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Summary

This thesis focuses on the development of learning algorithms for probabilistic
graphical models, notably Bayesian Networks and Probabilistic Circuits (PCs).
The overarching theme of this research is exact inference with an emphasis on
tractability, and is centred around the three main pieces of work described in
the following.

For Bayesian Networks, we proposed new pruning techniques that reduce
the computational cost of exact structure learning via the Bayesian Dirichlet
Equivalent Uniform (BDeu) score. Exact structure learning in Bayesian Net-
works with BDeu is an NP-Hard problem that can be tackled by listing and
scoring all the candidate parent sets for each variable. Since the BDeu is de-
composable, the set of optimal structures can be computed exactly by searching
through all possible combinations of candidate parent sets. The computational
cost of this process can be significantly reduced if we can determine a priori
which parent sets are not part of the optimal solution. That is where pruning
methods come in. We propose a new upper bound on the BDeu score of super-
sets of a parent set, allowing us to discard any parent set whose upper bound is
lower than the score of one of its subsets. Our upper bound is provenly tighter
than previous upper bounds and, as we demonstrate experimentally, often re-
duces the search space by more than 50% in comparison to previous methods.

For Probabilistic Circuits, we proposed two different learning algorithms:
one centred around structure learning and another around parameter learning.
The first algorithm hinges on a connection between Probabilistic Circuits and
Decision Trees (DTs). We show that DTs can be efficiently parsed to a PC while
preserving the same underlying conditional distribution over the target vari-



able. That connection is fruitful for both PCs and DTs, since PCs can borrow
discriminative structure learning methods from DTs, and DTs can be efficiently
extended to model a full joint distribution over the input space. The result of
this observation is a new class of models named Generative Forests: a natural
extension of Random Forests that retains key characteristics Random Forests
are known for (ease of training, little pre-processing needed, high accuracy),
while bringing in a few capabilities only available to generative models, namely
marginalisation of unobserved variables and outlier detection. In particular, our
experiments show Generative Forests outperform popular imputation methods,
like K-nearest neighbour imputation, on classification with missing data.

The second algorithm exploits continuous latent variables as a means to
learn the parameters of Probabilistic Circuits. We draw inspiration from other
generative models, like variational autoencoders (or VAEs), where a continu-
ous latent space seems to facilitate learning. At a first glance, continuous latent
variables are at odds with exact inference since we cannot marginalise them out
exactly. However, for small latent dimensions numerical integration methods
can get arbitrarily close to the true likelihood. Moreover, numerical integration
methods actually approximate a continuous mixture via a discrete mixture, and
the latter is naturally a tractable model (a PC in itself). In light of these observa-
tions, we propose continuous mixtures of tractable probabilistic models, which
are essentially a mixture of PCs whose parameters are not independent, but
connected via a continuous latent space. This simple approach shows surpris-
ingly good results, outperforming all previous PC learning methods in a range
of density estimation tasks.
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Chapter 1
Introduction

The theme of this thesis is generative models, a class of machine learning mod-
els that, in the most simplistic and general definition, are capable of generating
new samples. In recent years generative models powered by large and deep
neural networks have achieved enormous success in text (Brown et al. 2020)
and image generation (Ramesh et al. 2021), attracting vast research interest
and surpassing most people’s expectations on what current artificial intelligence
technology can bring about. A variety of different models have contributed
to this progress, with notable examples being variational autoencoders (VAEs)
(Kingma and Welling 2014), generative adversarial networks (GANs) (Good-
fellow et al. 2014), normalising flows (Papamakarios et al. 2021), and more
recently diffusion models (Sohl-Dickstein et al. 2015; Ho et al. 2020), to name
but a few. Yet, the common thread among all these methods is ever larger mod-
els which, despite producing impressive results and a sense of wonder at what
deep neural networks can learn via simple gradient descent, are still poorly
understood and offer little in terms of robustness and reliability.

This thesis focus on different classes of generative models that put proba-
bilistic reasoning in the forefront, namely Bayesian Networks and Probabilistic
Circuits. Albeit currently lagging behind deep generative models in most tasks,
these models are principled and useful tools for probabilistic machine learning.

• Bayesian Networks (BNs) allow us to succinctly represent statistical and
even causal dependencies among random variables. Thus, BNs are highly
interpretable models that clearly lay out how our assumptions regarding
one variable affect our predictions about another. We can design BNs to
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satisfy constraints and relations known to hold in the real world or, per-
haps more interestingly, infer such relations directly from data via struc-
ture learning algorithms, such as the ones studied in this thesis.

• While BNs are primarily representation tools, Probabilistic Circuits (PCs)
are computation tools. PCs support exact and tractable marginal and con-
ditional queries over arbitrary subsets of the domain variables. These
queries form a consistent basis for probabilistic reasoning (Jaynes 2003),
and hence enable us to solve a number of useful tasks reliably and consis-
tently, like classification with missing data or data imputation.

In that context, the overarching motivation in this work is exactness and
tractability. Any probabilistic machine learning model or algorithm give us a
proper mathematical expression for any query or quantity of interest. For in-
stance, we can always mathematically define a maximum a posteriori objective.
However, this is only really useful if we can actually compute it and be reassured
of a certain degree of precision. Otherwise, we will always be bound to question
the trustworthiness of each prediction of our model, a prevailing problem with
deep generative models. Therefore, the goal of our research is to study and
improve tractable and exact learning algorithms and models. Concretely, we
investigate how to improve the efficiency of exact structure learning algorithms
for Bayesian Networks, and how to enhance the performance of Probabilistic
Circuits both as classifiers, via connections to Decision Trees, and general pur-
pose generative models, via the introduction of continuous latent variables. We
formalise these ideas in the following research questions.

1.1 Research Questions

(Q1) Can we still improve the computational efficiency of exact structure
learning of BNs via pruning techniques?

Exact structure learning of Bayesian Networks is typically marked by two
steps, i) computing a score for each variable and each of its possible sets
of parents, and ii) running a search algorithm to find the structure (com-
bination of parent sets) of maximum total score. There are a number of
pruning techniques in the literature, e.g. (de Campos and Ji 2011), that
eliminate suboptimal parent sets from the search space, leading to sig-
nificant gains in efficiency. We investigate whether we can derive even
better pruning techniques by studying the properties of a popular scoring
function, the Bayesian Dirichlet equivalent uniform (BDeu) score.
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(Q2) How to improve the performance of PCs in classification tasks?

One typically learns the structure and parameters of Probabilistic Circuits
to fit a joint distribution over the domain variables. That approach, how-
ever, more often than not, fails to match the performance of simpler dis-
criminative models like decision trees. Can we devise new PC architec-
tures or even borrow structure learning techniques from discriminative
models to turn Probabilistic Circuits into more effective classifiers?

(Q3) Can we leverage continuous latent variables in PCs?

Continuous latent variables are an important ingredient in many powerful
deep generative models, like VAEs, GANs and, to some extent, normalising
flows. Nonetheless, Probabilistic Circuits are constrained to discrete latent
variables since these can be integrated out efficiently, whereas continuous
ones cannot. Yet, can we leverage continuous latent variables to facilitate
parameter learning in Probabilistic Circuits?

(Q4) How to quantify the robustness or reliability of PCs?

One way to quantify the robustness of a prediction is to measure how
much one can perturb the parameters of the model without changing its
original prediction. This is the idea behind Credal PCs (Mauá et al. 2017;
Maua et al. 2018), but unfortunately computing such robustness measures
can be costly in general. Can we design PC architectures to facilitate these
computations? How does that relate to accuracy, likelihood function and
overall reliability of the model?

1.2 Thesis Contributions and Outline

In each chapter of this thesis we cover one contribution that we made in our
effort to answer these research questions. Chapters 2 and 5 present the neces-
sary background on Bayesian Networks and Probabilistic Circuits, respectively.
These are, of course, brief expositions covering only a fraction of the literature
on these topics, but they help contextualise our contributions and should be
insightful for readers not entirely familiar with these two probabilistic models.
The remaining chapters are outlined below.
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1.2.1 Chapter 3

In this chapter we study pruning techniques for exact structure learning of
Bayesian Networks. In a nutshell, exact structure learning requires comput-
ing scores for each possible parent set of each variable, and then running a
search algorithm to find the structure that maximises the total sum of scores (a
structure is fully defined by a collection of parent sets and vice-versa). Pruning
works by discarding parent sets that have a subset of higher score. It is then
useful to have upper bounds for these scores so as to prune entire regions of
the search space without having to actually compute the score of every possible
parent set. We focus on the Bayesian Dirichlet equivalent uniform (BDeu) score
and show that, by exploiting properties of the gamma and likelihood functions,
we were able to derive new tighter bounds for the BDeu score.

1.2.2 Chapter 4

We continue studying the properties of the BDeu score in Chapter 4, but this
time we focus on how sensitive structure learning with the BDeu score is to
the prior specified via the Equivalent Sample Size (ESS). Ideally, we would like
the BDeu score to be prior-independent for large enough sample sizes, that is,
the ESS should not influence the final learnt structure in the large-data regime.
However, we have not observed that in our experiments and, even for relatively
small numbers of variables, the amount of data required to make the BDeu score
prior-independent was prohibitively large for most real-world scenarios.

1.2.3 Chapter 6

In Chapter 6 we move on to Probabilistic Circuits and investigate their connec-
tion to Decision Trees (DTs). It turns out that we can easily extend a DT to a
PC by fitting joint distributions to each of its leaves. The resulting PC, which we
call Generative Decision Trees or GeDT, is an interesting hybrid of discrimina-
tive and generative models, since its structure is learnt to minimise classification
error, while its parameters are learnt to maximise the log-likelihood of the train-
ing data. Moreover, GeDTs preserve the same conditional distribution over the
class variable as the original DTs but can also handle missing data in a principled
and efficient manner via PC marginal queries. As we show in the experiments,
GeDTs are effective classifiers and outperform popular techniques for treating
missing data in DTs, like K-Nearest Neighbours (KNN) imputation.
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1.2.4 Chapter 7

We also investigate the robustness of Probabilistic Circuits via their credal coun-
terparts (Mauá et al. 2017), which are based on the theory of imprecise prob-
abilities (Walley 1991). Credal PCs allow us to compute how much we can
perturb their parameters without changing their predictions, which gives us a
quantitative measure of robustness that we refer to as ϵ-robustness. In this
chapter, we propose a novel PC architecture, named class-selective, that is more
suitable for classification tasks and at the same time facilitates the computation
of ϵ-robustness with respect to the target variable. We also ran experiments in a
number of classification tasks to evaluate how ϵ-robustness relates to accuracy
and log-likelihood in both class-selective PCs and GeDTs.

1.2.5 Chapter 8

In this chapter we look into ways to introduce continuous latent variables into
Probabilistic Circuits. We propose a simple continuous mixture of PCs, where
the parameters of each PC is dependent of the continuous latent variable via
a learnable function parametrised by a neural network. These models are in-
herently intractable, but for small latent dimensions, can be accurately approx-
imated via numerical integration methods, which allow us to train (via regular
backprop) and run inference on these continuous mixture of PCs. Moreover,
the numerical approximation actually yields a discrete mixture of PCs, which
is a PC in itself. Thus, continuous latent variables can be seen as artifices to
help us learn PCs, since we can first fit a continuous mixture model and then
compile it into a PC via numerical integration. In our experiments, such contin-
uous mixtures of PCs outperformed most existing PC models in the literature in
a number of datasets, even though we only considered mixtures of PCs with ex-
tremely simple architectures, namely fully factorised distributions or Chow-Liu
Trees (Chow and Liu 1968).

1.2.6 Chapter 9

Finally, we conclude this thesis in Chapter 9, where we summarise our main
contributions and analyse their main limitations as well as possibly interesting
directions for future research.
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1.3 Research Reproducibility and Reuse

Each of the chapters is tied to a different contribution and therefore is also
supported by a different source code. The relevant code repository is indicated
in each of the chapters, but for the sake of completeness, we list all of them
here.

Chapter 3 https://github.com/alcorreia/bdeu-structure-learning

Chapter 4 https://github.com/alcorreia/bdeu-structure-learning

Chapter 6 https://github.com/alcorreia/gefs

Chapter 7 https://github.com/alcorreia/sum2019 and
https://github.com/alcorreia/gefs

Chapter 8 https://github.com/alcorreia/cm-tpm

1.4 How to Read This Thesis

We tried to make the chapters of this thesis self-contained as much as possible.
Each chapter briefly covers the necessary background and notation, and thus
can be read on its own. Chapters 2 and 5 are general introductions to Bayesian
Networks and Probabilistic Circuits, respectively, and readers familiar with those
topics might skip these chapters entirely. Therefore, although we organised the
chapters aiming for a gradual exposition of the topics we cover, this thesis can
be read in any order.

https://github.com/alcorreia/bdeu-structure-learning
https://github.com/alcorreia/bdeu-structure-learning
https://github.com/alcorreia/gefs
https://github.com/alcorreia/sum2019
https://github.com/alcorreia/gefs
https://github.com/alcorreia/cm-tpm


Chapter 2
Bayesian Networks

Bayesian Networks are a class of generative models that graphically represent a
joint distribution via a directed acyclic graph (the structure) and a set of para-
metric conditional distributions (the parameters). These are compact but powerful
representations that clearly lay out statistical dependencies among variables. That
makes Bayesian networks particularly useful when interfacing with users or ex-
perts, since their graphical nature exposes how variables affect one another and
facilitates the injection of prior knowledge into the model. Moreover, we can learn
these models directly from data, allowing us to uncover the statistical relationships
among a set of variables via structure learning, which is the main focus of this
thesis in what touches Bayesian Networks. In this chapter we present a general
introduction to Bayesian Networks, with a focus on exact structure learning.
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We begin our exposition with a general introduction to Bayesian Networks.
This should provide the reader with the necessary background and notation to
follow our first contributions. For a thorough introduction to Bayesian Networks
we refer the reader to (Koller and Friedman 2009).

A Bayesian Network (Pearl 1988) is a widely used probabilistic graphical
model encoding a probability distribution P (X), where X = {X1, ..., Xm} is a
set of random variables of interest. It is composed of (i) a structure defined
by a directed acyclic graph (DAG) G where each node is associated with a ran-
dom variable Xi, and where arcs represent probabilistic dependencies entail-
ing the Markov condition: every variable is conditionally independent of its
non-descendant variables given its parents; and (ii) a collection of conditional
probability distributions defined for each variable given its parents in the graph.
More precisely, in the absence of missing data, the probability distribution de-
fined by a Bayesian Network is given by

P (X|G,θ) =
m∏
i=1

P (Xi|θXi ,pa(Xi)), (2.1)

where the graph G factorises the global distribution P (X|G,θ) into indepen-
dent local distributions P (Xi|pa(Xi),θXi), with θXi the parameters of the dis-
tribution over Xi, and pa(Xi) the parents of Xi in graph G (Pearl 1988). This
factorisation is a central property of Bayesian Networks, enabling compact rep-
resentations of complex probability distributions (Pearl 2014) as well as effi-
cient learning algorithms, such as our work on structure learning (Correia et al.
2020a) discussed is Chapter 3.

A Bayesian Network B is completely defined by a tuple a (G,θ), where θ =
{θXi

}mi=1 collects the parameters of the local distributions, and G = (X,E) is
the graph with one node (or vertex) for each variable and a set of directed edges
E connecting them. In this work we use ‘structure’ and ‘graph’ interchangeably.

Their graphical nature is arguably the key feature of Bayesian Networks,
facilitating the representation of complex probabilistic relationships existing in
many real-world problems (Cussens et al. 2013). Moreover, it is the conditional
independence relationships encoded in the graph that allow for an efficient and
compact factorisation of the global distribution as in Equation 2.1. To be pre-
cise, two random variables Xi and Xj are said to be conditionally indepen-
dent given a set of random variables S under a distribution P , if we have that
P (Xi, Xj |S) = P (Xi |S)P (Xj |S)1. In that context, it is useful to define a cou-
ple of relationships between graphs and distributions. We say a graph G contains

1Note that this definition ignores events of zero probability that may arise in practice.
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a joint distribution P if P satisfies the conditional independencies induced by
G. Conversely, a distribution P is said to be faithful to a graph G if and only if
all (and only those) independence facts true in P are entailed by the graphical
structure G.

X1

X2 X3

X4 X5

Figure 2.1: Example of a simple Bayesian Network defined over five random variables
X = {X1, X2, X3, X4, X5}. The depicted graph induces the factorisation
P (X) = P (X1)P (X2|X1)P (X3)P (X4|X2)P (X5|X2, X3).

Furthermore, the graphical representation in Bayesian Networks greatly fa-
cilitates the interpretation of the relationship among variables and eases the
integration of domain knowledge. In fact, in many cases the structure or pa-
rameters of a Bayesian Network are partially elicited from human experts (Bun-
tine 1991; Heckerman et al. 1995; de Campos and Castellano 2007; Cano et al.
2011). In this thesis, however, we concentrate on data-driven methods where
the goal is to learn the structure G and parameters θ directly from some data D.
In that context, the learning task is commonly split between structure learning,
which is the learning of independence relations among variables, and parameter
learning, which is the learning of the individual distributions P (Xi|pa(Xi)).

P (G,θ|D)︸ ︷︷ ︸
Learning

= P (G|D)︸ ︷︷ ︸
Structure learning

· P (θ|D)︸ ︷︷ ︸
Parameter learning

In this thesis, we focus primarily on the structure learning problem since that
is where our contributions lie. It is also worth mentioning that in the case of dis-
crete data (which we assume in the context of Bayesian Networks), finding the
optimal model reduces to finding the optimal structure: if data D is complete
and discrete, optimal parameters, in the maximum-likelihood sense, are readily
given by frequency counts from the data (Silander et al. 2008). Therefore, in
the rest of this chapter we delve into different approaches to structure learning
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that have been proposed in the literature. However, before continuing we must
first briefly introduce some notation and technicalities regarding the data.

As mentioned previously, a Bayesian Network is defined over a fixed set of
variables denoted X = {X1, X2, . . . , Xm}, which we assume to be drawn from a
fixed joint distribution P∗(X). While we do not have access to the true distribu-
tion P∗, we assume that we have a dataset Dn = {x1, . . . ,xn} of n independent
and identically distributed (i.i.d.) samples from P∗, where x is a joint instantia-
tion of variables X and x[i] is the state in x belonging to variable Xi. In what
touches Bayesian Networks, the work in this thesis assumes discrete random
variables, and thus, we denote the domain of a variable Xi as Xi = {1, . . . ,Ki},
where Ki is the number of states of Xi. Correspondingly, the set of all joint
instantiations of a set of random variables S ⊆ X, i.e. XS, is the Cartesian
product of the state space of the individual variables, XS =×Xi∈S

Xi. We use
q(XS) = |XS| to denote the size of state space XS and, with a slight abuse of
notation, q(i) = |Xi| = Ki.

In Bayesian network structure learning (BNSL) with discrete data, we also
need to keep track of how many observations we get of each possible con-
figuration of a variable and its parent set in a given graph, which unfortu-
nately requires some extra, rather cumbersome notation. For a fixed graph
G, we use nijk to denote the number of observations in D with Xi = k and
pa(Xi) = j, and nij =

∑
k nijk. Note that in this notation, k takes values in

{1, . . . ,Ki} and j takes values in {1, . . . , q(pa(Xi))}. We use a similar nota-
tion for the parameters θ of a Bayesian Network. We denote the probability
P (Xi = k | pa(Xi) = j) as θijk and use θij to denote the union of the k param-
eters θijk, i.e. θij = {θijk | k ∈ {1, . . . ,Ki}}.

2.1 Structure Learning

Bayesian Network structure learning is the problem of searching for a graph G
that fits some observed data D well with respect to desired criteria. There are
two main classes of approaches to BNSL in the literature:

• Score-based approaches rely on a scoring function that quantifies how
well a given graph fits the data. A search algorithm is used to navigate the
space of graphs looking for the graph of highest score.

• Constraint-based infer the presence (or absence) of edges in a graph via
statistical conditional independence tests.
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There are a number of effective constraint-based approaches, the PC algorithm
(Spirtes et al. 2000; Colombo et al. 2014) being a notable example, but we do
not cover these methods in this text. Instead, we will dive into different score-
based methods proposed in the literature, since our contributions target this
class of approaches. In particular, we are interested in the properties of scoring
functions, notably the Bayesian Dirichlet equivalent uniform (BDeu) score, and
less so on the different search algorithms and heuristics found in the literature.
Therefore, in the rest of this chapter we will focus on and introduce the most
popular scoring functions for structure learning.

Before moving on and introducing score-based BNSL methods, we first for-
malise a couple of assumptions about the data D that will underpin our discus-
sion on structure learning.

Assumption 1 (Samples from ‘true Bayesian Network’)
The data D consists of independent and identically distributed (i.i.d.) samples from
a (unknown) Bayesian Network B∗ = (G∗,θ∗), where each random variable Xi,
with parents pa(Xi)

∗ in the true graph G∗, follows a multinomial distribution

Xi | pa(Xi)
∗ ∼ Multinomial(θ∗

ij | pa(Xi)
∗).

We refer to B∗ and G∗ as the true Bayesian Network and the true graph, re-
spectively. The goal of structure learning is often framed as recovering the true
graph G∗, which is indeed the best we can hope for if we want to understand
the domain structure. Note that Assumption 1 is not restrictive since Bayesian
Networks can represent any joint distribution in finite discrete domains, which
encompass all applications of Bayesian Networks considered in this thesis.

Assumption 2 (Complete data)
All observations in D are complete. That means that for every x ∈ D and every
i ∈ {1, . . . ,m}, we observe Xi = x[i].

Incomplete data is still problematic in structure learning and very few ap-
proaches actually tackle this scenario; see for instance (Friedman 1998) and
(Adel and De Campos 2017). Thus, most approaches, including all discussed in
this thesis, assume complete data.

2.1.1 Score-based Approaches

In this class of structure learning methods, we use a scoring function to measure
the goodness of fit of a given structure to the data. Learning is then a search
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problem aiming at finding the graph (or sets of graphs) of maximum score. Un-
fortunately, learning DAGs from data is not an easy computational problem. It
is known to be NP-hard (Chickering 1996; Chickering et al. 2004), and the large
search space2 makes brute-force methods unfeasible in most interesting appli-
cations. Thus, we often resort to search heuristics, like A∗ search (Yuan et al.
2011), or other optimisation methods (Zheng et al. 2018). Yet, exact algorithms
(de Campos et al. 2009; Cussens 2011) have gained traction recently thanks to
increases in computational power and improvements in learning algorithms,
like the bounds we propose in the next chapter (Correia et al. 2020a).

Regardless of how we navigate the search space of possible DAGs, we would
like our scoring functions to satisfy a few properties to facilitate the search and
ensure the resulting DAGs are reasonable representations of the statistical infor-
mation provided in the data. In the following we introduce five such desiderata
common to many popular scoring functions.

Desideratum 1 (Decomposability)
A scoring function is decomposable if the score of a Bayesian Network B = (G,θ)
can be computed as the sum of the scores of individual variables in accordance to
the factorisation induced by the graph G as in Equation 2.1

score(G |D) =
m∑
i=1

score(Xi | pa(Xi),D).

As we will see in the next chapter, decomposability greatly facilitates struc-
ture learning, since it allows us to study the search space in a per-variable basis,
resulting in more efficient and effective pruning techniques. In a nutshell, if a
graph is known to be suboptimal for variable Xi than it is also suboptimal over
the entire scope X and can be discarded early on.

One central question in BNSL is whether we can indeed hope to recover the
true G∗. Before addressing this question, we need to introduce the concept of
equivalency among Bayesian Network structures.

Definition 1 (Equivalent structures (Chickering 1995))
Two directed acyclic graphs G and G′ are equivalent if for every Bayesian Network
B = (G,θ), there is B′ = (G′,θ′) such that B and B′ define the same probability
distribution.

This simply tells us that two graphs are equivalent if they can encode the
same joint probability distributions. A set of equivalent DAGs is commonly re-

2The number of valid DAGs is super-exponential in the number of variables |X| (Robinson 1977).
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ferred to as an equivalence class. Definition 1 is often called distribution equiva-
lence (Chickering 2002), but under Assumption 1 of multinomial random vari-
ables, we could equally use a different notion of equivalence and define it as the
representation of the same set of conditional independencies, usually referred to
as Markov equivalence (Madigan et al. 1996; Richardson 1997) or I-equivalence
(Koller and Friedman 2009). However, the definition above more clearly shows
a direct and important consequence of equivalence among graphs: without fur-
ther assumptions or information on the relationship among variables, we cannot
hope to learn a unique graph from data. Even if we had access to an infinite
number of samples from the true distribution, two equivalent structures offer
the exact same statistical support to the observed data, and thus cannot be dis-
tinguished by data-dependent scores alone. We would like our scoring functions
to reflect this limitation, which leads us to our next desideratum.

Desideratum 2 (Score equivalence (Chickering 1995))
The scores of two equivalent Bayesian Network structures must be equal.

We would also like to have guarantees that our scoring function converges
to the true graph. That is, in the limit of infinite data, we would like the true
graph to be the maximiser of our scoring function. That reassures us that, if we
have enough data and score equivalence, the graph of maximum score will be
the true graph or belong to the same equivalence class as the true graph. That
is captured in the desideratum of consistency.

Desideratum 3 (Consistency (Chickering 2002))
A scoring function is consistent if, in the limit of infinite samples from a given
distribution P , i.e. n = |D| → ∞, the following two conditions hold.

• If graph G contains P and G′ does not3, then score(G |D) > score(G′ | D).

• If both G and G′ contain P , but G has fewer parameters than G′, then
score(G |D) > score(G′ | D).

With that we are ready to introduce the first class of score-based methods
that concern Bayesian scoring functions.

2.1.2 Bayesian scoring functions

Our contributions in the field of Bayesian Networks rely on Bayesian scoring
functions, so we go in depth about these scores here. Bayesian scoring functions

3Remember that we say a graph G contains a joint distribution P if P satisfies the conditional
independencies induced by G.
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are designed to approximate the posterior, i.e. the probability of the graph given
the data

P (G |D)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P (D|G)

prior︷ ︸︸ ︷
P (G)

P (D)
.

In the context of Bayesian inference, BNSL is a maximum a posteriori (MAP)
query, where we search for the graph that maximises the posterior P (G |D).
Since the data probability (or normalisation constant) P (D) =

∑
G P (D|G)P (G)

is intractable for most interesting problems and does not influence model selec-
tion (does not depend on G), Bayesian scores are designed to compute only
P (D|G)P (G). Without loss of generality, we can express Bayesian scores in log
space4 as

scoreBayes(G |D) = logP (D |G) + logP (G). (2.2)

The Bayesian scores of the form (2.2) that we consider in this thesis are decom-
posable and proven to be consistent (Chickering 2002). However, a few of them
are not score equivalent as we will see shortly.

As usual we can incorporate user knowledge via the prior P (G). For in-
stance, we could exclude a number of structures based on some known causal
relationship among the variables. However, in the rest of this thesis, we will as-
sume no such information is available and will use a uniform prior. In that case,
all structures are just as likely a priori, and the scores can be fully described via
the log-likelihood function. However, the log-likelihood of a given graph G also
depends on parameters θ, which are not known a priori. Thus, in Bayesian in-
ference, we compute the log-likelihood by defining a prior over the parameters
P (θ | G) and integrating over the parameter space

LLmar(D |G) = logP (D |G) =
∫
θ

logP (D |G,θ) P (θ | G)︸ ︷︷ ︸
parameter prior

dθ. (2.3)

We refer to the function in Equation 2.3 as the marginal log-likelihood, or simply
LLmar(D |G), since it requires marginalising out the parameters θ. In general,
the marginal log-likelihood is intractable due to the integral in (2.3), which
forms a hard computational problem. Thus, we need a few extra assumptions
on top of Assumptions 1 and 2 to be able to compute it in closed form.

4The choice of the base of the logarithm is immaterial (as long as used consistently) and we
often omit it in this thesis to ease the notation. Most common bases are 2 and Euler’s number e,
and the use of one or the other should be clear by the units: nats for base e and bits for base 2.
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Assumption 3 (Parameter independence)
The prior over parameters P (θ | G) satisfies parameter independence:

P (θ | G) =
∏
i

∏
j

P (θij | G).

Assumption 4 (Parameter modularity)
The prior over parameters P (θ | G) satisfies parameter modularity: if Xi has the
same set of parents in two different graphs G and G′ then

P (θij | G) = P (θij | G′).

Assumption 4 is convenient because it ensures the prior over θij depends
only on the local structure of the graph immediately surrounding Xi.

Assumption 5 (Dirichlet distribution)
The prior over parameters P (θ | G) has a Dirichlet distribution

P (θij | G) ∝
∏
k

θ
αijk−1
ijk ,

with αijk > 0 a user specified parameter for each θijk.

Due to the conjugacy between the Dirichlet and categorical distributions,
αijk can be interpreted as pseudo-counts, i.e. they represent the number of
counts of each category that we expect to observe or, rather, that we have ob-
served in our prior experience, before running the current experiment.

With these assumptions, we have the following closed-form expression for
the marginal log-likelihood that gives rise to the Bayesian Dirichlet (BD) score
(Cooper and Herskovits 1992; Heckerman et al. 1995)

BD(G) =
m∑
i=1

q(pa(Xi))∑
j=1

[
log

(
Γ(αij)

Γ(αij + nij)

)
+

q(Xi)∑
k=1

log

(
Γ(αijk + nijk)

Γ(αijk)

)]
.

(2.4)

Unfortunately, the BD score is not often useful in practice since it requires spec-
ifying all of the numerous terms αijk. One solution is to assign αijk = 1 for all
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i, j and k, which is equivalent to (uninformative) zero pseudo-counts. That is
the so-called K2 score (Cooper and Herskovits 1992)

K2(G) =
m∑
i=1

q(pa(Xi))∑
j=1

log( (q(Xi)− 1)!

(q(Xi)− 1 + nij)!

)
+

q(Xi)∑
k=1

log (nijk!)

 .
The K2 score is already much easier to use, since we no longer have to define
individual values for αijk. However, the K2 score is not score equivalent. In
fact, not every set of pseudo-counts αijk satisfy score equivalence, thus arbitrary
configurations of the BD score also fall short of Desideratum 2. To recover this
property, we need to establish constrains on the parameters αijk.

Theorem 1 (Bayesian Dirichlet equivalence (Heckerman et al. 1995))
Two Markov equivalent graphs with equal prior P (G) have the same Bayesian score
if and only if

αijk = α · P (Xi = k, pa(Xi) = j | G),

where α is a scalar commonly referred to as the equivalent sample size (or ESS)
and P (Xi = k, pa(Xi) = j | G) is a prior probability.

Theorem 1 gives us a principled way to set the parameters αijk and ensure
score equivalence. The resulting score, commonly called Bayesian Dirichlet
equivalence (BDe) score, is still hard to use in practice since it requires defining
P (Xi = k, pa(Xi) = j | G) for every configuration of i, j, k. A solution is to define
a uniform prior with

P (Xi = k, pa(Xi) = j | G) = 1

q(Xi)q(pa(Xi))
.

This choice of prior for the BDe score gives the so-called Bayesian Dirichlet
equivalent uniform (BDeu) score, which was theoretically justified in (Heck-
erman et al. 1995), but had already been proposed in (Buntine 1991) and
(Cooper and Herskovits 1992). The BDeu is computed as in Equation 2.4 and
only requires setting the equivalent sample size (ESS) α, with the individual
pseudo-counts given by

αijk =
α

q(Xi)q(pa(Xi))
,

which by Theorem 1 guarantees score equivalence.
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Despite the apparent ease of use of the BDeu score—it requires setting only
a single hyperparameter—there is no consensus on how one should choose an
appropriate value for the ESS α. Yet, the ESS has a significant impact on the
resulting MAP structure as shown in (Silander et al. 2007) and our own work
(Correia et al. 2019) discussed in Chapter 4.

2.1.3 Penalised (Maximum) Log-Likelihood Scores

In the last section, we have relied on the marginal likelihood function to find
MAP structures. However, we could also have considered maximum-likelihood
estimates (MLE) of the parameters θ and approximate the log-likelihood as

LLmle(G |D) = logP (D|G,θmle). (2.5)

Assuming complete and discrete data, the maximum-likelihood estimate θmle

corresponds to frequency counts from the data (Silander et al. 2008)

θmle
ijk = P̂ (Xi = k | pa(Xi) = j) =

nijk
nij

,

where we use P̂ to emphasise this is a empirical distribution. For the sake of
conciseness, we will refer to the function in Equation 2.5 simply as maximum
log-likelihood and denote it LLmle(G |D).

Given complete and i.i.d. data D, we have the following expression for the
maximum log-likelihood (Bouckaert 1995)

LLmle(G |D) =
m∑
i=1

q(pa(Xi))∑
j=1

q(Xi)∑
k=1

nijk log P̂ (Xi = k | pa(Xi) = j,θmle)

=

m∑
i=1

q(pa(Xi))∑
j=1

q(Xi)∑
k=1

nijk log

(
nijk
nij

)
, (2.6)

where P̂ is the distribution defined by the Bayesian Network B = (G,θmle), and
we combine all nijk occurrences of each parameter θmle

ijk = nijk/nij .
It is clear from Equation 2.6 that the maximum log-likelihood is decompos-

able, but unfortunately it is not consistent since it fails to satisfy the second
condition of Desideratum 3 requiring that graphs with fewer parameters be as-
signed a higher score. That is because adding an extra edge to a DAG never
decreases its maximum log-likelihood, and thus a scoring function based solely
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on the maximum log-likelihood will always favour complete graphs. To recover
consistent scoring functions we have to add a penalisation term that reduces the
score of a graph in proportion to its number of parameters. There are a number
of ways one can define such penalisation, but all maximum log-likelihood scores
we discuss in this chapter assume the following form

scoreLL(G |D) = LLmle(G |D)−
m∑
i=1

Pen(Xi,G,D), (2.7)

with Pen a penalisation term that is also decomposable. We can break down the
penalisation term as a function of the number of parameters used to represent
the distribution of each variable, i.e. |θXi |,

Pen(Xi,G,D) = f(n)|θXi
| = f(n)(q(i)− 1)q(pa(Xi)).

The last equality stems from the assumption of discrete data: for each of the
q(pa(Xi)) possible instantiations of pa(Xi), we require q(i) − 1 parameters to
represent the distribution over Xi

5. The function f : R 7→ R controls the
strength of the penalisation term and is what varies among the different pe-
nalised log-likelihood scores.

Notable examples are the Akaike Information Criterion (AIC) with f(n) =
1 and the Bayesian Information Criterion (BIC) with f(n) = log(n)/2. The
BIC score is particularly interesting because it satisfies our three desiderata: it
is decomposable as all scores of the form (2.7), it is score equivalent (Scutari
2018) and consistent (Haughton 1988). In particular, it can be shown that, for
Bayesian Networks over multinomial data, Bayesian scores as in Equation 2.2
converge to the BIC score as the number of datapoints n approaches infinity
(Haughton 1988; Geiger et al. 2001). This theoretically justifies the BIC as a
scoring function as well as motivates its use as tool to study the asymptotic
behaviour of Bayesian scores (Slobodianik et al. 2009).

The BIC score can also be motivated by an information theory perspective
(Akaike 1998; Suzuki 1999), as it is equivalent to the Minimum Description
Length (MDL) score. The MDL score aims at measuring how well a model
represents the data D into a code of minimum length composed of two parts:

• The minimum number of bits required to encode the data. This term
captures how well the model explains the data, the so-called goodness of
fit, and is exactly the maximum log-likelihood.

5The q(i)th parameter is fully specified given the other q(i)−1 ones since they define a categorical
distribution and thus, must sum to one.
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• The minimum number of bits required to represent the model itself. That
is the penalisation term favouring shorter codes, i.e. models with small
number of parameters. Since the expected number of bits required to
represent a probability value is log(n)/2, we have f(n) = log(n)/2.

We can extend the information theory perspective to maximum log-likelihoods
scores at large, which gives further insigths into this class of scores and facili-
tates the introduction of Chow-Liu Trees (Chow and Liu 1968) later on. For that
we rely on the concepts of empirical mutual information and entropy functions
(Koller and Friedman 2009)

LLmle(G |D) = n

m∑
i=1

MIP̂ (Xi,pa(Xi))− n
m∑
i=1

HP̂ (Xi), (2.8)

where we use P̂ to emphasise we compute these terms with respect to the em-
pirical distribution, and we have the usual definitions of the mutual information
MI and entropy H with respect to a discrete distribution P

MIP (X,Y) =
∑
x∈X

∑
y∈Y

P (x,y) log
P (x,y)

P (x)P (y)
(2.9)

HP (X) = −
∑
x∈X

P (x) logP (x),

with X and Y arbitrary discrete random vectors. The mutual information is
a metric that captures the mutual dependence between random variables: the
higher the mutual information the more dependent two variables are. Equa-
tion 2.8 then gives us the valuable insight that the marginal likelihood measures
the strength of the dependencies between variables and its parents in a given
graph, and thus is a useful signal for structure learning.

