

Deep Reinforcement Learning for Optimal Planning of
Assembly Line Maintenance
Citation for published version (APA):
Geurtsen, M., Adan, I. J. B. F., & Atan, Z. (2023). Deep Reinforcement Learning for Optimal Planning of
Assembly Line Maintenance. Journal of Manufacturing Systems, 69, 170-188.
https://doi.org/10.1016/j.jmsy.2023.05.011

Document license:
CC BY

DOI:
10.1016/j.jmsy.2023.05.011

Document status and date:
Published: 01/08/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1016/j.jmsy.2023.05.011
https://doi.org/10.1016/j.jmsy.2023.05.011
https://research.tue.nl/en/publications/1ace97f1-5a90-40f0-aaae-a635388e7dde

Journal of Manufacturing Systems 69 (2023) 170–188

0
l

Contents lists available at ScienceDirect

Journal of Manufacturing Systems

journal homepage: www.elsevier.com/locate/jmansys

Deep reinforcement learning for optimal planning of assembly line
maintenance
M. Geurtsen a,b,∗, I. Adan a, Z. Atan a

a Department of Industrial Engineering, Eindhoven University of Technology De Zaale, 5600 MB, Eindhoven, The Netherlands
b ITEC, Nexperia, Jonkerbosplein 52, 6534 AB, Nijmegen, The Netherlands

A R T I C L E I N F O

Keywords:
Scheduling
Maintenance
Deep reinforcement learning
Simulation
Case-study
Flexibility

A B S T R A C T

Discovering the optimal maintenance planning strategy can have a substantial impact on production efficiency,
yet this aspect is often overlooked in favor of production planning. This is a missed opportunity as maintenance
and production activities are deeply intertwined. Our study sheds light on the significance of maintenance
planning, particularly in the dynamic setting of an assembly line. By maximizing the average production rate
and incorporating flexible planning windows, buffer content, and machine production states, a unique problem
is addressed in which a policy for planning maintenance on the final machine of a serial assembly line is
developed. To achieve this, novel average-reward deep reinforcement learning techniques are employed and
pitted against generic dispatching methods. Using a digital twin with real-world data, experiments demonstrate
the immense potential of this new deep reinforcement learning technique, producing policies that outperform
generic dispatching strategies and practitioner policies.
1. Introduction

The vast majority of research in production scheduling assumes
that machines are always available during a planning horizon [1].
However, in practice, machines may become unavailable due to variety
of reasons, including planned and/or unplanned maintenance activities.
Although maintenance interrupts the production process, it guarantees
a better equipment condition which might lead to higher produc-
tion rates. As production and maintenance both utilize the available
time of machines, decision support on the optimal timing to execute
maintenance can be highly beneficial [2].

This study is motivated by the production of integrated circuits (ICs)
at Nexperia, a global semiconductor manufacturer that produces more
than 90 billion ICs annually. In particular, in the back-end assembly
process ICs are produced on assembly lines. The assembly process
involves three steps in series: (1) die-bonding, (2) wire-bonding and
(3) molding. Three different machines are connected by a support
structure, that flows through the line. An illustration of this process
is provided in Fig. 1(a). An assembly line with multiple machines of
each type and buffers in between machines is depicted in Fig. 1(b).
This type of assembly line can be considered as a general 𝑁 machines,
𝑁 − 1 buffers serial production line.

Maintenance on these serial production lines is necessary to prevent
major failures and keep the equipment (machines) in appropriate oper-
ational conditions. Performing Preventive Maintenance (PM) on serial

∗ Corresponding author at: Department of Industrial Engineering, Eindhoven University of Technology De Zaale, 5600 MB, Eindhoven, The Netherlands.
E-mail address: michaelgeurtsen@protonmail.com (M. Geurtsen).

production lines is a complicated endeavor due to the close connections
of the equipment in the line. Wrongly timing of PM can have a sig-
nificant impact on system throughput. Therefore, when executing PM
it is crucial to take the active equipment status and buffer levels into
account. Due to equipment failures or small hiccups amidst production,
the number of produced products between two consecutive PM activi-
ties is not constant. Hence, in order to better reflect the deterioration
process of equipment, a usage-based maintenance approach would
be preferred. Adopting a usage-based maintenance approach rather
than performing the maintenance at predetermined moments in time
results in less certainty on the future time at which maintenance will
be required. Consequently, in case of limited maintenance resources,
machines could become idle. To prevent such scenarios, flexibility on
the usage-based maintenance activities can be applied. An example of
this maintenance planning method can be found in the semiconductor
industry, more specifically at the back-end assembly process of Nexpe-
ria, in which PM must be scheduled on the last machine of the assembly
line in such a manner that congestion on the upstream machines is
minimized.

Deriving a policy based on these complex and intricate interactions
among machines in the serial production line, requires keeping track
of the many environmental conditions. This requirement implies an
extremely large state space of the maintenance optimization problem.
278-6125/© 2023 The Author(s). Published by Elsevier Ltd on behalf of The Socie
icense (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jmsy.2023.05.011
Received 10 February 2023; Received in revised form 21 April 2023; Accepted 17
ty of Manufacturing Engineers. This is an open access article under the CC BY
May 2023

https://www.elsevier.com/locate/jmansys
http://www.elsevier.com/locate/jmansys
mailto:michaelgeurtsen@protonmail.com
https://doi.org/10.1016/j.jmsy.2023.05.011
https://doi.org/10.1016/j.jmsy.2023.05.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2023.05.011&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.
Fig. 1. Assembly line.
Fig. 2. Flowchart showing the layout of the paper.

The problem rapidly becomes intractable with traditional model-based
planning methods. New tools and methodologies emerging in Artificial
Intelligence (AI) and machine learning (ML) areas such as Deep Rein-
forcement Learning (DRL) might provide promising techniques that can
be applied for intelligent decision-making in maintenance management.

This paper is devoted to address the complex maintenance planning
problem described above. The main contributions of this paper are: (1)
studying a new maintenance problem where a policy must be derived
based on multiple characteristics such as the machine production states,
buffer contents and allowed flexibility of the maintenance activity;
(2) formulating the problem as a Markov Decision Process (MDP) and
applying DRL as a solution method; (3) being the first study to apply
171
Q-network based DRL techniques for the average-reward setting; (4)
implementing the problem in a discrete-event simulation that models
the production as a fluid flow which uses real production data as input.

This study shows that adopting usage-based maintenance over time-
based maintenance leads to significant throughput improvements. In
addition, allowing flexibility for maintenance and taking into account
the machine production states when initiating PM extends the improve-
ment even further. The newly proposed DRL technique is the best
performing method for this particular problem and can be a useful ap-
proach for any manufacturing problem that deals with decision-making
based on multiple inputs and long-term goals.

The remainder of the paper is organized as follows. In Section 2,
a review of the relevant literature is provided. Section 3 describes the
problem in more detail. Section 4 introduces the modeling method of
the production line and the simulation model. Section 5 describes two
solution methods, a heuristic approach and a DRL approach. Then, in
Section 6, experiments are performed to compare the DRL method to
other dispatching strategies. Finally, conclusions and recommendations
are provided in Section 7. Fig. 2 provides a flowchart, depicting the
organizational structure of the paper.

2. Literature review

Maintenance has a strong relationship to production. The purpose
of maintenance is to allow production, yet to execute maintenance
production often has to be interrupted. This negative effect must there-
fore be considered in planning and optimizing maintenance along
production. Reviews on the topic of maintenance scheduling and plan-
ning in combination with production are provided by Budai et al.
[2] and Geurtsen et al. [3]. As this study only addresses maintenance
decisions, we do not give advice on how to plan production. Therefore,
we set the scope of our literature review to the setting where (1)
production is not explicitly scheduled, but instead taken into account
in the form of conditions or requirements, and (2) the decision on
when to do maintenance is determined based on characteristics of the
production line, such as machine states and buffer contents. Following
this reasoning, we identify two streams of research. The first stream
addresses studies that consider machine and buffer interactions in a
production line for scheduling maintenance. The second stream deals
with studies where a maintenance activity is planned at those moments
that certain machines are not needed for production, also referred to
as Opportunistic Maintenance (OM). Each stream is dealt with in a
separate section.

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.
2.1. Scheduling maintenance based on machine and buffer interactions in
a production line

Van der Duyn Schouten and Vanneste [4] are one of the first to con-
sider a downstream buffer for planning maintenance. A two-machine
single-buffer problem is considered where inspections occur at discrete
time epochs. Both CM and PM are considered where the time to failure
is a stochastic variable with known probability distribution function.
To prevent frequent failures, PM is allowed, which can be initiated at
any time epoch. A class of control-limit policies are developed in which
maintenance is triggered based on the buffer content and the machine
age. A similar setting is examined by Kyriakidis and Dimitrakos [5].
While Van der Duyn Schouten and Vanneste [4] only consider a cost
when maintenance is initiated while the buffer is empty, Kyriakidis and
Dimitrakos [5] extend the cost function by including operating, mainte-
nance and storage costs. Later, they extend their study in Karamatsoukis
and Kyriakidis [6] by including costs due to lost production. A discrete-
time Markov decision model is presented with which they show that
for fixed buffer content and fixed deterioration degree of one machine,
the average-cost optimal policy initiates PM on the other machine if its
degree of deterioration exceeds some critical level. The two-machine
single-buffer problem is also studied in Meller and Kim [7] where the
goal is to determine the optimal buffer level that triggers PM on the
first machine. While these studies proved that the optimal policy is
of control-limit type, only a simple setting with a fixed buffer level is
analyzed. This is therefore less applicable when buffer levels fluctuate
significantly.

Another approach considers both the deterioration of the equipment
and the buffer level to determine when to initiate maintenance. For
a review on maintenance policies for deteriorating systems, we refer
the reader to the study by Wang [8]. Liu et al. [9] study a single
machine-single buffer problem where the machine deteriorates and the
optimal maintenance interval and buffer level have to be determined
to maximize system availability. In Fitouhi et al. [10], a two-machine
single-buffer problem is studied where both machines transition from
one degraded state to another. The decision when to perform PM
depends on the degraded state of the machines and the action can be
chosen to restore the machine to any other less degraded state, which
influences the costs of PM. A two-machine single-buffer problem is also
studied by Zhou and Zhang [11], where each machine has two compo-
nents that suffer from degradation. The decision to make is on which
component of what machine to perform PM, based on buffer status
and component degradation state. The goal is to optimize the expected
revenue per unit time, which consists of the production revenue and
costs of maintenance, operation and inventory. Wang and Qi [12]
study a similar problem but without multiple components. Instead, they
consider imperfect production and imperfect PM, which is constrained
by a scarce resource. Deterioration is represented by multiple decreas-
ing yield levels. They present a multi-agent reinforcement learning
approach to decrease the long-run average cost. Li and Zhou [13]
extend the similar problem to a more complex production line with
multiple machines and buffers. The degradation of the machine follows
a discrete-time discrete-state Markov process. Gu et al. [14] also study
a serial production line with multiple machines and buffers where each
machine deteriorates according to a geometric distribution. Different
distributions for maintenance durations are evaluated. PM decisions
are based solely on machine degradation states. Arab et al. [15] go
a step further and study multiple complex production lines, including
both serial and parallel processes with multiple buffers. Decisions on
when to perform maintenance is based on work-in-process (WIP) and
remaining reliability of equipment. A genetic algorithm is developed to
create a schedule that maximizes the long-run throughput. In general,
the aim of modeling deterioration is to generate more precise main-
tenance schedules. However, this is usually paired with assumptions
on deterioration processes that differ significantly in literature, as seen
172
in Wang [8]. These approaches therefore lack general applicability in
practice.

Another technique is to use the production rate of the machine as
a decision variable. Zequeira et al. [16] study a production facility of
two machines with an intermediate buffer, where at random times, the
first machine is able to receive extra production capacity to build up
a buffer before initiating maintenance. They are interested in finding
the optimal time to do maintenance based on both the decision when
to use the extra production capacity and the ideal buffer threshold.
A similar problem is studied by Magnanini and Tolio [17]. In a two-
machine single-buffer production line, the upstream machine has a
higher production rate than the downstream machine and the upstream
machine is characterized by a degradation profile on which PM can
be performed. A threshold-based control policy is proposed where
switching points define the buffer level and the machine state for which
PM should be activated. In addition, hedging points are defined to
reduce the production rate of the upstream machine in order to avoid
surplus in the buffer.

A different approach is based on using the buffers as a measure
for bottleneck detection and utilize this information to schedule main-
tenance. The study by Langer et al. [18] is the first to adopt such
an approach. They consider a serial production line with reactive and
PM operations. PM has a fixed schedule where the time between two
consecutive maintenance activities is assigned randomly. Priority on
which machine to perform maintenance is assigned based on a dynamic
bottleneck-approach. The studies by Li et al. [19] and Gopalakrishnan
et al. [20] also use bottleneck identification based on buffer utiliza-
tion as an approach to prioritize maintenance on a serial production
line. However, only reactive maintenance is modeled. Gopalakrishnan
et al. [20] propose a dynamic shifting-bottleneck approach where the
priority of which machine to serve changes in real-time by looking
at the momentary bottlenecks. Li et al. [19] on the other hand use a
data-driven approach where the solution method is developed without
an analytical or simulation model. A combination of policy-based and
bottleneck-based decision making is studied by Lu et al. [21]. A serial
production line with multiple workcenters and intermediate buffers is
considered. The workcenter consists of machines that require either
corrective maintenance or PM, performed by a scarce technician. First,
it is decided whether to perform maintenance, which is based on both
the number of failures a machine has experienced and thresholds for the
buffers. Then, maintenance is dispatched based on which machine is a
greater bottleneck. Although the studies show an interesting approach
to determine on which machine to schedule maintenance in case it must
be executed immediately, mostly CM activities are considered. In addi-
tion, maintenance activities that have some flexibility are completely
neglected.

