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ABSTRACT

Memristor-based in-memory neuromorphic computing systems

promise a highly efficient implementation of vector-matrix mul-

tiplications, commonly used in artificial neural networks (ANNs).

However, the immature fabrication process of memristors and cir-

cuit level limitations, i.e., stuck-at-fault (SAF), IR-drop, and device-

to-device (D2D) variation, degrade the reliability of these platforms

and thus impede their wide deployment. In this paper, we present

ReMeCo, a redundancy-based reliability improvement framework.

It addresses the non-idealities while constraining the induced over-

head. It achieves this by performing a sensitivity analysis on ANN.

With the acquired insight, ReMeCo avoids the redundant calcula-

tion of least sensitive neurons and layers. ReMeCo uses a heuristic

approach to find the balance between recovered accuracy and im-

posed overhead. ReMeCo further decreases hardware redundancy

by exploiting the bit-slicing technique. In addition, the framework

employs the ensemble averaging method at the output of every

ANN layer to incorporate the redundant neurons. The efficacy of

the ReMeCo is assessed using two well-known ANN models, i.e.,

LeNet, and AlexNet, running the MNIST and CIFAR10 datasets. Our

results show 98.5% accuracy recovery with roughly 4% redundancy

which is more than 20× lower than the state-of-the-art.
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1 INTRODUCTION

Artificial Neural Networks (ANNs) are becoming more prevalent

and more complex. They have been successfully adopted in various

fields, e.g., computer vision, natural language processing, etc. [6].

However, conventional processing elements (PE)s execute such

data-intensive workloads inefficiently due to the memory-wall [1].

Computation in-memory (CIM) alleviates this problem by reducing

the movement of data required for vector-matrix multiplication

(VMM), a core operation of ANNs [15]. A promising approach to

realizing CIM is deploying emerging non-volatile memories, e.g.,

memristors, and phase-change memories (PCM), in a crossbar struc-

ture (Figure 1.(a)). Memristor-based CIM significantly reduces the

energy consumption and executes VMM with 𝑂 (1) complexity.

Despite all the benefits offered by memristor-based ANN PEs, their

output accuracy is unstable. Therefore, their reliability has been a

critical point of concern [7]. Several different factors contribute to

this. Stuck-at-fault (SAF) is a significant reliability issue in which a

defective device is frozen in a state [11, 14]. In addition, device-to-

device (D2D) variation at the device-level and IR-drop at the system-

level further degrade the accuracy [11]. All these non-idealities di-

minish the promise of widely adopting memristor-based platforms

for implementing ANNs.

To counter these non-idealities, many prior researches have pro-

posed to re-train the neural network model taking some non-idealities

into account, remap the weights to the memristor crossbar, pre-test

the circuit, or perform a combination of these techniques [2, 10, 13,

19, 21]. Some works re-train the network in the post-fabrication

stage by back-annotating the physical characteristics of each chip

and including them in the training algorithm [3, 10]. Joksas et al.

propose a redundancy-based approach inspired by static committee

machine. They implement an ANN model multiple times on differ-

ent crossbars to form a committee machine (CM). The CM yields

better accuracy than individual implementations by leveraging en-

semble averaging, commonly used in conventional ANNs [11].

In this paper, we first do a thorough design space exploration (DSE)

to understand the effects of various non-idealities on the final ac-

curacy of neuromorphic PEs. Furthermore, we introduce ReMeCo,

a redundancy-based reliability improvement framework where re-

dundancy is applied in a structured manner. In ReMeCo, we first

analyze the ANN –to be implemented– to recognize its sensitive

parts. Using this insight, we improve the CM by applying redun-

dancy to where it recovers accuracy most. Hereby we trade off the

overhead of redundancy and accuracy. Our contributions are:
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• Design space exploration of the effects and importance of

various sources of non-idealities, e.g., SAF, D2D variation,

and IR-drop. In addition, we study the impact of the write-

and-verify algorithm in alleviating the detrimental effects of

mentioned reliability issues. (Section 2.2)

