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Abstract

Manufacturing processes in the chemical industry are intrinsically complex, but technological ad-

vances in the current Industry 4.0 era enable plant personnel to quantify and model chemical pro-

cesses’ inherent layers of complexity.

An increasing number of manufacturing systems are operated with digital devices that continuously

monitor the number of non-conforming items to predict process quality and efficiency. While statisti-

cal process control techniques are still in vogue to monitor process variability and identify departures

from in-control or expected conditions, traditional methodologies often in use are no longer adequate

to track in more advanced scenarios. The consequent limitations might lead to failure in identifying

shifts from the target of product quality characteristics, resulting in a potential increase of off-grade

material that has both a financial and an environmental impact. This thesis explores several practi-

cal statistical challenges in monitoring high-purity processes arising from the complexity of enhanced

production operations.

The dissertation builds upon the notions of process time and control chart time, which represent a

distinctive feature of the high-purity monitoring framework. Based on these concepts, conditional

performance metrics are adapted to allow fair evaluation and comparison of the newly proposed de-

signs.

These measures are used to compare application-tailored control charts built on composite change-

point models against their traditional competitors. These flexible charts are based on generalized

likelihood ratios (GLR). The models proposed are industry-driven and represent two practical scenar-

ios in the manufacturing industry: the indifference interval and the epidemic shift models. The first

describes the situation when the monitored quality characteristic shifts within a specific interval not

deemed of practical importance, while the latter describes a temporary failure mode typical of feed-

back controller systems. In both cases, the tailored approach outperforms the competitors in terms
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of faster detection.

Another aspect often neglected in the literature is the influence a set of covariates exerts on the mon-

itored quality variable of interest. Generalized linear models (GLM)-based control charts can detect

contextual anomalies in those systems where the expected fluctuations of several process variables

significantly influence the quality characteristic. Predictive residuals show excellent performance in

detecting sustained shifts from the in-control conditions during real-time monitoring. In contrast, re-

cursive residuals can be used at the early stages of the monitoring process or for short-run schemes.

Finally, the use of the Hermite process for monitoring a bivariate homogeneous Poisson process on

a continuous scale by monitoring the time between events extends the early-stage research on mul-

tivariate point process control chart. This procedure is relevant when the production process can be

characterized by multiple correlated temporal point models with simple correlation structures.
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Chapter 1

Introduction

In the current high-technology manufacturing era, in which customers are demanding more quality

and competitors are providing more quality, companies are striving to enhance their processes to

meet high-purity standards and sustain competitive advantage. Dow is no exception and processes

are extensively optimized to improve productivity and quality. To achieve customer expectations, a

process should be stable or repeatable within acceptable margins around the target of the product

quality characteristics. Statistical process control (SPC) has been instrumental in the manufactur-

ing industry, as it provides a collection of tools for process monitoring and quality improvement. Its

popularity is due to its simplicity while guaranteeing significant impact. Control charts represent the

primary technique in use in SPC and the most sophisticated one. It all comes down to acknowledg-

ing that process-inherent variation is always present due to random fluctuations and inconsistencies

in the surrounding environments that cannot be fully controlled; this variation cannot be eliminated

but it can be minimized, and, most importantly, it is predictable. When the process is around the

target and only contains expected variation, it is considered ‘in-control’. Any deviation of the model

parameters from their in-control values is considered a shift to the ‘out-of-control’ state, which gener-

ally requires corrective actions. Control charts allow to plot each newly acquired observation or each

group of observations over time, and each point plotted determines a decision on whether to take

action or not. It is important to recall that control charts without a comprehensive action plan are

ineffective for control purposes and might serve only as a silent surveillance agent. Surveillance is

the task of monitoring without intervention; in industry, this case should not be the primary scope.

Despite the popularity of control charts, traditional methodologies commonly in use are not adequate
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Chapter 1

to track in advanced scenarios. They might lead to failure in identifying shifts from the target of prod-

uct quality characteristics. This shortcoming is mainly due to the fact that, while the literature on

control charts continues to be quite fertile, implementations of such advanced schemes in the man-

ufacturing industry are lagging.

In spite of technological advances in sensor technology, many processes in the chemical industry are

either intrinsically discrete or for which it is not economically feasible to obtain continuous data. A

specific feature in manufacturing environments resulting from continuous improvement efforts, at-

tracting interest from both academia and industry, is dealing with high-purity processes. These pro-

cesses, also commonly referred to as high-yield in other contexts, are characterized by the fact that

observations are only available as counts and that events are rare. Consequently, existing monitor-

ing procedures must be adjusted to ensure meaningful monitoring in these non-traditional settings.

In recent times, many efforts have been devoted to bridging the gap between advanced theory tech-

niques, developed mainly by statisticians, and real-life practice, which relies on simplistic and often

inappropriate procedures. This effort resulted in a series of more appropriate methodologies for mon-

itoring manufacturing high-purity processes. The use of such charts can be easily extended to other

fields, such as healthcare and reliability, where the process’s features and the monitoring tasks are

similar. This multi-faceted scope justifies the popularity of these charts and the fast-paced growth of

related research. However, as Woodall and Faltin (2019) suggests, greater interactions between prac-

titioners and research would lead to better, more practical, and meaningful implementations. This

doctoral dissertation explores several practical statistical challenges in monitoring high-purity pro-

cesses arising from the complexity of technology-enhanced production processes. The introductory

chapter lays the dissertation’s foundations, divided into four sections that all together provide the

context for the thesis. Section 1.1 provides the reader with a high-level overview of the current state

of the art in statistical process monitoring methodologies for high-purity processes. The discussion

helps to identify gaps and research opportunities and introduces the notations and terminology rel-

evant to the statistical process control framework. Then, the need for an comprehensive framework,

which represents the goal of this research, is justified by the industrial motivation in 1.2. The main

contributions that define the structure of the thesis are highlighted in Section 1.3. Finally, Section 1.4

reports the list of publications.
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Introduction

1.1 Background of research

Statistical process control has been widely used in industry to monitor mainly continuous variables

describing a process’s quality. Whereas many industrial quality features are continuous in nature,

an increasing number of applications in the chemical industry involve monitoring discrete variables

in the form of counts of defective or non-conforming items, i.e., items that do not satisfy technical

specifications. It is widely known that the number of events can often be modeled by the binomial

or the Poisson distributions because of their discrete nature. Therefore, traditional control charts for

attribute data are modeled based on these distributions, which in most cases represent a simplistic

approach as they do not account for over- and under-dispersion. This section highlights the limita-

tions of traditional control charts for attribute data applied to high-purity processes and discusses

the most common approaches to overcome these limitations in detail.

1.1.1 Traditional control charts for attribute data

Traditional control charts to monitor attribute data were first proposed by Shewhart (Shewhart

(1926)). The p- and np- charts are intended to monitor the fraction of non-conforming products, while

the c- and the u- chart are designed to monitor the number of non-conforming items. The charts

mentioned above are widely used for monitoring industrial processes where the defect occurrence in

a sample follows the binomial or the Poisson distributions, respectively. A relatively small sample size

is required to detect changes when the shift amplitude is moderate or large. A comprehensive review

and bibliography of attribute control charts by application is given by Woodall (1997). A more recent

outline focusing on monitoring multinomial and multi-attribute processes is given by Topalidou and

Psarakis (2009).

Limitations of traditional control charts When considering high-purity processes which exhibit

low failure rates, the application of traditional process monitoring techniques is unsatisfactory mainly

due to the normal approximation. Although they have been widely employed in industry to control

the fraction and the number of non-conforming items, several pitfalls and practical problems are as-

sociated with p−, np− and c−, u− control charts (Xie et al. (2002b)).

- The 3-σ control limits are derived from the approximation of the binomial and the Poisson dis-

3



Chapter 1

tributions by the normal distribution. The approximation holds for a large number of events,

but it is inaccurate for low rates (λ < 9), and the approximation fails when the occurrence of

defects rate of the process is very low. The 3-σ limits might also be justified by Chebychev’s

theorem, which guarantees a significant percentage coverage regardless of the underlying dis-

tribution. However, as indicated by Khakifirooz et al. (2021), this approach does not secure

sufficient and practically relevant monitoring performance.

- Control limits can be unrealistic and meaningless. The lower control limit can be negative. In

such circumstances, the limit is generally set to 0. This leads to unrealistic control limits, which

make impractical the detection of process improvement, meaning a downward shift in the de-

fect rate. Moreover, the upper control limit (UCL) can be smaller than 1 for np− and c− charts

and that of the p−chart may be less than 1
n . Therefore, the chart will raise a signal whenever

there is a non-conforming item in the sample.

- The sample size heavily influences the frequency of raising an out-of-control signal. The fre-

quency of signaling out-of-control depends on the choice of sample size. For a specific sample

size value, there may be very frequent signals for out-of-control, while for a slightly larger sam-

ple size, there may be very infrequent signals or no signal at all. Chan et al. (2003) illustrate this

problem with a practical example.

One can overcome these limitations by employing two main strategies. A more traditional approach

is based on the transformation of the data into an approximately normal distribution. For example,

Nelson (1994) proposed the transformation X0.2777 coupled with a simple X-chart in Phase II. While

being easy to implement, this method suffers from being difficult to interpret for practitioners, the

transformation being not always accurate, and it poses a difficult challenge in fixing the desired in-

control performance. Additionally, Santiago and Smith (2013) studied the effect of the normal trans-

formation of exponentially distributed variables proposed by Nelson, demonstrating that the result-

ing chart holds a low power in detecting downward shifts, particularly when the decrease is small in

magnitude. Therefore, rather than focusing on the counts themselves, it has been shown to be more

promising to focus on cumulative quantities between non-conforming items.

Ali et al. (2016) and Woodall and Driscoll (2015) provide a thorough review of control charts for high-

quality processes. Different names are used in the literature depending on the data type and distri-
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Introduction

bution assumed. In this thesis, time-between-events (TBE) and cumulative quantity control charts

are used interchangeably. Monitoring Bernoulli/geometric and Poisson/exponential distributed vari-

ables represents the standard and the most effective approach to monitoring the occurrence of rare

events.

1.1.2 Cumulative quantity control charts

Calvin (1983) was the first to propose a high-quality control chart based on the geometric process,

while Goh (1987) studied its properties. This approach originates from the idea of plotting the cumula-

tive number of conforming items between two successive non-conforming ones. This chart is known

as the cumulative count of conforming (CCC) chart. Consider a sequence of independent Bernoulli

random variables, X, X1, X2, . . . representing the status of the inspected items, classified as conform-

ing or non-conforming. Let Y be the count of conforming items until a non-conforming one is ob-

served. Then, the random variable Y follows the geometric distribution with probability mass function

and cumulative distribution function fg andFG, respectively

fG(y) = p(1− p)y−1, (1.1)

FG(y) = 1− (1− p)y (1.2)

where p represents the probability of registering a non-conforming item. The cumulative number of

items is plotted against the index of the sampling interval until a non-conforming item. The prob-

ability limits are typically set based on the in-control value of the non-conforming rate (p0), posing

FG(LCL) = α/2 andFG(UCL) = 1− α/2, so that

LCLG = ln(1− α/2)/ ln(1− p0), (1.3)

UCLG = ln(α/2)/ ln(1− p0) (1.4)

whereα is the false alarm rate, specified a priori and LCL and UCL indicate the lower control and upper

control limits, respectively. In the CCC chart, small values of Y indicate large values of p. Observations

below the LCL therefore might indicate a deterioration of the process conditions (p1 > p0), while

observations above the UCL might give an indication of process improvement (p1 < p0). Using prob-
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ability limits instead of the traditional 3-σ approach is more appropriate due to the skewed nature

of the distribution. Moreover, since the geometric distribution is discrete, the control limits can take

only integer values and therefore it is difficult or almost impossible to obtain exactly the specified

false alarm rate. The CCC chart can be easily extended to higher orders (CCCr) by charting the number

of conforming counts till the rth successive non-conforming one. This extension was proposed by Xie

et al. (2002a). Let Z be the count of conforming items until the rth successive one. Then, Z is a negative

binomial random variable with probability mass function fNG(z) as follows

fNG(z) =

(
z− 1
r− 1

)
pr(1− p)z−1. (1.5)

The parameterization used (1.5) expects z to be the counting number of trials, given r successes. Us-

ing high-order control charts reduces the variance at the cost of an increased waiting time to get a

decision point. Other variations might be used depending on the definition of the counting variable.

The probabilistic control limits can be computed numerically by solving the following equations

LCLNB∑
k=r

P(Xr,p0 = k) = α (1.6)

and

UCLNB∑
k=r

P(Xr,p0 = k) = 1− α. (1.7)

Intuitively, increasing the order of the chart might cause a delay since r non-conforming items need

to be recorded before plotting a new observation and therefore prompting a decision to the user.

However, increasing the order might be appropriate for calibrating the sensitivity of the chart to the

desired performance. General guidelines on choosing the value of r do not exist, which might repre-

sent a limitation for implementers and practitioners. As pointed out by Szarka and Woodall (2011),

despite its simplicity, the CCC chart presents some technical issues when considering the two-sided

case. These issues are the non-maximality and bias properties of the performance metrics, and its pri-

mary weakness resides in its inability to detect small to moderate shifts. Following the idea of Calvin

(1983), the cumulative quality control (CQC) charts were first proposed by Chang and Gan (2001) as

the continuous counterpart of the CCC chart. This chart can be used to determine whether or not the
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defect rate is low, without shortcomings. The idea of Calvin is here generalized based on a homoge-

neous Poisson process. This chart is called t-chart. In a process in which the dynamic of counts can

be described by a homogeneous Poisson process at a constant occurrence rate λ, for the particular

case in which r = 1, the time between two consecutive events follows the exponential distribution

with parameter λwith cumulative density function as follows

FExp(x) = 1− exp(−λx). (1.8)

The probabilistic control limits can be then computed as follows

UCLExp = − ln(α/2)/λ0, (1.9)

LCLExp = − ln(1− α/2)/λ0. (1.10)

Zhang et al. (2013) extended the principle of the CQC chart to higher-order control charts by waiting

until the specified number r of events before plotting the corresponding statistic. The time between

the ith and (i + r)th events is modelled by the gamma distribution with rate λ and integer shape r.

Being the exponential and the gamma charts in the continuous scale, they offer the advantage of

achieving the desired false alarm rate in the design phase of a control chart, simplifying the calibration

procedure and overcoming the limitation of their discrete counterparts.

1.1.3 Exponentially weighted moving average and cumulative sum charts

Shewhart charts are the most familiar charts in use, with many desirable features like simplicity of

interpretation and implementation; end-users can directly read the value of the variable of interest

on the chart. However, a significant drawback of the Shewhart control chart is that it uses only the in-

formation about the process in the last sample observation – it does not have a history. This memory-

less property makes it insensitive to small shifts since the information contained in the sequence of

the last observations is neglected. Practitioners can use run or pattern rules in conjunction with a

standard Shewhart set-up to improve the sensitivity of the monitoring scheme. These rules allow

for quickly detecting specific patterns or deviations in the data at the cost of raising the rate of false

alarms. This disadvantage can be avoided by adapting the control limits to the selected run rules
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in the design phase. The cumulative sum (CUSUM) and the exponentially weighted moving average

(EWMA) control charts represent alternatives to Shewhart charts with run rules. They possess long-

and medium-term memory properties, respectively. These charts perform excellently, mainly when

the assignable causes do not typically result in significant process deviation from the target, with the

drawback of being difficult to interpret as they do not display the raw data value and are more difficult

to construct.

The CUSUM control chart uses the sum of observations instead of the current one and plots the cu-

mulative sum of deviations from a target value (Page (1961)). This chart is convenient for plotting in-

dividual observations. The CUSUM chart can be obtained by plotting the statistics S+
i and S−

i defined

as follows

S+
i = max{S0, S+

i−1 + (Xi − k)}, (1.11)

S−
i = min{S0, S−

i−1 + (Xi − k)}. (1.12)

The initialization value S0 is generally the mean of historical data or can be set at 0, and k is the refer-

ence value and can be calculated as follows for the gamma distribution case

k = r ln (θ1)− ln (θ0)

θ1 − θ0
. (1.13)

The EWMA control chart shows comparable performance to the CUSUM chart and plots the moving

average weighted by a constant value w, with 0 ≤ w ≤ 1. This value indicates the weight to give to the

current observation. When designing the control chart, the weight represent an additional parameter

to choose from, typically in the range [0.2, 0.3]. Gan (1993) introduced the exponential EWMA chart,

where the observations Zi are the inter-arrival times. The EWMA statistic (Q1,Q2, . . . ,Qk) for the upper-

sided and lower-sided settings are the following

Qi = max{0, (1− w)Qi−1 + wZi}, (1.14)

qi = min{0, (1− w)Qi−1 + wZi} (1.15)

respectively. To avoid delay in detection, a positive value instead of zero can be selected to speed

up the detection limit. These charts can sometimes be used with non-transformed data. When the
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monitoring task is to detect both process improvement and deterioration simultaneously, a two-sided

version can be used as shown in (1.16)

Qi = (1− w)Qi−1 + wZi. (1.16)

The control limits of memory-type control charts are not as easily computed as for the Shewhart chart

because of the violation of the independence assumption. To compute the control limits, exact meth-

ods have been proposed in the literature (e.g., Vardeman and Ray (1985)). Alternatively, they can be

computed by simulations. The above-mentioned control charts are advantageous in specific settings,

and their features have been extensively compared, emphasizing their strengths and weaknesses un-

der different scenarios.

1.2 Scope and motivation

The present dissertation aims to extend the current statistical process monitoring state of the art by

developing a practical framework for monitoring high-purity processes, with the intent to harmo-

nize the relationship between the academic literature and implementations in manufacturing envi-

ronments. The research task is therefore motivated by the practical importance of statistical process

monitoring in the manufacturing industry by meeting the needs of practitioners yet relying on the

simplicity of the concepts so that non-statisticians and daily users can welcome the proposed designs.

