction. Visual observation
suggests that cases exhibiting high HD scores when evaluated with a
baseline model, contain false positive predictions in the areas outside
of the heart, often consisting of tissues similar in appearance and shape
to cardiac tissue. Additional errors contributing to segmentation inac-
curacies obtained by the baseline include areas with weak or missing
edges, artifacts and low signal-to-noise ratio.

In general, we note considerable improvements using the proposed
method across most pathological cases, with better adaptation to un-
seen cases. The obtained results are comparable and even outperform
those reported in the M&Ms-2 challenge, ranging from 0.83 to 0.93
and 0.8 to 0.92 in Dice score for RV segmentation across SA and LA
images, respectively3 [62–75]. Moreover, augmenting the training set

3 Evaluation over LV and MYO is not included in the evaluation procedure
f the M&Ms-2 challenge and is not reported by any participants.
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with highly diverse data and introducing a more efficient way to extract
meaningful features from data leads to improved performance on out-
of-domain datasets (Section 4.4). This shows that despite training the
model on a completely different set of images, the proposed modules
aid in adaptation to the existing domain shift that commonly occurs
between different datasets. Finally, we demonstrate the effects on per-
formance when one or more modules are removed from the proposed
pipeline and identify the largest sources of improvement in the ablation
study (see Section 4.5). We demonstrate that each element of the
proposed pipeline adds value to the overall segmentation improvement,
but significant differences start appearing when utilizing augmentation
with synthetic data, as well as the late fusion approach with dense
connections.

5.2. Limitations and future work

Despite the reported improvement in segmentation performance
and outlier reduction, the proposed model still has several limitations.
The performance drop on ES slices remains higher compared to the
ED slices, which further affects the calculation of clinical parameters,
such as the ejection fraction. Moreover, basal regions are prone to
under-segmentation, followed by a drop in accuracy around the apex
of the heart, mainly due to its small size compared to the rest of
the cavity. While we manage to partly handle some of these issues,
they consistently remain the biggest sources of errors, which is in
agreement with findings reported by similar work in the literature on
other datasets. This implies that special attention should be placed on
addressing these regions, which we plan to focus on in future work.
Additionally, the provided LA images could help with extracting the
inter- and intra-view information from the complementary SA and
LA images, allowing for both the localization of the basal plane and
possibly better segmentation of the basal slices. Thus, integration of
the proposed modules into a truly multi-view approach would be one
of the main aspects to focus on in our future work.

Furthermore, while we extensively analyze the impact of the pro-
posed pipeline on a wide array of pathological data with varying
sources of acquisition, we would further benefit from assessing its confi-
dence and identifying possible prediction uncertainties under difficult
settings. In the same line, extending this study on other open-source
datasets, as well as to clinical settings, would allow us to further iden-
tify the necessary points of improvement, particularly when performing
the evaluation on other unseen cardiac pathologies. Additionally, this
involves exploring whether various elements of the suggested method
can enhance the efficacy of other models in the field, as well as
evaluation against other generation models. Although we focus this
work on handling the variation in cardiac tissue shape and appearance
in the presence of various diseases, we note that the segmentation per-
formance on healthy patients does not show significant improvements.
Thus, ensuring that the model generalizes well to both healthy and
diseased tissue is another major focus of our future experiments.

To balance out the number of pathological and normal cases from
the M&Ms-2 challenge, we identify outlier subjects by calculating the
right-ventricle volume using the ground truth labels and taking into
account the mean and standard deviation values. However, this method
for outlier detection may not necessarily cover all pathological cases
available in the dataset, as just the volume may not be indicative of
a cardiac disease. Instead, having access to labels for each pathology,
one can synthesize more subjects for a particular disease in such a way
to obtain a balanced number of different diseases present in the data.

6. Conclusions

In this work, we propose a pipeline including three distinct modules
to handle different challenges of multi-vendor and multi-disease cardiac
MR images for the task of increasing the segmentation robustness
and outlier reduction. We demonstrate the ability of the proposed
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approach to balance the segmentation of outlier cases, typically related
to increased levels of artifacts and shape deformations induced by
the presence of pathologies, with those more commonly represented
in the training set. Synthesizing a diverse training dataset, carefully
designed to increase the variation of cardiac shapes and appearances
during training, plays a significant role in not only boosting the model
performance in terms of standard quantitative metrics, but also in
improving the automatically derived clinical metrics denoting the func-
tion of the heart. This in turn leads to improved stability and reliability
of the predictions across both short-axis and long-axis images. Such
observations are additionally confirmed on completely unseen images,
extracted from other publicly available datasets, whereby we observe
both outlier reduction and better adaptation to the presence of the
domain shift between datasets. Future work includes more precise
synthesis of pathological cases, conditioned on the pathology type, as
well as utilizing the availability of LA images to inform the positioning
of the basal plane for more accurate segmentation.
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