Moreover, Equation 2.8 decomposes the marginal likelihood in a term that
depends on the structure, the mutual information, and another that is inde-
pendent of the structure, the entropy. This makes it evident that the difference
between the marginal likelihood of two graphs only depends on the mutual in-
formation, which is one way to demonstrate the marginal log-likelihood is not
consistent. Since the mutual information is a metric, and thus non-negative,
adding an edge to a graph will also add non-negative terms to the right-hand
side of Equation 2.8 and will never decrease the maximum log-likelihood. To
see this note that adding an edge amounts to increasing the parent set of a
given random variable, and thus augmenting the state space we sum over when
computing the mutual information as in Equation 2.9.
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Chow-Liu Trees (CLTs)

One common design choice in structure learning is to limit the search space
to trees, that is, structures where each node (variable) has no more than one
parent. Trees are simple structures with arguably limited representation power,
since we are constrained on the types of conditional independence we can cap-
ture; no collider nodes, for instance.

Yet, tree structures are popular because they facilitate exact inference6 and
we have principled and efficient algorithms to learn tree structures from data. A
notable example that will be relevant in this thesis is the so-called Chow-Liu Tree
(Chow and Liu 1968), a tree-shaped Bayesian Network that directly minimises
the Kullback-Leibler (KL) divergence (Kullback and Leibler 1951) between the
true data distribution P∗(X) and the distribution represented by the Bayesian
Network P (X)

DKL(P∗||P ) =
∑
x

P∗(x) log

(
P∗(x)

P (x)

)
.

Chow and Liu (Chow and Liu 1968) proved that the tree-shaped graph that
minimises such KL divergence can be found by searching for a maximum weight
spanning tree in a fully-connected graph where nodes are in one-to-one corre-
spondence with variables X, and the weight of an edge is the mutual informa-
tion between the pair of variables it connects. This is equivalent to a score-based
approach maximising the LLmle(G |D), since the entropy term in Equation 2.8
is independent of the graph. However, it has the advantage of admitting exact
polynomial time solution, O(m2) to be precise, and not requiring any penalisa-
tion, as we are already restricted to the space of tree-shaped graphs where there
is little risk of overfitting.

In summary, an algorithm to learn a Chow-Liu tree from data D can be
decomposed into three main steps.

1. Compute the mutual information for every pair of variables in X and con-
struct a complete undirected graph where an edge between variables X
and Y has weight given by MIP̂ (X,Y ), where P̂ is the empirical distribu-
tion induced by data D.

2. Find a maximum weight spanning tree over the graph defined in the pre-
vious step with e.g. Kruskal’s or Prim’s algorithm (Cormen et al. 2022).

6In Bayesian Networks with tree-shaped graphs, marginal and conditional probabilities can be
computed in time linear in the number of nodes.
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3. Select a root node among X and assign directions to the edges in the max-
imum weight spanning tree, with arcs pointing outward the root node.

The Chow-Liu Tree algorithm is a useful and time-tested structure learning
method that is relevant not only in the field of Bayesian Networks but also in
the Probabilistic Circuits literature as we shall see in Chapter 5 (Rahman et al.
2014; Liu and Van den Broeck 2021). We also use Chow-Liu Trees in our own
work on Probabilistic Circuits that we discuss in Chapter 8.

2.2 Conclusion

We have presented a brief introduction to Bayesian Networks along with the
scoring functions and learning algorithms that are the most relevant to our
work. The concepts discussed in this chapter should be sufficient to follow
the main contributions in this thesis, but this is not a comprehensive exposition
on the topic. We refer the reader to (Koller and Friedman 2009) for a more
thorough overview of Bayesian Networks and Probabilistic Graphical Models in
general.





Chapter 3

On pruning for score-based
Bayesian network structure
learning

Many algorithms for score-based Bayesian network structure learning (BNSL), in
particular exact ones, take as input a collection of potentially optimal parent sets
for each variable in the data. Constructing such collections naively is computation-
ally intensive since the number of parent sets grows exponentially with the number
of variables. Thus, pruning techniques are not only desirable but essential. While
good pruning rules exist for the Bayesian Information Criterion (BIC), current re-
sults for the Bayesian Dirichlet equivalent uniform (BDeu) score reduce the search
space very modestly, hampering the use of the (often preferred) BDeu. In this chap-
ter, we derive new non-trivial theoretical upper bounds for the BDeu score that
considerably improve on the state of the art. Since the new bounds are mathemati-
cally proven to be tighter than previous ones and at little extra computational cost,
they are a promising addition to BNSL methods.

This chapter is almost integrally based on Alvaro Correia, James Cussens and Cassio de Cam-
pos: On pruning for score-based Bayesian network structure learning, International Conference on
Artificial Intelligence and Statistics (AISTATS), 2709-2718, 2020.
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3.1 Introduction

As discussed in the previous chapter, a Bayesian network (Pearl 1988) is a pop-
ular probabilistic graphical model given by a directed acyclic graph (DAG) G
and a set of parameters θ defining conditional probability distributions. In this
chapter, we focus on learning G from data and introduce new bounds that facil-
itate exact Bayesian network structure learning (BNSL). When using score-based
approaches to BNSL, such bounds are extremely useful to prune areas of the
search space that are known not to contain the optimal graph, considerably
speeding up the optimisation.

In particular, we focus on the Bayesian Dirichlet equivalent uniform (BDeu)
score (Buntine 1991; Cooper and Herskovits 1992; Heckerman et al. 1995),
which consists in the log probability of the graph given (multinomial) data and
a uniform prior on structures. See Chapter 2 for an overview of Bayesian scoring
functions and a more thorough introduction to the BDeu score.

Of particular interest in this work is the fact that the BDeu score is decom-
posable. That is, we can write the BDeu of a graph G, whose nodes are in
correspondence with a set of m random variables X = {X1, . . . , Xm}, as a sum
of local scores, one for each variable Xi:

BDeu(G) =
m∑
i=1

LBDeu(Xi,pa(Xi)), (3.1)

where LBDeu is the local BDeu score function and pa(Xi) are the parents of
variable Xi in the graph G.

A common approach to exact BNSL divides the problem into two steps:

1. Candidate Parent Set Identification: For each variable, find a suitable col-
lection of candidate parent sets and their local scores.

2. Structure Optimisation: Given the collection of candidate parent sets, choose
a parent set for each variable so as to maximise the overall score while
avoiding directed cycles.

This chapter concerns pruning ideas to help solve candidate parent set identi-
fication. Simply put, we aim at reducing the number of BDeu scores we have
to compute by discarding parent sets that will not lead to an optimal solution
at the second step. In turn this also reduces the search space and hopefully
running times of structure optimisation algorithms.
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BNSL is known to be NP-hard (Chickering et al. 2004) and the subproblem of
parent set identification is unlikely to admit a polynomial-time (in n) algorithm;
it is proven to be LOGSNP-Hard for BIC (Koivisto 2006). As a compromise, one
typically chooses a maximum in-degree d (number of parents per node) and
computes the score only for parent sets with in-degree at most d. Naturally,
that does reduce the search space but comes at the cost of discarding numer-
ous potentially optimal graphs. Conversely, increasing the maximum in-degree
can considerably improve the chances of finding better structures but requires
higher computing time: there are Θ(nd) candidate parent sets (per variable)
if an exhaustive search is performed with in-degree d, and 2n−1 without any
in-degree constraint. The large search space is an important limiting factor in
exact BNSL, as d > 2 is already prohibitively expensive for many interesting
applications (Bartlett and Cussens 2017).

Our goal is then to prune this search space more aggressively to help scale
exact BNSL with BDeu. We provide new theoretical upper bounds for the local
scores that allow us to identify and discard non-optimal parent sets without ever
having to compute their scores. These new upper bounds are efficient and can
be readily integrated into any search approach (Chen et al. 2016; Cussens 2011;
de Campos and Ji 2011; de Campos et al. 2009; Jaakkola et al. 2010; Koivisto
and Sood 2004; Yuan and Malone 2012, 2013).

While our study has been motivated by the scientific interest in solving the
BNSL problem in an exact manner, we shall note that local scores for a variable
given its parents also have a probabilistic interpretation (the decomposition of
the score comes from independence assumptions). Therefore, new approaches
to prune such search space of parent sets can be useful for other purposes too.

This chapter is organised as follows. Section 3.2 provides the notation and
required definitions, as well as a brief description of the current best bound for
BDeu in the literature, which we call ubf . Section 3.4 presents a new improved
bound ubg whose derivation follows the same mathematical approach as the
existing state-of-the-art bound but further exploits properties of the score func-
tion to get better results. This new bound is provably tighter than previous ones
but still does not capture all cases and other bounds can be devised. Section 3.5
looks at the problem from a new angle and introduces a bound ubh based on
a (tweaked) maximum likelihood estimation. Bounds ubg and ubh leverage
different aspects of the problem and we show how they can be effectively com-
bined for an even more aggressive pruning in Section 3.6. Finally, Section 3.9
concludes the chapter and gives directions for future research.
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3.2 Definitions and Notation

Before presenting the main results, we have to introduce some notation that
differs from the rest of the thesis in a few points. First of all, in an attempt to
lighten the notation, we often denote variables (nodes of a Bayesian Network)
by their indices (e.g. representing Xi simply as i). Also, since the collection of
scores are computed independently for each variable (BDeu is decomposable)
and the main results do not dependent on specific variables, we simplify the
notation and drop the i from Equation 3.1, using simply LBDeu(S) to refer to
the score of node i with parent set Si ⊆ X\i in the DAG G, with X\i = X \ {i}.

We still need some further notation:

− The state space of variable Xi is denoted by Xi. Similarly, XS is the
set of all joint instantiations of the random variables in S ⊆ X, that is,
XS is the Cartesian product of the state space of involved variables, with
XS =×Xi∈S

Xi. We denote the size of state space XS as q(S) = |XS|,
and we abuse notation to say q(i) = |Xi|.

− We reserve i for (indices of) variables and j for instances of a state space,
e.g., jS ∈ XS. The subscript is omitted if clear from the context.

− The data D is a multiset (repetitions are allowed) of elements from X ,
with DS the projection of D onto variables S ⊆ X (note that D=DX). The
same notation applies to projections of instantiations, e.g. jS. Moreover,
we use DS(jS′) ⊆ DS to denote the elements of DS compatible with a
given jS′ ∈ XS′ , that is, DS(jS′) = {jS : jS ∈ DS, jS∩S′

S = jS∩S′

S′ }. Finally,
we use Du instead of D to denote the set of unique elements from a given
multiset D.

− For an instantiation j ∈ XS, we define nj = |DS(j)|, that is, the number
of occurrences of instantiation j in DS. With a slight abuse of notation,
for a given variable i we have nj =

∑
k∈{1,...,q(i)} njk.

− The vector α⃗j = (αjk)k∈Xi is the prior for parent set S ⊆ X\i under
configuration j ∈ XS. In the BDeu score, α⃗j satisfies αjk = αess/q(S∪{i}),
where αess is the equivalent sample size, a pre-defined parameter setting
the strength of the prior. We also denote

∑
k∈Xi

αjk = αess/q(S) by αj .

− Let Γα (x) = Γ(x+α)
Γ(α) for x non-negative integer and α > 0 (Γ denotes the

Gamma function).
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3.2.1 Local BDeu Score

We are now ready to the define the local score LBDeu(S). For a variable i with
parent set S ⊆ X\i, the local score can be written as

LBDeu(S) =
∑
j∈XS

LLBDeu(S, j), and

LLBDeu(S, j)=− log Γαj (nj) +
∑
k∈Xi

log Γαjk
(njk) .

LBDeu(S) is a sum of q(S) values each of which is specific to a particular in-
stantiation of variables in S. We call such values local local BDeu scores (llB). In
particular, LLBDeu(S, j) = 0 if nj = 0, so we concentrate on instantiations j
that do appear in the data:

LBDeu(S) =
∑
j∈DS

u

LLBDeu(S, j) .

This formula does not come by chance. In Section 3.5 we discuss its relation
with the posterior probability of having S as parent of i.

3.3 Pruning in Candidate Parent Set Identification

The pruning of parent sets rests on the (simple) observation that a parent set
cannot be optimal if one of its subsets has a higher score (Teyssier and Koller
2005). Thus, when learning Bayesian networks from data using BDeu, it is
useful to have an upper bound

ub(S) ≥ max
T:T⊃S

LBDeu(T) (3.2)

so as to potentially prune a whole area of the search space at once. Ideally,
one would like an upper bound that is both tight (with respect to the inequality
in Expression 3.2) and cheap to compute, so that one can score parent sets
incrementally, and at the same time check whether it is worth ‘expanding’ them:
if ub(S) is not greater than maxR:R⊆S LBDeu(R), then it is unnecessary to
expand S. Figure 3.1 illustrates how a hypothetical bound would prune the
search space.

With that in mind, we can define candidate parent set identification more
formally.
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{1, 6} {1, 6, 7}{1, 7}

Figure 3.1: Illustration of potential parent sets in a dataset with 8 variables (the 8th

variable is the child in this example and does not show). This is still a small
part of the search space with only sets including variable 1. In red dashed
lines, the sets pruned if LBDeu({1}) ≥ ub({1, 3}).
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Definition 2 (Candidate Parent Set Identification)
For each variable i ∈ X, find a collection of parent sets

Li = {S ⊆ X\i : S′ ⊂ S⇒ LBDeu(S′) < LBDeu(S)} .

Unfortunately, we cannot predict the elements of Li and have to compute the
scores for a list Li potentially much larger than Li. The practical benefit of our
bounds is to reduce |Li|, thus lowering the computational cost of BNSL, while
ensuring we do not miss any potentially optimal parent set, that is, we ensure
Li ⊇ Li. Before presenting the current best bound in the literature (Cussens
2012; de Campos and Ji 2010, 2011), we give a lemma on the variation of
counts with expansions of parent sets.

Lemma 1
For S ⊆ T ⊆ X\i, jS ∈ DS

u and jT ∈ DT
u with jST = jS, we have

|DT∪{i}
u | ≥ |DS∪{i}

u |, and |DT∪{i}
u (jT)| ≤ |DS∪{i}

u (jS)|.

Proof. Given that S ⊆ T ⊆ X\i, every instantiation in DS∪{i}
u is compatible

with one or more elements of DT∪{i}
u , and thus |DT∪{i}

u | ≥ |DS∪{i}
u |. The re-

lationship is reversed when we consider unique occurrences compatible with
a given instantiation. By construction jST = jS, so if there is an instantiation
jT ∈ DT

u , there must be at least one corresponding jS ∈ DS
u , and it follows that

|DT∪{i}
u (jT)| ≤ |DS∪{i}

u (jS)|. Note that both |DT∪{i}
u (jT)| and |DS∪{i}

u (jS)| are
bounded by q(i): one instantiation for each value child i can assume.

As an example, consider the small dataset of Table 3.1. The number of
non-zero counts never decreases as we add a new variable to the parent set
of variable i = 3. With S = {1} and T = {1, 2}, we have |DS∪{i}

u | = 3

and |DT∪{i}
u | = 4. Conversely, the number of (unique) occurrences compati-

ble with a given instantiation of the parent set never increases with its expan-
sion: for example with jS = (1) and jT = (1, 1), we have |DS∪{i}

u (jS)| = 2 and
|DT∪{i}

u (jT)| = 2.
We now introduce function f that, for a variable i, is defined on the sets of

potential parents S ⊆ X\i, and observed instantiations j ∈ DS
u :

f(S, j) = −|DS∪{i}
u (j)| log q(i) ,

f(S) =
∑
j∈DS

u

f(S, j).
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Table 3.1: Example of data D, its reductions by parent sets S = {1} and T = {1, 2}, and
the number of unique occurrences compatible with jS ∈ DS

u and jT, j
′
T ∈ DT

u ,
with jST = j′

S
T = jS. The child variable is i = 3, and we have jS = (1),

jT = (1, 1), j′T = (1, 0).

D
1 2 3
0 0 0
1 0 0
1 1 0
1 1 1

DS∪{i}
u

1 3
0 0
1 0
1 1

DT∪{i}
u

1 2 3
0 0 0
1 0 0
1 1 0
1 1 1

DS∪{i}
u (jS)

1 3
1 0
1 1

DT∪{i}
u (jT)

1 2 3
1 1 0
1 1 1

DT∪{i}
u (j′T)

1 2 3
1 0 0

Theorem 2 (ubf )
For a variable i, a potential parent set S ⊆ X\i and its instantiations j ∈ DS

u , we
have that

LLBDeu(S, j) ≤ f(S, j).

Moreover, if LBDeu(S′) ≥
∑

j∈DS
u
f(S, j) = f(S) for some S′ ⊂ S, then all T ⊇ S

are not in Li (Cussens and Bartlett 2015; de Campos and Ji 2011).

From Theorem 2, we get an upper bound on the local BDeu score of all
supersets of parent set S

ubf (S) = f(S) ≥ max
T:T⊃S

LBDeu(T).

In words, we compute the number of non-zero counts per instantiation,
|DS∪{i}

u (j)|, and we ‘gain’ log q(i) for each of them. It is worth noticing that
f(S) = −|DS∪{i}

u | log q(i), which by Lemma 1 is monotonically non-increasing
over expansions of the parent set S. Hence f(S) is not only an upper bound
on LBDeu(S) but also on LBDeu(T) for every T ⊇ S. Bound ubf is cheap to
compute but is unfortunately too loose. We derive much tighter upper bounds
on LLBDeu(S, j) (where nj > 0) by considering instantiation counts for the
full parent set X\i, the parent set that includes all possible parents for child
i. We call these full instantiation counts. Evidently, the number of full parent
instantiations q(X\i) grows exponentially with |V |, but it is linear in |D| when
we consider only the unique elements DX\i

u .
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3.4 Exploiting the Gamma Function

First, we extend the current state-of-the-art upper bound of Theorem 2 by ex-
ploiting some properties of the Gamma function. For that, we need some inter-
mediate results, where we assume α > 0.

Lemma 2
Let x be a positive integer. Then

Γα (0) = 1 and log Γα (x) =

x−1∑
ℓ=0

log(ℓ+ α) .

Proof. By definition log(Γα (x)) = log
(

Γ(x+α)
Γ(α)

)
, so the first statement follows

directly: log(Γα (0)) = log
(

Γ(0+α)
Γ(α)

)
= log(0) = 1. Since it is a property of

the gamma function that Γ(x + 1) = xΓ(x) for any positive real number x, we

can compute log(Γα (1)) = log
(

Γ(1+α)
Γ(α)

)
= log

(
αΓ(α)
Γ(α)

)
= log(α), which is in

accordance with the second statement. Finally, we can recursively compute

log(Γα (x)) = log

(
Γ(x− 1 + α+ 1)

Γ(α)

)
= log

(
(x− 1 + α)Γ(x− 1 + α)

Γ(α)

)
= log(x− 1 + α) + log(Γα (x− 1)),

and since x is a positive integer, we can repeat this step until reaching the base
case Γα (0), with

log Γα (x) =

x−1∑
ℓ=0

log(ℓ+ α) + log(Γα (0))︸ ︷︷ ︸
=log(1)=0

=

x−1∑
ℓ=0

log(ℓ+ α)

Lemma 3
For x positive integer and v ≥ 1,

log

(
Γα (x)

Γα/v (x)

)
≥ log v .
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Proof. By applying Lemma 2, we obtain

x−1∑
ℓ=0

log
ℓ+ α

ℓ+ α/v
= log v +

x−1∑
ℓ=1

log
ℓ+ α

ℓ+ α/v
≥ log v ,

as each term of the sum (if any) is greater than zero.

Lemma 4
Let x, y be non-negative integers such that x+ y > 0. Then{

Γα (x+ y) = Γα (x) Γα (y) if x · y = 0 ,
Γα (x+ y) ≥ Γα (x) Γα (y) (1 + y/α) otherwise.

Proof. If x (resp. y) is zero, then Γα (x) = 1 and the equality holds. Otherwise
we apply Lemma 2 three times and manipulate the products:

Γα (x+ y)

Γα (x) Γα (y)
=

∏x+y−1
z=0 (z + α)∏x−1

z=0(z + α)
∏y−1

z=0(z + α)

=

x+y−1∏
z=y

(z + α)

x−1∏
z=0

1

(z + α)

=

x−1∏
z=0

y + z + α

z + α
≥ y + α

α
,

which holds since all terms in this final product are greater or equal to 1.

Corollary 1
Let x1, . . . , xk be a list of non-negative integers in decreasing order with x1 > 0,
then

Γα

(
k∑

l=1

xl

)
≥

k∏
l=1

Γα (xl)

k′−1∏
l=1

(1 + xl/α) ,

where k′ ≤ k is the last positive integer in the list (in this notation, the second
product on the right-hand side disappears if k′ = 1).

Proof. Repeatedly apply Lemma 4 to xt + (
∑k

l=t xl) until all elements are pro-
cessed. While both the current xt and the rest of the list are positive (until
t = k′ − 1), we obtain the extra term (1 + xt/α). After that, we only ‘collect’
the Gamma functions of the first product on the right-hand side, so the result
follows.
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Lemma 5
For S ⊆ X\i and j ∈ DS

u , assume that n⃗j = (njk)k∈Xi
are in decreasing order over

k = 1, . . . , q(i) (this is without loss of generality, since we can name and process
them in any order). Then for any α ≥ αj = αess/q(S), we have

LLBDeu(S, j) ≤ f(S, j) + g(S, j, α),

g(S, j, α) = −
k′−1∑
l=1

log (1 + nj,l/α) ,

where k′ ≤ k is the largest index such that nj,k′ > 0.

Proof. First of all, we have

LLBDeu(S, j) =− log Γαj
(nj) +

∑
k∈Xi

log Γαjk
(njk)

=− log Γαj

(∑
k∈Xi

njk

)
+
∑
k∈Xi

log Γαjk
(njk) .

Since counts njk are in decreasing order by k, we apply Corollary 1:

LLBDeu(S, j) ≤ − log

q(i)∏
l=1

Γαj (nj,l)

k′−1∏
l=1

(1 +
nj,l
αj

)

+
∑
k∈Xi

log Γαjk
(njk)

=
∑
k∈Xi

log

(
Γαjk

(njk)

Γαj
(njk)

)
−

k′−1∑
l=1

log

(
1 +

nj,l
αj

)

≤ −|DS∪{i}
u (j)| log q(i)−

k′−1∑
l=1

log
(
1+

nj,l
α

)
where α ≥ αj and we have by Lemma 3 that Γαjk

(njk) /Γαj
(njk) ≤ − log q(i)

whenever njk > 0.

The difference here is the summation from the gap of the super-multiplicativity
of Γ (Lemma 4 and Corollary 1). That extra term gives us a tighter bound on
LLBDeu(S, j), but g(S) = f(S) +

∑
j∈DS

u
g(S, j, α) is no longer monotonic over

expansions of S (albeit monotone in α). Hence, g(S) is not an upper bound on
LBDeu(T) for every T ⊇ S, and we need further results on g(S, j, α).
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Lemma 6
For S ⊆ T ⊆ X\i, jT ∈ DT

u , and jS ∈ DS
u with jST = jS, we have

f(T, jT) ≥ f(S, jS),

g(T, jT, α) ≥ g(S, jS, α).

Proof. Because jST = jS, by Lemma 1 we have |DT∪{i}
u (jT)| ≤ |DS∪{i}

u (jS)|.
Moreover, njT,k ≤ njS,k for every k ∈ Xi (the counts get partitioned as more
parents are introduced to arrive at T from S), so (1 + njT ,k/α) ≤ (1 + njS,k/α)
for every k, and the result follows.

Using this property of g as described in Lemma 6, we can pick the best value
of g over all full expansions j of a current instantiation jS to create a valid
bound:

Theorem 3 (ubg)
Let S ⊆ X\i, jS ∈ DS

u , Then

LLBDeu(S, jS) ≤ f(S, jS) + g(S, jS)

g(S, jS) = min
j∈DX\i

u : jS=jS

g(X\i, j, αess/q(S))

Also, if LBDeu(S′) ≥ (f(S) +
∑

jS∈DS
u
g(S, jS)) = g(S) for some S′ ⊂ S, then all

T ⊇ S are not in Li.

Proof. First we prove that f(S, jS)+g(S, jS) is an upper bound for LLBDeu(S, jS).
From Lemma 6, if we take any instantiation of the fully expanded parent set,
j ∈ DX\i

u : jS = jS, we have that g(S, jS, α) ≤ g(X\i, j, α) for any α. As
Lemma 6 is valid for every full instantiation j, we take the minimum over them
to get the tightest bound. From Lemma 5, LLBDeu(S, jS) ≤ f(S, jS)+ g(S, jS).
Now, if we sum all the llBs, we obtain the second part of the theorem for S.

Finally, we need to show that this second part of the theorem holds for any
T ⊃ S, which follows from f(T) ≤ f(S) (as the total number of non-zero
counts only increases, by Lemma 1) and

∑
jT∈DT

u

g(T, jT) =
∑

jS∈DS
u

 ∑
jT∈DT

u : jST=jS

g(T, jT)


≤
∑

jS∈DS
u

g(S, jS) .
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That holds as g(T, jT) ≤ 0 and, with jST = jS, at least one term g(T, jT) is
smaller than g(S, jS), as their minimisation spans the same full instantiations
(and g(·, ·, α) is non-decreasing on α).

In brief, the relevance of Theorem 3 is that it gives us a tighter upper bound
ubg(S) ≤ ubf (S), such that

ubg(S) = g(S) = (f(S) +
∑

jS∈DS
u

g(S, jS))

≥ max
T:T⊃S

LBDeu(T).

Therefore, this bound is always equal or superior to the current state-of-the-art
bound at the time of writing. Moreover, the overhead of computing the bounds
is negligible if a smart implementation is used (one that reuses computations
that are nevertheless required for calculating the scores). The process which
constructs contingency tables of counts for local score computations (say, from
an AD-tree) is the main bottleneck in scoring, but it can be cheaply extended
to simultaneously produce tables of sets of ‘full instantiations’ for the computa-
tion of upper bounds where, for instance, addition of counts are replaced with
unions of sets. While this technical detail is irrelevant for the mathematical
proofs here, it is important to point out that the new bounds imply very little
extra computational costs.

3.5 Exploiting the Likelihood Function

Bound ubg of previous section was based on the best full instantiation j ∈ DX\i

u

that is compatible with an llB of the parent set S. Knowing that function g is
monotonic over parent set sizes, we could look at an instantiation of the fully
extended parent set to derive a bound for the llB of S and all its supersets. Even
though the results are valid for every full instantiation, we can only compute
bound ubg using one of them at a time. The new bound of this section comes
from the realisation that it is possible to exploit all full instantiations to derive
a valid bound on the llB of S. For that purpose, we need some properties of
inference with the Dirichlet-multinomial distribution and conjugacy.

The BDeu score is simply the log marginal probability of the observed data
given suitably chosen Dirichlet priors over the parameters of a BN structure.
Consequently, llBs are intimately connected to the Dirichlet-multinomial conju-
gacy. Given a Dirichlet prior α⃗j = (αj,1, . . . , αj,q(i)), the probability of observing
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data Dn⃗j
with counts n⃗j = (nj,1, . . . , nj,q(i)) is:

log Pr(Dn⃗j
|α⃗j) = log

∫
p

Pr(Dn⃗j
|p)Pr(p|α⃗j)dp ,

where the first distribution under the integral is multinomial and the second is
Dirichlet. Note that

log

∫
p

Pr(Dn⃗j
|p)Pr(p|α⃗j)dp ≤ max

p
log Pr(Dn⃗j

|p), (3.3)

since
∫
p
Pr(p|α⃗j)dp = 1. Note also that llBs are not the probability of observing

sufficient statistics counts, but of a particular dataset, that is, there is no multi-
nomial coefficient which would consider all the permutations yielding the same
sufficient statistics. Therefore, we may devise a new upper bound based on the
maximum (log-)likelihood estimation.

Lemma 7
Let S ⊆ X\i and j ∈ DS

u . Then

LLBDeu(S, j) ≤ ML(n⃗j)

with ML(n⃗j) =
∑
k∈Xi

njk log(njk/nj)
1.

Proof. The llB is simply the log probability of observing a data sequence with
counts n⃗j under a Dirichlet-multinomial distribution with parameter vector α⃗j .
The result follows from Expression equation 3.3 and holds for any prior α⃗j .

Corollary 2
Let S ⊆ X\i and jS ∈ DS

u . Then

LLBDeu(S, jS) ≤
∑

j∈DX\i
u : jS=jS

ML(n⃗j) .

Proof. This follows from the properties of the maximum likelihood estimation,
because it is monotonically non-decreasing with the expansion of parent sets
(in terms of maximum likelihood, we fit the distribution just as well or better
when having more parents).

1In this notation, we use 0 log 0 = 0.
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We can improve further on this bound of Corollary 2 by considering llBs as
a function h of α for fixed n⃗j , since we can study and exploit the shape of their
curves. We define

hn⃗j
(α) = − log Γα (nj) +

∑
k∈Xi

log Γα/q(i) (njk) .

Lemma 8
If ̸ ∃k : njk = nj , then hn⃗j

is a concave function for positive α ≤ 1.

Proof. (This result can also be obtained from (Levin and Reeds 1977).) Using
the identity in Lemma 2, or, equivalently, by exploiting known properties of the
digamma and trigamma functions, we have

∂hn⃗j

∂α
= −

nj−1∑
ℓ=0

1

ℓ+ α
+

q(i)∑
k=1

njk−1∑
ℓ=0

1

ℓq(i) + α
, and

∂2hn⃗j

∂α2
=

nj−1∑
ℓ=0

1

(ℓ+ α)2
−

q(i)∑
k=1

njk−1∑
ℓ=0

1

(ℓq(i) + α)2
.

It suffices to show that
∂2hn⃗j

∂α2 is always negative under the conditions of the
theorem. If there are at least two njk > 0, then

∂2hn⃗j

∂α2
≤

nj−1∑
ℓ=0

1

(ℓ+ α)2
− 2

α2

simply by ignoring all those negative terms with ℓ ≥ 1. Now we approximate it
by the infinite sum of quadratic reciprocals:

∂2hn⃗j

∂α2
≤

nj−1∑
ℓ=0

1

(ℓ+ α)2
− 2

α2

= − 1

α2
+

1

(1 + α)2
+

nj−1∑
ℓ=2

1

(ℓ+ α)2

< − 1

α2
+

1

(1 + α)2
+

∞∑
ℓ=2

1

ℓ2

= − 1

α2
+

1

(1 + α)2
+
π2

6
− 1 ,
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which is negative for any α ≤ 1 (the gap between the two fractions containing
α obviously decreases with the increase of α, so it is enough to check the sign

for the largest value α = 1). Thus we have
∂2hn⃗j

∂α2 < 0.

The concavity of hn⃗j
is useful for the following reason.

Lemma 9
Let S ⊆ X\i and j ∈ DX\i

u such that ̸ ∃k : njk = nj . If α ≤ q(S) and
∂hn⃗j

∂α is
non-negative, then

hn⃗j
(α/q(T)) ≤ hn⃗j

(α/q(S)) for every T ⊇ S.

Proof. Since ̸ ∃k : njk = nj and α/q(S) ≤ 1, we have that hn⃗j
is concave

(Lemma 8) and since
∂hn⃗j

∂α ≥ 0, hn⃗j
is non-decreasing.

The final step to improve the upper bound is to consider any local score of a
parent set S as a function of the (log-)probabilities over full mass functions.

Lemma 10
Let S ⊆ X\i and jS ∈ DS

u . Then

LLBDeu(S, jS) ≤
∑

j∈DX\i
u : j ̸=j⋆

ML(n⃗j) + log Pr(Dn⃗j⋆
|α⃗jS),

where j⋆ = argmin
j∈DX\i

u
log Pr(Dn⃗j

|α⃗jS).

Proof. We rewrite njS,k as the sum of counts from full mass functions: njS,k =∑
j∈DX\i

u : jS=jS
njk. Thus, LLBDeu(S, jS) is the log probability log Pr(Dn⃗jS

|α⃗jS)

of observing a data sequence with counts n⃗jS = (
∑

j∈DX\i
u : jS=jS

njk)k∈Xi
under

the Dirichlet-multinomial with parameter vector α⃗jS . Assume an arbitrary order
for the full mass functions related to elements in {j ∈ DX\i

u : jS = jS} and
name them j1, . . . , jw, with w = |{j ∈ DX\i

u : jS = jS}|. Exploiting the
conjugacy multinomial-Dirichlet we can express this probability as a product of
conditional probabilities:

Pr(Dn⃗jS
|α⃗jS) =

w∏
ℓ=1

Pr

(
Dn⃗jℓ

∣∣∣∣∣
ℓ−1∑
t=1

n⃗jt + α⃗jS

)
,
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LLBDeu(S, jS) =

w∑
ℓ=1

log Pr

(
Dn⃗jℓ

∣∣∣∣∣
ℓ−1∑
t=1

n⃗jt + α⃗jS

)

≤ log Pr(n⃗j1 |α⃗jS) +

w∑
t=2

ML(n⃗jt).

These are obtained by applying expression 3.3 to all but the first term. Since the
order is arbitrary, we can pick one in our best interest and the result follows.

While the bound of Lemma 10 is valid for S, it gives no assurances about its
supersets T, so it is of little direct use (if we need to compute it for every T ⊃ S,
then it is better to compute the scores themselves). To address that, we replace
the first term of the right-hand side summation with a proper upper bound. The
maximum likelihood terms are already valid terms, as discussed earlier.

We note that Theorem 4 is in fact much simpler than its formal enunciation.
Unfortunately, this is unavoidable, since we are combining different possible
bounds for the term log Pr(Dn⃗j⋆

|α⃗jS) that appears in Lemma 10 into one bound,
while also keeping all the other maximum likelihood bounds. Moreover, to
make Theorem 4 slightly more compact, we sum all maximum likelihood (ML)
terms (first summation in the expression) and then we discard one of them (the
first negative ML term) in order to (potentially) replace it with a better bound.
This is the only reason why the definition of h in the following theorem looks
unpleasant to the eyes.

Theorem 4 (ubh)
Let S ⊆ X\i, α = αess/q(S), jS ∈ DS

u , and hn⃗j
(α) = hn⃗j

(α) if α ≤ 1 and
∂hn⃗j

∂α ≥ 0, and zero otherwise. Let

h(S, jS) =
∑

j∈DX\i
u :

jS=jS

ML(n⃗j) + min
j∈DX\i

u :

jS=jS

(
−ML(n⃗j)

+ min{ML(n⃗j); f(X\i, j) + g(X\i, j, α); hn⃗j
(α)}

)
.

Then LLBDeu(S, jS) ≤ h(S, jS). Moreover, if LBDeu(S′) ≥
∑

jS∈DS
u
h(S, jS) =

h(S) for some S′ ⊂ S, then S and all its supersets are not in Li.

Proof. For parent set S, the bound based on ML(n⃗j) only (first option in the
inner minimisation, which cancels out the double ML terms) is valid by Corol-
lary 2. The other two options rely on Lemma 10 and their own results: the
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bound on f(X\i, j) + g(X\i, j, α) is valid by Lemma 6, while the bound based
on hn⃗j

(α) comes from Lemma 9, and thus the result holds for S. Take T ⊃ S.
It is straightforward that

LBDeu(T) ≤
∑

jT∈DT
u

h(T, jT) =

∑
jS∈DS

u

 ∑
jT∈DT

u : jST=jS

h(T, jT)

 ≤ ∑
jS∈DS

u

h(S, jS),

since
∑

jT∈DT
u : jST=jS

h(T, jT) ≤ h(S, jS), because both sides run over the same
full instantiations and the right-hand side use the tighter minimisation of Ex-
pression equation 4 only once, while the left-hand side can use that tighter
minimisation once every jT, and Lemmas 6 and 9 ensure that the computed
values f(X\i, j) + g(X\i, j, α) and hn⃗j

(α) are valid for T.

As with previous theorems, Theorem 4 gives us a new upper bound on the
local score of a parent set S

ubh(S) = h(S) =
∑

jS∈DS
u

h(S, jS) ≥ max
T:T⊃S

LBDeu(T).

3.6 Combining the Bounds

We note that bound ubg of the previous section was obtained in a similar way as
ubf , and we prove that ubg(S) ≤ ubf (S) for any candidate parent set S. Con-
versely, ubh bears no such relation to ubf as we derived it through a new route,
studying the properties of the likelihood function. This is to our advantage, as
due to their independent theoretical derivations, ubg and ubh prune different
regions of the search space and can be effectively combined into a tighter bound
ubg,h = min{ubg; ubh}.

3.7 Experiments

This work focuses on new theoretical derivations leading to tighter bounds, and
thus an empirical analysis is beyond its scope. Nonetheless, we illustrate possi-
ble gains as well as a comparison of the different bounds in simple benchmark
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datasets in Figures 3.2 and 3.3. The code for computing these bounds and
reproducing the experiments is available at https://github.com/alcorreia/
bdeu-structure-learning.

