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Neural closure models have recently been proposed as a method for efficiently approximating small scales 
in multiscale systems with neural networks. The choice of loss function and associated training procedure 
has a large effect on the accuracy and stability of the resulting neural closure model. In this work, we 
systematically compare three distinct procedures: “derivative fitting”, “trajectory fitting” with discretise-then-

optimise, and “trajectory fitting” with optimise-then-discretise. Derivative fitting is conceptually the simplest 
and computationally the most efficient approach and is found to perform reasonably well on one of the test 
problems (Kuramoto-Sivashinsky) but poorly on the other (Burgers). Trajectory fitting is computationally more 
expensive but is more robust and is therefore the preferred approach. Of the two trajectory fitting procedures, the 
discretise-then-optimise approach produces more accurate models than the optimise-then-discretise approach. 
While the optimise-then-discretise approach can still produce accurate models, care must be taken in choosing 
the length of the trajectories used for training, in order to train the models on long-term behaviour while still 
producing reasonably accurate gradients during training. Two existing theorems are interpreted in a novel way 
that gives insight into the long-term accuracy of a neural closure model based on how accurate it is in the short 
term.
1. Introduction

A number of real-world phenomena, such as fluid flows, can be mod-

elled numerically as a system of partial differential equations (PDEs). 
Such PDEs are typically solved by discretising them in space, yielding 
ordinary differential equations (ODEs) over a large number of variables. 
These full-order models (FOMs) are generally very accurate, but can be 
computationally expensive to solve. A remedy against this high compu-

tational cost is to use ‘truncated’ models. These do not directly resolve 
all spatial and/or temporal scales of the true solution of the underlying 
PDE, thereby lowering the dimensionality of the model. Approaches 
to create lower dimensional models include reduced-order modelling 
(ROM [31]), as well as large eddy simulation (LES [30]) and Reynolds-

averaged Navier-Stokes (RANS [2]) for fluid flow problems, specifically. 
In such a truncated model, one or more closure terms appear, which 
represent the effects that are not directly resolved by the reduced-order 
model. For a recent overview of closure modelling for reduced-order 
models, see Ahmed et al. [1].

* Corresponding author at: Centrum Wiskunde & Informatica (CWI), Amsterdam, the Netherlands.

E-mail address: b.sanderse@cwi.nl (B. Sanderse).
1 Work performed while at Centrum Wiskunde & Informatica.

While closure terms can in some cases be derived from theory (for 
example, for LES), this is generally not the case. When they cannot be 
derived from theory, a recent approach is to use a machine learning 
model to learn the closure term from data. In this approach a specific 
type of machine learning model is used, called a neural closure model 
[10]. The overall idea is to approximate a PDE or large ODE system by 
a smaller ODE system, and to train a neural network to correct for the 
approximation error in the resulting ODE system. Neural closure models 
are a special form of neural ODEs [4], which have been the subject of 
extensive research in the past years, for example by Finlay et al. [7] and 
Massaroli et al. [21].

A number of different approaches for training neural ODEs and neu-

ral closure models are available. An important distinction is between 
approaches that compare predicted and actual time-derivatives of the 
ODE (“derivative fitting”), and approaches that compare predicted and 
actual solutions (“trajectory fitting”). Trajectory fitting itself can be 
done in two ways, depending on whether the optimisation problem for 
the neural network is formulated as continuous in time and then discre-
https://doi.org/10.1016/j.camwa.2023.04.030
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Abbreviations

AD Automatic differentiation

CNN Convolutional neural network

FOM Full-order model

LES Large eddy simulation

MOR Model order reduction

MSE Mean-square error

NN Neural network

ODE Ordinary differential equation

PDE Partial differential equation

POD Proper orthogonal decomposition

RANS Reynolds-averaged Navier-Stokes

RMSE Root-mean-square error

RNN Recurrent neural network

ROM Reduced-order modelling

VPT Valid prediction time
tised using an ODE solver (optimise-then-discretise), or formulated as 
discrete in time (discretise-then-optimise).

In several recent studies, neural closure models have been applied 
to fluid flow problems. The considered approaches include derivative 
fitting [9,26,20,3], discretise-then-optimise [18], and optimise-then-

discretise [33,20]. Derivative fitting is also used on a comparable but 
distinct problem by San and Maulik [32]. There, Burgers’ equation is 
solved using model order reduction (MOR) by means of proper orthog-

onal decomposition (POD), resulting in an approximate ODE for which 
the closure term is approximated by a neural network.

Training neural ODEs efficiently and accurately has been the sub-

ject of some previous research. However, in the context of neural 
closure models, most of this earlier work either does not consider cer-

tain relevant aspects or is not directly applicable. For example, Onken 
and Ruthotto [24] compare discretise-then-optimise and optimise-then-

discretise for pure neural ODEs (i.e. ODEs in which the right-hand side 
only consists of a neural network term). They omit a derivative fit-

ting approach since such an approach is not applicable in the contexts 
considered there. Ma et al. [19] compare a wide variety of training 
approaches for neural ODEs, however with an emphasis on the compu-

tational efficiency of different training approaches rather than on the 
accuracy of the resulting model. Roesch et al. [29] compare trajectory 
fitting and derivative fitting approaches, considering pure neural ODEs 
on two very small ODE systems. As a result, the papers mentioned above 
are not fully conclusive to make general recommendations regarding 
how to train neural closure models.

The purpose of this paper is to perform a systematic comparison of 
different approaches for constructing neural closure models. Compared 
to other works, the experiments performed here are not aimed at show-

ing the efficacy of neural closure models for a particular problem type, 
but rather at making general recommendations regarding different ap-

proaches for neural closure models. To this end, neural closure models 
are trained on data from two different discretised PDEs, in a variety of 
ways. One of these PDEs, the Kuramoto-Sivashinsky equation, is chaotic 
and discretised into a stiff ODE system. This gives rise to additional 
challenges when training neural closure models. The results of this 
paper confirm that discretise-then-optimise approaches are generally 
preferable to optimise-then-discretise approaches. Furthermore, deriva-

tive fitting is found to be unpredictable, producing excellent models 
on one test set, but very poor models on the other. We give theoreti-

cal support to our results by reinterpreting two fundamental theorems 
from the fields of dynamical systems and time integration in terms of 
neural closure models.

This paper is organised as follows: Section 2 describes a number of 
different approaches that are available for training neural closure mod-

els. Section 3 gives a number of theoretical results that can be used to 
predict the short-term and long-term accuracy of models based on how 
they are trained and what error they achieve during training. Section 4

performs a number of numerical experiments in which the same neural 
closure model is trained in multiple ways on the same two test equa-

tions, and the accuracy of the resulting models is compared. Finally, 
Section 5 provides conclusions and recommendations. The code used to 
perform the numerical experiments from Section 4 is available online 
at https://github .com /HugoMelchers /neural -closure -models.
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2. Preliminaries: approaches for neural ODEs

In this paper, neural networks will be used as closure models for dis-

cretised PDEs. Here, a time-evolution of the form 𝜕𝑢
𝜕𝑡

= 𝐹 (𝑢) is discretised 
into an ODE system d𝐮d𝑡 = 𝑓 (𝐮), 𝐮 ∈ ℝ𝑁𝑥 , such that taking progressively 
finer discretisations (resulting in larger values of 𝑁𝑥) produces more ac-

curate solutions. However, instead of taking a very fine discretisation, 
a relatively coarse discretisation will be used and a neural network (NN) 
closure term will be added to correct for the spatial discretisation error. 
This neural network depends not only on the vector 𝐮, but also on a 
vector 𝜗 of trainable parameters:

d𝐮
d𝑡

= 𝑓 (𝐮) +NN(𝐮;𝜗). (1)

Some of the theory regarding neural closure models also applies to neu-

ral ODEs, in which the neural network is the only term in the right-hand 
side:

d𝐮
d𝑡

= NN(𝐮;𝜗). (2)

In both cases, the result is a system of ODEs over a vector 𝐮(𝑡), in which 
the right-hand side depends not only on 𝐮(𝑡) but also on some trainable 
parameters 𝜗:

d𝐮
d𝑡

= 𝑔(𝐮;𝜗). (3)

Note that in these models, the ODE is assumed to be autonomous, 
i.e., the right-hand side is assumed to be independent of 𝑡. However, 
the work presented in this paper can be extended to non-autonomous 
ODEs, by extending the neural network to depend on 𝑡 or on some 
time-dependent control signal as well as on 𝐮(𝑡), and by including this 
additional data in the training data set. The general form (3) covers 
more model types than just the neural ODEs and neural closure models 
of equations (1) and (2). Specifically, the output of the neural network 
does not have to be one of the terms in the right-hand side function, 
but can also be included in other ways. For example, Beck et al. [3]

train neural networks to predict the eddy viscosity in an LES closure 
term, rather than to predict the entire closure term, in order to ensure 
stability of the resulting model. In this work, the specific form (1) is 
used, with the exception that the output of the neural network is passed 
through a simple linear function Δfwd, listed as a non-trainable layer in 
Tables B.4 and B.5, which ensures that the solutions of the neural ODE 
satisfy conservation of momentum.

Training a neural network corresponds to minimising a certain loss 
function, which must be chosen ahead of time. Some loss functions 
are such that their gradients, which are used by the optimiser, can be 
computed in different ways. In this section, an overview of different 
available approaches is given.

