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RECURSIVE/ITERATIVE UNIQUE PROJECTION-AGGREGATION DECODING OF
REED-MULLER CODES

Marzieh Hashemipour-Nazari Renate Debets Kees Goossens Alexios Balatsoukas-Stimming

Eindhoven University of Technology, The Netherlands

ABSTRACT

We describe recursive unique projection-aggregation (RUPA)
decoding and iterative unique projection-aggregation (IUPA)
decoding of Reed-Muller (RM) codes, which remove non-
unique projections from the recursive projection-aggregation
(RPA) and iterative projection-aggregation (IPA) algorithms
respectively. We show that these algorithms have competi-
tive error-correcting performance while requiring up to 95%
projections lower than the baseline RPA algorithm.

Index Terms— RM codes, RPA, CPA, pruning.

1. INTRODUCTION

While fifth generation networks for mobile telecommunica-
tions (5G) are being rolled out, visions for the sixth generation
(6G) are already taking shape. The 6G standard will host con-
nections between a wide range of devices with a variety of re-
quirements [1]. For a large number of these mobile devices, it
will be essential to have low-latency and high-reliability links.
Examples of such applications can be found in autonomous
driving, medical monitoring, or other situations where human
lives might depend on the speed and robustness of a commu-
nication protocol. The protocols used in these cases are ul-
tra reliable low latency communications (URLLC) protocols,
and will require the usage of a strong error correction code
(ECC) to ensure high reliability. However, due to the require-
ment of low latency for URLLC, transmitted blocks need to
be short and finding an ECC scheme that performs well in this
short blocklength regime is challenging [2].

Reed-Muller (RM) codes [3] have attracted attention re-
cently due their effectiveness for short blocklengths with the
development of a near-capacity-achieving decoder called re-
cursive projection-aggregation (RPA) [4]. The drawback of
this decoder is the high complexity due to its recursive nature,
which makes RPA decoding unsuitable for practical imple-
mentation. Multiple attempts to reduce its complexity have
already been done, for example by collapsing several levels
of recursive projection and aggregation into a single level
using a technique called collapsed projection-aggregation
(CPA) [5], by removing internal iterations resulting in itera-
tive projection-aggregation (IPA) decoding [6], by reducing

the number of branches created during projection [7, 8, 9], or
by applying a combination of these techniques [10].

In this work, inspired by [5], we identify non-unique pro-
jections in RPA and IPA decoding and we describe decod-
ing algorithms that remove them, namely recursive unique
projection-aggregation (RUPA) decoding and iterative unique
projection-aggregation (IUPA) decoding. RUPA has the same
error-correcting performance as RPA with significantly re-
duced complexity, while IUPA is competitive with CPA and
has potential hardware complexity advantages. In addition,
to further reduce the complexity, the proposed optimization
methods for CPA in [10] and [11] can also be applied to IUPA.

2. REED-MULLER CODES AND
PROJECTION-AGGREGATION-BASED DECODING

2.1. Introduction to vector spaces

Since RM codes form a vector space, we first briefly explain
the concepts of vector spaces, subspaces, and cosets that
are helpful to study the properties of projection-aggregation-
based decoding algorithms [12]. Consider the binary m-
dimensional vector space E := Fm

2 with 2m elements, each of
which is represented with a binary vector z = (z1, . . . , zm).
Hence,

(
m
r

)
monomials of degree r can be defined in E.

Let y = (y(z), z ∈ E) be a binary incidence vector of a
monomial F defined as:

y(z) = f(z1, . . . , zm)∀z ∈ E, (1)

where f(z1, . . . , zm) is a binary function evaluating mono-
mial F on the element z ∈ E. In addition, let B be an s-
dimensional subspace of E, consisting of 2s elements. The
quotient space E/B consists of the following 2m−s cosets:

E/B = {T := z ⊕ B, z ∈ E− B}, (2)

where ⊕ denotes the binary XOR operation. The projection
of the binary vector y onto the cosets of B is defined as:

y/B = Proj(y,B) :=
(
y/B(T ) := ⊕z∈T y(z), T ∈ E/B

)
.