The main driver of this research stems from real-case operations at Dow, where some process quality

characteristics have a discrete and often multivariate nature. A prime example of these applications

is the production of plastic pellets, which needs to meet stringent technical specifications so that the

product can be classified as conforming. Among the qualities subjected to strict requirements, pellet

contamination plays an essential role as the presence of polluting agents worsens the desired optical

properties. In these settings, defects are recorded as non-negative counts and are often categorized

in classes, such as size or color, intrinsically correlated. A low occurrence of contamination defects

distinguishes this process, and the defect rate is strongly influenced by the production volume or in-

spected weight and, possibly, by other process variables. Moreover, different products with different

specifications are produced in the same line to meet customer demand closely. In most cases, the sys-
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tem’s complexity is streamlined by renouncing to monitor the process in real-time and by evaluating

the performance at large time intervals in terms of batch key performance indicators, which contain

no information about the stability of the process and hinder rapid corrective actions. The present the-

sis pursues to develop practical, relevant monitoring schemes using rigorous statistical analysis that

are relatively unexplored in literature; these include tailored change-point, regression, and multivari-

ate control charts in the sphere of high-purity processes. Generalized likelihood ratio (GLR) charts of-

fer tailored solutions for complex change-point scenarios without requiring parameter tuning. More-

over, they can accommodate multi-product production lines with different specifications. However,

GLR control charts are less explored in literature than traditional competitors, particularly for dis-

crete data. Furthermore, most research on monitoring high-quality processes restricts its attention

to response data. This assumption is far from realistic, as it is plausible to assume that the response

variables are correlated and dependent on other process variables. Therefore, accounting for factors

influencing the process response is of practical interest and represents an important research area in

modern quality control. Finally, in many applications, the quality of a product is described by a set

of variables (m > 1). The multivariate space for cumulative quantity control charts is relatively unex-

plored. Multivariate settings are used predominantly for hybrid solutions with the intent to monitor

the frequency and amplitude of an event but not more than one type or class of event simultaneously.

1.3 Contributions

The main contributions shaping the structure of the thesis are the following.

• Chapter 1 briefly reviews the control chart methodologies widely used for attribute data and

highlights their limitations when applied to high-purity processes. It presents the current state

of the art in statistical process monitoring, and the discussion helps identify gaps and research

opportunities.

• Chapter 2 lays the foundation of the thesis by introducing and discussing the asynchrony of

process time and control-chart time, a distinctive and recurrent feature of the high-purity mon-

itoring framework. As a result, appropriate performance metrics are adapted to allow fair eval-

uation and comparison of the several monitoring strategies proposed.
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• Chapter 3 proposes tailored control charts for high-purity processes based on more complex

change-point models. These charts are based on generalized likelihood ratios (GLR), which

offer extra layers of flexibility, making the monitoring purpose more practical and industry-

driven.

• Chapter 4 introduces generalized linear model (GLM)-based control charts with the intent to

detect contextual anomalies. These charts are suitable when accounting for the influence that

expected fluctuations of a set of co-variates exert on the variable(s) of interest. The novelty

resides in applying these strategies to cumulative quantities control charts.

• Chapter 5 extends the research to multivariate point processes control charts, contributing to

the existing literature. These charts are convenient and appropriate when the production pro-

cess should be described by multiple correlated temporal point models with simple correlation

structures.

• Chapter 6 contains the conclusions and the recommendations for future work.
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Performance Metrics for High-Purity

Monitoring Methods

Traditional statistical process control techniques like Shewhart X or individual charts are known to

perform unsatisfactorily in processes with low-level defect rates. Dedicated methods, such as the

cumulative quantities control charts, have been developed for discrete and continuous time, as dis-

cussed in Section 1.1.

During the design of a monitoring system, practitioners and implementers are first asked to choose

the most appropriate type of control chart. This informed choice can be made by determining which

method shows the best performance given a specific application by comparing different methodolo-

gies using suitable performance metrics. Performance evaluation of control charts is a crucial topic,

and the connection of mathematical theory with the needs of practitioners is not receiving sufficient

attention.

Performance metrics in SPC can be classified into two main categories. The first group is associated

with the false-alarm rate expected when the process is ‘in-control’. At the same time, the second group

is concerned with the detection delay when the process has shifted to an ‘out-of-control’ state. Meth-

ods are often compared in terms of average run length (ARL). Nonetheless, the ARL suffers from several

shortcomings. First, the ARL is a zero-state performance metric, i.e., it relies on the assumption that

the change-point happens at the beginning of the monitoring. Moreover, run length distributions for

cumulative quantity charts neglect the asynchrony of the two time scales; the number of items and
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the number of control chart decisions differs, and it is more appropriate to consider inspection lengths

instead. Finally, since run length distributions are typically skewed, means are not sufficient to fully

describe their behavior, and additional summary statistics, like the standard deviation or quantiles,

should be considered. The rest of the chapter is structured as follows. Section 2.1 discusses the zero-

state and steady-state performance metrics proposed in the literature for standard control charts,

while Section 2.2 adapts these measures to cumulative quantities control charts, with a strong focus

on the asynchrony between process-time and control chart-time.

2.1 Performance evaluation of standard methods

Before discussing the case of control charts which involve data in an aggregated form, it is worth-

while to review the performance assessment of control charts in general. Statistical monitoring aims

at quickly detecting process changes by using observations that arrive sequentially. Several perfor-

mance measures have been introduced in the literature to quantify what ‘quickly’ means. The appro-

priate choice of performance metrics in comparing monitoring techniques is of crucial importance,

particularly for low-level defect processes. A practically meaningful monitoring method is often the

result of a trade-off between the tolerable false alarm rate and a fast shift detection, whereas, in

more complex situations, other specific requirements inherent to the process and the application are

more appropriate. In applied work, an evaluation conducted by using several measures is required.

Commonly used metrics and optimality criteria have been extensively reviewed by Frisén (2009) and

Kenett and Pollak (2012).

2.1.1 Steady-state versus zero-state performance

There are two assumptions under which control chart can be evaluated: zero-state and steady-state.

In zero-state analysis, the process shift is assumed to occur immediately at the start of the monitor-

ing procedure or when the chart is in its initial state. The terms initial state and zero-state can be used

interchangeably. Traditionally, control charts are evaluated and compared based on zero-state perfor-

mance metrics. This strong assumption tends to over-evaluate control chart performance. Therefore,

one should use steady-state metrics instead, assuming that the parameters’ shift occurs at a random
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time after the monitoring has begun. This assumption is more realistic in most applications. Depend-

ing on this choice, one may obtain very different performance results. Therefore, a steady-state anal-

ysis should be performed when evaluating methods, particularly when the change-point τ plays an

important role in the model. The steady-state approach is discussed in Szarka and Woodall (2011)

for the discrete time and in Zhang et al. (2013) and Woodall and Driscoll (2015) for the continuous

counterpart. These considerations should be taken into account when considering both in-control

and out-of-control performance metrics, discussed in detail in the following sections.

2.1.2 In-control performance

When designing a control chart, a key parameter to control is the false alarm rate. The probability of

a false alarm is the probability of having a signal when the process is in-control. Following this classi-

fication, the most common index is the average run length in-control (ARL0), defined as the number

of points plotted before a control chart signal is given when no change in the process has occurred.

The strong point of the ARL criterion is its computational simplicity, but despite its popularity in prac-

tice, the use of this metric is controversial (Frisén and Wessman (1999)). One of the reasons can be

attributed to the skewness of its distribution; the standard deviation is relatively large, and the aver-

age value alone may not suffice to describe the performance of a given monitoring system. Gan (1993)

proposed using the median run length (MLE) as a more robust metric. Reporting the percentiles of the

run-length distribution is also considered a valid alternative option. Additionally, an increasing num-

ber of monitoring applications limits its use, particularly when data aggregation at different levels is

required for monitoring purposes over time. In such cases, the ARL becomes meaningless, and other

performance metrics should be used instead (Woodall and Driscoll (2015)). Cumulative quantity con-

trol charts represent a relevant example of such applications. The limitations of the ARL when applied

to cumulative quantity control charts are presented in Section 2.2. Regarding in-control metrics, it is

also worthwhile to mention that the procedure to define α as the probability of Type I error and sub-

sequently calculate the ARL, is still in vogue. As argued in Margavio et al. (1995), a direct relationship

between a single alarm probability and the ARL exists only for basic Shewhart-type control charts.

These charts rely on the assumption that all the occurrences are independent within and between

samples, which allows electing a constant false alarms probability. This definition is unclear for more
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advanced monitoring methods such as CUSUM, EWMA charts and Shewhart charts with run rules,

since their statistics are not independent and therefore the definition of α is meaningless. Adams

et al. (1992) describe this problem in detail. In the literature, the performance metrics of these inher-

ently dependent statistics are sometimes evaluated assuming independence, leading to severe flaws

in the design of a control chart, driven by inaccurate performance evaluation. Haq and Woodall (2022)

identify several studies in which authors incorrectly approximate the signal event using independent

Bernoulli random variables for EWMA charts. To overcome the zero-state nature of the ARL, Margavio

et al. (1995) proposed that the alarm rate is defined as the probability of an alarm at sample i given

no alarm prior to the ith sample, i.e.,

ri = P(N = i | N > i− 1), i = 1, 2, . . . . (2.1)

where N is the run length. It can be noticed that, in the stationary state, (2.1) is equal to 1
ARL0

, with the

advantage that it can be applied to any control chart. From a Bayesian point of view, where there is a

prior on the change-point τ , the quantity of interest for describing the possibility of a false alarm is the

probability of false alarm (PFA) = P(T < τ). The probability of false alarm is defined as the probability

of an alarm no later than at time τ given that no change has occurred; it corresponds to the probability

of erroneous rejection of the null hypothesis, at the level of significance chosen, but it is a function of

the time τ .

2.1.3 Out-of-control performance

Any deviation of the model’s parameters from their in-control values represents a shift to the out-

of-control state, which generally requires an action. The performance of a method for monitoring

sequential schemes depends on the time of the change τ . Precise definitions of τ are provided in Sec-

tion 2.2. In some circumstances, it is appropriate to express the performance measure as a function of

τ . Therefore, different approaches have been used to obtain evaluations independent of their value.

The most widely used performance index is the ARL1, which denotes the average run length until the

detection of a true change. The SPC optimality criterion is to minimize ARL1 when ARL0 is fixed. As

mentioned before, the ARL1 is a zero-state performance metric. From the steady-state point of view,

the delay from the first opportunity to detect a shift after the change-point denoted by τ , conditional
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on not having raised a false alarm before is called conditional expected delay (CED) and it is defined

as follows

CED(τ) = E[N− τ + 1 | N ≥ τ ]. (2.2)

Depending on the process requirements, it can be of interest to evaluate the response in the initial

stage, where CED(1) is kept low. If, on the contrary, the change-point time is expected at higher τ , then

the limτ→∞ CED(τ ) is more appropriate. It can be easily noticed that ARL1 = CED(1). For most meth-

ods, the CED will converge to a constant value when the time of the change increases. The asymptotic

value is called steady-state average delay time (SADT). To get a better understanding of the charac-

teristics of a method, Frisén (2009) suggests calculating the CED for several values of τ . It must be

noted that different formulation of (2.2) are available in literature, depending on the definition of the

change-point τ and the first opportunity to detect a change. Kenett and Pollak (2012) agree that the

CED in the deterministic framework and the PFA in the Bayesian framework represent more natural

performance measures, stating that using of the CED could lead to a reassessment of procedures pro-

posed in the literature, which typically rely on the widespread use of the ARL1. However, ensuring the

fastest response is not always sufficient. On some occasions in the manufacturing industry in particu-

lar, there is a limited window of opportunity to take action. In such cases, the probability of successful

detection (PSD) is a convenient metric, as it measures the probability of detection within the constant

time distance d from the time of change, conditional on not having raised a false alarm before. It can

be expressed as follows

PSD(d, τ) = P(N− τ + 1 ≤ d | N ≥ τ). (2.3)

Different periods can be considered according to specific cases. For example, when the objective is

to monitor a quick detection of major intensity, small values of d are important; when the long-term

detection ability has more influence, larger values of d need to be evaluated.
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2.2 Performance evaluation of high-purity processes meth-

ods

A distinctive feature of the monitoring framework on high-purity processes, particularly for cumula-

tive quantity control charts, not present in standard setups for variable control charts, is that process

time and control chart time scale might be asynchronous. Inevitably, the performance metrics must

be adapted. As discussed in Section 2.1, the ARL is by far the most used metric in evaluating the perfor-

mance of control charts for its simplicity and easy interpretation. However, when deploying aggregate

charts, the ARL should not be used because of two main limitations:

- It expresses the performance in control chart-clock time and not in process-clock time;

- It cannot be used to compare control charts that involve aggregate data at different levels.

As depicted in Figure 2.1, given a Bernoulli process Yi, conforming and non-conforming events are reg-

istered in process-clock time. However, when switching to a cumulative quantity control chart, the

monitored random variable Xi represents the cumulative count or time until the rth non-conforming

event; the number of points plotted (decisions) depends on the non-conforming items and the ag-

gregation level chosen so the control chart-clock time does not coincide with the process-clock time.

Evaluating the performance in terms of non-conforming items is meaningless and the comparison of

control charts at different aggregation levels is impractical. Since the change-point time has a crucial

role in statistical process control, it is important to define and distinguish between process time and

control chart time, both for model interpretability and fair performance evaluation and comparison.

To properly define the time scales, the original (process) random variables are denoted by Yi and the

derived, aggregate random variables from the control chart, by Xj. Figure 2.1 illustrates the case for

CCC1 and CCC2 control charts, i.e. the case that the Yi’s are Bernoulli random variables and the Xj(1)

and Xj(2) are the number of conforming items until the first and the second event, respectively.

Note that the time until the rth time follows a negative binomial distribution, and the geometric dis-

tribution for the special case r = 1.

There is a different time scale for the control chart, since it is related to the indices of the random

variables Xj. Suppose that in the example in Figure 2.1, the change-point at the process time scale

is set such that τπ = 12 and that the lower control limits are set at 5 and 10, for the Xj(1) and Xj(2)
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Y

X(r=1)

X(r=2)

Figure 2.1: Number of points plotted for a Bernoulli process Yi and the corresponding aggregate charts
Xj (r = 1) and Xj (r = 2).

processes, respectively. For the r = 1 case, the change-point occurs between j = 2 and j = 3, so that

the control chart can only signal from j = 3 onward and it will signal at j = 3 since X3(1) = 4. For the

case r = 2, the change-point happens between j = 1 and j = 2, so that the control chart can only

signal from j = 2 onward and it will signal at j = 2 since X2(2) = 7.

When the change-point at the process scale is zero, i.e., the process is out-of-control from the start,

then τ = τπ = 0. If τπ ≥ 1, then for the CCC1 chart the change-point τ at control chart time scale in

can be computed from τπ via the following formula

τ = min
{

η∑
i=1

Yi : η ≥ τπ

}
. (2.4)

It follows from Figure 2.1 that for r = 1 and τπ = 12, then Y6 = Y11 = Y15 = 1, so τ = 3. The random

variable X3(1) has a mixed distribution and it is only starting with X4(1) that a ‘pure’ out-of-control

situation occurs. For a CCC2 chart, the formula in (2.4) needs to be adapted to incorporate that there

is a control chart observation at every second value of Yi = 1

τ = min
{⌈

η∑
i=1

Yi/2
⌉
: η ≥ τπ

}
. (2.5)

It is evident in Figure 2.1 for r = 2 and τπ = 12 that Y6 = Y11 = Y15 = Y18 = 1, so τ = 2. Also in

this case, X1(2) has a mixed distribution and it is only starting with X2(2) that the ‘pure’ out-control

situation occurs. In this case, the cumulative number of items until the rth event follows the negative

binomial distribution.

In the sequel, the essential probabilistic background for computing the performance of aggregate
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control charts is presented and explicit formulas for the performance of the tr-chart and the CCCr

chart in terms of length of inspection are derived. Additionally, steady-state alternatives to the length

of inspection are adapted to the aggregate data framework.

2.2.1 Length of inspection

When the time interval between cumulative observations varies, the average length of inspection

(ALI), often referred as the average number of observations to signal (ATS), is a more appropriate mea-

sure. The length of inspection (LI) is defined as follows

LI =
N∑
i

Xi, (2.6)

where N is the run length. The ALI reflects the actual number of inspected items before the control

chart raises a signal.

It is worth briefly mentioning that the ALI performance in the two-sided charts often presents the non-

maximality problem due to the skewness of its distribution. In this case, the ALI is not maximum at

the designed ALI0 but peaks at some other value. This shortcoming is addressed in Xie et al. (1998) by

calculating the control limit maximizing the performance metrics at the in-control parameter instead

of using probabilistic limits. The stopping criterion of a control chart in online monitoring obviously

depends on current and past observations. The random variable connected to it is thus an example

of the mathematical concept of stopping time, defined as follows.

Definition 2.2.1. Let X, X1, X2, . . . , Xn be an i.i.d. sequence of random variables. A random variable N is

called a stopping time if for each n ≥ 0, the event {N = n} depends only on X1, X2, . . . , Xn.

Specific definitions of stopping times are considered for the control charts based on aggregate data

for two-sided, upper-sided and lower-sided cases, respectively.

Definition 2.2.2. Let X, X1, X2, . . . , Xn be an i.i.d. sequence of random variables with cumulative distri-

bution functionFX. The following stopping times are defined with respect to the sequence X1, X2, . . . , Xn.

TWO-SIDED CONTROL LIMITS

Nℓ,u = min {i | Xi < ℓ ∨ Xi > u}
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which follows a geometric distribution with parameter p = 1− (FX(u)−FX(ℓ)).

ONE-SIDED UPPER CONTROL LIMIT

Nu = min {i | Xi > u}

which follows a geometric distribution with parameter p = 1−FX(u).

ONE-SIDED LOWER CONTROL LIMIT

Nℓ = min {i | Xi < ℓ}

which follows a geometric distribution with parameter p = FX(ℓ).

The following theorem due to Wald allows practitioners to easily compute the average inspection

length given the process and the stopping time parameters. The original identity in Wald (1945) is

valid for N independent from the observation sequence. Related results from Blackwell (1946) and

Wolfowitz (1947) are considered.

Theorem 2.2.3 (Wald - Blackwell - Wolfowitz). Let X, X1, X2, . . . Xn be i.i.d. random variables with finite

mean µ and finite variance σ2. Let N be a stopping time with respect to X1, X2, . . . , Xn such that E(N) <

∞. Then

E
( N∑

i=1
Xi

)
= µE(N), (2.7)

E
( N∑

i=1
Xi − µN

)2

= σ2E(N) (2.8)

As noted before, the inspection length distributions are typically skewed and other summary statistics

than averages should be considered. In particular, the standard deviation is an useful addition. The

first version of the standard deviation was obtained by Blackwell and Girshick (1946).