2.1. Derivative fitting

With derivative fitting, also referred to as non-intrusive train-

ing [28], the loss function compares the predicted and actual time-

derivatives (i.e. right-hand sides) of the neural ODE (Fig. 1). In this 

https://github.com/HugoMelchers/neural-closure-models
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Fig. 1. A visual comparison of the two types of neural ODE training: given a 
reference trajectory (solid), one can train the neural ODE to match the time-

derivative of the trajectory (dotted lines), or to result in accurate ODE solutions 
(dashed line and arrows).

paper, the loss function used for derivative fitting will be a mean-square 
error (MSE):

Loss
(
𝜗,𝐮ref ,

d
d𝑡
𝐮ref

)
= 1
𝑁𝑥𝑁𝑠𝑁𝑝

𝑁𝑠∑
𝑖=1

𝑁𝑝∑
𝑗=1

‖‖‖‖‖‖
d𝐮(𝑗)ref
d𝑡

(𝑡𝑖) − 𝑔

(
𝐮(𝑗)ref (𝑡𝑖);𝜗

)‖‖‖‖‖‖
2

2

. (4)

Here, 𝑁𝑥 is the size of the vector 𝐮ref , 𝑁𝑠 is the number of snapshots in 
each trajectory of the training data, and 𝑁𝑝 is the number of trajectories 
(i.e. ODE solutions). The value and time-derivative of the 𝑗th trajectory 

at time 𝑡𝑖 are given by 𝐮(𝑗)ref (𝑡𝑖) and d𝐮
(𝑗)
ref
d𝑡 (𝑡𝑖), respectively.

The main advantage of derivative fitting is that in order to compute 
the gradient of the loss function with respect to 𝜗, one only has to differ-

entiate through the neural network itself. This makes derivative fitting 
a relatively simple approach to use. A disadvantage of derivative fitting 
is that the training data must consist of not just the values 𝐮, but also 
their time derivatives d𝐮d𝑡 . This data is not always available, for exam-

ple in cases where the trajectories 𝐮(𝑡) are obtained as measurements 
from a physical experiment. In this work, the training data is obtained 
through a high-resolution numerical algorithm. Hence, the derivatives 
to be used for training are available. In cases where exact derivatives 
are not available, they can be estimated from the available data for 𝐮(𝑡)
itself, as described by Roesch et al. [29]. While they obtain good re-

sults with approximated derivatives, in general it is to be expected that 
substituting real time-derivatives by approximations also decreases the 
accuracy of the neural network.

2.2. Trajectory fitting: discretise-then-optimise

An alternative to derivative fitting is trajectory fitting, also referred 
to as intrusive training [28], embedded training [20], or a solver-in-

the-loop setup [37]. Here, the loss function compares the predicted and 
actual trajectories of the neural ODE (Fig. 1). Unless otherwise speci-

fied, trajectory fitting will also be done with the MSE loss function:

Loss
(
𝜗,𝐮ref

)
= 1
𝑁𝑥𝑁𝑡𝑁𝑝

𝑁𝑡∑
𝑖=1

𝑁𝑝∑
𝑗=1

‖‖‖𝐮(𝑗)(𝑡𝑖) − 𝐮(𝑗)ref (𝑡𝑖)
‖‖‖22 , (5)

where
d𝐮(𝑗)
d𝑡

= 𝑔
(
𝐮(𝑗);𝜗

)
and 𝐮(𝑗)(0) = 𝐮(𝑗)ref (0). (6)

Trajectory fitting involves applying an ODE solver to the neural closure 
model to perform 𝑁𝑡 time steps, where 𝑁𝑡 is a hyper-parameter that 
must be chosen ahead of time. Computing the gradient of the loss func-

tion involves differentiating through the ODE solving process and can 
be done in two separate ways. One way to do this is by directly differ-

entiating through the computations of the ODE solver. This approach is 
called discretise-then-optimise.
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In the discretise-then-optimise approach, the neural ODE is embed-

ded in an ODE solver, for example an explicit Runge-Kutta method. In 
such an ODE solver, the next solution snapshot 𝐮(𝑡 + Δ𝑡) is computed 
from 𝐮(𝑡) by performing one step of the ODE solver, which generally in-

volves applying the internal neural network multiple times (depending 
on the number of stages of the ODE solver). This is repeated to obtain 
a predicted trajectory over a time interval of length 𝑇 = 𝑁𝑡Δ𝑡. Since 
all the computations done by an ODE solver are differentiable, one can 
simply compute the required gradient by differentiating through all the 
time steps performed by the ODE solver. The discretise-then-optimise 
approach effectively transforms a neural ODE into a discrete model, in 
which the time series is predicted by advancing the solution by a fixed 
time step Δ𝑡 at a time. As such, any training approach that can be ap-

plied to discrete models of the form 𝐮(𝑡 + Δ𝑡) = model(𝐮(𝑡)) can also be 
applied to neural ODEs trained using this approach.

2.3. Trajectory fitting: optimise-then-discretise

Differentiating through the computations of the ODE solver is not 
always a possibility, for example if the ODE solver is implemented 
as black-box software. In such cases, trajectory fitting with the loss 
function (5) can still be used by computing gradients with the optimise-

then-discretise approach. In this approach, the required gradients are 
computed either by extending the ODE with more variables that store 
derivative information, or by solving a second “adjoint” ODE backwards 
in time after the original “forward” ODE solution is computed. These 
two methods can be considered continuous-time analogues to forward-

mode and reverse-mode automatic differentiation (AD), respectively.

The adjoint ODE approach was popularised by Chen et al. [4], who 
demonstrate that on some problems the adjoint ODE approach can be 
used to train a neural ODE with much lower memory usage than other 
approaches. Ma et al. [19] find that the adjoint ODE approach is com-

putationally more efficient than the forward mode approach for ODEs 
with more than 100 variables and parameters. As such, a description of 
the forward mode approach is omitted here. The adjoint ODE approach 
is the optimise-then-discretise approach that will be tested here. This 
approach can be implemented in three different ways. The implemen-

tation used in this work is the interpolating adjoint method, in which the 
gradient of the loss function is computed by first solving the forward 
ODE (3) to obtain the trajectory 𝐮(𝑡), and then solving the adjoint ODE 
system

d
d𝑡
𝐲⊤ = −𝐲⊤ 𝜕

𝜕𝐮
𝑔(𝐮;𝜗), 𝐲(𝑇 ) = 𝟎, (7a)

d
d𝑡
𝐳⊤ = −𝐲⊤ 𝜕

𝜕𝜗
𝑔(𝐮;𝜗), 𝐳(𝑇 ) = 𝟎, (7b)

from 𝑡 = 𝑇 backwards in time until 𝑡 = 0, performing discrete updates 
to 𝐲(𝑡) at times 𝑡𝑖, 𝑖 =𝑁𝑡, 𝑁𝑡 − 1, … , 2, 1. After the adjoint ODE system is 
solved, the gradient dLoss

d𝜗 is given by 𝐳(0). For implementation details 
and an overview of other optimise-then-discretise methods, see Chapter 
3 of Melchers [22].

Note that the two trajectory fitting approaches, i.e. discretise-then-

optimise and optimise-then-discretise, both require choosing 𝑁𝑡, the 
number of time steps that the solution prediction is computed for. As 
will be described in Section 3, choosing 𝑁𝑡 either too small or too large 
may have negative consequences for the accuracy of the trained model. 
For the optimise-then-discretise approach, the gradients used by the 
optimiser are computed as the solution of an ODE over a time span 
of 𝑇 =𝑁𝑡Δ𝑡. Since the numerically computed ODE solution is inexact, 
choosing a larger value of 𝑁𝑡 will generally result in less accurate gra-

dients, which may also decrease the accuracy of the trained model.

2.4. Algorithm comparison

An overview of the advantages and disadvantages of different ap-

proaches is given in Table 1. Here, the term ‘long-term’ refers to the 
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Table 1

An overview of the differences between the three training approaches outlined in Section 2.

Trajectory fitting

Derivative fitting Discretise-then-optimise Optimise-then-discretise

Differentiability required NN NN, 𝑓 , ODE solver NN, 𝑓

Accuracy of loss function gradients Exact Exact Approximate

Learns long-term accuracy No Yes Yes

Requires time-derivatives of training data Yes No No

Computational cost Low High High
accuracy of predictions when solving the ODE over multiple time steps 
as opposed to only considering the instantaneous error in the time-

derivative of the solution. Note that the computational cost will not be 
compared in this work; the goal is to compare the accuracy of the result-

ing models. Performance measurements of different training procedures 
will not be given here since the code used to perform the numerical ex-

periments in this work was not written with computational efficiency 
in mind, and since training was not performed on recent hardware. 
However, derivative fitting is expected to be computationally more effi-

cient due to the fact that it does not require differentiating through the 
ODE solution process. A performance comparison between different im-

plementations for optimise-then-discretise and discretise-then-optimise 
approaches is given by Ma et al. [19]. The performance difference be-

tween derivative fitting and trajectory fitting will be taken into account 
when making recommendations in Section 5.

As for accuracy, the discretise-then-optimise approach is expected to 
yield more accurate gradients than optimise-then-discretise, due to the 
absence of temporal discretisation errors in the gradient computation. 
The accuracy of derivative fitting is not easily compared to that of the 
other methods. Like optimise-then-discretise, it suffers from the fact that 
the training does not take the temporal discretisation error of the ODE 
solver into account.

Onken and Ruthotto [24] compare discretise-then-optimise and 
optimise-then-discretise approaches for two problems, including a time 
series regression similar to the trajectory fitting problem described ear-

lier in this section. Their findings indicate that training with discretise-

then-optimise results in computationally more efficient training (less 
time required per epoch), as well as faster convergence (fewer epochs 
required to reach a given level of accuracy). However, the trajectory 
regression test performed there only considers a small and relatively 
simple ODE system over just two variables. Furthermore, the use of 
neural networks as closure terms introduces some additional challenges 
that need to be overcome in some cases, including solving the ODE (2)

efficiently for stiff ODEs, and choosing the value of 𝑁𝑡 for chaotic sys-

tems.

