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Abstract

Biological processes involve movements across all measurable scales. Similarity measures

can be applied to compare and analyze these movements but differ in how differences in

movement are aggregated across space and time. The present study reviews frequently-

used similarity measures, such as the Hausdorff distance, Fréchet distance, Dynamic Time

Warping, and Longest Common Subsequence, jointly with several measures less used in

biological applications (Wasserstein distance, weak Fréchet distance, and Kullback-Leibler

divergence), and provides computational tools for each of them that may be used in compu-

tational biology. We illustrate the use of the selected similarity measures in diagnosing differ-

ences within two extremely contrasting sets of biological data, which, remarkably, may both

be relevant for magnetic field perception by migratory birds. Specifically, we assess and dis-

cuss cryptochrome protein conformational dynamics and extreme migratory trajectories of

songbirds between Alaska and Africa. We highlight how similarity measures contrast

regarding computational complexity and discuss those which can be useful in noise elimina-

tion or, conversely, are sensitive to spatiotemporal scales.

1 Introduction

With the advent of big data in biological systems spanning nanoscale to global networks,

recent advances in heuristic, statistical, and machine learning approaches offer a variety of

tools and methods to assess spatiotemporal patterns in biological applications [1–3]. An ongo-

ing challenge is to quantify and compare sequential spatiotemporal processes, which can

involve confounding environmental and individual-based factors, as well as be affected by the

frequency, accuracy, and precision of measurement [4]. Various measures of data similarity
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have been applied to classify and compare individual movement trajectories in both anthropo-

genic and ecological applications [5–7], and submolecular-scale movements of proteins [8, 9].

Biological data sets inevitably contain noise, for example, through limits in measurement

precision and accuracy, but also through actual movement not relevant to the questions of

interest. For example, atoms in a protein may undergo Brownian motion at the nanometer

scale, while migrating birds can forage and relocate up to hundreds of km during extended

stopover periods, independently of their long-distance migratory orientation and navigation

process per se. [10, 11]. It is, therefore, natural to expect that the similarity measures of biologi-

cal data will behave differently at different spatial and temporal scales.

The present study discusses known similarity measures that are potentially useful in life sci-

ence applications and conveniently bundles them together in a newly developed python pack-

age SiMBols (Similarity Measures for Biological Systems). The similarity measures provide

tools to compare two data sets (trajectories), where difference in similiarity may reflect an

effect of a perturbation, deviation or variation in the studied system. For example, reduced

magnitudes in similarity may reflect a conformational change of a protein or variability in

flight schedules and trajectories of migratory birds. More generally, the similarity measures

allow the quantification and assessment of the similarity or difference between two entities in

both time and space.

The basic principle of a similarity measure is to compare two data sets that correspond to

spatial or temporal variation. For example, these variations can describe the changing position

of a residue in a protein or provide location information of a bird as it migrates across conti-

nents. Recent studies have highlighted the broad usability of similarity measures to distinguish

among known contrasting synthetically simulated and measured trajectories [5, 6].

To demonstrate how SiMBols and its similarity measures can be used in life sciences, we

have applied the similarity measures listed in Table 1 to two distinct but related examples. The

measures were applied to biological data related to magnetic field sensing in migratory birds

[12–16]. At the microscopic level, the cryptochrome 4 protein [17] was suggested to be a spe-

cific receptor inside migratory birds to endow them with a magnetic compass sense [18].

Upon its biological activation, the protein is expected to change its conformation, which leads

to a distinct biological function [13]. The change in cryptochrome dynamics upon activation

calls for similarity measure analyses [9]. On the macroscopic level, the migratory orientation

and movement of birds are also influenced by the Earth’s magnetic field [15, 16], and can also

be assessed using similarity measures [5, 6]. Differences between their individual flight trajec-

tories can additionally be important in assessing ecological hazards, conservation concerns

and anthropogenic impacts [19, 20]. For example, the migratory songbird Northern Wheatear

Table 1. Overview of selected similarity measures. The table shows the different studied similarity measures and the corresponding abbreviations. Additional informa-

tion on the similarity measure is also provided and explained further in the text.