For small datasets, it is feasible to score every candidate parent set so that
we can compare how far the upper bounds for a given parent set S (and all
its supersets) are from the true best score among itself and its supersets. Fig-
ure 3.2 shows such a comparison for variable Standard-of-living-index in the
CMC dataset (Dua and Graff 2017), which has 10 variables and 1,473 instances.
It is clear that the new bound ubg,h is much tighter than the current best bound
in the literature (here called ubf ) and improves considerably towards the true
best score (only available because this particular dataset is not too large).

−4
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·103

Cardinality of candidate parent sets

U
pp

er
bo

un
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ubf

ubg,h

true

1 2 3 4 5 6 7

Figure 3.2: Upper bound values for each candidate parent set for variable Standard-of-
living-index in the CMC dataset (Dua and Graff 2017). Parent sets are arbi-
trarily ordered within each cardinality (neighbourhood in the graph within
same cardinality is not relevant).

For larger datasets (more than 10 variables), evaluating all candidate parent
sets becomes computationally impracticable, so instead we evaluate the number
of scores computed with each bound. In Figure 3.3, we see the new bounds con-
siderably reduced the number of scores computed, which translates into smaller
lists of potentially optimal parent sets Li (see Definition 2). This goes to show
the practical value of tighter upper bounds, as we save computing time in both
steps of BNSL: parent set identification (fewer scores to compute) and structure
optimisation (smaller search space). We can also observe in Figure 3.3 that,
in these four datasets, our new bounds have a large advantage over ubf only
for relatively large maximum number of parents. That might seem restrictive

https://github.com/alcorreia/bdeu-structure-learning
https://github.com/alcorreia/bdeu-structure-learning
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Figure 3.3: Plot of the number of scores computed per maximum number of parents with
different pruning bounds for four UCI datasets (Dua and Graff 2017) with 17
(zoo, segment) and 18 (primary-tumor, lymph) variables. The scores were
computed using breadth-first search.

since we are probably fine using ubf for small numbers of parent sets. However,
exact structure learning with large maximum number of parents is exactly the
scenario where we need tight bounds the most, and in that case our bounds
might prove extremely useful. We believe these new upper bounds ubg and ubh

are an important step towards making exact structure learning without limits
on the number of parents more efficient and scalable.

We report similar results for a total of 22 UCI datasets (Dua and Graff 2017)
in Tables 3.2 and 3.32, where we show the number of parent sets pruned for
different maximum in-degrees (maximum number of parents per node) with
each of the four bounds: the previously proposed ubf (de Campos and Ji 2011;
Cussens and Bartlett 2015), and our bounds ubg, ubh and ubg,h. We see from

2We split the tables only to fit the limited space in a page. Both tables contain the same informa-
tion but regarding different datasets.



3.7 Experiments 43

Table 3.2: Number of computations pruned (|Lc| = |search space| − |L|) with each
bound: ubf , ubg, ubh and ubg,h. Each dataset is characterised by its num-
ber of variables and observations, n and N , and the number of all possible
parent combinations |search space|. The maximum imposed in-degree is de-
noted in-d and |ubg<ubh|

|ubh<ubg| is the proportion of times ubg was tighter than ubh.

Dataset n N |search space| in-d |Lc
f | |Lc

g | |Lc
h| |Lc

g,h|
|ubg<ubh|
|ubh<ubg|

car
7 1,728 448 5 0 36 129 129 1.361

6 6 43 135 136 1.661
∞ 6 43 135 136 1.661

glass
8 214 1,024 5 0 11 9 12 1.488

6 0 44 40 45 1.483
7 0 52 48 53 1.483

diabetes
9 768 2,304 5 0 0 0 0 ∞

7 0 72 184 184 123.176
8 0 81 193 193 123.176

nursery
9 12,960 2,304 5 0 0 342 342 6.176

7 8 188 626 630 5.331
8 16 197 635 639 5.331

breast-
cancer

10 286 5,120 5 166 600 227 600 4.475 · 10−2

7 589 1,603 1,019 1,603 4.206 · 10−2

9 660 1,703 1,119 1,703 4.206 · 10−2

tic-tac-
toe

10 958 5,120 5 0 0 0 0 0
7 2 2 0 2 0
9 101 101 26 101 0

cmc
10 1,473 5,120 5 0 23 35 47 7.556

7 6 746 766 828 6.045
9 16 846 866 928 6.045

heart-h
12 294 24,576 5 0 252 86 252 1.434

8 1,109 7,469 6,090 7,504 1.019
11 1,321 8,273 6,894 8,308 1.019

solar-
flare

12 1,066 24,576 5 884 1,810 2,170 2,462 2.799
8 3,741 8,890 10,561 11,043 2.885

11 4,043 9,672 11,348 11,834 2.877

vowel
14 990 1.147 · 105 5 1,564 1,833 1,707 1,837 0.182

9 7,579 22,701 21,962 22,729 6.152 · 10−2

13 8,350 26,298 25,411 26,330 6.162 · 10−2

zoo
17 101 1.114 · 106 5 7,760 18,026 18,818 20,604 0.252

11 3.782 · 105 7.834 · 105 7.483 · 105 7.925 · 105 0.104
16 4.054 · 105 8.262 · 105 7.91 · 105 8.353 · 105 0.104

vote
17 435 1.114 · 106 5 0 0 0 0 0.919

11 40,544 2.594 · 105 2.126 · 105 2.776 · 105 0.414
16 55,067 3.021 · 105 2.552 · 105 3.203 · 105 0.414

the results that bound ubg always leads to more aggressive pruning than ubf ,
which is as expected since the former is provenly tighter. These experiments
also show there is no clear winner between ubg and ubh, since the effectiveness
of the upper bounds seems to be heavily dependent on the dataset.

Finally, we point out that the mathematical results may seem harder to apply
than they actually are. Computing ubg(S) and ubh(S) to prune a parent set S
and all its supersets can be done in linear time, as one pass through the data
is enough to collect and process all required counts; more sophisticated data
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Table 3.3: Number of computations pruned (|Lc| = |search space| − |L|) with each
bound: ubf , ubg, ubh and ubg,h. Each dataset is characterised by its num-
ber of variables and observations, n and N , and the number of all possible
parent combinations |search space|. The maximum imposed in-degree is de-
noted in-d and |ubg<ubh|

|ubh<ubg| is the proportion of times ubg was tighter than ubh.

Dataset n N |search space| in-d |Lc
f | |Lc

g | |Lc
h| |Lc

g,h|
|ubg<ubh|
|ubh<ubg|

segment
17 2,310 1.114 · 106 5 0 0 0 0 0.184

11 39,948 2.229 · 105 2.915 · 105 2.915 · 105 0.256
∞ 51,902 2.614 · 105 3.317 · 105 3.317 · 105 0.256

pendigits
17 10,992 9.83 · 105 5 0 0 0 0 0

11 0 2,386 47,757 41,619 4.143 · 10−2

16 0 17,445 76,982 70,321 4.383 · 10−2

glass
8 214 1,024 5 0 11 9 12 1.488

6 0 44 40 45 1.483
7 0 52 48 53 1.483

lymph
18 148 2.359 · 106 5 7,295 8,344 6,076 8,344 12,375.846

11 1.02 · 106 1.237 · 106 9.489 · 105 1.237 · 106 73,280.769
17 1.182 · 106 1.406 · 106 1.114 · 106 1.406 · 106 73,327.538

primary-
tumor

18 339 2.359 · 106 5 2,460 3,555 2,667 3,555 5.465 · 10−2

11 4.292 · 105 8.572 · 105 6.751 · 105 8.572 · 105 6.856 · 10−3

17 5.105 · 105 1.015 · 106 8.223 · 105 1.015 · 106 6.797 · 10−3

vehicle
19 846 4.981 · 106 5 0 108 54 108 1.197

12 6.614 · 105 2.082 · 106 1.848 · 106 2.12 · 106 0.474
18 7.582 · 105 2.319 · 106 2.084 · 106 2.358 · 106 0.473

hepatitis
20 155 7.864 · 106 5 0 0 0 0 397.196

12 2.155 · 106 3.341 · 106 2.338 · 106 3.341 · 106 8,198.164
19 2.599 · 106 3.795 · 106 2.905 · 106 3.795 · 106 6,100.199

colic
23 368 9.647 · 107 5 1,170.125 2,415 934.375 2,415 ∞

14 2.116 · 107 2.122 · 107 2.042 · 107 2.122 · 107 ∞
22 2.277 · 107 2.284 · 107 2.203 · 107 2.284 · 107 ∞

autos
26 205 8.724 · 108 5 1.388 · 105 1.829 · 105 1.544 · 105 1.829 · 105 ∞

15 1.265 · 108 1.265 · 108 1.258 · 108 1.265 · 108 45,904.333
25 1.432 · 108 1.432 · 108 1.425 · 108 1.432 · 108 45,904.333

flags
29 194 7.785 · 109 5 2.782 · 105 2.834 · 105 1.275 · 105 2.834 · 105 ∞

17 1.085 · 109 1.085 · 109 1.083 · 109 1.085 · 109 ∞
28 1.196 · 109 1.196 · 109 1.194 · 109 1.196 · 109 ∞

structures, such as AD-trees (Moore and Lee 1998), might allow for even greater
speedups. Since calculating a score already takes linear time in the number of
data samples, we have cheap bounds which are provably superior to the current
state-of-the-art pruning for BDeu.

3.8 Structure Learning and Tractability

The work presented in this chapter is also a push for exact inference algorithms,
as the rest of the research in this thesis. In the case of Bayesian Networks, we
promote exact structure learning—also a form of inference—rather than exact
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probabilistic queries as with Probabilistic Circuits. However, our new upper
bounds might also prove useful in the overall context of tractable probabilistic
models. They are readily applicable to a number of algorithms that constrain
structure learning to Bayesian Networks supporting tractable inference routines
(Elidan and Gould 2008; Nie et al. 2014, 2017; Scanagatta et al. 2015, 2016,
2018; Benjumeda et al. 2016, 2019).

As we have seen in Chapter 2, most score-based structure learning algo-
rithms penalise the number of parameters in the Bayesian Network in an ef-
fort to avoid overfitting. Unfortunately, a compact model does not guarantee
tractable inference, and we need other ways to favour tractable models in our
structure search. Most methods use tree-width as a measure of tractability,
since the worst-case inference complexity is exponential in the tree-width of
the Bayesian Network structure (Kwisthout et al. 2010). These methods navi-
gate the search space and discard or do not consider structures with tree-width
above certain threshold (Elidan and Gould 2008; Nie et al. 2014, 2017; Scana-
gatta et al. 2015, 2016, 2018). The tree-width can also be expressed as the
width of the optimal elimination order of a graph, and a few methods exploit
this quantity in their search for tractable BNs (Benjumeda et al. 2016, 2019).

All these methods use some form scoring function to navigate the search
space and compare the goodness of fit of each graph. Therefore, our new upper
bounds might be instrumental in speeding up learning of tractable Bayesian
Networks as well. In fact, they might be particularly useful in this context
since learning tractable BNs requires an extra expensive computational step—
determining the tree-width (or optimal elimination order) of a graph is an NP-
hard problem in and of itself (Arnborg et al. 1987)—and effectively pruning the
search space becomes even more essential.

3.9 Conclusion

We introduced new theoretical upper bounds for exact structure learning of
Bayesian networks with the BDeu score by studying the score function from
multiple angles. These bounds are provably tighter than previous results and
shall provide significant benefits in reducing the search space in candidate par-
ent set identification in BNSL and potentially other applications involving inde-
pendence assumptions. Moreover, the two new bounds we proposed are derived
via two different perspectives on the BDeu score: we studied the gamma func-
tion to arrive at ubg and exploited the likelihood function to get to ubh. That
gives us two distinct tools to prune the search space that, as shown in our exper-
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iments, have different degrees of effectiveness depending on the dataset, and
thus might complement each other well.

A natural step for future research is the integration of our bounds with more
sophisticated data structures and search algorithms. As an example, branch-
and-bound methods are particularly promising as they not only consider the
parent sets and its corresponding full instantiations but also partial instantia-
tions that are formed by disallowing some variables to be parents in some of
the branches. Our results also open new routes for further theoretical work in
exact structure learning. Notably, we conjecture that the maximum likelihood
estimation terms still leave room for tighter bounds.



Chapter 4
An Experimental Study of Prior
Dependence in Bayesian
Network Structure Learning

The Bayesian Dirichlet equivalent uniform (BDeu) function is a popular score to
evaluate the goodness of a Bayesian network structure given complete categorical
data. Despite its interesting properties, such as likelihood equivalence, it does re-
quire a prior expressed via a user-defined parameter known as Equivalent Sample
Size (ESS), which significantly affects the final structure. We study conditions to
obtain prior independence in BDeu-based structure learning. We show in experi-
ments that the amount of data needed to render the learning robust to different
ESS values is prohibitively large, even in big data times.

This chapter is almost integrally based on Alvaro Correia, Cassio de Campos and Linda C. van
der Gaag: An Experimental Study of Prior Dependence in Bayesian Network Structure Learning,
International Symposium on Imprecise Probabilities: Theories and Applications (ISIPTA), 2019.
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4.1 Introduction

In this short chapter, we continue to study the Bayesian Dirichlet equivalent
uniform (BDeu) score, but this time with a focus on the prior expressed via the
equivalent sample size (ESS) and its influence on the final learnt structure. As
we demonstrate in the experiments, the choice of ESS remains consequential
even for extremely large sample sizes, making it virtually impossible to break
prior dependence in structure learning with the BDeu score.

Bayesian networks are a class of probabilistic graphical models based on a
Directed Acyclic Graph (DAG) G that defines a factorisation of the joint prob-
ability distribution over a set of random variables X = {X1, ..., Xm}. One can
learn the DAG (also called structure or graph) G from complete discrete data
D via the popular BDeu score function (Buntine 1991; Cooper and Herskovits
1992; Heckerman et al. 1995), which aims at finding a maximum a posteriori
(MAP) G that maximises P (G|D) (under a uniform prior over G). See Chapter 2
for an overview of Bayesian networks and scoring functions like the BDeu.

For the sake of completeness we briefly restate the BDeu score here, making
explicit the dependence on the ESS α. The BDeu score for a graph G is defined
by the marginal likelihood of the data D given G and the ESS α > 0:

BDeu(G, α) =
m∑
i=1

q(pa(Xi))∑
j=1

[
log

(
Γ(αij)

Γ(αij + nij)

)
+

q(Xi)∑
k=1

log

(
Γ(αijk + nijk)

Γ(αijk)

)]
.

As evident in the definition above, the BDeu score decomposes into a sum of m
terms, each depending exclusively on a single variableXi and its parents pa(Xi)
in graph G. We use q(·) to denote the size of the state space of a set of variables,
with q(i) the arity of Xi and q(pa(Xi)) the number of joint instantiations of its
parents. We use nijk to represent the number of observations with Xi = k and
pa(Xi) = j, and nij =

∑
k nijk. Finally, we define the pseudo-counts as

αijk =
α

q(i)q(pa(Xi))
and αij =

α

q(i)
.

Structure learning with BDeu requires the definition of the Dirichlet param-
eters, which is done through α > 0, roughly expressing the strength of our
prior belief. However, there is no consensus on what value an ‘uninformative’ α
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should take and several studies have focused on measuring the influence of α
on the final structure (Scutari 2016, 2018; Silander et al. 2007), analysing the
asymptotic behaviour of the BDeu for α → 0 and α → ∞ (Steck 2008; Steck
and Jaakkola 2003; Ueno 2010, 2011), or finding the optimal α (Silander et al.
2007; Steck 2008).

Nonetheless, to the best of our knowledge, no work has directly addressed
the robustness of BDeu-based structure learning to variations of the ESS. By ro-
bustness we mean prior-independence, i.e. for large enough data, one should
expect the structure learning algorithm to produce the same network regardless
of the prior knowledge expressed via the ESS. As we show in the experiments,
even for a small number of variables the amount of data required to achieve
such robustness is prohibitively large. That suggests the prior on the BDeu func-
tion might be too strong for some real-world applications, where other scores
(or some variation of the BDeu score) might be more adequate.

4.2 Experiments

We conducted experiments with three known Bayesian networks (Beinlich et al.
1989; Sachs et al. 2005; Spiegelhalter et al. 1993) and 16 datasets from the UCI
Machine Learning repository (Dua and Graff 2017) to study the influence of the
ESS. In all experiments, we assumed complete categorical data (we discretised
continuous variables into two categories by their median values, when needed).
As we wanted to study the intrinsic behaviour of BDeu-based structure learning,
and not the particularities of a given approximate solver, we focused on exact
solutions. For that there are a number of exact solvers available (de Campos
and Ji 2011; Silander and Myllymäki 2006; Yuan and Malone 2012), and we
used GOBNILP (Barlett and Cussens 2013), which finds the optimal graph via
integer linear programming.

In the experiments in Figure 4.1 and 4.2, we assumed a given ordering of
the variables, i.e. for any nodes (variables) X and Y , if X precedes Y in the
ordering, then an arc between X and Y (if it exists) must be directed from X to
Y . That restriction considerably reduces the search space and allows us to con-
sider larger sample sizes, while still guaranteeing an exact solution. Conversely,
the UCI datasets are small enough that we could gather exact results both with
and without order constraints.
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4.2.1 Graph Complexity

The ESS can be interpreted as a regularizer on the structure of the Bayesian
network. Hence, we start by investigating how it affects the total number of
arcs (parents) in the network. In particular, we are interested in the interplay
between the sample size n and the ESS in determining the complexity of the
network.

We sampled data from three known networks, Sachs (Sachs et al. 2005) with
m = 11 variables, Child (Spiegelhalter et al. 1993) with m = 20 variables, and
Alarm (Beinlich et al. 1989) with m = 37 variables. Subsequently we learned
the structure with GOBNILP while varying the sample size n and the ESS. We re-
peated that process for 30 different orderings and reported the average number
of arcs (across orderings) in Figure 4.1. The results indicate the graph increases
in complexity with the ESS. Indeed, the number of arcs is expected to grow
almost monotonically to the maximum (complete graph) for large values of α
(Silander and Myllymäki 2006; Steck 2008; Steck and Jaakkola 2003; Ueno
2010, 2011).

A more interesting analysis that received little attention in the literature is
how the complexity of the graph varies with the sample size. Naturally, one
would expect that, for large datasets, the prior would have little effect on the

Figure 4.1: Average number of arcs as a function of the ESS for different sample sizes n.
We denote n in uppercase N for ease of reading. Scale of the graphs varies.
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learned network. That is what we observe for the Sachs network in Figure 4.1:
the number of arcs remains constant across all ESS values for n ≥ 105. However,
considering Sachs contains only 11 variables, that is an extremely high number
of data points to guarantee robustness over a relatively small range of ESS val-
ues. For the other networks, no amount of data ensured prior-independence.
The number of arcs increased with the ESS, and providing more data points did
not alleviate this trend significantly.

In a statistical sense, the ESS is not a typical Dirichlet prior because it also
defines the number of parameters in the model. It expresses a trade-off between
regularisation and complexity (Steck and Jaakkola 2003), which increases with
the ESS and with sample size n, as shown in the experiments. That trade-
off partially explains why it is hard to avoid prior-dependence in BDeu-based
structure learning.

4.2.2 Robustness

To study prior-independence in BDeu-based structure learning, one needs a met-
ric that captures the influence of the ESS on the final structure.

Definition 3 (Robust Interval)
We define robust interval (RI) as the largest range of ESS values for which all
obtained optimal structures (for each ESS) are Markov equivalent.

RI := argmax
[α1,α2]

{|α2 − α1| : G∗(α′) ≡ G∗(α′),∀α′, α′ ∈ [α1, α2]},

where G∗(α) = argmaxG BDeu(G,α) is the optimal graph for a given ESS, and
we use ≡ to denote Markov equivalence.

Intuitively, the larger the robust interval (or RI), the more prior-independent
the learning algorithm (for a given dataset). We do not distinguish structures
representing the same set of conditional independence statements (commonly
referred to as Markov equivalent), as they encode the same ‘information’ and
have the same BDeu score (Heckerman et al. 1995)1. The advantage of the RI
against other metrics, such as structural Hamming distance (SHD) (Tsamardi-
nos et al. 2006), is that it does not require a gold standard network and also
signals a safe range of ESS values over which the influence of the prior is miti-
gated.

1See Chapter 2 for a discussion on score equivalence.
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Note that the RI is only meaningful if reported for non-complete graphs. For
α → ∞, the learned structure tends to a complete graph (Ueno 2010), and it
follows that, for large enough α, the structure is ‘infinitely’ robust but overfitted,
which is an uninteresting result. In the experiments, we computed the RI by
finding the optimal structure with α covering the range (0.1, 4.0) in increments
of 0.1. By using increments we do not obtain the true RI but a conservative
estimate: the true RI is either smaller (due to unobserved variations in-between
increments) or at most 0.2 larger.

We report the results in Figure 4.2, where for each dataset and for each pair
(α, n), we see the average RI of 30 randomly sampled orderings.

Figure 4.2: Robust Interval for Sachs (Sachs et al. 2005), Child (Spiegelhalter et al.
1993) and Alarm (Beinlich et al. 1989) as a function of the sample size n,
which again we denote in uppercase N for ease of reading.

In a Bayesian framework, we want the prior to become less relevant in de-
termining the final structure of the network as we gather more data. This in
turn should result in larger robust intervals. In Figure 4.2, we see the BDeu
does comply with that requirement to some extent, as the robust interval does
increase with n. However, the amount of data required to cover the small ESS
range we analysed is already prohibitively large even for a small number of vari-
ables. That supports recent studies that claim the BDeu is not fit for sparse data
(Scutari 2016, 2018), but also alerts us that almost every real-world dataset
might be too sparse for the BDeu.
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Table 4.1: Largest ESS range yielding the same structure (RI) for UCI datasets. Scalars m
and n are the number of variables and samples, respectively, RIo the average
RI of 10 orderings, and RIf the RI without order constraint.

Dataset m n RIo RIf

car 7 1728 (0.1, 4.0) (0.4, 4.0)
glass 8 214 (1.3, 2.3) (0.3, 4.0)

spambase 8 4601 (1.2, 4.0) (1.7, 4.0)
diabetes 9 768 (0.2, 1.7) (1.6, 4.0)
nursery 9 12960 (1.4, 2.9) (1.4, 4.0)

breast-cancer 10 286 (1.9, 4.0) (2.2, 4.0)
tic-tac-toe 10 958 (1.8, 2.1) (1.7, 2.2)

cmc 10 1473 (1.7, 2.9) (0.8, 2.8)
heart-h 12 294 (0.8, 1.6) (2.2, 2.9)
vowel 14 990 (0.6, 1.8) (1.9, 4.0)
zoo 17 101 (0.6, 1.3) (0.9, 2.1)
vote 17 435 (0.8, 1.8) (2.3, 3.1)

segment 17 2310 (1.5, 2.9) (2.3, 4.0)
primary-tumor 18 339 (1.1, 1.5) (3.1, 3.5)

vehicle 19 846 (0.9, 1.7) (3.3, 4.0)

We did the same analysis for 16 UCI datasets (Dua and Graff 2017). In these
experiments, we computed both the average RI of 10 different orderings (RIo)
and the RI with no constraint on the ordering (RIf). Again, in Table 4.1, we see
that except for the car dataset, none of them had enough data to guarantee ro-
bustness of the BDeu-based structure learning with α ∈ (0.1, 4.0). Interestingly,
the size of the interval did not change significantly between solutions with and
without a order constraint, but the RI stabilised at slightly higher ESS values
when no ordering was given.

The RI can also be seen as an indication of a safe interval at which the
influence of the prior is minimal. However, for more than half of the datasets,
the robust interval did not include the canonical α = 1. That contrasts with
previous studies suggesting the influence of the ESS on the learned structure is
minimised when it is set to one (Ueno 2010).

All in all, the results support previous research stressing the BDeu is highly
sensitive to the ESS. That is crucial when one wants to study the graph per se
but may also impact the predictive power of the models. Therefore, one must
be aware and accept the large influence the prior may have when using BDeu,
since the amount of data will likely be insufficient to avoid prior dependence. A
promising avenue for future work is to extend the analysis to parameter learning
so as to investigate further the overall impact of the ESS on the learnt models.





Chapter 5
Probabilistic Circuits

Probabilistic Circuits (PCs) (Vergari et al. 2020) is a family of density represen-
tations facilitating many exact and efficient inference routines. The PC frame-
work allow us to describe and study a diverse group of tractable probabilistic mod-
els, including Chow-Liu trees (Chow and Liu 1968), arithmetic circuits (Dar-
wiche 2003), sum-product networks (Poon and Domingos 2011), cutset net-
works (Rahman et al. 2014), probabilistic sentential decision diagrams (Kisa
et al. 2014), and our own work on generative forests (Correia et al. 2020b). In
this chapter, we give a general introduction to Probabilistic Circuits covering the
most relevant literature on structure and parameter learning of PCs. The focus
of this exposition will be on PCs that support tractable marginalisation and con-
ditioning queries—commonly referred to as Sum-Product Networks (SPNs)—since
that is the class of models we explore in this thesis. There are, however, a number of
other interesting models supporting efficient inference routines for a larger group
of probabilistic queries, including maximum a posteriori, marginal maximum a
posterior and pairwise queries. We refer the reader to (Vergari et al. 2020; Choi
et al. 2020) for a recent and more comprehensive survey of PCs.
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5.1 Introduction

We begin by introducing the necessary notation. To this end, let the set of
variables (features) be X = {X1, X2, . . . , Xm}, where continuous Xi assume
values in some compact set Xi ⊂ R and discrete Xi assume values in Xi =
{1, . . . ,Ki}, where Ki is the number of states for Xi. Let the joint feature space
of X be denoted as X . We denote joint states, i.e. elements from X , as x and let
x[i] be the state in x belonging to Xi. We assume that X is drawn from a fixed
joint distribution P∗(X) which has density p∗(X). While the true distribution
P∗ is unknown, we assume that we have a dataset Dn = {x1, . . . ,xn} of n
i.i.d. samples from P∗. Similarly to previous chapters, we use DI to denote a
partition of D comprised of the instances indexed by an index set I ⊆ Z<n, and
DS to represent a projection of D into a subset of variables S ⊆ X as DS.

When describing a directed graph G, we refer to its set of nodes as V , re-
serving letters u and v for individual nodes. We denote the set of children and
parents of a node v as ch(v) and pa(v), respectively. Nodes without children are
referred to as leaves, which we shall often denote as ℓ, and nodes without par-
ents are referred to as roots, which we denote as r (PCs typically have a single
root). We are now ready to define a Probabilistic Circuit.

Definition 4 (Probabilistic Circuit (PC))
Given a set of random variables X, a PC is based on a weighted, rooted and acyclic
directed graph G containing three types of nodes: distribution nodes defining a
probability distribution over a subset of the random variables in X; sum nodes,
which compute a convex combination (a mixture) of their inputs, and product
nodes, which compute the product of their inputs. All leaves of G are distribution
nodes and all internal nodes are either sum or product nodes.

w2
p3(X2)

p2(X1)p1(X1)

w1

Figure 5.1: Illustration of a simple Probabilistic Circuit, with sum nodes in blue, product
nodes in green, and distribution nodes in orange.
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A PC is a computational graph. Much like a neural network (Goodfellow
et al. 2016) a PC defines a sequence of arithmetic operations starting with the
computation of probability values for each distribution node and followed by
sum and product operations as specified by the graph. More precisely a PC
computes a function commonly referred to as network polynomial (Darwiche
2003), which is probably best illustrated via a simple example. In Figure 5.1 we
have a small PC which computes the following multilinear polynomial

p(x) = p3(x[2]) (w1p1(x[1]) + w2p2(x[1])) , (5.1)

where p1, p2 and p3 are probability density (or mass) functions defined by three
different distribution nodes, and w1 and w2 are the weights of the sum node
in Figure 5.1. One of the main characteristics of PCs is that they allow us to
compute the likelihood of complete and incomplete evidence with a single pass
through the network, i.e. with computational cost that is linear in the size of the
network (Poon and Domingos 2011; Peharz et al. 2015). Equation 5.1 makes
this evident, since computing p(x) in the PC of Figure 5.1 boils down to evalu-
ating a multilinear polynomial of size proportional to the size of the model.

A Probabilistic Circuit is defined by its structure G and its parameters θ,
which comprise the weights of the sum nodes as well as the parameters of
each distribution node. We often refer to the density function defined by a
PC simply as p(x | θ,G) to make evident the dependence on the structure G and
parameters θ. However, when clear from the context, we shall use shorthand
notation p(x | θ) or, at times, even p(x) as above. We often also have to refer
to the densities defined by each node; as we shall see, each and every node in
a PC defines a valid probability distribution. In that case, we shall denote the
density defined by node v simply as pv(x).

Before expanding on the definition above and discussing each of the node
types in detail, we must introduce a few important structural properties of PCs.
These rely on the concept of scope. The scope of a distribution node (leaf)
v, denoted ψ(v), is the set of variables over which it computes a probability
distribution. Given the scopes of the leaves, the scope of any internal node v
(sum or product) is recursively defined as ψ(v) = ∪u∈ch(v)ψ(u).

5.1.1 Structural Properties

The main feature of PCs is that they facilitate a wide range of tractable inference
routines, which go hand in hand with certain structural properties, defined as
follows (Darwiche 2003; Vergari et al. 2020):
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1. A sum node v is called smooth if its children have all the same scope:
ψ(u) = ψ(u′), for any u, u′ ∈ ch(v).

2. A product node v is called decomposable if its children have scopes that
do not overlap: ψ(u) ∩ ψ(u′) = ∅, for any u, u′ ∈ ch(π), u ̸= u′.

A PC is smooth (respectively decomposable) if all its sums (respectively
products) are smooth (respectively decomposable). Smoothness and decom-
posability are sufficient to ensure tractable marginalisation in PCs. In partic-
ular, assume that we wish to evaluate the density over Xo ⊂ X for evidence
Xo = xo, while marginalising X¬o = X \Xo. In PCs, this task reduces to per-
forming marginalisation at the leaves (Peharz et al. 2015), that is, for each leaf
v one marginalises ψ(v)∩X¬o, and evaluates it for the values corresponding to
ψ(v)∩Xo. The desired marginal p(xo) results from evaluating internal nodes as
in computing the complete density, and hence can also be expressed as a multi-
linear polynomial as in Equation 5.1 and computed in time linear in the size of
the model. All PCs considered in this thesis are both smooth and decomposable,
and thus support exact and efficient marginalisation routines.

p1(X1)

p3(X2)

p1(X2) p2(X2)p1(X3) p2(X3) p2(X1) p3(X1) p3(X3)

.8 .2

.5 .5
.3

.7

Figure 5.2: Example of a simple PC. This PC is smooth and decomposable but not nec-
essarily deterministic. Although most of the work in PCs focus on tree struc-
tures, PCs are not constrained to be tree-shaped. In fact, the PC depicted in
the figure is not a tree since p2(X3) has more than one parent. That said,
for every valid PC we can find an equivalent tree-shaped PC. In this case, it
would suffice to replicate p2(X3) so that each copy has a single parent.
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Moreover, the ability to compute exact marginals efficiently grants us the
ability to compute exact conditional distributions efficiently as well. For a PC
defined over a set of variables X and for any two disjoint sets of variables Y ⊂ X
and Z ⊂ X, we have by Bayes rule that p(Y |Z) = p(Y,Z)/p(Z), which can be
computed with two passes thorough the network. Thus, PCs can also compute
conditionals exactly at a cost that grows only linearly with the model size.

Another relevant property is determinism that will be useful in Chapter 7.
A PC is called deterministic (Darwiche 2003; Vergari et al. 2020) if it holds
that for each complete sample x, each sum node has at most one non-zero
child. Determinism and decomposability are sufficient conditions for efficient
maximisation (Peharz et al. 2016), which again, like density evaluation and
marginalisation, reduces to a single feedforward pass through the PC graph.

5.1.2 Types of Nodes

In the following we introduce the three types of nodes that constitute a PC.

Distribution nodes

Distribution nodes are the leaves of the graph G. Each distribution node (leaf) ℓ
computes a probability density—by an adequate choice of the underlying mea-
sure, this also subsumes probability mass functions— over some subset X′ ⊆ X,
i.e. a normalised function pℓ(x

′) : X ′ 7→ R+ from the state space of X′ to the
non-negative real numbers. Distribution nodes can be arbitrarily complex; for
instance, in (Tan and Peharz 2019) the authors considered variational autoen-
coders (Kingma and Welling 2014) as distribution nodes. However, for a prob-
abilistic query to be tractable in a PC, naturally it must also be tractable in its
distribution nodes. That is why distribution nodes, more often than not, com-
pute simple univariate distributions, typically in the exponential family. In fact,
some definitions of Sum-Product Networks assume univariate distributions in
the leaves, see e.g. (Gens and Domingos 2013).

Sum nodes

Sum nodes compute convex combinations over their children, i.e. if v is a sum
node, then v computes

pv(x) =
∑

u∈ch(v)

wv,upu(x), with wv,u ≥ 0 and
∑

u∈ch(v)

wv,u = 1.
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Note that we assume normalised weights in the sum nodes. This, how-
ever, does not reduce the expressive power of the model, since for every un-
normalised PC that is both smooth and decomposable, we can find a locally
normalised PC encoding the same distribution, as shown in Theorem 2 in (Pe-
harz et al. 2015).

We can also interpret sum nodes as encoding discrete latent variables (Pe-
harz et al. 2016). For a sum node v, we can see pv(x) as computing the marginal
of a distribution p(X, Z), where Z is a discrete random variable assuming val-
ues in {1, 2, ..., | ch(v)|} and wv,uk

= P (Z = k) is the weight associated with uk,
the kth child of node v. That is,

pv(x) =

| ch(v)|∑
k=1

P (Z = k)puk
(x |Z = k). (5.2)

This interpretation is conceptually useful and generalises the idea of latent vari-
ables from (shallow) mixture models to (deep) PCs. It is also of practical rele-
vance since it motivates the Expectation Maximisation (EM) algorithm for PCs
(Peharz et al. 2016) as well as representation learning techniques (Vergari et al.
2018). As we shall see in Chapter 8, the latent variable interpretation is also a
motivation for our own work (Correia et al. 2022), where we introduce contin-
uous latent variables into PCs.

Product nodes

Product nodes compute the product over their children, i.e. if v is a product
node, then

pv(x) =
∏

u∈ch(v)

pu(x).

Product nodes allow us to represent the idea of statistical independence: the
scopes of the children of a product node are pairwise independent. Note that
a product node represents a local independence relationship that is confined
to the sub-tree rooted at the product node. We can also see this is, in fact, a
context-specific (or conditional) independence relationship, where we condition
on the latent variables of the ancestor sum nodes.
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5.2 Structure Learning

The structure of PCs is endowed with rich probabilistic semantics. Each node in
a PC architecture has a meaningful interpretation and is itself a PC computing
a valid probability distribution. This opens the way for principled structure
learning algorithms.

Unfortunately, structure learning in PCs is still a challenging problem and the
literature has mostly focused on parameter learning with random (Peharz et al.
2020b) or hard-coded over-parametrised architectures in deep learning fashion
(Peharz et al. 2020a). Yet, we discuss two examples of popular structure learn-
ing algorithms for PCs that are relevant to this thesis, namely LearnSPN (Gens
and Domingos 2013) that we use in Chapters 6 and 7, and Cutset Networks
(Rahman et al. 2014) that are closely related to Generative Forests (Correia
et al. 2020b), a class of PCs that we propose in Chapter 6.

5.2.1 LearnSPN

One of the most popular structure learning algorithms for PCs, that will also
be relevant to this thesis is LearnSPN (Gens and Domingos 2013). LearnSPN
is an intuitive and yet effective algorithm that exploits the very definitions of
sum and product nodes. At a high level, the algorithm alternates between i)
computing independence relationships between sets of variables and adding
a corresponding product node, and ii) clustering observations with respect to
some similarity measure and adding a corresponding sum node. Intuitively, if
we visualise the data as a matrix of size n×m (n observations of m variables),
we can understand LearnSPN as a sequence of splits where sum nodes corre-
spond to horizontal splits, and product nodes correspond to vertical splits. Such
a visualisation of a step of the LearnSPN algorithm is depicted in Figure 5.3.

LearnSPN is fully described in Algorithm 1. The algorithm is presented in a
recursive fashion, with three distinct operations.

1. Add distribution node: If the dataset DS
I comprises a single variable, i.e.

|S| = 1, we fit a (parametric) distribution over the dataset and add the
corresponding distribution node to the graph. Note that in general we
could choose a different stop criterion, such as a maximum depth for the
graph G or a minimum number of variables or instances beyond which we
stop splitting. In that case, the distribution nodes might be more complex
than univariate distributions.
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Dataset D

m variables

n
in

st
an

ce
s

Look for indepen-
dencies and add a
product node

OR

If no indepen-
dence, cluster in-
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Figure 5.3: Illustration of a step of the LearnSPN algorithm. Given a dataset D, either
split it ‘vertically’ with a product node or ‘horizontally’ with a sum node.