• ReMeCo: a novel redundancy-based framework to improve

the reliability of memristor-based ANN PEs by addressing

the non-idealities. In doing so, we do not need to change the

training algorithm or do retraining/remapping for every fab-

ricated PE. By identifying the sensitive neurons (S-neuron)

during the training process of the ANN –without any over-

head, we apply redundancy in a structured manner to where

it can contribute the most to recovering accuracy. (Section 3)

• Assessing our approach using two widely accepted ANN

models, namely LeNet and AlexNet that are trained/tested

with the MNIST and CIFAR-10 data-sets. Our evaluation

results show that ReMeCo recovers accuracy by up to 98.5%

while limiting the energy and area overhead. (Section 4)

ReMeCo solves the reliability problem of memristor-based ANN PEs

without software overhead and with limited hardware redundancy.

2 PRELIMINARIES AND RELATEDWORK

In this section, we briefly describe memristor crossbars and how

they operate. Then, we detail the non-idealities that affect their

Figure 1: We consider 1T1R memristor crossbars [4]. Thus,

two horizontal wires are needed. WL enables/disables the

access transistor while SL is for applying inputs. (a) A cross-

bar where the precision of ANN weights and memristors

match. (b) A crossbar where the precision of ANN weights is

twice that of a memristor. Hence, two columns per neuron

are employed (bit-slicing). (c) A crossbar with sensitivity-

based redundancy (green columns). The first neuron (left

two columns) is duplicated whereas the last one is not. (d) A

crossbar exploiting Most Significant Bits (MSB) redundancy.

reliability the most. We finish by explaining the solutions proposed

to resolve the reliability issue of memristor-based CIM PEs.

2.1 Memristor crossbars

Memristor crossbars are considered one of the promising candi-

dates for implementing ultra low-power in-memory neuromorphic

computation systems. Memristor-based CIM exploits two funda-

mental circuit laws, namely Kirchhoff’s current summation law and

Ohm’s law, to execute the VMM operation in the analog domain.

This leads to orders of magnitude improvement in energy consump-

tion and highly parallel execution of VMM, which is critical for the

execution of an ANN (Figure 1.(a)) [1, 5, 16]. To perform VMM, a

matrix, e.g., the weights of an ANN layer, is first mapped to a set of

conductances that are implemented on the memristor devices in

the crossbar. The input vector, e.g., the inputs of an ANN layer, is

mapped to a vector of voltages. Then, this vector is applied to the

rows of the crossbar (SL in Figure 1). The applied voltage vector

induces currents in the columns of the crossbar (BL in Figure 1),

which represent output neurons of an ANN layer. The analog cur-

rents flowing in the columns correspond to the dot-product of the

input vector and the weight matrix. In the end, using an analog-

digital converter (ADC), the analog currents are converted back

to digital values. Memristors, however, are capable of storing a

limited number of conductance levels. Thus, they cannot store high-

precision weights. A common way to deal with this is to split the

ANN weights over multiple memristors residing in different (usu-

ally adjacent) columns. In this approach, called bit-slicing [1, 16], a

weighted sum on the bit-lines yields the final result (figure 1.(b)).

2.2 Non-idealities (DSE)

Memristive devices are subject to various non-idealities. Therefore,

reliability is one of the major aspects that need to be studied for

(a) Stuck-at-fault (b) IR-drop

(c) D2D variation (d) D2D var. after write-and-verify

Figure 2: The effect of various non-idealities on classification

accuracy of LeNet (MNIST dataset). (a) Results show that the

stuck-at-on devices affect the accuracy more significantly

than stuck-at-off. (b) As the crossbar size becomes larger, the

effect of line resistance (𝑅𝐵𝐿, 𝑅𝑆𝐿) on the accuracy grows sig-

nificantly. (c-d) Ap(An), and Vp(Vn) are themodulation factor

and threshold voltage for setting(resetting) memristors, re-

spectively. As (d) shows, the write-and-verify technique can

address the D2D variation effect to a significant extent.
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Table 1: Summary of the works done to address reliability issues. Except for ReMeCo and [11] all the other works propose

approaches that require to be applied to each fabricated chip individually which elongates the time to market. Furthermore,

all works address SAF, and some of them propose solutions for D2D process variation (PV) as well. However, only ReMeCo

and [11] address the above issues and system-level IR-drop as well. ReMeCo excels CM by performing sensitivity analysis.