2.2. Opportunistic maintenance

Opportunistic maintenance originates from the thought that the
downtime of a system is often an opportunity to combine preven-
tive and corrective maintenance. Especially for systems where com-
ponents are connected in series, the effect of a single failure could
result in disturbances on the other components. These systems are
also known as multi-component systems. A review on multi-component
systems is provided by Nicolai and Dekker [22]. Reviews on the ap-
plication of opportunistic maintenance for these multi-component sys-
tems can be found in Ab-Samat and Kamaruddin [23] and Werbińska-
Wojciechowska [24]. Serial production lines can also be interpreted
as a multi-component system. As disturbances on one machine in
the line may affect upstream or downstream machines. Indeed, in-
termediate buffers between the machines could mitigate the direct
connection of the machines and therefor reduce the effect of dis-
turbances, however the connection will not cease to exist. Most lit-

erature on opportunistic maintenance assumes a direct connection

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.
between the components, i.e. no buffers exist in-between the com-
ponents. According to Werbińska-Wojciechowska [24], four distinct
groups of policies within opportunity based maintenance can be de-
fined: (1) age-based opportunity maintenance models, (2) failure-based
opportunity maintenance models, (3) opportunity and condition-based
maintenance models and (4) mixed PM models that consider different
types of maintenance policies. We will only consider research where
maintenance opportunities arise due to either unexpected component
failures or flexible windows for PM, as this best matches the problem
studied in this paper.

van der Duyn Schouten and Vanneste [25] consider a serial system
of two components. The times to failure are stochastic variables with
a known probability distribution function and inspections occur at
discrete time epochs. Upon inspection, the choice to make is which
component to replace. The choice depends on the lifetime of both
components, the breakdown cost and replacement cost. Laggoune
et al. [26] study a system of multiple components in series where the
failure of any component leads to the failure of the whole system.
Each component has a time interval for PM. The decision to make is
whether to take the opportunity to replace preventively some of the
non-failed components in case the system is down, due to either CM
or PM. The decision is based on component degradation and the risk
of failure of the components before reaching the next scheduled PM.
In Sarker and Faiz [27], similar to Laggoune et al. [26], a problem is
studied where the failure of one component causes the whole system
to stop. Upon a component failure, corrective maintenance is done,
but opportunities arise to perform PM as well. The decision whether
to perform maintenance on the other components is based on the age
group the component is in. In addition, the degree of preventive action
per component can be set as well. Maintenance times are considered
negligible and the goal of the optimal policy is to minimize overall
costs. A different problem is considered by Gunn and Diallo [28].
They study a system of multiple components where each component
requires PM. The time between two consecutive maintenance activities
differs per component. Failure of the component is not considered. In
addition, before the end due of maintenance is reached, a time window
is available in which maintenance may be flexibly scheduled. This
enables an opportunity to group maintenance of multiple components
together. Zhou et al. [29] examine a similar problem, but additionally
consider stochastic failures of the components. A failure of a component
now also becomes an opportunity to group PM together, based on the
flexible time windows of PM. A policy is obtained by minimizing the
cumulative maintenance cost. Above studies do not explicitly model
production and therefor neglect the duration of maintenance and the
impact it can have on production throughput.

Ferreira Neto et al. [30] take production activities into account.
They study a serial production line where the first machine supplies
material to the downstream machines downstream and a buffer exists
between the first machine and downstream machines. The first machine
is composed of 𝑛 components and the machine fails if 𝑘-out-of-𝑛 compo-
nents fail. Inspections are performed when the machine fails, the buffer
is full or empty or when the optimal thresholds for the operation time
and the buffer level are exceeded, which is viewed as the opportunistic
window. The occurrence of empty buffers as opportunistic windows is
also studied by Wu et al. [31] and Yang et al. [32]. While Wu et al. [31]
first inspection to determine if PM is required, Yang et al. [32] propose
a condition-based strategy. Both model the arrival of the empty buffer
opportunities as a Poisson process. More recently, Huang et al. [33]
study a serial production line of multiple machines with intermediate
buffers. Both corrective and PM is considered and the lifetime of a
machine follows a known distribution. A Deep Reinforcement Learn-
ing approach is presented. In the state space, the machine ages, the
buffer levels and the remaining maintenance durations of the ongoing
maintenance activities are included. The policy obtained by the agent
is compared to a run-to-failure policy, an age-based replacement policy
173

and an opportunistic policy. Interestingly, the agent learns a policy that
combines aspects of both opportunistic maintenance and group main-
tenance, which outperforms the other policies in terms of maintenance
cost. Valet et al. [34] also successfully apply DRL to an opportunistic
maintenance scheduling problem. They consider opportunities induced
by approaching condition-based breakdowns, as well as opportunities
triggered by external factors such as empty/full buffers. A job shop
environment is considered and the decision to perform PM is based
on a time-to-failure distribution for each machine and the content of
the buffer prior to the machine. States of neighboring machines are
not considered. Kuhnle et al. [35] propose exactly a similar oppor-
tunistic maintenance approach as in Valet et al. [34], but apply it
to a less complicated environment of single machines. A different
study is considered in Zhang et al. [36], where a two-machine single-
buffer production line is examined. Machines are always producing but
deteriorate over time. Their goal is to define the best levels for when
to perform CM, PM and OM, based on buffer level and deterioration
state.

Similar as in Section 2.1, bottleneck-based approaches can also be
used for opportunistic maintenance. Zhou et al. [37] study a serial
production line with intermediate buffers where each machine has a
unique failure rate. PM is performed at fixed time intervals. Bottle-
necks are continuously monitored and in case PM is performed on a
bottleneck machine, the opportunity to perform small repairs on other
machines is taken as well. The study by Chang et al. [38] utilizes
the buffer contents as well as machine starvation and blockage states
to define bottleneck machines and obtain opportunities for perform-
ing maintenance during production. They develop a continuous flow
model to determine the maintenance opportunity window in a serial
production line. However, stochasticity is not modeled and only the
direct production losses during maintenance are considered. Gu et al.
[39] extend the study by Chang et al. [38] by including stochastic
machine failures, but only consider machine starvation and blockage.
Later, they extend their work in Gu et al. [40] and propose a method
based on active maintenance opportunity windows to seek real-time
opportunities for performing PM. The method is based on estimating
how long a machine can be shut down for while still satisfying the
system throughput requirement by considering both the production
losses during and after PM. Bottleneck-based approaches are inter-
esting methods as using starvation and blocking information to plan
maintenance can improve production efficiency. However, it does not
capture the complete information of a production line, such as down
states and machine speeds and therefore misses possible maintenance
opportunities.

As shown in this review, literature that studies the planning of
maintenance based on production environment characteristics is com-
prehensive and has many directions. There is a large separate stream
of literature on the modeling of machine deterioration in combina-
tion with PM. However, these studies usually consider maintenance
cost and barely focus on the impact of maintenance on production
throughput. In case deterioration is not modeled and throughput is
considered, corrective maintenance activities or the presence of buffers
are typically introduced instead. Studies that plan maintenance based
on buffer levels often only consider a fixed set of levels for which
to trigger PM or only use machine starvation and blocking modes to
define a maintenance policy. In studies where maintenance is actually
triggered on a more detailed buffer level, such as in Valet et al. [34],
decisions based on machine production states and the use of corrective
maintenance activities as opportunities are neglected. Using corrective
maintenance activities to plan PM is often considered in the literature
stream on opportunistic maintenance. However, these studies usually
do not model production as a continuous flow of products, such as
in Huang et al. [33], and thereby need to make use of functions
to model a production environment, resulting in a less detailed and
inefficient simulation.

To address these shortcomings, this paper attempts to combines

both streams together by constructing a maintenance policy based

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.
Fig. 3. Schematics of a serial production line.
Fig. 4. Schematic overview of the procedure when cleaning is performed based on produced products with flexibility. The black cross marks the planned PM activities based on
the fixed number of products, while the red crosses mark examples of actual executions of PM activities. The gray rectangle represents the flexibility window.
on real-time buffer levels, machine production states and the avail-
able flexibility of the maintenance activity. Additionally, a discrete
event simulation is used to model production as a continuous fluid
flow, typically observed in high-speed production lines. To the best of
our knowledge, creating a maintenance policy by combining flexible
maintenance activities in a real-time environment with buffer lev-
els and machine production states has not been studied before. This
study extends the analysis based on an MDP of the proposed problem
in Geurtsen et al. [41] to the more complex and stochastic setting of a
full production line, based on simulation.

3. Problem description

3.1. System characteristics

A serial production line with 𝑁 machines and 𝑁 − 1 buffers as
shown in Fig. 3, is considered. The machines 𝑀𝑖, 𝑖 ∈ {0, 1,… , 𝑁},
are represented with rectangles and the intermediate buffers 𝐵𝑖, 𝑖 ∈
{1, 2,… , 𝑁 − 1}, are represented with triangles. The arrows specify the
direction of the material flow in the system.

Each buffer 𝐵𝑖 has a finite capacity. The maximum capacity of buffer
𝐵𝑖 is 𝐵𝑚𝑎𝑥

𝑖 . The state of buffer 𝐵𝑖 is described by 𝑏𝑖 ∈ {𝑒, 𝑓 , 𝑛}. The state
is 𝑒 when the buffer is empty and it is 𝑓 when the buffer is full. When
the buffer is neither empty nor full, it is state 𝑛. The buffer levels are
changing with the system dynamics. We denote the level of buffer 𝐵𝑖
as 𝑙𝑖. The buffer is in state 𝑒 if 𝑙𝑖 = 0, in state 𝑓 if 𝑙𝑖 = 𝐵𝑚𝑎𝑥

𝑖 and in state
𝑛 if 0 < 𝑙𝑖 < 𝐵𝑚𝑎𝑥

𝑖 .
The state of machine 𝑀𝑖 is described by 𝑠𝑖. A machine can be in four

different states; up (𝑢), down (𝑑), blocked (𝑏) and starved (𝑠). Machine
𝑀𝑖 is blocked if the downstream buffer 𝐵𝑖+1 is full and the downstream
machine 𝑀𝑖+1 is not in state 𝑢, i.e., it is not manufacturing. Machine
𝑀𝑖 is starved if upstream buffer 𝐵𝑖 is empty and the upstream machine
𝑀𝑖−1 is not in state 𝑢. When the machine is in state 𝑑, it means that an
activity is being performed on the machine for which the machine must
be stopped. Among others, this can be a corrective maintenance activ-
ity, calibration activity, tool change or material change. In addition, the
last machine can be in the maintenance state (𝑚). The production times,
down times and maintenance duration are independent follow known
distributions. These are empirically sampled from the real-world data
of the Original Equipment Manufacturer (OEM).

Each machine 𝑀𝑖 in the line has an operating speed 𝑣𝑖 and a max-
imum production speed 𝑣𝑚𝑎𝑥𝑖 . If buffer 𝐵𝑖 is not empty and buffer 𝐵𝑖+1
is not full, the operating speed 𝑣𝑖 of machine 𝑀𝑖 equals the maximum
production speed 𝑣𝑚𝑎𝑥. Otherwise, machine 𝑀 adapts its operating
174

𝑖 𝑖
speed to the speed of neighboring machines, 𝑣𝑖−1 or 𝑣𝑖+1, depending
on whether the upstream buffer is empty or the downstream buffer
is full, and only if the neighboring machines have a lower maximum
speed and are in a production state. In case the neighboring machines
are not in a production state, 𝑣𝑖 will be 0. By modeling the speed in
such manner, the speed of machine 𝑀𝑖 could be equal to the speed of
a machine multiple positions down the line. As an example, 𝑣𝑖 = 𝑣𝑖+5,
if all buffers from 𝐵𝑖+1 until 𝐵𝑖+5 are full, all machines from 𝑀𝑖 until
𝑀𝑖+5 are in a production state and the maximum production speeds of
machines 𝑀𝑖 to 𝑀𝑖+4 are larger than 𝑣𝑚𝑎𝑥𝑖+5 .

Buffer 𝐵𝑖 is filled with rate 𝑣𝑖−1 − 𝑣𝑖, which can be either positive
or negative, depending on whether machine 𝑀𝑖−1 or 𝑀𝑖 has a faster
operating speed. With a positive fill rate, the content of the buffer
between machines 𝑀𝑖−1 and 𝑀𝑖 increases until it reaches its maximum
capacity 𝐵𝑚𝑎𝑥

𝑖 . Conversely, with a negative rate, the buffer is emptied
until the content reaches zero.

3.2. Problem statement

Based on the characteristics described above, a formal problem
statement can be defined. The last machine in the assembly line, 𝑀𝑁 ,
requires periodic PM. The PM activities are scheduled at fixed intervals
with length 𝑃 (in terms of number of products manufactured), as shown
in Fig. 4. This guarantees that maintenance is executed once every
𝑃 number of products, which is convenient for the operators. A PM
activity cannot exceed this predefined limit. However, before this limit
is reached, a flexibility interval of length 𝐹 emerges. Maintenance can
be performed anywhere in the interval 𝐹 . Then, the limit for the next
PM event will not be 𝑃 products after the last PM execution, but instead
remains as planned. In doing so, the window between two consecutive
PM activities 𝑤 is not fixed, but varies throughout the scheduling
horizon as is seen in Fig. 4. The new interval is equal to 𝑃 + 𝑟, where
𝑟 defines the number of products that were still left in the previous
flexibility window. In this setting, the length of the window 𝑤 varies,
where the maximum and minimum length is respectively 𝑃 + 𝐹 and
𝑃 − 𝐹 . This method ensures that the long-run average window length
will be equal to 𝑃 .

Let 𝛱 denote the set of PM policies for a serial production line. The
PM policy 𝜋 ∈ 𝛱 instructs when to execute PM on the last machine
𝑀𝑁 , once the flexibility interval is reached. This decision is based on
the production line characteristics such as machine state and buffer
contents, as described in Section 3.1. Let 𝑃 (𝑡;𝜋) denote the total number
of produced products up to time 𝑡 under the PM policy 𝜋. An optimal
policy 𝜋∗ should maximize the long-run average throughput of the

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.
Table 1
List of notations.

Notation Description Notation Description Notation Description

𝑁 Total number of machines
in the line

𝑀𝑖 𝑖th machine in the line 𝐵𝑖 𝑖th buffer in the line

𝑏𝑖 State of buffer 𝐵𝑖 𝑛 Neutral state of a buffer 𝑒 Empty state of a buffer
𝑓 Full state of a buffer 𝑙𝑖 Buffer content of buffer 𝐵𝑖 𝐵𝑚𝑎𝑥

𝑖 Maximum buffer capacity
of buffer 𝐵𝑖

𝑠𝑖 State of machine 𝑀𝑖 𝑢 Production state of a machine 𝑑 Down state of a machine
𝑏 Blocked state of a machine 𝑠 Starved state of a machine 𝑣𝑖 Operating speed of

machine 𝑀𝑖
𝑤 Interval between 2

consecutive PM activities
𝑃 Periodic interval of PM 𝐹 Flexibility window for PM

𝑟 Number of products left in
the flexibility window

𝑣𝑚𝑎𝑥𝑖 Maximum speed of machine 𝑀𝑖 𝜋 PM policy

𝑃 (𝑡;𝜋) Production count up to
time 𝑡 under PM policy 𝜋

𝜇𝑖 Fill rate of buffer 𝐵𝑖 𝑆𝑡 State at time 𝑡

𝑋𝑢 Distribution of the up state 𝑋𝑑 Distribution of the down state 𝑅𝑡 Reward at time 𝑡
𝐴𝑡 Action at time 𝑡 𝐶𝑀 Set of machines in the state space 𝐶𝐵 Set of buffers in the state

space
𝑄 Value for state action pair 𝜃 Neural network 𝜃− Target network
𝛿 error; difference between

target and neural network
𝜂 Constant controlling the average reward 𝑅̄ Average reward
s
a
i
t
a
u
t
d
a
s

v
s
f
l
t
T
a
m
i
m
m
s

serial production line. Hence, the maintenance optimization problem
can be formulated as:

𝜋∗ = arg max
𝜋∈𝛱

{

lim
𝑡→∞

𝑃 (𝑡;𝜋)
𝑡

}

(1)

A summary of the notations used in this paper is provided in the
Table 1.