2. Add product node: Otherwise, we search for a partition of variables in S,
such that each subset Si ⊂ S is statistically independent of the remaining
variables S \ Si given data DS

I , with⋃
Si = S, Si ∩ Sj = ∅, ∀i ̸= j.

This is often done via pairwise independence tests, requiring the user to
define appropriate test1 and p-value. Once we have found the subsets of
independent variables in DS

I , we add a product with one child for each
of the these subsets. Note that the number of independent subsets (equiv.
children of the product node) is not fixed a priori but allowed to vary from
1 (no independence relation found, go to next step) to |S|.

3. Add sum node: If we find no independence relations, we add a sum node
by clustering the data instances in DS

I into K subsets {DS
Ik
}Kk=1 with

K⋃
k=1

Ik = I, Ii ∩ Ij = ∅ ∀i ̸= j.

1Common choices are Kruskal-Wallis (Kruskal and Wallis 1952), Kendall’s Tau (Kendall 1938),
Chi-Square (Pearson 1900) or G-test (McDonald 2009).
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In the original implementation(Gens and Domingos 2013), this is done
via hard Expectation Maximisation, but any clustering algorithm that is
pertinent to the data at hand would be applicable. In general, this step
also requires a hyperparameter in the form of the number of clusters K.
Once we have clustered the instances, we add a sum node to the graph
G, where each child corresponds to one cluster. It is worth noticing that
the maximum likelihood parameters of such a sum node are given by the
relative size of each cluster, i.e. wk = |Ik|/|I|, and thus are trivial and
readily obtained when running LearnSPN.

Albeit effective, LearnSPN has a few drawbacks. The most relevant in prac-
tice is its high computational cost due to the expensive pairwise independence
tests, which severely hinders its application to datasets with many variables.
LearnSPN is also based on heuristics and does not optimise the global likelihood
directly. Thus, the only guarantee we can derive from it is that the learnt PC
will be locally optimal in the maximum likelihood sense (Gens and Domingos
2013), i.e. local perturbations of its parameters do not yield a PC with a higher
likelihood.

Input : Training data DS
I with S ⊆ X and number of clusters K

Output: Probabilistic Circuit G
Function LearnSPN(D):

if |S| = 1 then
// Dataset contains a single variable
return a distribution node learned over DS

I

else
try

// Try to add a product node
partition D into approximately independent subsets Si

// with
⋃
Si = S and Si ∩ Sj = ∅ for i ̸= j

return
∏

iLearnSPN (DSi

I )
catch

// No independent sets of variables, add a sum node
partition D into K subsets of similar instances {Ik}Kk=1

// with
⋃K

k=1 Ik = I and Ii ∩ Ij = ∅ for i ̸= j

return
∑K

k=1
nk

n LearnSPN (DS
Ik

)
end

Algorithm 1: LearnSPN (Gens and Domingos 2013).
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5.2.2 Cutset Networks

Cutset Networks (or CNets) (Rahman et al. 2014) is another popular type of
Probabilistic Circuits, where structure and parameters are learned together. Its
corresponding learning algorithm, LearnCNet, does not require clustering al-
gorithms or expensive independence tests like LearnSPN. Instead, LearnCNet
relies on splitting heuristics that partition the data to greedily optimise some
metric like the joint entropy. In that regard, CNets are similar in spirit to our
work on Generative Forests that we introduce in the Chapter 6.

CNets are based on OR-trees (Pearl 1988; Dechter and Mateescu 2007), tree
structures representing the search space in probabilistic inference. To be precise,
each node in an OR-tree is associated with a variable Xi and each of its edges
represents conditioning on one of the possible instantiations Xi = k with k ∈
Xi. Some authors have studied SPNs without latent variables which are quite
similar to OR-trees (Dennis and Ventura 2015). In this kind of SPN, each child of
a sum node represents conditioning on an observed rather than latent variable,
as discussed in Section 5.1.2. In contrast to latent sum nodes (Equation 5.2), a
node associated to variable Xi in an OR-tree computes

pv(x) =
∑
k∈Xi

P (Xi = k)puk
(x |Xi = k).

The idea of CNets is to learn a partition of the input space and subsequently
fit a Chow-Liu tree2 to each of the cells defined by such a partition, as shown
in Algorithm 2. For ease of presentation, we outlined the algorithm considering
binary variables only, but LearnCNet is readily applicable to arbitrary categorical
data. The algorithm works recursively, partitioning the data until some stop
criterion is met, like a minimum number of instances per cell so that the we
have enough data in each cell to fit a Chow-Liu tree.

In Algorithm 2 we do not specify the criterion used to choose a variable
to split on, since different heuristics might apply. In (Rahman et al. 2014)
the authors propose to greedily minimise the joint entropy under the empirical
distribution P̂D induced by some data D

H(DS
I ) =

1

|S|
∑
Xi∈S

H(DXi

I ),

2See Chapter 2 for a brief discussion on Chow-Liu trees.
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where HD(Xi) is the entropy of a single variable

H(DXi

I ) = −
∑
k∈Xi

P̂D(Xi = k) log P̂D(Xi = k)

P̂D(Xi = k) =

∣∣D[Xi=k]

∣∣
|D|

=
|{x ∈ D : x[i] = k}|

|D|
.

At each step, we compute the relative gain (reduction of entropy) we would get
by splitting in each one of the variables

gainDS
I
(Xi) = H(DS

I )−
∑
k∈Xi

P̂D(Xi = k)H
(
DS\Xi

[Xi=k]

)
.

We then create a node associated with the variable yielding the largest relative
gain and add one edge for each of possible instantiations of that variable.

LearnCNet is an effective structure learner, but unfortunately it is not triv-
ially extendable to continuous data and can still be expensive in scenarios with

Input : Training data DS
I with S ⊆ X

Output: Probabilistic Circuit G
Function LearnCNet(D):

if Termination condition reached then
// Return a CLT learnt over DS

I

return ChowLiuTree(DS
I )

end
Create a new sum node v
Heuristically choose a variable Xi in S to split on
// Split the index set I into two according to Xi

Let Ileft = {i : x[i] = 0,x ∈ DS
I }

Let Iright = {i : x[i] = 1,x ∈ DS
I }

// Create ch(v) by recursively calling LearnCNet

uleft ← LearnCNet (DS\Xi

Ileft
)

uright ← LearnCNet (DS\Xi

Iright
)

// Set the weights of v
wv,uleft

← |Ileft|/|I|
wv,uright

← |Iright|/|I|
return v

Algorithm 2: LearnCNet (Rahman et al. 2014).



66 Probabilistic Circuits

many variables or large state spaces. Our work on Generative Forests (GeFs)
addresses these issues, since GeFs are applicable to datasets of mixed data types
(continuous and discrete) and use more efficient splitting heuristics. The struc-
ture learning algorithm in GeFs, however, minimise the classification error with
respect to a specific variable rather than optimise the joint log-likelihood like
CNets.

5.3 Parameter Learning

A number of structure learning algorithms for PC, like LearnSPN (Gens and
Domingos 2013) and LearnCNet (Rahman et al. 2014) discussed in the previous
section, also learn the parameters. However, it is also possible to learn or posit
a structure and then optimise the parameters to fit some data. In particular,
Probabilistic Circuits are fully differentiable computational graphs like neural
networks, and thus we are free to use any gradient descent optimisation algo-
rithm to learn the parameters of a PC. Algorithms such as Adam (Kingma and
Ba 2014), Adagrad (Duchi et al. 2011) and Adadelta (Zeiler 2012) are all pop-
ular stochastic gradient descent (SGD) variants designed for neural networks
that are readily applicable to PCs. Nonetheless, the most common and often
most effective way to train PCs is via Expectation Maximisation (EM) (Poon
and Domingos 2011; Peharz et al. 2016, 2020a).

The EM algorithm for PCs (Peharz et al. 2016) hinges on the latent variable
interpretation discussed when we introduced sum nodes in Section 5.1. Exploit-
ing the differential approach to inference (Darwiche 2003), it can be shown that
the EM update for the weight of a sum node wv,u can be written down as follows
(Peharz et al. 2016)

wv,u ←
∑

D wv,u nv,u(x)∑
D,u∈ch(v) nv,u(x)

nv,u(x) =
1

pr(x)

∂pr(x)

∂pv(x)
pu(x), (5.3)

where nv,u(x) is an expected statistic and the sum ranges over all instances x
in data D. A similar update can be derived for distribution (leaf) nodes. If
we consider distribution nodes defining a distribution in the exponential family,
p(x | θ) = h(x) exp{η(θ) · T (x)−A(θ)}, where η(θ) are the natural parame-
ters, h is a base measure, T is the sufficient statistic and A is the log-partition
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function, then we can compute the updates on θ as

θℓ ←
∑

D pℓ(x)T (x)∑
D pℓ(x)

nℓ(x) =
1

pr(x)

∂pr(x)

∂pℓ(x)
pℓ(x), (5.4)

where nℓ(x) are again expected statistics in the EM algorithm.
The EM algorithm in its original form computes expected statistics over the

entire dataset, which is typically computationally expensive and often impracti-
cable (Bottou 1998). That is why one often resorts to stochastic EM algorithms
(Sato 1999), which are akin SGD. Essentially, we compute expected statistics
over a mini-batch of the data and update the parameters

wv,u ← (1− λ)wv,u + λwmb
v,u θℓ ← (1− λ)θℓ +λθ

mb
ℓ ,

where λ is a step-size hyperparameter, and wmb
v,u and θmb

ℓ are computed as in
Equations 5.3 and 5.4, respectively, but over a mini batch rather than the entire
dataset. Furthermore, for distributions in the exponential family, the stochastic
EM can be seen as performing SGD on the natural parameters (Sato 1999),
which is known to speed up convergence (Amari 1998).

5.4 Probabilistic Circuits and Bayesian Networks

Finally, we conclude this chapter by exploring the relationship between Bayesian
Networks and Probabilistic Circuits, the two classes of probabilistic generative
models that we study in this thesis.

In terms of their expressive power, Bayesian Networks and Probabilistic Cir-
cuits over discrete data are equivalent (Poon and Domingos 2011): both can
represent any joint distribution over discrete random variables, and there are
algorithms to convert between the two models. We can map a discrete PC into
a BN in time and space linear in the size of the PC; and we can map a discrete
BN to a PC in time and space that might be exponential in the tree-width of
the BN (Zhao et al. 2015). In fact, the original motivation for the introduc-
tion of network polynomials, which are closely related to Probabilistic Circuits,
was computing inference routines in Bayesian Networks (Darwiche 2003). That
said, the conversion between BNs and PCs has been largely confined to theoret-
ical developments, with only a few notable practical applications, like Hidden
Chow-Liu Tree PC architectures (Liu and Van den Broeck 2021).
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In the case of continuous variables, Bayesian Networks are actually more
expressive. To see why, consider a simple BN with two continuous random vari-
ables X1 and X2 such that X1 is the parent of X2, i.e. X1 → X2. It is easy
to see that, except for corner cases such as linear-Gaussian models (Roweis and
Ghahramani 1999), the distribution p(X1, X2) = p(X2|X1)p(X1) cannot be cap-
tured by a PC because we would need a sum node with an infinite number of
children, one for each possible instantiation of X1, so that we can represent
p(X2|X1) exactly. That limitation is, in fact, one of the motivations for intro-
ducing continuous latent variables to PCs, as discussed in Chapter 8.

The key distinction between BNs and PCs is that the former focus on repre-
senting statistical relations among variables, while the latter is designed to eval-
uate distributions efficiently. One of the challenges in running inference on BNs
is that their network polynomials have size exponential in the number of vari-
ables. The advantage of PCs is that they encode and evaluate a network polyno-
mial more efficiently, in polynomial space and time (Poon and Domingos 2011).
Unfortunately, it is known that not every joint distribution can be represented
by a PC of size polynomial in the number of variables (Martens and Medabalimi
2014), and thus PC research rests on the assumption that polynomial-size PCs
are already enough to capture many or most of the distributions of interest.

5.5 Conclusion

In this chapter we have given a general introduction to Probabilistic Circuits
covering the basic definitions of the framework as well as learning algorithms
that are relevant to our work. This brief introduction should be enough to allow
the reader to follow the main contributions in this thesis with ease, but for the
interested reader we recommend (Choi et al. 2020) and (Vergari et al. 2020)
for general introductions that are more comprehensive than this one.



Chapter 6

Generative Forests

Decision Trees (DTs) and Random Forests (RFs) are powerful discriminative learn-
ers and tools of central importance to the everyday machine learning practitioner
and data scientist. Due to their discriminative nature, however, they lack principled
methods to process inputs with missing features or to detect outliers, and thus are
often paired with imputation techniques or a separate generative model. In this
work, we demonstrate that DTs and RFs can naturally be interpreted as genera-
tive models, by drawing a connection to Probabilistic Circuits, a prominent class of
tractable probabilistic models. This reinterpretation equips them with a full joint
distribution over the feature space and leads to Generative Decision Trees (GeDTs)
and Generative Forests (GeFs), a family of novel hybrid generative-discriminative
models. This family of models retains the overall characteristics of DTs and RFs
while additionally being able to handle missing features by means of marginali-
sation. Under certain assumptions, frequently made for Bayes consistency results,
we show that consistency in GeDTs and GeFs extend to any pattern of missing in-
put features, if missing at random. Empirically, we show that our models often
outperform common routines to treat missing data, such as K-nearest neighbour
imputation, and moreover, that our models can naturally detect outliers by moni-
toring the marginal probability of input features.

This chapter is almost integrally based on Alvaro Correia, Robert Peharz and Cassio de Campos:
Joints in Random Forest, Advances in Neural Information Processing Systems (NeurIPs), 2020.
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6.1 Introduction

Decision Trees (DTs) and Random Forests (RFs) are probably the most widely
used non-linear machine learning models of today. While Deep Neural Net-
works are in the lead for image, video, audio, and text data—likely due to their
beneficial inductive bias for signal-like data—DTs and RFs are, by and large, the
default predictive model for tabular, domain-agnostic datasets. Indeed, Kaggle’s
2019 report on the State of Data Science and Machine Learning (Kaggle 2019)
lists DTs and RFs as second most widely used techniques, right after linear and
logistic regressions. Moreover, a study by Fernandez et al. (Fernández-Delgado
et al. 2014) found that RFs performed best on 121 UCI datasets against 179
other classifiers. Thus, it is clear that DTs and RFs are of central importance for
the current machine learning practitioner.

DTs and RFs are generally understood as discriminative models, that is, they
are solely interpreted as predictive models, such as classifiers or regression func-
tions, while attempts to additionally interpret them as generative models are
scarce. In a nutshell, the difference between discriminative and generative mod-
els is that the former aim to capture the conditional distribution P (Y |X), while
the latter aim to capture the whole joint distribution P (Y,X), where X are the
input features and Y is the set of variables to be predicted—discrete for classifi-
cation and continuous for regression. In this chapter, we focus on classification
tasks, but it is also possible to extend our methods to regression tasks1.

Generative and discriminative models are rather complementary in their
strengths and use cases. While discriminative models typically fare better in
predictive performance, generative models allow us to analyse and capture the
structure present in the input space. They are also ‘all-round predictors’, that
is, not restricted to a single prediction task but also capable of predicting any X
given Y ∪ X \ X. Moreover, generative models have some crucial advantages
on the prediction task P (Y |X) a discriminative model has been trained on, as
they naturally allow us to detect outliers (by monitoring P (X)) and treat missing
features (by marginalisation). A purely discriminative model does not have any
‘innate’ mechanisms to deal with these problems, and needs to be supported
by a generative model P (X) (to detect outliers) or imputation techniques (to
handle missing features).

Ideally, we would like the best of both worlds: having the good predictive
performance of discriminative models and the advantages of generative models.

1The main challenge in the regression case is handling missing data since propagating a contin-
uous distribution through the graph requires more sophisticated data structures (and assumptions)
than propagating categorical distributions. See Section 6.7 for a discussion on this topic.
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In this chapter, we show that this is achievable for DTs and RFs by relating them
to Probabilistic Circuits. There have been other methods in the PC literature
that are closely related to DTs, with Cutset Networks (or CNets) being a notable
example that can be seen as a type of generative DT (Rahman et al. 2014).
However, the connection to classical, discriminative DTs (Quinlan 1986) and
RFs (Breiman 2001) had been left unexplored until the introduction of Genera-
tive Trees and Forests, the models that we discuss in this chapter.

We show that DTs and RFs can be naturally cast into the PC framework. For
any given DT, we can construct a corresponding PC, a Generative Decision Tree
(GeDT), representing a full joint distribution P (Y,X). This distribution gives
rise to the predictor

P (Y |X) =
P (Y,X)∑
y P (y,X)

,

which is identical to the original DT, if we impose certain constraints on the
conversion from DT to GeDT.

Additionally, a GeDT also fits the joint distribution P (X) to the training data,
‘upgrading’ the DT to a fully generative model. For a completely observed sample
X = x, the original DT and a corresponding GeDT agree entirely (yield the ex-
act same predictions), and moreover have the same computational complexity,
since standard DT evaluation can be shown to be a ‘shortcut’ routine to com-
pute P (Y |X) in the PC. See Section 6.6 for a discussion on the computational
complexity of GeDTs. By converting each DT in an RF into an GeDT, we ob-
tain an ensemble of GeDTs, which we call Generative Forest (GeF). Clearly, if
each GeDT in a GeF agrees with its original DT, then GeFs also agree with their
corresponding RFs.

GeDTs and GeFs have a crucial advantage in the case of missing features,
that is, assignments Xo = xo for some subset Xo ⊂ X, while X¬o = X \ Xo

are missing at random. In a GeDT, we can marginalise the missing features and
yield the predictor

P (Y |Xo) =

∫
x¬o

P (Y,Xo,x¬o)dx¬o∑
y

∫
x¬o

P (y,Xo,x¬o)dx¬o
. (6.1)

For GeFs, we get a corresponding ensemble predictor for missing features, by
applying marginalisation to each GeDT. Using the true data generating distri-
bution in Equation 6.1 would deliver the Bayes optimal predictor for any subset
Xo of observed features. Thus, since GeDTs are trained to approximate the
true distribution, using the predictor of Equation 6.1 under missing data is well
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justified. We show GeDTs are in fact consistent: they converge to the Bayes
optimal classifier as the number of data points goes to infinity. Our proof re-
quires similar assumptions to those of previous results for DTs (Biau et al. 2008;
Breiman et al. 1984; Gordon and Olshen 1978) but is substantially more gen-
eral: while consistency in DTs is shown only for a classifier P (Y |X) using fully
observed samples, our consistency result holds for all 2|X| classifiers P (Y |Xo):
one for each observation pattern Xo ⊆ X. While the high-dimensional integrals
in Equation 6.1 seem prohibitive, they are in fact tractable, since a remarkable
feature of PCs is that computing any marginal has the same complexity as evalu-
ating the full joint, namely linear in the circuit size.

This ability of our models is desirable, as there is no clear consensus on how
to deal with missing features in DTs at test time2: the most common strategy
is to use imputation, e.g. mean or k-nearest-neighbour (KNN) imputation, and
subsequently feed the completed sample to the classifier. DTs also have two
‘built-in’ methods to deal with missing features that do not require external
models. These are the so-called surrogate splits (Therneau et al. 1997) and
an unnamed method proposed by Friedman in 1977 (Friedman 1977; Quinlan
1987a). See Appendix A for a detailed description of each of these methods
to handle missing data. Among these, KNN imputation seems to be the most
widely used, and typically delivers good results on real-world data. However,
we demonstrate it does not lead to a consistent predictor under missing data,
even when assuming idealised settings. Moreover, in our experiments, we show
that GeF classification under missing inputs often outperforms standard RFs
with KNN imputation.

Our generative interpretation can be easily incorporated in existing DT learn-
ers and does not require drastic changes in the learning and application prac-
tice of DTs and RFs. Essentially, any DT algorithm can be used to learn GeDTs,
requiring only minor bookkeeping and some extra generative learning steps.
There are de facto no model restrictions concerning the additional generative
learning steps, representing a generic scheme to augment DTs and RFs to gen-
erative models.

6.2 Notation and Background

In this section, we present the notation and necessary background on GeFs. The
notation is congruent with the rest of thesis, but we reintroduce it in the context

2In this chapter, we focus on missing features during test time (training set is assumed complete).
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of classification tasks for the sake of completeness. To this end, let the set of
explanatory variables (features) be X = {X1, X2, . . . , Xm}, where continuous
Xi assume values in some compact set Xi ⊂ R and discrete Xi assume values in
Xi = {1, . . . ,Ki}, where Ki is the number of states for Xi. Let the joint feature
space of X be denoted as X . We denote joint states, i.e. elements from X , as x
and let x[i] be the state in x belonging to Xi. The class variable is denoted as
Y , assuming values in Y = {1, . . . ,K}, where K is the number of classes. We
assume that the pair (X, Y ) is drawn from a fixed joint distribution P∗(X, Y )
which has density p∗(X, Y ). While the true distribution P∗ is unknown, we
assume that we have a dataset Dn = {(x1, y1), . . . , (xn, yn)} of n i.i.d. samples
from P∗. When describing a directed graph G, we refer to its set of nodes as V ,
reserving letters u and v for individual nodes. We denote the set of children and
parents of a node v as ch(v) and pa(v), respectively. Nodes ℓ without children
are referred to as leaves, and nodes r without parents are referred to as roots.

Decision Trees

A decision tree (DT) is based on a rooted directed tree G, i.e. an acyclic directed
graph with exactly one root vr and whose other nodes have exactly one parent.
Each node v in the DT is associated with a cell X v, which is a subset of the
feature space X . The cell of the root node r is the whole X . The child cells of
node v form a partition of X v, that is,⋃

u∈ch(v)

X u = X v,X u ∩X u′ = ∅, ∀u, u′ ∈ ch(v).

These partitions are usually defined via axis-aligned splits, by associating
a decision variable Xi to v, and partitioning the cell according to some rule
on Xi’s values. Formally, we first project X v onto its ith coordinate, yielding
Xi,v := {x[i] | x ∈ X v}, and construct a partition {Xi,u}u∈ch(v) of Xi,v. The
child cells are then given by X u = {x | x ∈ X v ∧ x[i] ∈ Xi,u}. Thus, each
node in a DT represents a decision based on its associated variable Xi. Common
choices for this partition are full splits for discrete variables, and thresholding for
continuous variables, with

{Xi,u}u∈ch(v) =

{
{{xi}}xi∈Xi,v

full split
{{xi < t}, {xi ≥ t}} thresholding,

where children u and states xi are in one-to-one correspondence, and t some
learnable threshold in R. In this work, we also use binary splits for discrete
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variables instead of full splits; we learn Xi,u directly by considering all possible
2Ki splits. Such a split is more expensive to compute than a full split, but that
is compensated by more compact and potentially more effective tree structures.
The clustering induced by these learnable binary splits might be meaningful
and avoid unnecessary splits that could lead to cells with very few datapoints,
hurting density estimation later on (see Section 6.4). At any rate, if the full split
is optimal, we can recover it by a sequence of binary splits. Note that the leaf
cells of a DT form a partition A of the feature space X . We denote the elements
of A as A and define Aℓ = X ℓ for each leaf ℓ. If all features are continuous, the
leaves of a DT represent a partition of X into a set of rectangular cells A.

A DT classifier is constructed by equipping each A ∈ A with a classifier
fA : A 7→ ∆K , where ∆K is the set of probability distributions over K classes,
i.e. fA is a conditional distribution defined on A. This distribution is typically
stored as absolute class counts of the training samples contained in A.

The overall DT classifier is given as f(x) = fA(x)(x) where A(x) is the leaf
cell containing x; A(x) is found by parsing the DT top-down, following the par-
titions (decisions) consistent with x. This formulation captures the vast majority
of DT classifiers proposed in the literature, notably CART (Breiman et al. 1984)
and ID3 (Quinlan 1986). The probably most widely used variant of DTs—which
we also assume in this chapter—is to define fA as a constant function, returning
the class proportions in cell A, which translates into a categorical distribution
over classes. The argmax of fA(x) is equivalent to majority voting among all
training samples which fall into the same cell. When learning a DT, the number
of available training samples per cell reduces quickly, which leads to overfit-
ting and justifies the need for pruning techniques (Breiman et al. 1984; Mingers
1987; Quinlan 1986, 1987b).

Random Forests

Random Forests (RFs) are ensembles of DTs which effectively counteract over-
fitting. Each DT in a RF is learnt in a randomised fashion by, at each learning
step, drawing a random sub-selection of variables containing only a fraction p
of all variables, where typical values are p = 0.3 or p =

√
m. The resulting DTs

are not pruned but made ‘deep’ until each leaf cell contains either only samples
of one class or less than T samples, where typical values are T ∈ {1, 5, 10}. This
yields low bias, but high variance in the randomised DTs, which makes them
good candidates for bagging (bootstrap aggregation) (Hastie et al. 2009). Thus,
to further increase the variability among the trees, each of them is learnt on a
bootstrapped version of the training data (Breiman 2001).
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6.3 Related Work

Among the many variations of DTs and RFs that have been proposed in the last
decades, the closest to our work are those that, similarly to GeDTs and GeFs,
extend DT leaves with ‘non-trivial’ models. Notable examples are DTs where
the leaves are modelled by linear and logistic regressors (Frank et al. 1998;
Landwehr et al. 2005; Quinlan et al. 1992), kernel density estimators (KDEs)
(Loh 2009; Smyth et al. 1995), linear discriminant models (Gama et al. 2004;
Kim and Loh 2003), KNN classifiers (Buttrey and Karo 2002; Loh 2009), and
Naive-Bayes classifiers (NBCs) (Kohavi 1996). Nonetheless, all these previous
works focus primarily on improving the classification accuracy or smoothing
probability estimates but do not model the full joint distribution, like in this
work. Even extensions by Smyth et al. (Smyth et al. 1995) and Kohavi (Kohavi
1996), which include generative models (KDEs and NBCs, respectively) do not
exploit their generative properties. To the best of our knowledge, GeFs are the
first DT framework that effectively model and leverage the full joint distribution
in a classification context. That is of practical significance as none of these
earlier extensions of DTs offer a principled way to treat missing values or detect
outliers. Here it is also worth mentioning the contemporary work by Khosravi
et al.; they propose similar approaches to extend models to a full joint (Khosravi
et al. 2019) and handle missing data in DTs (Khosravi et al. 2020).

On the other side of the spectrum, DTs have also been extended to density
estimators (Gray and Moore 2003; Rahman et al. 2014; Ram and Gray 2011;
Wu et al. 2014). Among these, Density Estimation Trees (DETs) (Ram and
Gray 2011), Cutset Networks (CNets) (Rahman et al. 2014), and randomised
ensembles thereof (Di Mauro et al. 2017), are probably the closest to our work.
These models are trained with a greedy tree-learning algorithm but minimise a
modified loss function that matches their generative nature: joint entropy across
all variables in CNets, mean integrated squared error in DETs. Notably, CNets,
like GeFs, are Probabilistic Circuits, and hence also allow for tractable inference
and marginalisation. They, however, have not been applied in a discriminative
setting and are not backwards compatible with DTs and RFs. Moreover, GeDTs
(and GeFs) can be seen as a family of models depending on the estimation at
the leaves, making a clear parallel with what DTs (and RFs) offer.

Finally, one can also mimic the benefits of generative models in ensembles by
learning predictors for all variables, as in MERCS (Wolputte et al. 2018). That is
fundamentally different from our probabilistic approach and might entail pro-
hibitively large numbers of predictors. Handling missing values, in the worst
case, would require one predictor for each of the 2|X| missing patterns, and that



76 Generative Forests

is why MERCS relies on imputation methods when needed. Conversely, GeDTs
model a full joint distribution, thus being more compact and interpretable.

6.4 Generative Decision Trees

Given a learnt DT and the dataset D = {(x1, y1), . . . , (xn, yn)} it has been
trained on, we can obtain a corresponding generative model, by converting
the DT into a PC. This conversion is given in Algorithm 3.

Input : Decision Tree G and training data D
Output: Probabilistic Circuit G′
let G′ be a structural copy of G, and let v′ ∈ V ′ be the node in G′ which
corresponds to v ∈ V of G

for the root node r, set Dr = D
for v in topdownsort(V ) do

if v is internal then
get partition Xi,u of decision variable Xi associated with v
for u ∈ ch(v) do

let wv′u′ =
∑

x∈Dv
1(x[i]∈Xi,u)

|Dv|
set Du = {x ∈ Dv | x[i] ∈ Xi,u}

end
let v′ be a sum node

∑
u′∈ch(v′) wv′u′u′

else
let v′ be a density pv′(x, y) with support Av, learnt from Dv

end
end

Algorithm 3: Converting DT to PC (GeDT).

In a nutshell, Algorithm 3 converts each decision node into a sum node and
each leaf into a density with support restricted to the leaf’s cell. The training
samples can be figured to be routed from the root node to the leaves, following
the decisions at each decision/sum node. The sum weights are given by the
fraction of samples which are routed from the sum node to each of its children.
The leaf densities are learnt on the data which arrives at the respective leaves.

As an example, assuming X and Y factorise at the leaves, Algorithm 3 ap-
plied to the DT on the left-hand side of Figure 6.1 gives the PC on the right-hand
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side and the following densities at the leaves:

p1(X1, X2, Y ) = p1(X1, X2)(0 · 1(Y = 0) + 1 · 1(Y = 1)),

p2(X1, X2, Y ) = p2(X1, X2)(0.25 · 1(Y = 0) + 0.75 · 1(Y = 1)),

p3(X1, X2, Y ) = p3(X1, X2)(1 · 1(Y = 0) + 0 · 1(Y = 1)) ,

Note that X1 is deterministic (all mass absorbed in one state) in p1 and p2, since
X1 has been fixed by the tree construction, while p3 is a ‘proper’ distribution
over X1 and X2. Densities pi(X1, X2) do not appear in the DT representation
and illustrate the extension brought in by the PC formalism.

X2 > .5

X1 = 1
(20, 0)

(10, 30)(0, 40)

X2 ≤ .5

X1 = 0

.2

.5
p3(X1, X2, Y ) · 1X2>0.5

p2(X1, X2, Y )·
1X1=1 · 1X2≤0.5

p1(X1, X2, Y )·
1X1=0 · 1X2≤0.5

.8

.5

Figure 6.1: Illustration of a DT and its corresponding PC as obtained by Algorithm 3.

We denote the output of Algorithm 3 as a Generative Decision Tree (GeDT).
Note that GeDTs are proper PCs over (X, Y ), albeit rather simple ones: they are
tree-shaped and contain only sum nodes. They are clearly smooth, since each
leaf density has the full scope (X, Y ), and they are trivially decomposable, as
they do not contain products. Thus, both the full density or any sub-marginal
can be evaluated by simply evaluating the GeDT bottom up, where for marginal-
isation tasks we first need to perform marginalisation at the leaves. Moreover,
as shown in (Peharz et al. 2014; Rahman et al. 2014), the sum-weights set by
Algorithm 3 are in fact the maximum likelihood weights for deterministic PCs.
Finally, it is also easy to show that any GeDT is deterministic.

Proposition 1
A GeDT is deterministic.

Proof. Consider any sum node v in a GeDT and assume, for simplicity, that it
has two children u′ and u′′. Node v is associated with a partition {X u′ ,X u′′} of
X v. Any leaf ℓ which is a descendant of u′, respectively u′′, must have a support
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which is a subset of X u′ , respectively X u′′ . Assume that pu′(x) > 0 for certain
x, implying x ∈ X u′ and thus x /∈ X u′′ . Therefore, u′′(x) = 0, since x is not
in the support of any leaf below u′′. The same argument holds for the reverse
case and straightforwardly extends to arbitrarily many sum nodes. Thus v is
deterministic.

In Algorithm 3, we learn a density pℓ(x, y) for each leaf ℓ, where we have
not yet specified the model or learning algorithm. Thus, we denote GeDT(M)
as a GeDT whose leaf densities are learnt by ‘method M ’, where M might be
graphical models, again PCs, or even neural-based density estimators (Kingma
and Welling 2014; Rezende and Mohamed 2015). In order to ensure tractable
marginalisation of the overall GeDT, however, we use either fully factorised
leaves—for each leaf ℓ, pℓ(X, Y ) = pℓ(X1)pℓ(X2) . . . pℓ(Xm)pℓ(Y )—or PCs learnt
with LearnSPN (Gens and Domingos 2013). In both cases marginalisation at the
leaves, and hence in the whole GeDT, is efficient. Regardless of the model M ,
we generally learn the leaves using the maximum likelihood principle, or some
proxy of it. Thus, since the sum-weights are already set to the (global) maxi-
mum likelihood solution by Algorithm 3, the overall GeDT also fits the training
data in the maximum-likelihood sense.

A key design choice is how to model the dependency between X and Y at the
leaves: we might assume independence between them, i.e. assume pℓ(X, Y ) =
pℓ(X)pℓ(Y ) (class-factorised leaves)3 or simply pass observations of both X and
Y to a learning algorithm and let it determine the dependency structure itself
(full leaves). Note that we are free to use different types of density estimators
at different leaves in a single GeDT. Naturally, it makes sense to match the
complexity of the estimator in a leaf to the number of samples it contains.

The main semantic difference between DTs and GeDTs is that a DT repre-
sents a classifier, i.e. a conditional distribution f(x), while the corresponding
GeDT represents a full joint distribution p(X, Y ). The latter naturally lends
itself towards classification by deriving the conditional distribution p(Y |x) ∝
p(x, Y ). How are the original DT classifier f(x) and the GeDT classifier p(Y |x)
related? In theory, p(Y |x) might differ substantially from f(x), since every fea-
ture might influence classification in a GeDT, even if it never appears in any
decision node of the DT. In the case of class-factorised leaves, however, we ob-
tain ‘backwards compatibility’.

3Note that, as discussed in Chapter 5, such independence is only a context-specific one, condi-
tional on the state of variables associated with sum nodes (Peharz et al. 2016; Poon and Domingos
2011). This assumption does not represent global independence between X and Y .
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Theorem 5
Let f be a DT classifier and p(Y |x) be a corresponding GeDT classifier, where each
leaf in GeDT is class-factorised, i.e. of the form pℓ(Y )pℓ(X), and where pℓ(Y ) has
been estimated in the maximum-likelihood sense. Then f(x) = p(Y |x), provided
that p(x) > 0.

Proof. Recall that the leaves in the GeDT are in one-to-one correspondence with
the leaf cells A of the DT, and that the support of any leaf is given by its cor-
responding A ∈ A. Let ℓx be the unique leaf in the GeDT whose cell is A(x).
Since GeDTs are tree-shaped PCs containing only sum nodes, its joint distribu-
tions is either pℓx(x, y), for trivial GeDTs consisting only of ℓx, or can be written
as

p(x, y) =
∑

v∈ch(r)

wr,vpv(x), (6.2)

where r is the root node. Since a GeDT is deterministic, it has at most one non-
zero child. From p(x) > 0 it follows that the GeDT has exactly one non-zero
child, say v′, and Equation 6.2 can be written as p(x, y) = wr,v′pv′(x, y). Now,
since pv′(x, y) is also a tree-shape PC containing only sums, it follows by induc-

tion that p(x, y) =
(∏

(v,u)∈Λ wv,u

)
pℓx(x, y), where Λ is the unique path from

root to ℓx following only non-zero nodes, and wv,u are the sum-weights of edges
(v, u) in Λ. Since each leaf is class-factorised, we have pℓx(x, y) = pℓx(x)pℓx(y),

and
(∏

(v,u)∈Λ wv,u

)
pℓx(x)pℓx(y) ∝ p(y |x) = pℓx(y) = fA(x)(x) = f(x), since

each fA(x) is, like pℓx , learnt by the class proportions of samples in A.

Theorem 5 shows that DTs and GeDTs yield exactly the same classifier for
class-factorised leaves and complete data. DTs achieve their most impressive
performance when used as an ensemble in RFs. It is straightforward to convert
each DT in an RF using Algorithm 3, yielding an ensemble of GeDTs. Such
an ensemble, which we call a Generative Forest (GeF), computes the following
conditional probability function

p(Y |X) =
1

nt

nt∑
j=1

pj(Y |X), (6.3)

where nt is the number of trees in the ensemble and pj the density function
defined by the jth GeDT. The result above naturally extends to ensembles, as
clearly when all GeDTs in a GeF use class-factorised leaves, then according to
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Theorem 5, GeFs yield exactly the same prediction function as their correspond-
ing RFs. This means that the everyday practitioner can safely replace RFs with
class-factorised GeFs, gaining the ability to classify under missing input data.