3. Theory concerning training approaches

As described in the previous section, different training approaches 
are available for neural ODEs and neural closure models. The train-

ing approach used will generally have an effect on both the short-term 
accuracy and the long-term accuracy of the trained model. This is sup-

ported by the following two theorems, which use the short-term error 
of a model to provide upper bounds on the long-term error. Here, 
‘short-term’ refers to the predictions and prediction errors in the time-

derivatives (for derivative fitting), or after a single time step (for trajec-

tory fitting). The term ‘long-term’ refers to the predictions after multiple 
time steps, i.e. when predicting over a time interval of 𝑇 >Δ𝑡. Although 
neither of these theorems are new, they are interpreted in a novel way 
that gives insight regarding the long-term accuracy of models based on 
their accuracy during training.

3.1. Derivative fitting

For models trained using derivative fitting, a relation between the 
error of the right-hand sides of the ODE and the error of the ODE so-
97
lutions is given by Theorem 10.2 of Hairer et al. [11]. This theorem is 
referred to there as the ‘fundamental lemma’ and is repeated here in a 
simplified form:

Theorem 3.1 (Hairer et al. [11]). Let 𝐮ref (𝑡) ∈ ℝ𝑁𝑥 , 𝑡 ≥ 0 be given, let 
𝐮(𝑡) ∈ℝ𝑁𝑥 , 𝑡 ≥ 0 be the solution of the ODE d𝐮d𝑡 = 𝑔(𝐮; 𝜗) with initial condition 
𝐮(0) = 𝐮ref (0), and let ‖⋅‖ be a norm on ℝ𝑁𝑥 . If the following holds:

𝑎)
‖‖‖‖ d
d𝑡
𝐮ref (𝑡) − 𝑔(𝐮ref (𝑡);𝜗)

‖‖‖‖ ≤ 𝜀,

𝑏) ‖𝑔(𝐚;𝜗) − 𝑔(𝐛;𝜗)‖ ≤ 𝐶 ‖𝐚− 𝐛‖ ,
for fixed Lipschitz constant 𝐶 > 0 and fixed 𝜀 > 0. Then the following error 
bound holds:

‖‖𝐮ref (𝑡) − 𝐮(𝑡)‖‖ ≤ 𝜀

𝐶

(
𝑒𝐶𝑡 − 1

)
.

Theorem 3.1 can be interpreted as follows: suppose that a machine 
learning model is trained to predict the time-derivatives of trajectories 
𝐮ref (𝑡). The result is a function 𝑔(⋅; 𝜗) that computes the right-hand side 
of an ODE. Then, achieving an error ≤ 𝜀 in the short term does not 
guarantee a low error in the long term. The error at time 𝑡 can grow 
exponentially in 𝑡, with the exponential growth factor being dependent 
on the Lipschitz constant of the trained model.

A possible mitigation for this problem is to add a term to the loss 
function that penalises large Lipschitz constants in the neural network. 
However, in the case of neural closure models (1), penalising the Lips-

chitz constant of the neural network only is not expected to help much. 
Theorem 3.1 concerns the Lipschitz constant of the total right-hand side 
𝑔(⋅; 𝜗), which equals 𝑓 (𝐮) + NN(𝐮; 𝜗) for neural closure models. In such 
cases, the Lipschitz constant of 𝑔(⋅; 𝜗) cannot be kept small by bounding 
the Lipschitz constant of the neural network term only. Furthermore, 
for closure models for stiff ODEs the function 𝑓 itself has a large Lips-

chitz constant by definition, meaning that the Lipschitz constant of the 
total right-hand side will inevitably be large as well. For many problems 
the function 𝑓 is not Lipschitz continuous at all, for example because 
it contains a quadratic term. In such cases, the above theorem does not 
provide an upper bound for the error. Additionally, even if reducing the 
Lipschitz constant of the entire model is an option, this may come at the 
expense of lower short-term accuracy (i.e. a larger value for 𝜀).

An example where the potential exponential error increase seems 
to occur is encountered by Beck et al. [3]: they train neural networks 
to predict the closure term in three-dimensional fluid flows, and find 
that neural networks that predict this closure term with high accuracy 
can nonetheless result in inaccurate predicted trajectories. Similarly, 
Park and Choi [26] find that neural closure models with high accu-

racy on derivatives do not always produce accurate trajectories. MacArt 
et al. [20] encounter the same issue and instead train using optimise-

then-discretise to obtain models that produce accurate solutions. It 
should be noted, however, that derivative fitting does not always lead 
to poor models. For example, Guan et al. [9] do not encounter this prob-

lem when training neural networks for LES closure terms.

3.2. Trajectory fitting

A theorem similar to Theorem 3.1 exists for models trained using 
trajectory fitting, either by discretise-then-optimise or by optimise-then-
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discretise. This theorem is likely not new, but an independently derived 
proof is given here. The theorem applies to all models that are used to 
advance a solution 𝐮(𝑡) by a fixed time step Δ𝑡. As such, the theorem is 
not written specifically for neural closure models.

Theorem 3.2. Let 𝐮ref (𝑡𝑖), 𝑖 = 0, 1, … , … be a sequence of vectors in ℝ𝑁𝑥

where 𝑡𝑖 = 𝑖Δ𝑡, let ‖⋅‖ be a norm on ℝ𝑁𝑥 , and let 𝐺(⋅; 𝜗) ∶ℝ𝑁𝑥 →ℝ𝑁𝑥 be a 
function such that:

𝑎) ‖‖𝐮ref (𝑡𝑖+1) −𝐺(𝐮ref (𝑡𝑖);𝜗)‖‖ ≤ 𝜀 for all 𝑖 = 1,2,… ,𝑁𝑡,

𝑏) ‖𝐺(𝐚;𝜗) −𝐺(𝐛;𝜗)‖ ≤ 𝐶 ‖𝐚− 𝐛‖ for all 𝐚,𝐛 ∈ℝ𝑁𝑥 ,

for fixed Lipschitz constant 𝐶 > 0, 𝐶 ≠ 1 and fixed 𝜀 > 0. Define the se-
quence 𝐮(𝑡𝑖+1) = 𝐺(𝐮(𝑡𝑖); 𝜗) with 𝐮(0) = 𝐮ref (0). Then the following error 
bound holds:

‖‖𝐮(𝑡𝑘) − 𝐮ref (𝑡𝑘)‖‖ ≤ 𝜀
𝐶𝑘 − 1
𝐶 − 1

for 𝑘 = 0,1,2,… .

Proof. For arbitrary 𝑘 ≥ 1, the following holds:

‖‖𝐮(𝑡𝑘) − 𝐮ref (𝑡𝑘)‖‖
= ‖‖𝐺(𝐮(𝑡𝑘−1);𝜗) − 𝐮ref (𝑡𝑘)‖‖
≤ ‖‖𝐺(𝐮(𝑡𝑘−1);𝜗) −𝐺(𝐮ref (𝑡𝑘−1);𝜗)‖‖+ ‖‖𝐺(𝐮ref (𝑡𝑘−1);𝜗) − 𝐮ref (𝑡𝑘)‖‖
≤ 𝐶 ‖‖𝐮(𝑡𝑘−1) − 𝐮ref (𝑡𝑘−1)‖‖+ 𝜀.

Now, define 𝑟𝑘 = ‖‖𝐮(𝑡𝑘) − 𝐮ref (𝑡𝑘)‖‖+ 𝜀

𝐶−1 . Then 𝑟0 =
𝜀

𝐶−1 and for 𝑘 ≥ 1:

𝑟𝑘 = ‖‖𝐮(𝑡𝑘) − 𝐮ref (𝑡𝑘)‖‖+ 𝜀

𝐶 − 1
≤ 𝐶 ‖‖𝐮(𝑡𝑘−1) − 𝐮ref (𝑡𝑘−1)‖‖+ 𝜀+ 𝜀

𝐶 − 1

= 𝐶

(
𝑟𝑘−1 −

𝜀

𝐶 − 1

)
+ 𝐶𝜀

𝐶 − 1
= 𝐶𝑟𝑘−1.

As a result, 𝑟𝑘 ≤ 𝐶𝑘𝑟0 =
𝐶𝑘𝜀

𝐶−1 , so:

‖‖𝐮(𝑡𝑘) − 𝐮ref (𝑡𝑘)‖‖ = 𝑟𝑘 −
𝜀

𝐶 − 1
≤ 𝜀

𝐶𝑘 − 1
𝐶 − 1

. □

The proof does not work in the case that 𝐶 = 1 due to the use of the 
term 𝐶 − 1 as a numerator, but using similar reasoning it can be shown 
that ‖‖𝐮(𝑡𝑘) − 𝐮ref (𝑡𝑘)‖‖ ≤ 𝜀𝑘 holds when 𝐶 = 1. Also note that if 𝐶 < 1 then 
𝐺(⋅; 𝜗) is a contraction and the sequence 𝐮(𝑡𝑘) will converge to a fixed 
point. This also results in a bounded error 𝑟𝑘, since properties 𝑎) and 𝑏)
combined imply that the sequence 𝐮ref (𝑡𝑘) is bounded as well. However, 
in this case the model may still be qualitatively poor, since the actual 
and predicted sequences may converge to different fixed points and may 
have different transient dynamics. As such, even in the case that 𝐶 < 1, 
a low error after one time step does not imply that the behaviour over 
multiple time steps is accurate.

