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Abstract1

We consider the problem of simplifying curves in one dimension under the Fréchet distance. In2

particular, we consider the minimum complexity and minimum error simplifications. We present a3

continuous one-parameter family of simplifications for curves in one dimension, that contains both4

these simplifications. We can in linear time build a data structure that can be queried for this5

simplification at any parameter, and it will answer the query in linear output-sensitive time.6

1 Introduction7

Curve simplification is a widely studied topic in computational geometry, due to its applications in,8

for example, computer graphics. The main idea behind curve simplification is often to reduce the9

size of the curve, without affecting the overall shape of the curve too much. There are other types10

of simplification as well, such as computing a curve of some special class of curves that sufficiently11

resembles the original curve. For example, like plane graphs are a special class of graphs, plane (or12

simple) curves are a special class of curves. In this work we focus on the former type of simplification,13

which reduces the complexity of a curve.14

Let P be a curve with n vertices. There are many variations for simplifying P into lower-15

complexity curves. These range from using different similarity measures, such as the Hausdorff16

distance or Fréchet distance, to constraining the shape of simplifications P ′ of P , for example by17

restricting vertices of P ′ to be vertices of P as well. Bereg et al. [1] give algorithms for simplifying18

a polygonal curve in R3 to one with the minimum number of vertices, where the discrete Fréchet19

distance is used to measure the similarity between the original curve and its simplification. If the20

vertices of the simplification are restricted to be vertices of the original curve, their algorithm runs in21

O(n2) time. If there are no restrictions, their algorithm runs in O(n log n) time instead. Under the22

continuous Fréchet distance in general dimensions, Bringmann and Chaudhury give an O(n3) time23

algorithm for the case where vertices are restricted to vertices of P , and give a matching conditional24

lower bound. Under the Hausdorff distance, van Kreveld et al. [7] show that the problem is in fact25

NP-hard if vertices are again restricted. The problem remains NP-hard in the unrestricted case [6].26

Considered simplifications. In this work we study curve simplification in one dimension under27

the Fréchet distance, without restrictions on the vertices. We consider computing two types of28

simplifications: min-# simplifications and closest k-curve simplifications. A min-# ε-simplification29

of P is a curve P ′ within Fréchet distance ε of P and the minimum number of vertices. A closest30

k-curve of P is a curve P ′ with at most k vertices and the minimum Fréchet distance to P .31

In one dimension, a linear-time algorithm for computing a slightly suboptimal min-# simplification32

is known due to Driemel et al. [3]. Their simplification takes the form of a signature, which uses33

only vertices of the original curve. Signatures have at most two vertices more than the minimum34

number. The class of signatures also contains a 2-approximation for the closest k-curve, in that it35

contains a curve with k vertices that is at most twice as far as the closest k-curve. Driemel et al. [3]36

give an O(k log k) time algorithm for computing such a curve, after O(n log n) time preprocessing.37
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Figure 1 An illustration of smoothings. The curve P (non-dashed) is drawn as a plot of the
underlying function for clarity. The minimum edge length of P is realized by pipi+1 The dashed
curve is the result of smoothing. The vertices pi and pi+1 have become degenerate and are not
considered vertices in the smoothing.
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Results and organization. In Section 2 we present smoothings, a method of curve simplification38

for curves in one dimension that is based on truncated smoothings for Reeb graphs [2]. We show39

that the ε-smoothing P ε of a curve P is a min-# ε-simplification of P . We further show that40

for every positive integer k, there is a smoothing of P with at most k vertices that is a closest41

k-curve for P . In Section 3 we give a data structure for computing P ε for any ε ≥ 0. After O(n)42

time preprocessing, we can compute P ε in O(k) time, where k is the complexity of P ε. This data43

structure is extended to our main contributions: a data structure for constructing min-# and closest44

k-curve simplifications in O(k) time.45

Preliminaries. A (polygonal) n-curve is a piecewise-linear function P : [0, 1] → Rd connecting a46

sequence p1, . . . , pn of d-dimensional points, which we refer to as vertices. A vertex pi is degenerate47

if 2 ≤ i ≤ n − 1 and pi ∈ pi−1pi+1. An edge of P is a directed line segment connecting consecutive48

vertices pi, pi+1.49

A reparameterization is a non-decreasing, continuous surjection f : [0, 1] → [0, 1] where f(0) = 050

and f(1) = 1. Two reparameterizations f and g describe a matching (f, g) between two curves P51

and Q, where P (f(t)) is matched with Q(g(t)). Given a norm ∥ · ∥, a matching (f, g) between P52

and Q is said to have cost maxt ∥P (f(t)) − Q(g(t))∥. The (continuous) Fréchet matching between53

P and Q is the minimum cost over all matchings.54

2 Smoothings55

Throughout this work we consider a polygonal n-curve P in one dimension, without degenerate56

vertices. In this section we present the notion of smoothings of P and show that among these57

smoothings are both min-# and closest k-curve simplifications of P .58

Let ε ≥ 0 be at most half the minimum edge length of P . The ε-smoothing P ε of P is the63

curve obtained by truncating every edge of P by ε on either side and removing any degenerate64

vertex that is created. See Figure 1 for an example. For technical reasons, if vertex p2 or pn−165

becomes degenerate, we remove p1 or pn instead of p2 or pn−1. This ensures that local minima66