4. Production line modeling

To learn and evaluate PM policies, a model is required that captures
the behavior of the serial production line described in Section 3 as
realistically as possible. Simulation is an efficient method that can ac-
curately represent real-world physical systems. In addition, this method
is robust, easy to interpret and implement. This section presents a
fluid flow discrete event simulation, which accurately models the serial
production line.

4.1. Case description and data collection

In 2001, Nexperia’s Industrial Technology and Engineering Centre
(ITEC) introduced its advanced warning and data collection system,
abbreviated AWACS, which is used for the analysis of machine perfor-
mance. Machine status monitoring forms the core of this system and
is responsible for the collection of a wide range of machine data. In
particular, the changes in machine states and production count logs are
of interest for this work. A machine can be in one of three aggregated
states: production, standby or down. Fig. 5 shows the three aggregate
states and their respective sub-states. The production state indicates
that the machine is up and products are being produced. The down
state means that a machine is unable to produce and is divided into
multiple sub-states indicating the reason. It is noted that the error sub-
state is also an aggregate state that contains hundreds of specific errors
that may occur. These sub-states are not modeled in the simulation
of the serial production line. Instead, solely the aggregate down state
of all these sub-states is used in the model, to describe the down
behavior of a machine. The standby state indicates that the machine
could produce products, but is not. The cause for this is indicated by
one of the four standby sub-states. The sub-state wait input means
that the upstream buffer is empty and that the upstream machine is
down, i.e., the machine is starved. The wait output state means that
the downstream buffer is full and the downstream machine is down,
i.e., the machine is blocked.

We use actual machine data as input to the simulation model.
175

The required data for this problem includes (1) up and down state w
Fig. 5. Overview of machine states and sub-states.

distributions for each machine in the line, (2) machine speeds for each
machine in the line, (3) maintenance duration of the last machine and
(4) maximum capacities of the buffers in-between the machines.

Up and down state distribution: The distribution for the up
tate, 𝑋𝑢, can be obtained by monitoring the time a machine is in

production state until it changes its state to a down state. It is
mportant to note that starvation and blocking states are not part of
he up- and downtimes. Therefore, production times before and after

period of starvation or blocking are added together to obtain one
p-time realization. When this procedure is applied for a long enough
ime period, many samples can be acquired wherewith an accurate
istribution can be constructed. We perform a similar procedure to
ttain the distribution of the down state, 𝑋𝑑 . Durations in up and down
tates are assumed to be independent.
Machine speed: Machine 𝑖 has a maximum speed of 𝑣𝑚𝑎𝑥𝑖 . This

alue is derived from the data. In accurately deriving the machine
peed from data for serial production lines with buffers, two important
actors should be taken into account. The first factor is internal speed
osses of the machine due to the machine itself, for instance when
he machine is not calibrated correctly or incorrect settings are used.
he second factor is external speed losses when the machine should
dapt its speed when the upstream buffer is empty and the upstream
achine is producing at a lower speed or when the downstream buffer

s full and the downstream buffer is producing at a lower speed. The
aximum machine speeds that are used as input for the simulation
odel should include internal speed losses, but they should not include

peed adaption because of empty or full buffers, since speed adaptation

ill be determined by the simulation model itself.

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.

a
s
i
i
m

Fig. 6. Schematics of a serial production line of 2 machines and 1 buffer.

Fig. 7. Schematic overview of the buffer dynamics.

The production count is monitored by the machine. To derive an
accurate estimate for the machine speed, speed adaptation should be
corrected for. Therefore, only the speed during the up times is used,
during which continuous production is observed with neither empty
or full buffers upstream and downstream. The maximum speed of the
machine in the simulation is the average speed over all up times,
i.e. total production count divided by total up time.

Maintenance duration and buffer capacities: A distribution of
the maintenance duration 𝑑𝑃𝑀 is created through monitoring the start
and end time of the PM activity on the last machine of the line. The
maximum buffer capacities 𝐵𝑚𝑎𝑥

𝑖 are provided by the assembly site.

4.2. Fluid simulation model

The speed at which production lines create products can be very
high. Therefore, it is natural to describe the product flow as a fluid
flow model instead of a discrete model.

For simplicity, we consider a system with two machines and a finite
buffer in between, as depicted in Fig. 6. We use the same notation for
the buffer states, machine states and production rates as in Section 3.
Additionally, we define 𝜇𝑖 as the buffer fill rate.

Buffer dynamics: It is important to accurately model the behavior
of the buffer into the simulation model, as buffers can have a large
impact on the production line throughput. As mentioned in Section 3, a
buffer can be in three different states: empty (𝑏𝑖 = 𝑒, 𝑙𝑖 = 0), full (𝑏𝑖 = 𝑓 ,
𝑙𝑖 = 𝐵𝑚𝑎𝑥

𝑖) and neutral (𝑏𝑖 = 𝑛, 0 < 𝑙𝑖 < 𝐵𝑚𝑎𝑥
𝑖). In case buffer 𝑖 is empty,

𝜇𝑖 = 0 and machine 𝑀𝑖 has to slow down the production and adapt its
speed to the speed of machine 𝑀𝑖−1, i.e., 𝑣𝑖 = 𝑣𝑖−1, and conversely if the
buffer is full. When the buffer is in a neutral state, speeds of machines
𝑀𝑖 and 𝑀𝑖−1 are not affected and the fill rate of the buffer is defined
by the difference in speeds of the machines, i.e., 𝜇𝑖 = 𝑣𝑖−1 − 𝑣𝑖. Fig. 7
graphically explains these dynamics.

Machine dynamics: The behavior of a machine is directly con-
nected with the behavior of a buffer. As mentioned in Section 3,
machines can have four different states: up (𝑢), down (𝑑), blocked (𝑏)
or starved (𝑠). The first machine is never starved and the last machine is
never blocked. A product that leaves one machine can immediately be
produced by the next machine in case the buffer is completely empty.
In a down state, the machine cannot produce products, thus 𝑣𝑖 = 0.
In an up state, a machine produces products with a rate that ranges
between 0 and 𝑣𝑚𝑎𝑥𝑖 . The actual rate 𝑣𝑖 depends on the machines and
buffer statuses of neighboring machines. If machine 𝑀𝑖−1 is up and
buffer 𝐵𝑖 is empty, the production rate of machine 𝑀𝑖 will be the same
as for machine 𝑀𝑖−1, i.e., 𝑣𝑖 = 𝑣𝑖−1. However, if machine 𝑀𝑖−1 is down
nd buffer 𝐵𝑖 is empty, the machine 𝑀𝑖 will become starved and its
peed drops to 0. Likewise, in case machine 𝑀𝑖+1 is up and buffer 𝐵𝑖+1
s full, the production rate of machine 𝑀𝑖 will match machine 𝑀𝑖+1,
.e., 𝑣𝑖 = 𝑣𝑖+1. However, if machine 𝑀𝑖+1 is down and buffer 𝐵𝑖+1 is full,
achine 𝑀 will be blocked and its speed is 0. Failures of the machine
176

𝑖

Fig. 8. Schematic overview of the dynamics of a machine.

are operational-dependent instead of time-dependent, i.e., a machine
cannot break down when it is in a starvation or blocking state. Fig. 8
graphically explains these dynamics.

5. Solution methodologies

In this section, two algorithms are presented that aim to find a PM
policy for the problem described in Section 3. The purpose of the first
algorithm, presented in Section 5.1, is not to find an optimal policy 𝜋∗

but instead to serve as a baseline policy for bench-marking purposes.
Then, in Section 5.2, a DRL algorithm is presented with the objective
of finding an optimal policy 𝜋∗.

5.1. Optimal buffer threshold algorithm

Initiating PM at an inopportune moment could be detrimental for
the long-run average throughput. For instance, initiating PM when
the buffer prior to the last machine in the line is full, will result in
more congestion of the upstream machines during the PM activity. As
described in Section 3, the decision of when to initiate a PM is based
on three elements: (1) the machine states, (2) the buffer levels and (3)
the number of products left in the flexibility window.

The baseline policy presented in this section only optimizes for two
of the three elements; the buffer level and the machine state, while
ignoring the number of products left in the flexibility window. Adding
this last element to the optimization increases the search space dramat-
ically, which results in an impractical procedure. Therefore, adding this
final element is left to the DRL method proposed in Section 5.2.

While DRL is able to handle large state spaces, the baseline policy
presented here cannot. Therefore, in order to reduce the search space
for the baseline policy even further, only the buffer prior to the last
machine in the line and the states of the maintenance machine and
the machine prior to the maintenance machine are considered. These
components of the serial production line are the most influential factors
for making PM decisions, as they are closest to the machine that
receives maintenance. Consequently, the baseline policy ignores some
information of the entire system, while the DRL approach presented
later in this section will be able to include all information. The method
to determine the optimal buffer threshold level and machine state
combination is presented in Algorithm 1. In the remainder of this
paper, this policy is referred to as the Optimal Buffer Threshold (OBT)
algorithm. It involves a straightforward iterative greedy optimization.
The objective of this method is to find the best buffer thresholds for
each pair of machine state combinations. A list of all pairs is provided
in Table 2. The buffer threshold indicates a level below which PM
may be initiated for the given machine state combination. The optimal
thresholds are found by incrementally increasing the threshold for each
machine state combination, starting with 0, and then verifying whether
the long-run average throughput improves. Table 2 shows all 9 machine
state combinations. However, the total number to iterate over equals

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.

l
t
1
d
w
t
s
e

5

p
a
s
f
a
P
t

Table 2
List of all possible combinations for two consecutive machines.

1. 𝑢 − 𝑢 2. 𝑢 − 𝑑 3. 𝑑 − 𝑢 4. 𝑑 − 𝑑 5. 𝑑 − 𝑠 6. 𝑏 − 𝑑 7. 𝑠 − 𝑠 8. 𝑠 − 𝑑 9. 𝑠 − 𝑢
Fig. 9. Policy describing what action to take, given a pair of machines with a buffer in-between. The decision depends on the buffer content, depicted on the y-axis, and how
much products are left in the flexibility window until the limit is reached, depicted on the x-axis. The shaded planes shows the region under which it is allowed to perform PM.
6 as there are 3 combinations where the threshold is fixed; when the
buffer is empty or the buffer is full. For these exceptions, the policy is
to always initiate PM when the buffer is empty and never to do it when
the buffer is full.
Algorithm 1: Optimum Buffer Threshold (OBT)

Input: Set of buffer levels 𝐿 to iterate over
Set of machine state combinations 𝐶 to iterate over

Result: Optimal buffer level per machine state combination
𝑂(𝑐)

1 Initialize 𝑂(𝑐) ∀𝑐 to zero
2 while no more improvement do
3 for combination 𝑐 ∈ 𝐶 do
4 set buffer threshold to next buffer level 𝑙 ∈ 𝐿
5 run simulation
6 if improvement then
7 𝑂(𝑐) = 𝑙
8 end
9 end
10 end

An example of a policy for two machines and one buffer may look
ike the policy shown in Fig. 9. In this example, the buffer capacity and
he flexibility window are arbitrarily chosen to be 30.000 products and
0.000 products, respectively. For each combination of machine states,
ifferent thresholds can be observed. In the example, the flexibility
indow is divided into 5 bins of 2000 products. Similarly, the buffer

hresholds are split into 6 bins of 5000 products. Thus, the search
pace can be further controlled by defining the number of bins for each
lement.

.2. Deep reinforcement learning algorithm

As mentioned in Section 5.1, the state space for the problem ex-
lodes when all three state elements (states of machines, buffer levels
nd number of products in flexibility window) are considered. The
tate size can be further controlled by defining the number of bins
or the buffer level and the flexibility window. Exact approaches such
s Dynamic Programming (DP) do not suffice in obtaining an optimal
M policy, given this large state space. Instead, DRL is more suitable
177

o address the problem. In particular, the DRL methods train a policy
through sampling transitions in the state and action space from an
environment. The data-driven simulation environment described in
Section 4 provides an ideal setting for employing DRL-based methods.

Most problems for which DRL approaches have been applied have a
trade-off between short-term and long-term rewards. For the particular
PM problem considered here, only the long-term average reward is of
interest. Conventional DRL methods are therefor most likely not well-
suited for our PM problem. Accordingly, a novel state-of-the-art DRL
algorithm is presented, specifically designed for problems that aim to
optimize the long-run average reward. In the next sections, the basic
elements of DRL for the PM problem of this study are described first.
Afterwards, the novel DRL algorithm is presented.

5.2.1. MDP formulation
A Markov Decision Process (MDP) is the mathematical foundation

of RL and essentially describes a framework for decision making under
uncertainty. In an MDP, a decision maker inhabits an environment
which changes state randomly in response to actions made by the
decision maker. Formally, an MDP is defined by the tuple  =
( ,,, 𝑝), where  is the set of states,  is the set of actions, 
is the set of rewards, and 𝑝 ∶  ×  ×  ×  ⟶ [0, 1] is the
dynamics of the environment. At each discrete moment in time 𝑡 ∈
{0, 1, 2,…}, the decision maker observes state 𝑆𝑡 ∈ , selects an
action 𝐴𝑡 ∈  and receives a reward 𝑅𝑡+1 ∈ . Then, the system
transitions to the next state 𝑆𝑡+1 ∈ . The state transition probability is
𝑝(𝑠′, 𝑟|𝑠, 𝑎) = 𝑃𝑟(𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) for all 𝑠, 𝑠′ ∈  , 𝑎 ∈ 
and 𝑟 ∈ .

In the context of the PM problem considered in this work, the
state represents the status of the serial production line, the action is
whether or not to perform PM on the production line and the reward is
the number of produced products by the production line. These three
components need to be properly defined for the DRL algorithms to be
applied and the optimal policy 𝜋∗ to be obtained. These components
are described in more detail below.