6.5 Handling Missing Values

The probably most frequent strategy to treat missing inputs in DTs and RFs is
to use some single imputation technique, i.e. to first predict any missing val-
ues based on the observed ones, and then use the imputed sample as input to
the classifier. A particularly prominent method is K-nearest neighbour (KNN)
imputation, which typically works well in practice. This strategy, however, is
not Bayes consistent and can in principle be arbitrarily bad. This can be shown
with a simple example. Assume two multivariate Gaussian features X1 and
X2 with var(X1) ≥ τ , var(X2) ≥ τ for some τ > 0, i.e. the variances of
X1 and X2 are bounded from below. Let the conditional class distribution be
p(y |x1, x2) = 1(|x2 − E[X2 |x1]| > ϵ), i.e. Y detects whether X2 deviates more
than ϵ from its mean, conditional on X1. Assume X2 is missing and use KNN
to impute it, based on X1 = x1. KNN is known to be a consistent regressor,
provided the number of neighbours goes to infinity but vanishes in comparison
to the number of samples (Devroye et al. 1996). Thus, the imputation for X2

based on x1 converges to E[X2 |x1], yielding a constant prediction of Y = 0. It
follows that by making ϵ arbitrarily small, we can push the classification error
arbitrarily close to 1, while the true error goes to 0.

Assuming that inputs are missing at random (Little and Rubin 2019) and
that we have only inputs xo for some subset Xo ⊂ X, a GeDT naturally yields a
classifier p(y |Xo) by marginalising missing features as in Equation 6.1. Recall
that marginalisation in PCs, and thus in GeDTs, can be performed with a single
feedforward pass, given that the GeDT’s leaves permit efficient marginalisation.
In our experiments, we use either fully factorised leaves or PC leaves learnt by
LearnSPN (Gens and Domingos 2013), a prominent PC learner, such that we
can efficiently and exactly evaluate p(Y |Xo) with a single pass through the
network. Thus, a GeDT represents in fact 2|X| classifiers, one for each missing-
ness pattern. Since the true data distribution yields Bayes optimal classifiers for
each Xo, and since the parameters of GeDTs are learnt in the maximum likeli-
hood sense, using the GeDT predictor p(y |Xo) for missing data is natural. For
a simplified variant of GeDTs, we can show that they converge to the true dis-
tribution and are therefore Bayes consistent classifiers for each Xo. Theorem 6
assumes, without loss of generality, that all variables in X are continuous.
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Theorem 6
Let P∗ be an unknown data generating distribution with density p∗(X, Y ), and let
Dn be a dataset drawn i.i.d. from P∗. Let G be a DT learnt with a DT learning al-
gorithm, using axis-aligned splits. Let An be the (rectangular) leaf cells produced
by the learning algorithm. Assume it holds that i) limn→∞ |An| log(n)/n → 0 and
ii) P∗({x | diam(An

x) > γ}) → 0 almost surely for all γ > 0, where diam(A)
is the diameter of cell A. Let G′ be the GeDT corresponding to G, obtained via
Algorithm 3, where for each leaf ℓ, pℓ is of the form pℓ(Y )pℓ(X), with pℓ(X) uni-
form on Aℓ and pℓ(Y ) the maximum likelihood categorical distribution (fractions
of class values of samples in Aℓ). Then the GeDT distribution is l1-consistent,
i.e.
∑

y

∫
|p(x, y)− p∗(x, y)|dx→ 0, almost surely.

Before proving Theorem 6 we need to introduce some background. This the-
orem extends consistency results for collections of partitions of the state space
X , as discussed by Lugosi and Nobel (Lugosi et al. 1996). A central notion is
the growth function of such partitions.

Definition 5 (Growth function (Lugosi et al. 1996))
Let X be some set and F be a collection of finite partitions of X . Let ξ =
{ξ1, . . . , ξn} be a set of points from X . Let ∆(F , ξ) be the number of distinct
partitions induced by F , that is the size of set {{ξ ∩ A | A ∈ A} | A ∈ F}. The
growth function is defined as ∆∗(F) = supξ ∆(F , ξ), where the sup ranges over
all sets of n points from X .

Note that the growth function ∆∗ is defined akin to the dichotomic growth
function, as introduced by Vapnik and Chervonenkis and well known in statisti-
cal learning theory (Vapnik 1998). In particular, we derive the following bound
of ∆∗.

Proposition 2
Let X be some set and C be any collection of subsets of X . Let Φ(C, ξ) be the
shatter coefficient of point set ξ and Φ∗(C) = supξ Φ(C, ξ) be the dichotomic
growth function (Vapnik 1998). Let F be a collection of finite partitions of X ,
as in Definition 5, where the maximal partition size is J := supA∈F |A|. If
C = {A | A ∈ A,A ∈ F} then

∆(F , ξ) ≤ Φ(C, ξ)J , (6.4)

and moreover ∆∗(F) ≤ Φ∗(C)J .
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Proof. Let the point set ξ be fixed. Any partition {ξ ∩ A | A ∈ A}, for some
A ∈ F , can be written as {ξ ∩ A1, . . . , ξ ∩ AJ} for some A1, . . . ,AJ ∈ C, since
C contains all cells which appear in F . Thus, ∆(F , ξ) ≤ |{{ξ ∩ A1, . . . , ξ ∩
AJ} | A1, . . . ,AJ ∈ C}|. Note that the number of partitions of this form is
bounded by

|{{ξ ∩ A1, . . . , ξ ∩ AJ} | A1, . . . ,AJ ∈ C}| ≤
J×

j=1

|{ξ ∩ Aj | Aj ∈ C}|. (6.5)

The right hand side of Equation 6.5 is Φ(C, ξ)J , and thus Equation 6.4 follows.
∆∗(F) ≤ Φ∗(C)J follows from applying supξ on both sides of Equation 6.4.

In our case, we study partitions A induced by a DT, each of which divides X
into a set of hyper-rectangles.4 Hence, we consider the collection of partitions
F containing all possible partitions whose sets are hyper-rectangles. We are
now ready to prove Theorem 6.

Proof. Let Fn be the collection of all DT partitions which can be generated
for sample size n, i.e. An ∈ Fn. By Proposition 2, we know that ∆∗(Fn) ≤
Φ∗(C)|An|, where C is the collection of all sub-rectangles in X . The VC di-
mension (Vapnik 1998) of C is known to be 2|X|, and consequently, by Sauer’s
lemma, ∆∗(F) ≤ Φ∗(C)|An| ≤ Cn2|A

n||X|, where C is a constant depending
only on |X|. Therefore, if condition i) holds (limn→∞ |An| log(n)/n→ 0) it follows
that log∆∗

n → 0. Thus, together with condition ii) all conditions of Theorems 1
and 2 in (Lugosi et al. 1996) hold.

Since the GeDT is deterministic, its distribution can be written as

p(x, y) =

 ∏
(v,u)∈Λ

wv,u

 pℓx(x, y), (6.6)

where ℓx is the unique non-zero leaf in the GeDT, Λ is the unique path from
the root to ℓx following only non-zero nodes, and wv,u are the sum-weights of
edges (v, u) in Λ (see also proof of Theorem 5).

It is easy to see that
∏

(v,u)∈Λ wv,u = P̂(Ax), where P̂ is the empirical distri-
bution of Dn, i.e. the fraction of data points falling inAx (see Algorithm 1). The

4Here, we assume for simplicity that all variables are continuous. Including discrete variables
with finitely many states can be done by applying similar arguments to each of the finitely many
joint states.
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distribution computed by each leaf ℓ is, by assumption, pℓ(x, y) = pℓ(y)
1

vol(Ax)
,

where vol(A) is the volume (Lebesgue measure) of A. Thus, we can write Equa-
tion 6.6 as

p(x, y) = pℓ(y)P̂(Ax)
1

vol(Ax)
.

By Theorem 1 in (Lugosi et al. 1996), P̂(Ax)
1

vol(Ax)
converges to p∗(x), while

by Theorem 2 in (Lugosi et al. 1996), pℓ(y) converges to p∗(y |x), both in l1-
sense. Clearly both factors, P̂(Ax)

1
vol(Ax)

and pℓ(y), have bounded l1-norm.
Thus, their product converges to p∗(y |x)p∗(x) = p∗(y,x), which concludes the
proof.

Note that the assumptions in Theorem 6 are in line with consistency results
for DTs. See for example (Breiman et al. 1984; Devroye et al. 1996; Lugosi et al.
1996), all of which require, in some sense, that the number of cells vanishes in
comparison to the number of samples, and that the cell sizes shrink to zero.
Theorem 6 naturally leads to the Bayes-consistency of GeDTs and GeFs under
missing inputs.

Corollary 3
Under assumptions of Theorem 6, any GeDT predictor p(Y |Xo), for Xo ⊆ X is
Bayes consistent.

Proof. Since p(y,x) converges almost surely to p∗(y,x) in l1-sense, it gives rise
to the Bayes optimal classifier argmaxy p

∗(y,x). Consider any Xi ∈ X. The
marginal distribution, Xi marginalised out, is

∫
p(y,x¬i, xi)dxi. Since∫

|p(y,x¬i)− p∗(y,x¬i)|dx¬i

=

∫ ∣∣∣∣∫ p(y,x¬i, xi)− p∗(y,x¬i, xi)dxi

∣∣∣∣dx¬i

≤
∫
|p(y,x)− p∗(y,x)|dx,

also the marginal converges in l1-sense to the true p∗(y,x¬i). By repeating the
argument, every sub-marginal converges, and thus gives rise to the correspond-
ing Bayes optimal classifier.

Corollary 4
Assume a GeF whose GeDTs are learnt under assumptions of Theorem 6. Then the
GeF of GeDT predictors p(Y |Xo), for any Xo ⊆ X, is Bayes consistent.
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Proof. This follows directly from Proposition 1 in (Biau et al. 2008), whereby
if a sequence of classifiers is Bayes-consistent, then the classifier obtained by
averaging them is also consistent.

6.6 Computational Complexity

Let n be the total number of samples and m the total number of features. Re-
garding the learning algorithm, a Random Forest and its corresponding PC only
differ in the distributions at leaves, which use a partition of the data. Therefore,
assuming a tree is grown as in (Breiman 2001) with ⌈m/c⌉ features considered
at each split (c a positive natural), structure learning in both models has worst-
case asymptotic complexity of O(mr n log n), where r ∈ O(n) is the number of
internal nodes in the obtained tree (Louppe 2014). For GeDTs, however, there
is the additional cost of learning a distribution at each leaf. If q(m) is the worst-
case cost of the leaf learner for a constant amount of data, then the overall time
complexity (for learning all leaves) is O(r q(m)).

Nonetheless, if the leaf learner is such that q(m) ≤ O(mn log n), then the
complexity is dominated by the structure learning and Random Forests and
GeFs have the same worst-case asymptotic complexity of O(nt (mr n log n +
rq(m))) ≤ O(nt mr n log n), where nt is the number of trees in the model.
Note that q(m) ≤ O(mn log n) holds for many learning algorithms when only
a small number of training samples fall in each leaf—namely, LearnSPN and
fully-factorised leaves—provided the reasonable assumption that m is O(n).

To perform inference for a complete test sample, GeDTs require traversing
the whole structure once (hence time O(r)), while DTs have a worst-case of
O(d), where d is the height of the tree. However, we can bring the complexity
of GeDTs down to O(d) by placing the indicators that define the decisions of the
internal nodes of the DT near the corresponding internal nodes of the GeDT.
This requires augmenting GeDTs with product nodes, one for each internal sum
node. Every new product node has two children: a sum node and an indicator
mimicking the decision tree split, that is, the indicator only evaluates to one if
that path in the tree is active. Figure 6.2 illustrates this idea using our running
example, where the densities are as follows

p1(X1, X2, Y ) = p1(X1, X2)(0 · 1(Y = 0) + 1 · 1(Y = 1)),

p2(X1, X2, Y ) = p2(X1, X2)(0.25 · 1(Y = 0) + 0.75 · 1(Y = 1)),

p3(X1, X2, Y ) = p3(X1, X2)(1 · 1(Y = 0) + 0 · 1(Y = 1)).
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Figure 6.2: Illustration of ‘pulling indicators up’ to speed up computations in a Gener-
ative Tree (in the example, X and Y factorise at the leaves). The original
decision tree (DT) is shown on the top left. The other two graphs represent
the Probabilistic Circuit corresponding to the original DT and encode the very
same distribution, even if the one in the bottom is not decomposable.

This idea does not change results, since it is the same as bringing the common
indicators that appeared in the leaves of a sub-tree up towards the root of that
sub-tree using the distributive property of multiplication (the lack of decompos-
ability is tackled by the determinism of the indicators). By evaluating indicators
as soon as possible in a top-down recursive computation, we can avoid comput-
ing all sub-trees for which a zero is returned to a product node. With this type
of computational graph, GeFs and RFs have a similar inference procedure. Pre-
dicting the class of an instance amounts to traversing each tree and evaluating
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the corresponding leaf, and thus the inference complexity is O(ntd).

For incomplete data, however, GeDTs need to reach every active leaf (just as
Friedman’s method). Assuming the number of missing values in each instance
is bounded by a constant, GeFs still take time O(ntd), being faster than Random
Forests with KNN imputation, which in the worst case take time O(ntd + nm).
For large (non-constant) percentages of missing values, GeFs can be as slow
as O(ntr) (as it may need to reach all leaves). In this case of large numbers
of missing values per instance, GeFs are faster than Random Forests with KNN
imputation if d ≈ r but slower if d≪ r.

6.7 Regression Tasks

In theory, we can apply the same methods to regression tasks and still be able
to handle missing values and do outlier detection. However, this requires extra
care on how we represent and propagate the conditional distribution p(Y |X)
through the network. To see this, consider the case where a split variable is not
observed. Inference in a GeDT will boil down to evaluating a mixture of at least
two (possibly more depending on how many times the split variable is used)
leaf distributions over Y . For classification, the computation and propagation
of such mixture is trivial since for each leaf node ℓ, pℓ(Y |X) is a categorical
distribution, and a mixture of categorical distributions results again in a cate-
gorical distribution. No matter how many leaves we need to aggregate during
inference with missing data, the representation of the distribution over Y has
constant size, and we can easily propagate it through the graph of a GeDT.

That is not true in general for continuous distributions. Even in the simple
case where we model each pℓ(Y |X) as a normal distribution, a mixture of nor-
mal distributions can no longer be represented as a single normal distribution,
and the propagation through the network becomes costlier the more leaves we
need to aggregate. This could be tackled, for example, with empirical distri-
butions (histograms) in which case we could keep the representation size fixed
at the cost of some approximation error. It would also be possible to do a bi-
nary search for the most likely y value, which would require a number of passes
through the network. At any rate, we leave the extension of GeDTs to regression
tasks for future work and concentrate our experiments on classification tasks.
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6.8 Experiments

We run a series of classification tasks with incomplete data to compare our
models against surrogate splits (Breiman et al. 1984; Therneau et al. 1997),
Friedman’s method (Friedman 1977; Quinlan 1987a), and mean (mode), KNN
(k = 7) and MissForest (Stekhoven and Bühlmann 2012) imputation. In partic-
ular, we experiment with two variants of GeFs: one with fully-factorised leaves,
which we denote simply GeF, and another with leaves learnt via LearnSPN
(Gens and Domingos 2013), which we call GeF(LearnSPN). In particular, we
use a transformation of GeFs into a clever PC that prunes unnecessary sub-trees
(Correia and de Campos 2019), speeding up computations and achieving time
complexity comparable to the original DTs and RFs (see Section 6.6).

In all experiments, GeF, GeF(LearnSPN) and the RF share the exact same
structure (partition over the feature space) and are composed of 100 trees; in-
cluding more trees has been shown to yield only marginal gains in most cases
(Probst and Boulesteix 2018). In GeF(LearnSPN), we run LearnSPN only for
leaves with more than 30 samples, defaulting to a fully factorised model in
smaller leaves. More information about the experimental setup is given in Ap-
pendix A, while more extensive experimental results, detailing the performance
of GeFs and competing methods in each dataset, are available in the appendix.

Table 6.1: Accuracy at 30% percent of missing values at test time with 95% confidence
intervals. The best performing model is underlined, whereas all models within
its confidence interval appear in bold.

Dataset n Surrogate Friedman Mean KNN MissForest GeF GeF(LSPN)

dresses 500 45.48 ± 1.57 55.8 ± 1.21 58.18 ± .85 56.62 ± 1.57 55.68 ± .95 57.12 ± 1.11 57.14 ± 1.07
wdbc 569 94.96 ± .36 94.96 ± .35 94.92 ± .58 95.59 ± .41 94.92 ± .36 95.64 ± .47 96.26 ± .42

diabetes 768 72.97 ± .73 73.35 ± .70 71.67 ± .84 72.4 ± .75 72.46 ± .92 73.93 ± .63 73.83 ± .72
vehicle 846 71.61 ± .92 67.12 ± .79 63.27 ± 1.05 71.77 ± 1.01 70.69 ± 1.33 72.39 ± 1.13 72.77 ± 1.27
vowel 990 78.79 ± .86 70.81 ± 1.45 64.51 ± .83 85.62 ± .66 81.85 ± 1.10 89.25 ± .77 89.59 ± .91

credit-g 1000 71.97 ± .32 72.42 ± .31 73.01 ± .64 73.06 ± .65 73.03 ± .78 73.81 ± .38 73.97 ± .36
mice 1080 95.84 ± .44 91.01 ± .77 84.91 ± 1.03 97.7 ± .50 96.08 ± .52 98.38 ± .32 99.06 ± .15

authent. 1372 88.65 ± .74 87.13 ± .69 84.47 ± .79 91.98 ± .55 90.74 ± .37 90.33 ± .65 89.66 ± .64
cmc 1473 48.7 ± .79 49.8 ± .38 47.67 ± .86 48.38 ± .58 48.28 ± .90 49.96 ± 1.03 50.08 ± 1.05

segment 2310 93.32 ± .27 84.14 ± .69 78.34 ± .68 94.25 ± .32 93.21 ± .41 93.42 ± .20 93.41 ± .34
dna 3186 90.53 ± .31 77.23 ± .36 83.91 ± .43 89.31 ± .33 90.76 ± .34 87.42 ± .19 82.99 ± .25

splice 3190 86.09 ± .46 84.76 ± .65 84.65 ± .28 89.06 ± .53 86.18 ± .26 91.1 ± .50 85.69 ± .53
krvskp 3196 73.62 ± .92 82.81 ± .73 83.58 ± .64 86.58 ± .43 86.24 ± .56 88.35 ± .39 88.65 ± .32
robot 5456 91.74 ± .23 84.73 ± .57 89.39 ± .28 92.74 ± .25 91.72 ± .37 92.97 ± .28 94.67 ± .20

texture 5500 95.31 ± .15 89.85 ± .34 84.24 ± .42 97.13 ± .15 95.4 ± .17 95.93 ± .15 97.12 ± .13
wine 6497 84.49 ± .17 82.45 ± .10 83.2 ± .15 85.73 ± .26 85.95 ± .12 85.22 ± .18 85.85 ± .19

gesture 9873 58.37 ± .15 52.86 ± .27 55.41 ± .21 61.62 ± .22 61.48 ± .26 58.65 ± .18 60.2 ± .21
phishing 11055 81.52 ± .50 88.98 ± .17 88.02 ± .19 92.06 ± .13 91.18 ± .18 92.99 ± .08 93.3 ± .06

bank 41188 90.42 ± .18 90.3 ± .15 90.09 ± .11 90.64 ± .14 90.4 ± .19 90.79 ± .21 90.77 ± .21
jungle 44819 63.45 ± .24 71.91 ± .12 66.89 ± .40 66.25 ± .15 65.67 ± .20 72.4 ± .12 72.3 ± .11

electricity 45312 79.79 ± .09 77.47 ± .10 73.24 ± .19 80.55 ± .11 81.21 ± .10 82.23 ± .12 82.64 ± .11
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Figure 6.3: Average accuracy gain relative to RFs (100 trees) plus KNN imputation
against proportion of missing values. The same plot is repeated six times,
each time highlighting one method. The average as well as the confidence
intervals (95%) are computed across the 21 datasets of Table 6.1.

We compare the accuracy of the methods in a selection of datasets from
the OpenML-CC18 benchmark5 (Vanschoren et al. 2013) and the wine-quality
dataset (Moro et al. 2011). Table 6.1 presents results for 30% of missing val-
ues at test time (different percentages are shown in the appendix), with 95%
confidence intervals across 10 repetitions of 5-fold cross-validation. GeF models
outperform other methods in almost all datasets, validating that the joint distri-
butions at the leaves provide enough information for computing the marginali-
sation in Equation 6.1. We also note that increasing the expressive power of the
models at the leaves seems worthwhile, as GeF(LSPN) outperforms the vanilla
GeF in about half of the datasets.

Similar conclusions are supported by Figure 6.3, where we plot the aver-
age gain in accuracy relative to RF + KNN imputation at different proportions
of missing values. While earlier built-in methods, Friedman’s and surrogate
splits, perform poorly (justifying the popularity of imputation techniques for
RFs), GeFs are on average more than 3% more accurate than KNN imputation.

5https://www.openml.org/s/99/data

https://www.openml.org/s/99/data
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For the sake of space, a thorough exposition of these experiments is deferred
to the appendix, where we fully describe the experimental procedure, show dif-
ferent percentages of missing data and include results with PCs learnt via class-
selective LearnSPN (Correia and de Campos 2019), as baseline for a standard
generative model.

6.9 Conclusion

By establishing a connection between Decision Trees (DTs) and Probabilistic
Circuits (PCs), we have upgraded DTs to a full joint model over both inputs
and outputs, yielding their generative counterparts, called GeDTs. The fact that
GeDTs, and their ensemble version GeFs, are ‘backwards compatible’ to DTs
and RFs, while offering benefits like consistent classification under missing in-
puts and outlier detection, makes it easy to adopt them in everyday practice.
Missing data and outliers, however, are just the beginning. We believe that
many of the current challenges in machine learning, like explainability, inter-
pretability, and (adversarial) robustness are but symptoms of an overemphasis
on purely discriminative methods in the past decades, and that hybrid gen-
erative approaches—like the one in this chapter—will contribute significantly
towards mastering these current challenges.





Chapter 7

Robustness of Probabilistic
Circuits

Probabilistic Circuits (PCs) are machine learning models that combine good rep-
resentational power with tractable inference. Like any standard machine learning
model, they are not immune to overfitting—particularly true for PCs with large,
deep architectures. PCs do, however, have the benefit of principled probabilistic
semantics that facilitate the analysis of the reliability of its predictions. In this
chapter, we explore credal methods that allow us to represent an entire set of PCs
and study how predictions vary within such a set. That is captured by the con-
cept of ϵ-robustness, a per-instance measure that indicates how much we would
have to perturb the parameters of a PC to change its prediction when evaluated
on a given instance. As we demonstrate with LearnSPN and Generative Forests,
ϵ-robustness is highly correlated with accuracy and particularly useful in ensemble
modelling. Unfortunately, evaluating ϵ-robustness can be costly for arbitrary PC
architectures. Therefore, we introduce class-selective architectures, which are well
suited for classification tasks and enable efficient robustness computation.

This chapter is based on Alvaro Correia and Cassio de Campos: Towards Scalable and Ro-
bust Sum-Product Networks, International Conference on Scalable Uncertainty Management, Springer,
Cham, (2019); and Alvaro Correia, Robert Peharz and Cassio de Campos: Towards Robust Classi-
fication with Deep Generative Forests, ICML 2020 Workshop on Uncertainty and Robustness in Deep
Learning (2020).
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7.1 Introduction

As discussed in previous chapters, Probabilistic Circuits (or PCs) are a class of
deep probabilistic graphical models where exact marginal inference is always
tractable. Still, PCs can capture high tree-width models (Poon and Domingos
2011) and are capable of representing complex and highly multidimensional
distributions (Delalleau and Bengio 2011). This promising combination of ef-
ficiency and representational power has motivated several applications of PCs
to a variety of machine learning tasks (Amer and Todorovic 2016; Cheng et al.
2014; Nath and Domingos 2016; Pronobis and Rao 2017; Sguerra and Cozman
2016; Wang and Wang 2018).

Yet, as any other machine learning model, PCs learnt from data are prone to
overfitting when evaluated at poorly represented regions of the feature space,
leading to overconfident and often unreliable conclusions. However, due to
the probabilistic semantics of PCs, we can mitigate that issue through a prin-
cipled analyses of the reliability of each output. A notable example is Credal
PCs (CPCs)1(Mauá et al. 2017), an extension of PCs to imprecise probabilities
where we can compute a measure of the robustness of each prediction. Such
robustness values are useful tools for decision-making, as they are highly corre-
lated with accuracy, and thus tell us when to trust the prediction of the model: if
the robustness of a prediction is low, we can suspend judgement or even resort
to another machine learning model.

Unfortunately, computing robustness requires many passes through the net-
work, which limits the scalability of credal Probabilistic Circuits. We address
that by introducing class-selective (C)PCs, a type of architecture that enables
efficient robustness computations in classification tasks due to their indepen-
dent sub-networks: one for each label in the data. Class-selective (C)PCs not
only enable fast robustness estimation but also outperform general (C)PCs in
classification tasks. In our experiments, their accuracy was comparable to that
of state-of-the-art methods, such as XGBoost (Chen et al. 2016).

1Most of the work presented in this chapter (Correia and de Campos 2019) was developed in the
context of Sum-Product Networks (or SPNs), a type of Probabilistic Circuit satisfying smoothness
and decomposability. However, for the sake of congruence with the rest of the thesis we will favour
the more general denomination Probabilistic Circuits or PCs.
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7.2 (Credal) Probabilistic Circuits

Before giving a formal definition of (C)PCs, we introduce the necessary notation
and background. As in previous chapters, we have set of m random variables
X = {X1, . . . , Xm} each assuming values in some compact set Xi. Since we
are primarily concerned with classification tasks in this chapter, we reserve Y
to denote the target variable with state space Y. As usual we denote the real-
isation of (a set of) random variables in lowercase letters and use boldface to
distinguish vectors from single values (e.g. X = x, Xi = xi). Taking full ad-
vantage of tractable marginals in PCs, the results herein are valid for arbitrary
subsets of X. Therefore, when only a subset of the variables is concerned, we
use an indexing set E to identify the corresponding variables XE = {Xi : i ∈ E}
and their realisations xE . Here xE is what we call partial evidence, as not every
variable is observed.

As in other chapters, we often need to refer to specific nodes in the graph.
We reserve letters u and v for individual nodes, and r for the root node. We
denote the set of children of a node v as ch(v). We represent the density func-
tion defined by a PC with parameters θ, structure G and root r as pr(· | θ,G).
Similarly, we use pv(· | θv,Gv) to denote the density function defined by any
node v in the graph, where θv and Gv are, respectively, the parameters and
the structure of the PC rooted at node v. However, since we are primarily con-
cerned with variations in θ, we shall often omit the dependence on the graph
G and use simply pv(· | θv) instead. At times, we shall also omit the node from
the notation when it is clear from context, for example using only p(· | θ) for
the density computed at the root node. We also need to identify the weights
of a sum node. Every arc from a sum node v to a child u is associated with a
non-negative weight wv,u such that

∑
u∈ch(v) wv,u = 1, i.e. each sum node has

normalised weights wv, where wv is a vector collecting all weights wv,u associ-
ated with arcs from v to children u. Constraining the weights of sum nodes to
be normalised does not affect the generality of the model (Peharz et al. 2015).

A Credal PC (CPC) (Mauá et al. 2017) is defined similarly, except for con-
taining sets of weight vectors in each sum node instead of a single weight vector.
More precisely, a CPC C is defined by a set of PCs C = {p(· | θ,G) : θ ∈ C} over
the same graph G, where C is the Cartesian product of finitely-generated sim-
plexes Cv, one for each sum node v, such that the weights wv of a sum node v
are constrained by Cv. We formalise this concept with ϵ-contaminated sets. If
w is the vector of weights of a given sum node, then for some 0 ≤ ϵ ≤ 1, its
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ϵ-contamination is given by the set

Cv = {(1− ϵ)wv + ϵv : vj ≥ 0,
∑
j

vj = 1}, (7.1)

where v is a vector of same size as wv.
Such ϵ-contaminated sets are a straightforward way to define the simplex

of each sum node. A credal PC is typically obtained by setting a single ϵ value
for the entire network and defining the simplex associated with each sum node
Cv as in Equation 7.1 (Maua et al. 2018). The experiments in this chapter also
rely on ϵ-contaminated PCs, however, the theoretical results, unless otherwise
stated, apply to polytopes Cv of any form.

While a PC represents one joint distribution over its variables, a CPC repre-
sents a set of joint distributions. Therefore, one might be interested in bound-
ing the (log-)likelihood of some evidence xE , i.e. computing minθ p(xE | θ) and
maxθ p(xE | θ). Fortunately, for PCs with tree structures and bounded number
of children in each sum node, this can be computed efficiently with the follow-
ing set of equations

min
θ
pv(xE | θ) =


minθ pv(xE | θ) if v a dist. node,∏

u∈ch(v) minθu
pu(xE | θu) if v a prod. node,

minwv

∑
u∈ch(v) wv,u (minθu pu(xE | θu)) if v a sum node.

Naturally, an analogous procedure applies to maxθ p(xE | θ). That tells us
that finding minθ p(xE | θ) is similar to performing inference in a regular PC but
with the additional cost of solving a small linear program at each sum node.
Intuitively, if the PC structure is a tree, the sub-networks of each child of a
node v do not share any weights,

⋂
u∈ch(v) θu = ∅, and can be optimised local

and independently. We can then start at distribution nodes, which typically
compute simple univariate distributions for which minimum (resp. maximum)
values are easily obtained, and propagate up through the network only the
minimum (resp. maximum) values of each node. This result is formalised below,
where Corollary 5 is a small variation of the result in (Maua et al. 2018).

Theorem 7 (Theorem 1 in (Maua et al. 2018))
Consider a CPC C = {p(· | θ,G) : θ ∈ C}. Computing minθ p(xE | θ) and
maxθ p(xE | θ) takes O(|θ | · L) time, where |θ | is the number of parameters,
and L is an upper bound on the cost of solving a linear program of the form
minwv

∑
u∈ch(v) cv,uwv,u subject to wv ∈ Cv.
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Corollary 5
Consider a CPC C = {p(· | θ,G) : θ ∈ C} with bounded number of children per
sum node and specified by simplexes Cv of (finitely many) constraints of the form
lbv,u ≤ wv,u ≤ ubv,u for given rationals lbv,u ≤ ubv,u. Computing minθ p(xE | θ)
and maxθ p(xE | θ) can be solved in time O(|θ |).

Proof. When local simplexes Cv have constraints lbv,u ≤ wv,u ≤ ubv,u, then the
local optimisations pv(x | θv) = minwv

∑
u∈ch(v) wv,upu(x | θu) are equivalent

to fractional knapsack problems (Korte and Vygen 2012), which are solvable in
constant time for nodes with bounded number of children. Thus, the overall
running time is O(|θ |).

An important consequence of the results above is that one can use CPCs to
obtain lower and upper bounds minθ Eθ(f |XE = xE) and maxθ Eθ(f |XE = xE)
on the expected value of some function f of a variable, conditioned on evidence
XE = xE . Each choice of weights θ of a CPC C = {p(· | θ,G) : θ ∈ C} defines a
PC, and hence induces a probability measure p(· | θ,G). We can then compute
bounds on the conditional expectations of a function over some variable Xi

min
θ

Eθ(f |XE = xE) = min
θ

∑
xi∈Xi

f(xi)p(Xi = xi|XE = xE ,θ,G) . (7.2)

The equation above is well-defined if minθ p(XE = xE | θ,G) > 0, which we
will assume to be true2. Note also that we can focus on the computation of the
lower expectation, as the upper expectation can be obtained from

max
θ

Eθ(f |xE) = −min
θ

Eθ(−f |xE).

Computing the lower conditional expectation in Equation equation 7.2 is facil-
itated when we have PCs with tree structures. In that case, for some real µ we
have the following relation

min
θ

Eθ(f |XE = xE) > µ ⇐⇒

min
θ

∑
xi∈Xi

(f(xi)− µ)p(Xi = xi,XE = xE | θ,G) > 0 .

2Statistical models often have some smoothing so that zero probability is not attributed to any
assignment of variables. That is our assumption here for the sake of simplicity, though this could be
addressed in more sophisticated ways.
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That allows us to obtain the exact value (to the desired precision) of the min-
imisation via a binary search for µ until minθ Eθ((f − µ)|xE) = 0. In particular,
for PCs with tree-shaped structure, there is a polynomial-time algorithm to com-
pute such expectations of univariate functions. The algorithm runs in a single
pass through the network, like the minimisation algorithm described above, but
has to keep track of both minimum and maximum values because an arbitrary
function f is not constrained to be non-negative everywhere like probability
functions. We refer the reader to (Maua et al. 2018) for more details.

7.3 Efficient Robustness Measure Computation

We now define an architecture called class-selective (C)PC that is provenly more
efficient in computing robustness values.

Definition 6 (Class-selective PC)
Consider a domain where variable Y is called the class variable. A class-selective
(C)PC has a sum node as root node with |Y| product nodes as its children, each of
which has an indicator leaf node for each possible value for Y (besides potentially
other sibling (C)PCs). These product nodes that are children of the root sum node
have disjoint sets of internal descendant nodes.

The name class-selective was inspired by selective SPNs (Peharz et al. 2014),
where only one child of each sum node is active (has output larger than zero)
at a time. As described in Chapter 5, that property is often called determinism
(Darwiche 2003; Vergari et al. 2020). A class-selective PC is only deterministic
at the root node: for a given class value, only one of the sub-networks remains
active. That is depicted in Figure 7.1, where only one indicator node λi is non-
zero and all but one of the children of the root node evaluate to zero.

. . .

...
...

λ1
...

...

. . . λ2

. . .

. . .

...
...

. . . λ|Y|

Figure 7.1: Illustration of the first (top) layer of a class-selective PC. In the graph, λi is a
leaf node applying the indicator function 1(Y = i).
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In a class-selective CPC, the computation of the expectation of a function of
the class variable can be achieved at the same cost of likelihood evaluation in
standard PCs: in a single pass through the network.

min
θr

∑
y

f(y)pr(Y = y,XE = xE | θr) =

min
θr

 ∑
y:f(y)≥0

f(y)wr,y min
θy

py(y,xE | θy) +
∑

y:f(y)<0

f(y)wr,y max
θy

py(y,xE | θy)

 ,
where r is the root node and, with a slight abuse of notation, y ∈ Y indexes the
child of the root node associated with class y. Note that each of these internal
optimisations can be obtained by independent executions which take altogether
time O(|θ |) by Corollary 5 (as each execution runs over non-overlapping sub-
CPCs corresponding to different class labels).

We also note that class-selective PCs offer more efficient classification in the
standard, non-credal setting as well. To find the class of maximum probability
(and its probability) in a class-selective PC we only have to visit each node
once, since we can compute p(y |xE) for every y ∈ Y in a single pass through
the network. Conversely, in a non-class-selective PC we would have to visit
each node |Y| times because we need one pass for each probability p(y |xE).
Of course, this does not account for how the two architectures might differ
in number of parameters; non-class-selective PCs might be more compact and
thus compensate for the slightly higher computational complexity of performing
classification. We empirically evaluate and discuss some of these aspects in
Section 7.5 and Table 7.2.

Let us now turn our attention to the CPC robustness estimation in a classi-
fication problem. Given input instance XE = xE for which we want to predict
the class variable, we say that a classification issued by CPC C is robust if the
class value y = argmaxY p(y|x,θ,G) predicted by a PC that belongs to a certain
CPC C = {p(· | θ,G) : θ ∈ C} is also the prediction of any other p(· | θ′,G) ∈ C
(hence it is unique for C). This is often called credal dominance or credal classi-
fication (Zaffalon 2002), and can de defined as

min
θ

[p(y|XE = xE | θ)− p(y′|XE = xE | θ)] > 0 for every y′ ̸= y . (7.3)

In the case of e-contaminated class-selective CPCs, it suffices to check whether

min
θ
p(Y = y,XE = xE | θ) > max

y′∈Y:y′ ̸=y
max
θ

p(Y = y′,XE = xE | θ) ,
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that is, regardless of the choice of weights θ ∈ C, we would have a stable
prediction y with p(y|x,θ) > p(y′|x,θ) for all other labels y′.

General CPCs may require 2 · |θ | · (|Y| − 1) node evaluations in the worst
case to identify whether a predicted class label y is robust for instance XE = xE ,
while a class-selective CPC obtains such result in |θ | node evaluations. This
is because CPCs will run over its nodes (|Y| − 1) times in order to reach a
conclusion about the expression in Equation 7.3, while the class-selective CPC
can compute minθ p(xE | θ) and maxθ p(xE | θ) (the max is done for each y′)
in a single pass, taking overall |θ | node evaluations, since they run over non-
overlapping sub-networks for different class values.