First author (Year) Non-idealities
Model-aware

training

Post-fabrication

training
Remapping

Hardware

redundancy

Sensitivity

analysis

Time to

market

Gaol (2021) [8] SAF, PV* X X X - X High

Jin (2020) [10] SAF - X X - X High

Xu (2021) [19] SAF, PV X X X - X High

Liu (2017) [13] SAF X X X X X High

Joksas (2020) [11] SAF, PV, IR-drop - - - X - Low

ReMeCo SAF, PV, IR-drop - - - X X Low

a wider deployment of memristor-based platforms. Examples of

such non-idealities are stuck-at-fault (SAF), and device-to-device

(D2D) variation [11]. Stuck-at-fault (SAF) is a significant reliability

issue in which a defective device is frozen in a state [11, 14]. This

phenomenon causes the weights of an ANN to be mapped incor-

rectly, resulting in an inaccurate computation. D2D variation also

can cause the memristors to be miss-programmed. This is due to the

fact that different devices behave differently when programming

pulses are applied to them. Therefore, they may be programmed to

the wrong conductance level. To alleviate these problems, various

techniques such as the write-and-verify programming scheme [17],

or using high-precision processing units in conjunction with mem-

ristive elements [12, 18] are proposed. The limited write-endurance

of memristors is another issue that becomes significant when in-

situ training is used since it requires memristors to be programmed

many times [11].

In addition to the device-level non-idealities, IR-drop, at the system-

level, affects the final accuracy [9]. Since memristor crossbars per-

form multiplication with Ohm’s law, wire resistance can cause the

induced current and subsequently the VMM output to deviate. The

problem exacerbates as the crossbar size (and consequently wire

resistance) grows.

Using the simulator proposed in [15], we perform DSE to study

the effect of these non-idealities on the reliability of a memris-

tive CIM platform. Figure 1 depicts the simulation result for the

execution of LeNet-MNIST on 1000 different memristor crossbar

models with 10K test instances (implementation details in Sec-

tion 4.1). As the figures 2 (a-c) suggest, SAF, IR-drop, and D2D

variation have a detrimental effect on the accuracy of these plat-

forms. Our simulations further demonstrate that different types of

SAF impact accuracy differently. Figure 2.(a) shows that stuck-at-

on, which is a more prevalent type of SAF [19], degrades accuracy

more significantly than stuck-at-off does. Figure 2.(b) confirms the

aforementioned claim that the bigger the crossbar is, the more

impactful the IR-drop becomes. Figure 2.(d) shows that the D2D

variation effect depicted in figure 2.(c) (Vp∈𝑁 (𝜇 = 4, 𝜎 = 0.08)V,

Ap∈𝑁 (𝜇 = 8.16𝑒5, 𝜎 = 0.1, 0.2𝜇)) can be mitigated by employing

the write-and-verify programming method. For the rest of this ar-

ticle, we assume that the write-and-verify method is employed.

Hence, D2D variation has a negligible effect on accuracy.

2.3 Addressing non-idealities

Different approaches have been proposed to deal with the reliability

issues of memristive ANN PEs. Plenty of research has been directed

toward software-based approaches. Some of them enhance the ini-

tial training scheme by including physical characteristics extracted

from device models and circuit simulations [2, 8, 19]. The problem

with this approach is that they are still susceptible to variation and

SAF since the developed model cannot predict the exact distribution

of non-idealities and thus cannot mitigate their effect.

Other works re-train their ANN model in the post-fabrication test

stage and include the actual physical characteristics of each chip

in the re-training process [13, 19]. Another post-fabrication ap-

proach that is widely studied is remapping. The main idea behind

remapping is to avoid mapping sensitive weights to faulty de-

vices [8, 10, 13, 19]. The sensitivity of an ANN model weight is

determined on the basis of the impact its variation has on the final

output. Post-fabrication approaches are non-trivial, and costly since

the process of extraction of physical characteristics and re-training

or remapping should be applied for each fabricated chip [8].