Theorem 2.2.4. [Blackwell-Girshick] Let X, X1, X2, . . . be i.i.d. random variables with mean µ <∞ and

variance σ2 <∞. If N is independent of X1, X2, . . ., then

Var
( N∑

i=1
Xi

)
= E(N)Var(X) + Var(N)E2(X). (2.9)
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Proof

Var
( N∑

i=1
Xi

)
= E

( N∑
i=1

Xi

)2

− E2

( N∑
i=1

Xi

)

Conditioning on N the first term

E
( N∑

i=1
Xi

)2

= E

E

( N∑
i=1

Xi

)2

| N = k


=

∞∑
k=1

E
( k∑

i=1
Xi

)2

P(N = k)

=

∞∑
k=1

(
kVar(X) + k2E2(X)

)2 P(N = k)

= E(N)Var(X) + E(N2)E2(X).

Therefore,

Var
( N∑

i=1
Xi

)
= E(N)Var(X) + E(N2)E2(X)− (E(N)E(X))2

= E(N)Var(X) + [E(N2)− E2(N)]E2(X)

= E(N)Var(X) + Var(N)E2(X).

It must be noted that, unlike the Wald Theorem (2.2.3), the Blackwell-Girshick formula in (2.9) requires

N to be independent from Xi. A simple counterexample shows that the formula is incorrect without

that assumption. Let Xi be Bernoulli random variables with parameter p and let N be the first index for

which XN = 1. Then
∑N

i=1 Xi = XN = 1 a.s., and thus the variance of that sum equals zero, while the

right-hand side of the Blackwell-Girshick formula obviously does not equal zero. This fact seems to be

overlooked in some of the control chart literature where the Blackwell-Girshick formula is applied in

situations where it does not hold and thus yields incorrect results. A corrected formula for the variance

was given as Theorem 2 in Di Bucchianico et al. (2005). The first part of the proof also holds for the

following more general case.

Theorem 2.2.5. Let X, X1, X2, . . . , Xn be i.i.d. random variables with meanµ <∞and varianceσ2 <∞.

Let N be any of the stopping times in Definition 2.2.1 with respect to the sequence X1, X2, . . . , Xn such that
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E(N) <∞. Then

Var
( N∑

i=1
Xi

)
=
σ2

p − µ
2
(

3− p
p2

)
+ 2µE

(
N

N∑
i=1

Xi

)
(2.10)

where p is the geometric distribution parameter of N.

Proof. In general

E(X | X ≥ X) =
∫∞

0 tf(t)dt
1−F(0)

Assuming N and Xi independent, with Xi ∼ Exp(λ) and N ∼ Geom(p)

P
( N∑

i=0
Xi ≤ X

)
=

∞∑
k=0

P
( k∑

i=0
Xi ≤ X | N = k

)
P(N = k)

=

∞∑
k=0

fΓ(k,λ)(t)(1− p)k−1p

= p
∞∑

k=1
fΓ(k,λ)(t)(1− p)k−1

= p
∞∑

k=1

λkxk−1e−λx

(k− 1)! (1− p)k−1

= pλe−λx
∞∑

l=0

λlxl

l! (1− p)l

= λpe−λxp ∼ Exp(λp).

Then,

Var
( N∑

i=1
Xi

)
= E

( N∑
i=1

Xi − µE(N)
)2

= E
( N∑

i=1
Xi − µN + µN + µE(N)

)2

= E

( N∑
i=1

Xi − µN
)2

+ µ2(N + E(N))2 + 2µ
( N∑

i=1
Xi − µN

)
(N + E(N))


= σ2E(N) + µ2E(N− E(N))2 + 2µ

(
E
(

N
N∑

i=1
Xi

)
− µE(N2)

)

= σ2E(N) + µ2 (E(N2)− E2(N)
)
+ 2µE

(
N

N∑
i=1

Xi

)
− 2µ2E(N2).

Exploiting the geometric nature of the stopping time (N) for which E[N] = 1/p and E[N2] = (2−p)/p2,
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the equation simplifies to

Var
( N∑

i=1
Xi

)
=

σ2

p − µ
2
(

3− p
p2

)
+ 2µE

(
N

N∑
i=1

Xi

)
.

Conditioning on the values of N, for continuous Xi

E
(

N
N∑

i=1
Xi

)
=

∞∑
k=1

E
(

N
N∑

i=1
Xi | N = k

)
P(N = k) =

∞∑
k=1

k
k∑

i=1
E(Xi | N = k)P(N = k)

=

∞∑
k=1

k [(k− 1)E (X | X > ℓ ∨ X < u) + E(Xk | Xk < ℓ ∨ Xk > u)]P(N = k)

= pE(X | X > ℓ ∨ X < u)
∞∑

k=1
k(k− 1)(1− p)k−1

+ pE(X | X < ℓ ∨ X > u)
∞∑

k=1
k(1− p)k−1

=
2(1− p)

p2(1− p)

∫ u

ℓ
xfX(x)dx + 1

p2

(∫ ℓ

0
xfX(x)dx +

∫ ∞

u
xfX(x)dx

)
=

2
p2

∫ u

ℓ
xfX(x)dx + 1

p2

(∫ ℓ

0
xfX(x)dx +

∫ ∞

u
xfX(x)dx

)
=

1
p2

(∫ ∞

0
xfX(x)dx +

∫ u

ℓ
xfX(x)dx

)
=

1
p2

(
µ+

∫ u

ℓ
xfX(x)dx

)
.

Consider the continuous random variables Vi with common density function fV. Then (2.2.5) yields for

the two-sided control chart

Var

Nℓ,u∑
i=1

Vi

 =
σ2

p − µ
2
(

1− p
p2

)
+

2µ
p2

∫ u

ℓ
vfV(v)dv. (2.11)

Analogously, a general form for the variance of the length of inspection for the upper- and the lower-

sided cases for continuous variables Vi can be written as follows

Var
( Nu∑

i=1
Vi

)
=

σ2

p − µ
2
(

1− p
p2

)
+

2µ
p2

∫ u

0
vfV(v)dv (2.12)
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and

Var
( Nℓ∑

i=1
Vi

)
=

σ2

p + µ2
(

1 + p
p2

)
− 2µ

p2

∫ ℓ

0
vfV(v)dv. (2.13)

The same calculations can be carried out considering the case in which Yi follows a discrete distribu-

tion. Di Bucchianico et al. (2005) calculated the variance for the lower-sided CCCr chart. The complete

set of general formulas for discrete Yi is as follows

Var

Nℓ,u∑
i=1

Yi

 =
σ2

p + µ2 (1 + p)
p2 − 2µ

p2

d∑
j=c

jP(Y = j), (2.14)

Var
( Nu∑

i=1
Yi

)
=
σ2

p + µ2 (1 + p)
p2 − 2µ

p2

c−1∑
j=0

jP(Y = j), (2.15)

and

Var
( Nℓ∑

i=1
Yi

)
=
σ2

p − µ
2 (1− p)

p2 +
2µ
p2

d∑
j=0

jP(Y = j). (2.16)

Thus far, the nature of Xi has not been exploited. As discussed in Section 1.1, the dynamics of low-rate

counts can described by an homogeneous Poisson process (Ti) at a constant occurrence rateλ. There-

fore, the time between r events is modelled by the gamma distribution with rate λ and integer shape

r. The lower and upper control limits are denoted by ℓ and u, respectively. Following Theorem 2.2.3,

the expected value of the length of inspection for the tr-chart can be easily computed as the product

of the expectations of T and N as follows

E
( N∑

i=1
Ti

)
= E(T) · E(N) = r

λ
· 1

p . (2.17)

In the general case for r > 1, when different aggregation levels are considered, (2.11) yields to

Var

Nℓ,u
(r)∑

i=1
Ti

 =
σ2

p − µ
2
(

1− p
p2

)
+

2µ
p2

∫ u

ℓ
tλ

rtr−1e−λt

(r− 1)! dt (2.18)
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where

∫ u

ℓ
tλ

rtr−1e−λt

(r− 1)! dt = r
λ

(
FΓ(r+1,λ)(u)− FΓ(r+1,λ)(ℓ)

)
(2.19)

and, for the upper and lower one-sided cases

Var

N(r)
u∑

i=1
Ti

 =
σ2

p + µ2
(

1 + p
p2

)
− 2µ

p2

∫ ℓ

0
tλ

rtr−1e−λt

(r− 1)! dt (2.20)

and

Var

N(r)
ℓ∑

i=1
Ti

 =
σ2

p − µ
2
(

1− p
p2

)
+

2µ
p2

∫ u

0
tλ

rtr−1e−λt

(r− 1)! dt (2.21)

respectively. A closed form for the variance of the length of inspection can also be obtained for the

particular case r = 1.

Design choice based on the length of inspection The performance used for evaluating the tr-

chart for lower-sided control charts can be computed numerically. The comparison between tr-charts

is carried out by specifying a priori the desired ALI0. This ensures that the comparison among the

different aggregate levels is fair. Moreover, the ALI0 represents a more intuitive metric for practitioners

as they are allowed to choose how many false alarms are able to tolerate within one time frame (e.g.,

once per operator shift or once per day). The procedure for choosing the optimal control chart order

based on the ALI and the SDLI (i.e., standard deviation of the length of inspection) can be summarized

as follows.

1. Calculate the control limits based on the estimated λ0 and the chosen ALI0

2. Determine the ALI1 and SDLI1 for the process mean shift of interest (λ1)

3. Choose the control chart which minimize the ALI1 and SDLI1

whereλ0 is the Poisson parameter in-control andλ1 is the Poisson parameter out-of-control, after the

shift in rate. This approach assumes that sufficient historical data are available to estimate confidently

the in-control parameters, condition often realistic in manufacturing environments, particularly when
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on-line measurements are available. A numerical example is carried out considering λ0 = 0.05 and

ALI1 = 500 for the lower-sided and the upper-sided tr-chart and a set of λ1. The set of parameters

chosen reflects real-case scenarios within Dow. As shown in Table 2.1, for some values of λ1, the two

ALI1 SDLI1

λ1 r = 1 r = 2 r = 3 r = 4 r = 1 r = 2 r = 3 r = 4

0.05 500 500 500 500 519 523 522 518
0.075 224 172 149 139 237 185 159 143
0.1 127 83.6 69.9 66.4 137 92.5 74.4 64.4
0.125 82.5 49.3 41.7 41.8 89.7 55.4 43.0 36.4
0.15 57.8 32.7 28.7 30.6 63.8 37.0 28.2 23.5
0.175 42.9 23.6 21.7 24.5 47.9 26.7 20.0 16.7
0.2 33.2 18.0 17.5 20.7 37.5 20.2 15.0 12.3

Table 2.1: Lower-sided tr-charts ALI1 and SDLI1 for λ1 = 0.05 and ALI0 = 500.

ALI1 SDLI1

λ1 r = 1 r = 2 r = 3 r = 4 r = 1 r = 2 r = 3 r = 4

0.05 500 500 500 500 519 523 522 518
0.025 200 208 223 243 119 108 103 102
0.001 190 251 327 413 108 137 167 196
0.0075 216 307 417 540 137 183 226 264
0.005 276 428 609 803 202 277 343 399

Table 2.2: Upper-sided tr-charts ALI1 and SDLI1 for λ1 = 0.05 and ALI0 = 500.

metrics point to a different chart order (i.e., from λ1 = 0.125 to λ1 = 0.2). In this situation, guidelines

for choosing the optimal r are generally not available. Here two criteria are proposed based on which

it is possible to determine the optimal order of the control chart based on both summary statistics.

1. Minimum ALI + kSDLI (e.g., k = 0.5);

2. ALI at most 10% larger than the min, then choose the one with the smallest SDLI.

For the case λ1 = 0.15, both criteria would lead to choose the t4-chart for this particular application

by choosing k = 0.5 for the first criteria. The value of k can be modulated based on the importance
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given to the measure of spread. The selection criteria proposed can be also applied for discrete and for

two-sided and upper-sided settings. It is important to notice that for the lower-sided tr-chart, higher-

orders are preferred, showing faster responses to a shift of the rate parameter, particularly when its

magnitude is relatively small. However, for upper-sided tr-chart, lower order (i.e., r = 1) are pre-

ferred as shown in Table 2.2. This is justified by the fact that upper-sided tr-chart are meant to detect

improvements in the process, i.e., a defect rate decrease. In general, improvements are difficult to

detect in these settings, mainly because of the nature of the process and the data aggregation set-up.

A decision is prompted only when a defect is recorded, meaning that for improvement detection it

might require a long time before a signal is raised. Higher-order control charts contribute to delay the

out-of-control alarm.

Computing the exact values of the performance metrics also allows to quantify the error committed

when using the Blackwell-Girshick formula in applications in which the strong assumption of N being

independent from Xi does not hold. Table 2.3 and Figure 2.2 clearly show how serious the numerical

error is when incorrectly applying the Blackwell-Girshick formula in this case. The absolute values of

SDLI1 SDLI1(BG)

λ1 r = 1 r = 2 r = 3 r = 4 r = 1 r = 2 r = 3 r = 4

0.05 519 523 522 518 100 101 102 104
0.1 137 92.5 74.4 64.4 36.0 31.7 38.6 60.9
0.15 63.8 37.0 28.2 23.5 20.0 20.6 46.9 138
0.2 37.5 20.2 15.0 12.6 13.3 19.3 79.6 422

Table 2.3: Lower-sided tr-charts SDLI and SDLI(BG) comparison for λ1 = 0.05, ALI1 = 500 and for
different values of r.

SDLI and SDLI(BG) differ of orders of magnitude and the trend showed by the SDLI(BG) is unexpected

and it deviates from the distribution assumption of the length of inspection.

2.2.2 Conditional expected delay and probability of successful detection

The major weakness of the length of inspection is the assumption that the parameter shift happens

at the beginning of the monitoring process, namely zero-state comparison, as discussed in Section

2.1.1. The conditional expected delay (CED) and the probability of successful detection (PSD) repre-
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Figure 2.2: Lower-sided tr-charts SDLI1 and SDLI1(BG) versus λ1/λ0 for λ0 = 0.05 and ALI0 = 500.

sent alternative metrics to the length of inspection accounting the more realistic scenario in which

the change-point happens some time after the monitoring has begun, i.e., steady-state comparison.

The CED and the PSD adapted to the cumulative quantities control charts are as follows

CED(τ) = E
[ N∑

i
Xi − τ + 1

∣∣∣∣∣
N∑
i

Xi ≥ τ

]
(2.22)

and

PSD(d, τ) = P
( N∑

i
Xi − τ + 1 ≤ d

∣∣∣∣∣
N∑
i

Xi ≥ τ

)
, (2.23)

respectively. The right metric, or combination of different metrics, to use depends on what the prac-

titioner wants to/or should optimize.

As an illustrative example, these measure are computed via Monte Carlo simulations for lower-sided

tr-charts with two additional run rules. The tests considered are the following.

• Test 1: 1 point below the lower control limit

• Test 2: 9 points in a row on the same side of the centre line

• Test 3: 6 points in a row, all increasing or all decreasing

The rules chosen aim at detecting three different shift modes: large shifts, small to moderate shifts

and trends. Note that Shewhart charts without run rules are memory-less and therefore the concepts

the average length of inspection and conditional expected delay coincide.
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The behaviour of the CED and PSD is simulated for a lower-sided tr-chart with λ0 = 0.05, calibrated at

ALI0 = 500, considering a range of shift in the defect occurrence rate from 0.055 to 0.2.

Figures 2.4 and 2.5 show the kernel density plots of the distributions of the LI and CED since these

coincide for τ = 0. Negative values are an artifact of the kernel density estimator used. The CED op-

timality problem is more complex than the case for the LI, since the metric is expected to be sensitive

to τ . In Figures 2.5 and 2.6 show the CED distributions and values, considering three different change-

point scenarios (i.e., τ = 0, τ = 175, τ = 350). The maximum τ is chosen based on the median length

of inspection (MLI) for the desired in-control parameterλ0. In the case of Shewhart charts without run

0 50 100 150 200 250 300 350

18
20

22
24

26
28

τ

r=1
r=2
r=3
r=4

��
�

Figure 2.3: Lower-sided tr-charts CED versus τ for λ0 = 0.05, λ1 = 0.2, ARL0 = 500 and for different
values of r.

rules for continuous data, the run length distribution is geometric and thus monotonic. In contrast,

the figures show a multi-modal distribution behavior, most clearly for higher-orders. This might be

explained by the fact that three (3) run rules are applied simultaneously with possibly different detec-

tion delay properties. For example, Test 3 signals rarely and at very long detection times; it does not

allow the detection of trends, particularly when coupled with run rules with faster detection. The en-

tire CED distribution can be therefore used for the screening of run rules. Conditional expected delay

summary statistics are reported in Table 2.4 at different aggregation levels. Figure 2.3 shows the CED

versus the change-point τ . The effect of τ is not observable within the selected range of values, while

a strong effect of r is noticeable. Based on Table 2.4, for λ1 = 0.2, the t3-chart performs better than

the other aggregation levels.
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Figure 2.4: Lower-sided tr-charts CED distributions for λ0 = 0.05, ALI0 = 500, τ = 0 and for different
values of λ1 and r.

Figure 2.6 and 2.7 show the CED and the PSD against the ratio λ1/λ0, for different values of τ , r and d.

The values of d are set at 60 and 120, corresponding to a window of 1 hour and 2 hours respectively

to successfully detect a shift in λ, when λ is expressed in defects per minute. A moderate effect of the

location of the change-point τ within the selected range of values is noticeable in this case as well,

while the parameter d greatly affects the selection procedure.