Abbreviation Name Attributes

DFD Discrete Fréchet Distance Bottleneck Order-dependent

DWFD Discrete Weak Fréchet Distance Bottleneck Order-dependent

DTW Dynamic Time Warping Aggregated Order-dependent

HD Hausdorff Distance Bottleneck Order-independent

LCSS Longest Common SubSequence Aggregated Order-dependent

DDM Difference Distance Matrix Aggregated Order-independent

WD Wasserstein Distance Aggregated Order-independent

KLD Kullback-Leibler Divergence Aggregated Order-independent

https://doi.org/10.1371/journal.pone.0284736.t001
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(Oenanthe oenanthe) undertakes twice-yearly cross-continental journeys between Alaska and

Africa [21]. In the present paper, we apply the different similarity measures to the data sets

available for both examples to showcase that such an analysis can produce either a noise-filter-

ing or signal-inhibiting effect. For this, we have developed a python-based program package

that provides straightforward usability of several similarity measures and data sets. We show

that the results depend on the peculiarities of a specific example and lead to enhancing or

inhibiting certain features of the analyzed data. With the performed analyses, we argue that

similarity measures can serve as a powerful tool to quantify and understand spatiotemporal

variability for many dynamic biological processes.

2 Methods

Similarity measures quantify the difference between two spatiotemporal datasets, called trajec-

tories. A trajectory can be defined as an ordered sequence of locations. A single location within

a trajectory is called an element. In the present study, all locations are considered to be in

three-dimensional space. In some cases, a trajectory needs to be reduced to three probability

distributions with each distribution containing information from a single spatial dimension of

the three-dimensional trajectory.

Here, we introduce each studied similarity measure heuristically. Rigorous definitions,

algorithmic implementations, characteristic runtimes, and detailed specific properties are

given in the supporting information, S1 File. In general, the similarity measures considered

can be described as being either aggregated or bottleneck measures. Attributes for each mea-

sure are listed in Table 1. An aggregated measure is influenced by every single element of each

compared trajectory. In contrast, bottleneck measures determine a worst-case scenario to cal-

culate the similarity, i.e., the elements from compared trajectories which exhibit the biggest

difference determine the similarity. Bottleneck measures can often be identified by their use of

maxima. A second attribute of all similarity measures is their dependence on the order of the

location elements within the compared trajectories. Biophysical or biological spatiotemporal

trajectories will naturally be ordered by design; the distinction, however, originates from the

question of whether the similarity measure disregards the given order. The order-independent

similarity measures interpret the trajectories as distributions or merely as an unordered set of

elements.

The discrete Fréchet distance (DFD) measures the smallest distance between two element

pairs belonging to the two trajectories. The trajectories are traversed in order and all elements

in both trajectories have to be considered. DFD seeks to determine the largest of the smallest

distances calculated, which is then called the similarity between the two trajectories. DFD is a

bottleneck, order-dependent measure.

Similarly to DFD, the discrete weak Fréchet distance (DWFD) couples pairs of elements

between trajectories, but, in order to minimize the largest distances, allows successive elements

to traverse backward (i.e., in reverse order). This addition allows DWFD to react to outliers or

evaluate trajectories that merely zigzag around each other as more similar. DWFD is a bottle-

neck, order-dependent measure.

Dynamic Time Warping (DTW) is a measure that was first used in speech recognition [22].

Given two trajectories, DTW can be used to construct pairs of elements that maintain a consis-

tent order within each trajectory. The collection of such pairs is called coupling, while the goal

of the DTW is to minimize the sum of distances between paired elements to establish the opti-

mal coupling. DTW is an aggregated, order-dependent measure.

The Hausdorff distance (HD) defines the similarity measure of two trajectories through the

closest neighbor of elements between the two different trajectories. The maximum of all closest
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neighbor distances is the resulting Hausdorff distance. HD is a bottleneck, order-independent

measure.

The longest common subsequence measure (LCSS) returns the number of consecutive ele-

ments that the two compared trajectories have in common. To quantify commonality, LCSS

requires both a distance threshold (ε) and a time threshold (δ). Two elements in the studied

trajectories are defined as common if they are found within the distance and the time thresh-

old of one another. LCSS determines the largest number of consecutive common elements as a

measure of the similarity between the two trajectories. LCSS is not a classical distance measure,

as it quantifies commonness rather than the distance between two trajectories. LCSS is an

aggregated, order-dependent measure.

Differing to all the other similarity measures introduced above, the difference distance

matrix (DDM) approach does not compare a pair of trajectories but rather compares struc-

tures. Given a structure encapsulating a number of locations, the pairwise distance between all

these locations can be calculated and sorted in a symmetric matrix. Once the location data

appears to be time-dependent, DDM calculates the time average of the pairwise distances

between the locations and sorts the results into a matrix. The same distance matrix can be cal-

culated for a second structure of equal size. At this stage, two matrices describing the distances

between all elements in the two structures have been calculated. Considering the element-wise

difference of the matrices quantifies the change in displacement from one set to the other.

Averaging over all columns of the final matrix yields a comparable result to the other similarity

measures. As DDM requires two comparable structures (sets) of trajectories, its application is

more limited. The approach was, however, successfully used in earlier studies [9, 23]. DDM is

an aggregated, order-independent measure.