State space
The state 𝑆𝑡 ∈  should fully describe the status of the production

line and the PM-related conditions. There are three essential elements
to describe the state, which are necessary for an agent to make proper
decisions:

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.
Fig. 10. Example trace of reward over time. Here, the black crosses indicate the moment a time-step has passed.
1. The state of the machines in the line at time 𝑡, 𝑠𝑖(𝑡) ∈ {𝑢, 𝑑, 𝑏, 𝑠}.
Note that not all machines need to be included into the state
space, i.e., any combination of machines of the production line
can be selected; 𝐶𝑀 ⊂ {1, 2,… , 𝑁}, where 𝑁 is the total number
of machines in the line.

2. The buffer levels of the buffers in the line, 0 ≤ 𝑙𝑗 (𝑡) ≤ 𝐵𝑚𝑎𝑥
𝑗 .

Again, not all buffers need to be included into the state space and
any combination can be selected; 𝐶𝐵 ⊂ {1, 2,… , 𝑁−1}. Also note
that the categorical buffer states (empty, neutral, full) need not
to be included since the empty and full state can be characterized
by the minimum and maximum values of the buffer levels.

3. The active number of products left in the flexibility window until
the PM limit is reached, 𝑟(𝑡).

State 𝑆𝑡 is then defined as:

𝑆𝑡 = [𝑠𝑖(𝑡), 𝑙𝑗 (𝑡), 𝑟(𝑡)] ∀𝑖 ∈ 𝐶𝑀 , ∀𝑗 ∈ 𝐶𝐵 (2)

Action space

The action 𝐴𝑡 ∈  describes all PM-related maintenance actions that
an agent can choose. For the PM problem in this study, there are only
2 actions an agent can select:

𝐴𝑡 =

{

0 do nothing
1 perform PM

(3)

An agent can only choose between these two actions once it has
arrived in the flexibility window. Action 0 is selected otherwise. In
addition, when the PM production count limit is reached, only one
action can be performed, which is action 1. Thus, depending on state
𝑆𝑡, there is a legal action set 𝐴(𝑆𝑡). When training the agent, action-
masking should be applied such the agent can only choose feasible
actions from 𝐴(𝑆𝑡). This prevents that the agent trains on infeasible
actions, which can slow down the learning process.

Reward function

The reward 𝑅𝑡 received by the agent at time 𝑡 is the production
output from the production line between times 𝑡 − 1 and 𝑡. The length
of the discrete time step, 𝑇 , can be chosen by the user and is measured
by the actual time during simulation. The time step 𝑇 is a fixed value
throughout the simulation. This time step 𝑇 is not coupled in any way
to the model described in Section 4. It means that during a time step
of length 𝑇 , the simulation model can have a multitude of transitions
between up and down states on the machines. Therefore, the simulation
keeps a record of the production output it produced during the time
step. Also notice that this production output completely depends on the
state of the last machine in the line. If it was in a down state during
the complete time step, the reward received by the agent will be 0.
Whereas the agent will receive the maximum reward in case the last
machine was continuously producing during the entire time step. As the
machine might also need to adapt its speed in case of empty buffers and
machine downs in the upstream line, the reward per time step ranges
between 0 and 𝑇 ⋅ 𝑣𝑚𝑎𝑥𝑁 . The reward can be described as:

𝑅𝑡 = 𝑇 ⋅ 𝑣̄𝑁 (4)

where 𝑣̄𝑁 is the average speed realized by the last machine during time
step 𝑇 . Fig. 10 shows an example of the reward for a certain period,
demonstrating that while the time step may be fixed, the reward can
vary significantly.
178
5.2.2. Algorithm implementation
The goal of reinforcement learning is to learn good policies for

sequential decision-making problems [42]. Multiple algorithms have
been proposed for this task. The Q-learning algorithm by Watkins [43]
is one of the most popular reinforcement learning algorithms. It is
a model-free, off-policy control algorithm. It is model-free because it
purely samples from experience, i.e., it relies on real samples from
an environment. Unlike the DP algorithms, it never uses generated
predictions of the next state and next reward to alter behavior. It is off-
policy, because it samples experiences by following a behavior policy
that is different from the agent’s learned policy. For details on the
implementation of the Q-learning algorithm, we refer to Sutton and
Barto [42]. The Q-learning algorithm learns an optimal policy 𝜋∗ by
finding the best Q-values. There is a Q-value for each state–action
pair which essentially describes the expected reward when selecting
an action in a given state. In Q-learning, a large table is utilized to find
the Q-values for each state–action pair, 𝑄(𝑆,𝐴), where each entry of the
table represents a state–action pair combination. Then, the best action
to select in a particular state according to the optimal policy is given
by the action which has the highest Q-value for that state:

𝜋∗(𝑆) = argmax
𝐴′∈𝐴(𝑆)

𝑄(𝑆,𝐴′).

The problem with methods that utilize such a table is the lack
of scalability as they cannot be applied to larger state spaces. Not
only the physical memory required to store the table is a problem,
but also the training time to find accurate values for the state–action
pairs explodes. Suppose that for our problem we choose to include 2
machines with an intermediate buffer in the state space, buffer levels
ranging from [0,20] and flexibility window ranges from [0,50]. The
state space size as defined in then becomes approximately 1 × 1018,
which is simply unachievable with tabular-based methods. Fortunately,
the scalability problem has been well addressed in recent years by
implementing machine learning methods for already existing RL algo-
rithms. The groundbreaking study by Mnih et al. [44] presented the
first machine-learning equipped Q-learning algorithm, named Deep Q-
Network (DQN). In DQN, the Q-values are approximated with a neural
network 𝜃, i.e., 𝑄(𝑆,𝐴, 𝜃) ≈ 𝑄(𝑆,𝐴). The two main elements of DQN are
the experience replay and the target network 𝜃−. The experience replay
is used to stabilize the learning process by storing past experiences,
i.e., one-step transitions (𝑆𝑡, 𝐴𝑡, 𝑅𝑡, 𝑆𝑡+1) in a replay memory . Mini-
batches are sampled from  to train the neural network 𝜃. For each
sample 𝑗 from the mini-batch, the Q-values are predicted by both the
neural network 𝜃 and the target network 𝜃−, as follows:

𝑄𝑗 = 𝑄(𝑆𝑗 , 𝐴𝑗 , 𝜃)

𝑄−
𝑗 = 𝑅𝑗 + 𝛾 argmax

𝐴′∈𝐴(𝑆𝑗+1)
𝑄(𝑆𝑗+1, 𝐴

′, 𝜃−), (5)

where 𝛾 is a discount factor, which allows to make a trade-off between
immediate and future rewards. Then, the difference between the values
of 𝑄𝑗 and 𝑄−

𝑗 is computed as a loss and the neural network 𝜃 is
updated with gradient descent. The loss considered in this work is the
mean-squared error loss (MSE):

𝑀𝑆𝐸 = 1
𝑏
∑

(𝑄𝑗 −𝑄−
𝑗)

2 (6)

Here, 𝑏 is the size of the mini-batch. The weights of the target
network 𝜃− get updated as well. For instance, by copying the weights
of the neural network 𝜃 to the target network 𝜃−. After training,

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.
new experiences are collected, added to the replay memory and older
experiences are removed. DQN seeks to iteratively update the neural
network parameters 𝜃, which could well approximate the Q-values,
until the ultimate policy 𝜋∗ is obtained.

Since its publication, many improvements for the DQN have been
presented of which the most significant is the Double Deep Q-Network
(DDQN) by Hasselt et al. [45]. The main goal of DDQN is to overcome
the overestimation of the action values in the DQN algorithm. The idea
behind this is that in Q-learning and DQN, there exists a maximization
bias. If the Q-values calculated in Eq. (5) are slightly overestimated,
then this error gets compounded [42]. The max operator uses the same
values both to select and to evaluate an action. This makes it more
likely to select overestimated values, resulting in overoptimistic value
estimates. To prevent this, DDQN proposes to decouple the selection
from the evaluation. This is done by letting the neural network 𝜃 select
the actions, but using 𝜃− to evaluate the values, when calculating the
target Q-values. We refer to Hasselt et al. [45] for more details on the
original DDQN algorithm. Consequently, Eq. (5) becomes:

𝑄−
𝑗 = 𝑅𝑗 + 𝛾𝑄(𝑆𝑗+1, argmax

𝐴′∈𝐴(𝑆𝑗+1)
𝑄(𝑆𝑗+1, 𝐴

′, 𝜃); 𝜃−). (7)

Both DQN and DDQN have been used successfully to solve main-
tenance problems by Wang and Qi [12] in a two-machine-one-buffer
production line and by Huang et al. [33] in a multi-machine-multi-
buffer production line. This strengthens the choice to use Q-network
based algorithms for our problem as well. Though, as explained in
Sections 2 and 3, an entirely different PM problem is considered in
this work as maintenance is executed based on buffer contents and
flexibility windows.

For our PM problem, the number of maintenance cycles (length
of an episode) to train is an important parameter that needs to be
defined carefully. Choosing it too low will most likely result in a policy
that cannot capture the behavior of maintenance actions on the system
throughput. For example, in the extreme case of 1 maintenance cycle,
the effect of executing maintenance on the upstream machines after
maintenance has been completed, will not be considered. At the same
time, choosing it too large will require the discount factor 𝛾 to be large
as well, in order to effectively trace back the effects of past actions.
This might result in longer training times.

Unfortunately, preliminary experiments showed that applying DDQN
in this discounted episodic setting results in unsatisfactory policies that
are not better than the base-line policy from Section 5.1. Neither hyper-
parameter tuning nor implementing any DQN-related enhancement
from literature had any effect on the resulting policy. In addition,
we also applied the Proximal Policy Optimization (PPO) algorithm
by Schulman et al. [46] to verify whether the cause was algorithm-
related, however with similar bad results. This lead to the idea that
for this particular problem, discounted/episodic class of algorithms
are not well-suited. For this reason, both DDQN and PPO are not
applied for the experiments in Section 6. In Geurtsen et al. [41],
a similar PM problem is studied. Among general DP methods, an
average-reward Q-learning algorithm shows promising results. In the
average-reward setting, experience is continuous and cannot be broken
up into episodes. In this setting, an agent seeks to maximize the average
reward per step, or reward rate, where immediate and delayed rewards
are equally important. The nature of the PM problem studied here is
well-suited for algorithms that aim to optimize the long-run average
reward directly. Since, in this study we are interested in the throughput
of the production line over an infinite time horizon. In addition,
optimizing the long-run average reward eliminates decisions regarding
the size of an episode and discount factor 𝛾. The average reward Q-
179

learning algorithm applied in Geurtsen et al. [41] is the Differential
Q-learning algorithm proposed by Wan et al. [47], shown in Algorithm
2.

Algorithm 2: Differential Q-learning (one-step off-policy con-
trol)

Input: The policy 𝑏 to be used (e.g., 𝜖-greedy)
Algorithm parameters: step-size parameters 𝛼, 𝜂

1 Initialize 𝑄(𝑠, 𝑎) ∀𝑠, 𝑎; 𝑅̄ arbitrarily (e.g., to zero)
2 Obtain initial 𝑆
3 while still time to train do
4 A ← action given by 𝑏 for 𝑆
5 Take action 𝐴, observe 𝑅, 𝑆′

6 𝛿 = 𝑅 − 𝑅̄ + max
𝑎

𝑄(𝑆′, 𝑎) −𝑄(𝑆,𝐴)

7 𝑄(𝑆,𝐴) = 𝑄(𝑆,𝐴) + 𝛼𝛿
8 𝑅̄ = 𝑅̄ + 𝜂𝛼𝛿
9 𝑆 = 𝑆′

10 end
11 return 𝑄

Algorithm 2 extends the tabular Q-learning algorithm mentioned
earlier to the average-reward setting. The main idea of the algorithm
is to estimate an average reward rate and use this rate in the Temporal
Difference (TD) error calculation, which can be seen in line 6 of
Algorithm 2. This TD error calculation is similar to Eq. (5), but applied
to tabular Q-learning. The algorithm is guaranteed to converge to a
differential value function, which is the expected differential return
under a policy from a given state or state–action pair. This differential
value function captures how much more reward the agent gets by
starting in a particular state than it would get on average over all states
if it followed a fixed policy.

Wan et al. [47] also apply the same algorithm in the linear function
approximation setting. The linear function approximation setting has
some resemblance to the neural network setting, as it also attempts
to reduce the size of the state space with the use of an approximator.
They show that the idea of Differential Q-learning also works in the
linear function approximation setting. Therefore, we chose to extend
the DDQN with the concept of the average-reward algorithm of Wan
et al. [47].

To convert the standard DDQN to a DDQN for the average reward
setting, the first change required is to adapt Eq. (7):

𝑄−
𝑗 = 𝑅𝑗 − 𝑅̄ +𝑄(𝑆𝑗+1, argmax

𝐴′∈𝐴(𝑆𝑗+1)
𝑄(𝑆𝑗+1, 𝐴

′, 𝜃); 𝜃−)

Here, 𝑅̄ is the value for the average reward. Notice that the discount
factor 𝛾 has been removed. Then, we need to establish a formula that
estimates the average reward 𝑅̄. Similar to line 7 in Algorithm 2, we
define an error using the Q-values of the neural network 𝜃 and the
Q-values of the target network 𝜃−:

𝛿 = 1
𝑏

𝑏
∑

𝑗=1
(𝑄−

𝑗 −𝑄𝑗)

We take the sum over all samples of the mini-batch, and compute
the average. Notice that we explicitly do not use the MSE loss in Eq. (6),
as it contains a squared term which would make 𝛿 always positive. This
would result in an ever-increasing average reward. With 𝛿 defined, 𝑅̄
can be estimated as follows:

𝑅̄ = 𝜂 ⋅ 𝛿

Here, 𝜂 is a positive constant that controls how much the average
reward 𝑅̄ will be changed. With all modifications for the average-
reward setting described, the full algorithm is shown in Algorithm
3. A flow chart of the algorithm is depicted in Fig. 11. From this
point onwards, the algorithm is referred to as the Average-reward DQN
(ADQN). Notice that in the action-selection mechanism, not a standard

𝜖-greedy policy is used as there is not a random action selected in

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.

t
a
o

e
e
a
1

6

r
t

6

t
s
t
s
m
m
m
t
t
p
i
a
t
t
c
4

t
i
i
n
a
f
c
T
t
w
s
i

6

i
s
i
i
t
i
b

case the sampled random number is below 𝜖. Instead, we apply an
exploration procedure that is specifically suited for the PM problem
considered in this work. As opposed to selecting a random action, we
choose to select either action 0 (do nothing) or action 1 (perform PM)
for 𝐾 consecutive times. The idea originates from the characteristic of
the flexibility window. In order to explore the effect of delaying the
execution of PM until the PM limit, we need to be able to reach this
limit, which can only be achieved if action 0 is selected multiple times
in sequence. This means that the full flexibility windows needs to be
explored which cannot be accomplished by purely selecting a random
action.