2.3 Conclusions

Cumulative quantity control charts represent an appropriate alternative to traditional monitoring

strategies since they overcome the methodological challenges that standard control charts pose due

to extreme parameter values. However, the asynchrony of process time and control chart time poses a

severe limitation to the performance evaluation. Therefore, one should evaluate the control chart per-

formance on the right time scale to allow fair comparison among different charts. This chapter derives
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τ = 0 τ = 350

r = 1 r = 2 r = 3 r = 4 r = 1 r = 2 r = 3 r = 4

Mean 26.5 18.1 17.6 20.6 25.9 18 17.5 20.7
Median 21.4 8.3 13.4 18.3 20.9 8.5 13.5 18.5
StDev 24 20.3 15.1 12.4 23.6 20 14.4 12.5
MAD 25.5 8.8 7.9 9.1 25.1 9.1 8 9.5
10% 0.5 2.6 5.5 8.7 0.5 2.7 5.5 8.7
90% 57.7 45 39.6 33.3 57.2 44.5 39.1 33.3

Table 2.4: Lower-sided tr-charts CED summary statistics for λ0 = 0.05, λ1 = 0.2, ARL0 = 500 and for
different values of r and τ .

explicit formulas of the performance metrics of the tr-chart and the CCC chart in terms of the inspec-

tion length. In addition, it quantifies the error’s severity of the Blackwell-Girshick formula applied to

situations where a strong independence assumption is required. The discussion leads to illustrating

examples and proposes guidelines for the optimal choice of r for CCCr and tr- control charts to help

practitioners choose the most appropriate aggregation level. Additionally, it extends the notions of

the conditional expected delay and the probability of successful detection to aggregate data charts

and thoroughly discusses the effects of their unique parameters. A remarkable phenomenon is the

non-monotone behavior of the CED distribution; this aspect accentuates that relying simply on the

expected value may be very misleading, particularly in industrial contexts.
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(a) τ = 175, λ1 = 0.1
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(b) τ = 350, λ1 = 0.1
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(c) τ = 175, λ1 = 0.15
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(d) τ = 350, λ1 = 0.15

0 50 100 150 200

0.00

0.01

0.02

0.03

0.04

0.05

0.06

 

D
e
n
s
it
y

r=1

r=2

r=3

r=4

(e) τ = 175, λ1 = 0.2
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Figure 2.5: Lower-sided tr-charts CED distributions for λ0 = 0.05, ARL0 = 500 and for different values
of λ1, r and τ .
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(b) CED, τ = 175
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(c) CED, τ = 350
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(d) SD(CED), τ = 0
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Figure 2.6: Lower-sided tr-charts conditional expected delay for different values of r and τ .
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Figure 2.7: Lower-sided tr-chart probability of successful detection for different values of r, τ and d.
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Generalized Likelihood Ratio Monitoring

Methods for High-Purity Processes

The successful implementation of monitoring procedures in the manufacturing industry requires tai-

lored solutions to target specific out-of-control scenarios. Commonly, standard control charts are not

suited for monitoring complex processes since they are built upon statistical models that are often

too simplistic. Generalized likelihood ratio (GLR) control charts are a flexible tool for conveniently

tailoring statistical monitoring systems to a specific application.

As described in Chapter 1, monitoring cumulative quantities between non-conforming items in

the context of high-purity processes represents an adequate monitoring strategy to overcome the

methodological challenges posed by standard approaches. Furthermore, as discussed in Chapter 2,

the distinction between the process time and control chart time is fundamental when comparing dif-

ferent models.

This chapter discusses the design of generalized likelihood ratio-based charts for simple and compos-

ite hypotheses when applied to high-purity processes. Lee and Woodall (2018) point out and resolve a

relevant technical issue in deriving generalized likelihood ratio control charts. Inspired by their work,

this chapter proposes an improved chart for geometrically distributed data that removes the artificial

bound introduced to address the statistic definition problem. Additionally, it stresses the importance

of correctly estimating the model’s interval-restricted parameters when using the maximum likeli-

hood method. Finally, the control charts proposed are compared to their competitors by simulation
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studies.

The rest of the chapter is organized as follows. Section 3.1 focuses on sequential change-point de-

tection under simple hypotheses for cumulative quantity control charts. Section 3.2 proposes a new

design for gamma GLR control charts and evaluates their performance. Section 3.3 extends the dis-

cussion to composite hypotheses models, followed by the performance comparison of simple and

composite hypotheses schemes in Section 3.4. Finally, Section 3.5 contains the main conclusions of

this chapter.

3.1 Sequential change-point detection under simple hy-

potheses

Statistical process control is concerned with the design and analysis of techniques for online quickest

detection of a change in the state of a process, subjected to a tolerable limit on the false detection

rate. The time instance at which the process changes is referred to as the change-point; estimating

the change-point position and the magnitude of the change is crucial for post-signal diagnosis. On-

line detection conveniently fits in the framework of sequential hypothesis testing to properly assess

its statistical performance. In the sequel, the random variables Z1, Z2, . . . are assumed to be inde-

pendent and to follow the same probability distribution with possibly different parameters θ(i). The

most widely studied set of simple hypotheses represents an abrupt and unexpected persistent shift

in the parameter as shown in (3.1), where τ is a fixed, unknown parameter, θ0 is the fixed in-control

parameter, and θ1 can be an arbitrary value in a parameter set Θ.

H0 : θ(i) = θ0, for all i

Ha(τ) : θ(i) =


θ0, for i = 0, . . . , τ

θ1, for i = τ + 1, . . .
(3.1)

Once the change-point model has been chosen, the generalized log-likelihood ratio statistics can be

defined for a specific density or probability mass function fθ. For the set of hypotheses described in
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(3.1), the generalized likelihood ratio can be written as follows

logΛk(θ0, θ1; z) = log max
0≤τ≤k−1

τ∏
i=1

fθ0(zi) sup
θ1

k∏
i=τ+1

fθ1(zi)

k∏
i=1

fθ0(xi)

= log max
0≤τ≤k−1

k∏
i=τ+1

f
θ̂1
(zi)

k∏
i=τ+1

fθ0(zi)

, (3.2)

where k represents each decision point. In this setting, τ = 0 allows for the situation in which the

change has already occurred before the monitoring has begun. By definition
∏0

i=1(·) = 1. As stated

in the previous chapters, in the context of high-purity processes, parametric control charts which as-

sume underlying gamma or negative binomial distributions represent the common choices when

monitoring the cumulative quantities between events. Therefore, the generalized likelihood ratio

statistics for both distributions are discussed and derived below.

Negative Binomial Consider the sequence of independent Bernoulli random variables, denoted

by Y1, Y2, . . ., representing the inspected items classified as conforming or non-conforming. Let

X1, X2, . . . be the number of conforming items until the rth non-conforming one is observed, then

X1, X2, . . . follow the negative binomial distribution with parameters p and r, under the independence

assumption and constancy of the parameter p over time. In the special case r = 1, e.g., the number

of conforming items between two consecutive non-conforming ones, the random variables Xi follows

the geometric distribution with parameter p. The likelihood ratio statistic for negative binomial dis-

tributed observations under the hypotheses in (3.1) is as follows

logΛk(θ0, θ1; x) = max
0≤τ≤k−1

r(k− τ)
[

log
(
θ̂1
θ0

)
− log

(
1− θ̂1
1− θ0

)
+

1
θ̂1

log
(

1− θ̂1
1− θ0

)]
.

(3.3)

where θ̂1 is the maximum likelihood estimator (MLE) of the out-of-control parameter θ1. One must

note that this form is valid only for two-sided settings because the parameter estimate is unrestricted.

For a short discussion on parameter restriction, refer to the end of this section. The statistic in (3.3)

is undefined if there is at least one value of τ such that θ̂1 = 1, i.e., in the extreme case in which all
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the observations from τ + 1 to k are equal to r. KazemiNia et al. (2018) propose an artificial upper

bound (θu) to ensure that θ1 = 1 does not occur. This artificial bound acts like a tuning parameter to

the desired out-of-control scenario, a redundant specification in the design of likelihood ratio control

charts. Following the method proposed in Lee and Woodall (2018), a slightly modified version of the

negative binomial GLR chart is proposed to address the problem of the statistic being undefined if

there are values of τ such θ̂1 = 1. Although the solution proposed by Lee and Woodall (2018) is correct

for the negative binomial in its general form, the implementation for specific cases in that paper is

imprecise. The problem is that the article gives formulas for the test statistic based on a condition on

τ , which is impossible to check since the test statistic involves optimizing over τ . It follows from the

definition of Λk in (3.2) that

logΛk(θ0, θ1; x) = log max
0≤τ≤k−1

sup
θ1

k∏
i=τ+1

θ1
r(1− θ1)

xi−r

k∏
i=τ+1

θr
0(1− θ0)xi−r

= max
0≤τ≤k−1

log


sup
θ1

k∏
i=τ+1

θr
1(1− θ1)

xi−r

k∏
i=τ+1

θr
0(1− θ0)xi−r

 . (3.4)

If, for a given τ , it occurs that xj = r for j ≥ τ+1, then the inner optimization in (3.4) can be performed

as follows

log sup
θ1

(
θ1
θ0

)r(k−τ)(1− θ1
1− θ0

)−r(k−τ)(1− θ1
1− θ0

)∑k
j=τ+1 xj

= sup
θ1

log
(
θ1
θ0

)r(k−τ)

= sup
θ1

r(k− τ) log
(
θ1
θ0

)
.

(3.5)

The expression in (3.5) is maximized for θ1 = 1. If, for given τ , it does not hold that xj = r for j ≥ τ +1,

then θ̂1 = r(k−τ)∑k
i=τ+1 xi

. Therefore, the inner optimization of the GLR statistic, i.e., the optimization of the
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value θ1 for the alternative hypothesis for the negative binomial GLR statistic can be defined as

log sup
θ1


k∏

i=τ+1
θr

1(1− θ1)
xi−r

k∏
i=τ+1

θr
0(1− θ0)xi−r

 =


−r(k− τ) log(θ0), if xi = r for i = τ + 1, . . . , k− 1

r(k− τ)
[

log
(
θ̂1
θ0

)
− log

(
1−θ̂1
1−θ0

)
+ 1

θ̂1
log
(

1−θ̂1
1−θ0

)]
, otherwise.

(3.6)

Gamma As previously stated, the dynamics of low-rate counts in continuous time could be de-

scribed by a homogeneous Poisson process with rate 1/θ, so that the number of events up to time

t follows a Poisson distribution with mean θt. Non-conforming items and their occurrence times are

recorded. As described in (3.1), the inter-arrival times are used to determine whether an increase in

the Poisson parameter θ has occurred from the in-control situation, which is assumed to be a known

value θ0, to an unknown out-of-control value, denoted by θ1. The times between r events are then

independent random variables Zk, each of which is gamma distributed with rate 1/θ and shape r. The

likelihood function for the alternative hypothesis is

L(θ0, θ1, r; z) =
τ∏

i=1

θ−r
0

Γ(r)zr−1
i e−

zi
θ0 ×

k∏
i=τ+1

θ−r
1

Γ(r)zr−1
i e−

zi
θ1 , (3.7)

where Γ(r) = (r − 1)! since the shape parameter r ∈ N. For this application, the shape parameter

r is fixed a priori and represents the order of the control chart. The unknown post-change mean is

estimated using the maximum likelihood estimation method. Under the hypotheses defined in (3.1),

the log-likelihood ratio statistic becomes as follows

logΨk(θ0, θ1, r; z) = log max
0≤τ≤k−1

sup
θ1

k∏
i=τ+1

1
θr

1Γ(r)zr−1
i e−

zi
θ1

k∏
i=τ+1

1
θr

0Γ(r)zr−1
i e−

zi
θ0

. (3.8)

For the two-sided setting the equation in (3.8) becomes

logΨk(θ0, θ1, r; z) = max
0≤τ≤k−1

r(k− τ)
[

log
(
θ0

θ̂1

)
+
θ̂1 − θ0
θ0

]
, (3.9)
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where

θ̂1 =

∑k
i=τ+1 zi

r(k− τ) . (3.10)

The MLE θ̂1 is undefined for
∑k

i=τ+1 zi = 0, i.e., all the observations from τ + 1 to k are equal to zero.

Nevertheless, this situation cannot occur in this specific context: the zi are the inter-arrival times be-

tween rth subsequent events, which is always a strictly positive quantity since for a Poisson distri-

bution the probability or registering two or more events at the same time is zero. Therefore, logΨk

is always well-defined. Finally, the change-point τ can be estimated for the negative binomial and

gamma distribution as follows

τ̂Λ = arg max
0≤τ≤k−1


−r(k− τ) log(θ0), if xi = r for i = τ + 1, . . . , k− 1

r(k− τ)
[

log
(
θ̂1
θ0

)
− log

(
1−θ̂1
1−θ0

)
+ 1

θ̂1
log
(

1−θ̂1
1−θ0

)]
, otherwise

(3.11)

and

τ̂Ψ = arg max
0≤τ≤k−1

r(k− τ)
[

log
(
θ0

θ̂1

)
+
θ̂1 − θ0
θ0

]
, (3.12)

respectively.

Parameter restriction in one-sided settings One must note that logΛk and logΨk in (3.6) and

(3.9) are correctly defined when aiming at detecting simultaneously upward and downward shifts

from the in-control parameter, i.e., in two-sided settings, because the maximum likelihood estima-

tor is unrestricted. This condition allows to further simplify the log-likelihood ratio statistics by direct

substitution of the MLE. This is not valid for one-sided alternative hypotheses of the form θ1 < θ0

or θ1 > θ0, where the estimate is constrained, i.e., θ̂1 = min(θ0,MLEθ1) and θ̂1 = max(θ0,MLEθ1),

respectively. Therefore, within each inner optimization, it is not guaranteed that θ̂1 = MLEθ1 and

(3.6) and (3.9) would be incorrect. The inner optimization of the GLR statistic for negative binomial for
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detecting only upward shifts in the mean parameter is

log sup
θ1

=


−r(k− τ) log(θ0), if xi = r for all i = τ + 1, . . . , k− 1

(k− τ)
[

log
(
θ̂1
θ0

)
− log

(
1−θ̂1
1−θ0

)]
+

k∑
i=τ+1

xi log
(

1−θ̂1
1−θ0

)
, otherwise.

(3.13)

Similarly, the statistic for the gamma case one-sided upper case (logΨu
k) is as follows

logΨu
k(θ0, θ1, r; z) = max

0≤τ<k−1
r(k− τ) log

(
θ0

θ̂1

)
−
(

1
θ̂1
− 1
θ0

) k∑
i=τ+1

zi. (3.14)

3.2 Simple hypotheses charts design and comparison

Once the practitioner chooses the most appropriate distribution and control chart type, the design

of the control charts proposed in this study requires the determination of one parameter: the control

limit hGLR. One must note that GLR schemes can be computationally expensive, and window-limited

charts have been proposed in the literature to overcome this limitation. In the following comparison,

the effect of the window size is neglected. For window-limited schemes, the optimal window size m

should also be specified. This issue is related to similar ones for MOSUM charts, which are window-

limited versions of CUSUM charts (see e.g., Aue et al. (2012)). These charts were first introduced in

the context of quality control by Bauer and Hackl (1978) and they are also known as Finite Moving

Average Charts (Tartakovsky et al. (2015)). It is essential to stress that the importance of window-

limited strategies is bound to permit the feasibility of thousands of simulation repetitions.

Control limit The selection of the control limit hGLR should be determined based on the desired in-

control performance. Woodall and Faltin (2019) provide an interesting overview of various aspects of

choosing performance metrics that match industrial needs. In this chapter, the control chart design

is solely based on the in-control average length of inspection (ALI) and the in-control process param-

eter. As discussed in Section 2.2, the average length of inspection is defined as the average sum of

the monitored variable till the stopping time and it refers to the original data. In Table 3.1 control

limits values are reported for different combinations of average length of inspection and in-control

parameters. The control limits can be obtained via simulation. In practice, finding the control limit for
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different combinations of desired performance and in-control parameter values can be further sim-

plified. As empirically observed by Huang et al. (2012), the values of hGLR are linearly related to the

log10(ALI0×θ0). Figure 3.1 illustrates the linear relationship. The regression formula (3.15) is obtained

θ0

ALI0 × θ0 0.001 0.005 0.01

20 2.77 2.77 2.78
30 3.26 3.23 3.28
40 3.67 3.61 3.64
50 3.98 3.98 3.91
60 4.31 4.31 4.14
70 4.71 4.71 4.32

Table 3.1: Control limit values (hGLR) for several combinations of ALI0 and θ0.

from simulations and can be used to obtain either the hGLR value directly or a good initial estimate for

the iterative process of selecting the appropriate control limit.

hGLR = −1.21 + 1.32 log10(ALI0 × θ0) (3.15)

Non-homogeneous process simulations Several methods exist to generate pseudo-random ob-

servations from an NHPP. The algorithm described in the sequel is exact and based on the time scale

transformation of a non-homogeneous Poisson process (NHPP). The main advantage of using a rigor-

ous algorithm to generate NHPP is the possibility to exactly specify and fix the change-point time at

the process scale τπ without artificial corrections. It must be noted that if τπ is fixed and therefore de-

terministic, while the control chart change-point is a random variable itself. The change-point models

considered in this chapter originate from the assumption that the observations are generated from a

non-homogeneous Poisson process. Non-homogeneous Poisson processes represent a more general

form of the HPP, with the parameter λ(t) as a function of time.

Definition 3.2.1. Let {N(t) : t ≥ 0} be a counting process in the interval [0,∞). Then {N(t) : t ≥ 0} is

a non-homogeneous Poisson process with intensity function λ(t) if:
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Figure 3.1: Linear relationship between the log10(ALI0 × θ0) and hGLR for different values of the out-
of-control parameter θ0.

• N(0) = 0;

• N(t) the process has independent increments;

• lims↓0 P[N(t + s)− N(t) ≥ 2] = o(s);

• lims↓0 P[N(t + s)− N(t) = 1] = λ(t)s + o(s).

The expected number of events by time t is equivalent to the cumulative intensity function at time t.

The cumulative intensity function Λ completely specifies the Poisson process and it is as follows

E[N(t)] ≡ Λ(t) =
∫ t

0
λ(u)du. (3.16)

For a non-homogeneous Poisson process with rate λ(t), the number of arrivals in any interval is a

Poisson random variable. However, its parameter can depend on the location of the interval. More

specifically, NHPP processes describe more accurately change-point models in the high-purity pro-

cesses field, but suffer from the constraining drawback of not inheriting the convenient proprieties of

the simpler homogeneous case. For an NHPP process:

• The counts over intervals are still Poisson;

45



Chapter 3

Algorithm 1 Time-scale transformation of NHPP
1: procedure
2: E∗

i ← Exp(1, n) ▷ Generate n inter-arrival times from a unit HPP
3: t∗i ← t∗i−1 + E∗

i ▷ Get the unit HPP event times
4: ti ← Λ−1(t∗i ) ▷ Generate NHPP event times via the inverse of Λ(t)
5: Ei ← ti−1 − ti ▷ Get the NHPP inter-arrival times
6: return Ei

• The increments are still independent;

• Each increment has a Poisson distribution;

• The inter-arrival times are in general not independent, stationary nor exponentially distributed.

The latter is the main property on which the intuition behind the t-chart relies. Nevertheless, the

design of the control chart is based on the null hypothesis assumption, under which the process can

be modeled by a HPP with constant parameter λ. Deviations from this state will be considered out-

of-control situations. For methods used to monitor non-homogeneous Poisson process, we refer to

Richards et al. (2015). The following theorem can be used to simulate a non-homogeneous Poisson

process.