Theorem 3.2 concerns the case that a model is trained by predicting 
a single time step, i.e. with 𝑁𝑡 = 1. However, it can be generalised to 
models trained with 𝑁𝑡 > 1. For example, a model trained with 𝑁𝑡 = 2
that achieves an error ≤ 𝜀2 after two time steps can be seen as a single 
model that performs two applications of the inner model, meaning that 
Theorem 3.2 can be applied to the model 𝐮 ↦ 𝐺(𝐺(𝐮; 𝜗); 𝜗), which has 
some Lipschitz constant 𝐶2. Then, the error at time step 𝑘 is bounded 
by 𝜀2(𝐶

𝑘∕2
2 − 1)∕(𝐶2 − 1), since the approximation at 𝑡 = 𝑡𝑘 only requires 

𝑘∕2 applications of the model.

Theorem 3.2 implies that when training models by trajectory fitting, 
training with a small number of predicted time steps 𝑁𝑡 may result in 
models that produce poor predictions in the long term. While training 
with larger values of 𝑁𝑡 still results in an exponential upper bound for 
the error, it is expected that a model will yield more accurate solutions 
in the long term if long-term errors are penalised during training.
98
However, if the underlying ODE or PDE is chaotic, 𝑁𝑡 must not be 
too large, either. Initially similar solutions to a chaotic system diverge 
from each other as exp(𝜆max𝑡) where 𝜆max is the Lyapunov exponent of 
the system, which will be further explained in Section 4.2. Then, the 
sensitivity of the ODE solution after time 𝑡 with respect to 𝜗 will also 
grow as exp(𝜆max𝑡). This means that when the loss function is a simple 
mean-square error between the predicted and actual trajectories, the 
gradient of this loss function with respect to the model parameters is 
mostly determined by the solution of the neural ODE for large 𝑡. The re-

sult is that the optimisation procedure works to decrease the long-term 
error instead of first decreasing the short-term error. For non-closure 
models (i.e. pure neural ODEs of the form 𝑔(𝐮; 𝜗) = NN(𝐮; 𝜗)), this may 
result in poor models (see Section 5.6.2 of Melchers [22]). This issue 
does not appear to be as severe for neural closure models. Nonetheless 
it can be helpful to compensate for the exponentially increasing sensi-

tivity by exponentially weighing the loss function:

Loss𝑐
(
𝜗,𝐮ref

)
= 1
𝑁𝑥𝑁𝑝𝑍

𝑁𝑡∑
𝑖=1

𝑁𝑝∑
𝑗=1

exp(−2𝑐𝜆max𝑡𝑖) ⋅
‖‖‖𝐮(𝑗)(𝑡𝑖) − 𝐮(𝑗)ref (𝑡𝑖)

‖‖‖22 , (8a)

where 𝑍 =
𝑁𝑡∑
𝑖=1

exp(−2𝑐𝜆max𝑡𝑖). (8b)

This loss function generalises the mean square error (5) by allowing the 
prediction error at time 𝑡𝑖 to be weighted by a factor exp(−2𝑐𝜆max𝑡𝑖). 
Here, the constant 𝑐 can be chosen arbitrarily. Taking 𝑐 = 0 recovers the 
standard mean-square error (MSE). Note that the sum is over squared 
errors, which grow as exp(2𝜆max𝑡), meaning that the reasonable choice 
according to the above reasoning is 𝑐 = 1. Weighted loss functions with 
a number of choices for 𝑐 will be evaluated in Section 4.2.2, as well as 
training on shorter trajectories.

Similar to the continuous case (Theorem 3.1), the exponential in-

crease in error can be mitigated by training the model in a way that 
penalises large Lipschitz constants. Again, for neural closure models it 
is not sufficient to limit the Lipschitz constant of just the neural net-

work. Another mitigation approach is to train on a larger number of 
time steps, i.e. to increase the value of 𝑁𝑡 in the loss function (5). Note 
that the fact that models trained to predict time series perform poorly 
when trained on single steps is already known, and methods to miti-

gate this problem have already been studied. In research such as that 
done by List et al. [18], unrolling multiple time steps is found to be cru-

cial in obtaining models that make accurate predictions. Similarly, Pan 
and Duraisamy [25] find that in the discrete case, the long-term accu-

racy of the model can be improved by adding a regularisation term to 
the loss function based on the Frobenius norm of the Jacobian of the 
neural network. Another way to obtain more accurate models is to add 
noise to the neural network’s inputs (the vectors 𝐮ref(⋅)) during training, 
which makes the model less sensitive to small perturbations in its input 
(see for example Chapter 7.4 of Goodfellow et al. [8]). Since the input 
to the model is equal to the output of the previous step, this regulari-

sation technique is therefore expected to decrease the rate at which the 
approximation error increases per step, meaning that it has a similar 
effect to reducing the Lipschitz constant 𝐶 .

The exponentially increasing sensitivity with respect to the param-

eters, combined with Theorem 3.2, shows that choosing the number of 
time steps 𝑁𝑡 for trajectory fitting is not trivial as both too small and 
too large values of 𝑁𝑡 may result in poor models.

4. Numerical experiments

In this section, neural networks will be trained in different ways to 
predict solutions of discretised PDEs of the form

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = 𝐹 (𝑢)(𝑥, 𝑡). (9)

This is a scalar PDE on a one-dimensional spatial domain. The boundary 
conditions are periodic, i.e. 𝑢(𝑥, 𝑡) = 𝑢(𝑥 + 𝐿, 𝑡) for some domain length 
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𝐿, so that the PDE is translation-invariant. Two PDEs of the form (9)

are used: Burgers’ equation and the Kuramoto-Sivashinsky equa-

tion. These equations are described in more detail in Appendix A.1

and Appendix A.2, respectively.

In order to generate training data from these equations, they are dis-

cretised using the finite volume method with a large number of finite 
volumes. The resulting ODEs are solved, and the solutions are down-

sampled by averaging the resulting vectors 𝐮(𝑡) to obtain a coarser 
discretisation of the original PDE. More details regarding the data gen-

eration are given in Appendix A.

4.1. Burgers’ equation

The first test equation is Burgers’ equation:

𝜕𝑢

𝜕𝑡
= −1

2
𝜕

𝜕𝑥

(
𝑢2
)
+ 𝜈

𝜕2𝑢

𝜕𝑥2
,

with 𝜈 = 0.0005, for 𝑥 ∈ [0, 1] with periodic boundary conditions. Solu-

tions of this PDE contain waves that travel either left or right through 
the domain (depending on the sign of 𝑢), resulting in shock waves that 
are then dissipated. Training data is generated by discretising the PDE 
into 4096 finite volumes, solving the resulting ODE for 𝑡 ∈ [0, 0.5] using 
the standard fourth-order accurate Runge-Kutta method, and down-

sampling the solutions to 𝑁𝑥 = 64 finite volumes. The resulting training 
data consists of 𝑁𝑝 = 96 trajectories used for training and 32 for testing. 
Each trajectory consists of an initial condition followed by 64 additional 
snapshots with a time interval of Δ𝑡 = 2−7 between snapshots, meaning 
the total number of snapshots per trajectory is 𝑁𝑠 = 65. More informa-

tion about the data generation is given in Appendix A.1.

Three ML models are trained on data obtained from Burgers’ equa-

tion. These are closure models of the form d𝐮
d𝑡 = 𝑓 (𝐮) + NN(𝐮; 𝜗). For 

all three models, the neural network is a Convolutional Neural Network 
(CNN) with two convolutional layers; more details about the neural net-

work are given in Appendix B.1. The convolutional structure is chosen 
to ensure that the models satisfy the translational invariance present in 
Burgers’ equation. The models are trained in the three ways outlined in 
Section 2.

4.1.1. Derivative fitting

One neural closure model is trained using derivative fitting, meaning 
the loss function is as given in (4). The training data consists of 𝑁𝑝𝑁𝑠 =

6240 input-output pairs 
(
𝐮ref ,

(
d𝐮
d𝑡

)
ref

)
on which the model is trained. 

This model is trained for 10000 epochs with a batch size of 64. No 
regularisation term is added to the loss function as this not is found 
to meaningfully improve the resulting model. The choice not to add a 
regularisation term is motivated in more detail in Section 4.1.4.

4.1.2. Discretise-then-optimise

For the discretise-then-optimise approach, the neural closure model 
is embedded in Tsit5, a fourth-order ODE solver due to Tsitouras [36], 
with fixed time step. The loss function is given by equation (5) where 
𝑁𝑝 = 96, 𝑁𝑡 = 64, and 𝑡𝑖 = 𝑖Δ𝑡 with Δ𝑡 = 2−7. In words, the loss function 
is the mean-square error of the trajectory prediction, averaged over all 
snapshots of the training data except the initial condition. This model 
is trained for 20000 epochs, since trajectory fitting is found to converge 
more slowly than derivative fitting. The training is done with a smaller 
batch size of 8, since an input-output-pair that can be used for training 
is now one of the 96 trajectories, instead of one of the 6240 snapshots.

4.1.3. Optimise-then-discretise

A third model is trained using optimise-then-discretise. The ODE 
solver, loss function, batch size, and number of epochs are the same as 
those for the discretise-then-optimise model. The main difference is that 
for the optimise-then-discretise model, the time step of the ODE solver 
is not fixed, but is determined by the solver’s internal error control 
99
Table 2

The RMSE for each of the tested models on the 32 
testing trajectories of the Burgers’ equation.

Training approach Error on test data

Coarse ODE without closure term 0.104

Derivative fitting 2.67

Discretise-then-optimise 0.0264

Optimise-then-discretise 0.0312

mechanism. To compute the gradients required for training, the adjoint 
ODE is solved using the same ODE solver as the forward ODE.