The Wasserstein distance (WD) is a similarity measure used for comparing probability dis-

tributions. The distribution can be extracted from spatiotemporal trajectories as described

above. The WD measure is the sum of distances between the two distributions. It is also

known as the earth mover’s distance [24, 25]. WD is an aggregated, order-independent

measure.

The Kullback-Leibler divergence (KLD) is also applied to probability distributions. It is also

called relative entropy [26] and is commonly used in machine learning [27]. Intuitively, it

quantifies how well one can distinguish between two given distributions by summing over the

scaled ratio between two corresponding elements of the two distributions. KLD is an aggre-

gated, order-independent measure.

3 Implementation

To calculate and assess similarity measures, we have developed a python package SiMBols, and

made it available at https://gitlab.uni-oldenburg.de/quantbiolab/simbols or in the Python

Package Index (PyPI). The WD, the HD, and the KLD are already available within the scipy

package [28]. DTW has been made available in the dtaidistance package [29]. The preexisting

measures were incorporated into the framework such that the same form of input data can be

used for all similarity measures. We have implemented DFD, DWFD, DDM, and LCSS

directly into the SiMBols package. Our implementation of DFD is optimized for memory

enabling comparisons among trajectories comprised of significant amounts of elements. The

implementation of DWFD employs graph algorithms supplied by the networkx package [30].

Preprocessing routines are supplied to transfer arbitrary sequences of three-dimensional

Euclidean locations into an input format understood by each measure. DTW, KLD, DWFD,

DFD, and LCSS have built-in parallelization, allowing for faster computation utilizing multiple

CPUs. The python package numpy [31] was used for all described methods.

PLOS ONE Similarity measures to biological location data

PLOS ONE | https://doi.org/10.1371/journal.pone.0284736 May 15, 2023 4 / 18

https://gitlab.uni-oldenburg.de/quantbiolab/simbols
https://doi.org/10.1371/journal.pone.0284736


The computation time for calculating the different similarity measures can differ signifi-

cantly. An account of the mathematical complexity is given in the S1 File. In order to supply

an intuition of the required computation time, all similarity measures were used to compare

two sets of 497 trajectories which contained 200 elements each. Table 2 shows the benchmark

times to finalize each measurement computed on a single core on Intel(R) Xeon(R) Gold 5218

CPU at 2.30 GHz.

The SiMBols package was originally developed to analyse protein trajectories, before we

generalized it to accept arbitrary trajectories. Therefore, SiMBols includes the possibility to

read in protein simulation data and not only reduce it to the necessary geometric properties

but also align and superimpose two structures of the same length [9] which is necessary for a

sensible interpretation of the similarities between protein structure simulations. The reading

of protein simulation files is done using the mdtraj package [32], while the structural align-

ment employs the Kabsch Algorithm [33] as implemented in the rmsd package [34]. An exam-

ple workflow, including the protein preprocessing tasks, is included in S3 File.

4 Similarity measures in protein conformational dynamics

Investigations of protein activation often focus on motion and dynamical traits. For instance,

activation of a protein can induce structural changes that might initiate subsequent biophysical

processes which lead to two natural questions: What are the most versatile regions within a

protein structure? How is the motion influenced by external perturbations?

Similarity measures provide a tool to answer the raised questions. In earlier studies, DFD

and HD have been applied to assess interprotein motions [8]. More recently, developments

and increased feasibility of all-atom molecular dynamics (MD) simulations have significantly

enhanced understanding of the fundamental molecular biophysical processes [35, 36]. Evalua-

tion of MD results often relies on the analysis of the evolution of a molecular structure and

comparison of its temporal trajectory to a single reference structure through the established

technique of the root mean square deviation (RMSD) analysis. Alternatively, a comparison of

fluctuations within a protein structure may be performed through the root mean square fluctu-

ation (RMSF) approach [37]. Both of these strategies are, however, inadequate when compar-

ing two dynamic trajectories of a protein qualitatively as both approaches only involve a

comparison of structures to a reference one and not a dynamic protein trajectory.

Based on an earlier study [9], similarity measures have been applied to address the ques-

tions mentioned above. Specifically, the crystal structure of pigeon cryptochrome 4 (ClCry4)

[17] was simulated dynamically in two different biological states, characterized through the

redox states of the flavin-adenine-dinucleotide (FAD) cofactor and a tryptophan residue

(Trp369 = TrpD) [12, 13]. The redox change of these two compounds facilitates a dynamical

process within the protein, leading to a structural rearrangement. This rearrangement is

thought to initiate a neurological signal transfer that may be linked with the proposed role of

cryptochrome in night-migratory songbirds’ magnetoreception [38–40]. The two simulated

states of ClCry4 resemble an inactive dark state (DS) and a light-activated radical pair state

(RPD) specific to the redox states of the aforementioned FAD cofactor and the TrpD residue.