(3)
Hence, y/B is a 2m−s-bit binary vector, each coordinate of
which is built by summing up the coordinates of y indexed
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Fig. 1. RUPA decoding for r = 3 RM codes.

by the elements of each coset T ∈ E/B. Moreover,
(
m
s

)
q=2

different s-dimensional subspaces are defined for E, where(
m
s

)
q

is the q-binomial coefficient and given by:(
m

s

)
q

=

s−1∏
i=0

1− qm−i

1− qi+1
. (4)

Consequently,
(
m
s

)
2

different (2m−s)-bit projected vectors
can be defined for a binary n-bit vector y.

2.2. Reed-Muller codes

The r-th order Reed-Muller code with blocklength n = 2m

is denoted by RM(m, r). The generator matrix G(m,r) for
the RM(m, r) code consists of incidence vectors of all mono-
mial with a maximum degree r. Since k =

∑r
i=0

(
m
i

)
such

monomials can be defined in E, the dimension of G(m,r) is
k × n, and the code rate is R = k

n . Similar to other lin-
ear block codes, a codeword c ∈ RM(m, r) is obtained as
c = uG(m,r), where u is a binary vector with k information
bits. Therefore, any codeword c ∈ RM(m, r) is the incidence
vector of an m-variate polynomial with a degree less than or
equal to r evaluated for all elements of E. In addition, it can
be shown that the projection of c onto the cosets of the s-
dimesional subspace B, denoted by c/B, is a codeword of the
RM(m−s, r−s) code [4]. The RPA and CPA decoding meth-
ods utilize this property of RM codes using one-dimensional
and (r − 1)-dimensional subspaces, respectively.

2.3. Recursive projection-aggregation (RPA) decoding

The RPA algorithm decodes a received log-likelihood ratio
(LLR) vector L that is obtained from a corrupted version
of the the transmitted vector c ∈ RM(m, r) in three steps,
namely, projection, recursive decoding, and aggregation.

In the projection step, the received vector is mapped to(
m
1

)
2
= n − 1 new vectors by taking projections on one-

dimensional subspaces of an m-dimensional binary vector
space E. Each one-dimensional subspace Bi consists of two
elements: 0 and i. The projection rule 3 for LLR values is:

L/B =

(
L/B(T ) := 2 tanh−1

(∏
z∈T

tanh

(
L(z)

2

)))
, (5)

which is usually approximated by the hardware-friendly min-
sum approximation in practice:

L/B(T ) = min
z∈T
{|L(z)|}

∏
z∈T

sign (L (z)) . (6)

In the recursive decoding step, the projected vectors
L/Bi

, i ∈ {1, . . . , n − 1}, are recursively decoded by RPA
for RM(m−1, r−1) until first-order RM codes are reached
after (r − 1) levels, which can be decoded using an optimal
decoder based on the fast Hadamard transform (FHT) [13].

In the aggregation step, all the decoded codewords ob-
tained from the previous step are aggregated into the LLR
vector L̂ =

(
L̂(z), z ∈ E

)
as follows:

L̂(z) :=
1

n− 1

n−1∑
i=1

(
1− 2ŷ/Bi

(z ⊕ Bi)
)
L(z ⊕ i), (7)

where ŷ/Bi
is the hard decision of the decoded codeword from

the recursive step. Similar to the projection step, there are
(r − 1) levels of aggregation until L̂ for the input vector L
is obtained. RPA decoding repeats its steps by replacing the
input vector L by L̂ until either the output converges to the
input or Nmax iterations are performed.

2.4. Collapsed projection-aggregation (CPA) decoding

CPA decoding projects the received LLR vector directly onto
(r − 1)-dimensional subspaces Bi, i ∈

{
1, . . . ,

(
m

r−1
)
2

}
, to

obtain first-order RM codes. The projection rule expressed
in (5) or (6) still applies for CPA, but each coset T contains
2r−1 elements in CPA instead of two in RPA. After decoding
the obtained first-order codes, CPA decoding constructs the
vector L̂ =

(
L̂(z), z ∈ E

)
as follows:

L̂(z) :=
1

nP

nP∑
i=1

−1ŷ/Bi (T )

(
2 tanh−1

( ∏
zi∈T−z

tanh

(
L (zi)

2

)))
,

(8)
where nP =

(
m

r−1
)
2

is the number of (r−1)-dimensional sub-
spaces. The min-sum approximation is applicable to (8). CPA
decoding proceeds until either Nmax iterations are reached or
the output vector L̂ converges to the input vector L.