Besides software approaches, some hardware approaches have been

proposed [11]. Joksas et. al. propose a static CM where an ANN

model is implemented on several memristive crossbars with differ-

ent non-idealities. The ensemble averaging-based CM reports the

averaged output of all implementations as the final result. Although

compared to software-based ideas, the CM is easier to implement

and avoids costly re-training and remapping processes, it is ex-

pensive in terms of energy consumption and area overhead. For

instance, the authors of [11] have implemented a simple ANN model

on five different crossbars to form a CM that recovers the accuracy

to its original state.

Software approaches are orthogonal to hardware methods. Thus,

they can be applied jointly. Lastly, note that the main non-ideality

that most of the approaches above try to address is SAF; and other

significant non-idealities are rarely studied and resolved. Table 1

summarizes these recent memristor-crossbar reliability studies.

3 REMECO: APPROACH & IMPLEMENTATION

We perform DSE on non-idealities that affect the memristor crossbar

to realize the significance of the impact that they have on the

accuracy of such platforms. The corresponding results are depicted

in Figure 2 and briefly discussed in Section 2. Having understood the

problem, we propose ReMeCo, which is a framework to improve

the reliability of memristor-based ANN PEs in the presence of

various non-idealities by adding hardware redundancy. ReMeCo is

independent of device properties, and it does not have to be adjusted

for each fabricated chip. Therefore, it does not elongate the time

to market. The key idea behind ReMeCo is to apply redundancy to
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Figure 3: The flow-chart of the ReMeCo framework. The data

from sensitivity characterization is used in later steps.

where it contributes most and hereby limit the overhead. To do so,

ReMeCo, first, identifies the sensitive neurons and layers. ReMeCo,

then, starts with the CM and uses the acquired insight to reduce

CM’s hardware overhead as much as possible while improving the

accuracy recovery (Figure 3). We discuss these in detail in the rest

of this section.

3.1 Sensitivity Characterization

It is crucial to determine the sensitivity of an ANN output with

respect to its individual neurons and layers. This enables us to

apply our accuracy recovery method in a structured and more effi-

cient fashion, which in return reduces the incurred overhead. To

quantify the sensitivity, we use the back-propagation algorithm.

Back-propagation is a widely used algorithm for training neural

networks. Basically, it is the process of fine-tuning the weights of

an ANN until it reaches the desired accuracy. Back-propagation

follows a feed-forward path in which instance(s) from the training

data-set are fed to the ANN and their corresponding output error

with respect to the defined target is calculated. Back-propagation

algorithm dispenses the output error back to the ANN parameters.

Then, the ANN weights are adjusted in proportion to their con-

tribution to the final error [13, 18]. Back-propagation for training

ANNs is commonly formulated as a gradient descent optimization

problem, as Δ𝜔𝑖, 𝑗 = −𝜂 𝜕𝐸
𝜕𝜔𝑖,𝑗

, where 𝜂 denotes the learning rate, 𝐸

denotes the final error, and 𝜕𝐸
𝜕𝜔𝑖,𝑗

shows the sensitivity of 𝐸 to 𝜔𝑖, 𝑗 .

Repeating the process for every instance in the training set, (1) we

compute the feed-forward path, (2) obtain the output error, and

(3) calculate the average error contribution of individual neurons

over all the instances in the training data-set. Therefore, neuron

sensitivity is formulated as, 𝑆𝑒𝑛𝑠.𝑛𝑒𝑢𝑟𝑜𝑛 = 𝐴𝑉𝑅𝑁𝑗=0 (
𝜕𝐸

𝜕𝜔𝑖,𝑗
)). In the

same manner, we calculate the sensitivity of an ANN layers by aver-

aging over the sensitivity of all of its output neurons. This way, by

exploiting the training process and without causing any software

overhead, ReMeCo apportions the error at the output of an ANN to

the individual neurons and layers [13, 18]. Figure 4 shows the his-

togram of neuron sensitivity of LeNet ANN model. For instance, it

indicates that neurons of layer 3 and 4 are less sensitive; hence, they

can be targeted to reduce neuron and layer hardware redundancy.