Theorem 3.2.2. (Çınlar (1975)) Let {Λ(t), t ≥ 0} be a positive, continuous, non-decreasing function.

Then, the random variables T1, T2, . . . are event times corresponding to a NHPP with cumulative inten-

sity function Λ(t) is and only if Λ(T1),Λ(T2), . . . are the event times corresponding to an HPP with unit

rate.

The idea behind the algorithm is to use the relationship between a HPP with unit rate and NHPP via

the inverse cumulative function as described in Theorem 3.2.2. The vector implementation of the

algorithm is described in Algorithm 1.

Intensity functions for simple and composite hypotheses In this chapter, an unknown persis-

tent shift from the mean target value is considered. In the sequel, θ is used to refer to the mean, the re-

ciprocal of the intensity parameterλ. The intensity functionθ(t) that describes how the mean changes

over time is the following

θ(t) = θic1{t≤τπ} + θoc1{t>τπ}, (3.17)

46



Generalized Likelihood Ratio Monitoring Methods for High-Purity Processes

Piecewise intensity function θ(t)

Timeτπ
τπ Time

Piecewise cumulative intensity function Λ(t)

Figure 3.2: Piecewise intensity and cumulative intensity functions of a non-homogeneous Poisson
process with change-point at τπ.

where θic is the in-control mean, θoc is the out-of-control mean and τπ is the change-point in the pro-

cess scale. Figure 3.2 shows the intensity function described in (3.17) and the corresponding cumula-

tive intensity function. The explicit form of the inverse cumulative function of θ(t) considered in this

study is available; this simplifies the simulation implementation. If the explicit form of the inverse

cumulative function is not available, the inversion can be solved numerically, but this approach can

be time-consuming. For more complex intensity functions, the distribution of the inter-arrival times

for a non-homogeneous Poisson process can be used as shown in the unpublished note by Yakovlev

et al. (2005).

3.2.1 Performance evaluation and comparison

In this section, the gamma-based generalized likelihood control chart proposed in Section 3.2 is com-

pared to the t-chart and other common memory-type methods introduced in Chapter 1. The com-

parison is performed based on the conditional expected delay metric (CED) considering a wide range

of parameters for upper shifts in θ. This metric expresses the delay from the first opportunity to de-

tect a shift after the change-point τπ, conditional on not having raised a false alarm before. To allow

a fair comparison, the control limits of each chart are calculated based on a fixed in-control average

length of inspection (ALI0), and the simulations are designed by fixing the change-point in the pro-

cess scale τπ. The performance metric values are calculated by simulations for all cases. It must be
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noted that the simulation and computation of the generalized likelihood ratio statistics can be time-

consuming. An optimized algorithm is developed to minimize the computational complexity of the

simulation process. The algorithm receives as input the process simulation matrix and the vector of

indexes which indicate the first index after the change, which is a random variable, and returns a ma-

trix with the generalized likelihood statistics. The matrix is the result of two subsequent optimizations.

Each k represents a decision point (i.e., a control chart point). From the process standpoint, at least

a defective item has been registered at time k. At each decision point k, the GLR statistic is calculated

and plotted in the control chart and represents the variable to be monitored. The assumption on

which the simulation algorithm relies is that the actual change happens between two consecutive k,

τπ ∈ [τ−1, τ ]. The statisticΛk(τ ; xi) is the result of the optimization over τ with 0 ≤ τ ≤ k−1, where

τ is the change-point on the control chart scale. Note that the statistic can be calculated only at the

times in which a defective item has been registered, meaning only at the control chart decision points.

Figure 3.3 illustrates the GLR algorithm built upon the simple hypotheses change-point model.
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Table 3.2 reports the CED×θ0 values of the gamma GLR charts and their competitors, for a wide range

of upward shifts from the in-control parameter θ0 = 0.001. The control limits for each chart are calcu-

lated based on the ALI0 set at 60/θ0. The simulation settings chosen are similar to the ones observed

in real case-studies at Dow. Each iteration is set to cover a total time elapsed of 200/θ0 time units,

while the change-point τπ is fixed at 15/θ0 time units. The chosen length of the simulation ensures

a good tail estimation of the performance metrics’ distributions. The case r = 1 is considered for

simplicity, but this evaluation can be easily extended to higher-order charts.
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It is shown that the generalized likelihood ratio control chart outperforms its competitors for almost

all upwards parameter shifts, except for the CUSUM chart designed for θ1 = 0.002, which exhibits

better performance than the proposed chart in detecting a very moderate shift. Two parameters have

been chosen for the EWMA chart to cover a reasonable range of smoothing with more or less impor-

tance to the previous observations. For the CUSUM charts, the two out-of-control shifts chosen are

the lowest and the highest, respectively, considered in the study (i.e., θ1 = 0.002 and θ1 = 0.02).

Given the overall performance, the gamma GLR chart should be used when the goal of monitoring is

to detect a wide range of parameter shifts.

One must note that each k represents a decision point. From the process point of view, at least one

defective item is recorded at time k. The GLR statistic applied to cumulative quantities is evaluated

only when a defective item is recorded, meaning only at the control chart times. As a result, detecting

improvements in the process might be delayed.

3.3 Sequential change-point detection under composite hy-

potheses

The design and analysis of monitoring techniques based on sequential change-point detection offer

a flexible and advantageous framework for detecting a wider range of shifts, while being simple to im-

plement and interpret, as discussed in Section 3. The most common deviation type studied in statisti-

cal process control is represented by an unexpected and sustained shift from the in-control conditions.

Nevertheless, most industrial applications require monitoring procedures that are tailored based on

more appropriate statistical models and more effective at detecting realistic out-of-control scenarios.

Composite hypotheses change-point models enhance GLR control charts by adding a new layer of

flexibility. A composite hypothesis is any non-simple hypothesis. Simple hypotheses set a hard limit

to a decision between one of two possible states of nature, while composite hypotheses cover a set of

values from the parameter space. Composite hypotheses can help in representing the uncertainty in-

herent to manufacturing processes by specifying a collection of possible models instead of restricting

the design based on a single parameter value. As Tartakovsky et al. (2015) report, there are two meth-

ods for dealing with composite hypothesis scenarios. The first one consists in weighting the likelihood
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ratio statistics with respect to all possible values of the parameter θ using a weighting function, while

the second approach consists in replacing the unknown parameters with their maximum likelihood

estimates. In this chapter, the latter approach is used, with a strong emphasis on the correct definition

of the maximum likelihood estimation under restriction. Composite hypotheses-based GLR models

are used in conjunction with monitoring strategies based on cumulative quantities, which represents

the standard choice in the high-purity processes framework. The following discussion considers two

shift modes for that are practically relevant in the chemical manufacturing industry: the indifference

interval and the epidemic shift model. The intensity function over time of the two models considered

is shown in Figure 3.4.

Indifference interval model In more practical and realistic scenarios, one might be interested in

detecting a change from a target value by allowing a margin, i.e., so that the process mean remains

within a certain specified tolerance interval. Woodall and Faltin (2019) discuss in detail the practical

importance of this model in industry. The set of hypotheses describing the model is reported in (3.18).

It must be noted that the in-control parameter θ is not known beforehand, nor it is fixed.

H0 : θi = θ ∈ [θ0 − δ, θ0 + δ], for all i

Ha(τ) :


θi = η ∈ [θ0 − δ, θ0 + δ], for i = 0, . . . , τ

θi = ξ /∈ [θ0 − δ, θ0 + δ], for i = τ + 1, . . . ,
(3.18)

where δ > 0 and θ0 are fixed and chosen at the discretion of the business. A similar set of hypothesis

can be found in Di Bucchianico et al. (2004). Assuming the change-point model in (3.18), the likelihood

ratio function is given by the following

Λk(θ, η, ξ; x) = max
0≤τ≤k−1

sup
η∈Θ0

τ∏
i=1

fη(xi) sup
ξ /∈Θ0

k∏
i=τ+1

fξ(xi)

sup
θ∈Θ0

k∏
i=1

fθ(xi)

= max
0≤τ≤k−1

τ∏
i=1

fη̂(xi)
k∏

i=τ+1
f
ξ̂
(xi)

k∏
i=1

f
θ̂
(xi)

, (3.19)

where θ̂, η̂ and ξ̂ are the maximum likelihood estimates of the underlying distribution f(·)based on the

set of realizations xi, under the null and the alternative hypotheses and given the interval constraints

with Θ0 = [θ0 − δ, θ0 + δ]. It must be noted that when the null hypothesis’ parameter need to be
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estimated, the numerator and denominator do not cancel out since θ̂ ̸= η̂. In this set up, τ = 0 allows

for the scenario in which the shift had happened before the monitoring started. Chang and Fricker

(1999) studied a similar situation considering a persistent monotone threshold crossing for one-sided

settings.
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Figure 3.4: Intensity functions of the indifference interval and epidemic shift change-point models.

Epidemic shift model The epidemic shift model, also known as transient shift (Reynolds Jr and

Lou (2010)), represents another relevant monitoring scenario in the chemical industry. The model

describes a temporary change in the parameters, a typical situation where a feedback controller is

active. The controller tries to compensate for changes in the processes, giving rise to a temporary

deviation and bringing the process back to normal by adjusting several process variables. However,

identifying the location of the change and investigating the root cause of the parameter shift can be

of importance in many applications. Ramanayake and Gupta (2004) propose a generalized test for

the exponential distribution family assuming the epidemic shift model. A set of hypotheses for the

epidemic shift can be written follows

H0 : θi = θ ≤ θm, all i

Ha(τ1, τ2) :



θi = η ≤ θm, for i = 0, . . . , τ1

θi = ξ > θm, for i = τ1 + 1, . . . , τ2

θi = φ ≤ θm, for i = τ2 + 1, . . .

(3.20)
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where θm is a fixed parameter used to calculate and design the control chart to satisfy performance

conditions at the boundary. This model represents a more generic version of the classical change-

point problem since it involves multiple change-points with 0 ≤ τ1 < τ2. The likelihood ratio function

for the epidemic shift model is as follows

Ψk(θ, η, ξ, φ; x) = max
0≤τ1≤τ2−1,

τ1+1≤τ2≤k−1

sup
η∈Θ0

τ1∏
i=1

fη(xi) sup
ξ /∈Θ0

τ2∏
i=τ1+1

fξ(xi) sup
φ∈Θ0

k∏
i=τ2+1

fφ(xi)

sup
θ∈Θ0

k∏
i=1

fθ(xi)

,

(3.21)

where Θ0 = [0, θm].

In the sequel, the generalized likelihood ratio statistics for the proposed change-point models, as-

suming that the observations are either negative binomial or gamma distributed, are derived.

Negative Binomial Consider a sequence of inspected items classified as conforming or noncon-

forming. The mass probability function of the negative binomial distribution, as reported in Section,

1.1 is the following

f(r, θ; y) ≡ P(Y = y) =
(

y− 1
r− 1

)
θr(1− θ)y−r. (3.22)

The parameter θ represents the probability of occurrence of non-conforming items. The statistic to be

monitored under the composite hypotheses scenarios introduced above are obtained by substituting

the generic density function f(·) in (3.19) and (3.21) with (3.22). By substituting the interval-restricted

MLEs, the log-likelihood ratio statistic for the indifference interval model becomes

logΛNB
k (θ, η, ξ; y) = max

0≤τ≤k−1
r(τ log(η̂) + (k− τ) log(ξ̂)− k log(θ̂)). (3.23)

Analogously, for the epidemic shift model the log-likelihood ratio statistic becomes

logΨNB
k (θ, η, ξ, ϕ; y) = max

0≤τ1≤τ2−1,
τ1+1≤τ2≤k−1

r(τ1 log(η̂) + (τ2 − τ1) log(ξ̂) + (k− τ2) log(φ̂))

− r(k log(θ̂)). (3.24)
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Both statistics are undefined for ξ̂ = 0 and/or θ̂ = 0. It is possible to completely define the statistic

considering these extreme cases without introducing artificial bounds on the estimates similarly as

presented in Section 3.1.

Gamma As discussed in the introductory chapter, the times between r events are independent ran-

dom variables Xk, each distributed as a gamma distribution with rate 1/θ and shape r, with the follow-

ing probability density function

f(r, θ; x) = 1
θr Γ(r)xr−1e−

x
θ . (3.25)

Similarly to the negative binomial case, the two log-likelihood ratio statistics for the indifference in-

terval and epidemic shift models described in (3.19) and (3.20), assuming gamma distributed obser-

vations, become

logΛΓ
k (θ, η, ξ; x) = max

0≤τ≤k−1
r(k log(θ̂)− τ log(η̂)− (k− τ) log(ξ̂)) (3.26)

and

logΨΓ
k (θ, η, ξ; x) = max

0≤τ1≤τ2−1,
τ1+1≤τ2≤k−1

r(k log(θ̂)− τ1 log(η̂)− (τ2 − τ1) log(ξ̂))

− r((k− τ2) log(φ̂)), (3.27)

respectively.

Estimation of the parameters The parameters in the composite hypotheses models are subjected

to interval restrictions by definition. For both negative binomial and gamma distributions, for the

indifference interval model, the MLEs of θ, η and ξ are the following

θ̂(τ, k; x) = min
(

max
(
θ̂∗, θ̂0 − δ

)
, θ̂0 + δ

)
; (3.28)

η̂(τ, k; x) = min
(

max
(
η̂∗, θ̂0 − δ

)
, θ̂0 + δ

)
; (3.29)
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ξ̂(τ, k; x) =



ξ̂∗ if ξ̂∗ /∈ Θ0

θ̂0 − δ if L(ξ = θ̂0 − δ|η̂, τ, k, x) > L(ξ = θ̂0 + δ|η̂, τ, k, x)

θ̂0 + δ otherwise,

(3.30)

respectively, where η̂∗, ξ̂∗ and θ̂∗ are the unrestricted MLE, considering that the likelihood function

L(η, ξ, θ, τ, r; x) has one maximum with respect to the individual parameters. Figure 3.5 shows how

the out-of-control estimate ξ̂ is moved at the boundaries of the indifference interval when the unre-

stricted maximum likelihood estimate is contained in it. Similarly to the previous change-point model,
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Figure 3.5: Estimate’s correction of the alternative hypothesis parameter ξ̂ under the indifference in-
terval model.

the parameters for the epidemic shift can be estimated by imposing interval constraints on the un-

restricted MLEs. In this case, since the objective is to detect a one-directional shift, the parameter

restrictions for the negative binomial and gamma cases are slightly different. This is because the es-

timated parameters of the latter are expressed in terms of means rather than in rates. In Table 3.3 the

parameter restricted are reported for detecting upward shifts in the rate or, equivalently, downwards

shifts in mean. The parameters η̂∗, ξ̂∗, φ̂∗ and θ̂∗ are the unrestricted MLEs of the assumed underly-

ing distribution, following the parametrization choice in (3.22) and (3.25). Restricted intervals are not

exclusive to composite hypotheses; GLR one-sided control charts assuming an unknown permanent

shift model described in Section 3.1 are also subjected to interval restriction but this aspect is often

neglected.

Change-point location As stated in the previous sections, one of the main advantages of change-

point models is the possibility to estimate their location by taking the arguments that maximize the
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Parameter Negative Binomial Gamma

θ̂(τ ; x) min
(
θ̂∗, θ̂m

)
max

(
θ̂∗, θ̂m

)
η̂(τ, k; x) min

(
η̂∗, θ̂m

)
max

(
η̂∗, θ̂m

)
ξ̂(τ, k; x) max

(
ξ̂∗, θ̂m

)
min

(
ξ̂∗, θ̂m

)
φ̂(τ ; x) min

(
φ̂∗, θ̂m

)
max

(
φ̂∗, θ̂m

)
Table 3.3: Parameters’ estimation for the the epidemic shift model.

log-likelihood ratios. For example, for the model based on the gamma distribution, the change-point

position τ under the indifference interval alternative hypotheses is

τ̂ = arg max
0≤τ<k−1

r(k log(θ̂)− τ log(η̂)− (k− τ) log(ξ̂)). (3.31)

In a similar fashion, the two change-point positions τ1 and τ2 under the epidemic shift model can be

estimated as follows

(τ̂1, τ̂2) = arg max
0≤τ1≤τ2−1,

τ1+1≤τ2≤k−1

r(k log(θ̂)− τ1 log(η̂)− (τ2 − τ1) log(ξ̂))

− (k− τ2) log(φ̂)). (3.32)

3.4 Composite hypotheses charts design and evaluation

This section discusses procedures and limitations in implementing the composite change-point mod-

els proposed in Section 3.3.

3.4.1 Implementation of the indifference interval monitoring scheme

When the process is in-control and no shift outside the indifference interval has occurred, the result of

the outer maximization on the change-point expected is τ = k−1, which means that the hypothesized

shift happened at the current observation k. In this case, logΛk ≈ 0. For the indifference interval

model described in (3.18), the outer maximization on the change-point might give as result τ = 0 or

τ = k − 1 depending on the estimate of the out-of-control parameter ξ. In particular, the change-

point maximization depends on which side the estimate of ξ is forced to, whether to the upper or
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lower boundary. This effect is noticeable by looking at the extreme cases when τ = 0 and τ = k− 1.

For τ = 0, the likelihood in (3.19) becomes

k log(θ̂)− k log(ξ̂) = k(log(θ̂)− log(ξ̂)), (3.33)

and for τ = k− 1, it becomes

k log(θ̂)− (k− 1) log(η̂)− log(ξ̂) ≈ log(θ̂)− log(ξ̂). (3.34)

When ξ̂ is pushed to the upper interval limit θ0 + δ, the difference log(θ̂)− log(ξ̂) is always negative,

and vice versa. If logΛ < 0, the maximization over τ will result in τ = k − 1 since log(θ̂) − log(ξ̂) >

k(log(θ̂)− log(ξ̂). On the other hand, if logΛ > 0, then the result of the maximization is τ ≈ 0 since

log(θ̂) − log(ξ̂) < k(log(θ̂) − log(ξ̂)). The scaling factor k in (3.33) leads to instability of the statis-

tics during in-control conditions. This is valid for the gamma distribution as well as for the negative

binomial distribution, with the direction of the shift reversed. This effect gets stronger as the margin

allowed increases, mainly due to the restrictions imposed on the maximum likelihood estimates. Ad-

ditionally, the resulting instability is emphasized at the beginning of the monitoring, because of the

high sensitivity of the estimates to the set of realizations of the random variable. This consequence is

due to the skewness of the distribution and high variability, characteristic of low defect rate processes.