4.1.4. Results

After training, all models are evaluated on test data that is not used 
during training. For each of the evaluated models, 32 initial conditions 
𝐮(𝑗)

ref
(0) for 𝑗 = 1, … , 32 are given to the ML model. The model then 

uses these initial conditions to make predictions for the trajectories 
𝐮(𝑗)

predict
(𝑡𝑖) for 𝑗 = 1, … , 32 and 𝑖 = 1, … , 𝑁𝑡. These are then compared 

to the actual trajectories 𝐮(𝑗)
ref
(𝑡𝑖) by taking the root-mean-square error 

(RMSE), summing over all components of the vector 𝐮, all time points 
𝑡𝑖, and all 32 testing trajectories. Therefore, the RMSE is simply the 
square root of the expression in (5), except over a different set of tra-

jectories. In addition to the neural closure models, the RMSE is also 
computed when solving the coarse discretisation of Burgers’ equation 
without a closure term, i.e. with NN(𝐮; 𝜗) ≡ 0. The RMSEs on the test 
data for all models are shown in Table 2. While the two models trained 
on trajectory fitting achieve significantly lower error than the coarse 
ODE solved without a closure term, the model trained using deriva-

tive fitting produces highly inaccurate results. As is visible in Fig. 2b, 
the model trained on derivative fitting produces a trajectory prediction 
that has completely different behaviour to the training data. The error 
in the prediction grows steadily as 𝑡 increases, and eventually reaches a 
steady-state with high error. This indicates that the derivative-fitting 
trained model creates a prediction that converges to a significantly 
different steady state to the steady state of the reference solution. To 
investigate this result further, more models are trained using deriva-

tive fitting with L2-regularisation, and indeed adding a regularisation 
term to the loss function does improve the accuracy of the resulting 
models. Nevertheless, these results are not included here. The reason 
for this is that adding a regularisation term only helps by reducing the 
magnitude of the neural network parameters, thereby also reducing the 
magnitude of the neural network output. The result is that training with 
a strong regularisation brings the accuracy of the neural closure model 
closer to that of the coarse ODE, without surpassing the coarse ODE in 
accuracy. Therefore, even with a regularisation term, derivative fitting 
is not effective at producing accurate neural closure models. Note that 
the prediction made by the model trained by discretise-then-optimise, 
which is shown in Fig. 2a, has lower error for large 𝑡 than for small 𝑡. 
The reason for this is that solutions to Burgers’ equation show relatively 
complex transient behaviour before converging to a simple steady state, 
making the long-term behaviour easier to predict than the short-term 
behaviour.

Fig. 3 shows how the RMSE on the training data of the two trajec-

tory fitting models improves during training. From this figure, it is clear 
that while both models start out with approximately the same RMSE 
(slightly above 0.1), the model trained with discretise-then-optimise 
improves slightly faster and starts converging to a measurably lower 
error than the other model after approximately 8000 epochs. The lower 
training error is not due to overfitting, as the model trained with 
discretise-then-optimise also produces measurably more accurate re-

sults on the test data as shown in Table 2. Instead, the reason for the 
higher training error in optimise-then-discretise is due to the inaccuracy 
of the gradient of the loss function: while the exact minimiser of the 
optimisation problem, i.e. the optimal parameters 𝜗, satisfy dLoss

d𝜗 = 0, 
the gradient of the loss function is not computed exactly when using 
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(a) Prediction error by the model trained by discretise-then-optimise. (b) Prediction error by the model trained by derivative fitting.

Fig. 2. The errors in the trajectory predictions made by the models trained by discretise-then-optimise and derivative fitting, respectively.
Fig. 3. The RMSE history during training of the two models that are trained 
using trajectory fitting on the Burgers’ test case.

the adjoint ODE formulation. As a result, training by optimise-then-

discretise does not converge to the truly optimal parameters or even 
to a local optimiser, but to a different parameter vector that satisfies 
dLoss

d𝜗 + (adjoint ODE error) = 0.

4.2. The Kuramoto-Sivashinsky equation

Since Burgers’ equation is relatively predictable (resulting in shock 
waves which then dissipate over time while moving through the do-

main), we also consider a more challenging case. In this section, exper-

iments are performed using the Kuramoto-Sivashinsky equation:

𝜕𝑢

𝜕𝑡
= −1

2
𝜕

𝜕𝑥

(
𝑢2
)
− 𝜕2𝑢

𝜕𝑥2
− 𝜕4𝑢

𝜕𝑥4
,

for 𝑥 ∈ [0, 64] with periodic boundary conditions. For a short description 
of the Kuramoto-Sivashinsky equation and its terms and solution be-

haviour, see Appendix A.2. Training data for the Kuramoto-Sivashinsky 
equation was generated by discretising the PDE into 1024 finite vol-

umes, solving the resulting ODE using a third-order stiff ODE solver 
for 𝑡 ∈ [0, 256], and down-sampling the resulting solution to 𝑁𝑥 = 128
finite volumes. The resulting training data consists of 𝑁𝑝 = 80 trajec-

tories used for training and 10 for testing. Each trajectory consists of 
an initial state followed by 𝑁𝑡 = 512 additional snapshots with Δ𝑡 = 1

2
between snapshots. All models trained in this section use the ‘large’ neu-

ral network shown in Table B.5, which is a CNN with six convolutional 
layers.

The Kuramoto-Sivashinsky equation is chaotic, meaning that arbi-

trarily small differences in the initial state 𝐮(0) will eventually lead to a 
100
completely different solution 𝐮(𝑡) for large 𝑡. As a result, all methods of 
approximating this PDE are expected to diverge from the training data 
at some point, meaning that simply taking the RMSE between the pre-

dicted and actual trajectories is not a very useful metric for accuracy. 
Instead, the accuracy of a method will be evaluated using the valid 
prediction time (VPT), which is the time until the error between the ap-

proximation and the training data exceeds some pre-defined threshold. 
Here, the VPT of a prediction 𝐮(𝑡) to a real trajectory 𝐮ref (𝑡) is computed 
following the procedure used by Pathak et al. [27]. First, the average 
energy of the real trajectory is computed as

𝐸avg =

√√√√ 1
𝑁𝑡

𝑁𝑡∑
𝑖=1

‖‖𝐮ref (𝑡𝑖)‖‖2.
Then, the valid prediction time is given by

VPT(𝐮ref ,𝐮, 𝑡1,2,…,𝑁𝑡
) = min

{
𝑡𝑖 | ‖‖𝐮(𝑡𝑖) − 𝐮ref (𝑡𝑖)‖‖ ≥ 0.4𝐸avg

}
. (10)

One property shared among chaotic processes is that the differ-

ence between two solutions 𝐮ref , 𝐮 grows approximately exponentially 
in time:

‖‖𝐮ref (𝑡) − 𝐮(𝑡)‖‖ ≈ 𝑒𝜆max𝑡 ‖‖𝐮ref (0) − 𝐮(0)‖‖ . (11)

In this equation, 𝜆max is the Lyapunov exponent of the ODE, which 
determines the growth rate of the error between two solutions. The 
inverse of the Lyapunov exponent is the Lyapunov time 𝑇Lyap = 𝜆−1max, 
which can be interpreted as the time it takes for the difference between 
two similar trajectories to increase by a factor 𝑒. Since the Lyapunov 
time represents the time scale on which trajectories diverge, the valid 
prediction times of models will be expressed as multiples of 𝑇Lyap.

4.2.1. Derivative fitting

As is the case for Burgers’ equation, the simplest training approach 
available is to train using derivative fitting. Since adding a penalty term 
to the neural network is not found to help significantly, this penalty 
term is omitted for derivative fitting for the Kuramoto-Sivashinsky 
equation, meaning only one model is trained with derivative fitting. 
This model is trained on all snapshots of the 80 trajectories of the train-

ing data. The model is trained for 1000 epochs with the batch size set 
to 128.

4.2.2. Optimise-then-discretise

The optimise-then-discretise training approach is tested on the same 
neural network. With this approach, the parameter 𝑁𝑡, the number 
of snapshot predictions computed from the initial condition, must be 
chosen. For the models trained on Burgers’ equation, 𝑁𝑡 was equal to 
the number of snapshots in the training data, but this is not expected 
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(a) A ‘long’ trajectory consisting of the initial state and 120 additional snap-

shots.

(b) Four ‘short’ trajectories, each consisting of an initial condition and 30 addi-

tional snapshots.

Fig. 4. A visual representation of how training data from the Kuramoto-Sivashinsky equation is split into smaller trajectories. The last snapshot of one trajectory is 
equal to the initial condition of the next trajectory.
to yield accurate models for the chaotic Kuramoto-Sivashinsky equa-

tion as described in Section 3.2. Here, two models are trained with 
the optimise-then-discretise approach with two different choices for 𝑁𝑡. 
The first model is trained on the first 25 snapshots from each trajectory 
(i.e. an initial condition and 𝑁𝑡 = 24 additional snapshots, correspond-

ing to one Lyapunov time), and the other is trained on the first 145 
snapshots from each trajectory (i.e. with 𝑁𝑡 = 144, corresponding to six 
Lyapunov times). This is done so that the effect of the trajectory length 
𝑁𝑡 on the model accuracy can also be studied. For both models, the for-

ward and adjoint ODEs are both solved using KenCarp47, a 4th-order 
accurate additive Runge-Kutta method due to Kennedy and Carpenter 
[14] that is implicit in 𝑓 but explicit in the neural network term. Using 
this ODE solver was found to be computationally more efficient than 
using either a fully explicit or fully implicit Runge-Kutta method (see 
sections 5.5.3 and 5.6.1 of [22]).