Table 2. Computation time needed for similarity measure calculations. The similarity measures are sorted by the utilized computation time from the fastest to the

slowest.

Similiarity measure WD HD KLD DFD DDM DWFD LCSS DTW

time (sec) 0.12 0.19 12.61 21.03 72.42 87.32 104.59 160.26

https://doi.org/10.1371/journal.pone.0284736.t002
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To investigate short term effects on ClCry4 deactivation and to test for its reversion to the

ground state, we simulated the protein with a fully oxidized FAD configuration and an initial

conformation taken from the end of the RPD simulation discussed in an earlier study [9].

While this may not accurately reflect the long-term dynamics of the protein reoxidization pro-

cedure which involves intermediate states of the FAD over the time course of about 100 μs

[41], it allows to assess the similarity of the two different trajectories and illustrate the applica-

tion of SiMBols for studies relevant to protein conformational changes. We have performed

MD simulations, where at the very beginning of the simulation the RPD conformation of

ClCry4 assumed the redox states of the FAD and TrpD cofactor as exhibited in the inactive

DS. In total, two replica simulations to describe the RPD!DS transition were conducted,

denoted as Reverted1 and Reverted2. Additionally, two separate DS and RPD simulations

were performed to establish a basis for the similarity comparison measures. A detailed descrip-

tion of the simulation parameters can be found in S2 File.

Employing the different similarity measures, the internal conformational changes associ-

ated with the RPD!DS change in ClCry4 were probed to establish whether the rearrange-

ments that were originally observed in the DS!RPD transition revert if the activated protein

is assumed inactive.

In order to apply similarity measures, one needs to consider all temporal snapshots for each

atom in the protein’s trajectory. Fig 1 illustrates how a trajectory for one atom is perceived.

Every amino acid residue in a protein consists of a backbone and a sidechain. Fig 1 features an

exemplary Alanine, namely the Ala230 residue from ClCry4. The backbone is the same for all

residues and consists of a nitrogen atom, two carbon atoms, and an oxygen atom. The side

chain is chemically attached to the carbon atom, which has a bond to the nitrogen (Fig 1B).

This carbon atom, denoted as Cα, is thus, consistently placed at the core of each amino acid

Fig 1. Generation of a trajectory in ClCry4. The approach for defining a simulation trajectory used as a measurable

instance for similarity measures is visualized. Every residue, in this example alanine 230 of ClCry4, is individually

analyzed (A). The trajectory is then considered for the respective Cα atom of the selected residue (B). Over time, the

atom moves, yielding an ordered sequence of spatial locations. These locations then form the considered trajectory (C).

https://doi.org/10.1371/journal.pone.0284736.g001
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residue. Therefore, it is favorable to consider the Cα atom as a reference position for each resi-

due in a protein as a well-suited focal point. Hence, the trajectory for a given residue is a

sequence of a single location per time instance and should not be confused with the trajectory

of the entire protein, which contains the location for all atoms in the protein.

The resulting residue trajectories, extracted from the ClCry4 MD simulations, were com-

pared using the similarity measures. Each similarity measure was computed for the respective

pairs of ClCry4 states: (DS, Reverted1), (DS, Reverted2), (RPD, Reverted1), and (RPD,

Reverted2).

The ClCry4 structure consists of 497 amino acid residues. Following the scheme outlined in

Fig 1, 497 individual residue trajectories were created describing the positions of each residue

for all timesteps of the performed MD simulations. Every single residue trajectory has its coun-

terpart in the to-be-compared protein simulation. Since the residues are bound to their neigh-

bors, it is natural to expect that once a certain residue experiences a noticeable difference in

the similarity measure, its neighboring residues experience some movement as well. This

dependency between the individual residue trajectory pairs allows the visualization of the

results for all residue trajectories simultaneously, as shown in Fig 2. The figure shows the simi-

larity measures computed for the comparisons of the Reverted1 simulation with both the DS

(red) and the RPD (blue) state. The analysis of comparisons for the Reverted2 simulation is

shown in S2 File.