This shortcoming might lead to quick departures while being in the in-control state. An alternative ap-

proach is to split the indifference model into two one-sided models. As an example, a one-sided case

of (3.18) can be written as follows

H0 : θi = θ < θ0 + δ, for all i

Ha(τ) :


θi = η < θ0 + δ, for i = 0, . . . , τ

θi = ξ ≥ θ0 + δ, for i = τ + 1, . . .
(3.35)

The one-sided case solves the issue of instability due to parameter restriction. Figure 3.6 shows the

one-sided indifference interval statistics over time for a series of out-of-control rates. The in-control

parameterθ0 and the critical value δ are both set at 0.01. The monitoring scheme only signals when the

out-of-control rate exceeds the allowed margin and ignores shifts that are not of practical importance.
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Figure 3.6: One-sided GLR indifference interval statistics over time for different shifts.

3.4.2 Implementation of the epidemic shift monitoring scheme

The design of the control chart proposed for the epidemic shift model requires the determination

of two parameters: the control limit h and the window limit size m. The latter is not considered in

the following discussion. This section evaluates the performance of the control chart based on the

epidemic shift change-point model for the gamma distribution.

Control limits The selection of the control limit h is determined based on the desired in-control

ALI and the in-control process parameter. The average inspection length refers to the original data.

The appropriate h is obtained via Monte Carlo simulations. The control limits under an unknown per-

manent shift and the epidemic shift models are denoted as h and hES, respectively. The control lim-

its for different combinations of performance and parameter values can be approximated via linear

interpolation since it is linearly related to the natural logarithm of ALI0 as shown in Section 3.2. It

must be noted that the framework for high-purity processes relies on the assumption of constancy

of the parameters over time (i.e., θ(t) = θ and ψ(t) = ψ). While the process is assumed to be non-

homogeneous, the assumption is valid for the null hypothesis, described by a homogeneous Poisson

process.
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h hES

ALIm × θm 0.001 0.005 0.01 0.001 0.005 0.01

20 2.81 2.78 2.80 3.13 2.94 2.96
30 3.30 3.29 3.31 3.71 3.57 3.59
40 3.68 3.67 3.70 4.12 4.03 4.05
50 4.02 4.02 4.04 4.50 4.39 4.42
60 4.36 4.38 4.38 4.88 4.78 4.79

Table 3.4: Control limits values (h, hES) for several combinations of ALI0 and θm for r = 1.

3.4.3 Performance evaluation and comparison

This section compares the monitoring scheme proposed in (3.25) to the simple-hypotheses general-

ized likelihood ratio approach to detect an unknown, persistent shift, denoted by logΦΓ
k . It has been

already shown in Section 3.2 that the simple-hypothesis GLR exhibits superior performance compared

to other memory-type methods. The conditional expected delay (CED) metric is helpful to compare

the charts in terms of the expected delay from the first opportunity to detect a shift, provided that the

chart did not raise any false alarm before the change-point. Because of the conditional delay’s skewed

distribution, the standard deviation of the conditional expected delay SD(CED) is also reported. Both

metrics can be used to select the chart order, as discussed in Section 2.2. For the epidemic shift, the

function describing the intensity of the parameter ψ(t) can be written as follows

ψ(t) = ψic1{t≤τπ} + ψoc1{τπ1<t≤τπ2} + ψic1{t>τπ2}, (3.36)

and the underlying process can be simulated using the algorithm described in Algorithm 1 in Section

3.1. The explicit form of the inverse cumulative function ofψ(t)has an analytical form, simplifying the

implementation procedure. The performance metrics for detecting upward shifts from the in-control

situation are shown in Table 3.5. The results were obtained using the epidemic shift model in short-

run settings, i.e., assuming that the in-control parameter is unknown and needs to be estimated. The

simulation study consists of thousands of iterations of variable length. The simulation length is deter-

mined based on the desired expected total time elapsed from the beginning to the end of each run and

it depends on the in-control and out-of-control parameters. The size is large enough to capture the

behavior of the metrics away from the expected mean value and from the in-control average length
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of inspection selected, while guaranteeing reasonable computational costs. The expected in-control

parameter, the ALI0 and the first-change point time (τπ1 ) are fixed at 0.001, 60/θm and 20/θm time-

units, respectively. The duration of the epidemic shift (τπδ) varies and it is expressed as a function of

the in-control parameter. The percentage of missing opportunities (% MO) to detect a change within

the simulation length is also reported. It must be noted that the multiple change-point statistics must

be reset after a shift is detected and the change-point locations are estimated.
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Results show that the first-order (r = 1) chart tailored for an epidemic shift reacts slightly faster for

any shift amplitude when the duration of the epidemic shift is very short. However, when the dura-

tion of the shift is longer, the traditional GLR performs better. The second-order chart (r = 2) performs

consistently better than its competitor in terms of CED. It is also remarkable that the SD(CED) is con-

sistently lower for the epidemic shift statistic for all combinations.

3.5 Conclusions

Generalized likelihood ratio control charts represent a convenient tool for tailoring monitoring

schemes to industrial applications, but they are less developed for discrete processes. This chap-

ter, inspired by the work of Lee and Woodall (2018), proposes an improved generalized likelihood

ratio design that does not involve the specification of an artificial bound for geometrically distributed

observations, while guaranteeing the full definition of the statistics. The notions of change-points

and GLR charts is extended to observations that are aggregated over time, proposing the gamma

GLR chart for monitoring homogeneous Poisson processes for simple null and alternative hypothe-

ses. Inexact parameter estimations via the maximum likelihood method are corrected for interval

restrictions, aspect often neglected in the literature. Via a simulation study, the proposed gamma

GLR chart is compared to its traditional memory-type and memory-less competitors showing overall

superior performance than any other chart for a wide range of shifts. Then, the generalized likelihood

ratio framework applied to statistical process control is extended by considering composite null and

alternative hypotheses. This approach offers an extra layer of flexibility, allowing to design monitor-

ing schemes based on industry-tailored change-point models. Section 3.3 proposes the indifference

interval and the epidemic shift for negative binomial and gamma-distributed observations. The in-

difference interval model suffers instability when the set-up allows for bidirectional shifts while the

one-sided version proved effective at detecting only shifts of practical importance. The control chart

based on the epidemic shift model showed better performance when the shift length is short, which

is expected when a feedback-controller is active.
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Generalized Linear Model Monitoring

Methods for High-Purity Processes

Traditional control charts aim at detecting process departures from normality by independently mon-

itoring one or more quality variables. When the variables of interest exhibit a strong dependence on

some covariates, out-of-control situations cannot be described in terms of the quality characteristics

only. Instead, the monitoring scheme should be able to raise an alarm when the abnormal behavior

is contextualized, i.e., to detect contextual anomalies. An example from the chemical industry is the

production of plastic pellets. The monitored quality of interest is the number of defects that depends

on the fluctuations in the weight of the inspected product. A valid method for detecting contextual

anomalies is the application of regression-based control charts first introduced by Mandel (1969). The

idea is to combine control charts with regression analysis by establishing the relationship between the

variable of interest and its covariates and using the model residuals to detect out-of-control situations.

The regression model contextualizes the process departure from the in-control state, and the use of

the residuals allows for correcting for external factors. This setup has several applications in industrial

settings, but it is also common in other fields. For example, this procedure is used in econometrics to

detect structural changes (see e.g., Dufour (1982)). In medical monitoring applications, it is common

to adjust observations by using health covariates of individual observations. Sachlas et al. (2019) pro-

vide an extensive overview of so-called risk-adjusted control charts. The simplest monitoring scheme

using regression models is to fit and fix a regression model during Phase I, then monitor residuals with
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respect to the fixed regression model, namely predictive residuals. The drawback of this procedure is

that the residuals are correlated, making assessing the monitoring scheme’s performance a difficult

task. Brown et al. (1975) introduced a recursive approach for obtaining regression residuals over time,

where a new regression model is fitted at the arrival of each new observation, after which the regres-

sion residuals are obtained. This approach fits within the area of self-starting control charts, which

are practical in situations where Phase I is not feasible. Furthermore, recursive residuals are proved to

be uncorrelated with zero mean and constant variance for normally distributed observations. Galpin

and Hawkins (1984) discuss several applications of recursive residuals. Linear regression models with

normally distributed error terms are by far the most common regression strategy in the field. Still,

some quality response variables cannot be modeled by the normal distribution. Generalized linear

models (GLM) offer a more flexible choice on the distribution of the monitored variables, especially

for count data, as they extend it to a more comprehensive set of distributions belonging to the fam-

ily of exponential dispersion models. Residuals for generalized linear models are more complex than

for standard linear regression models. Several types of residuals are proposed for GLM models, with

Pearson, deviance, and randomized quantile residuals being the most commonly used. The recur-

sive residuals are introduced in the generalized linear model framework by McGilchrist and Matawie

(1998). Several studies have been conducted for non-normal response variables by applying the re-

gression framework. The most common choice for count data is to use the Poisson or negative bino-

mial distributions and their variants, like the zero-inflated Poisson and the Conway-Maxwell (COM)

distributions. It must be noted that the Conway-Maxwell and the Zero-inflated models can be used in

regression settings, but they do not belong to the GLM framework. Skinner et al. (2003) introduced a

GLM-based Shewhart chart with deviance residuals for Poisson distributed dependent observations

and showed that it compared favorably to Shewhart charts based on OLS regression models. Skinner

et al. (2004) extended the approach to the case in which the observations are assumed to follow an

over-dispersed Poisson distribution that is modeled by a Poisson mixture model with an additional

dispersion parameter, reaching similar conclusions. Park et al. (2018) introduced regression-based

Shewhart charts for negative binomial and Conway-Maxwell (COM) Poisson distributions. They used

principal component analysis (PCA) to reduce the number of covariates to address the problem of mul-

ticollinearity. It is shown that COM regression-based control charts perform better for under-dispersed

count data. In contrast, the negative binomial regression-based control chart performs better in the
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case of over-dispersed data. Zero-inflated regression models are commonly used to monitor high-

purity count data affected by one or more covariates. Park et al. (2020) showed that for negative bino-

mial and the Poisson distributions and their variants, as mentioned above, Shewhart control charts

based on randomized quantile residuals perform better than their counterparts based on deviance

residuals. Arshad et al. (2021) compared the performance of Shewhart, EWMA and CUSUM regression

control charts residuals for the Poisson distribution and its variants, indicating which control chart

performs best in specific cases. Mahmood (2020) showed that regression-based Shewhart charts for

zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) distributions monitoring Pear-

son residuals performed better than ordinary Shewhart charts. The motivation behind this work is

driven by applying monitoring schemes to high-purity processes characterized by low-rate count oc-

currence. Traditional count-based control charts are inappropriate for low defect rates as discussed

in Section 1.1. A successful alternative approach is monitoring cumulative quantities over time. The

observations can be modeled in these settings by a homogeneous Poisson process. Since the cumu-

lative quantities are times until the rth non-zero counts, the time-between-events observations follow

a gamma distribution. GLM-based control charts for the gamma distribution have received less atten-

tion in the literature. Jearkpaporn et al. (2003) introduced a GLM-based Shewhart chart with deviance

residuals and showed that GLM-based controls chart outperform traditional control charts and OLS-

based control charts. Chimka (2009) presents the results of a case study related to influenza activity.

The novelty of the discussion introduced in this chapter resides in applying these strategies to cu-

mulative quantities control charts, namely time-between-events directly. This task is achieved by an

in-depth analysis of the simulations to explore the performance of different residuals for Shewhart-

based control charts for the gamma regression model. The rest of the chapter is structured as follows.

Section 4.1 presents the theoretical background, including the null and alternative hypotheses state-

ments and the introduction of the different types of residuals. Next, in Section 4.3 the results from the

simulation study are shown and the schemes proposed are compared. Finally, Section 4.4 contains

the conclusions and recommendation for future work.
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4.1 The regression-based change-point model

When monitoring anomalies coupled with regression models (i.e., contextual anomalies) one is inter-

ested in testing the constancy of the regression parameters over time rather than the distributional

parameters of the dependent variable. This assessment allows practitioners to take decisions that

are independent of expected and unexpected fluctuations of the covariates. The default setting in

discrete time is a generalized linear model with response observations Yi with i = 1, . . . , a link func-

tion g(·), and a set of covariates, given by the vector of regression parameters ν = (ν0, . . . , νn) (see

e.g, Dunn and Smyth (2018)). Assuming a persistent change in the regression parameters, the stan-

dard change-point detection model can be formalized in terms of null and alternative hypotheses as

follows

H0 : νi = ν0, for all i

Ha(τ) :


νi = ν0, for i = 0, . . . , τ

νi = ν1, for i = τ + 1, . . .
(4.1)

where ν is the regression parameters vector (ν = (ν0, . . . , νn)) and νi = ν1 when at least one of

ν0
i ̸= ν0

0 , . . . , νn
i ̸= νn

0 holds. In the continuous-time space, in-control high-purity processes can be

described by a homogeneous Poisson process with rate 1/θ and their inter-arrival time can be used to

determine whether an increase in the Poisson mean θ has occurred from the in-control situation. The

times between r events are independent random variables Xk, each of which is distributed as a gamma

distribution with rate 1/θ and shape r, which is fixed beforehand and does not need to be estimated.

Changing the parameter r allows for refining the calibration procedure. Small r values lead on aver-

age to more decision points, but larger variance which has a negative effect on detecting changes. By

determining the performance of the monitoring schemes with different values of r, one can balance

these two effects by choosing the most appropriate r for the monitoring goal at hand. The relation-

ship between Y and its covariates is modeled via the logarithmic link function, to avoid the need for

constraints on the linear predictor (i.e., θi > 0), as shown in (4.3). For simplicity, it is assumed that the

outcome variable is influenced by one covariate W. The covariate quantities are aggregate statistics

over time and they can represent the aggregated quantities until the next event when this choice is

relevant to the nature of the process (e.g., weight, volume) or other statistics as mean or median when
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the covariate has no physical sense when aggregated over time (e.g., temperature, pressure, pH).

fΓ(y; r, θi) = θ1−r
i Γ(r)−1yr−1e−

y
θ (4.2)

E(Y) = rθ = exp(ν0 + ν1W) (4.3)

The regression coefficients can be estimated by maximizing the log-likelihood function, by means of

the iterative weighted least squares (IWLS) algorithm during Phase I. The estimated regression coef-

ficients are denoted by ν̂0 and ν̂1, respectively. As mentioned before, the shape parameter r of the

distribution is fixed, since it represents a choice in the design of the control chart, and thus does not

need to be estimated, in contrast to the general GLM case. The relationship in (4.3) can be used to

predict the value of µi as follows

µ̂i = exp(ν̂0 + ν̂1wi). (4.4)

Per each coupled observation (yi,wi) and the corresponding mean µ̂i, the residuals or the regression

coefficients can be calculated and monitored over time.

4.2 Monitoring residuals and regression coefficients

In this section, the types of residuals used in this chapter are described in detail.

Pearson Pearson residuals (rP) are the most intuitive and straightforward to compute. Similarly to

Pearson residuals in linear regression, the raw residuals are divided by the standard deviation, which

is not constant in this case, as it depends on its expected value. They are expressed as follows

rP =
y− µ̂√

V(µ̂)
, (4.5)

where V(µ) is the variance function of the selected distribution. It is widely known that the Pearson

residuals are skewed in many GLM applications.
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Deviance The deviance residuals (rD) are defined as the signed square root of the unit deviance.

The unit deviance is twice the difference in log-likelihood between the saturated model and the fitted

model, multiplied by the dispersion parameter. The deviance represents a model performance metric,

generalizing the concept of the residuals sum for normally distributed random variables (see, e.g.,

McCullagh and Nelder (1989)). The deviance residuals are expressed as follows

rD = sign(y− ŷ)
√

d(y, ŷ), (4.6)

where d(y, ŷ) is the unit deviance. The deviance statistic has an approximateχ2 distribution when the

saddle point approximation applies to the distribution of the responses Y, and they can be far from

being normally distributed otherwise (Dunn and Smyth (2018)). Nevertheless, deviance residuals are

more likely to be normally distributed compared to Pearson residuals, since the central limit theorem

has a slower convergence rate then the saddle point approximation.

Quantile Quantile residuals (rQ) were first proposed by Dunn and Smith (1996) to overcome the

methodological drawbacks of Pearson and deviance residuals, particularly for discrete distributions.

Quantile residuals have exactly a normal distribution. They are defined for the more general regres-

sion class of exponential dispersion models. LetF(y;µ, ϕ) be the cumulative distribution function of

the random variable Y, where µ denotes the parameter vector and ϕ the dispersion parameter. If Y is

a continuous random variable, the quantile residuals are given by

rQ = Φ−1{F(y; µ̂, ϕ)}, (4.7)

where Φ is the cumulative function of the standard normal distribution. Deviation from normality is

expected when the model does not show a good fit.

Recursive Recursive residuals (rR) were introduced by Brown et al. (1975) for normal and non-

normal space model diagnostics and thoroughly discussed by Dufour (1982) for linear regression mod-

els. Recursive residuals are defined from the one-step ahead predictive distribution as shown in (4.8).

The idea behind is to re-estimate the regression model each time a new observation is recorded at

time t, using the t − 1 previous observations, and the new model is used to calculate the residuals.
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An advantage of the recursive method is that it can be used to shorten the initialization period of the

monitoring procedure. The drawback is that persistent trends are learned by the model and the re-

cursive method might fail to detect such trends since the model adapts to them. Recursive residuals

in the GLM framework were introduced in McGilchrist and Matawie (1998) and they are as follows

rR =
yi − E(µi|yi−1)√

V(µi|yi−1)
, (4.8)

where yi−1 is the observation at time i − 1 and therefore E(µi|yi−1) and V(µi|yi−1) are the expected

value and the variance from the model built with i− 1 observations, respectively.

Regression coefficients Similarly to the recursive residuals, the regression model coefficients

(ν̂0, ν̂1) can be re-estimated at every new observation and the estimates can be then monitored over

time. Monitoring the constancy of the regression parameters is particularly popular in the economet-

ric field when aiming at detecting structural changes governed by relationships between variables.

4.3 Performance evaluation and comparison

In this section, the process simulation set-up and the implementation of the residuals of the gamma

regression model are discussed. Then, the predictive residuals are compared to each other in terms

of faster detection and the performance of the recursive residuals as a monitoring tool for short runs

are evaluated.