Algorithm 3: ADQN
Input: 𝑁𝑏, 𝑏, 𝜂, 𝐶, 𝜖0, 𝜖𝑑 , 𝜖𝑓 , 𝛼, 𝑈 , 𝐾
Output: 𝜃

1 Initialize replay memory  to capacity 𝑁𝑏
2 Randomly initialize neural network 𝜃
3 Initialize target network with weight 𝜃− = 𝜃
4 Initialize average reward 𝑅̄ = 0
5 Initialize 𝜖 to 𝜖0
6 for t=0,1,.... ∞ do
7 Every 𝐶 steps, set 𝜃− ← 𝛼 ⋅ 𝜃
8 Every 𝐾 steps, alternate 𝜏 between values from set {0,1}
9 Set 𝜖 ← Max(𝜖𝑑 ⋅ 𝜖, 𝜖𝑓)
10 Find legal action set 𝐴(𝑆𝑡)
11 Draw a random number 𝜉 ∼ Uniform(0,1)
12 if 𝜉 > 𝜖 then
13 Select 𝐴𝑡 = argmax

𝐴′∈𝐴(𝑆𝑡)
𝑄(𝑆𝑡, 𝐴′, 𝜃)

14 else
15 Select 𝐴𝑡 = 𝜏 if 𝜏 ∈ 𝐴(𝑆𝑡)
16 end
17 Provide action 𝐴𝑡 to the environment
18 Run the environment for one step
19 Observe 𝑅𝑡, 𝑆𝑡+1
20 Store transition sample (𝑆𝑡, 𝐴𝑡, 𝑅𝑡, 𝑆𝑡+1) in replay memory 
21 case Every 𝑈 steps
22 Sample a mini-batch of transitions (𝑆𝑗 , 𝐴𝑗 , 𝑅𝑗 , 𝑆𝑗+1) of

size 𝑏 from 
23 Set 𝑄−

𝑗 = 𝑅𝑗 − 𝑅̄ +𝑄(𝑆𝑗+1, argmax
𝐴′∈𝐴(𝑆𝑗+1)

𝑄(𝑆𝑗+1, 𝐴′, 𝜃); 𝜃−)

24 Set 𝑄𝑗 = 𝑄(𝑆𝑗 , 𝐴𝑗 , 𝜃)

25 Perform a gradient descent step on
(

𝑄−
𝑗 −𝑄𝑗

)2
w.r.t.

neural network 𝜃
26 Set 𝑅̄ = 𝜂 ⋅ 1

𝑏
∑𝑏

𝑗=1(𝑄
−
𝑗 −𝑄𝑗)

27 endsw
28 end

As can be seen in Algorithm 3, there are multiple hyper-parameters
hat can be tuned. In addition, the size of the neural network can be
djusted. The main properties of a conventional neural network consist
f the number of layers, 𝐿, and the size of the layers, ℎ𝑙. A full list of

all parameters is given in Table 3.

6. Experiments

In this section, policies generated by the OBT and ADQN algorithms
described in Section 5 are compared against the policy currently em-
ployed by the factory. First, the real-world production lines and the
related data are presented in Section 6.1. Next, Section 6.2 describes
the parameter selection for each algorithm. Then, the training process
of the ADQN agent is analyzed in Section 6.3. Finally, the results are
shown in Section 6.4.
180
6.1. Real-world production lines

Experiments are conducted with a simulation model using real data
as input. All the considered production lines have a similar configu-
ration in terms of number of machines and sizes of buffers. Table 4
summarizes the complete configuration. Each machine in each line has
different behavior in terms of the up and down states and the machine
speed, as explained in Section 4. A total of 11 different production lines
are examined. For the sake of overview, the average (𝜇) and standard
deviation (𝜎) over all lines is provided in Table 4. However, for the
xperiments, policies are generated for each line individually. Since
ach line is a unique environment, an agent is trained for each line sep-
rately, thereby generating in total 11 unique agents and consequently
1 different policies.

.2. Settings

Before applying the OBT algorithm and training the ADQN algo-
ithm, the settings for each algorithm have to be defined. Additionally,
he general settings for the simulation need to be specified as well.

.2.1. Simulation settings
The main setting for the simulation that needs to be defined is the

ime step 𝑇 . This parameter determines how many virtual simulation
econds elapse until an action is requested by the agent. Setting it
oo low might slow down the training process since more training
teps are required for the same time frame, compared to using a
uch larger time step. However, setting it too large might result in
issed opportunities since, with a larger time step, occasions of ideal
aintenance executions might be lost. Therefore, in an attempt to find

he right balance between training time and loss of opportunities, the
ime step 𝑇 is set to 100 s. With an average production speed of 26
roducts/second for the last machine, obtained from Table 4, the max-
mum reward and therefore the maximum step in terms of production
nd buffer increase/decrease are 2600 products. In addition, when the
hreshold for executing maintenance is set to e.g. 1.2 million products,
he minimum number of possible steps to complete one maintenance
ycle is equal to 1.2 million divided by 2600 products, which is roughly
62 steps. Preliminary experiments showed that with a time step 𝑇 of

100 s, the best trade-off between training steps per maintenance cycle
and frequency for maintenance opportunities is realized.

Furthermore, we need to model the up-and-down behavior of the
machines benefiting from the real-world data. For each machine, mul-
tiple thousands of samples are obtained. Therefore, the choice is made
to keep it simple and adopt an empirical distribution, thereby randomly
selecting up and down times from the set of samples for each machine.

At last, the size of the periodic interval for PM, 𝑃 , and the size of
he flexibility window for PM, 𝐹 , need to be defined. The value for 𝑃
s based on the policy currently employed by the factory. This policy
s a time-based policy, where PM is performed every 12 h. Then, the
umber of produced products between two consecutive maintenance
ctivities can be extracted from the production data. By doing this
or many PM activities conducted over the past year, a distribution is
reated. The value for 𝑃 is then set to the average of this distribution.
his average is found to be approximately 1.000.000 products. For
he flexibility window, multiple options are examined starting from a
indow size of 100.000 products until 600.000 products, with step

ize of 100.000 products. Therefore, in total, six flexibility levels are
nvestigated to evaluate the effect of increased flexibility.

.2.2. OBT algorithm
In the OBT algorithm, only the final two machines and the buffer

n-between are considered. Therefore, the only choice to make is the
tep size of the buffer thresholds. The step size of the buffer threshold
s chosen to be 5.000 products, which is well above the maximum
ncrease/decrease of the buffer in one time step. Table 4 shows that
he size of the buffer equals 120.000 products for each production line
nstance. With a step size of 5.000 products, 24 buffer thresholds will
e explored, for each machine-state pair.

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.
Fig. 11. Flow chart of ADQN.
Table 3
Hyper-parameters for Algorithm 3.

Notation Description Value

𝑁𝑏 Capacity of the replay memory 200.000
𝑏 Size of the mini-batch of samples 64
𝜂 Parameter to control the adjustment of the average-reward 100
𝐶 Step interval to change target network 𝜃− weights to the weights of

neural network 𝜃
5

𝛼 Parameter to control how much to change target network 𝜃− weights
to the weights of neural network 𝜃

0.1

𝑈 Step interval to train the neural network 𝜃 4
𝐾 Step interval to change the random action 1000
𝜖0 Initial value for 𝜖, defining the threshold to take a random or greedy

action
1.0

𝜖𝑑 Parameter to control how much to decrease 𝜖 0.999999
𝜖𝑓 Minimum value for 𝜖 0.05
𝐿 Number of hidden layers in the neural network 2
ℎ𝑙 Number of hidden units in layer 𝑙, 𝑙 = 1,… , 𝐿 64
Table 4
Real-world production line instances.

Properties Machines

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7

Speed 𝑣𝑚𝑎𝑥𝑖 (products/second) μ 25.57 25.59 26.35 26.44 26.13 26.34 26.66
𝜎 0.23 0.27 0.13 0.17 0.16 0.19 0.22

Up-time 𝑋𝑢 (seconds) μ 1114.44 1255.20 2001.08 1843.70 1825.65 1911.86 944.68
𝜎 1646.76 2295.83 3695.61 3296.69 3520.86 3789.51 1638.07

Down-time 𝑋𝑑 (seconds) μ 68.53 68.45 103.22 73.33 103.46 76.13 105.14
𝜎 342.78 404.00 699.01 551.24 635.98 546.51 429.85

PM duration 𝑑𝑃𝑀 (seconds) μ 3544.72
𝜎 601.43

Buffers

𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6

Buffer capacity 𝐵𝑚𝑎𝑥
𝑖 (products) 25.000 9000 25.000 25.000 25.000 120.000
6.2.3. ADQN algorithm
In the PM problem considered in this study, the state space is

characterized by the state of the machines in the line, 𝑠𝑖(𝑡), the buffer
levels 𝑙𝑗 (𝑡) and the active number of products left in the flexibility
window until the PM limit is reached, 𝑟(𝑡). Accordingly, the decisions
181
to be made are machines and buffers to include, the step size of the
buffer thresholds and the step intervals for the flexibility window.

Preliminary analysis showed that including only the last two ma-
chines and the buffer in-between, similar to the OBT algorithm, is
enough to capture most of the behavior of the production line for this

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.

p
o
t
p
t
c
w
i
t
i
a
f

t
t
m

s
2
2
c
e
P
[
T
d
o
G
l

6

p
t
r
e
m
s
l

o
c
c
i
r
F
p

Fig. 12. Average reward 𝑅̄ and loss during training.
S
t
c
(
i
F
t
f
a
i
b

s
i
b
T
f
f
t
𝑀
b
t
b
s

articular PM problem. Adding more machines and buffers resulted
nly in a negligible improvement. Including the last two machines and
he final buffer only makes it possible to graphically show the trained
olicy. Therefore, for this PM problem, the choice is made to include
he final two machines and the buffer in-between only. Of course, in
ase maintenance would take place on other machines in the line as
ell, it may be important to also include these machines and buffers

n the state space. Then, the step size of the buffer thresholds is chosen
o be similar as the OBT algorithm, which is 5000 products. The step
ntervals for the flexibility window are taken to be 10.000 products. As
n example, for a flexibility window of 400.000 products, a bin of 40
lexibility intervals will be explored.

In addition, the values for the hyper-parameters in Table 3 need
o be selected. An overview of the parameters is shown in the same
able under the final column. The selection has been done by means of
anual tuning.

The size of the input layer for the neural network is equal to the
ize of the state space. In case of the 2 final machines, one buffer,
4 buffer thresholds and 40 flexibility intervals, the total size equals
4 + 40 + 4 + 4 = 72. Here, both the last and the second-last machine
an have 4 different machine states. The size of the output layer is
qual to the number of possible actions, which is equal to 2 for this
M problem. The optimizer used for the gradient descent step is Adam
48], with default settings, except for the learning rate 𝜌 = 1 × 10−6.
he algorithm is implemented in PyTorch (1.13.0 with CUDA 11.6), the
iscrete event simulation is implemented in C# (.NET 5) and both run
n a PC with CPU: AMD Ryzen™ Threadripper™ 3970X Processor, and
PU: 2 × Nvidia 2080 Ti. The total training time for each production

ine instance is set to be 1 h.

.3. Training process

To evaluate the training process, the average reward and the trained
olicy can be examined. An example of the average reward 𝑅̄ during
raining is shown in Fig. 12(a). Since 𝑅̄ is initialized at zero, the average
eward increases during the first part of learning and converges at the
nd. Once the average reward has converged, it does not necessarily
ean that learning has stopped. This can be seen in Fig. 12(b), which

hows that the training loss is still decreasing in the last phase of
earning as well.

The trained policy can be examined by analyzing the buffer thresh-
lds for each point in the flexibility window for every machine state-
ombination, similar to Fig. 9 in Section 5. This is possible since the
hoice is made to only include the final two machines and the buffer
n-between in the state. Therefore, such a 2D plot makes it possible to
epresent the entire state space. An example of a policy is depicted in
ig. 13. Here, a policy for the smallest flexibility window of 100.000
roducts is shown. Different from the figure of the OBT policy from
182
ection 5, buffer thresholds are now defined for every single point in
he flexibility window. This creates unique regions per machine-state
ombination, which defines an area under which it is a good time
in terms of the number of products left in the flexibility window) to
nitiate maintenance. The main observation from the policy shown in
ig. 13 is the tendency to postpone the execution of maintenance at
he beginning of the flexibility window. Then, when the end of the
lexibility window is approaching, acceptance to perform maintenance
t higher buffer levels increases. The behavior of the shown policy is the
ntended behavior as performing maintenance already at a very high
uffer level at the start of the flexibility window would not make sense.

It is interesting to notice the significant influence of the machine
tates on the policy. In case machine 𝑀𝑁−1 is up and machine 𝑀𝑁
s down, the policy shows it is best to perform PM only when the
uffer level is extremely low and preferably at the end of the window.
his makes sense, as performing PM outside of the advised region
or this machine state pair, at higher buffer levels or earlier in the
lexibility window, might results in significant congestion upstream in
he assembly line. Also, in case machine 𝑀𝑁−1 is starved and machine
𝑁 is up, PM may be performed at high buffer levels. This is intended

ehavior, as the machine is in a state where it cannot produce and
herefore is unable to fill the buffer in case PM would be initiated. The
uffer levels for this state combination are higher compared to a similar
tate, where machine 𝑀𝑁−1 is down and machine 𝑀𝑁 is up. This might

indicate that the starved state of machine 𝑀𝑁−1 usually lasts longer
than a down state, resulting in a more opportune moment to initiate
PM.

6.4. Results

To determine the performance of the learned policy, it is evaluated
against two other policies: (1) the current policy at the case study
company (practitioner policy) and (2) the policy obtained by the OBT
algorithm from Section 5.1. As mentioned briefly in Section 6.2, the
practitioner policy is the policy currently employed by the factory. It
is a time-based policy, where PM is performed every 12 h. For each
of the 11 production lines, a policy is trained. In addition, a policy is
trained for each of the 6 flexibility levels. Results are averaged over
all 11 instances. Fig. 14 shows the improvement in throughput of the
policies obtained by the OBT and ADQN algorithm with respect to the
practitioner policy; both outperform the practitioner policy. By fully
utilizing the flexibility window, the ADQN agent is able to generate
policies that improve the long-run average throughput and outperform
the OBT policy by an extra 0.15%. Additionally, the more flexibility is
added, the more improvement is realized. This makes sense as larger
flexibility windows result in higher chances of good opportunities for
executing maintenance. Typically, the company considered in this use

case, Nexperia, produces hundreds of billions of products per year.