All similarity measures reveal that the Reverted1 and RPD (blue) trajectories are very simi-

lar, with a notable dissimilarity between residue 220–240. These residues form the so-called

phosphate-binding loop where the radical pair between FAD and TrpD is formed. On the

other hand, for the comparison between Reverted1 and DS (red), more significant dissimilari-

ties have in general been observed. Here, the dissimilarity for residue 220–240 is much greater

for all employed methods. Additionally, a notable dissimilarity arises for the residues 40–50

for the majority of similarity measures. The results obtained with HD, DFD, and DWFD

exhibit sensitivity to noise and vibrations within a residue (Fig 2, red & blue). The sensitivity

to noise, which results in increased fluctuations in comparison to KLD, can be explained by

the fact that all three methods (HD, DFD, DWFD) are bottleneck measures. The KLD measure

almost ignores small vibrations (noise) in each residue entirely but does not find the second

smaller peak around residues 40–50 (Fig 2, red), which is well shown in the plots computed

using the WD or DDM measures. The result of the WD calculation exhibits a remarkably simi-

lar result to the plots obtained using the DFD and HD measures, suggesting that it might be a

computationally efficient alternative to DFD and HD for resolving more pronounced motions.

Furthermore, WD might be of particular interest for the analysis of equilibiurm MD simula-

tions, along with the other order-independent measures DDM and KLD, which fits the notion

that in equilibrium the order of simulation snapshots should not matter and instead distribu-

tions should be considered. The LCSS plot exhibited extremes with the chosen spatial thresh-

old ε = 0.5 and reveal that the phosphate-binding loop, which is near the active site cofactors

FAD/TrpD, moves differently compared to other similarity measures plots. The region around

residues 40–50 and the C-terminal are also significantly different compared to the other plots

shown in Fig 2. Caution needs to be exercised when working with the LCSS measure, as the

spatial threshold ε has to be chosen manually, and the magnitude of the threshold is highly

dependent on the data used. LCSS is thus highly sensitive to the choice of the parameter ε. Fig

3 visualizes the severe change in the similarity measurement results depending on different ε
value. Unfortunately, there is no general guideline to determine the spatial threshold for

arbitrary datasets, which is a major drawback of the LCSS similarity measure in the absence of

predetermined scales of interest. During an MD simulation, a residue might not move signifi-

cantly and just experience vibrations and no conformational change. In such a scenario, the
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start and the endpoint of the temporal trajectory are virtually similar. This peculiarity exhib-

ited by protein trajectories results in an increased sensitivity induced by the choice of the spa-

tial threshold ε because a small threshold will mark the whole trajectory as similar for an

immobile residue.

The protein structures were also analyzed employing the RMSF measure to identify its ver-

satile regions. The results are shown in S2 File. The RMSF analysis reveals, that all protein

Fig 2. Similarity measures for ClCry4 residue trajectories. Comparison of the residue trajectories for two trajectories (RPD, Reverted1),

shown in blue, and (DS, Reverted1), shown in red. The color scale hints towards the location of each residue in the protein structure, mapped

onto its cartoon representation. Each similarity measure is computed for a trajectory of the Cα atoms in each residue’s backbone. The graphs

show the calculated similarity per residue. A visual comparison reveals a common peak at residues 220–240 (known as the phosphate-

binding loop), which was shown to exhibit versatility in movement [9]. The most notable differences in similarity measures can be seen in

the non-prominent changes. For instance, a second peak can be observed at residues 40–50, which is hardly visible in the DFD as it becomes

less significant among the noise and other fluctuations in the proteins. On the other hand, DTW distinguishes differently between noise and

signal, resulting in a better distinguishable peak at residues 40–50. The results for the replica simulations comparison are shown in S2 File.

https://doi.org/10.1371/journal.pone.0284736.g002
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structure simulations have a versatile region that includes residues 220- 240 and around resi-

dues 180–205. The C-terminal is also revealed to be highly versatile. Interestingly, the versatile

region around residues 180–205 does is not recognized by the similarity measures.

In biophysical terms, all similarity measure results show a distinct peak at the phosphate-

binding loop when comparing the Reverted1 to the DS trajectory. In contrast to this, no such

peak is observed for the comparison of Reverted1 with the RPD. Interpreting these differences

in similarity in the phosphate-binding loop by employing results from an earlier study [9] sug-

gests that the conformational rearrangements observed during the activation of ClCry4 do not

revert for the redox states of the FAD and TrpD cofactors and the ClCry4 structure remains

locked in the established RPD conformation. A possible explanation for this behavior might be

given by the solvent that was now able to reach the FAD after the phosphate-binding loop

moved out of the way and is now blocking the way back, hindering the reverting motion. The

effect of the solvent on the FAD might also initiate some further downstream processes or

reactions, forcing the ClCry4 protein into an intermediate state.

5 Similarity measures in bird flight trajectories

Macroscopic studies of migratory bird navigation behavior are confronted with a myriad of

underlying factors and processes [42], some relating to magnetoreception [15, 16, 43]. Some of

these processes may be diagnosable using a selection of the different similarity measures. In

this case, the following questions may arise: How similar are the migration routes (trajectories)

of two individually traveling birds? Do birds from one specific population or age cohort have

similar stopover locations and duration while migrating?