3.2 Implementation

We map the weights of an ANN to the memristor crossbar so that

columns in the memristor crossbar corresponds to output neurons

in an ANN layer. To perform high-precision computation on mem-

ristor crossbars, we employ the bit-slicing technique –explained in

Section 2 [1]. Therefore, after analog to digital conversion (ADC),

the partial results from several columns, which together store one

Figure 4: Absolute neuron sensitivity histogram for LeNet.

weight, are shifted and added (weighted sum) to produce the final re-

sult (Figure 1.(b)). The ReMeCo framework follows the flow shown

in Figure 3. As the figure indicates, after acquiring the sensitivity

characterization, ReMeCo takes the CM [11] as its starting point.

It applies the techniques shown in the figure one after another to

increases the final accuracy and simultaneously decreases the area

and energy overhead.

Layer averaging Joksas et al. in [11] propose to use CMs to

address the non-idealities associated with memristive ANN PEs

and improve their output accuracy. They follow the ensemble av-

eraging (EA) method to combine the results of individual ANN

implementations in the CM. As the first step in the ReMeCo frame-

work, we propose to modify the CM and perform the EA not only

for combining the final output but rather at the end of every layer.

By combining the results after every layer, ReMeCo diminishes the

error produced in them. Therefore, the error that is propagating

through the network to the following layers is smaller. This im-

proves the accuracy of every layer’s output and subsequently the

overall accuracy of the memristive ANN PE.

Note that, we use the CM with two ANN implementations (the

minimum overhead) as the starting point. It is important since by

constraining the number of copies of a neuron to a power of two,

the averaging can be implemented by simple shift-&-add opera-

tions. Considering that the bit-slicing technique already requires

the weighted-sum module, performing averaging operation after

every layer imposes negligible overhead compared to the CM.

Sensitive neuron redundancy The CM requires 100% to 400%

hardware redundancy to recover the accuracy to its original soft-

ware level. Although this might be acceptable for small-sized ANNs,

it gets unwieldy when implementing deeper and larger ANN mod-

els. Therefore, in the second step of the ReMeCo framework we

propose a method to reduce required redundancy. Basically, in S-

neuron redundancy step, we propose to apply redundancy only

to where it contributes most, i.e., sensitive neurons. Employing a

heuristic approach and using the insight from sensitivity character-

ization step, we can gradually remove the redundant calculation of

the less sensitive neurons. In doing so, we trade-off the unmanage-

able hardware overhead and the recovered accuracy. Figure 1.(c)

visualizes this approach. As the figure suggests the sensitive neu-

rons, e.g., the 1𝑠𝑡 column, are calculated redundantly, while the

less sensitive neurons, e.g., the 𝑁 𝑡ℎ column, are calculated once. By

avoiding the calculations that hardly affect the accuracy, ReMeCo

promises to consume less energy and area.

MSB redundancy The bit-slicing technique offers an opportu-

nity to further reduce the redundancy overhead. After adding the

redundancy according to the description in the previous stage, we
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propose to remove the redundant calculation of the columns storing

to the least significant bit(s) of the weight, and perform the redun-

dant calculation solely for the columns storing the most significant

bit(s). Figure 1.(d) depicts this methods. In the example shown in the

figure, one ANN neuron is implemented using two columns in the

memristor crossbar. We reduce the area overhead by removing the

copy of the LSB column and only keeping the MSB part. Employing

this method in the shown example, ReMeCo reduces the crossbar

area overhead by half. In implementations where the precision of

memristors are low and the precision of the weights are high this

approach yields even more hardware efficiency. Obviously, this

method also decreases the energy consumption by reducing the

number of redundant calculations, A/D conversions, and required

averaging operations.

Sensitive layer redundancy In the final step, we use the the

information obtained about the sensitivity of the ANN layers to

further enhance the redundancy-based reliability framework. As in

S-neuron redundancy stage, we propose to avoid the calculation of

the layers that are less sensitive. This heuristic approach yields a

significant reduction in hardware overhead as it eliminates the com-

putation of a whole layer. This become even more significant as our

sensitivity characterization studies show that the fully connected

layers, which usually are significantly larger than convolutional

layers, are actually the least sensitive layers. This is not quite appli-

cable to the last fully connected layer though.