4.3.1 Process simulations

The time between events of a non-homogeneous Poisson process can be simulated by transform-

ing a homogeneous Poisson process into a non-homogeneous one through the cumulative intensity

function of the latter, similarly to the approach used in Section 3.2 but adjusted to accommodate the

specification of the covariate W and the in-control regression parameters. By using this approach, it

is possible to exactly specify and fix the change-point time at the process scale τπ without artificial
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corrections. The intensity function used in this study is a piece-wise function as follows

θ(t) = θ11{t≤τπ1} + · · ·+ θm1{t>τπm}, (4.9)

where θ1, . . . , θm are the means of the probability distribution in (4.3), which vary with the set values

of W. The random effects of the covariate W are neglected to isolate the different effects. However, in

practice, combined effects are expected. A set of values of W are chosen and the response variable is

drawn from the density probability function in (4.3) with θi = exp(ν0
i + ν1

i wi).

4.3.2 Implementation of the residuals

The Pearson and deviance residuals for the regression model in (4.3) for the new paired observation

(yi,wi) and the correspondent mean µ̂i are

rP
i =

yi − µ̂i
µ̂i

(4.10)

since the variance function for the gamma distribution with fixed r is V(µ) = µ2 = (rθ)2 and

rD
i = sign(yi − µ̂i)

√
2
{
− log

(
yi
µ̂i

)
+

yi − µ̂i
µ̂i

}
, (4.11)

respectively. The deviance residuals in (4.11) are obtained by substituting the estimated expected

mean according to the GLM model (4.4) in the general definition of the deviance residuals in (4.4).

The quantile residuals can be defined by substituting the cumulative gamma distribution in (4.7) as

follows

rQ
i = Φ−1{F(yi; θ = µ̂i/r, r)} (4.12)

whereF is the probability density function of the gamma distribution as follows.

F(y; θ, r) = 1
θrΓ(r)

∫ y

0
yr−1 exp(−y/θ) dy. (4.13)

Pearson, deviance and quantile residuals are calculated assuming that the regression parameters are

known and fixed in Phase I. Therefore, there is no need to re-fit a generalized linear model at every
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new observation. When re-fitting the model one needs to consider the effect of the estimation of the

parameters to compare the residuals performance. Note that when using a built-in GLM regression

algorithm for the gamma distribution, the default setting is that the reciprocal of the shape parameter

r is by definition the dispersion parameter and it is estimated. The estimation does not affect the

regression parameter estimates, but it does affect the residuals since they are typically scaled by the

dispersion parameter. In general, the dispersion parameter is seldom known except in cases in which

it can be inferred from the context. In this study the dispersion parameter represents a user choice

during the design of the control chart and it is therefore fixed as discussed in Section 4.2. Using the

definition in (4.7), the recursive residuals for the chosen distribution at time i are as follows

rR =
yi − exp(ν0

i−1 + ν1
i−1wi)

exp(ν0
i−1 + ν1

i−1wi)
, (4.14)

where ν0
i−1 and ν1

i−1 are the regression coefficient of the model estimated using the previous i− 1 ob-

servations. To compute the regression coefficients, the first k observations are used to get an initial

estimate of the vector ν0 (burn-in period). The sample is then gradually enlarged one observation at a

time and the model is re-estimated at each step. This method is more computationally expensive than

the predictive counterpart. Since the recursive residuals are re-estimated at each time point, when

the shift is moderate or the number of observations is large, the residuals smoothly adapt to the new

conditions. Therefore, the number of observations in the burn-in period should be small enough to

allow fast detection during the initial stage of the monitoring procedure, but large enough to be able

to detect a shift in the parameter while not allowing the model to adjust to the new set of parame-

ters. Intuitively, the intended use of recursive residuals is primarily for short runs or the initial stage

of the monitoring procedure when the number of observations is not sufficient to reliably estimate

the regression coefficients. Given the conditions tested in this study, it has been shown empirically

that at least 40 observations should be obtained to confidently set the null hypothesis in terms of

regression coefficients to initialize and design the control chart using the predictive residuals. The

density plots of the residuals under the in-control conditions are shown in Figure 4.1. As expected,

randomized quantile and deviance residuals follow approximately the standard normal distribution,

while the Pearson and the recursive residuals distributions deviate from the normal behavior. Classi-

cal Box-Cox transformations could be used to shape the Pearson and recursive residuals into a sym-
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Figure 4.1: Quantile, deviance, Pearson and recursive residuals distributions.

metric distribution, but the presence of negative values and the dependency of the transformation

shape from the offset chosen make this step unstable. The normality condition is not a prerequisite

for using the Pearson and recursive residuals, but it might be useful in order to avoid the high sensi-

tivity of the control limits over the performance measures when detecting downwards shifts, due to

their pronounced skewness. The regression coefficients estimates are highly correlated to each other

AC
F

Lag

0
0.

2
0.

4
0.

6
0.

8
1.

0

0 5 10 15 20
Lag

0 5 10 15 20

Regression coefficient ν0 Regression coefficient ν1 

Figure 4.2: Autocorrelation plots of the regression coefficients ν0 and ν1.

and highly auto-correlated as shown in the auto-correlation plots in Figure 4.2. To monitor directly

the regression coefficients, the dimension of the regression coefficient vector can be reduced using

principal component analysis (PCA) coupled with an ARMA model to lose the auto-correlation pattern.

However, this sequence of steps increases the complexity of the monitoring system. Since the infor-

mation on the regression coefficients change over time is embedded in the recursive residuals, only

the latter are evaluated further.
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4.3.3 Performance evaluation and comparison

In this section, the control limits are calculated and the predictive residuals are compare to each other.

Moreover, the recursive residuals are assessed for detecting departures from the in-control condition

at the initial stages of the monitoring procedure.

Control limits The control limits are calculated based on the type of chart and the desired in-

control average length of inspection (ALI), which always refers to the original data (i.e., the cumulative

time to an event) and the chosen length of the simulations. This metric represents an intuitive mea-

sure that can be chosen by practitioners in relation to the technical specifications of each application

as it expresses the average total time elapsed between two false alarms (e.g., one per shift, one per

day). The control limits for upper and lower sided settings of the proposed residuals are reported in

Table 4.1 for different values of ALI0. The control limits for Pearson and recursive residuals are ex-

Upper-sided Lower-sided

ALI0 hrP hrD hrQ hrR hrP hrD hrQ hrR

30 2.42 1.54 1.84 2.42 -0.96 -2.20 -1.84 -0.97
40 2.73 1.68 1.98 2.74 -0.97 -2.35 -1.98 -0.98
50 3.01 1.81 2.10 3.02 -0.98 -2.46 -2.10 -0.98
60 3.29 1.92 2.20 3.29 -0.99 -2.58 -2.22 -0.99

Table 4.1: Predictive and recursive residuals’ control limits for several ALI0, r = 1 with regression
parameters ν0

0 = 2.9 and ν1
0 = 4.

tremely sensitive to the in-control average length of inspection particularly for the lower-sided case

because of the residuals’ skewness.

Predictive residuals comparison Pearson, deviance and quantile residuals are compared in one-

sided settings in order to detect upwards and downwards shifts in at least one of the two regression

parameters ν0, ν1 in terms of conditional expected delay (CED). The conditional expected delay ex-

presses the delay of detection from the first opportunity to detect a change, conditional on not having

raised an alarm prior to the change-point. Different change-points at the process time (τπ) are consid-

ered. The τπ values are chosen in a range between 0 (start of monitoring) and the calibration average

length of inspection. It must be noted that, when W is kept constant, an increase in the parameters
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corresponds to a decrease in the defect rate. Therefore, an increase of the regression coefficient, if

positive, results in an improvement of the process and vice-versa. In most industrial applications, de-

tecting deterioration of the process is more important for quality control. Since W in this study is kept

constant and equal to 1, only changes in ν1 are considered, which is equivalent to changes in ν0 of the

same intensity. As shown in Table 4.2, Pearson, deviance and quantile residuals show comparable

delays of detection when the aim is to detect upward shifts in the regression parameters. Quantile

residuals show slightly better performance when the shift is moderate, and the difference is less seri-

ous when considering larger deviations from the in-control conditions. No difference in performance

is notable at different change-points. Table 4.3 reports the results from the simulation study consid-

ering a downward shift in the regression parameters. In this case, deviance and quantile residuals

show comparable performance, while Pearson residuals show systematically longer delays of detec-

tion than their competitors. This is due to the high sensitivity of the Pearson residuals to the control

chart limits on the lower-side of the distribution, which worsens their performance. Therefore, for

detecting process deterioration, deviance or quantile residuals should be used. In this case, higher

change-point values show slightly better performance, particularly at moderate shifts from the in-

control condition and this trend is observable in all the three types of residuals.

CED SD(CED)
Residual type rP rD rQ rP rD rQ

ν1 = (ν1
0 , ν

1
1) τπ

(2.9, 4.5)
0 22.1 22.3 21.9 17.4 17.5 17.2
10 22.4 22.4 22.1 17.5 17.7 17.4
50 21.9 22.1 21.8 17.2 17.4 17.0

(2.9, 5)
0 13.1 13.1 13.0 7.71 7.76 7.65
10 13.1 13.1 13.0 7.76 7.80 7.69
50 13.1 13.1 13.0 7.73 7.77 7.66

(2.9, 5.5)
0 11.6 11.6 11.5 5.92 5.92 5.89
10 11.6 11.6 11.5 6.02 6.04 6.05
50 11.6 11.6 11.5 5.94 5.97 5.92

Table 4.2: Conditional expected delay of the GLM predictive residuals for detecting upwards shifts.
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CED SD(CED)
Residual type rP rD rQ rP rD rQ

ν1 = (ν1
0 , ν

1
1) τπ

(2.9, 2)
0 1.88 1.42 1.43 2.00 1.55 1.55
10 1.80 1.42 1.43 1.99 1.53 1.53
50 1.88 1.42 1.42 2.01 1.54 1.55

(2.9, 3.2)
0 19.2 14.9 14.9 18.1 14.9 14.9
10 18.8 14.8 14.9 17.5 14.6 14.7
50 17.6 14.3 14.3 15.6 13.7 13.7

(2.9, 3.5)
0 32.1 26.1 26.2 28.2 24.6 24.7
10 31.4 25.9 25.9 27.2 24.1 24.2
50 28.1 24.9 24.0 23.0 21.1 21.2

(2.9, 3.7)
0 43.8 36.7 36.9 36.6 32.9 32.0
10 43.8 36.2 36.4 35.3 32.1 32.1
50 37.3 32.7 32.8 29.5 27.6 27.7

Table 4.3: Conditional expected delay of the GLM predictive residuals for detecting downwards shifts.

Recursive residuals evaluation The recursive residuals are also evaluated in terms of CED for dif-

ferent burn-in periods and process time change-points τπ. The fraction of missed opportunities to

detect a change within a limited time frame is also reported. The time frame corresponds to the cho-

sen size of the iterations, set at the calibration average length of inspection for this study. The intent is

to evaluate the recursive residuals as a tool to use for short runs or at the initial stage of the monitor-

ing. It is therefore important that if a change occurs, it is detected within a reasonable time frame. The

performance metrics of the recursive residuals are reported in Table 4.4. It can be noticed that the de-

lay slightly decreases when more observations are available in the burn-in and the in-control period

before the change point, at the expense of the probability of missing a shift, which is higher when the

number of observations increases. This trend can be noticed for both downwards and upwards shifts.

Choosing the burn-in period should be seen as a trade-off between fast detection and the probability

of missing a change and it should be optimized based on the application requirements.
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Shift Burn-in period τπ CED SD(CED) % MO

ν1 = (ν1
0 , ν

1
1)

(2.9, 3.5)

2 0 20.3 13.6 0.48
4 0 19.3 13.3 0.46

10 0 18.5 13.0 0.46

2 2 18.7 12.9 0.49
4 2 18.5 12.8 0.49

10 2 18.1 13.2 0.49

2 10 16.5 11.8 0.54
4 10 16.3 11.5 0.54

10 10 14.7 10.4 0.57

(2.9, 4.5)

2 0 28.6 30.7 0.25
4 0 29.8 29.7 0.24

10 0 28.7 27.7 0.24

2 2 30.2 30.6 0.43
4 2 30.4 29.7 0.39

10 2 28.4 27.1 0.38

2 10 24.15 25.4 0.59
4 10 22.15 23.5 0.61

10 10 28.32 24.83 0.68

Table 4.4: Conditional expected delay and fraction of missing opportunity (%MO) of the GLM recursive
residuals for detecting upwards and downwards shifts for different of burn-in and in-control lengths.

4.4 Conclusions

The use of regression models in statistical process control provides a contextualization of the process

variables integrating real-time correction for external factors. The most common strategy is to monitor

the residuals with respect to the fixed regression model. In this chapter, the generalized linear model

framework is applied to model time between events observations from a high-purity process using

the gamma distribution, considering the effect that one covariate exerts on the quality variable of in-

terest. Different types of predictive residuals, namely Pearson, deviance, and quantile, are compared

to each other via a simulation study. Pearson, deviance, and quantile residuals show comparable

delays of detection when the aim is to detect upward shifts in the regression parameters. However,
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when the monitoring aim is to detect downward shifts, deviance and quantile residuals show compa-

rable performance, while Pearson residuals show systematically longer delays of detection than their

competitors because of the skewness of their distribution. Therefore, deviance or quantile residuals

should be used for monitoring purposes. The implementation of predictive residuals requires a Phase

I calibration where a moderately large number of observations are collected in order to establish the

in-control baseline. For short runs and the initial phase of long runs control charts, one could use

recursive residuals. The regression coefficients used in the recursive residuals are updated at each

new observation. Recursive residuals show shorter delays when more observations are available in

the burn-in period, at the expense of the probability of missing a change. These two aspects can be

balanced based on the application requirements and criticality.
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Multivariate Monitoring Procedures for

High-Purity Manufacturing Processes

Multivariate control charts for monitoring correlated quality characteristics have become increasingly

prevalent in recent times, since monitoring these variables independently can be misleading as qual-

ity variables can exhibit complex correlation patterns. A review of multivariate multinomial and multi-

attribute quality control charts can be found in Topalidou and Psarakis (2009), Saghir and Lin (2015),

and Cozzucoli and Marozzi (2018). The development of monitoring schemes for multivariate count

data faces several mathematical challenges.

• There is an inherent difficulty due to the discreteness already existing in the univariate case for

obtaining exact control limits for discrete monitoring variables;

• There are no unique multivariate counterparts of univariate discrete distributions;

• Most control chart methods rely on the normality assumption and the approximation to the

normal distribution is generally inadequate.

A common choice for monitoring multivariate count data, and for high-purity processes in particular,

is modeling the random variables using a multivariate Poisson distribution and reducing the dimen-

sionality to univariate monitoring by computing the sum, the maximum, or the difference between

the attributes, but little focus has been invested when considering these methods for monitoring pro-

cesses characterized by a low defect rate. Intuitively, the limitations that apply to the univariate case
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described in Section 1.1, represent shortcomings also in multivariate settings. Cumulative quantity

control charts have proved to be an appropriate solution for processes with a low defect rate, but few

strategies are available to monitor correlated quality characteristics simultaneously. Zwetsloot et al.

(2021) classify multivariate time-between-event monitoring into two fundamentally different scenar-

ios: the vector-based and the multivariate point process scenarios. The first one applies when uncen-

sored data are observed one vector at a time. This complete vector captures all the information of the

multivariate cumulative quantity. A control chart decision is taken when at least one defect from all

the classes (e.g., variables) has occurred and it represents the cumulative time from the first to the last

defect. The main advantage is that it generates a simple, univariate vector of time or quantity differ-

ences, and well-known univariate strategies can be employed. On the other hand, the defect classes

are treated equally and the requirement to wait until a defect has occurred in all classes inevitably

results in a detection delay, especially for detecting changes in the components with relatively differ-

ent rates. Examples of vector-based implementations are presented in Xie et al. (2011) and Flury and

Quaglino (2018). The multivariate point process scenario involves several correlated temporal point

processes. The cumulative quantities vectors are being monitored simultaneously. As the authors

point out, one approach would be to monitor each process separately, taking into account the effect

of the correlation structure on the performance metrics. In this chapter, a multivariate point process

method is proposed to monitor a p-variate stochastic counting process based on the Hermite distri-

bution. The theoretical background that lays the ground for the work is described in Section 5.1, in

which a specific multivariate Poisson distribution is introduced and its basic properties are discussed.

The corresponding stochastic counting process is introduced in Section 5.2. It is conjectured that the

superposition of the two marginal processes is the Gauss-Poisson process, also known as the stutter-

ing Poisson process, since it has a nonzero probability of two events occurring simultaneously. Finally,

in Section 5.3 the conclusions and recommendations for future work are summarized.

5.1 Campbell’s multivariate Poisson distribution

The assumption at the basis of this work is that the data can be described by either a multivariate

Poisson distribution for equidistant time intervals or by multiple correlated Poisson processes for

continuous time. There is no unique way to build a multivariate Poisson distribution. Inouye et al.
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(2017) discuss three classes of multivariate distributions derived from the Poisson distribution that

permit nontrivial dependencies between the variables. The first class considers the joint distribution

of two Poisson univariate marginals. The second class represents a mixture of independent multi-

variate Poisson distributions and for the third class, it is assumed that the univariate conditional dis-

tributions are derived from the Poisson distribution. Given the nature of the processes that inspire

this research, the models considered generalize the univariate Poisson to a multivariate distribution

with the property that the marginal distributions of each variable are Poisson. As Inouye et al. (2017)

states, several attempts have been made with the result of developing the same class of models, with

different derivations. The following approach is based on a specific multivariate Poisson distribution

introduced in Campbell (1934). Let be X1 = Y1 + U, X2 = Y2 + U, where Y1, Y2, and U are mutually

independent Poisson random variables with means λ1, λ2 and θ0, respectively. The joint probability

mass function is given by

P(X1 = x1, X2 = x2) = e−(λ1+λ2+θ0)
min(x1,x2)∑

i=0

λx1−i
1 λx2−i

2 θi
0

(x1 − i)!(x2 − i)!i! , (5.1)

where λ1, λ2 and θ0 > 0 and (x1, x2) ∈ N2.

Proof. The distribution of (X1, X2) can be determined by the disjoint union of events (U, Y1, Y2) =

(i, x1 − i, x2 − i) for all i such that all components are non-negative, i.e., 0 ≤ i ≤ min(x1, x2). Then

P((X1, X2) = (x1, x2)) =

min(x1,x2)∑
i=0

P(U, Y1, Y2) = (i, x1 − i, x2 − i))

=

min(x1,x2)∑
i=0

P(U = i)P(Y1 = x1 − i)P(Y2 = x2 − i)

=

min(x1,x2)∑
i=0

(
e−θ0 θ

i
0

i!