In order to avoid very large gradients causing the training to fail, 
gradient clipping is applied to the gradients before applying the opti-

miser. This way, gradients of which the norm exceeds some constant 𝑟
are scaled such that their norms are exactly equal to 𝑟, thereby avoid-

ing very large gradients while leaving small gradients unchanged. Here, 
gradient clipping is used with 𝑟 = 10−2. The model trained on short tra-

jectories is trained for 1000 epochs with a batch size of 10. The model 
trained on long trajectories is only trained for 100 epochs since the 
longer trajectories make the training much slower. While this means 
that the second model is not trained until convergence, the effect on 
the accuracy of the resulting models is found to be small compared to 
the difference in accuracy reported in Section 4.2.4. Both models are 
trained with a batch size of 8.

As described in Section 3.2, trajectory fitting on chaotic systems can 
cause problems due to exploding gradients, especially when training 
on long trajectories. To see if weighing the loss function as in (8a)

mitigates this problem, four more models are trained using optimise-

then-discretise on long trajectories, using the weighted MSE as loss 
function with 𝑐 ∈ {0.5, 1.0, 1.5, 2.0}. The number of epochs, batch size, 
and other parameters for these models is the same as those for the model 
trained on long trajectories with a simple MSE loss function.

4.2.3. Discretise-then-optimise

To test the discretise-then-optimise method for the Kuramoto-

Sivashinsky equation, the PDE is solved in the pseudospectral domain 
using an exponential integrator. More information about this approach 
is given in Appendix B.2.

In order to be able to compare more directly with the previous mod-

els, the closure term is given by the same neural network as used in 
earlier experiments, meaning that its input and output are in the physi-
101
cal domain. As such, the neural network term is preceded by an inverse 
Fourier transform and followed by a Fourier transform:

d
d𝑡
�̂� =

(
𝚲2 −𝚲4) �̂�− 𝑖

2
𝚲

((
−1�̂�

)2)+
(
NN

(
−1�̂�;𝜗

))
. (12)

As is the case for the optimise-then-discretise tests, one must choose 
𝑁𝑡, the number of time steps that are predicted with the model. In 
Section 4.1, the number of time steps to predict was 64, equal to the 
number of snapshots in the training data, with good results. In their ex-

periments with neural closure models for two-dimensional incompress-

ible fluid flow problems, List et al. [18] refer to this as the number of 
unrolled steps, and find that this has a significant effect on the stability 
of the resulting model. As such, a number of different models are trained 
by unrolling with different numbers of time steps. Specifically, 11 dif-

ferent models are trained with 𝑁𝑡 ∈ {1,2,4,8,15,30,60,90,100,110,120}. 
The model with 𝑁𝑡 = 120 is trained on the first 121 snapshots of each 
of the 80 training trajectories. For the models with 𝑁𝑡 ∈ {90,100,110}, 
the same 80 trajectories are truncated to the desired number of steps. 
For the remaining models, the training trajectories are split into mul-

tiple shorter trajectories as shown in Fig. 4. In this way, each training 
trajectory of 121 snapshots (an initial condition followed by 120 addi-

tional time steps) can be split into 4 trajectories of 31 snapshots each, 
or 15 trajectories of 9 snapshots each, and so on.

This way, all discretise-then-optimise models are trained on the first 
121 snapshots of each trajectory in the training data (or slightly fewer). 
All these models are trained for 5000 epochs with a batch size of 8.

4.2.4. Results

Table 3 shows the minimum, average, and maximum VPTs of neural 
ODEs trained with derivative fitting and optimise-then-discretise, and 
some example trajectories and predictions are shown in Fig. 5. Note 
that the VPTs in Figs. 5b and 5c only show one of the ten test tra-

jectories, meaning that the VPTs in these figures do not correspond to 
the averages shown in Table 3. From this table, it can be seen that 
optimise-then-discretise fitting works best on short trajectories, where 
the resulting models slightly outperform models trained by deriva-

tive fitting. Training on long trajectories results in worse performance, 
even if the loss function is exponentially weighted as in (8a) to mit-

igate the exploding gradients problem. This is likely due to the fact 
that the adjoint ODE methods introduce an error in the gradients used 
during training. As is generally the case for ODE solutions, this error 
increases with the time interval over which the ODE is solved. Hence, 
training on longer trajectories introduces a larger error in the gradi-

ents, which reduces the accuracy of the resulting model even if the 
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Table 3

An overview of the performance of different models tested on the Kuramoto-Sivashinsky equation, sorted by training approach. 
Fig. 7 summarises all results for the Kuramoto-Sivashinsky equation.

Training approach
VPT on test data

Min Avg Max

Coarse ODE 1.17 1.93 3.00

Derivative fitting 4.17 5.36 7.54

Optimise-then-discretise
Short trajectories (𝑁𝑡 = 24) 4.08 5.84 8.29

Long trajectories (𝑁𝑡 = 144) 2.38 3.38 4.67

𝑐 = 0.5 2.42 4.20 5.38

Optimise-then-discretise, 𝑁𝑡 = 144 𝑐 = 1.0 2.96 4.38 6.29

decaying error weights 𝑐 = 1.5 3.29 4.58 5.88

𝑐 = 2.0 2.71 4.29 5.75

Discretise-then-optimise
Short trajectories (𝑁𝑡 = 30) 4.92 7.10 9.12

Long trajectories (𝑁𝑡 = 120) 4.12 5.33 7.38

(a) A trajectory of the K-S equation from the test data.

(b) The prediction error for this trajectory of the closure model trained on short 
trajectories.

(c) The prediction error for this trajectory of the closure model trained on long 
trajectories.

Fig. 5. An example trajectory from the test data, and the prediction error of two different models obtained for this trajectory. Notice how the model trained on long 
trajectories produces significantly greater error in the short-term, and also achieves a lower VPT for this trajectory as a result (indicated by the vertical black lines 
in Panels b and c).
error function is weighted to mitigate the exploding gradients prob-

lem.

Fig. 6 shows the minimum, average, and maximum VPTs of the 11 
models trained using discretise-then-optimise on different numbers of 
unrolling steps. It can be seen that models trained on 60 or more steps 
perform worse than models trained on fewer steps, although perfor-

mance continues to improve after 1000 epochs. After 5000 epochs, the 
model trained on 30 steps performs the best. The model trained on 120 
102
steps is found to perform very badly after 1000 epochs, although perfor-

mance is similar to that of other models after 5000 epochs. The reason 
for the poor performance after 1000 epochs is described in Section 3.2: 
the long time interval used for training, combined with the chaotic na-

ture of the Kuramoto-Sivashinsky equation, means that the loss function 
is most sensitive to the behaviour for large 𝑡. This initially prevents the 
model from becoming more accurate in the short term, resulting in a 
very short VPT.
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Fig. 6. The minimum, average, and maximum VPT across the 10 test trajectories 
for models trained for the given number of time steps 𝑁𝑡 on the Kuramoto-

Sivashinsky equation with discretise-then-optimise.

Fig. 7. A plot of the RMSE on the Kuramoto-Sivashinsky equation of some of 
the different models in Table 3 as a function of 𝑡.

5. Conclusions

The goal of this paper is to make a general comparison of approaches 
for neural closure models, and make recommendations based on the 
results of this comparison. To this end, a variety of different training 
approaches were evaluated on two different test cases derived from par-

tial differential equations. Furthermore, two theorems were given that 
provide upper bounds on the long-term error of a neural closure model 
based on the short-term error that is used as the objective function dur-

ing training.

The simplest approach, derivative fitting, is found to perform ap-

proximately as well as trajectory fitting on the Kuramoto-Sivashinsky 
equation, but performs significantly worse on Burgers’ equation. Theo-

rem 3.1 implies that in general, models that are trained with deriva-

tive fitting may indeed produce inaccurate trajectories, even if they 
achieve high accuracy during training. It is not entirely clear what 
causes derivative fitting to perform well on the Kuramoto-Sivashinsky 
equation and not on Burgers’ equation. The performance may depend 
on the ODE for which the neural network acts as a closure term, or 
on the time integration method used to solve the ODE. However, the 
performance of derivative fitting may also be sensitive to specific pa-

rameters of the training procedure. For example, the use of derivative 
fitting for LES closure models produces accurate models in the work 
of Guan et al. [9], but not in the work of MacArt et al. [20]. Since 
derivative fitting is computationally much cheaper than trajectory fit-
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ting, it is generally worthwhile to try training a neural closure model 
with derivative fitting first. If derivative fitting produces poor models 
as it does in the Burgers’ equation tests, one can still switch to trajec-

tory fitting. Furthermore, if derivative fitting gives stable but inaccurate 
models, another approach is to train with derivative fitting for a rela-

tively small number of epochs, and to continue training the resulting 
model with trajectory fitting (see Section 5.1.2 of Melchers [22] for de-

tails). This approach produces accurate models like trajectory fitting, 
and is computationally more efficient by reducing the number of itera-

tions of the slower trajectory fitting that have to be performed in order 
to train the model to convergence.

Regarding trajectory fitting, the preferable approach is to use the 
discretise-then-optimise strategy, rather than optimise-then-discretise, 
which is in agreement with the results obtained by Onken and 
Ruthotto [24]. The reason for this is likely that the discretise-then-

optimise approach computes gradients more accurately, allowing the 
model to be trained to a higher accuracy. This results in slightly faster 
convergence during training as well as in a smaller error overall. 
This also means that a systematic comparison between optimise-then-

discretise and discretise-then-optimise is not always straightforward; in 
the Kuramoto-Sivashinsky case the pseudospectral method used for the 
discretise-then-optimise tests is a more accurate spatial discretisation of 
the PDE than the finite volume method used in the derivative fitting 
and optimise-then-discretise tests. This is a fundamental issue in testing 
training approaches for neural closure models, as many test problems 
require specific ODE solvers to efficiently obtain accurate solutions.