3. UNIQUE RECURSIVE/ITERATIVE PROJECTION
AGGREGATION DECODING

3.1. Duplicate projections

We first provide the following useful property.

Property 1. Consider a set of N real values X, and a func-
tion p(·) operating on X as follows:1

p(X) = 2 tanh−1

(∏
x∈X

tanh
(x
2

))
(9)

1This property is also valid for the min-sum approximation of p(·).



The following property holds:

p(X) = 2 tanh−1

(
K∏

k=1

tanh

(
p (Xk)

2

))
(10)

where Xk, k ∈ {1, . . . ,K}, form a partition of X.

Proof. Let us replace p (Xk) using (9) in (10) as follows:

2 tanh−1

(
K∏

k=1

tanh

(
2 tanh−1

(∏
x∈Xk

tanh
(
x
2

))
2

))
(11)

= 2 tanh−1

(
K∏

k=1

( ∏
x∈Xk

tanh
(x
2

)))
(12)

= 2 tanh−1

(∏
x∈X

tanh
(x
2

))
= p(X) (13)

Now let us take a closer look at the projection step in the
RPA decoding with the example shown in Fig. 1. Consider
the received codeword y ∈ RM(m, 3) represented with the
LLR values in the vector L. The first-order codeword L/B11

shown in Fig. 1 is created by projecting the first projected
vector in level r = 2 (i.e., L/B1

) onto the first 1-dimensional
subspace of Fm−1

2 . Similarly, the vector L/B21
obtained by

projecting the L/B2
onto the first 1-dimensional subspace of

Fm−1
2 . Considering Property 1 for N = 4 and K = 2 as well

as the projection rule for CPA, L/B11
and L/B21

are identi-
cal and equal to the projected vector created by projecting L
onto 2-dimensional subspace B = {0,1,2,3} for the CPA
decoding. Generally, considering Property 1 with N = 2r−1

andK = 2r−2, the number of duplicate first-order codewords
obtained after r − 1 level of projections for a codeword from
RM(m, r) in the RPA algorithm is:

ND = NT −NU =

r−2∏
i=0

(
2m−i − 1

)
−

r−2∏
i=0

1− 2m−i

1− 2i+1
, (14)

where NU =
(

m
r−1
)
2

is the number of projected first-order
codewords obtained after one level of projection onto (r−1)-
dimensional subspaces in the CPA algorithm [5]. Therefore,
the CPA decoder generates the unique projected first-order
codewords as it makes projections onto the different (r − 1)-
dimensional subspaces of E. In contrast, after r − 1 levels of
projections in RPA, NT subspaces with dimension of r − 1
are built, ND of which are duplicates. To avoid generating
duplicate first-order codewords in RPA, we propose recursive
unique-projection aggregation (RUPA) decoding.

3.2. Unique projections selection

The projection schedule for RUPA described in Algorithm 1
selects the 1-dimensional subspaces at each recursion level of

Algorithm 1: RUPA decoding for RM(m, r) codes

1 Input: L,m, b,Nmax, θ
2 Output: Codeword ŷ
3 if r == 1 then
4 ŷ ← FOD(L, n)
5 else
6 n← 2m

7 fp = 2blog2 bc // first projection

8 lp = 2m−r+2 − 1 // last projection

9 for j = 0 : Nmax do
10 for i=fp : lp do
11 Li ←Projection(L,Bi)