(resp. maxima) on P ε correspond to local minima (resp. maxima) on P . We extend the smoothing67

definition to all non-negative values ε ≥ 0 by recursively defining the ε-smoothing of P for ε greater68

than half the minimum edge length ε′ of P to be the (ε − ε′)-smoothing of P ε′
if ε′ > 0 (that is, if69

P has at least one edge), and simply as P otherwise.70

▶ Theorem 1. The Fréchet distance between P and its ε-smoothing is at most ε.71

Proof. Let ε ≥ 0. If ε is at most half the minimum edge length of P , then there is a natural75

matching between P and P ε induced by the truncating operation performed for the smoothing. See76
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Figure 2 The matching induced by smoothings. (left) Smoothing (truncating) a single edge.
Dashed segments indicate point to point matchings, dashed areas indicate subsegments matching
to a single point. (right) Smoothing a more complex curve by half its minimum edge length.
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Figure 2 for an illustration of this matching. This matching trivially has cost at most ε, since points77

are moved by distance at most ε during truncation. By the triangle inequality and the recursive78

definition of smoothings, it follows that dF (P, P ε) ≤ ε. ◀79

We proceed to show that the ε-smoothing of P is a min-# ε-simplification of P . An important80

consequence is that certain smoothings are closest k-curves as well for P .81

▶ Theorem 2. Let P be a curve in one dimension and let ε ≥ 0. The ε-smoothing P ε of P is a82

min-# ε-simplification of P .83

Proof. Let pε
1, . . . , pε

k be the vertices of P ε. For every pε
j there is a vertex pij of P with value pε

j − ε84

if pε
j is a local minimum and pε

j + ε if pε
j is a local maximum. Let Q be a polygonal curve within85

Fréchet distance ε of P . Let ϕ = (f, g) be a matching between P and Q of cost at most ε. There is86

a sequence of values 0 ≤ x1 ≤ · · · ≤ xm ≤ 1 such that ϕ matches pij to Q(xj) for all j. We argue87

that the edges of Q containing the points Q(xj) contain at least k different vertices.88

Let pε
j be a local minimum of P ε. Then pij = pε

j − ε. Therefore Q(xj) ≤ pij + ε = pε
j . The edge89

containing Q(xj) hence has a vertex with value at most pε
j . By a symmetric argument, for every90

local maximum pε
j of P ε the edge containing Q(xj) has a vertex with value at least pε

j . Consecutive91

vertices are unique, as P ε has no degenerate vertices. As the vertices are ordered along Q, this92

implies that the above vertices are all unique. Hence Q has at least k vertices. ◀93

▶ Theorem 3. Let P be a curve in one dimension and let k ≥ 1 be an integer. Let ε ≥ 0 be the94

smallest value for which P ε has at most k vertices. Then P ε is a closest k-curve for P .95

Proof. Let Q be a curve with at most k vertices. Let ε′ = dF (P, Q). By Theorem 2, the ε′-96

smoothing of P has at most k vertices. Thus we obtain that ε ≤ ε′ = dF (P, Q). It follows from97

Theorem 1 that dF (P, P ε) ≤ ε ≤ dF (P, Q). ◀98

3 Constructing smoothings in linear time99

In this section we present a data structure for computing smoothings of a curve. The data structure100

relies on computing the death times of the vertices of P . We say that a vertex is not present in a101

smoothing P ε if it has no corresponding vertex in P ε. That is, during smoothing, it has become102

degenerate. We define the death time of a vertex pi of P to be the smallest value ε ≥ 0 for which103

pi is not present in P ε.104

We proceed to give a precise expression for the death time of a vertex. To this end, define105

the sublevel curve of a vertex pi of P to be the maximal subcurve of P that contains pi and is106

bounded to the right by pi. Define the superlevel curve of pi analogously. These definitions mimic107

the notion of sublevel and superlevel sets of functions, but whereas for functions these sets can be108

disconnected, we require them to be subcurves of P . This makes sublevel and superlevel curves109

subsets of the respective sublevel and superlevel sets.110

For a local maximum pi of P , let P − be its sublevel curve. We define the points ℓi and ri as114

(global) minima on the prefix and suffix curves of P − that end and start at pi, respectively. We let115

mi := min{|pi − ℓi|, |pi − ri|}. See Figure 3 for an illustration. We analogously define the points ℓi116

EuroCG’23
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Figure 3 (left) The sublevel curve of pi, below the dashed line segment. Points ℓi and ri are the
minima of the left and right parts of this sublevel curve. (right) If pi is incident to a shortest edge
of P then mi is the length of this edge.
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and ri for a local maximum pi of P , and again let mi := min{|pi − ℓi|, |pi − ri|}. In the following117

we show that the death time of an interior vertex pi is equal to mi/2.118

▶ Lemma 4. For any 2 ≤ i ≤ n − 1, the death time of vertex pi is equal to mi/2.119