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.

m

Fig. 13. Policy describing what action to take, given a pair of machines with a buffer in-between. The decision depends on the buffer content, depicted on the y-axis, and how

any products are left in the flexibility window until the limit is reached, depicted on the x-axis. The shaded areas shows the region under which it is allowed to perform PM.
Fig. 14. Improvement in throughput of the OBT and ADQN policy, w.r.t. the practitioner time-based policy.
Being able to improve by more than 1% means that multiple additional
billions of products can be produced, without the need to invest in
additional assembly lines, factory space and personnel.

To better understand how these improvements are realized, addi-
tional analyses on key statistics are performed. An increase in through-
put due to better timing of maintenance can result from lower blocking
states of the upstream machines in the production line. Fig. 15(a) shows
the reduction of the blocking states percentages with respect to the
practitioner policy, for each machine in the line. The smallest and
largest flexibility levels are presented. It shows that ADQN is able to
reduce the total blocking state percentages for each machine further
than the OBT policy. Additionally, the more flexibility is added, the
larger the reductions. Fig. 15(c) shows the average buffer content at
the exact moment that maintenance is initiated, i.e., the content of the
buffer at the start of a maintenance activity. ADQN is able to reduce
this start content further than OBT, which most likely contributes to the
increase in throughput. Similarly, Fig. 15(d) shows the number of times
the buffer reaches its maximum capacity during a maintenance activity.
Again, ADQN outperforms the OBT policy, which might explain the
increase in throughput and further reduction of the blocking states of
the other machines in the production line.

Interestingly, Fig. 15(b) shows that the overall reduction of the
average buffer content of the final buffer is reduced less by ADQN,
compared to the OBT policy. Intuitively, this seems strange. However,
the same figure also displays the same statistic exclusively for the pe-
riod during maintenance. For this period, the average buffer content is
183
indeed reduced more by ADQN than by OBT. The reason for the further
reduction for the overall buffer content by OBT could be explained by
the combination of reduced blocking states, lower initial buffer content
at execution and higher throughput. Due to the higher throughput, it
might be the case that the work in progress (WIP) in the final buffer is
slightly higher with ADQN, resulting in a smaller reduction compared
to OBT.

6.5. Sensitivity analysis & managerial insights

To better understand the effect the assembly characteristics have
on the results and to provide more insights into the benefits of the
improvements for the shop floor, more detailed experiments are carried
out. First, the previous throughput results are analyzed for individual
assembly lines. Then, the impact of the buffer size and the duration of
PM on the improvements is examined.

6.5.1. Line to line comparison
The throughput results in Fig. 14 are averaged over all 11 assembly

lines, as stated in Table 4. Although they constitute the same number
of buffers and machines, their performance can differ significantly. This
arises from the variations in the speed and up and down behavior of
each individual machine in the production line. We illustrate the impact
of these characteristics in Fig. 16, where the results of the throughput
improvement of ADQN per assembly line, for the lowest and highest
flexibility level are depicted.

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.

d
a
t
a
i
s
t

Fig. 15. Production line statistics.
Fig. 16. Improvement in throughput of the ADQN policy, w.r.t. the practitioner time-based policy, for each assembly line instance.
Interestingly, there is a large difference in throughput improvement,
iffering almost by 0.60% between the worst and best performing
ssembly lines, line 8 and 10, respectively. To understand the origin of
hese differences, the characteristics of these worst and best performing
ssembly lines, together with an average assembly line (e.g. line 5),
s depicted in Fig. 17. The differences are clear and profound. The
peed of machines is higher for line 10, compared to line 8, except for
he last machine in the line, which coincidentally is the PM machine.
184
Since the last machine in line 10 has a lower speed compared to its
upstream machines, the average content of the buffer before the last
machine will be higher compared to line 8, where the opposite trend
in machine speed is observed. In addition, in case the last machine stops
production due to either a down state or a planned PM, the buffer in
line 10 will be filled more quickly compared to line 8, resulting in faster
congestion of upstream machines. Therefore, logically, improvements
for line 8 are lower since the impact of the algorithm is less pronounced

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.
Fig. 17. Assembly line characteristics for assembly lines #8 and #10.
for cases where the buffer is already at lower levels and the fill rate
of the buffer is lower. Line 5 has a similar behavior for the machine
speed as line 10, although the difference between the speed of the
last machine and the speed of the machines upstream is larger for
line 10. In addition, the up times are larger and the down times are
slightly lower for line 5, compared to line 10. Larger up times and lower
down times should result in more throughput improvements with an
algorithm such as ADQN, as the buffer can be filled more rapidly during
PM. However, larger throughput improvements are observed for line
10, which indicate that the machine speed seems to be more important,
as this is in favor of line 5.

The comparison of assembly lines highlights the significance of a
well-balanced assembly line and the effect that maintenance can have
on the level of improvement. The similarity between assembly lines in
terms of speed and up-and-down behavior enhances the predictability
of maintenance strategies’ effectiveness.

6.5.2. Varying buffer capacity
Another interesting element to study is the effect of the maximum

buffer capacity of the buffer prior to the PM machine on the through-
put. Fig. 18(a) shows that the throughout improves with increasing
buffer capacity. Nonetheless, the rate of improvement slows down as
buffer capacity increases. This trend is anticipated, as an increase in
buffer size would lead to less congestion upstream due to the downtime
of machines caused by either corrective maintenance or preventive
maintenance.

Fig. 18(b) illustrates the comparison of the OBT and ADQN algo-
rithms with the practitioner policy for each level of buffer capacity.
Interestingly, smaller buffer sizes result in greater improvements. This
observation suggests that larger buffer capacities have a lower impact
on algorithms that employ buffer size as an input for PM decision
making. In contrast, when the buffer capacities are small, algorithms
are more beneficial, as upstream machines can become congested more
quickly.

The differences in improvement between the lowest and highest
flexibility windows are larger for lower levels of buffer capacity and
decrease when the buffer capacity increases. This trend is observed
for both the ADQN and OBT algorithms. This suggests that the benefit
that an increase in buffer capacity provides makes up for the increase
in flexibility window, i.e., it becomes less important to have more
flexibility since there is more space to absorb the impact of PM with
a larger buffer capacity. Interestingly, the differences in throughput
improvement between ADQN and OBT for both the lower and higher
flexibility windows increase as the buffer capacity increases. This in-
dicates that the ADQN algorithm is able to utilize the increase in
buffer capacity better. Most likely it is better able to define regions
185

of opportunity as illustrated in Fig. 13. Also, the ADQN algorithm
with the smallest flexibility window performs almost as good as the
OBT algorithm with the highest flexibility window. The learning for
managers is that with higher buffer capacities, the decision when to
perform PM can be postponed further towards the end of the flexibility
window. This makes sense as the chances of having an empty enough
buffer to compensate for the impact of PM increases. Increasing buffer
size may seem like a simple decision. However, it may not always
be feasible to add a larger buffer to an assembly line due to the
associated costs and limited physical space available on the shop floor.
Consequently, it is crucial for the practitioners to employ intelligent
algorithms to guide PM decision making.

6.5.3. Varying maintenance duration
The duration of PM is a variable that can significantly impact

throughput, and therefore warrants careful examination. To investigate
the effect of PM duration, we vary the duration of PM listed in Table 4.
This is done by shifting the mean duration from Table 4 by adding or
subtracting a fixed value to the mean. We use increments of 10 min.
The impact on throughput is shown in Fig. 19. As expected, longer
PM duration results in decreased throughput (Fig. 19(a)). Conversely,
the throughput improvements resulting from the OBT and ADQN poli-
cies increase with longer PM duration 19(b). This is intuitive, since
longer PM duration increases the likelihood of congestion on upstream
machines, ultimately leading to reduced throughput. Therefore, the
importance of initiating PM at the appropriate moment is amplified,
resulting in greater throughput improvements when using a policy
generated by either OBT or ADQN. Notably, the rate of improvement in-
creases with PM duration, and the difference in improvement between
the lowest and highest flexibility windows also increases with PM
duration. These trends suggest that flexibility windows become more
critical as PM duration increases, a finding consistent with our previous
analysis of buffer capacity, which indicated that flexibility windows
become increasingly important as buffer capacity decreases. From a
managerial perspective, there is a significant advantage in avoiding PM
from exceeding the average duration, as the impact is more substantial
in comparison to increasing the maximum buffer capacities.

7. Conclusions and future work

In this study, a problem is considered where maintenance must
be scheduled on the last machine of a serial production line. Three
elements may determine the optimal timing to execute maintenance:
(1) the production state of the machines, (2) the content of the buffers
and (3) the flexibility given to the maintenance activity. These three
elements provide a unique problem which has not been studied before
in the context of scheduling maintenance on a single machine of a

serial production line. Given these three elements, the state space of the

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.

p
l
t
a
l
r
o
f

b
t
o
a
t
c
h
t
d
c
l

Fig. 18. Throughput and improvement in throughput of the ADQN and OBT policy, w.r.t. the practitioner time-based policy for different levels of buffer capacity.
Fig. 19. Throughput and improvement in throughput of the ADQN policy, w.r.t. the practitioner time-based policy for different levels of PM duration.
roblem quickly explodes. For this reason, a novel deep reinforcement
earning approach, named ADQN, is presented which aims to find op-
imal policies for the long-run average reward. Numerical experiments
re performed in a discrete event simulation model of the production
ine consisting of multiple machines and buffers in series that uses
eal-world data as input. The experiments show that the ADQN policy
utperforms both the time-based policy currently employed by the
actory and a benchmark policy.

This study considers maintenance on the last machine of the assem-
ly line. For future work, it would be interesting to extend the problem
o the more general case of performing maintenance on any machine
f the assembly line. At the moment, deterioration is not modeled
s part of the problem. If deterioration would also be considered in
he problem, more improvements could be realized since maintenance
ould be initiated based on the deterioration which would result in
igher availability of the machine. It would be interesting to study
he effect of such deterioration models. In addition, maintenance of
ifferent types on the other machines in the production line might be
onsidered as well, such as maintenance activities that flow through the
ine from one machine to the next. Extending the problem to multiple
186
parallel production lines with resource constraints would also be an
interesting and challenging research topic.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Funding: This work is partially supported by the ECSEL Joint Un-
dertaking under grant agreement number 101007311 (IMOCO4.E).

References

[1] Allahverdi A. The third comprehensive survey on scheduling problems with setup
times/costs. European J Oper Res 2015;246(2):345–78.

[2] Budai G, Dekker R, Nicolai RP. Maintenance and production: A review of
planning models. In: Complex system maintenance handbook. London: Springer
London; 2008, p. 321–44. http://dx.doi.org/10.1007/978-1-84800-011-7_13.

http://refhub.elsevier.com/S0278-6125(23)00084-5/sb1
http://refhub.elsevier.com/S0278-6125(23)00084-5/sb1
http://refhub.elsevier.com/S0278-6125(23)00084-5/sb1
http://dx.doi.org/10.1007/978-1-84800-011-7_13

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.
[3] Geurtsen M, Didden JB, Adan J, Atan Z, Adan I. Production, mainte-
nance and resource scheduling: A review. European J Oper Res 2022. http:
//dx.doi.org/10.1016/j.ejor.2022.03.045, URL https://www.sciencedirect.com/
science/article/pii/S0377221722002673.

[4] Van der Duyn Schouten F, Vanneste S. Maintenance optimization of a production
system with buffer capacity. European J Oper Res 1995;82(2):323–38. http:
//dx.doi.org/10.1016/0377-2217(94)00267-G, URL https://www.sciencedirect.
com/science/article/pii/037722179400267G.

[5] Kyriakidis E, Dimitrakos T. Optimal preventive maintenance of a production sys-
tem with an intermediate buffer. European J Oper Res 2006;168(1):86–99. http:
//dx.doi.org/10.1016/j.ejor.2004.01.052, URL https://www.sciencedirect.com/
science/article/pii/S0377221704003091.

[6] Karamatsoukis C, Kyriakidis E. Optimal maintenance of two stochastically
deteriorating machines with an intermediate buffer. European J Oper Res
2010;207(1):297–308. http://dx.doi.org/10.1016/j.ejor.2010.04.022, URL https:
//www.sciencedirect.com/science/article/pii/S0377221710003413.

[7] Meller RD, Kim DS. The impact of preventive maintenance on system cost and
buffer size. European J Oper Res 1996;95(3):577–91. http://dx.doi.org/10.1016/
0377-2217(95)00313-4, URL https://www.sciencedirect.com/science/article/pii/
0377221795003134.

[8] Wang H. A survey of maintenance policies of deteriorating systems.
European J Oper Res 2002;139(3):469–89. http://dx.doi.org/10.1016/S0377-
2217(01)00197-7, URL https://www.sciencedirect.com/science/article/pii/
S0377221701001977.

[9] Liu Q, Dong M, Frank Chen F, Liu W, Ye C. Multi-objective imperfect mainte-
nance optimization for production system with an intermediate buffer. J Manuf
Syst 2020;56:452–62. http://dx.doi.org/10.1016/j.jmsy.2020.07.002, URL https:
//www.sciencedirect.com/science/article/pii/S0278612520301126.

[10] Fitouhi M-C, Nourelfath M, Gershwin SB. Performance evaluation of a two-
machine line with a finite buffer and condition-based maintenance. Reliab
Eng Syst Saf 2017;166:61–72. http://dx.doi.org/10.1016/j.ress.2017.03.034, URL
https://www.sciencedirect.com/science/article/pii/S0951832017303733, Relia-
bility and Performance of Multi-State Systems.

[11] Zhou Y, Zhang Z. Optimal maintenance of a series production system with
two multi-component subsystems and an intermediate buffer; [optymalna
strategia utrzymania ruchu dla seryjnego systemu produkcji złożonego
z dwóch podsystemów wieloskładnikowych oraz buforu pośredniego].
Eksploatacja I Niezawodnosc 2015;17(2):314–25. http://dx.doi.org/10.
17531/ein.2015.2.20, URL https://www.scopus.com/inward/record.uri?eid=2-
s2.0-84925945296&doi=10.17531%2fein.2015.2.20&partnerID=40&md5=
10043bf4a833f4ea0c95cc441acb67db, Cited by: 6; All Open Access, Gold Open
Access.

[12] Wang X, Qi C. Multi-agent reinforcement learning based maintenance policy
for a resource constrained flow line system. J Intell Manuf 2016;27:325–33.
http://dx.doi.org/10.1007/s10845-013-0864-5.