Fig 3. Changes in parameter ε lead to drastical changes in the LCSS results. The LCSS similarity for the residue

trajectory comparisons for different spatial distance thresholds ε indicate the importance and difficulty in choosing the

right ε threshold for LCSS, especially in protein structures, in which some trajectories might merely vibrate.

https://doi.org/10.1371/journal.pone.0284736.g003
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Based on location data from an earlier study [21], we examined the autumnal migration of

eight Northern Wheatears (Oenanthe oenanthe, wheatear hereafter) using similarity measures.

The measures are compared regarding the birds to showcase which question can potentially be

answered with which similarity measure. The wheatear is a night-migrant which travels twice-

yearly between the Northern latitudes (Europe, Asia and North America) and Africa. Methods

like GPS are not yet suitable for tracking light-bodied songbirds such as the wheatear (< 25 g)

across their entire migratory routes. Light-level geolocation is a viable tracking method for

doing so, though it only reveals twice-daily location estimates, and is less accurate than GPS

[44]. Birds are first captured, typically near the breeding grounds, equipped with geolocators

and subsequently released. Once a bird is recaptured and tag recovered, geolocator data yields

two locations a day, one in the morning and one in the evening. Since wheatears are night-

migratory, the two locations generally do not differ a lot during the day. We, therefore, aver-

aged the two daily locations to form one point in the flight path trajectory. However, the noise

due to the geolocation method increases significantly if birds are traveling during the equinox

or are close to the equator. In general, the precision of geolocation estimates is in the range

of * 100 − 200 km but much less precise (* 400 km) in the latitudinal direction when day-

length becomes nearly uniform across latitudes, i.e. during periods close to the spring and

autumnal equinox and near the equator [45].

More generally, the variability in migratory schedules among individual birds creates devia-

tions that infer problems in the comparison among flight paths. Long-distance migratory

birds typically undertake sequences of nightly flights interspersed by extended multi-day stop-

overs to replenish energy reserves. For the wheatears, autumn stopovers were typically clus-

tered in Kazakhstan and last 5–20 days [21]. Furthermore, individual birds might not only

start their journey on different days but also vary in their stopover duration.

Fig 4 illustrates location estimates during autumn migration for three of the eight individual

wheatears labeled 7902, 7920, and B070 [21]. The solid lines describe the mean migration tra-

jectories. The colored symbols depict random daily sampled locations of each individual based

on the mean and standard (normal) errors in latitude and longitude.

While the data in Fig 4A and 4B are visually similar, the location data of individual B070

(Fig 4C) deviates. More precisely, B070 apparently detoured via Mongolia, while the other two

individuals remained further North. Additionally, individuals 7910 and B070 exhibit closer

spatiotemporal similarity in stopovers during the travel between Alaska and East Siberia (Fig

4D) and across the Arabian Desert to East Africa (Fig 4E) as seen by the more densely placed

symbols. Trajectories of the other five recaptured wheatears are found in S2 File.

For the calculation of the different similarity measures, each individual bird’s trajectory was

paired with all trajectories of the remaining seven birds. For clarity, we will term these compar-

isons as similarity between individuals. Thus, 28 distinct pairs of birds’ trajectories were con-

sidered. To account for possible effects of geolocator noise on estimated similarity among

trajectories of individual birds, we simulated 1,000 trajectories for each individual by sampling

the daily locations including estimated deviation (for longitude and latitude) according to a

normal distribution [21]. In this way, 28,000 sampled pairs were used to assess similarity mea-

sures and a total of 8,000 pairs within an individual’s sampled trajectories. The sampling meth-

odology and motivation are schematically illustrated in Fig 5. While larger samples and more

advanced analysis techniques for geolocation data exist and would further reduce estimated

noise [44], our simple approach based on standard deviation in daily locations serves to high-

light potential effects of noise on estimated similarity among measures, and is further sufficient

for comparison among individual birds.

An intuitive comparison among measures regarding their sensitivity to deviations among

trajectories can be seen in the frequency histograms of the estimated similarity among the
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sampled trajectory pairs (depicted in blue in Fig 6). Note that a higher similarity value (x-axes

in Fig 6) corresponds to a greater difference between two trajectories. It is not feasible, how-

ever, to compare the absolute magnitudes of two similarity measures, as they might already dif-

fer based on their mathematical framework. To gauge how the range in sensitivity for each

measure compares to its the sensitivity of noise, frequency histograms of similarity between

sampled trajectories from within the same individual’s sample (8,000 pairs) are plotted in red.

For comparison with the between-individual similarity (blue histograms), the within-individ-

ual values describing the noise were normalized to make the magnitudes comparable. Addi-

tionally, the LCSS measure was computed four times using different threshold values of ε (50

km, 100 km, 200 km, 400 km), which allows a more complete analysis while accounting for

ranges within and beyond non-migratory movements during stopover periods [10, 11].