4 EVALUATION

For the evaluation of ReMeCo, we use two well-known deep ANN

models, namely LeNet and AlexNet. The software accuracy for

quantized 8-bit LeNet and AlexNet models on MNIST and CIFAR-

10 data-sets are 98.94% and 80.12%, respectively. To address the

reliability issues we employ both ReMeCo and the state-of-the-

art CM. Since the CM is evaluated using a small NN model that

comprises two fully connected layers to make a comparison, in

terms of recovered accuracy and induced overhead, we decided

to apply the method proposed in CM to our test cases, i.e., LeNet-

MNIST and AlexNet-CIFAR10. To make the comparison fair (in

terms of the caused overhead), we assume the CM only consists

of two ANN implementations and therefore, has a redundancy

Table 2: Memristor crossbar physical parameters

Crossbar Parameters Value

Memristor Technology Device in [20]

Cell precision 8-bit (2×(4-bit) devices)

Compute Energy/8-bit 160 fJ (2×80 fJ/4-bit device)

Write Energy/8-bit 160 pJ (2×80 pJ/4-bit device)

Crossbar Area 1010𝑚𝑒𝑚𝑟𝑖𝑠𝑡𝑜𝑟𝑠/𝑐𝑚2

SL/BL Resistance 𝑁 (𝜇 = 2, 𝜎 = 0.5)Ω
Peripheral Circuitry Energy Area

Analog Components 2.1 pJ/cycle (@1.2GHz) 1252 𝜇𝑚2

Digital Components 1.1 pJ/byte 865 𝜇𝑚2

Table 3: ANN parameters and data-sets

ANN Data-set
Layers

Parameters FLOPs
Conv. Dense

LeNet MNIST 2 3 866 K 28 M

AlexNet CIFAR-10 5 3 62 M 1.5 B

factor of 100%. In the rest of this section, first, we present the

characteristics of the memristor and of the required peripheral

circuitry. We also describe the mentioned neural networks and the

benchmarks. Then, we present the accuracy results achieved by

employing ReMeCo. In the end, we present an estimation of the

energy and area overhead that ReMeCo imposes on the system and

compare them with those of the CM approach.

4.1 Experimental Setup

We use the simulator presented in [15] to evaluate our proposed

approach. We extend the simulator to support our averaging scheme.

Table 2 shows the default values for key crossbar parameters in the

following experiments. To assess the effectiveness of our approach

in recovering the accuracy of ANN, we employ LeNet and AlexNet.

The details of the ANN models and their corresponding benchmarks

are presented in Table 3. Both ANN models are quantized to eight

bits. Since we use a 4-bit memristor device [20], we use the bit-

slicing technique to map the weights to memristors. We perform

these simulations on several different crossbar models for LeNet and

AlexNet. We generate these different models by selecting the line-

resistance, i.e., source-line and bit-line resistance (Figure 1), from a

normal distribution, 𝑁 (𝜇 = 2, 𝜎2 = 0.5). In each circuit model, 1%

of devices are randomly considered to be stuck, with 16.2% of all

stuck devices being stuck-at-off and 83.8% being stuck-at-on [19].

4.2 Results and discussion

In Section 2, we discussed different major non-idealities associated

with memristor-based ANN PEs. To comprehend their effects, we

run a test-set –comprising 10000 samples from the MNIST data-

set– on LeNet ANN model that is implemented on 1000 different

(a) LeNet

(b) AlexNet

Figure 5: Accuracy results for different recovery techniques.