12 ŷi ← RUPA
(
Li,m− 1, r − 1, i, Nmax

)
13 Li

agg ← Aggregation
(
L, ŷi,Bi

)
14 end

15 L̂←
∑lp

fp Li
agg

lp−fp+1

16 if |L| − |L̂| < θ × |L| then
17 break // early-stopping condition

18 end
19 end
20 L← L̂

21 ŷ ← 1−sign(L)
2 // hard-decision

22 end

RPA decoding such that there is no duplicate first-order code-
words at recursion level d = r− 2. Instead of projecting onto
all subspaces Bi, i ∈ {1, . . . , 2m−d − 1} for each generated
vector at the d-th level of recursion, 0 ≤ d ≤ r− 2, we select
the Bi, i ∈ {2blog2 bc, . . . 2m−r+2− 1}, where b is the branch
number indicating the position of the current vector in the
tree-like diagram of RPA decoding. Due to space constraints,
we do not provide a proof that only unique projections are
considered by RUPA, but this is indeed the case. Therefore,
the total number of selected projections for RUPA at d-th level
is
(
m−r+2+d

d+1

)
2
. As a result,

∏r−2
i=0

1
2i+1−1 of all defined pro-

jections at level d = r − 2 for RPA are kept in RUPA to
generate the unique first-order codewords. The grayed-out
branches in Fig. 1 correspond to the duplicate projections in
RPA decoding that are skipped in RUPA decoding. Interest-
ingly, Fig. 1 also shows that RUPA keeps more projections at
the lower level of recursions and prunes more aggressively in
the higher levels, which partially explains the effectiveness of
the heuristic pruning method we proposed in [9].

Apart from the different aggregation rules applied in
RUPA and CPA, another difference lies in the internal iter-
ations that RUPA performs at each recursion level, which
lead to better performance as we will show. RUPA can be
modified to skip internal iterations as in [6], which results
in iterative unique-projection aggregation (IUPA) decoding,
which has lower complexity and is more hardware-friendly.



3.3. CPA vs. IUPA

As mentioned earlier, the projection step in the CPA algorithm
leads to the same set of first-order codewords as the IUPA al-
gorithm. However, their hardware implementation cost may
vary significantly. For example, in a fully-sequential imple-
mentation for the CPA decoder, the projection step requires
a crossbar that selects the appropriate cosets for the running
projection from all

(
m

r−1
)
2

different projections. Moreover,
in CPA decoding all projections are performed on a vector of
size 2m to directly get the first-order codewords. On the other
hand, the IUPA decoder obtains

(
m

r−1
)
2

first-order codes in
r − 1 levels of projection, where each level performs projec-
tions on vectors of decreasing size. Also, in IUPA the projec-
tion step in the d-level, 0 ≤ d ≤ r − 2, requires a crossbar
selecting 2m−r+2− 1 different projections for the codewords
with size of 2m−i. Moreover, the aggregation step in the CPA
decoder requires hardware for the min-sum operations that
approximately implement (8), making the aggregation step in
the CPA decoder more complicated than the IUPA decoder.
As such, even though they perform the same projections, it
is not clear whether CPA or IUPA will result in the more ef-
ficient hardware architecture. It may well be the case that a
different algorithm is better suited for different degrees of par-
allelism, which makes the hardware implementation of IUPA
and CPA an interesting and necessary piece of future work.

4. RESULTS

In this section, we compare the error-correcting performance
of the proposed RUPA and IUPA algorithms to RPA decoding
and CPA decoding. We present simulation results over an ad-
ditive white Gaussian noise (AWGN) channel for RM(7, 3),
RM(8, 3), RM(6, 4) and RM(7, 4) codes to explore the effect
of the proposed projection selection on the error-correcting
performance of RM codes of various blocklengths and rates.
We set Nmax = 3 for codes with m = 6 and m = 7
and Nmax = 4 for RM(8, 3) code. Moreover, we use the
hardware-friendly min-sum approximation for the projection
rule in (3) and aggregation rule in (8).

As shown in Fig. 2, there is effectively no performance
difference between RUPA decoding and RPA decoding, even
though RUPA only keeps 1/3 and 1/21 of the all projections
performed in RPA for third-order and fourth-order codes, re-
spectively. As a result, RUPA decoding can close the gap to
RPA decoding that CPA decoding exhibits for RM(8, 3).