[13] Li B, Zhou Y. Multi-component maintenance optimization: an approach combin-
ing genetic algorithm and multiagent reinforcement learning. In: 2020 Global
reliability and prognostics and health management. 2020, p. 1–7. http://dx.doi.
org/10.1109/PHM-Shanghai49105.2020.9280997.

[14] Gu X, Guo W, Jin X. Performance evaluation for manufacturing systems under
control-limit maintenance policy. J Manuf Syst 2020;55:221–32. http://dx.doi.
org/10.1016/j.jmsy.2020.03.003, URL https://www.sciencedirect.com/science/
article/pii/S0278612520300364.

[15] Arab A, Ismail N, Lee LS. Maintenance scheduling incorporating dynamics
of production system and real-time information from workstations. J
Intell Manuf 2013;24(4):695–705. http://dx.doi.org/10.1007/s10845-
011-0616-3, URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84880285817&doi=10.1007%2fs10845-011-0616-3&partnerID=40&md5=
3333536dfd5b1da5883084fe0ea6ff18, Cited by: 36.

[16] Zequeira RI, Valdes JE, Berenguer C. Optimal buffer inventory and
opportunistic preventive maintenance under random production capacity
availability. Int J Prod Econ 2008;111(2):686–96. http://dx.doi.org/10.
1016/j.ijpe.2007.02.037, URL https://www.sciencedirect.com/science/article/
pii/S0925527307001557, Special Section on Sustainable Supply Chain.

[17] Magnanini MC, Tolio T. Switching- and hedging- point policy for preventive
maintenance with degrading machines: application to a two-machine line.
Flex Serv Manuf J 2020;32(2):241–71. http://dx.doi.org/10.1007/s10696-
019-09370-7, URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85073998192&doi=10.1007%2fs10696-019-09370-7&partnerID=40&md5=
ac07f4387eaad3df0b9519844aa92504, Cited by: 5; All Open Access, Green
Open Access.

[18] Langer R, Li J, Biller S, Chang Q, Huang N, Xiao G. Simulation study of a
bottleneck-based dispatching policy for a maintenance workforce. Int J Prod Res
2010;48(6):1745–63. http://dx.doi.org/10.1080/00207540802555769.

[19] Li L, Chang Q, Ni J. Data driven bottleneck detection of manufactur-
ing systems. Int J Prod Res 2009;47(18):5019–36. http://dx.doi.org/10.1080/
00207540701881860.

[20] Gopalakrishnan M, Skoogh A, Laroque C. Buffer utilization based scheduling of
maintenance activities by a shifting priority approach - a simulation study. In:
2016 Winter simulation conference. 2016, p. 2797–808. http://dx.doi.org/10.
1109/WSC.2016.7822316.
187
[21] Lu L, Liu Y, Li J, Chang C, Biller S, Xiao G. A real-time maintenance scheduling
policy in serial production lines. In: 2011 9th world congress on intelligent
control and automation. 2011, p. 36–41. http://dx.doi.org/10.1109/WCICA.
2011.5970578.

[22] Nicolai RP, Dekker R. Optimal maintenance of multi-component systems: A
review. In: Complex system maintenance handbook. London: Springer London;
2008, p. 263–86. http://dx.doi.org/10.1007/978-1-84800-011-7_11.

[23] Ab-Samat H, Kamaruddin S. Opportunistic maintenance (OM) as a new
advancement in maintenance approaches: A review. J Qual Maint Eng
2014;20(2). http://dx.doi.org/10.1108/JQME-04-2013-0018, URL https://www.
emerald.com/insight/content/doi/10.1108/JQME-04-2013-0018/full/html.

[24] Werbińska-Wojciechowska S. Preventive maintenance models for technical
systems. Springer Ser Reliab Eng 2019;21–100. http://dx.doi.org/10.1007/978-
3-030-10788-8_2, URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85061117553&doi=10.1007%2f978-3-030-10788-8_2&partnerID=40&md5=
c69c1fcd83db2899e1c873666c4d761c.

[25] van der Duyn Schouten F, Vanneste S. Analysis and computation of (n,
N)-strategies for maintenance of a two-component system. European J Oper
Res 1990;48(2):260–74. http://dx.doi.org/10.1016/0377-2217(90)90379-P, URL
https://www.sciencedirect.com/science/article/pii/037722179090379P.

[26] Laggoune R, Chateauneuf A, Aissani D. Opportunistic policy for opti-
mal preventive maintenance of a multi-component system in continuous
operating units. Comput Chem Eng 2009;33(9):1499–510. http://dx.doi.
org/10.1016/j.compchemeng.2009.03.003, URL https://www.sciencedirect.com/
science/article/pii/S0098135409000696.

[27] Sarker BR, Faiz TI. Minimizing maintenance cost for offshore wind tur-
bines following multi-level opportunistic preventive strategy. Renew Energy
2016;85:104–13. http://dx.doi.org/10.1016/j.renene.2015.06.030, URL https://
www.sciencedirect.com/science/article/pii/S0960148115300549.

[28] Gunn EA, Diallo C. Optimal opportunistic indirect grouping of preventive
replacements in multicomponent systems. Comput Ind Eng 2015;90:281–91. http:
//dx.doi.org/10.1016/j.cie.2015.09.013, URL https://www.sciencedirect.com/
science/article/pii/S0360835215003939.

[29] Zhou X, Huang K, Xi L, Lee J. Preventive maintenance modeling for
multi-component systems with considering stochastic failures and disassem-
bly sequence. Reliab Eng Syst Saf 2015;142:231–7. http://dx.doi.org/10.
1016/j.ress.2015.05.005, URL https://www.sciencedirect.com/science/article/
pii/S0951832015001465.

[30] Ferreira Neto WA, Cavalcante CA, Santos AC, Araújo LH, Alberti AR, Lima HB.
An inspection policy for shredder equipment used in steel production lines
considering buffer level and operating time. J Manuf Syst 2021;60:640–51. http:
//dx.doi.org/10.1016/j.jmsy.2021.06.013, URL https://www.sciencedirect.com/
science/article/pii/S0278612521001370.

[31] Wu T, Ma X, Yang L, Zhao Y. Proactive maintenance scheduling in consideration
of imperfect repairs and production wait time. J Manuf Syst 2019;53:183–94.
http://dx.doi.org/10.1016/j.jmsy.2019.09.011, URL https://www.sciencedirect.
com/science/article/pii/S0278612519300834.

[32] Yang L, Zhao Y, Peng R, Ma X. Opportunistic maintenance of production
systems subject to random wait time and multiple control limits. J Manuf
Syst 2018;47:12–34. http://dx.doi.org/10.1016/j.jmsy.2018.02.003, URL https:
//www.sciencedirect.com/science/article/pii/S0278612518300141.

[33] Huang J, Chang Q, Arinez J. Deep reinforcement learning based preventive main-
tenance policy for serial production lines. Expert Syst Appl 2020;160:113701.
http://dx.doi.org/10.1016/j.eswa.2020.113701, URL https://www.sciencedirect.
com/science/article/pii/S095741742030525X.

[34] Valet A, Altenmüller T, Waschneck B, May MC, Kuhnle A, Lanza G. Oppor-
tunistic maintenance scheduling with deep reinforcement learning. J Manuf
Syst 2022;64:518–34. http://dx.doi.org/10.1016/j.jmsy.2022.07.016, URL https:
//www.sciencedirect.com/science/article/pii/S0278612522001285.

[35] Kuhnle A, Jakubik J, Lanza G. Reinforcement learning for opportunistic
maintenance optimization. Prod Eng 2019;13(1):33–41. http://dx.doi.
org/10.1007/s11740-018-0855-7, URL https://www.scopus.com/inward/
record.uri?eid=2-s2.0-85055991618&doi=10.1007%2fs11740-018-0855-
7&partnerID=40&md5=c710a9a712200b8a697ba8f739a0533d, Cited by: 38.

[36] Zhang N, Qi F, Zhang C, Zhou H. Joint optimization of condition-based
maintenance policy and buffer capacity for a two-unit series system. Reliab Eng
Syst Saf 2022;219:108232. http://dx.doi.org/10.1016/j.ress.2021.108232, URL
https://www.sciencedirect.com/science/article/pii/S0951832021007109.

[37] Zhou B, Yu J, Shao J, Trentesaux D. Bottleneck-based opportunistic maintenance
model for series production systems. J Qual Maint Eng 2015;21(1):70–88.
http://dx.doi.org/10.1108/JQME-09-2013-0059, URL https://www.scopus.com/
inward/record.uri?eid=2-s2.0-84923929158&doi=10.1108%2fJQME-09-2013-
0059&partnerID=40&md5=ea120c565d916a4770ccf31de33dc6d2, Cited by: 21.

[38] Chang Q, Ni J, Bandyopadhyay P, Biller S, Xiao G. Maintenance
opportunity planning system. J Manuf Sci Eng 2007;129(3):661–8.
http://dx.doi.org/10.1115/1.2716713, URL https://www.scopus.com/inward/
record.uri?eid=2-s2.0-34547416651&doi=10.1115%2f1.2716713&partnerID=
40&md5=7b8659c7a17ef59434ac511379076fca, Cited by: 88.