In all cases, the distribution in similarity of the noise (red in Fig 6) is distinguishably nar-

rower than that between different individuals (blue in Fig 6). The measures also differ in the

width and shape of these distributions. Expectedly, the distributions in similarity regarding

noise and between individuals overlap most closely for the three bottleneck measures (HD,

DFD and WDFD), and also for LCSS with smaller spatial threshold values (ε = 50). Somewhat

surprisingly, the asymmetric (bimodal-like) distribution among bottleneck measures is similar

for the aggregated method KLD, which more clearly distinguished between noise (red) and

Fig 4. Autumn trajectories of continent-crossing songbirds. (A-C): Estimated (mean) daily locations (solid lines) with randomly sampled

daily location estimates (colored circles) based on geolocator tracking data of three Northern Wheatears (Oenanthe oenanthe) migrating

between Alaska and East Africa, with tag labels 7902 (green, A), 7910 (yellow, B) and B070 (pink, C); see [21]). Randomly sampled locations of

all three individuals between (D) capture in Alaska and migration across East Siberia and (E) the Arabian Desert and arrival in East Africa. The

maps are made with Natural Earth.

https://doi.org/10.1371/journal.pone.0284736.g004
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between-individual (blue) distributions. KLD and the other non-ordered aggregated distribu-

tion, WD, produce the broadest distributions in similarity, similar to the LCSS with a broad

spatial threshold (400 km).

As with the protein analysis (Fig 3), estimated similarity among the wheatear trajectories

using LCSS is highly dependent on the choice of parameters. Four different spatial threshold

values ε were employed (50 km, 100 km, 200 km, and 400 km) to demonstrate the different

LCSS sensitivities. It can be observed that a higher spatial threshold leads to a higher similarity

between trajectories, as can be observed in the four LCSS frequency distributions. Therefore, a

meaningful choice of threshold has to be conducted carefully. For instance, a threshold of 50

km will not be sufficient to characterize whether two birds follow a similar migration route at

a continental scale [5], but it could be a reasonable threshold to compare foraging flights

within a population at a regional scale [5]. Calculating the LCSS for several values could con-

ceivably facilitate differentiation between local and long-distance movements, e.g. stopover

and foraging flight and directed flight.

However, to illustrate how the measures constrast in interpreting similarity among trajecto-

ries, we here focus on the three trajectories depicted in Fig 4. As with the histrogram plots to

facilitate comparison, we normalized each measure to its most different trajectory pair. As in

Fig 6, KLD and WD show different results even though both measures can be categorized with

similar attributes (aggregated and unordered). According to the KLD measure, the trajectories

of the birds tagged 7910 and B070 are least similar among the three pairs, while WD indicates

that the trajectories of the birds 7902 and B070 are least similar (Fig 7). Aggregated methods

Fig 5. Sampling of trajectories, accounting for error. Based on location data containing error (A), trajectories are sampled for each tracked individual (B, E) according

to the underlying (here, normal) distribution. Comparison between pairs of sampled trajectories from the same tracked individual (C) yields a distribution in similarity

(D) to estimate noise. By comparing pairs of sampled trajectories from different tracked individuals (F), the actual similarity between two migratory trajectories can be

assessed (G). A total of 28,000 comparisons were conducted. The maps are made with Natural Earth.

https://doi.org/10.1371/journal.pone.0284736.g005
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Fig 6. Frequency counts of similarity among migratory trajectories for each measure. Frequency count histograms

for each measure are constructed (see Fig 5) based on all 28 distinct pairs of tracked individual wheatears. Additionally,

the similarity of the trajectory of one bird to itself (noise) is illustrated after being subjected to sampling (red). The red

histograms, therefore, visualize the noise in the data as interpreted by the different similarity measures, while the blue

histograms actually show the similarity of different trajectories. The noise histograms are normalized to make them

comparable with the between-individual histograms. The greater the difference between the red and blue histograms,

the better noise can be distinguished from the actual comparison. Note that HD, DFD, and DWFD have the greatest

overlap between noise and similarity measure, which can be attributed to the measures being so-called bottleneck

measures. DTW separates the noise and similarity measure better. KLD and WD are both insensitive to noise and

therefore exhibit very narrow red histograms. LCSS reveal significant deviations for different distance threshold values

(50, 100, 200, 400 km). The values for the scales were omitted for clarity, as the similarity measures return results in

different scales and are therefore numerically not comparable. The values are compared by the relative breadth and

uniformity of their distributions, which is visualized by the different histograms.