Finally, given an input instance XE = xE and a PC p(· | θ,G) learnt from
data, we can compute a robustness measure as follows. We define a collec-
tion of CPCs Cθ,ϵ parametrised by 0 ≤ ϵ < 1 such that each wϵ

v of a node
v in Cθ,ϵ is allowed to vary within an ϵ-contaminated credal set of the orig-
inal weight vector wv ∈ θ of the same node v. We use the same notation
for the collection of parameters θ of a PC, and denote θϵ

v the ϵ-contaminated
credal set of θv . A robustness measure for a prediction issued by the original
PC ŷ = argmaxY p(y |xE θ,G) is then defined by the largest ϵ such that Cθ,ϵ is
robust for xE , that is, the largest ϵ for which every PC in Cθ,ϵ predicts the same
class label ŷ. Finding such ϵ can be done using a simple binary search, as shown
in Algorithm 4.

7.4 Likelihood as a Measure of Reliability

PCs also facilitate exact computation of the (log-)likelihood of the explanatory
variables X, which is a useful tool to identify outliers. In a classification context,
for a given instance x, the lower its likelihood under the model p(x | θ,G), the
less we should trust the prediction ŷ = argmaxY p(y |x,θ,G). That is because
a low likelihood indicates x is unlikely to have been sampled from the same
distribution as the training instances.

Unfortunately, this simple and reasonable notion of reliability is known to be
problematic when the likelihood is computed by deep generative models (Nalis-
nick et al. 2018), even tractable ones like normalising flows (Papamakarios et al.
2021). Yet, the likelihood computed by PCs seem to be a strong signal to detect
outliers as demonstrated in (Peharz et al. 2020b) and in our own work that we
discuss in this chapter. Moreover, monitoring the marginal p(xE) for some arbi-
trary partial evidence xE in PCs is rather efficient. In the case of class-selective
PCs, this comes at no extra cost; these models are designed to compute p(y,xE)
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Function Robustness(p(· | θ,G), xE , y, er):
Data : Class-selective PC p(· | θ,G), Input x, Prediction

y | XE = xE , Precision er < 1
Result: Robustness ϵ
ϵmax ← 1;
ϵmin ← 0;
while ϵmin < ϵmax − er do

ϵ← (ϵmin + ϵmax)/2;
v ← minθϵ p(y,xE |θϵ);
for y′ ̸= y do

v′ ← maxθϵ p(y′,xE |θϵ);
if v′ ≥ v then

ϵmax ← ϵ;
break

end
end
if ϵmax > ϵ then

ϵmin ← ϵ
end

end
return ϵ;

Algorithm 4: Efficient ϵ-robustness computation.

for each y ∈ Y in a single pass through the network, and thus computing p(xE)
only requires summing these individual probabilities, p(xE) =

∑
y p(y,xE).

We can also efficiently compute p(xE) with GeFs, but we need a slight adap-
tation. As defined in Equation 6.3, GeFs are an ensemble of generative GeDTs
and thus do not encode a single full joint distribution. However, we can extend
GeFs to model a single joint by considering a uniform mixture of GeDTs (using
a sum node at the root with all GeDTs as children), instead of an ensemble of
the conditional distributions of each GeDT. In this case, the model represents
the joint

p(x, y) =
∑

v∈ch(r)

wr,vpv(x, y) =
1

nt

∑
v∈ch(r)

pv(x, y),

where nt is the number of GeDTs in the ensemble, r is the root node with
uniform weights wr,v = 1/nt, and each pv is defined by a different GeDT. This
model, to which we shall refer as GeF+, allows us to detect outliers and achieves
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similar but slightly inferior performance than GeFs in classification with missing
data (still clearly superior to KNN imputation). This does not come as a surprise:
the benefits of a fully generative model often comes at the cost of a (small) drop
in classification accuracy.
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Figure 7.2: Comparison of different outlier detection methods. Normalised histograms
of log p(x) (KDE and GeF+) and maxy p(y|x) (Random Forest) of samples
from red and white wine data.

We illustrate outlier detection with GeF+s using the wine quality dataset
(Cortez et al. 2009) (where the class is a scale of quality of wine) with a vari-
ant of transfer testing (Bradshaw et al. 2017). We learn two different GeF+s,
each with only one type of wine (red or white), and compute the log-density
of unseen data (70/30 train-test split) for the two wine types. As we see in the
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histograms of Figure 7.2, the marginal distribution over the joints does provide
a strong signal to identify out-of-domain instances. We compare GeF+s to a
Gaussian Kernel Density Estimator (KDE) and to a common baseline for deep
models (Hendrycks and Gimpel 2016), whereby the probability of the predicted
class, maxy p(y|x), is used as a signal to detect outliers. We see from the his-
tograms and the ROC (receiver operating characteristic curve) scores, that our
models largely outperform the baseline while being comparable to KDEs, even
though the structure of a GeF+ is learnt in a discriminative manner.

We note that previous works have already proposed using Random Forests
for outlier detection (Liu et al. 2008), but these models are directly trained to
identify anomalies and have that as their sole purpose. GeF+s are unique in
that, while being primarily classifiers, they also effectively detect outliers.

7.5 Experiments

We investigated the performance of class-selective (C)PCs and GeF+s through a
series of experiments over a range of 19 UCI datasets (Dua and Graff 2017). We
also use the same datasets to study how ϵ-robustness relates to accuracy as well
as log-likelihood. All experiments were run in a single modern core with our im-
plementation of GeFs and Credal PCs, the latter of which runs LearnSPN (Gens
and Domingos 2013) for structure learning. The source code for class-selective
(C)PCs is available at https://github.com/alcorreia/sum2019, whereas the
source code for GeF+s is hosted at https://github.com/alcorreia/gefs.

Table 7.1 presents the UCI datasets on which we ran experiments described
by their number of independent instances n, number of variables m (includ-
ing a class variable Y ) and number of class labels |Y|. All datasets are cate-
gorical (or have been made categorical using discretisation by median value).
We also show the classification accuracy obtained by both class-selective and
non-class-selective (denoted general) PCs as well as GeF+s and XGBoost (Chen
and Guestrin 2016), considered a state-of-the-art technique for supervised clas-
sification tasks. We used the XGBoost implementation from scikit-learn (Pe-
dregosa et al. 2011) with default hyperparameters and 100 trees (estimators).
For GeF+s we used 100 trees and fully factorised leaves, while keeping other
hyperparameters as in (Correia et al. 2020b). Results across all datasets are
obtained by stratified 5-fold cross-validation.

As one can inspect, class-selective PCs outperformed general PCs in 14 out of
these 19 datasets, while being comparable to XGBoost and GeF+s. This shows
the class-selective architecture does introduce an effective inductive bias that

https://github.com/alcorreia/sum2019
https://github.com/alcorreia/gefs
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Table 7.1: Percent accuracy of XGBoost, General PCs and Class-selective PCs across sev-
eral UCI datasets. Both PC types were learnt via LearnSPN (Gens and Domin-
gos 2013). All experiments consisted in stratified 5-fold cross validation.

Dataset n m |Y| XGBoost General PC Class-selective PC GeF+

bridges 107 11 6 64.486 57.009 63.551 65.421
autos 205 26 2 90.244 88.293 89.268 89.268
breast cancer 286 10 2 68.182 71.678 66.783 70.629
heart h 294 12 2 78.912 79.932 81.973 79.932
liver disorders 345 7 2 67.246 57.391 62.609 68.116
dermatology 366 35 6 96.721 81.694 98.907 98.634
colic 368 23 2 82.609 77.717 73.37 83.967
balance scale 625 5 3 71.36 72.48 72 73.28
soybean 683 36 19 92.826 62.518 93.704 94.729
diabetes 768 9 2 72.005 70.703 70.964 70.833
vehicle 846 19 4 66.312 46.454 65.248 64.657
tic tac toe 958 10 2 93.946 69.937 89.562 98.121
vowel 990 14 11 72.02 33.737 61.919 75.152
solar flare 2 1,066 12 6 74.203 59.475 75.328 74.015
cmc 1,473 10 3 52.003 48.133 47.115 49.219
car 1,728 7 4 98.843 70.023 94.502 97.222
segment 2,310 17 7 83.42 67.662 82.641 82.987
sick 3,772 28 2 93.558 93.876 92.497 93.505
spambase 4,601 8 2 79.961 78.505 79.961 79.135

favours classification. Of course, this benefit is limited to a single a variable,
since we design the entire structure around the target class, but discriminative
models, like XGBoost, are equally oriented towards a single variable. Yet, class-
selective PCs as well as GeF+s are fully generative models capable of, among
other things, outlier detection and handling missing data besides being good
classifiers. In particular, GeF+s outperformed XGBoost in 10 of the 19 datasets.

We further contrast general and class-selective networks in Table 7.2, where
we compare the two types of network in terms of their architecture and pro-
cessing times on classification tasks. One can see that class-selective PCs have a
higher number of parameters due to a larger number of sum nodes. However,
in some cases general PCs are deeper, which means class-selective PCs tend to
grow sideways, especially when the number of classes is high. Nonetheless, the
larger number of parameters in class-selective networks does not translate into
higher latency as both architectures have similar learning and inference times.
We attribute that to the independence of the subnetwork of each class which
facilitates inference. Notice that the two architectures are equally efficient only
in the classification task (only aspect compared in Table 7.2) and not on robust-
ness computations. We mathematically proved the latter to be more efficient in
class-selective networks when using Algorithm 4.
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Table 7.2: Comparison between General (Gen) and Class-Selective (CS) PCs in learning
and average inference times (s), height, and number of nodes and parameters.
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Figure 7.3: Accuracy of class-selective Probabilistic Circuits on predictions with robust-
ness (a) above and (b) below different thresholds for 12 UCI datasets (Dua
and Graff 2017). Some curves end abruptly because we only computed the
accuracy when 50 or more data points were available for a given threshold.

7.5.1 Exploring Data on the Robustness Measure

We can interpret robustness as a measure of how confident a model is on a given
prediction. Roughly speaking, in a classification task, the robustness value ϵ of
a prediction corresponds to how much we can tweak the networks parameters
without changing the final result, i.e., the class of maximum probability. Thus,
a large ϵ means that many similar networks (in parameter space) would give
the same output for the instance in question. Similarly, we can think that small
changes in the training data or in the hyperparameters of the learning algorithm
would not produce a model whose prediction would be different for that given
instance. Conversely, a small ϵ tell us that slightly different networks would
provide us with a distinct answer. In that case, the prediction is not reliable as it
might fluctuate with any variation on the learning or data acquisition processes.

We can validate this interpretation by investigating how robustness relates to
the accuracy of the model. In Figure 7.3(a), we defined a number of robustness
thresholds and, for each of them, we computed the accuracy of a class-selective
PC over instances for which ϵ was above the threshold. It is clear from the graph
that the accuracy increases with the threshold, and we can infer that robustness
does translate into reliability since the model is more accurate over instances
with high ϵ values. We arrive at a similar conclusion in Figure 7.3(b), where we
plot instances for which ϵ was below a given threshold. In this case, the curves
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Figure 7.4: Accuracy of GeF+s on predictions with robustness (a) above and (b) below
different thresholds for 12 UCI datasets (Dua and Graff 2017). Some curves
end abruptly because we only computed the accuracy when 50 or more data
points were available for a given threshold.

start at much lower accuracy values, with only examples of low robustness, and
then build up as instances with higher ϵ values are added. Finally we repeated
the same experiment with GeF+s and, as shown in Figure 7.4, we observed the
same pattern with ϵ-robustness closely related to accuracy.

7.6 Contrasting Robustness and Likelihood

We also trained GeF+s on the Mnist (LeCun et al. 2010) and Fashion-Mnist (Xiao
et al. 2017) datasets to visually inspect samples with different ϵ-robustness val-
ues. In Figure 7.5, we report test instances with lowest and highest ϵ-robustness
for each dataset, with correctly classified images in green and incorrectly classi-
fied images in red. We see that samples with low robustness values are not only
less likely to be correctly classified but also often contain irregular shapes and
patterns. These results support the idea that ϵ-robustness is a decent measure
of uncertainty, since it seems to identify instances that are hard to classify.

We emphasise outlier detection and robustness estimation are related but
different notions, and GeF+effectively distinguishes them. Figure 7.6 shows a
few of the most likely and unlikely (Fashion-)Mnist samples under the training
data distribution. While samples are ordered by their marginal density p(x), the
background light is proportional to their ϵ-robustness, with darker colours for
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larger ϵ values. We can clearly see how these measures differ as, for example,
although the model deems 1s highly likely, ϵ-robustness seems to vary with the
shape/orientation of the trace.

Moreover, these two measures complement each other and allow us to better
understand the underlying cause of the model’s uncertainty. Notably, for a con-
sistent model—one that fits the true data-generating distribution if given suffi-
cient data—and a sample x with high p(x) and low ϵ-robustness, one may infer
there is high aleatoric uncertainty. A number nine with an incomplete circle at
the top is a good example of a pattern in handwritten digits that, albeit likely,
is still hard to tell apart from a number four. Conversely, an instance might

Figure 7.5: Test samples from (Fashion-)Mnist datasets with lowest (left) and highest
(right) ϵ-robustness computed by a trained GeF+ model. Correctly and in-
correctly classified examples are shown in green and red, respectively.



7.6 Contrasting Robustness and Likelihood 107

be misshaped and hence unlikely, but still be associated with high robustness
values. In that case, epistemic uncertainty is dominant, that is, the model has
not been trained on similar examples and its high confidence estimate should
not be trusted. Distinguishing the two types of uncertainty is not only insightful
to better understand the behaviour of the model but also helps establish the
correct course of action. Namely, we are better off suspending judgement when
faced with aleatoric uncertainty, whereas cases of epistemic uncertainty can be
addressed by collecting more data and possibly retraining the model.

Figure 7.6: Test samples from (Fashion-)Mnist datasets with lowest (left) and highest
(right) p(x) in a trained GeF+ model. The background light is proportional
to the ϵ-robustness of each instance.
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7.7 Conclusion

Probabilistic Circuits and their credal counterparts are expressive deep genera-
tive models with tractable inference, which makes them a promising option for
large-scale applications. In this chapter, we have proposed a new architecture,
class-selective (C)PCs, that combine efficient robustness computation with high
accuracy on classification tasks, outperforming general (C)PCs. Even though
they excel in discriminative tasks, class-selective PCs as well as GeFs are still
generative models fully endowed with the semantics of graphical models. We
demonstrated how their probabilistic semantics can be brought to bear through
their extension to Credal PCs, which allows us to define and compute a robust-
ness measure named ϵ-robustness. Empirically, we explored how ϵ-robustness
relates to the accuracy and log-likelihood of the model, showing it is a promising
alternative to quantify the reliability of each prediction.

We finally point out some interesting directions for future work. As demon-
strated here, class-selective (C)PCs have proven to be powerful models in clas-
sification tasks, but they arbitrarily place the class variable in a privileged posi-
tion in the network. Future research might investigate how well class-selective
(C)PCs fit the joint distribution and how they would fair in predicting other
variables. Another promising avenue for future research is to explore using dif-
ferent ϵ values for different parts of the architecture. Using a single value might
not yield the best uncertainty measure since perturbing nodes closer to the root
is likely to produce larger variations in the prediction, and thus much of the
robustness analysis might be dominated by these nodes on the top.



Chapter 8
Continuous Mixtures of
Tractable Probabilistic Models

Probabilistic models based on continuous latent spaces, such as variational au-
toencoders, can be understood as uncountable mixture models where components
depend continuously on the latent code. They have proven to be expressive tools
for generative and probabilistic modelling, but are at odds with tractable proba-
bilistic inference, that is, computing marginals and conditionals of the represented
probability distribution. Meanwhile, tractable probabilistic models such as prob-
abilistic circuits (PCs) can be understood as hierarchical discrete mixture models,
and thus are capable of performing exact inference efficiently but often show sub-
par performance in comparison to continuous latent-space models. In this chapter,
we investigate a hybrid approach, namely continuous mixtures of tractable models
with a small latent dimension. While these models are analytically intractable,
they are well amenable to numerical integration schemes based on a finite set of
integration points. With a large enough number of integration points the approx-
imation becomes de-facto exact. Moreover, for a finite set of integration points,
the integration method effectively compiles the continuous mixture into a standard
PC. In experiments, we show that this simple scheme proves remarkably effective, as
PCs learnt this way set new state of the art for tractable models on many standard
density estimation benchmarks.

This chapter is almost integrally based on Alvaro Correia, Gennaro Gala, Erik Quaeghebeur,
Cassio de Campos and Robert Peharz: Continuous Mixtures of Tractable Probabilistic Models, Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI), Vol. 37, No. 01, 2023.
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8.1 Introduction

Probabilistic modelling typically aims to capture the data-generating joint dis-
tribution, which can then be used to perform probabilistic inference to answer
queries of interest. A recurring scheme in probabilistic modelling is the use of
an uncountable mixture model, that is, the data generating distribution is ap-
proximated by

p(x) = Ep(z) [p(x | z)] =
∫
p(x | z) p(z) dz (8.1)

where p(x) is the modelled density over variables X, p(z) is a mixing distribu-
tion (prior) over latent variables Z, and p(x | z) is a conditional distribution of
x given z, also called a mixture component.

Some successful recent examples of uncountable mixtures are variational
autoencoders (VAEs) (Kingma and Welling 2014), generative adversarial net-
works (GANs) (Goodfellow et al. 2014), and normalising Flows (Rezende and
Mohamed 2015). All three of these models use a simple prior p(z), e.g. an
isotropic Gaussian, and represent the mixture components with a neural net-
work. In the case of VAEs, the mixture component is a bona-fide distribution
p(x | z) represented by the the so-called decoder, while for GANs and Flows the
mixture component is a point measure, i.e. a deterministic function x = f(z)1.
The use of continuous neural networks topologically relates the latent space and
the observable space with each other, so that these models can be described as
continuous mixture models. The use of continuous mixtures allows to a certain
extent the interpretation of Z as a (latent) embedding of X but also seems to
be beneficial for generalisation, i.e. to faithfully approximate real-world distri-
butions with rather little training data.

However, while continuous mixture models have shown impressive results
in density estimation and generative modelling, their ability to perform proba-
bilistic inference remains rather limited. In particular, the key inference routines
of marginalisation and conditioning, which together form a consistent reasoning
process (Ghahramani 2015; Jaynes 2003), are generally intractable in these
models, mainly due to the integral in Equation 8.1 which forms a hard compu-
tational problem in general.

Meanwhile, the area of tractable probabilistic modelling, aims for models
which allow for a wide range of exact and efficient inference routines. In that

1In normalising Flows the vectors z and x depend on each other via a bijection, so z is not
exactly latent.
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arena, Probabilistic Circuits (or PCs) are probably the most prominent frame-
work, encompassing models that support efficient marginalisation and condi-
tioning operations. As discussed in Chapter 5, PCs are computational graphs
defined by a structure G and a set of parameters θ, comprising the weights of its
sums nodes and the parameters of its distribution nodes. In this chapter, we are
particularly interested in two specific PC structures corresponding to factorised
distributions and Chow-Liu trees. While these structures are arguably simplistic,
we will show in the experiments section that continuous mixtures of such PCs
outperform all state-of-the-art PC learners on 16 out of 20 common benchmark
datasets.

From a representational point of view, PCs can be interpreted as hierarchical,
discrete mixture models (Peharz 2015; Peharz et al. 2016; Zhao et al. 2016),
i.e. they compute a distribution function that can be generally written as

p(x) =
∑
z′

p(x | z′) p(z′) (8.2)

where Z′ is a discrete (latent) vector, but otherwise the form is similar to the
continuous mixture in Equation 8.1. The number of states of Z′ and thus
the number of represented mixture components p(x | z′) grows exponentially
in the depth of the PC (Peharz 2015; Zhao et al. 2016). Moreover, recent
vectorisation-based implementations (Peharz et al. 2020a) have enabled large
scale PCs (>100M of parameters) at execution speeds comparable to stan-
dard neural networks. These endeavours evidently boosted the performance
of tractable models, but there is still a significant gap to intractable models such
as VAEs. One reason for this performance gap is likely the structural constraints
in PCs, which are required to maintain tractability but are at odds with expres-
sivity. This tension between tractability and expressiveness is a common folklore
in the tractable inference community.

On the other hand, a huge discrete mixture model of the form of Equation 8.2
should in principle be able to outperform moderately sized uncountable mix-
tures. Yet, on vanilla benchmarks, we do not see this result. For instance, a
vanilla VAE with a few million parameters easily gets test log-likelihoods higher
than -90 nats on Binary MNIST (Tomczak and Welling 2018), whereas an Einet
with 84 million parameters (Peharz et al. 2020a) barely gets above -100 nats (or
equivalently 0.184 bits per dimension), as shown in Table 8.6. Thus, a comple-
mentary explanation is that discrete (and hierarchical) mixtures—like PCs—are
hard to learn (or generalise poorly), while continuous mixtures—like VAEs—are
easier to learn (or generalise well).
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In this chapter, we follow a hybrid approach and consider continuous mix-
tures of tractable models. In particular, we consider continuous mixtures of
two very simple tractable models, namely completely factorised distributions (GF
structure) and Chow-Liu Trees (GCLT structure), both of which can be easily ex-
pressed as PCs. Specifically, we consider models of the form

p(x) = Ep(z) [p(x | θ(z))] (8.3)

where p(z) is an isotropic Gaussian prior and p(x | θ(z)) is a PC with its param-
eters depending on z via some neural-network θ(z). While these models are
analytically intractable, we can approximate the marginalisation of z arbitrarily
well with numerical techniques, such as Gaussian quadrature rules and (quasi)
Monte Carlo. The common principle of these methods is that they select a fi-
nite set of integration points {z1, . . . , zN} in either a deterministic or (partially)
random manner and construct a corresponding weight function w(z) such that
Equation 8.3 is approximated as

p(x) = Ep(z) [p(x | θ(z))] ≈
N∑
i=1

w(zi) p(x | θ(zi)). (8.4)

All integration methods we consider become exact for N → ∞ and under cer-
tain conditions on θ(z) one can derive guarantees for the approximation error
for N < ∞. In particular, for (quasi) Monte Carlo integration it is straightfor-
ward to derive probabilistic error guarantees for the approximation quality by
leveraging concentration bounds. Moreover, an empirical observation is that
numerical integration works reasonably well for low dimensional spaces, but
tends to deteriorate for larger dimensionality. Thus, in the experiments that
follow we keep the dimensionality of Z relatively small (≤ 16), so that our
continuous mixtures of tractable models remain ‘morally tractable’.

Of practical relevance is that, for the numerical methods considered in this
work, the integration weights {w(zi)}Ni=1 sum to one2, so that the approxi-
mation in Equation 8.4 can be interpreted as a discrete mixture model. Ad-
ditionally, for fixed zi, each p(x | θ(zi)) is simply a PC with fixed parameters
θi = θ(zi), so that Equation 8.4 in fact yields a mixture of PCs, which in turn
can be again interpreted as a large PC. Thus, we can convert a learnt intractable
model from Equation 8.3 into an approximate PC which facilitates exact in-
ference, that is, ‘performing exact inference in an approximate model’. This
principle is illustrated in Fig. 8.1.

2For Monte Carlo, the weights are naturally given by w(zi) = 1/N.
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Figure 8.1: Continuous mixture model evaluated with N=11 integration points {zi}Ni=1.
Each Pi is a tractable probabilistic model with parameters depending on zi.

To the best of our knowledge, this simple idea has not been explored be-
fore, and yet it delivers astonishing results: On 16 out of 20 of commonly used
density estimation benchmarks, we set new state of the art in the domain of
tractable models, outperforming even the most sophisticated PC structure and
parameter learners. We also achieve competitive results on image datasets,
where in comparison to other PCs, our models produced better samples and
often attained better test log-likelihoods.

8.2 Related Work

The perhaps most widely known continuous mixture model are variational au-
toencoders (VAEs) (Kingma and Welling 2014; Rezende and Mohamed 2015),
specifying the model density as p(x) =

∫
p(x | θ(z)) p(z)dz where p(z) is an

isotropic Gaussian and p(x | θ(z)) is typically a fully factorised distribution of
Gaussians or Binomials with parameters provided by a neural network θ(z), the
so-called decoder, taking z as input. Since the latent code in VAEs is usually
relatively high-dimensional, learning and inference is implemented via learnt
amortised inference (Kingma and Welling 2014).

When using a fully factorised structure (GF), our models specify in fact the
same model as VAEs, which has originally been introduced by McKay (MacKay
1995) under the name density network. Our work essentially re-visits McKay’s
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work, who already mentions: For a hidden vector of sufficiently small dimension-
ality, a simple Monte Carlo approach to the evaluation of these integrals can be
effective. In the experiments, we compare numerical integration methods and
find that randomised quasi Monte Carlo performs best. Moreover, we also use
numerical approximation as a ‘compilation approach’, whereby the continuous
mixture is converted into a tractable discrete mixture that sets new state of the
art among tractable models in a number of datasets (see Table 8.1).

Similar approaches to our method are HyperSPNs (Shih et al. 2021) and
conditional SPNs (Shao et al. 2020), which both use neural nets to compute the
weights of PCs. However, HyperSPNs are primarily a regularisation technique
that applies to a single PC, whereas in this work we use neural nets to learn
continuous mixtures of PCs. In conditional SPNs the parameters are a function
of observed variables, while we use a continuous latent space in this work.

8.3 Inference and Learning

Our model as specified in (8.3) consists of a continuous latent space Z and a
given PC structure G, whose parameters θ(z) are a differentiable function of the
latent variables. We will broadly refer to function θ as decoder and to the model
as a whole as continuous mixtures. We use cm(GF) and cm(GCLT) to denote
continuous mixtures with factorised and CLT structures, respectively.

Amortised inference (Kingma and Welling 2014; Rezende and Mohamed
2015) is the de-facto standard way to learn continuous mixture models. In
this approach, a separate neural network—the so-called encoder—represents an
approximate posterior q(z |x). The encoder and decoder are learnt simultane-
ously by maximising the evidence lower bound (ELBO)

Eq[log p(x | z)− log q(z |x) + log p(z)], (8.5)

which is a lower bound of the (marginal) log-likelihood log p(x) and thus a
principled objective. At the same time, maximising the ELBO is moving q closer
to the true posterior in Kullback-Leibler sense, hence tightening the ELBO.

In this work, we investigate numerical integration as an alternative inference
and learning method. In particular, we do not require an encoder or any other
parametric form of approximate posterior.
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8.3.1 Inference via Numerical Integration

Given a function f , a numerical integration method consists of a set of N inte-
gration points {zi}Ni=1 and a weight function w such that the integration error

ε =
∣∣∣∫ f(z) dz−∑N

i=1 w(zi) f(zi)
∣∣∣ is as small as possible. In this chapter, we are

interested in approximating the density p(x) =
∫
p(x | z) p(z) dz of a cm model,

so that the integration error with integration points {zi}Ni=1 is given as

εcm(x, {zi}Ni=1) =

∣∣∣∣∣
∫
p(x |θ(z)) p(z) dz−

N∑
i=1

w(zi) p(x |θ(zi))

∣∣∣∣∣ .
Quadrature Rules

Quadrature Rules divide the integration domain into sub-intervals and approx-
imate the integrand on these intervals with polynomials, which are easy to in-
tegrate. They yield a set of deterministic integration points and weights as a
function of the degree of the interpolating polynomial. Common quadrature
rules like trapezoidal and Simpson’s rule achieve error bounds of O(N−2) and
O(N−4), respectively. Gaussian quadrature rules go a step further and allow
us to take into account the distribution of Z; e.g. Gauss-Hermite quadrature
is designed for indefinite integrals of the form (8.1) with z ∼ N (0,1). Gaus-
sian quadratures integrate exactly any polynomial of degree 2N−1 or less. That
makes them an attractive and general integration technique, since by the Weier-
strass approximation theorem (Weierstrass 1885), any function can be approx-
imated by a polynomial to an arbitrary degree of precision, under only mild
regularity conditions.

Unfortunately, quadrature rules do not scale well to high dimensions, since
multi-dimensional quadrature rules are usually constructed as the tensor prod-
uct of univariate rules. If a univariate quadrature rule has an error bound of
O(N−r), the corresponding rule in d dimensions with Nd integration points
would achieve an error bound O(N−r/d), which degrades quickly due to the
curse of dimensionality.

Sparse Grids

Sparse grids (Bungartz and Griebel 2004; Smolyak 1960) try to circumvent
the scaling issues of standard quadrature methods via a special truncation of
the tensor product expansion of univariate quadrature rules. This effectively
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reduces the number of integration points to O(N(logN)d−1) without significant
drops in accuracy (Gerstner and Griebel 2010). However, even if the underlying
quadrature formulas are positive, sparse grids can yield negative weights. In our
preliminary experiments, this property of sparse grids was highly problematic,
in particular when inference was used as part of a learning routine.

Monte Carlo (MC)

Monte Carlo methods cast the integral as an expectation such that we can com-
pute

∫
p(x | z) p(z) dz as Ep(z)[p(x | z)] =

∑N
i=1

1/N p(x | zi). MC is easy to use
and especially attractive for high-dimensional problems since its convergence
rate O(N−1/2) is not directly dependent on the problem dimensionality. How-
ever, this convergence rate decelerates quickly as one increases the number of
integration points, which can be too slow.

Quasi-Monte Carlo (QMC) (Caflisch 1998) replaces (pseudo-)random se-
quences of integration points with low-discrepancy sequences, with the intent of
reducing the variance in the MC estimator and converge faster than O(N−1/2).
Crucially, QMC is deterministic, which makes it hard to estimate the integration
error in practice. Randomised quasi-Monte Carlo (RQMC) reintroduces ran-
domness into the low-discrepancy sequences of integration points, allowing for
error estimation (via multiple simulations) and essentially turning QMC into a
variance reduction method (l’Ecuyer 2016).

In our experiments, we opt for RQMC for mainly two reasons.

• First, its convergence does not depend directly on the dimensionality,
meaning we have more freedom to choose the latent dimensionality. In
fact, we empirically observe that increasing the latent dimensionality does
not hurt performance (see Section 8.4.2 for an analysis on the influence
of the dimension of the latent space). We conjecture that training via nu-
merical integration sufficiently regularises the decoder so that it remains
amenable to numerical integration, even when using a relatively large la-
tent dimensionality in the order of tens.

• Second, in contrast to Monte Carlo, it produces integration points of lower
variance (l’Ecuyer 2016), which often facilitates training as shown in Sec-
tion 8.4.2. Moreover, in comparison to QMC, the reintroduction of ran-
domness helps avoid overfitting to a specific set of integration points.
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8.3.2 Learning the Decoder

In principle, continuous mixture models can be learnt in many ways, such as
amortised inference (Kingma and Welling 2014) or adversarial training (Good-
fellow et al. 2014). However, these methods do not encourage the decoder to be
amenable to numerical integration, and thus their approximation by (or compi-
lation to) a mixture of tractable models is subpar. Perhaps not surprisingly, we
find that training via numerical integration is the best way to learn and extract
expressive mixtures of tractable probabilistic models. We compare numerical
integration and variational inference in Section 8.4.1 and in Figure 8.2.

Training via numerical integration simply amounts to selecting a set of in-
tegration points {zi}Ni=1 using any numerical integration method of choice and,
for some training data {xj}Mj=1, maximising the log-likelihood (LL) of the ap-
proximate model with respect to the decoder parameters:

LL =

M∑
j=1

log

N∑
i=1

[
w(zi) p(xj |θ(zi))

]
. (8.6)

For most numerical integration methods, when N → ∞, this objective con-
verges to the exact log-likelihood of the continuous mixture, and naturally for
1≪ N <∞ it serves as a reasonable approximation.

Specifically, when using (RQ)MC methods the inner sum of Equation 8.6 is
unbiased, yielding a negatively biased estimate of the true log-likelihood due
to Jensen’s inequality—i.e. a ‘noisy lower bound’—justifying the approximate
log-likelihood in Equation 8.6 as training objective for similar reasons as the
variational ELBO of Equation 8.5. However, Equation 8.6 should not be con-
fused with the standard ELBO as it does not involve a posterior approximation
and, unlike the ELBO, becomes tight for N →∞. We further note that (RQ)MC
methods to estimate the log-likelihood of latent variable models is not a new
idea and has been widely explored either directly (MacKay 1995) or to improve
ELBO techniques (Burda et al. 2015; Mnih and Rezende 2016; Buchholz et al.
2018). In this chapter, however, we are specifically interested in combining
continuous mixtures with tractable models via numerical integration, as this di-
rection has been explored rather little.

One can interpret our learnt model in two distinct ways. The first is to
interpret it as a ‘factory’ method, whereby each fixed set of latent variables
{zi}Ni=1 yields a tractable model supporting exact likelihood and marginalisa-
tion, namely a PC (trivially a mixture of PCs is a PC). The second is to take it
as an intractable continuous latent variable model, but one that is amenable to
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numerical integration. At test time, we are free to choose the set of integration
points, possibly changing the integration method and number of integration
points N if more or less precision is needed.

8.3.3 Efficient Learning

When using a neural network to fit p(x |θ(z)), computing the backward pass
with respect to the log-likelihood objective in (8.6) can be memory intensive.
We can circumvent that by first finding the K integration points that are most
likely to have generated each training instance. We do so via a forward pass
(with no gradient computation) that allows us to identify the K values of z
(among the N points {zi}Ni=1 defined by the integration method) that maximise
w(z) p(xj |θ(z)) for each xj in a training batch. We then run backprop to opti-
mise a cheaper estimate of the log-likelihood (8.7) which only requiresK values
{zij}Ki=1 for each xj , instead of N

LL′ =

M∑
j=1

log

K∑
i=1

w(zij) p(xj |θ(zij)). (8.7)

For small K this is a crude approximation of the true log-likelihood of the con-
tinuous mixture, but we find empirically that it already yields good gradient es-
timates. Importantly, for K ≪ N this results in large improvements in memory
efficiency. In our experiments, we only use this approximation for non-binary
image datasets for which K = 1 was already sufficient to get good results.

8.3.4 Latent Optimisation

As mentioned in the previous sections, once the decoder is trained, we can
compile a continuous mixture into a PC by fixing a set of integration points
selected by any integration method, leading to a discrete mixture of PCs. How-
ever, rather than using a fixed integration scheme, one might also treat the
integration points as ‘parameters’ and optimise them. Specifically, given train-
ing instances {xj}Mj=1, we might find suitable {zi}Ni=1 by maximising the log-
likelihood:

argmax
{zi}N

i=1

M∑
j=1

log

N∑
i=1

w(zi) p(xj |θ(zi)). (8.8)
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Due to the similarity to (Bojanowski et al. 2018; Park et al. 2019) we refer
to this technique as Latent Optimisation (LO). There are, however, a few differ-
ences in spirit. In (Bojanowski et al. 2018; Park et al. 2019) the decoder and in-
dividual latent representations, one for each training instance, are jointly learnt
to minimise the reconstruction error. The latent space is regularised to follow
a Gaussian prior but otherwise is devoid of any probabilistic interpretation. In
contrast, in our approach the goal is an accurate yet compact approximation
of the true continuous mixture model. Unfortunately, training the decoder and
integration points together would lead to overfitting, meaning that the model
would not translate well to different integration points or methods. For that
reason, we only optimise the integration points as a post-processing step, i.e. the
decoder parameters remain fixed throughout the latent optimisation process.

Our LO approach can also be interpreted as a way to learn (or compile)
PCs, using continuous mixtures as a teacher model or regularizer. In our ex-
periments, we see that this approach is remarkably effective. Specifically, LO
achieves the same test log-likelihoods as RQMC while using considerably fewer
integration points, yielding compacter but still accurate PCs.

8.4 Experiments

We evaluated our methods on common benchmarks for generative models,
namely 20 standard density estimation datasets (Lowd and Davis 2010; Bekker
et al. 2015; Van Haaren and Davis 2012) as well as 4 image datasets, Binary
MNIST (Larochelle and Murray 2011), MNIST (LeCun et al. 1998), Fashion
MNIST (Xiao et al. 2017) and Street View House Numbers (SVHN) (Netzer
et al. 2011). All models were developed in python 3 with PyTorch (Paszke
et al. 2019) and trained with standard commercial GPUs. We used RQMC in
all experiments (w(zi) = 1/N), with samples generated by QMCpy (Choi et al.
2020+). More details on the model and experimental setup as well as extra re-
sults are given in Appendix B. The source code for these experiments is available
at github.com/alcorreia/cm-tpm.

8.4.1 Standard Density Estimation Benchmarks

As a first experiment, we compared continuous mixtures of factorisations, cm(GF),
and continuous mixtures of CLTs3, cm(GCLT), as density estimators on a series of

3CLTs are learnt with the classical algorithm (Chow and Liu 1968) and kept fixed during training.

github.com/alcorreia/cm-tpm
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Table 8.1: Average test log-likelihoods on 20 density estimation benchmarks. We
compare cm(GF), cm(GCLT) and LO(cm(GCLT)) with the best performance
(BestPC) over 5 PC learning algorithms: Einet (Peharz et al. 2020a), Learn-
SPN (Gens and Domingos 2013), ID-SPN (Rooshenas and Lowd 2014), RAT-
SPN (Peharz et al. 2020b) and HCLT (Liu and Van den Broeck 2021). We train
using 210 integration points and we sample 213 mixture components from both
cm(GF) and cm(GCLT). LO is run over 210 integration points.