Proof. Let pi be a vertex of P for some 2 ≤ i ≤ n − 1 and assume without loss of generality that120

pi is a local maximum. We distinguish between the case where pi is incident to a shortest edge of121

P and the case where no incident edge is a shortest edge.122

First assume that pi is incident to a shortest edge e of P and assume without loss of generality123

that e = pi−1pi. The death time of pi is equal to ∥e∥/2, since truncating e by half the minimum124

edge length truncates e into a point and pi is not an endpoint of P . Observe that mi = ∥e∥. Indeed,125

because e is a shortest edge of P , we have that pi−2 ≥ pi ≥ pi−1 (if pi−2 exists) and pi+1 ≤ pi−1.126

Thus we obtain that ℓi = pi−1 and ri ≤ ℓi, and hence mi = |pi − pi−1| = ∥e∥. See Figure 3. This127

proves that the death time of pi is mi/2 if pi is incident to a shortest edge of P .128

Next assume that pi is not incident to a shortest edge of P . Let ε be equal to half the minimum129

edge length of P . Note that ℓi and ri are both local minima of P and therefore vertices of P . As130

every local minimum of P gets increased by ε during the smoothing process, every local maximum131

gets decreased by ε, and the minimum edge length of P is 2ε, we obtain that the points ℓε
i := ℓi + ε132

and rε
i := ri + ε are the analogues of ℓi and ri for the point pε

i , with respect to P ε. It follows133

that mε
i , the analogue of mi, is equal to min{|pε

i − ℓε
i |, |pε

i − rε
i |} = mi − 2ε. Applying the above134

recursively on the point pε
i , curve P ε and value mε

i shows that the death time of pi is mi/2. ◀135

With the expression mi for the death times of vertices, we are able to compute the death time of137

every vertex in linear time. To this end we use Cartesian trees, introduced by Vuillemin [8]. A138

Cartesian tree is a type of binary max- or min-heap. We call a Cartesian tree a max-Cartesian tree139

if it represents a max-heap and a min-Cartesian tree if it represents a min-heap. A max-Cartesian140

tree T for a sequence of values x1, . . . , xn is recursively defined as follows. The root of T contains the141

maximum value xj in the sequence. The subtree left of the root node is a max-Cartesian tree for the142

sequence x1, . . . , xj−1, and the right subtree is a max-Cartesian tree for the sequence xj+1, . . . , xn.143

See Figure 4. Max-Cartesian trees are defined symmetrically.144

▶ Lemma 5. We can compute the death time of every vertex of P in O(n) time.145

Proof. To compute the death times of the vertices, we build two Cartesian trees; a max-Cartesian146

tree Tmax and a min-Cartesian tree Tmin, both built on the sequence of vertices p1, . . . pn of P .147

These trees can be constructed in O(n) time [5].148

For a given node v of Tmax storing vertex pi, the vertices stored in the subtree rooted at v are149

precisely those of the sublevel curve of pi. Thus if pi is a local maximum, the values ℓi and ri150

are precisely the minimum values stored in the left and right subtrees of v, respectively. We can151

therefore compute the death times of the local maxima of P with a bottom-up traversal of Tmax,152
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Figure 4 A max-Cartesian tree.136

taking O(n) time. Repeating the above process for Tmin, we compute the death times of the local153

minima of P in O(n) time as well. ◀154

Having computed the death times of the vertices, computing the smoothing P ε of P is merely a155

matter of removing vertices of P with a death time at most ε, decreasing the leftover local maxima156

by ε, and increasing the leftover local minima by ε. To identify the vertices present in the smoothing,157

we store the vertices of P in another max-Cartesian tree, storing the vertices based on death time.158

The vertices with a death time greater than ε can be found in linear output-sensitive time by159

traversing the tree from the root. We obtain the following result.160

▶ Theorem 6. We can preprocess an n-curve P in R in O(n) time, after which we can query it for161

the ε-smoothing of P in O(k) time for any ε ≥ 0, where k is the output complexity.162

▶ Corollary 7. We can preprocess an n-curve P in R in O(n) time, after which we can query it for163

a min-# ε-simplification of P in O(k) time for any ε ≥ 0, where k is the output complexity.164

Using death times, we can in linear time build a data structure that supports output-sensitive165

queries for closest k-curves as well.166

▶ Theorem 8. We can preprocess an n-curve P in R in O(n) time, after which we can query it for167

a closest k-curve for P in O(k) time for any k ≥ 1.168

Proof. We store the death times of P in a max-heap in O(n) time. To compute a closest k-curve169

we proceed as follows. Let ε be the (k + 1)-st greatest death time. We can compute ε in O(k) time170

using the algorithm for selection in binary heaps by Frederickson [4]. The ε-smoothing of P has at171

most k vertices and for any ε′ < ε, any ε′-smoothing has more than k vertices. Thus by Corollary 3,172

P ε is a closest k-curve for P . We report P ε in O(k) time using Theorem 6. ◀173
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