http://dx.doi.org/10.1016/j.ejor.2022.03.045
http://dx.doi.org/10.1016/j.ejor.2022.03.045
http://dx.doi.org/10.1016/j.ejor.2022.03.045
https://www.sciencedirect.com/science/article/pii/S0377221722002673
https://www.sciencedirect.com/science/article/pii/S0377221722002673
https://www.sciencedirect.com/science/article/pii/S0377221722002673
http://dx.doi.org/10.1016/0377-2217(94)00267-G
http://dx.doi.org/10.1016/0377-2217(94)00267-G
http://dx.doi.org/10.1016/0377-2217(94)00267-G
https://www.sciencedirect.com/science/article/pii/037722179400267G
https://www.sciencedirect.com/science/article/pii/037722179400267G
https://www.sciencedirect.com/science/article/pii/037722179400267G
http://dx.doi.org/10.1016/j.ejor.2004.01.052
http://dx.doi.org/10.1016/j.ejor.2004.01.052
http://dx.doi.org/10.1016/j.ejor.2004.01.052
https://www.sciencedirect.com/science/article/pii/S0377221704003091
https://www.sciencedirect.com/science/article/pii/S0377221704003091
https://www.sciencedirect.com/science/article/pii/S0377221704003091
http://dx.doi.org/10.1016/j.ejor.2010.04.022
https://www.sciencedirect.com/science/article/pii/S0377221710003413
https://www.sciencedirect.com/science/article/pii/S0377221710003413
https://www.sciencedirect.com/science/article/pii/S0377221710003413
http://dx.doi.org/10.1016/0377-2217(95)00313-4
http://dx.doi.org/10.1016/0377-2217(95)00313-4
http://dx.doi.org/10.1016/0377-2217(95)00313-4
https://www.sciencedirect.com/science/article/pii/0377221795003134
https://www.sciencedirect.com/science/article/pii/0377221795003134
https://www.sciencedirect.com/science/article/pii/0377221795003134
http://dx.doi.org/10.1016/S0377-2217(01)00197-7
http://dx.doi.org/10.1016/S0377-2217(01)00197-7
http://dx.doi.org/10.1016/S0377-2217(01)00197-7
https://www.sciencedirect.com/science/article/pii/S0377221701001977
https://www.sciencedirect.com/science/article/pii/S0377221701001977
https://www.sciencedirect.com/science/article/pii/S0377221701001977
http://dx.doi.org/10.1016/j.jmsy.2020.07.002
https://www.sciencedirect.com/science/article/pii/S0278612520301126
https://www.sciencedirect.com/science/article/pii/S0278612520301126
https://www.sciencedirect.com/science/article/pii/S0278612520301126
http://dx.doi.org/10.1016/j.ress.2017.03.034
https://www.sciencedirect.com/science/article/pii/S0951832017303733
http://dx.doi.org/10.17531/ein.2015.2.20
http://dx.doi.org/10.17531/ein.2015.2.20
http://dx.doi.org/10.17531/ein.2015.2.20
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925945296&doi=10.17531%2fein.2015.2.20&partnerID=40&md5=10043bf4a833f4ea0c95cc441acb67db
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925945296&doi=10.17531%2fein.2015.2.20&partnerID=40&md5=10043bf4a833f4ea0c95cc441acb67db
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925945296&doi=10.17531%2fein.2015.2.20&partnerID=40&md5=10043bf4a833f4ea0c95cc441acb67db
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925945296&doi=10.17531%2fein.2015.2.20&partnerID=40&md5=10043bf4a833f4ea0c95cc441acb67db
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925945296&doi=10.17531%2fein.2015.2.20&partnerID=40&md5=10043bf4a833f4ea0c95cc441acb67db
http://dx.doi.org/10.1007/s10845-013-0864-5
http://dx.doi.org/10.1109/PHM-Shanghai49105.2020.9280997
http://dx.doi.org/10.1109/PHM-Shanghai49105.2020.9280997
http://dx.doi.org/10.1109/PHM-Shanghai49105.2020.9280997
http://dx.doi.org/10.1016/j.jmsy.2020.03.003
http://dx.doi.org/10.1016/j.jmsy.2020.03.003
http://dx.doi.org/10.1016/j.jmsy.2020.03.003
https://www.sciencedirect.com/science/article/pii/S0278612520300364
https://www.sciencedirect.com/science/article/pii/S0278612520300364
https://www.sciencedirect.com/science/article/pii/S0278612520300364
http://dx.doi.org/10.1007/s10845-011-0616-3
http://dx.doi.org/10.1007/s10845-011-0616-3
http://dx.doi.org/10.1007/s10845-011-0616-3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880285817&doi=10.1007%2fs10845-011-0616-3&partnerID=40&md5=3333536dfd5b1da5883084fe0ea6ff18
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880285817&doi=10.1007%2fs10845-011-0616-3&partnerID=40&md5=3333536dfd5b1da5883084fe0ea6ff18
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880285817&doi=10.1007%2fs10845-011-0616-3&partnerID=40&md5=3333536dfd5b1da5883084fe0ea6ff18
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880285817&doi=10.1007%2fs10845-011-0616-3&partnerID=40&md5=3333536dfd5b1da5883084fe0ea6ff18
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880285817&doi=10.1007%2fs10845-011-0616-3&partnerID=40&md5=3333536dfd5b1da5883084fe0ea6ff18
http://dx.doi.org/10.1016/j.ijpe.2007.02.037
http://dx.doi.org/10.1016/j.ijpe.2007.02.037
http://dx.doi.org/10.1016/j.ijpe.2007.02.037
https://www.sciencedirect.com/science/article/pii/S0925527307001557
https://www.sciencedirect.com/science/article/pii/S0925527307001557
https://www.sciencedirect.com/science/article/pii/S0925527307001557
http://dx.doi.org/10.1007/s10696-019-09370-7
http://dx.doi.org/10.1007/s10696-019-09370-7
http://dx.doi.org/10.1007/s10696-019-09370-7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073998192&doi=10.1007%2fs10696-019-09370-7&partnerID=40&md5=ac07f4387eaad3df0b9519844aa92504
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073998192&doi=10.1007%2fs10696-019-09370-7&partnerID=40&md5=ac07f4387eaad3df0b9519844aa92504
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073998192&doi=10.1007%2fs10696-019-09370-7&partnerID=40&md5=ac07f4387eaad3df0b9519844aa92504
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073998192&doi=10.1007%2fs10696-019-09370-7&partnerID=40&md5=ac07f4387eaad3df0b9519844aa92504
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073998192&doi=10.1007%2fs10696-019-09370-7&partnerID=40&md5=ac07f4387eaad3df0b9519844aa92504
http://dx.doi.org/10.1080/00207540802555769
http://dx.doi.org/10.1080/00207540701881860
http://dx.doi.org/10.1080/00207540701881860
http://dx.doi.org/10.1080/00207540701881860
http://dx.doi.org/10.1109/WSC.2016.7822316
http://dx.doi.org/10.1109/WSC.2016.7822316
http://dx.doi.org/10.1109/WSC.2016.7822316
http://dx.doi.org/10.1109/WCICA.2011.5970578
http://dx.doi.org/10.1109/WCICA.2011.5970578
http://dx.doi.org/10.1109/WCICA.2011.5970578
http://dx.doi.org/10.1007/978-1-84800-011-7_11
http://dx.doi.org/10.1108/JQME-04-2013-0018
https://www.emerald.com/insight/content/doi/10.1108/JQME-04-2013-0018/full/html
https://www.emerald.com/insight/content/doi/10.1108/JQME-04-2013-0018/full/html
https://www.emerald.com/insight/content/doi/10.1108/JQME-04-2013-0018/full/html
http://dx.doi.org/10.1007/978-3-030-10788-8_2
http://dx.doi.org/10.1007/978-3-030-10788-8_2
http://dx.doi.org/10.1007/978-3-030-10788-8_2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061117553&doi=10.1007%2f978-3-030-10788-8_2&partnerID=40&md5=c69c1fcd83db2899e1c873666c4d761c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061117553&doi=10.1007%2f978-3-030-10788-8_2&partnerID=40&md5=c69c1fcd83db2899e1c873666c4d761c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061117553&doi=10.1007%2f978-3-030-10788-8_2&partnerID=40&md5=c69c1fcd83db2899e1c873666c4d761c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061117553&doi=10.1007%2f978-3-030-10788-8_2&partnerID=40&md5=c69c1fcd83db2899e1c873666c4d761c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061117553&doi=10.1007%2f978-3-030-10788-8_2&partnerID=40&md5=c69c1fcd83db2899e1c873666c4d761c
http://dx.doi.org/10.1016/0377-2217(90)90379-P
https://www.sciencedirect.com/science/article/pii/037722179090379P
http://dx.doi.org/10.1016/j.compchemeng.2009.03.003
http://dx.doi.org/10.1016/j.compchemeng.2009.03.003
http://dx.doi.org/10.1016/j.compchemeng.2009.03.003
https://www.sciencedirect.com/science/article/pii/S0098135409000696
https://www.sciencedirect.com/science/article/pii/S0098135409000696
https://www.sciencedirect.com/science/article/pii/S0098135409000696
http://dx.doi.org/10.1016/j.renene.2015.06.030
https://www.sciencedirect.com/science/article/pii/S0960148115300549
https://www.sciencedirect.com/science/article/pii/S0960148115300549
https://www.sciencedirect.com/science/article/pii/S0960148115300549
http://dx.doi.org/10.1016/j.cie.2015.09.013
http://dx.doi.org/10.1016/j.cie.2015.09.013
http://dx.doi.org/10.1016/j.cie.2015.09.013
https://www.sciencedirect.com/science/article/pii/S0360835215003939
https://www.sciencedirect.com/science/article/pii/S0360835215003939
https://www.sciencedirect.com/science/article/pii/S0360835215003939
http://dx.doi.org/10.1016/j.ress.2015.05.005
http://dx.doi.org/10.1016/j.ress.2015.05.005
http://dx.doi.org/10.1016/j.ress.2015.05.005
https://www.sciencedirect.com/science/article/pii/S0951832015001465
https://www.sciencedirect.com/science/article/pii/S0951832015001465
https://www.sciencedirect.com/science/article/pii/S0951832015001465
http://dx.doi.org/10.1016/j.jmsy.2021.06.013
http://dx.doi.org/10.1016/j.jmsy.2021.06.013
http://dx.doi.org/10.1016/j.jmsy.2021.06.013
https://www.sciencedirect.com/science/article/pii/S0278612521001370
https://www.sciencedirect.com/science/article/pii/S0278612521001370
https://www.sciencedirect.com/science/article/pii/S0278612521001370
http://dx.doi.org/10.1016/j.jmsy.2019.09.011
https://www.sciencedirect.com/science/article/pii/S0278612519300834
https://www.sciencedirect.com/science/article/pii/S0278612519300834
https://www.sciencedirect.com/science/article/pii/S0278612519300834
http://dx.doi.org/10.1016/j.jmsy.2018.02.003
https://www.sciencedirect.com/science/article/pii/S0278612518300141
https://www.sciencedirect.com/science/article/pii/S0278612518300141
https://www.sciencedirect.com/science/article/pii/S0278612518300141
http://dx.doi.org/10.1016/j.eswa.2020.113701
https://www.sciencedirect.com/science/article/pii/S095741742030525X
https://www.sciencedirect.com/science/article/pii/S095741742030525X
https://www.sciencedirect.com/science/article/pii/S095741742030525X
http://dx.doi.org/10.1016/j.jmsy.2022.07.016
https://www.sciencedirect.com/science/article/pii/S0278612522001285
https://www.sciencedirect.com/science/article/pii/S0278612522001285
https://www.sciencedirect.com/science/article/pii/S0278612522001285
http://dx.doi.org/10.1007/s11740-018-0855-7
http://dx.doi.org/10.1007/s11740-018-0855-7
http://dx.doi.org/10.1007/s11740-018-0855-7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055991618&doi=10.1007%2fs11740-018-0855-7&partnerID=40&md5=c710a9a712200b8a697ba8f739a0533d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055991618&doi=10.1007%2fs11740-018-0855-7&partnerID=40&md5=c710a9a712200b8a697ba8f739a0533d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055991618&doi=10.1007%2fs11740-018-0855-7&partnerID=40&md5=c710a9a712200b8a697ba8f739a0533d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055991618&doi=10.1007%2fs11740-018-0855-7&partnerID=40&md5=c710a9a712200b8a697ba8f739a0533d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055991618&doi=10.1007%2fs11740-018-0855-7&partnerID=40&md5=c710a9a712200b8a697ba8f739a0533d
http://dx.doi.org/10.1016/j.ress.2021.108232
https://www.sciencedirect.com/science/article/pii/S0951832021007109
http://dx.doi.org/10.1108/JQME-09-2013-0059
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923929158&doi=10.1108%2fJQME-09-2013-0059&partnerID=40&md5=ea120c565d916a4770ccf31de33dc6d2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923929158&doi=10.1108%2fJQME-09-2013-0059&partnerID=40&md5=ea120c565d916a4770ccf31de33dc6d2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923929158&doi=10.1108%2fJQME-09-2013-0059&partnerID=40&md5=ea120c565d916a4770ccf31de33dc6d2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923929158&doi=10.1108%2fJQME-09-2013-0059&partnerID=40&md5=ea120c565d916a4770ccf31de33dc6d2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923929158&doi=10.1108%2fJQME-09-2013-0059&partnerID=40&md5=ea120c565d916a4770ccf31de33dc6d2
http://dx.doi.org/10.1115/1.2716713
https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547416651&doi=10.1115%2f1.2716713&partnerID=40&md5=7b8659c7a17ef59434ac511379076fca
https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547416651&doi=10.1115%2f1.2716713&partnerID=40&md5=7b8659c7a17ef59434ac511379076fca
https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547416651&doi=10.1115%2f1.2716713&partnerID=40&md5=7b8659c7a17ef59434ac511379076fca
https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547416651&doi=10.1115%2f1.2716713&partnerID=40&md5=7b8659c7a17ef59434ac511379076fca
https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547416651&doi=10.1115%2f1.2716713&partnerID=40&md5=7b8659c7a17ef59434ac511379076fca

Journal of Manufacturing Systems 69 (2023) 170–188M. Geurtsen et al.
[39] Gu X, Jin X, Ni J. Prediction of passive maintenance opportunity windows
on bottleneck machines in complex manufacturing systems. Trans ASME,
J Manuf Sci Eng 2015;137(3). http://dx.doi.org/10.1115/1.4029906, URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924675023&doi=10.
1115%2f1.4029906&partnerID=40&md5=2cfab077f3794dc81f124b6d6fdd00fe,
Cited by: 42.

[40] Gu X, Jin X, Guo W, Ni J. Estimation of active maintenance opportunity
windows in Bernoulli production lines. J Manuf Syst 2017;45:109–20.
http://dx.doi.org/10.1016/j.jmsy.2017.08.005, URL https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85029688456&doi=10.1016%2fj.jmsy.2017.08.
005&partnerID=40&md5=26c4a20b2a7f33148a89794759019abb, Cited by: 21.

[41] Geurtsen M, Atan Z, Adan IJ. Dynamic scheduling of maintenance by a
reinforcement learning approach - a semiconductor simulation study. In: 2022
Winter simulation conference. 2022, URL https://ieeexplore.ieee.org/document/
10015402/.

[42] Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT Press; 2018.
188
[43] Watkins CJCH. Learning from delayed rewards [Ph.D. thesis], King’s College,
Oxford; 1989.

[44] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et
al. Playing atari with deep reinforcement learning. 2013, http://dx.doi.org/10.
48550/ARXIV.1312.5602, URL https://arxiv.org/abs/1312.5602.

[45] Hasselt Hv, Guez A, Silver D. Deep reinforcement learning with double
Q-learning. In: Proceedings of the thirtieth AAAI conference on artificial
intelligence. AAAI Press; 2016, p. 2094–100.

[46] Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy
optimization algorithms. 2017, http://dx.doi.org/10.48550/ARXIV.1707.06347,
URL https://arxiv.org/abs/1707.06347.

[47] Wan Y, Naik A, Sutton RS. Learning and planning in average-reward Markov
decision processes. In: Meila M, Zhang T, editors. Proceedings of the 38th
international conference on machine learning. Proceedings of machine learning
research, vol. 139, PMLR; 2021, p. 10653–62, URL https://proceedings.mlr.
press/v139/wan21a.html.

[48] Kingma DP, Ba J. Adam: A method for stochastic optimization. 2014, http://dx.
doi.org/10.48550/ARXIV.1412.6980, URL https://arxiv.org/abs/1412.6980.

http://dx.doi.org/10.1115/1.4029906
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924675023&doi=10.1115%2f1.4029906&partnerID=40&md5=2cfab077f3794dc81f124b6d6fdd00fe
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924675023&doi=10.1115%2f1.4029906&partnerID=40&md5=2cfab077f3794dc81f124b6d6fdd00fe
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924675023&doi=10.1115%2f1.4029906&partnerID=40&md5=2cfab077f3794dc81f124b6d6fdd00fe
http://dx.doi.org/10.1016/j.jmsy.2017.08.005
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029688456&doi=10.1016%2fj.jmsy.2017.08.005&partnerID=40&md5=26c4a20b2a7f33148a89794759019abb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029688456&doi=10.1016%2fj.jmsy.2017.08.005&partnerID=40&md5=26c4a20b2a7f33148a89794759019abb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029688456&doi=10.1016%2fj.jmsy.2017.08.005&partnerID=40&md5=26c4a20b2a7f33148a89794759019abb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029688456&doi=10.1016%2fj.jmsy.2017.08.005&partnerID=40&md5=26c4a20b2a7f33148a89794759019abb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029688456&doi=10.1016%2fj.jmsy.2017.08.005&partnerID=40&md5=26c4a20b2a7f33148a89794759019abb
https://ieeexplore.ieee.org/document/10015402/
https://ieeexplore.ieee.org/document/10015402/
https://ieeexplore.ieee.org/document/10015402/
http://refhub.elsevier.com/S0278-6125(23)00084-5/sb42
http://refhub.elsevier.com/S0278-6125(23)00084-5/sb43
http://refhub.elsevier.com/S0278-6125(23)00084-5/sb43
http://refhub.elsevier.com/S0278-6125(23)00084-5/sb43
http://dx.doi.org/10.48550/ARXIV.1312.5602
http://dx.doi.org/10.48550/ARXIV.1312.5602
http://dx.doi.org/10.48550/ARXIV.1312.5602
https://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S0278-6125(23)00084-5/sb45
http://refhub.elsevier.com/S0278-6125(23)00084-5/sb45
http://refhub.elsevier.com/S0278-6125(23)00084-5/sb45
http://refhub.elsevier.com/S0278-6125(23)00084-5/sb45
http://refhub.elsevier.com/S0278-6125(23)00084-5/sb45
http://dx.doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v139/wan21a.html
https://proceedings.mlr.press/v139/wan21a.html
https://proceedings.mlr.press/v139/wan21a.html
http://dx.doi.org/10.48550/ARXIV.1412.6980
http://dx.doi.org/10.48550/ARXIV.1412.6980
http://dx.doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980

	Deep reinforcement learning for optimal planning of assembly line maintenance
	Introduction
	Literature Review
	Scheduling maintenance based on machine and buffer interactions in a production line
	Opportunistic maintenance

	Problem Description
	System characteristics
	Problem statement

	Production Line Modeling
	Case description and data collection
	Fluid simulation model

	Solution Methodologies
	Optimal buffer threshold Algorithm
	Deep Reinforcement Learning algorithm
	MDP formulation

	Action space
	Reward function
	Algorithm implementation

	Experiments
	Real-world production lines
	Settings
	Simulation settings
	OBT algorithm
	ADQN algorithm

	Training process
	Results
	Sensitivity Analysis & Managerial Insights
	Line To Line Comparison
	Varying Buffer Capacity
	Varying Maintenance Duration

	Conclusions and Future Work
	Declaration of Competing Interest
	Acknowledgments
	References