Dataset BestPC cm(GF) cm(GCLT) LO(cm(GCLT)) Dataset BestPC cm(GF) cm(GCLT) LO(cm(GCLT))
accidents -26.74 -33.27±0.03 -28.69±0.01 -28.81±0.02 jester -52.46 -51.93±0.02 -51.94±0.01 -51.94±0.02
ad -16.07 -18.71±0.15 -14.76±0.10 -14.42±0.09 kdd -2.12 -2.13±0.00 -2.12±0.00 -2.12±0.00
baudio -39.77 -39.02±0.02 -39.02±0.02 -39.04±0.02 kosarek -10.60 -10.71±0.01 -10.56±0.01 -10.55±0.01
bbc -248.33 -240.19±0.29 -242.83±0.55 -242.79±0.58 msnbc -6.03 -6.14±0.01 -6.05±0.00 -6.05±0.00
bnetflix -56.27 -55.49±0.02 -55.31±0.02 -55.36±0.02 msweb -9.73 -9.68±0.00 -9.62±0.01 -9.60±0.01
book -33.83 -33.67±0.04 -33.75±0.03 -33.55±0.02 nltcs -5.99 -5.99±0.00 -5.99±0.01 -5.99±0.00
c20ng -151.47 -148.24±0.10 -148.17±0.09 -148.28±0.11 plants -12.54 -12.45±0.02 -12.26±0.10 -12.27±0.01
cr52 -83.35 -81.52±0.08 -81.17±0.11 -81.31±0.15 pumbs -22.40 -27.67±0.03 -23.71±0.03 -23.70±0.02
cwebkb -151.84 -150.21±0.22 -147.77±0.26 -147.75±0.26 tmovie -50.81 -48.69±0.09 -49.23±0.10 -49.29±0.12
dna -79.05 -95.64±0.37 -84.91±0.09 -84.58±0.10 tretail -10.84 10.85±0.00 -10.82±0.01 -10.81±0.01

Avg. rank 2.85 2.65 1.85 1.75

20 standard commonly used benchmark datasets. In this set of experiments, we
fixed the mixing distribution p(z) to a 4-dimensional standard Gaussian.

We ran our models on each dataset using 5 different random seeds and
trained for up to 200 epochs, with batch size 128, employing early stopping
on the validation set with patience 15 to avoid overfitting. As decoders we
used 6-layer MLPs with a progressively increasing number of units, LeakyReLUs
activations, and batch normalisation layers (Ioffe and Szegedy 2015). For every
optimisation step, we constructed a new set of integration points {zi}Ni=1 from
randomised lattice sequences of size N = 210. We then maximised the log-
likelihood as in Equation 8.6 using Adam (Kingma and Ba 2014).

At test time, the trained models can be evaluated with any number of in-
tegration points N , yielding a mixture of PCs and consequently indeed a stan-
dard PC (Vergari et al. 2020). Table 8.1 reports the test log-likelihoods for 213

components4, averaged over the 5 random seeds, and state-of-the-art (SOTA)
competitors. Our results set SOTA log-likelihoods for tractable models on 16
out of 20 datasets and are competitive on the remaining 4. For each dataset, we
ranked the performance of the models involved from 1 to 4, and reported the
average rank at the bottom of the first half of the table. In particular, we notice
a substantial gap in performance between cm(GCLT) and cm(GF) for the datasets

4This was the largest number of components we used, which seemed sufficient for all datasets,
as the results did not change significantly with additional integration points. For some datasets, the
continuous model is already approximated well with much smaller mixtures. See Appendix B.
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Figure 8.2: Relative performance gap to the best test log-likelihood in Table 8.1 as a func-
tion of the number of integration points and averaged over all 20 datasets.
Latent Optimisation (LO) is run (on purpose) for fewer number of integra-
tion points yet performs best. Lower is better.

accidents, ad, dna and pumbs, which are known to be highly structured. We
want to stress that we used the same hyperparameters for all datasets, and thus
our SOTA results do not stem from extensive tuning efforts.

Figure 8.2 shows the effect of the number of integration points at test time,
by plotting the performance of our models relative to the best results in Ta-
ble 8.1. In this plot of Figure 8.2, we aggregated the results by averaging across
all 20 datasets, but in Figure B.1 in Appendix B we show the same curves for
each individual dataset. Note that cm(GCLT) generally outperforms cm(GF) and
the gap is accentuated when few integration points are used.

Latent Optimisation

We also investigated the effect of Latent Optimisation (LO) and learnt the inte-
gration points after having fit the decoder, as discussed in Section 8.3.4. Specifi-
cally, we run LO to search for a set of integration points for our trained cm(GCLT)
by maximising (8.8) and show the results under LO(cm(GCLT)) both in Table 8.1
and Figure 8.2, where we compare LO against different continuous mixtures.

We see that LO(cm(GCLT)) achieves essentially the same performance as
cm(GCLT) but with 8 times fewer integration points, leading to much smaller
PCs. However, as can be seen in Figure 8.2, for a large number of integration
points, (RQ)MC estimates already have low-variance and there is little room for
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improvement with LO. In fact, in this setting LO is prone to overfitting. This can
be expected when the number of integration points becomes too large (in com-
parison to the number training data points), since they are treated as trainable
parameters. For that reason, we limit our LO experiments to 210 integration
points in all datasets in Table 8.1 and 8.4.

Comparison to Variational Learning

As the main idea in this chapter is connecting continuous mixtures with PCs
via numerical integration, we have used Equation 8.6 to train our models thus
far. However, the processes of training a continuous mixture model and of
converting it into a PC are orthogonal to each other, so we might as well use
traditional VAE training to learn continuous mixtures, i.e. maximising the ELBO
(Equation 8.5) instead. In other words, we can train vanilla VAEs with a small
latent dimensionality and convert the resulting models into PCs using RQMC or
LO.

Table 8.2: Test log-likelihoods for cm(GF)VAE with 4 latent dimensions and trained for
200 epochs on 20 binary density estimation benchmarks. We compute the
ELBO with 1000 MC samples and report the mean and standard deviation of
results obtained with 5 different random seeds.

cm(GF)VAE cm(GF)
Dataset ELBO Mix-27 Mix-28 Mix-29 Mix-210 Mix-211 Mix-212 Mix-213 Mix-213

accidents -34.56±0.19 -37.34±0.62 -35.78±0.23 -35.25±0.12 -34.80±0.15 -34.61±0.25 -34.59±0.27 -34.55±0.25 -33.27±0.03
ad -22.27±0.92 -38.39±2.80 -30.25±2.25 -25.35±1.31 -23.18±1.43 -21.69±0.96 -21.36±0.96 -21.08±1.02 -18.71±0.15
baudio -39.36±0.20 -40.30±0.23 -40.00±0.15 -39.80±0.10 -39.73±0.11 -39.70±0.11 -39.69±0.11 -39.68±0.11 -39.02±0.01
bbc -243.04±0.26 -247.25±0.50 -244.68±0.29 -243.10±0.43 -242.26±0.41 -241.59±0.42 -241.38±0.44 -241.24±0.41 -240.19±0.29
bnetflix -56.38±0.35 -57.30±0.10 -56.97±0.12 -56.78±0.21 -56.74±0.24 -56.72±0.25 -56.71±0.26 -56.71±0.26 -55.49±0.02
book -34.56±0.55 -34.96±0.34 -34.83±0.43 -34.79±0.44 -34.73±0.46 -34.70±0.48 -34.68±0.48 -34.68±0.48 -33.67±0.04
c20ng -149.53±0.32 -152.59±0.88 -151.22±0.40 -150.38±0.13 -149.93±0.22 -149.54±0.24 -149.38±0.30 -149.26±0.32 -148.24±0.10
cr52 -82.62±0.22 -86.08±0.57 -84.40±0.30 -83.05±0.22 -82.40±0.18 -81.94±0.10 -81.80±0.11 -81.66±0.10 -81.52±0.08
cwebkb -151.44±0.45 -153.94±0.34 -152.76±0.09 -152.04±0.28 -151.63±0.29 -151.32±0.43 -151.20±0.44 -151.11±0.47 -150.21±0.22
dna -96.77±0.29 -97.25±0.20 -97.06±0.24 -96.79±0.30 -96.69±0.33 -96.59±0.36 -96.56±0.37 -96.53±0.38 -95.64±0.37
jester -52.79±0.33 -53.26±0.25 -53.04±0.21 -53.00±0.24 -52.99±0.25 -52.98±0.25 -52.98±0.25 -52.98±0.25 -51.93±0.02
kdd -2.05±0.01 -2.17±0.01 -2.17±0.01 -2.16±0.01 -2.16±0.01 -2.15±0.01 -2.15±0.01 -2.14±0.00 -2.13±0.00
kosarek -10.75±0.04 -11.07±0.04 -11.00±0.04 -10.98±0.04 -10.96±0.04 -10.96±0.04 -10.96±0.04 -10.96±0.04 -10.71±0.01
msnbc -6.32±0.00 -6.49±0.00 -6.49±0.00 -6.49±0.00 -6.49±0.00 -6.49±0.00 -6.49±0.00 -6.49±0.00 -6.14±0.01
msweb -9.61±0.04 -10.17±0.10 -10.08±0.06 -10.01±0.04 -9.99±0.04 -9.98±0.04 -9.98±0.04 -9.98±0.04 -9.68±0.00
nltcs -6.19±0.16 -6.35±0.12 -6.35±0.12 -6.35±0.12 -6.35±0.12 -6.35±0.12 -6.35±0.12 -6.35±0.12 -5.99±0.00
plants -12.80±0.07 -14.66±0.68 -13.80±0.45 -13.31±0.07 -13.14±0.03 -13.03±0.07 -13.00±0.08 -12.99±0.08 -12.45±0.02
pumbs -29.21±0.37 -37.79±0.92 -33.54±0.47 -30.77±0.18 -29.78±0.19 -29.25±0.32 -29.11±0.39 -28.86±0.35 -27.67±0.03
tmovie -49.01±0.34 -52.07±0.87 -50.77±0.42 -49.83±0.08 -49.43±0.20 -49.15±0.25 -49.07±0.27 -48.98±0.28 -48.69±0.09
tretail -10.79±0.05 -11.01±0.01 -11.00±0.01 -11.00±0.01 -11.00±0.01 -11.00±0.01 -11.00±0.01 -11.00±0.01 -10.85±0.00

For this purpose, we stuck to the same experimental setup for the 20 datasets
and learnt continuous mixtures with VAE training (Kingma and Welling 2014),
denoted as cm(GF)VAE. Note that we used exactly the same architecture and
four-dimensional latent space for both cm(GF) and cm(GF)VAE, with the only
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difference between these models being the training method. We report the
results in Table 8.2 and Figure 8.2, where we see cm(GF)VAE performs subpar
to training via numerical integration, even with a large number of integration
points at test time. We propose two explanations for this result:

• It might be that cm(GF)VAE models are less amenable to numerical inte-
gration and that their true log-likelihood is actually higher, or conversely,
that models trained with numerical integration are also more amenable
to numerical integration at test time. Indeed, in Table 8.2 we see that, in
11 out of the 20 datasets, we could not match the ELBO (computed with
1000 MC samples) even when approximating cm(GF)VAE with 213 points.

• It is possible numerical integration leads to better model training for small
latent dimensionality. We see evidence for that in Table 8.2, since in all
but 3 datasets, a cm model trained via numerical integration (cm(GF)),
outperformed cm(GF)VAE in all cases (ELBO and numerical integration).

However, evidently traditional VAE training is superior for large latent di-
mensionality, as numerical integration degrades quickly in high dimensional
spaces. Moreover, variational inference is more efficient than numerical inte-
gration: for each data point x, variational inference computes p(x | θ(zi)) for
only a few samples zi from the posterior—even as few as one (Kingma and
Welling 2014)—whereas numerical integration has to compute it once for ev-
ery integration point. Therefore, it would be interesting to be able to extract
good mixtures from models learnt via variational inference. We believe one
can improve on this by sufficiently regularising the decoder, e.g. by penalising
high Lipschitz constants (Arjovsky et al. 2017; Gulrajani et al. 2017), and thus
facilitating numerical integration, but we leave that for future research.

Plain Mixture Models

For MC integration with a fixed number of integration points N , the approxi-
mate model resembles a plain mixture model with equally-probable weights:

p̂(x) =
1

N

N∑
i=1

p(x | θ(zi)) ≈ p(x) =
∫
p(x | θ(z))p(z)dz.

Thus it makes sense to compare our models to plain mixture models. That is,
instead of having mixture components as a function of some latent variable,
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each component p(x | θi) is fully independent with

pmix(x) =
1

N

N∑
i=1

p(x | θi).

In Table 8.3, we compare plain mixtures with 1024 components to a cm(GF)
with 4 latent dimensions. We use a fully factorised structure for both models
and train them using the exact same protocol of previous experiments. The re-
sults in Table 8.3 show that our model outperformed plain mixtures, denoted
dm(GF ), in all datasets, even though both models were trained the exact same
way and have the exact same structure if we consider a cm(GF) compiled to a
1024 components mixture. The only difference is how we parametrise the mix-
ture components. Similarly, we also considered mixture models with learnable
weights, that is

pmix(x | θi) =

N∑
i=1

wip(x | θi),

where {wi}Ni=1 are learnable parameters with wi ≥ 0 and
∑

i wi = 1. We evalu-
ated mixture models with learnable weights trained both via gradient descent,
denoted dm(GWF ), and Expectation Maximisation, denoted dm(GEM

F ).
As shown in Table 8.3, our model outperforms plain mixtures in all datasets

but dna and msnbc, where learning via EM produces better test log-likelihoods.

Table 8.3: Test log-likelihoods for plain mixtures with non-learnable equally-probable
weights trained via gradient descent (dm(GF )), with learnable weights also
trained via gradient descent (dm(GW

F )), with learnable weights trained via EM
(dm(GEM

F )), and cm(GF) on 20 standard density estimation benchmarks. All
models are trained for up to 300 epochs using early stopping and employing
1024 components. Higher is better.

Dataset dm(GF ) dm(GWF ) dm(GEM
F ) cm(GF) Dataset dm(GF ) dm(GWF ) dm(GEM

F ) cm(GF)
accidents -42.58 -40.61 -35.38 -33.94 jester -55.32 -53.54 -52.54 -52.03
ad -104.57 -97.79 -24.91 -20.42 kdd -6.81 -2.15 -2.14 -2.13
baudio -42.24 -40.41 -39.76 -39.14 kosarek -16.20 -11.17 -10.88 -10.75
bbc -281.88 -288.31 -252.82 -241.54 msnbc -6.36 -6.12 -6.03 -6.15
bnetflix -58.19 -57.00 -56.34 -55.71 msweb -18.29 -11.36 -10.00 -9.72
book -41.72 -35.61 -34.66 -33.79 nltcs -6.16 -6.01 -6.00 -6.00
c20ng -163.04 -157.80 -151.79 -149.10 plants -16.66 -14.41 -13.44 -12.65
cr52 -104.91 -98.79 -87.07 -82.33 pumbs -46.59 -42.90 -32.84 -28.50
cwebkb -176.60 -170.90 -154.75 -151.00 tmovie -66.94 -61.64 -52.80 -49.12
dna -101.93 -98.14 -94.46 -96.11 tretail -18.35 -11.42 -10.90 -10.85
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However, existing PC architectures (namely HCLT and RAT-SPNs) already per-
formed better than our models in these datasets, so it is not that surprising that
a discrete mixture works well for these two datasets.

For a fixed number of integration points (mixture components) discrete mix-
ture models are strictly more expressive than continuous ones, since in discrete
mixtures the parameters of each component are completely independent. Yet,
continuous mixtures outperformed discrete ones in almost all cases, indicating
the regularisation introduced by the shared ‘decoder’ does facilitate learning.
This result, albeit not surprising, has never been fully exploited in the tractable
probabilistic models literature, to the best of our knowledge.

8.4.2 Binary MNIST

Table 8.4: Binary-MNIST test log-likelihoods for cm(GF) and cm(GCLT) for different num-
bers of integration points at test time N . Both models were trained with 214

integration points. We also report latent optimisation results, i.e. LO(cm(GF))
and LO(cm(GCLT)), for up to 210 integration points. Higher is better.

Model
N cm(GF) LO(cm(GF)) cm(GCLT) LO(cm(GCLT))

27 -167.29 -144.00 -127.59 -114.02
28 -150.67 -135.89 -119.09 -110.02
29 -138.55 -129.15 -113.15 -107.14
210 -129.24 -123.44 -108.30 -104.37
211 -121.96 - -104.50 -
212 -116.42 - -101.55 -
213 -112.03 - -99.23 -
214 -108.69 - -97.48 -

We further evaluated our models on Binary MNIST (Larochelle and Murray
2011). We followed the same experimental protocol as in the previous experi-
ments, except that we employed a larger latent dimensionality of 16 and there-
fore increased the number of integration points during training to 214. We did
not use convolutions but rather stuck to the 6-layer MLP architecture scheme.
We ran cm(GF) and cm(GCLT) and applied LO to both final models for up to 50
epochs, using early stopping on the validation set to avoid overfitting. Table 8.4
shows that overall cm(GCLT) outperforms cm(GF) and that Latent Optimisation
is remarkably effective when relatively few integration points are used.
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Effect of Latent Space Dimensionality

We also investigated the effect of the latent space dimensionality on the overall
performance of the model. We trained cm(GF) models on Binary MNIST varying
the latent space dimension d, with d = 2i for i ∈ {0, 1, 2, 3, 4, 5, 6}. We train all
models with 214 integration points but vary the number of integration points at
test time from 28 to 216, as shown in Figure 8.3. In the following discussion,
when referring to integration points we mean those used at test time.

Table 8.5: Test log-likelihoods on Binary MNIST for cm(GF) and cm(GF)VAE with varying
latent dimensionality. ELBO computed with 1000 Monte Carlo samples and
log-likelihoods (LL) computed via RQMC with 216 points. Higher is better.

Latent dimensions 1 2 4 8 16 32 64

ELBO (VAE) -154.13 -132.21 -112.77 -97.26 -93.66 -92.24 -92.74
LL (cm(GF)VAE) -148.87 -127.57 -111.57 -110.67 -114.76 -115.36 -116.57
LL (cm(GF)) -128.05 -112.60 -106.97 -103.82 -104.08 -104.29 -104.21

For low numbers of integration points (up to 1024), models with small la-
tent spaces perform best. That is as expected, since small latent spaces are
more amenable to numerical integration. However, as we increase the number
of integration points, it is clear the model benefits from larger latent dimen-
sions, with improvements in performance up until 8 latent dimensions and only
relatively small deterioration thereafter. That is somewhat surprising, since nu-
merical integration in high dimensions is notoriously difficult and we would
expect performance to deteriorate much more drastically as we increase the la-
tent dimensionality. We hypothesise training via numerical integration strongly
regularises the decoder so that the learnt function is smooth enough to allow
for reliable numerical integration irrespective of the latent dimensionality.

In Figure 8.3, we report the same analysis for cm models trained via varia-
tional inference, cm(GF)VAE. We used the same decoder architecture and train-
ing protocol as for cm(GF). Here we do observe that numerical integration strug-
gles with high latent spaces, as test log-likelihoods rapid decline for d ≥ 4. That
is simply because numerical integration becomes harder, since the ELBO actu-
ally improves for higher latent dimensions as shown in Table 8.5. In all cases,
it seems easier to numerically integrate—or extract good mixtures of tractable
models from—models learnt via numerical integration than models trained via
variational inference. For d ≤ 4, numerical integration outperforms variational
inference, whereas for d > 4 we still get better mixtures from cm(GF) than from
cm(GF)VAE, although the latter is more expressive as indicated by the ELBO.
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Figure 8.3: Test log-likelihood on Binary MNIST against latent dimensionality of cm(GF)
and cm(GF)VAE evaluated with different numbers of integration points.

Monte Carlo (MC) vs Randomised Quasi Monte Carlo (RQMC)

We also used Binary MNIST data to compare the performance of Monte Carlo
(MC) and Randomised Quasi Monte Carlo (RQMC) as numerical integration
methods for training continuous mixtures.
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Figure 8.4: Log-likelihood on validation set against number of training epochs for
cm(GF) trained on Binary MNIST with MC (blue) and RQMC (orange). We
use 210 integration points in both cases and plot one standard deviation con-
fidence bands computed with 5 different random seeds.
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In practice, Randomised Quasi Monte Carlo (RQMC) can be seen as a vari-
ance reduction method (l’Ecuyer 2016), which often translates into faster con-
vergence of learning algorithms (Buchholz et al. 2018). We also have observed
RQMC to improve convergence in our use cases, and thus have used RQMC in
all our experiments. To illustrate this, we compare the training of cm(GF) on
Binary MNIST using MC and RQMC. In Figure 8.4, it is clear that RQMC facil-
itates learning and improves the overall solution by a small but non-negligible
amount.

8.4.3 Image Datasets

We further evaluated our methods on (non-binary) image datasets. This time
we use a convolutional architecture similar to that of DCGAN (Radford et al.
2015), but we also included residual convolutional blocks as in (Van Den Oord
et al. 2017). We used a similar training protocol as the one described for bi-
nary datasets, maintaining a maximum of 300 epochs and early-stopping with
patience of 15, but increasing the batch size to 512. As for Binary MNIST, we
used 214 integration points during training for all image datasets. We com-
pare against Einsum Networks (or EiNets) (Peharz et al. 2020a), large scale PCs
specifically designed to take advantage of GPU accelerators.

Modelling Images as Discrete Data

We start of by considering images as discrete data, i.e. we compute densities di-
rectly in the 1-bit pixel space for Binary MNIST, in which case the leaves of each
PC, both Einets and our models, define Bernoulli distributions; and in the 8-bit
pixel space for non-binary image data, which is modelled by 256-dimensional
categorical distributions at the leaves. In this last scenario, we relied on the
approximation introduced in Section 8.3.3 with K = 1 since computing the loss
in Equation 8.6 with 256 parameters per pixel is extremely demanding in terms
of memory requirements.

We experimented with two Einets of different sizes for each dataset. For
Binary MNIST, ‘Small Einet’ and ‘Big Einet’ had respectively 5 and 84 million
parameters; for MNIST, 11 and 90 million parameters; and for SVHN, 28 and
186 million parameters. The architectures of both Einets were defined via the
Poon-Domingos structure scheme (Poon and Domingos 2011), recursively di-
viding the images in contiguous square blocks.

For all models, we fed the training data to the model without pre-clustering
it into different components of the root sum node. Such a pre-processing step is
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Figure 8.5: Image samples from models with 256-dimensional categorical distributions
at the leaves: ‘Small Einet’ (left column), ‘Big Einet’ (middle column) and
cm(GF) (right column). We can see cm(GF) samples are smoother and suffer
less from pixelation issues in comparison to images generated by Einets.
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applicable to any method and does not add to the analysis in this chapter. That
is why sample quality of Einets observed in Figure 8.5 is worse than as reported
in (Peharz et al. 2020a), where images were clustered and a dedicated Einet
was trained on each cluster.

As seen in Table 8.6, continuous mixtures outperform EiNets in all image
datasets but SVHN in the discrete data case. That is remarkable since our mod-
els are extremely compact with the decoder given by a light convolutional archi-
tecture of approximately 100K free parameters for MNIST data, and 300K for
SVHN; orders of magnitude smaller than the competing EiNets. Moreover, our
models also achieve better sample quality. In Figure 8.5, we see samples from
cm(GF) are clearly sharper and do not suffer from intense pixelation like those
from EiNets. We conjecture that one of the main reasons for the better sample
quality of cm(GF) is the absence of product nodes in its architecture, simply be-
cause the children of a product undergo the sampling procedure independently.
This is of course mitigated by sophisticated PC architectures, where each prod-
uct node has a rich context defined by its parents, but is still visible in samples
from Poon-Domingos architectures like the ones we used in our experiments. In
Figure 8.5, we can clearly see the square blocks into which the image space is
partitioned in our Einets.

Table 8.6: Bits per dimension (bpd) for image data and models using categorical distri-
butions at the leaves. Lower is better.

Model ‘Small Einet’ ‘Big Einet’ Ours (214)

Binary-MNIST 0.206 0.184 0.179
MNIST 1.490 1.415 1.282
Fashion-MNIST 3.938 3.737 3.546
SVHN 6.442 5.961 6.307

The comparatively worse performance of our model on SVHN could be due
to the number of integration points. We used 214 for both MNIST and SVHN, but
it is reasonable to assume the latter requires a more sophisticated latent repre-
sentation, and hence higher numbers of integration points at training time. Un-
fortunately, exploring higher numbers of integration points would be too com-
putationally expensive for our compute infrastructure, and we leave that for fu-
ture work. In fact, this showcases an important limitation of out method, which
is its computational cost. Scaling our continuous mixtures to larger datasets
will likely require new learning techniques beyond the ‘shortcut’ discussed in
Section 8.3.3. Other numerical integration methods or regularised variational
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objectives similar to that of VAEs might play a role in enabling more complex
latent spaces that are still well approximated by discrete mixtures.

Modelling Images as Continuous Data

Directly modelling discrete data with continuous distributions is problematic,
since one can achieve arbitrarily high log-likelihoods simply by concentrating
the density mass in narrow regions around each of the possible discrete values
that pixels can assume, {0, . . . , 255}. Therefore, following best practices from
the literature in generative models (Uria et al. 2013; Theis et al. 2015), we em-
ployed a ‘jittering’ process whereby one adds uniform noise to pixel values and
subsequently divides the result by 256. This procedure is also theoretically jus-
tified as the log-likelihoods thus obtained on continuous data are closely related
to the log-likelihoods on the original discrete data (Theis et al. 2015).

In this setting, we used the same architectures and training protocol from
previous experiments with K = 1 (see Section 8.3.3), but this time the leaves
were parametrised as normal distributions with learnable mean and variance.
To avoid numerical issues, we bounded variance values between 1e−6 and 1.0
during training. This parametrisation results in slightly more compact mod-
els: for MNIST, ‘Small Einet’ and ‘Big Einet’ had respectively 5 and 84 million
parameters; and for SVHN, 5 and 163 million parameters.

Table 8.7: Bits per dimension (bpd) for image data and models using normal distribu-
tions at the leaves. Lower is better.

Model ‘Small Einet’ ‘Big Einet’ Ours (214)

MNIST 2.651 2.057 2.762
Fashion-MNIST 4.309 3.938 4.485
SVHN 6.332 5.972 6.400

Interestingly, in that scenario our model cm(GF) is outperformed by both
Einets. One possible explanation is that the optimisation problem is intrinsi-
cally more complicated in the continuous case, with the variance of normal
distributions being particularly hard to optimise (Dai and Wipf 2019). Einets
mitigate that by using online EM (Peharz et al. 2016, 2020a), which performs a
form of natural gradient descent (Sato 1999), and thus greatly facilitates learn-
ing (Amari 1998). Still, there remains a gap in performance between PCs learnt
on discrete data (Table 8.6) and PCs learnt on continuous data (Table 8.7). Cu-
riously, that gap is much smaller on SVHN than on MNIST, possibly because it is
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easier to scale normal distributions, which require learning only two parameters
per leaf in comparison to the 256 parameters of categorical distributions.

In terms of sample quality, continuous mixtures still generate smoother and
less pixelated images than Einets as seen in Figure 8.6. That is a clear man-
ifestation that sample quality and log-likelihood values are weakly correlated
(Theis et al. 2015). Moreover, by comparing Figures 8.5 and 8.6, we can also
conclude leaves parameterised with normal distributions produce images that
are smoother and better looking but also more blurry.

Nonetheless, there is an important caveat in the variability of samples gener-
ated by continuous mixtures with either normal or categorical leaves. Consider
the PC that is induced by the numerical integration of a cm(GF) with N integra-
tion points. Such a PC is essentially a shallow mixture model and is thus only
capable of generating N meaningfully different samples. That is because in any
given mixture component, any variation in the generated samples comes from
univariate distributions at the leaves which only amounts to some added noise
that is visible in the images of Figures 8.5 and 8.6. That is particularly appar-
ent in the case of continuous mixtures with normal distributions, for which we
can plot only the mean values of the sampled leaves, ignoring the variance of
individual pixel values. We can see in Figure 8.7 that images thus generated are
more visually appealing, suggesting the variance at the leaves is not particularly
useful for sample generation.

Naturally, a cm(GF) might be capable of capturing more variance in the data
and, in the context of this experiment, represent a larger collection of images.
That is, we can get a more diverse set of samples if we resample z ∼ p(z) each
time, instead of using a compiled PC approximating the underlying cm(GF). Un-
fortunately, if we rely on the continuous latent space for sampling, we are not,
strictly speaking, sampling from a tractable model, as we must rely in approx-
imate numerical integration methods to compute likelihoods. As mentioned
previously, these can be made arbitrarily precise, but that is still not directly
comparable to fully tractable models like Einets. At any rate, the comparisons
in Figures 8.5, 8.6 and 8.7 remain valid (we sample from a compiled PC), al-
though we recognise they are not enough to fully evaluate the variance of the
images generated by each model.
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Figure 8.6: Image samples from models with normal distributions at the leaves: ‘Small
Einet’ (left column), ‘Big Einet’ (middle column) and cm(GF) (right column).
Once more we see cm(GF) offers better sample quality than Einets.
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Figure 8.7: Image samples from models with normal distributions at the leaves but ignor-
ing the variance of individual pixels: ‘Small Einet’ (left column), ‘Big Einet’
(middle column) and cm(GF) (right column).
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8.4.4 Other Tractable Queries

Our models also support efficient marginalisation, since the discrete approxima-
tion obtained via numerical integration is a PC in itself. That allows us to handle
missing data and perform tasks like inpainting out-of-the-box, without any ex-
tra modelling steps. While this is not the focus of our work—these queries are
well-established for PCs, and it is not surprising that our models support them
as well—it is interesting to see how our models perform in those tasks. For
this we used image data and cm(GF) models with Bernoulli (Binary MNIST) or
normal distributions at the leaves (MNIST and Fashion-MNIST).

We successfully trained our model on Binary MNIST with substantially parts
of the data missing. Note that such a training procedure is delicate for in-
tractable models like VAEs. Furthermore, we included inpainting experiments
on Binary MNIST, MNIST and Fashion-MNIST, i.e. reconstructing missing data
at test time, using a model trained on complete data.

Figure 8.8: Illustration of the ability of cm(GF) to handle missing data via marginalisa-
tion. On top we have Binary MNIST training images with blocks of pixels
omitted at random. We display the training images in colour to distinguish
pixel values from non-observed pixels (depicted in white). On the bottom,
we have samples (continuous Bernoulli) from a cm(GF) trained on incom-
plete Binary MNIST images, like the ones shown above. The models always
generates complete digits, despite never observing one during training.
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Training with missing data

Our models support efficient marginalisation out-of-the-box both at training and
test time, like any other Probabilistic Circuit. More precisely, for any partition
of the domain variables into observed Xo and not observed variables X¬o, one
can compute p(Xo) =

∫
x¬o

p(Xo,x¬o)dx¬o, with the same computational com-
plexity of computing p(X). This is formally demonstrated for Sum-Product Net-
works (Peharz et al. 2015); a class of PCs to which our approximate model∑N

i=1 w(zi)p(x | θ(zi)) belongs to.
In a nutshell, marginalisation in PCs boils down to evaluating marginals

at the leaves, which is often simple to compute (e.g. with univariate leaves).
That is the same for continuous mixtures, where inference is performed via the
approximate model above; itself a PC supporting efficient exact marginalisa-
tion. That means, numerical integration can approximate any marginal query
in continuous mixtures in the exact same principled manner, without requiring
imputation or ad-hoc techniques to handle missing values. We illustrate this by
showing samples from a cm(GF) trained only with incomplete Binary MNIST
samples, as depicted in Figure 8.8. At training time, we omit blocks of pix-
els from each image completely at random, meaning the model never observes
a complete digit. Nonetheless, the model generates complete and reasonable
digits, indicating proper marginalisation of the missing pixels at training time.

Inpainting

Our models also support efficient computation of approximate most probable ex-
planations (MPE) queries. This property also stems directly from the underlying
PC in the approximate model

∑N
i=1 w(zi)p(x | θ(zi)). In Figure 8.9, we demon-

strate this type of query via inpainting with a cm(GF) model on MNIST data. To
compute MPE for the images in Figure 8.9, we first compile the model to a dis-
crete mixture with 214 integration points and evaluate the approximate model
on the incomplete images (possible thanks to efficient marginalisation in PCs).
That allows for a simple (approximate) posterior inference whereby we select,
for each image, the component (integration point) most likely to have gener-
ated it. Finally, we take the most likely value from these individual components
to get the final reconstruction. Albeit simple, this MPE procedure produces good
reconstructions as shown in Figure 8.9. Note that we used the same set of inte-
gration points to run MPE on each and every image in Figure 8.9. That means
these results are compatible with both interpretations of the model: numerical
integration on the continuous mixture, or exact inference on a compiled PC.
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Figure 8.9: Inpainting results on Binary MNIST (top), MNIST (middle) and Fashion-
MNIST (bottom) obtained with cm(GF). In alternating rows, we have first
the original image with a missing part, and below the reconstructed image
output by cm(GF). Pixels from the original (reconstructed) images are de-
picted in blue (red).
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8.5 Discussion

Our experiments demonstrate that continuous mixtures of PCs—or actually
their discrete approximations yielding again PCs—outperform most previous
PC methods on several datasets. At first this might appear surprising, since for
fixed N , a discrete mixture with N components is at least as expressive as a
continuous mixture approximated by N integration points, since the former has
mixture components with free (private) parameters, while the latter has com-
ponents which are determined via a shared neural network and thus entangled
in a complex way. Moreover, the PCs of previous works have been deeper and
used more sophisticated architectures than our continuous mixtures.

The main reason for the efficacy of our approach might be the continuity
of the neural network, which topologically relates the latent and observable
space, thus identifying some underlying latent structure—this is in fact one of
the attractive and widely appreciated properties of VAEs. However, the effect
of continuity on generalisation has not been much studied until the time of
writing, and our results provide an interesting pointer in this regard.

Why does continuity promote generalisation, or act as some form of regular-
isation? For the one, there might be an Occam’s razor effect at work, since our
models are usually much smaller in terms of parameters, yet they are expressive
due to the non-linear nature of neural nets. Furthermore, dependence among
components introduced via the latent space might effectively facilitate learn-
ing, by avoiding redundant or ‘dead’ components, which have been observed in
vanilla PCs (Dang et al. 2022).

These results have two important consequences for future work on tractable
probabilistic models: (i) continuous latent spaces seem a valuable tool for learn-
ing tractable models and (ii) PCs in general seem to have untouched potential
not yet exploited by existing learning methods.

8.6 Conclusion

In this chapter, we have investigated the marriage of continuous mixtures and
tractable probabilistic models. We have observed that even when using sim-
ple structures and standard numerical integration techniques, continuous la-
tent variables facilitate the learning of expressive PCs, as confirmed by SOTA
results on many datasets. Moreover, we have proposed latent optimisation as
an effective way to derive competitive mixture models even with relatively few
components (integration points). We believe this is a promising research av-
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enue both in hybrid inference (Tan and Peharz 2019) and learning of tractable
probabilistic models in general.

Our model is not without limitations, however. In particular, numerical in-
tegration is a computationally expensive training approach—the cost of each
gradient update is proportional to the number of integration points—and we
assume fixed PC structures (independent of the latent variables) that have to
be defined or learnt a-priori. Addressing these two issues are promising av-
enues for future work, especially with extensions to more complex structures,
like HCLTs (Liu and Van den Broeck 2021) or EiNets (Peharz et al. 2020a).





Chapter 9
Conclusions and Future Work

This chapter concludes this thesis with first a summary of our work in Sec-
tion 9.1, where we highlight our main findings and relate our results to the
research questions outlined in Chapter 1. We also discuss the limitations of our
work in Section 9.2 and propose some promising paths for future research in
Section 9.3 that might address some of these limitations or simply answer some
of the new questions that arose from our research.

9.1 Conclusion

Our work has provided some promising insights on learning (tractable) proba-
bilistic models. These are motivated by the utility and need of exact and efficient
probabilistic inference, be it in the context of learning algorithms, as in our work
in Bayesian Networks, or tractable generative models, namely Probabilistic Cir-
cuits. We emphasise exact inference because it assures us of the accuracy and, to
some extent, the reliability of our results. It is probably fair to say that exactness
is often overlooked in the current machine learning literature, which most often
favours the expressive power of the models. Of course, exact inference is only
really useful if we can compute it in reasonable time with plausible resources.
That is why the work in this thesis focus heavily on efficiency and tractability.