When training by trajectory fitting, the length of trajectories used 
for training must be chosen carefully, both for optimise-then-discretise 
and discretise-then-optimise. This is in line with our Theorem 3.2, stat-

ing that models that produce accurate predictions in the short term may 
still produce inaccurate predictions in the long-term. However, this is 
not always the case as Theorem 3.2 only provides an upper bound for 
the error. On the Kuramoto-Sivashinsky data, for example, the models 
trained by derivative fitting and by discretise-then-optimise with un-

rolling a single time step both produce good long-term predictions.

For optimise-then-discretise, training on long trajectories results in 
less accurate models due to the exploding gradients problem. This 
problem can be mitigated by introducing a weighted error function, al-

though the resulting approach still produces less accurate models than 
discretise-then-optimise trajectory fitting due to the increased error 
in the gradient computation. For the Kuramoto-Sivashinsky test case, 
derivative fitting produces better results than optimise-then-discretise 
on long trajectories. For discretise-then-optimise, fairly accurate mod-

els can be obtained by training on long trajectories, although training 
this way converges much more slowly than when training on shorter 
trajectories.

As machine learning techniques become more popular as a way to 
learn models from data, the existence of general recommendations and 
rules of thumb becomes increasingly important to reduce the amount 
of trial and error required to obtain accurate models. Overall, the work 
presented here provides a set of recommendations for neural closure 
models. Notwithstanding, we point to a few remaining open questions. 
Most notably, it is not fully clear yet what properties of an ODE system 
determine whether or not derivative fitting produces accurate models. 
Furthermore, for trajectory fitting it was argued that the number 𝑁𝑡 of 
time steps computed during training should be chosen carefully, but in 
this work good values for 𝑁𝑡 were found by trial and error. It is not 
clear how a good value for 𝑁𝑡 can be chosen ahead of time.
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Appendix A. Data generation

Solutions to the Burgers and Kuramoto-Sivashinsky equations are 
computed using the finite volume method. For both equations, the ini-

tial states 𝐮(0) are randomly generated as the sum of random sine and 
cosine waves with wave numbers 1 ≤ 𝑘 ≤ 10:

𝐮𝑖(0) = Re

( 10∑
𝑘=1

�̂�𝑘 exp(2𝜋𝑖𝑘∕𝑁𝑥) +
10∑
𝑘=1

�̂�−𝑘 exp(−2𝜋𝑖𝑘∕𝑁𝑥)

)
, (A.1)

where 𝑁𝑥 is the number of finite volumes and the �̂�𝑘, 𝑘 = ±1, … , ±10 are 
independent and distributed according to a unit Gaussian distribution. 
The resulting initial conditions are then multiplied by a constant so that 
max𝑖 ||𝐮𝑖(0)|| = 2.

A.1. Burgers’ equation

Burgers’ equation is a PDE over one variable, the momentum 𝑢(𝑥, 𝑡), 
as a function of space and time. Its general form is as follows:

𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑥2
− 1

2
𝜕

𝜕𝑥

(
𝑢2
)
, (A.2)

where 𝜈 ≥ 0 is a constant. The PDE can be seen as a highly simplified 
one-dimensional version of a fluid flow problem, with a linear second-

order diffusion term that models the effects of fluid viscosity, and a 
quadratic convection term that resembles the convection term in the 
Navier-Stokes equation. In this section, Burgers’ equation will be used 
with periodic boundary conditions and a domain length of 1, i.e. 𝑢(𝑥 +
1, 𝑡) = 𝑢(𝑥, 𝑡) for all 𝑥, 𝑡.

The Burgers equation (A.2) is solved with 𝜈 = 0.0005. The spatial 
computational domain is discretised using the first-order accurate spa-

tial discretisation given by Jameson [12]:

d𝐮𝑖
d𝑡

= 𝑓 (𝐮)𝑖 =
𝜈

Δ𝑥2
(
𝐮𝑖−1 − 2𝐮𝑖 + 𝐮𝑖+1

)
− 1

Δ𝑥
(
𝐟𝑖+1∕2 − 𝐟𝑖−1∕2

)
, (A.3a)

where 𝐟𝑖+1∕2 =
1
6
(
𝐮2
𝑖
+ 𝐮𝑖𝐮𝑖+1 + 𝐮2

𝑖+1
)
− 𝛼𝑖+1∕2

(
𝐮𝑖+1 − 𝐮𝑖

)
, (A.3b)

and 𝛼𝑖+1∕2 =
1
4
||𝐮𝑖 + 𝐮𝑖+1||− 1

12
(
𝐮𝑖+1 − 𝐮𝑖

)
. (A.3c)

The resulting ODEs are solved for 𝑡 ∈ [0, 0.5] using the Tsit5 algo-

rithm [36], which is a fourth-order, five-stage Runge-Kutta method with 
embedded error estimator. This ODE solver was chosen following the 
recommendations of the DifferentialEquations.jl documentation [23]. 
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In total, 128 solutions are obtained, each from a random initial state 
according to (A.1). Of these solutions, 96 are used for training and the 
remaining 32 are used for testing. The solutions are then down-sampled 
by a factor of 64 in space. This way, training data is created to allow a 
neural network to work on the low-fidelity (downsampled) initial con-

ditions, but to still approximate the original high-fidelity solution. The 
downsampling is performed by averaging the solution over chunks of 
64 finite volumes. This is a necessary step, since training data obtained 
through solving an ODE d𝐮d𝑡 = 𝑓 (𝐮) would trivially allow a neural clo-

sure model d𝐮
d𝑡 = 𝑓 (𝐮) + NN(𝐮; 𝜗) to produce very accurate predictions 

when NN(𝐮; 𝜗) ≈ 0. The coarse-grid solution is saved with a time step 
of Δ𝑡 = 2−7 between snapshots, meaning that each coarse-grid solution 
consists of an initial condition followed by 64 additional snapshots.

Note that when numerically solving PDEs, choosing a first-order ac-

curate spatial discretisation and a fourth-order accurate ODE solver 
would typically be a bad choice. The error in the resulting solution 
would then be dominated by the error in the spatial discretisation, 
meaning that more accurate solutions could be obtained by using a finer 
spatial discretisation and a lower-order ODE solver. In the experiments 
performed in this work the goal is to train neural networks to com-

pensate for the spatial discretisation error. This means that choosing 
a relatively high-order accurate ODE solver is necessary to ensure that 
the temporal discretisation error does not contribute significantly to the 
overall error.

This process is illustrated in Fig. A.8. This figure also shows the re-

sult of solving the coarsely discretised ODE starting from the downsam-

pled initial state 𝐮(0) ∈ℝ64 (Fig. A.8c). Crucially, this is not equal to the 
downsampled fine-grid solution (Fig. A.8b). The downsampled fine-grid 
solution is by definition the most accurate low-fidelity approximation 
to the original high-fidelity data. The solution of the low-fidelity ODE 
introduces additional errors (Fig. A.8d), and is therefore a less accurate 
approximation to the original data than the downsampled high-fidelity 
solution.

A.2. Kuramoto-Sivashinsky

The Kuramoto-Sivashinsky equation is named after the two re-

searchers who independently derived the equation in Kuramoto [17]

and Sivashinsky [34]. This PDE is taken with periodic boundary condi-

tions as well:

𝜕𝑢

𝜕𝑡
= −1

2
𝜕

𝜕𝑥

(
𝑢2
)
− 𝜕2𝑢

𝜕𝑥2
− 𝜕4𝑢

𝜕𝑥4
, (A.4a)

𝑢(𝑥+𝐿, 𝑡) = 𝑢(𝑥, 𝑡). (A.4b)

The Lyapunov exponent of (A.4a) depends on the length 𝐿 of the 
domain. Edson et al. [6] found the following approximation for the 
Lyapunov eigenvalues for varying 𝐿:

𝜆𝑖(𝐿) ≈ 0.093 − 0.94
𝐿

(𝑖− 0.39) , 𝑖 = 1,2,…

⟹ 𝜆max(𝐿) ≈ 0.093 − 0.57
𝐿

.

The training data is created with 𝐿 = 64, leading to a Lyapunov ex-

ponent of 𝜆max ≈ 0.084. The inverse of the Lyapunov exponent is the 
Lyapunov time 𝑇Lyap, which can be loosely interpreted as the time it 
takes for the error between two similar trajectories to grow by a factor 
𝑒. Taking 𝐿 = 64 yields 𝑇Lyap ≈ 12.

In this PDE, the time-dependent behaviour of 𝑢 is governed by three 
terms:

• A non-linear convection term −1
2

𝜕

𝜕𝑥

(
𝑢2
)
, the same as in Burgers’ 

equation.

• A destabilising anti-diffusion term − 𝜕2𝑢
𝜕𝑥2

. Note that this term ap-

pears on the right-hand with a minus sign, which is unusual for 
diffusion terms.

https://github.com/HugoMelchers/neural-closure-models


H. Melchers, D. Crommelin, B. Koren et al. Computers and Mathematics with Applications 143 (2023) 94–107

(a) A numerical solution to Burgers’ equation on the fine grid (𝑁𝑥 = 4096). (b) This same solution, downsampled to the coarse grid (𝑁𝑥 = 64).

(c) The solution of the ODE on the coarse grid, starting from the downsampled 
initial condition.

(d) The error between the downsampled fine-grid solution and the coarse grid 
solution.

Fig. A.8. An example showing how solving a coarse-grid solution to Burgers’ equation does not yield the same solution as down-sampling the fine-grid solution to 
the equation. A closure model can be added to the coarse discretisation to bring its solution (Panel c) closer to the fine-grid solution (Panel a).
• A stabilising hyper-diffusion term − 𝜕4𝑢
𝜕𝑥4

. Without this term, the 
equation would be ill-posed since the anti-diffusion term would 
cause solutions to blow up in a finite amount of time.