Both figures show accuracy results for different stages of the

ReMeCo framework. ReMeCo compared to the CM is more

successful in reducing outliers and decreasing the standard

deviation of the results. In the rightmost part the numbers

on x-axis indicate the layer without any redundancy. For

instance the label 3-4 represent the case where all layers in

LeNet except layers 3 and 4 have 80% MSB redundancy. (LA:

layer averaging)
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Table 4: Accuracy, area, and energy evaluations of different

implementations. Accuracy and Area are reported in percent-

age and𝑚𝑚2, respectively. Energy is in𝑚𝐽 and 𝐽 for LeNet
and Alexnet for 10K test instances, respectively.
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t Accur. 94.4 96.9 97.2 97.2 97.4 96.4

Area 7.23e-3 13.63e-3 13.64e-3 12.35e-3 9.79e-3 7.53e-3

Energy 897.1 1791.2 1791.6 1612.7 1254.9 1211.1

A
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x
N
e
t

Accur. 78.11 78.5 78.7 78.8 78.9 78.9

Area 1.41 2.78 2.78 2.51 1.96 1.45

Energy 1.84 3.68 3.68 3.31 2.58 2.54

circuit models. Due to limited computational resources, for AlexNet-

CIFAR10 we run the test-set –with 10000 instances– on a pool of 100

different circuit models. The results are presented in Figure 2 and

Table 4. Using LeNet-MNIST and AlexNet-CIFAR10, we show how

effectively ReMeCo addresses the non-idealities. We also compare

the area and energy overhead that the ReMeCo and the state-of-

the-art CM cause [11]. Details are discussed next.

Layer averaging: Layer-by-layer averaging diminishes the error

produced in each layer and prevents a large error from propagating

through the ANN. Figures 5.(a,b) confirm this and show that by

averaging at the end of every layer not only the mean, and me-

dian accuracy increase, but also the standard deviation and the

number of outlier instances decrease. Table 4 shows that this modi-

fication does not cause extra overhead (compared to the CM) if the

memristor-based ANN PE already uses the bit-slicing technique to

perform high-precision processing.

Sensitive neuron: The key idea behind the second step in the Re-

MeCo framework is to use the information from ANNs’ sensitivity

analysis to direct the redundant computation toward the sensi-

tive neurons. As the second part in Figures 5.(a,b) show, ReMeCo

improves reliability, i.e. low STD and few outliers, and increases

accuracy. The figures indicate that even after decreasing hardware

overhead by 30% the achieved accuracy is similar to that of the

state-of-the-art CM. In Table 4, we present the area and energy

overhead of the best achieved accuracy using S-neuron redundancy.

MSB: The third part of Figures 5.(a,b) show that if we only target

the most significant bits of the S-neurons, we can achieve higher

accuracy not only compared to the CM but also compared to the

S-neuron redundancy. The figure indicates that the STD and the

number of outliers are reduced. Table 4 shows that the MSB ap-

proach imposes lower overhead compared to both CM and S-neuron

redundancy whilst the achieved accuracy is higher.

Sensitive layer: In the right most part of Figures 5.(a,b) it is

shown that by applying the last step of the ReMeCo framework

we can still deliver a higher accuracy than the CM. However, the

STD grows to some extent compared to the previous stage. Table 4

shows that the hardware redundancy is considerably lower com-

pared to all other cases. Therefore, it is a favorable solution for

implementations where the resources are constrained.

Area and Energy: Table 4 summarizes the accuracy, area, and

energy consumption of a non-ideal memristive ANN PE, the CM,

and the best option at every step of the ReMeCo. As the Table

shows, the deeper ANN model, i.e., AlexNet, is less affected by the

non-idealities. We attribute this to the error resilience nature of

ANNs, which become more robust as the network gets deeper. It

shows that ReMeCo recovers accuracy by roughly 98.5% for both

ANN models. The imposed area overhead for LeNet and AlexNet by

ReMeCo are roughly 4% and 3%, respectively which is considerably

lower than that of the CM which is at least 100%.

5 CONCLUSION

In this paper, we first performed a thorough DSE to understand

the effect of various reliability issues and quantified their impact.

Then, we presented ReMeCo, a novel redundancy-based reliability

improvement framework. ReMeCo, analyzes the ANN model to be

implemented to profile its S-neurons and layers. This information

enables us to effectively use redundant calculations to improve the

final accuracy of the ANN PE. Our assessments of applying ReMeCo

on two deep ANN models showed that we can recover the ANN

accuracy by 98.5% while the HW overhead was reduced by more

than 20× compared to the committee machine.
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