We started this journey with Bayesian Networks in Chapters 3 and 4. In
this case the focus was not in tractable models per se—Bayesian Networks are
not necessarily tractable themselves—but on the efficiency of exact learning
algorithms. We then moved on to Probabilistic Circuits contributing new algo-
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rithms for structure learning in Chapter 6 and parameter learning in Chapter 8
that extended the range of applications for PCs as well as uncovered some new
avenues to increase the expressive power of these tractable models. We also
studied ways to quantify the robustness of PCs in Chapter 7, drawing a few par-
allels with the model’s likelihood function and accuracy. In the following, we
dive a bit deeper into the conclusions we can derive from each of these chapters
in relation to the research questions that we proposed in Chapter 1.

(Q1) Can we still improve the computational efficiency of exact structure
learning of BNs via pruning techniques?

In Chapter 3, we have showed that by studying the properties of the
gamma and likelihood functions we could derive new and tighter upper
bounds for the Bayesian Dirichlet equivalent uniform (BDeu) score. That
is promising since these new bounds allow us to prune the search space
in exact structure learning more aggressively, especially when consider-
ing large or no maximum in-degree (maximum number of parents per
variable). However, in this work we have not implemented these upper
bounds into exact structure learning solvers, so we cannot answer for cer-
tain what the real impact of our bounds will be. This research also lead
to a somewhat tangential result discussed in the rather short Chapter 4.
We empirically showed that the BDeu score is highly sensitive to the prior
associated with the Equivalent Sample Size or ESS, drawing attention to
the fact that one needs to be careful when setting this hyperparameter
since no amount of data seems to render the final learnt architecture fully
independent of the ESS value.

(Q2) How to improve the performance of PCs in classification tasks?

Probabilistic Circuits are generative models by nature and often lag behind
discriminative models, like Random Forests (Breiman 2001) and XGBoost
(Chen and Guestrin 2016), in terms of classification accuracy. Nonethe-
less, our research has shown that we can significantly improve the per-
formance of PCs in classification tasks via architecture design. In Chap-
ter 7 we show that class-selective architectures, which simply dedicate
the last layer to the class variable, already improve accuracy significantly
in comparison to standard architectures that treat explanatory and target
variables equally. Moreover, in the research discussed in Chapter 6 we
showed that PCs generalise Decision Trees and that, consequently, we can
extend any classification Decision Tree or Random Forest to a fully gen-
erative model represented by a PC. That gave rise to a new class of PCs,
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named Generative Forests, that effectively borrows its learning algorithm
from the literature on Decision Trees and by design achieves the exact
same performance as Random Forests in classification tasks. These results
set forth that the introduction of inductive biases in the PC architecture is
a promising and already highly effective answer to this research question.

(Q3) Can we leverage continuous latent variables in PCs?

In Chapter 8 we proposed continuous mixtures of PCs as a way to intro-
duce a single continuous latent variable into the realm of Probabilistic
Circuits. In practice, we used a learnable function, a neural network,
to map the latent space to the parameters of a PC with fixed structure.
We showed that we can train and run inference on these models using
out-of-the-shelf numerical integration methods with surprisingly good re-
sults. Even with simplistic PC architectures, namely fully factorised or
Chow-Liu-Tree structures, our continuous mixtures outperformed state-
of-the-art PCs in a number of density estimation tasks. With that we can
confidently answer this research question with a resounding yes.

(Q4) How to quantify the robustness or reliability of PCs?

We have tried to answer this question by studying two different signals:
ϵ-robustness (Maua et al. 2018) and the likelihood function. In our work,
presented in Chapter 7, we investigated how to make ϵ-robustness more
efficient via a new architecture, called class-selective, for which we can
compute such robustness values with a single pass through the network.
Moreover, we showed that ϵ-robustness is correlated with accuracy both
in class-selective PCs and GeFs, which imbues ϵ-robustness with a notion
of reliability. We also studied the likelihood function, which can be evalu-
ated exactly in PCs and is also related to reliability as a means for outlier
detection. Intuitively, a model is not expected to be reliable on out-of-
domain samples since those are, by definition, statistically different from
the training data. We showed that GeFs effectively identify outliers sim-
ply by monitoring the likelihood, which adds virtually no computational
overhead on top of the regular inference routing for classification. This
is somewhat surprising since deep generative models tend to be unreli-
able outlier detectors (Nalisnick et al. 2018), although some positive re-
sults had already been reported for PCs (Peharz et al. 2020b). Finally, we
also contrasted ϵ-robustness and the likelihood function, showing they are
quite distinct and capture different notions of uncertainty, both of which
might be useful to quantify the reliability of a prediction.
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9.2 Limitations

In this section, we discuss the limitations of our work. We outline what we be-
lieve to be the main drawbacks in our work on upper bounds for the BDeu score,
and in the new Probabilistic Circuits models we proposed, namely Generative
Forests and Continuous Mixtures.

9.2.1 BDeu Upper Bounds

Our new upper bounds are tighter and prune the search space more aggressively
than previous results found in the literature, e.g. (de Campos and Ji 2011).
However, a limitation of our results is that we cannot yet ascertain whether our
theoretical complexity results match practice. It remains to be seen whether our
upper bounds indeed improve the efficiency of exact structure learning algo-
rithms when integrated into existing software, which we leave for future work.

9.2.2 Generative Forests

The limitations of Generative Forests (or GeFs) that we are going to discuss are
in relation to Random Forests. That is because GeFs subsume Random Forests
and could replace them in a number of applications where one needs to handle
missing data or detect outliers besides good classification performance.

The first limitation we address is the computational overhead in comparison
to traditional Random Forests, which unfortunately is non-negligible both in
terms of memory requirements and inference cost. The memory overhead is
obvious when we realise GeFs store, for each leaf of each tree, the parameters of
a full joint distribution, which grows at best linearly in the number of variables.
The additional inference cost in GeFs is not significant for complete data, as
shown in Section 6.6, but might be much higher for incomplete data, since we
might be forced to visit multiple branches of each tree; each split on a non-
observed variable requires running both descendant branches. Of course, this
additional computational and memory toll pales in comparison to the cost and
size of modern machine learning models that have grown to billions, if not
trillions, of parameters. Still, they might be significant in comparison to the
very low computational demands of Random Forests; one of the main selling
points of these models that makes them appealing to applications requiring low
latency or disposing of little computing power.

One way we could address this limitation is to add a full joint distribution
only to leaves with large numbers of nodes. The remaining leaves could simply
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output a constant, since leaves with few training datapoints contribute less to
the final result1 and their density estimators are unlikely to be very reliable.
That saves computational effort during training, as we do not require fitting a
distribution on every leaf, and during inference since we do not have to evaluate
the distribution of small leaves.

The second limitation relates to the additional modelling decisions and as-
sumptions that GeFs impose. Notably, one has to decide on the form of the
parametric distribution in each leaf, which requires extra information about the
data and might introduce undesirable biases. That said, GeDTs (and GeFs) can
maintain the same conditional distribution over the target variable of the under-
lying Random Forest, and thus these extra modelling decisions are innocuous
to the classification function defined by the original model.

9.2.3 Continuous Mixtures of Tractable Probabilistic Models

Our empirical results show continuous latent variables are indeed useful tools
for learning tractable probabilistic models or, to be more precise, Probabilistic
Circuits. However, once again our models introduce additional computational
cost. Training continuous mixtures via numerical integration is computationally
expensive; the cost of each gradient step is directly proportional to the number
of integration points used. Moreover, even though the models can be repre-
sented quite compactly via the neural network decoder, the full compiled PC
can become quite large even for modest numbers of integration points.

All in all, we believe continuous latent variables or similarly motivated op-
timisation tools might be an important ingredient of future PC learning algo-
rithms. That said, at this point these methods are limited to only one contin-
uous latent variable and it is not entirely clear how to extend them to include
multiple continuous latent variables and sophisticated latent structures in a sin-
gle architecture. That could introduce a chain of numerical approximations that
might become too imprecise or too expensive to run. For instance, consider two
continuous latent variables Z1 and Z2 defining the following distribution

p(x) =

∫ ∫
p(x|θ(z2))p(z2|z1)p(z1)dz2dz1.

Each value that Z1 assumes defines a new distribution over X via p(x|θ(z2)),
where θ is again some function mapping latent variables to PC parameters. If
the numerical precision we need requires N integration points, then we have

1Sum-node weights are proportional to the number of training points in each of its children.
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to sample N values from p(z1) and N values for each p(z2|z1). That means we
need to evaluate p(x|θ(z2)) a total of N2 times, and the computational cost is
exponential on the number of sequential continuous latent variables. A possible
way to mitigate this exponential growth is through importance sampling, so
that we can continue to use only N integration points at each step in the chain
as in (Elvira et al. 2020), but we leave that for future work.

9.3 Future Research

In this section, we identify a few promising directions for future research, specif-
ically in what touches Generative Forests and Continuous Mixtures.

9.3.1 Generative Forests

Our work presented in Chapter 6 was focused on classification tasks. The most
natural next step for this research would be to extend Generative Forests to re-
gression tasks as well. The challenge, as already discussed in Section 6.7, is that
GeFs actually propagate distributions through the graph. For classification tasks
the distributions are categorical, and thus it is straightforward to aggregate two
distributions coming from different leaves; we simply compute a weighted aver-
age which returns another categorical distribution. That is not as simple when
the target variable is continuous. Even if the leaf distributions are as simple
as normal distributions, once we aggregate two normal distributions, we get a
mixture that we can no longer represent with only two parameters as a normal
distribution. That means that if the observed variables match multiples leaves,
which happens in the case of missing data, we need to propagate increasingly
complex distributions up through the network. This is a computational and
coding challenge rather than a theoretical impediment, but it means Generative
Forest would be more costly to run on regression than on classification tasks.

Another interesting research direction is to consider other tree learning algo-
rithms, like gradient boosting (Friedman 2001), to learn the structure of GeFs.
Unfortunately, this is probably only uncomplicated for binary classification. For
regression problems we stumble on the challenges mentioned above and, for
multi-class classification tasks, boosting methods often use one tree per class
(Chen et al. 2016), which might be hard to represent with a compact GeF.
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9.3.2 Continuous Mixtures

There are a few promising research avenues in expanding the use of continuous
mixtures to other PC architectures and learning algorithms. The first one, that
has already been mentioned when discussed limitations, is including multiple
continuous latent variables into a single PC architecture. Another interesting
path for future work is investigating how beneficial are continuous mixtures
of large and sophisticated architectures, like Einets (Peharz et al. 2020a). For
instance, the simple architectures we considered in Chapter 8 had no product
nodes, which might change the learning dynamics significantly. Finally, perhaps
the most promising and challenging research direction is making the structure
also dependent on the continuous latent variable. One could consider differen-
tiable DAG structure learners (Zheng et al. 2018) as a way to fit structure and
parameters at the same time with gradient descent.

One could also investigate alternatives to numerical integration for learning
continuous mixtures. As discussed in Section 8.4.1, we hypothesise that, with
sufficient regularisation, other more efficient methods like variational training
can yield continuous mixtures that are amenable to numerical integration, and
hence can be effectively compiled to PCs. This could make continuous mixtures
much more scalable, opening the way for PCs of comparable size to modern
deep neural networks with billions of parameters.
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Appendix

This appendix contains detailed experimental description and extra results per-
taining to Chapters 6 and 8.

A Chapter 6

All 21 datasets we used in the experiments were obtained directly from the
OpenML-CC18 benchmark web-page2 (Vanschoren et al. 2013). The only pre-
processing step was standardising continuous features (mean µ = 0 and stan-
dard deviation σ = 1) and mapping categorical features to {0, . . . ,Ki − 1}.
The datasets as well as the source code are available at https://github.com/
alcorreia/gefs. In the following we briefly discuss each of the methods and
their implementations. The source code is all in Python 3 and all experiments
were run in a single laptop with a modern CPU.

A.1 Random Forest implementation

In all experiments, the structure of all models is kept the same, that is, they
are all derived from the same Random Forest and thus share the same partition
of the feature space. For every dataset, the Random Forests were composed
of 100 ‘deep’ trees, that is, the only stop criterion is the impurity of the class
variable, possibly leading to many leaves with a single sample. Each tree is
learned on a bootstrap sample of the same size of the training dataset, and each
split only evaluates

√
m variables, with m the total number of features. We use

the Gini impurity measure as the criterion to select the best split in the decision-
tree learning and rank surrogate splits according to how well they predict the

2https://www.openml.org/s/99/data

https://github.com/alcorreia/gefs
https://github.com/alcorreia/gefs
https://www.openml.org/s/99/data
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best split, as in (Therneau et al. 1997). The trees are all binary, with splits on
categorical variables defined by two subsets of the possible instantiations. That
is somewhat different from other implementations, where the splits are either
‘full’, yielding one child per category, or given by a threshold, which implicitly
assumes categorical variables are ordinal.

A.2 ‘Built-in’ Methods

These are methods for treating missing values that do not require external mod-
els, and hence are ‘built-in’ into the decision tree structure. In fact, they consist
of slight modifications to the inference procedure.

Surrogate splits (Breiman et al. 1984; Therneau et al. 1997). During train-
ing, once the best split is defined, one ranks alternative splits according to the
number of instances that they send to the same branch as the best split. At test
time, if the split variable is not observed, one tries the surrogate splits in order
(starting with that which most resembles the best split). If none of the surrogate
split variables is available, the instance is sent to the branch with the highest
number of data points at training time. Surrogate splits have two notable draw-
backs: (i) their performance is heavily dependent on the correlation between
variables; (ii) they require storing every possible split to be guaranteed to work
for all missing-value configurations, which is rather computational and memory
intensive, especially for large ensembles.

Friedman method (Friedman 1977; Quinlan 1987a). Whenever a split vari-
able is not observed, one follows both branches of the tree. That means any
instance with missing value is mapped to multiple leaves, and the final pre-
diction is given by the majority class across the sum of the counts of all these
leaves. If CA(j) gives the number of training instances of class j in cell A, we
can write Friedman’s methods as

f(x) = argmax
j∈{1,...,K}

∑
A∈A

1(x ∈ A)CA(j),

CA(j) =

n∑
i=1

1(xi ∈ A)1(yi = j),

where i runs through the n training instances (xi, yi), and j runs through the
K possible classes. Note that Friedman’s method can be seen as a simplified
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version of GeFs where the density over explanatory variables is constant and
the same in every leaf.

A.3 Imputation methods

It is not surprising that most of the work on handling missing data in decision
trees and random forests rely on data imputation (Saar-Tsechansky and Provost
2007). That is, another or multiple other models are used to predict the missing
values before feeding the data to the tree-based classifier. In the experiments
we compare a few different types of imputation methods:

Mean Missing values are imputed with the mean for continuous variables or
the most frequent observation for categorical variables.

KNN Similar to the simple method above but the means or most frequent
values are taken over the K-nearest neighbours. We use a standard K-nearest
neighbour implementation from scikit-learn (Pedregosa et al. 2011) with
K=7. However, the distance function is updated to better accommodate mixed
data types. Following, Huang et al. (Huang 1997), we define the distance
measure as

d(xa,xb) = γ

m0∑
i=0

wiδ(xa[i],xb[i]) +

m1∑
i=m0

wi

√
(xa[i]− xb[i])2,

where γ is a parameter representing the relative importance of categorical and
numerical features, wi is the weight of feature i, and, without loss of generality,
we assume features are ordered so that the first m0 variables are categorical.
The δ function is simply the Hamming distance: δ(xa[i],xb[i]) = 1 if xa[i] ̸=
xb[i], and δ(xa[i],xb[i]) = 0 otherwise. As we have no reason to favour any
feature or feature type, we set both γ and every wi to one.

MissForest (Stekhoven and Bühlmann 2012). For each variable Xi ∈ X , one
learns a Random Forest (classifier/regressor) that is used to predict unobserved
values of Xi given the other variables X \Xi. As more than one variable might
be unobserved, MissForest starts by imputing missing values with the mean
(or mode) and then iteratively updates its initial guess using the Random For-
est predictors. The original MissForest algorithm proposed in (Stekhoven and
Bühlmann 2012) also updates the Random Forest predictors at every iteration.
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However, in our experiments that would allow MissForest to exploit test data in-
formation, which could compromise the results. Therefore, we fit the Random
Forest predictors in the training data only and keep them fixed at test time. Note
that the algorithm remains iterative, since the imputed values are still fed to the
predictors in the next iteration. We use a standard Python implementation of
MissForests from missingpy—adapted to accommodate the changes mentioned
above—which relies on the scikit-learn implementation of Random Forests.

A.4 Generative Forests

Vanilla GeFs What we call vanilla GeF, or simply GeF, is a model where the
distribution at the leaves is given by a fully factorised model, that is, for each
leaf v, pv(x, y) = pv(x1)pv(x2) . . . pv(xm)pv(y). This is probably the simplest
model that one can fit at the leaves and is clearly class-factorised. Therefore,
vanilla GeFs preserve full backward-compatibility with the original RF, yielding
the exact same prediction function for complete data.

GeF with LearnSPN For GeF(LearnSPN) and GeF+(LearnSPN), the LearnSPN
algorithm (Gens and Domingos 2013) is run only at leaves with more than
30 samples, and smaller leaves are modelled by a fully factorised model as in
vanilla GeFs. That saves computational time with little performance impact, as
the model derived from LearnSPN with few samples would be similarly simplis-
tic. We run the LearnSPN algorithm as follows: sum nodes split the samples
via K-means clustering with K=2, and product nodes split the variables with
an independence threshold of 0.001 (pair of variables for which the indepen-
dence test yields a p-value lower than the threshold are considered indepen-
dent). We do not force independence between the class Y and input variables
X in LearnSPN, which explains why, in contrast to GeF, GeF(LearnSPN) does
not necessarily yield the same predictions as the original Random Forest.

LearnSPN Similarly, we also learn a PC by applying the LearnSPN algorithm
(Gens and Domingos 2013) to the entire dataset. The hyperparameters for this
experiment are the same as for GeFs with LearnSPN, but we use a variant of
LearnSPN that yields class-selective PCs, which have been shown to outperform
standard LearnSPN in classification tasks (Correia and de Campos 2019).
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B Chapter 8

B.1 Model Description

Latent Space

We use latent variables of dimension d=4 for the 20 density estimation bench-
marks (Lowd and Davis 2010; Van Haaren and Davis 2012; Bekker et al. 2015),
and d=16 for the image datasets, Binary MNIST (Larochelle and Murray 2011),
MNIST (LeCun et al. 1998), Fashion-MNIST (Xiao et al. 2017) and Street View
House Numbers (SVHN) (Netzer et al. 2011). In all cases, the latent space was
distributed as a standard normal, z ∼ N (0, 1)d, and integration points {zi}Ni=1

were generated via a low-discrepancy lattice sequence. In practice, quasi-Monte
Carlo methods are designed for sequences {ui}Ni=1 mimicking a uniform distri-
bution U(0, 1)d. However, for most commonly used distributions, it is easy to
map uniform samples to the random variable of interest. For instance, for Z
distributed as a multivariate normal with mean µ and covariance Σ, we can
construct a sequence {zi}Ni=1 from {ui}Ni=1 as

zi = Φ−1(ui)Σ
1/2 + µ,

where Φ−1 is the inverse CDF of a standard normal distribution. We chose a
standard normal prior to facilitate the comparison to VAEs (Kingma and Welling
2014). We have tried other distributions in preliminary experiments, especially
U(0, 1)d, but have not observed significant differences in performance.

Decoder architecture

In all experiments, only two architectures were considered depending on the
type of data. For binary datasets, the decoder was a multi-layer perceptron
(MLP) with 6 layers of progressively increasing hidden size (from latent di-
mension to input dimension). For non-binary image datasets we used a con-
volutional architecture similar to that of DCGAN (Radford et al. 2015) but we
included residual convolutional blocks as in (Van Den Oord et al. 2017). The
hyperparameters of these architectures were kept the same for all experiments,
only varying input and output dimensions to accommodate different data di-
mensionality or parametrisation at the leaves (normal vs. categorical distribu-
tions). In all cases, we used LeakyReLU activations and batch normalisation
(Ioffe and Szegedy 2015).
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Structure in Tractable Probabilistic Models

Our method consists of a continuous mixture of tractable probabilistic models.
The parameters of these models are a function of the continuous latent vari-
ables, and thus learnt, but their structure is assumed and has to be defined a
priori. As discussed in the main text, we consider two types of structure: a fully
factorised distribution GF and a Chow-Liu Tree GCLT, which is learnt a priori us-
ing the training data. Ultimately, both structures are a composition of univariate
distributions. For all these models, we use Bernoulli distributions with learn-
able parameters for binary data, and 256-dimensional categorical distributions
for non-binary image data. We also considered treating images as continuous
data, in which case we use normal distributions at the leaves and normalise the
images to [0, 1] as is common in the literature (Theis et al. 2015): we added
uniform noise to each image and divided pixel values by 256. See Appendix E
for results in this setting.

In the case of Einets (Peharz et al. 2020a), we used the publicly available
implementation by Peharz et al.3 with the exact same leaf distributions as just
described above, and trained via EM. We used Poon-Domingos architectures
(Poon and Domingos 2011) of different sizes: one partitioning the image space
into 4 × 4 contiguous square blocks and another partitioning the image space
into 7×7 blocks in the case of MNIST and into 8×8 blocks in the case of SVHN.

Training

We train via numerical integration with Randomised quasi-Monte Carlo (or
RQMC). At each training step, we generate a new low-discrepancy lattice se-
quence via random shifting. That is, we generate a lattice sequence {ui}Ni=1

with each ui in (0, 1)d and, at each iteration, we shift it by adding a single
random point to all other points in the sequence modulo 1.

u′
i = ui + ushift(mod1), ushift ∼ U(0, 1)d.

After shifting, {ui}Ni=1 is mapped to {zi}Ni=1 via a suitable transformation as de-
scribed above. This is the simplest form of randomisation in RQMC and works
well in practice. We recommend (l’Ecuyer 2016) for a good overview of RQMC
methods. We train all models (including cm(GF)VAE) for 300 epochs using Adam
(Kingma and Ba 2014) with learning rate of 1e−3, β1=0.9 and β2=0.999. We
also track performance on the validation set and use early-stopping with a pa-
tience of 15 to avoid overfitting.

3https://github.com/cambridge-mlg/EinsumNetworks.
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In the experiments with binary datasets, we used a batch size of 128 and 210

integration points to train both cm(GF) and cm(GCLT). We report results across
5 random seeds, which we set to {0, 1, 2, 3, 4}. At test time, RQMC sequences
are still stochastic, so we evaluate models with random seed set to 42 for repro-
ducibility. In the experiments with image datasets, we used a larger batch size
of 512 and also increased the number of integration points 214.

B.2 Additional Experimental Results

In this subsection, we present additional results on continuous mixtures, show-
ing test log-likelihoods on the 20 binary density estimation benchmarks for dif-
ferent numbers of integration points in Tables B.1 and B.2. We also include
latent optimisation results for cm(GCLT) in Table B.3, showing significant im-
provements especially for few integration points. The same trend can be ob-
served in Figure B.1, where we show the performance of cm(GF), cm(GCLT),
LO(cm(GCLT)) and cm(GF)VAE for all 20 density estimation benchmarks for dif-
ferent numbers of integration points.

Table B.1: Average cm(GF) test log-likelihoods across 5 random seeds on 20 density es-
timation benchmarks. Higher is better

Dataset Mix-27 Mix-28 Mix-29 Mix-210 Mix-211 Mix-212 Mix-213

accidents -38.78±0.22 -36.62±0.17 -34.85±0.11 -33.94±0.05 -33.58±0.05 -33.41±0.05 -33.27±0.03
ad -42.89±2.39 -32.50±1.44 -23.79±0.93 -20.42±0.14 -19.59±0.11 -19.18±0.10 -18.71±0.15
baudio -40.24±0.07 -39.76±0.03 -39.34±0.01 -39.14±0.01 -39.07±0.01 -39.05±0.01 -39.02±0.01
bbc -249.58±0.66 -245.66±0.68 -243.06±0.34 -241.54±0.31 -240.78±0.36 -240.53±0.32 -240.19±0.29
bnetflix -57.35±0.09 -56.65±0.12 -56.02±0.01 -55.71±0.01 -55.58±0.01 -55.54±0.01 -55.49±0.02
book -34.51±0.05 -34.16±0.03 -33.92±0.04 -33.79±0.04 -33.72±0.04 -33.69±0.04 -33.67±0.04
c20ng -153.71±0.56 -151.58±0.45 -149.96±0.30 -149.10±0.21 -148.64±0.15 -148.45±0.12 -148.24±0.10
cr52 -87.57±0.64 -85.51±0.48 -83.35±0.37 -82.33±0.18 -81.93±0.13 -81.74±0.08 -81.52±0.08
cwebkb -155.62±0.68 -153.70±0.43 -151.93±0.26 -151.00±0.17 -150.59±0.18 -150.43±0.21 -150.21±0.22
dna -99.04±0.50 -97.80±0.17 -96.62±0.17 -96.11±0.25 -95.86±0.31 -95.77±0.33 -95.64±0.37
jester -52.97±0.03 -52.53±0.04 -52.20±0.02 -52.03±0.01 -51.97±0.02 -51.95±0.02 -51.93±0.02
kdd -2.20±0.03 -2.18±0.04 -2.15±0.01 -2.13±0.00 -2.13±0.00 -2.13±0.00 -2.13±0.00
kosarek -11.11±0.04 -10.93±0.03 -10.81±0.02 -10.75±0.01 -10.73±0.01 -10.72±0.01 -10.71±0.01
msnbc -6.39±0.04 -6.25±0.02 -6.17±0.01 -6.15±0.01 -6.15±0.01 -6.15±0.01 -6.14±0.01
msweb -10.31±0.04 -10.03±0.04 -9.80±0.01 -9.72±0.00 -9.69±0.00 -9.69±0.00 -9.68±0.00
nltcs -6.08±0.00 -6.03±0.00 -6.00±0.00 -6.00±0.00 -6.00±0.00 -5.99±0.00 -5.99±0.00
plants -14.72±0.16 -13.71±0.14 -12.99±0.02 -12.65±0.03 -12.54±0.03 -12.49±0.03 -12.45±0.02
pumbs -39.41±0.89 -33.67±0.52 -30.01±0.10 -28.50±0.04 -28.05±0.05 -27.85±0.02 -27.67±0.03
tmovie -51.95±0.26 -50.68±0.08 -49.59±0.13 -49.12±0.08 -48.87±0.08 -48.78±0.10 -48.69±0.09
tretail -10.96±0.04 -10.90±0.02 -10.87±0.00 -10.85±0.00 -10.85±0.00 -10.85±0.00 -10.85±0.00
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Table B.2: Average cm(GCLT) test log-likelihoods across 5 random seeds on 20 density
estimation benchmarks. Higher is better.

Dataset Mix-27 Mix-28 Mix-29 Mix-210 Mix-211 Mix-212 Mix-213

accidents -31.00±0.15 -30.06±0.09 -29.28±0.05 -28.93±0.02 -28.79±0.01 -28.74±0.01 -28.69±0.01
ad -16.67±0.39 -15.89±0.25 -15.27±0.08 -14.97±0.11 -14.85±0.11 -14.81±0.10 -14.76±0.10
baudio -39.88±0.07 -39.51±0.08 -39.21±0.02 -39.08±0.02 -39.04±0.02 -39.03±0.02 -39.02±0.02
bbc -249.01±0.94 -246.56±0.73 -244.75±0.51 -243.75±0.56 -243.27±0.54 -243.07±0.52 -242.83±0.55
bnetflix -56.54±0.06 -56.01±0.07 -55.60±0.03 -55.42±0.02 -55.35±0.02 -55.34±0.02 -55.31±0.02
book -34.29±0.10 -34.04±0.04 -33.90±0.03 -33.83±0.03 -33.79±0.03 -33.77±0.03 -33.75±0.03
c20ng -151.59±0.45 -150.39±0.28 -149.28±0.17 -148.68±0.11 -148.41±0.09 -148.28±0.09 -148.17±0.09
cr52 -85.39±0.40 -83.82±0.24 -82.35±0.14 -81.70±0.09 -81.41±0.11 -81.30±0.09 -81.17±0.11
cwebkb -150.73±0.28 -149.55±0.20 -148.59±0.21 -148.18±0.24 -147.94±0.25 -147.86±0.26 -147.77±0.26
dna -86.79±0.25 -86.09±0.16 -85.49±0.09 -85.16±0.08 -85.01±0.07 -84.96±0.09 -84.91±0.09
jester -52.55±0.05 -52.27±0.03 -52.06±0.02 -51.98±0.01 -51.95±0.01 -51.95±0.01 -51.94±0.01
kdd -2.16±0.01 -2.14±0.00 -2.13±0.00 -2.12±0.00 -2.12±0.00 -2.12±0.00 -2.12±0.00
kosarek -10.68±0.03 -10.63±0.02 -10.59±0.01 -10.57±0.01 -10.57±0.01 -10.56±0.01 -10.56±0.01
msnbc -6.44±0.16 -6.22±0.10 -6.09±0.01 -6.07±0.00 -6.06±0.00 -6.06±0.00 -6.05±0.00
msweb -9.89±0.05 -9.78±0.03 -9.67±0.02 -9.64±0.01 -9.63±0.01 -9.63±0.01 -9.62±0.01
nltcs -6.05±0.02 -6.03±0.02 -6.00±0.00 -6.00±0.00 -6.00±0.00 -6.00±0.00 -5.99±0.00
plants -13.68±0.13 -12.98±0.07 -12.53±0.02 -12.35±0.01 -12.30±0.02 -12.28±0.01 -12.26±0.01
pumbs -26.29±0.22 -25.22±0.22 -24.26±0.07 -23.92±0.02 -23.80±0.02 -23.76±0.03 -23.71±0.03
tmovie -51.67±0.27 -50.59±0.16 -49.90±0.12 -49.56±0.01 -49.38±0.10 -49.29±0.11 -49.23±0.10
tretail -10.84±0.01 -10.83±0.01 -10.82±0.01 -10.82±0.01 -10.82±0.01 -10.82±0.01 -10.82±0.01

Table B.3: Latent Optimisation (LO) results for cm(GCLT). Integration points optimised
for 150 epochs (with early stopping) using Adam with learning rate of 0.001.

Dataset Mix-27 Mix-27(LO) Mix-28 Mix-28(LO) Mix-29 Mix-29(LO) Mix-210 Mix-210(LO)

accidents -31.00±0.15 -29.81±0.03 -30.06±0.09 -29.36±0.05 -29.28±0.05 -29.05±0.03 -28.93±0.02 -28.81±0.02
ad -16.67±0.39 -15.08±0.17 -15.89±0.25 -14.73±0.13 -15.27±0.08 -14.51±0.11 -14.97±0.11 -14.42±0.09
baudio -39.88±0.07 -39.45±0.04 -39.51±0.08 -39.25±0.03 -39.21±0.02 -39.11±0.02 -39.08±0.02 -39.04±0.02
bbc -249.01±0.94 -245.57±0.75 -246.56±0.73 -244.03±0.74 -244.75±0.51 -243.25±0.59 -243.75±0.56 -242.79±0.58
bnetflix -56.54±0.06 -56.02±0.03 -56.01±0.07 -55.69±0.02 -55.60±0.03 -55.48±0.02 -55.42±0.02 -55.36±0.02
book -34.29±0.10 -33.79±0.07 -34.04±0.04 -33.69±0.08 -33.90±0.03 -33.61±0.06 -33.83±0.03 -33.55±0.02
c20ng -151.59±0.45 -149.95±0.31 -150.39±0.28 -149.16±0.26 -149.28±0.17 -148.65±0.17 -148.68±0.11 -148.28±0.11
cr52 -85.39±0.40 -83.28±0.23 -83.82±0.24 -82.25±0.22 -82.35±0.14 -81.67±0.18 -81.70±0.09 -81.31±0.15
cwebkb -150.73±0.28 -148.82±0.21 -149.55±0.20 -148.33±0.20 -148.59±0.21 -147.95±0.23 -148.18±0.24 -147.75±0.26
dna -86.79±0.25 -85.64±0.24 -86.09±0.16 -85.03±0.13 -85.49±0.09 -84.78±0.12 -85.16±0.08 -84.58±0.10
jester -52.55±0.05 -52.23±0.03 -52.27±0.03 -52.06±0.02 -52.06±0.02 -51.98±0.02 -51.98±0.01 -51.94±0.02
kdd -2.16±0.01 -2.13±0.00 -2.14±0.00 -2.12±0.00 -2.13±0.00 -2.12±0.00 -2.12±0.00 -2.12±0.00
kosarek -10.68±0.03 -10.60±0.01 -10.63±0.02 -10.58±0.01 -10.59±0.01 -10.56±0.01 -10.57±0.01 -10.55±0.01
msnbc -6.44±0.16 -6.08±0.01 -6.22±0.10 -6.06±0.00 -6.09±0.01 -6.05±0.00 -6.07±0.00 -6.05±0.00
msweb -9.89±0.05 -9.67±0.01 -9.78±0.03 -9.64±0.02 -9.67±0.02 -9.61±0.01 -9.64±0.01 -9.60±0.01
nltcs -6.05±0.02 -6.00±0.00 -6.03±0.02 -6.00±0.00 -6.00±0.00 -5.99±0.00 -6.00±0.00 -5.99±0.00
plants -13.68±0.13 -12.76±0.04 -12.98±0.07 -12.50±0.02 -12.53±0.02 -12.34±0.02 -12.35±0.01 -12.27±0.01
pumbs -26.29±0.22 -24.63±0.05 -25.22±0.22 -24.17±0.07 -24.26±0.07 -23.86±0.04 -23.92±0.02 -23.70±0.02
tmovie -51.67±0.27 -50.31±0.18 -50.59±0.16 -49.79±0.23 -49.90±0.12 -49.40±0.12 -49.56±0.01 -49.29±0.12
tretail -10.84±0.01 -10.82±0.01 -10.83±0.01 -10.81±0.01 -10.82±0.01 -10.81±0.01 -10.82±0.01 -10.81±0.01
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Table B.4: Average test-set log-likelihood on 20 density estimation benchmarks as re-
ported on the respective papers: HCLT (Liu and Van den Broeck 2021),
Strudel (Dang et al. 2020), LearnPSDD (Liang et al. 2017), Einet (Peharz
et al. 2020a), LearnSPN (Gens and Domingos 2013), ID-SPN (Rooshenas and
Lowd 2014), and RAT-SPN (Peharz et al. 2020b). Results for cm(GF) and
cm(GCLT) are computed with 213 integration points. Higher is better.

Dataset HCLT EiNet LearnSPN ID-SPN RAT-SPN Strudel LearnPSDD cm(GF) cm(GCLT)
accidents -26.78 -35.59 -40.50 -26.98 -35.48 -29.46 -28.29 -33.27 -28.69
ad -16.04 -26.27 -19.73 -19.00 -48.47 -16.52 -20.13 -18.72 -14.76
baudio -39.77 -39.87 -40.53 -39.79 -39.95 -42.26 -41.51 -39.02 -39.02
bbc -250.07 -248.33 -250.68 -248.93 -252.13 -258.96 -260.24 -240.19 -242.83
bnetflix -56.28 -56.54 -57.32 -56.36 -56.85 -58.68 -58.53 -55.49 -55.31
book -33.84 -34.73 -35.88 -34.14 -34.68 -35.77 -36.06 -33.67 -33.75
c20ng -151.92 -153.93 -155.92 -151.47 -152.06 -160.77 -160.43 -148.24 -148.17
cr52 -84.67 -87.36 -85.06 -83.35 -87.36 -92.38 -93.30 -81.52 -81.17
cwebkb -153.18 -157.28 -158.20 -151.84 -157.53 -160.50 -161.42 -150.21 -147.77
dna -79.33 -96.08 -82.52 -81.21 -97.23 -87.10 -83.02 -95.64 -84.91
jester -52.45 -52.56 -75.98 -52.86 -52.97 -55.30 -54.63 -51.93 -51.94
kdd -2.18 -2.18 -2.18 -2.13 -2.12 -2.17 -2.17 -2.13 -2.12
kosarek -10.66 -11.02 -10.98 -10.60 -10.88 -10.98 -10.99 -10.70 -10.56
msnbc -6.05 -6.11 -6.11 -6.04 -6.03 -6.05 -6.04 -6.14 -6.05
msweb -9.90 -10.02 -10.25 -9.73 -10.11 -10.19 -9.93 -9.68 -9.62
nltcs -6.00 -6.01 -6.11 -6.02 -6.01 -6.06 -6.03 -5.99 -5.99
plants -14.31 -13.67 -12.97 -12.54 -13.43 -13.72 -13.49 -12.45 -12.26
pumbs -23.32 -31.95 -24.78 -22.40 -32.53 -25.28 -25.40 -27.67 -23.71
tmovie -50.69 -51.70 -52.48 -51.51 -53.63 -59.47 -55.41 -48.69 -49.23
tretail -10.84 -10.91 -11.04 -10.85 -10.91 -10.90 -10.92 -10.85 -10.82
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Figure B.1: Individual plots of test log-likelihood against number of integration points
on 20 benchmarks for cm(GF) (orange), cm(GCLT) (blue), LO(cm(GCLT))
(green) and cm(GF)VAE (red). Results are averaged over 5 random seeds.
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