Solutions to the Kuramoto-Sivashinsky equation are created by solv-

ing the PDE with domain length 𝐿 = 64. As is the case for Burgers’ 
equation, for the Kuramoto-Sivashinsky equation the function 𝑢(𝑥, 𝑡) is 
discretised as a time-dependent vector 𝐮(𝑡). Since the non-linear con-

vection term is the same as in Burgers’ equation, it is discretised in the 
same way (see (A.3a)) with the exception that the artificial diffusion 
term (given by the vector 𝜶 in (A.3b)) is no longer needed since the 
Kuramoto-Sivashinsky equation produces smooth solutions. The linear 
diffusion and hyper-diffusion terms are discretised using simple 3-wide 
and 5-wide stencils, respectively, leading to the following discretisation 
for the three different terms:(1
2
𝜕

𝜕𝑥

(
𝑢2
))

(𝐱𝑖)→
1
Δ𝑥

(
𝐟𝑖+1∕2 − 𝐟𝑖−1∕2

)
,

where 𝐟𝑖+1∕2 =
1
6
(
𝐮2
𝑖
+ 𝐮𝑖𝐮𝑖+1 + 𝐮2

𝑖+1
)
,

𝜕2𝑢

𝜕𝑥2
(𝐱𝑖)→

1
Δ𝑥2

(
𝐮𝑖−1 − 2𝐮𝑖 + 𝐮𝑖+1

)
,

𝜕4𝑢

𝜕𝑥4
(𝐱𝑖)→

1
Δ𝑥4

(
𝐮𝑖−2 − 4𝐮𝑖−1 + 6𝐮𝑖 − 4𝐮𝑖+1 + 𝐮𝑖+2

)
.

Since the PDE is chosen with periodic boundary conditions, the sten-

cils shown here are also applied with periodic boundary conditions, 
i.e. 𝐮𝑖+𝑁 = 𝐮𝑖. Written out fully, the resulting ODE is:
𝑥
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d𝐮𝑖
d𝑡

= 𝑓 (𝐮)𝑖 = − 1
6Δ𝑥

(
𝐮2
𝑖+1 − 𝐮2

𝑖−1 + 𝐮𝑖
(
𝐮𝑖+1 − 𝐮𝑖−1

))
− 1

Δ𝑥2
(
𝐮𝑖−1 − 2𝐮𝑖 + 𝐮𝑖+1

)
− 1

Δ𝑥4
(
𝐮𝑖−2 − 4𝐮𝑖−1 + 6𝐮𝑖 − 4𝐮𝑖+1 + 𝐮𝑖+2

)
.

(A.5)

The PDE is discretised with 𝑁𝑥 = 1024 finite volumes, and solved 
from 𝑡 = 0 to 𝑡 = 256. The initial conditions are generated in the same 
way as for Burgers’ equation, see (A.1). The ODEs are solved using 
the 3rd-order accurate stiff ODE solver Rodas4P [35], again follow-

ing the recommendations from the DifferentialEquations.jl documenta-

tion [23]. The resulting solutions are downsampled to 128 finite vol-

umes in space with a time step of Δ𝑡 = 1
2 in between snapshots. To 

avoid the effects of initial transients, the first 32 snapshots of the trajec-

tories are not used for training. An example trajectory from the resulting 
training data is shown in Fig. A.9.

Of the 100 generated trajectories, the first 80 are used for training 
and the last 10 are used for testing. The remaining 10 trajectories are 
used to evaluate models while they are being trained, to ensure models 
are trained for enough iterations but without overfitting.

Appendix B. Training details

B.1. Neural network architectures

To ensure that the experiments only test the effect of including prior 
knowledge, only two different neural networks are used for all nu-

merical experiments: a ‘small’ convolutional neural network with 57 
parameters, and a ‘large’ convolutional neural network with 533 pa-

rameters.
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Table B.4

A description of the small neural network structure used for the experiments on Burgers’ 
equation.

Layer Description 𝜎 Parameters

1 𝐮↦
[ (

𝐮𝑖
)
𝑖

(
𝐮2
𝑖

)
𝑖

]
– 0

2 9-wide conv, 2→ 2 channels tanh 38 (9 × 2 × 2 weights and 2 biases)

3 9-wide conv, 2→ 1 channels – 19 (9 × 2 × 1 weights and 1 bias)

8 𝐮↦Δfwd𝐮 – 0

Total 57

Table B.5

A description of the large neural network structure used for the experiments on the 
Kuramoto-Sivashinsky equation.

Layer Description 𝜎 Parameters

1 𝐮↦
[ (

𝐮𝑖
)
𝑖

(
𝐮2
𝑖

)
𝑖

]
– 0

2 5-wide conv, 2→ 4 channels tanh 44 (5 × 2 × 4 weights and 4 biases)

3 5-wide conv, 4→ 6 channels tanh 126 (5 × 4 × 6 weights and 6 biases)

4 5-wide conv, 6→ 6 channels tanh 186 (5 × 6 × 6 weights and 6 biases)

5 5-wide conv, 6→ 4 channels tanh 124 (5 × 6 × 4 weights and 4 biases)

6 5-wide conv, 4→ 2 channels tanh 42 (5 × 4 × 2 weights and 2 biases)

7 5-wide conv, 2→ 1 channels – 11 (5 × 2 × 1 weights and 1 bias)

8 𝐮↦Δfwd𝐮 – 0

Total 533
Fig. A.9. An example trajectory from the Kuramoto-Sivashinsky equation used 
for training models.

Experiments for the Burgers equation are done only with the smaller 
of the two neural networks. Experiments for the Kuramoto-Sivashinsky 
equation are done only with the larger neural network. Note that both 
neural networks, especially the small neural network, are very small 
compared to networks used in modern machine learning applications. 
However, as seen from the results, both neural networks are large 
enough to significantly improve the accuracy over the coarse ODE with-

out closure term.

The neural network structures are summarised in Tables B.4 and B.5. 
Note that both neural networks have an initial layer that extends the in-

put vector 𝐮 with its component-wise square 𝐮2
𝑖
. This is done since the 

true right-hand sides of both PDEs (A.2) and (A.4a) contain an advec-

tion term that depends directly on 𝑢2. As such, passing the values 𝐮2
𝑖

to 
the first convolutional layer is expected to improve the ability of the net-

work to learn the closure term. Also note that the single bias parameter 
in the last convolutional layer of both models is actually meaningless: 
its value does not affect the output of the model due to the Δfwd layer. 
This layer ensures that the entries of the neural network output always 
sum to zero, which is a property that is also satisfied by the training 
data. Enforcing this property in the neural network was found to re-
106
sult in a small but consistent improvement in accuracy, see Chapter 4 
of Melchers [22].

All neural networks are trained using the Adam optimiser [15] with 
a learning rate of 10−3.

B.2. Discretise-then-optimise for the Kuramoto-Sivashinsky equation

As mentioned in Section 2.2, the discretise-then-optimise approach 
requires the use of a differentiable ODE solver. This is not a problem 
for Burgers’ equation, but does pose a problem for the stiff Kuramoto-

Sivashinsky equation since stiff equations are typically solved using 
implicit methods, which are not trivial to back-propagate through. Note 
that back-propagating through implicit methods is possible, since the 
gradient of an implicitly defined function (i.e. a function whose output 
is defined as the solution of a system of equations) can be computed 
by the implicit function theorem, as demonstrated by Kolter et al. [16]. 
Nevertheless, explicit ODE solvers are preferable over implicit meth-

ods whenever they are applicable, due to their simplicity and speed, as 
well as the property that back-propagation through explicit methods is 
comparatively easy.

For some problems including the Kuramoto-Sivashinsky equation, 
exponential time differencing Runge-Kutta methods are suitable. These 
methods assume a stiff but linear term which can be solved exactly us-

ing exponentials, combined with a non-stiff non-linear term that can 
be taken into account using multiple stages, similar to how standard 
explicit Runge-Kutta methods achieve higher orders of accuracy. Ex-

ponential integrators of orders 2, 3, and 4 were derived by Cox and 
Matthews [5]. A numerically stable way to compute the coefficients re-

quired by these methods was presented by Kassam and Trefethen [13]

and demonstrated on the four-stage fourth-order accurate method ET-
DRK4. The resulting algorithm was found to perform very well on a 
variety of problems including the Kuramoto-Sivashinsky equation and 
will therefore be used here.

Exponential integrators for the Kuramoto-Sivashinsky equation are 
most efficient when the PDE is solved in the pseudo-spectral domain, 
meaning that the ODE is not over the variables 𝐮(𝑡), but over their 
discrete Fourier transform �̂�(𝑡) ∶= 𝐮(𝑡) (the Fourier transform is only 
performed over space, not over time). Transforming the equation in this 
way yields the following ODE system:

d �̂� =
(
𝚲2 −𝚲4) �̂�− 𝑖 𝚲

((
−1�̂�

)2)
, (B.1)
d𝑡 2
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where 𝚲 is a diagonal matrix 𝚲 = diag
(
𝜆0, 𝜆1,… , 𝜆𝑁𝑥−1

)
where

𝜆𝑘 =
⎧⎪⎨⎪⎩

2𝜋𝑘
𝐿

for 0 ≤ 𝑘 <
𝑁𝑥

2 ,

0 for 𝑘 = 𝑁𝑥

2 ,

2𝜋
𝐿
(𝑘−𝑁𝑥) for

𝑁𝑥

2 < 𝑘 ≤𝑁𝑥 − 1.
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