https://doi.org/10.1371/journal.pone.0284736.g006

Fig 7. Comparison among similarity measures for three migratory trajectories. To highlight differences among

similarity measures, we focused on the three tracked individual wheatear migrants depicted in Fig 4. To facilitate this

comparison, we scaled each measure to its highest dissimilarity. The symbol Γ indicates the height at which two

trajectories are half as dissimilar as the most dissimilar trajectory pair. LCSS and WD both identify the trajectories of

birds 7902 and B070 to be least similar, as well as WD. On the other hand, All measures except for WD indicate that

individuals 7902 and 7910 followed the most similar migratory trajectory. After normalization by the maximum

difference, the values realized on the y-axis range from zero to one. As the units differ from measure to measure, the

numerical values on the axes have been omitted for clarity.

https://doi.org/10.1371/journal.pone.0284736.g007
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are dependent with respect to every element along the trajectories and thus more sensitive to

small deviations along two different trajectories. Since KLD compares distributions, whereas

WD compares aggregated distances, KLD will weight the frequent proximity of 7910 and B070

relatively more strongly and WD the large distance of the deviation of B070 more strongly.

This deviation leads to the significant difference of the two aggregated and order-independent

measures (KLD, WD). As with the distribution plots in Fig 6, DTW, DFD, WDFD, and HD

measures are in agreement and indicate that trajectory B070 differs the most when compared

together with trajectories 7902 and 7910. Even though the measures differ in their type and

attributes (Table 1), similar trends are observed. For this scenario, the order-dependency of

DTW leads to a significant difference compared to the other two discussed aggregated mea-

sures (KLD, WD). From an intuitive perspective, the results of the DTW, DFD, WDFD and

HD measures are expected when visually comparing Panels A to C in Fig 4. Thus, to answer

the the questions regarding similarity of migration routes or analyzing stopover locations of

birds from the same age cohort, it might be more sufficient to use more than one similarity

measure in order to interpret the used data set.

6 Conclusion

In this work, we present a software package SiMBols that permits computing similarity mea-

sures for different biological systems at microscopic and macroscopic levels. SiMBols calcu-

lates the similarity measures independent of their scale, which has been demonstrated through

two exemplary case studies discussing the motion of atoms in a protein and of birds migrating

across continents. Spatio-temporal data of any length scale in between can also be analyzed

using the package, allowing for multiscale analyses. SiMBols combines eight different similar-

ity measures, which include bottleneck as well as aggregated measures. They are also distin-

guishable in their treatment of ordered or unordered sequences of data. Additionally, SiMBols

provides a variety of preprocessing routines, which allows a versatile utilization of the package

in life sciences.

We have demonstrated that SiMBols can be utilized efficiently for diverse biological prob-

lems. The extremes in the scales of the showcased case studies demonstrate that the package

provides a generalized framework which can be applied to a wide variety of arbitrary spatio-

temporal studies, which, for example, may include the comparison of protein complex behav-

ior upon being subjected to mutations, the analyses of activated chromophores bound in

structures.

The similarity measures implemented in SiMBols were classified based on two major attri-

butes, namely bottleneck or aggregated measures were discussed, while the datasets were con-

sidered as either ordered or unordered. Choice of measures will naturally depend on the

attributes and scales relevant to the research question, and possibly also on any limits regard-

ing computation time and resources. For example, to assess equilibrium MD simulations

using the computationally-rich protein data, WD stood out in regarding both sensitivity to

overall movement and computational efficiency. In general, we have demonstrated that SiM-

Bols provides a manifold of different techniques to approach the analyses of spatiotemporal

data. Even though SiMBols provides such a variety of different similarity measures, the mea-

sures for every specific study should be chosen thoughtfully. For instance, LCSS was shown to

be highly dependent on the scale of the problem of interest. The magnitude of noise in the

dataset was another important factor for the choice of similarity measures. It was shown that,

e.g., KLD is very insensitive to noise, but might also miss smaller but yet significant differences

between two trajectories, e.g., compared with WD in the bird trajectory analysis (Figs 4 and 7).

However, a generalized statement as to whether any one similarity measure is the most suitable
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cannot be made and will always need to be chosen depending on the research question. A

combination of measures might yield the most thorough results.

In summary, using similarity measures provides a quantitative tool to compare and classify

biological movement across scales and processes. The python package SiMBols available at

https://gitlab.uni-oldenburg.de/quantbiolab/simbols provides a versatile computational tool to

calculate different similarity measures within one unified framework.

Supporting information

S1 File. Similarity measures. Introduction and mathematical definitions and concepts for the

employed similarity measures.

(PDF)

S2 File. Additional case study information. Additional data and graphs are provided to com-
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S3 File. Code example for SiMBols.

(PDF)
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