In addition, the difference in performance between CPA
and IUPA is negligible for RM(6, 4), RM(7, 3), and RM(7, 4)
codes. However, a performance loss of 0.10 dB is observed
for IUPA compared to CPA for RM(8, 3). Therefore, the ag-
gregation rule employed in the CPA algorithm for the larger
codes has a more positive effect on its overall decoding per-
formance compared to the IUPA algorithm. However, as de-
scribed previously, using the min-sum operation in the ag-
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Fig. 2. FER comparison between RPA, CPA, RUPA, and
IUPA decodings for different RM codes.

gregation step of the CPA decoder may translate to a more
complicated hardware implementation and it is still unclear
whether the trade-off is worth it.

5. CONCLUSION

In this work, we proposed a schedule for selecting the unique
projections in the RPA decoding method, resulting in the
RUPA decoding algorithm. Our simulation results showed
that RUPA decoding for RM(m, r) does not degrade the per-
formance of the baseline RPA decoding while reducing the
required computations by up to 95% for the examined RM
codes. In addition, we removed the internal iterations in
RUPA based on the observation in [6], resulting in the IUPA
decoding algorithm that is more suitable for hardware im-
plementation. Moreover, we argued that, although the same
first-order codewords are obtained after the projection step in
the CPA and IUPA decoders, the hardware implementation
efficiency of the two algorithms depends on the degree of
parallelization and other implementation details that need to
be explored further. Finally, our results show that CPA only
performs better than IUPA for certain codes even though it
has a more advanced and costly aggregation rule.
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[5] M. Lian, C. Häger, and H. D. Pfister, “Decoding
Reed–Muller codes using redundant code constraints,”
in IEEE International Symposium on Information The-
ory (ISIT), June 2020.

[6] M. Hashemipour-Nazari, K. Goossens, and
A. Balatsoukas-Stimming, “Hardware implemen-
tation of iterative projection-aggregation decoding of
Reed–Muller codes,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
June 2021.

[7] D. Fathollahi, N. Farsad, S. A. Hashemi, and M. Mon-
delli, “Sparse multi–decoder recursive projection aggre-
gation for Reed–Muller codes,” in IEEE International
Symposium on Information Theory (ISIT), July 2021.

[8] J. Li, S. M. Abbas, T. Tonnellier, and W. J. Gross,
“Reduced complexity RPA decoder for Reed–Muller
codes,” in IEEE International Symposium on Topics in
Coding (ISTC), Sept. 2021.

[9] M. Hashemipour-Nazari, K. Goossens, and
A. Balatsoukas-Stimming, “Multi-factor pruning
for recursive projection-aggregation decoding of RM
codes,” in IEEE Workshop on Signal Processing
Systems (SiPS), Nov. 2022.

[10] Q. Huang and B. Zhang, “Pruned collapsed
projection-aggregation decoding of Reed-Muller
codes,” arXiv:2105.11878, May 2021.

[11] J. Li and W. J. Gross, “Optimization and simplifica-
tion of PCPA decoder for Reed-Muller codes,” IEEE
Communications Letters, vol. 26, no. 6, pp. 1206–1210,
2022.

[12] T. K. Moon, Error correction coding: Mathematical
methods and algorithms, John Wiley & Sons, 2005.

[13] Y. Be’ery and J. Snyders, “Optimal soft decision block
decoders based on fast Hadamard transform,” IEEE
Transactions on Information Theory, vol. 32, no. 3, pp.
355–364, May 1986.


	1  Introduction
	2  Reed-Muller Codes and Projection-Aggregation-Based Decoding
	2.1  Introduction to vector spaces
	2.2  Reed-Muller codes
	2.3  Recursive projection-aggregation (RPA) decoding
	2.4  Collapsed projection-aggregation (CPA) decoding

	3  Unique Recursive/Iterative Projection Aggregation Decoding
	3.1  Duplicate projections
	3.2  Unique projections selection
	3.3  CPA vs. IUPA

	4  Results
	5  Conclusion
	6  References