)(
e−λ1 λx1−i

1
(x1 − i!)

)(
e−λ2 λx2−i

1
(x2 − i!)

)

= e−(θ0+λ1+λ2)λ
x1
1

x1!

λx2
2

x2!

min(x1,x2)∑
i=0

θi
0

i!
λx1−i

1
(x1 − i!)

λx2−i
1

(x2 − i!)


= e−(θ0+λ1+λ2)λ

x1
1

x1!

λx2
2

x2!

min(x1,x2)∑
i=0

i!
(

x1
i

)(
x2
i

)(
θ0
λ1λ2

)i
.
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The random variable U appears in both X1 and X2, establishing the correlation between the variables.

Therefore, the covariance is as follows

Cov(X1, X2) = Cov(Y1 + U, Y2 + U) = Cov(U,U) = Var(U) = θ0. (5.2)

Since θ0 represents a Poisson rate parameter, the Campbell model can accept only a positive correla-

tion. If the parameters are unknown, they can be estimated via maximum likelihood estimation (MLE).

The parameters can be written in terms of Poisson rates per each variable (ri) and the correlation (ρ).

For the bivariate case they are as follows

r1 = λ1 + θ0; (5.3)

r2 = λ2 + θ0; (5.4)

ρ =
Cov(X1, X2)

σX1σX2
=

θ0√
(λ1 + θ0)(λ2 + θ0)

. (5.5)

The joint probability mass function in (5.1) can be extended to a p-variate distribution as follows

P((X1, . . . , Xn) = (x1, . . . , xn)) = e−(θ0+
∑p

i=1 λi)Prodp
k=1

λxk
k

xk!

minj xj∑
j=0

j!
( p∏

k=1

(
xk
j

)
θ0∏p

k=1 λk

)j
 .

(5.6)

Proof. Following the derivation for the bivariate case, the p-variate Poisson distribution can be ob-
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tained similarly. Let Xi = Yi + U where Yi ∼ Poi(λi)i∈{1,2,... } and U ∼ Poi(θ0). Then

P((X1, . . . , Xn) = (x1, . . . , xn)) =

minj(xj)∑
j=0

P(U, Y1, . . . , Yn) = (i, x1 − j, . . . , xn − j))

=

minj(xj)∑
j=0

P(U = j)P(Y1 = x1 − j) . . .P(Yn = xn − j)

=

minj(xj)∑
j=0

(
P(U = j)

p∏
k=1

P(Yk = xk − j)
)

=

minj(xj)∑
j=0

(
e−θ0 θ

i
0

i!

p∏
k=1

e−λk

(
θi

0
i!

)
λxk−i

k
(xk − i!)

)

= e−(θ0+
∑p

i=1 λi)

minj(xj)∑
j=0

(
θi

0
i!

p∏
k=1

λxk−i
k

(xk − i!)

)

= e−(θ0+
∑p

i=1 λi)
p∏

k=1

λxk
k

xk!

·
minj(xj)∑

j=0
j!
( p∏

k=1

(
xk
j

)(
θ0∏p

k=1 λk

)j
)
.

Figure 5.1: Campbell’s bivariate Poisson histograms with independent Poisson marginals (left) and
dependent Poisson marginals with a correlation of 0.8 (right).
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Hermite distribution Consider the sum D of the count variables X1 and X2. Following the definition

of Campbell’s bivariate Poisson distribution, then the sum D is given by

D = X1 + X2 = (Y1 + U) + (Y2 + U) = (Y1 + Y2) + 2U. (5.7)

The sum Y1 + Y2 is a Poisson variable with mean λ1 + λ2 and 2U is a Poisson doublet variable with

mean 2θ0. Kemp and Kemp (1965) shows that Y1 = Y2 + 2U is distributed according to the so-called

Hermite distribution. Let Z1 and Z2 be two independent Poisson variables with parameters γ1 and

γ2, respectively. The probability distribution of the random variable W = Z1 + 2Z2 is the Hermite

distribution. The probability mass function of W is given by

P(W = w) = e−(γ1+γ2)
⌊n/2⌋∑

j=0

(γ1)
n−2jγ j

2
(n− 2j)!j! , n = 0, 1, 2, . . . γ1, γ2 ≥ 0, (5.8)

where ⌊n/2⌋ denotes the floor function. It can be easily proved that D ∼ Herm(λ1 + λ2, θ0) with

probability mass function as follows

P(D = d) = e−(λ1+λ2+θ0)
⌊n/2⌋∑

j=0

(λ1 + λ2)
n−2jθj

0
(n− 2j)!j! , n = 0, 1, 2, . . . (5.9)

Proof. The probability generating function of the univariate Poisson distribution with rate λ is given

by

P(s) = E[sX] = eλ(1−s). (5.10)

The probability generating function of the joint distribution of Y1, Y2, U is given by

P(t1, t2, t12) = E[tY1
1 tY2

2 tU
12] (5.11)

= E[tY1
1 ]E[tY2

2 ]E[tU
12] (5.12)

= e−λ1(1−t1)e−λ2(1−t2)e−θ0(1−t12) (5.13)

= e−(λ1+λ2+θ0)+(λ1t1+λ2t2+θ0t12). (5.14)
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Recalling that X1 = Y1 + U, X2 = Y2 + U and t1 = s1, t2 = s2 and t12 = s1s2, then

P(s1, s2) = E[sX1
1 sX2

2 ] (5.15)

= E[sY1
1 sY2

2 (s1s2)
U] (5.16)

= e−(λ1+λ2+θ0)+(λ1s1+λ2s2+θ0s1s2). (5.17)

In order to obtain the probability generating function of X1+X2, let s be the equal to s1 and s2, yielding

to

P(s) = E[sX1 sX2 ] (5.18)

= E[sX1+X2 ] (5.19)

= e−(λ1+λ2+θ0)+(λ1+λ2)s+θ0s2
. (5.20)

which is the probability generating function of the Hermite distribution given in Kemp and Kemp

(1965). Therefore, it can be concluded that D ∼ Herm(λ1 + λ2, θ0). If (X1, X2) ∼ BivPois(λ1, λ2, θ0)

then D = X1 + X2 ∼ Herm(λ1 + λ2, θ0).

Multivariate Poisson distributions using copulas As already mentioned, there is no general ap-

proach to define a multivariate discrete distribution. Copula models can be also used to form multi-

variate joint distributions, with the advantage to be extremely flexible in terms of dependency struc-

ture since, by Sklar’s Theorem (Sklar (1959)), every multivariate probability distribution can be charac-

terized by a copula function joining its marginal distributions. Control charts based on copulas have

been studied in several papers, including Verdier (2013), Sukparungsee et al. (2017), Mühlig (2017),

and Easton et al. (2022). A copula is a function that defines the dependency structure of multiple

random variables when a more complex correlation structure is required to adequately describe the

relationship between the variables. However, copula models paired with discrete marginal distribu-

tion are not unique due to identifiability problems. Genest and Nešlehová (2007) provide a detailed

discussion on copulas for count distributions.
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5.2 Hermite multiple Poisson process

Since the procedure aims at monitoring a change in the defect rate of different classes simultaneously,

the behavior of independent and dependent multiple Poisson processes is of interest. The approach is

to transform a multidimensional counting process into a one-dimensional one is studied. An option to

achieve this transformation is to consider the sum of the arrivals of all the different classes of defects

in the interval [0, t]. This process can be interpreted as the union or sum of the individual counting

processes.

Multiple independent Poisson processes Consider two independent homogeneous Poisson pro-

cesses, N1 and N2, with intensitiesγ1 andγ2, respectively. The inter-arrival times S1 of N1 are exponen-

tially distributed with parameter γ1, and the inter-arrival times S2 of N2 are exponentially distributed

with parameter γ2. The inter-arrival times of both processes are also independent of each other. The

distribution of the total number of arrivals in [0, t] of N1 and N2 is denoted by N and the inter-arrivals

by S as the minimum of two independent exponential random variables. Let S be S = min(S1, S2),

then

P(S > s) = P(min(S1, S2) > s) = P(S1 > s)P(S2 > s) = e−sγ1 e−sγ2 = e−s(γ1+γ2). (5.21)

It follows that S is also an exponential random variable, and N(t) describes a Poisson process with

intensity γ1 + γ2.

Multiple dependent Poisson processes Consider two dependent Poisson processes X1 and X2.

Recall that the sum of two correlated Poisson random variables from Campbell’s bivariate Poisson

distribution described in (5.1) follows the Hermite distribution. The Poisson processes are composed

of Y1 + U and Y2 + U, respectively. The processes Y1, Y2, and U are mutually independent Poisson

processes with intensities λ1, λ2, and θ0, respectively. The total number of defects that have occurred

in the interval [0, t], can be described by the Hermite distribution, with parameters ((λ1 + λ2)t, θ0t).

Therefore we call the corresponding counting process, denoted by D(t), the Hermite process1. The
1In the queuing literature a similar process is referred to as a common Poisson shock process.
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probability mass function of D(t) is given by

P(D(t) = n) = e−(λ1+λ2+θ0)t
⌊n/2⌋∑

j=0

((λ1 + λ2)t)n−2j(θ0t)j

(n− 2j)!j! , n = 0, 1, 2, . . . (5.22)

It follows from the previous section that the total number of arrivals of two correlated Poisson pro-

cesses results in a Hermite process D(t). We will see that the Hermite process differs from Poisson

processes in the sense that it is possible to have two events at the same time, but the probability

of having more than two events at the same is zero. In fact, the Hermite process turns out to be a

compound Poisson process where a homogeneous Poisson process is compounded with a Bernoulli

random variable.2

Theorem 5.2.1. The Hermite process defined in (5.22) is a compound Poisson process of the form∑N(t)
i=1 Xi, where N(t) is a homogeneous Poisson process with intensity λ, the random variables Xi, i =

1, 2, . . . are iid (and independent of the N(t)) with P(Xi = 1) = α1,P(Xi = 2) = α2, and α1 + α2 = 1.

Proof. Let D̃(t) be the process defined by

D̃(t) =
N(t)∑
i=1

Xi,

where N(t) is a homogeneous Poisson process with intensity λ, and the random variables Xi, i =

1, 2, . . . are iid (and independent of the N(t)) with P(Xi = 1) = α1,P(Xi = 2) = α2 and α1 + α2 = 1.

We prove that P
(

D̃(t) = N
)
= P (D(t) = N). It is necessary to distinguish the case that n is even and

2The connection of the Hermite process with compound Poisson processes was conjectured in a private
discussion by Marek Skarupski and later proved by him.
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n is odd. Let n be an even number. Then

P(D̃(t) = n) = P(N(t) = n, X1 = 1, X2 = 1, . . . Xn = 1)

+ P(N(t) = n− 1, one of the Xi’s is 2, the rest are 1)

+ P(N(t) = n− 2, two of the Xi’s are 2, the rest are 1)

+ . . .

+ P(N(t) = n
2 , X1 = 2, X2 = 2, . . . , X n

2
= 2)

=

n
2∑

j=0
P(N(t) = n− j)

(
n− j

j

)
α

j
2α

n−j−j
1

=

n
2∑

j=0
e−λt (λt)n−j

(n− j)! ·
(n− j)!

j!(n− 2j)!α
j
2α

n−2j
1

= e−(α1λ+α2λ)t

n
2∑

j=0

(λt)n−2j(λt)j

j!(n− 2j)! α
j
2α

n−2j
1

= e−(α1λ+α2λ)t

n
2∑

j=0

(λα1t)n−2j(λα2t)j

j!(n− 2j)!

= P (D(t) = N) .
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Let n be an odd number. Then

P
(

D̃(t) = n
)
= P(N(t) = n, X1 = 1, X2 = 1, . . . , Xn = 1)

+ P(N(t) = n− 1, one of the Xi’s is 2, the rest are 1)

+ P(N(t) = n− 2, two of the Xi’s are 2, the rest are 1)

+ . . .

+ P(N(t) = n− 1
2 , X1 = 2, X2 = 2, . . . , X n

2
= 2)

=

n−1
2∑

j=0
P(N(t) = n− j)

(
n− j

j

)
α

j
2α

n−j−j
1

=

n−1
2∑

j=0
e−λt (λt)n−j

(n− j)! ·
(n− j)!

j!(n− 2j)!α
j
2α

n−2j
1

= e−(α1λ+α2λ)t

n−1
2∑

j=0

(λt)n−2j(λt)j

j!(n− 2j)! α
j
2α

n−2j
1

= e−(α1λ+α2λ)t

n−1
2∑

j=0

(λα1t)n−2j(λα2t)j

j!(n− 2j)!

= P (D(t) = N) .

The compound Poisson process is a Hermite process with parameters λα1 and λα2. The Hermite pro-

cess is a special case of the so-called Gauss-Poisson processes introduced by Newman (1970) through

a probability generating functional as introduced in Moyal (1962). First, this concept is formally de-

fined. Below, the treatment of Westcott (1972) is followed rather than the abstract treatment of Moyal

(1962).

Definition 5.2.2. Let N be a counting process on the real line. The probability generating function of N

is defined as the following functional:

G(ξ) = E
{∫ ∞

0
log ξ(t)dN(t)

}
, (5.23)

where ξ is any bounded complex-valued function on R.

In general, the probability generating functional cannot be computed explicitly, but it is a useful tool
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to derive properties. For non-homogeneous Poisson processes, it can be shown that

G(ξ) = exp
{
−
∫ ∞

0
(1− ξ(t))Λ(dt)

}
. (5.24)

In particular, for the homogeneous Poisson process it holds that3

G(ξ) = exp
{
−
∫ ∞

0
−λ(1− ξ(t))dt)

}
, (5.25)

which defines a Gauss-Poisson process through the probability generating functional specifying the

following form (Milne and Westcott (1972), see also Example 6.2(c) of Daley and Vere-Jones (2003).

G(ξ) = exp
{

m
∫ ∞

0
(ξ(x)− 1)dQ(x) + 1

2 m2
∫ ∞

0

∫ ∞

0
(ξ(t)− 1)(ξ(u)− 1)ρ(t, u)dH(t, u)

}
. (5.26)

It is not trivial to show that every such functional is indeed the probability generating functional of

a counting process. It is obviously true if all the coefficients are non-negative, but there are cases

in which this is also true when not all coefficients are non-negative (there is an example going back

to Lévy (1937)). An alternative approach can be found in Milne and Westcott (1972), which is based

on point process theory from Vere-Jones (1968), Vere-Jones (1970) and Westcott (1972). The Gauss-

Poisson process differs from Poisson processes by the fact that it has a positive probability of having

two events at the same time instead of one. The probability generating functional of this process is

described in Milne and Westcott (1972) and it uniquely determines a point process.

Multivariate cumulative quantity control charts The Hermite process can be used in control

chart settings to monitor the inter-arrival times of multiple, correlated, Poisson processes. This chart

is called MTBE (i.e., Multivariate Time-Between-Events) Hermite chart. Let Tki denote the time of the

kth arrival of the individual process i. From Theorem 5.2.1, since N(t) is HPP with intensity λ(t) = λ,

the process can be monitored using the cumulative quantities framework. The intensity parameter λ

can be estimated from the Hermite process parameters through the relationship with the individual

Poisson processes rates and their correlation (λ1, λ2 and θ0). This chart is designed specifically for

high-purity processes, with the limitation of accepting only a non-negative correlation parameter.
3from (Newman, 1970, p. 344).
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5.3 Conclusions

This chapter explores a bivariate model for dependent count data with Poisson marginals. It is shown

that the sum of these counts follows the Hermite distribution. By embedding these distributions

into continuous-time through dependent Poisson processes and using the sums of the counts as

control chart statistics, a Gauss-Poisson process is obtained. The Gauss-Poisson is a stochastic pro-

cess that, unlike the Poisson process, has a positive probability of having two events co-occurring,

which extends the implementation of such schemes to positively correlated Poisson processes. The

study in this chapter is intended as a proof-of-concept on how established univariate procedures

based on stochastic processes can be extended to multivariate settings for monitoring high-purity

co-dependent variables.
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Conclusions and future perspectives

This last chapter summarizes the main contributions and conclusions, emphasizing directions for fu-

ture work that would extend the current framework by providing other solutions to the challenges of

monitoring high-purity processes.

6.1 Conclusions

Control charts represent the most popular technique in statistical process control and the most so-

phisticated one. Despite their popularity, traditional methodologies are inadequate to track in com-

plex processes, particularly when these are intrinsically discrete.

Despite the fertile research on statistical process control, applications in the manufacturing indus-

try are lagging, mainly because of the need for practical and targeted solutions. A specific feature in

manufacturing environments resulting from continuous improvement efforts, attracting interest from

academia and industry, is dealing with high-purity processes. These processes are characterized by

the fact that observations are only available as counts and the occurrence rate of an event is low.

The research explores several practical and statistical challenges in monitoring high-purity processes

arising from the complexity of technology-enhanced production processes, emphasizing some as-

pects that have practical importance in the industry but are relatively unexplored in the literature;

these include tailored change-point and regression models, and multivariate control charts.
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Chapter 1 provides the reader with a high-level overview of the current state of the art in statis-

tical process monitoring for high-purity processes. Traditional attribute control charts reveal some

limitations when applied to high-purity processes, such as meaningless control limits. Cumulative

quantities control charts represent a valid alternative to conventional monitoring. The concept be-

hind these charts is to consider the number of items or the time between two subsequent non-

conforming events. Discrete and continuous versions are available based on the assumption that the

non-conforming occurrence follows the geometric or Poisson distribution, respectively. This concept

can be extended by waiting for r non-conforming items before a decision about the state of the process

is prompted to the user. The aggregate statistics can then be used in Shewhart-type or memory-type

settings.

Chapter 2 focuses on addressing the limitations regarding the performance evaluation of charts

based on aggregate data. The main shortcoming is represented by the asynchronicity of the process

and control chart time. Zero-state and steady-state metrics and their advantages are extensively dis-

cussed and adapted to the high-purity monitoring framework. Zero-state performance relies on the

assumption that the shift has happened at the beginning of the monitoring procedure, while steady-

state metrics abandon this unrealistic assumption. Explicit formulas for the performance of cumu-

lative quantities control charts are given. It is shown that the error’s severity of assuming the inde-

pendence of the stopping time incorrectly from the observations is significant, and the trend is un-

expected. To help practitioners, examples and guidelines for the optimal choice of the order of the

control charts are given. Based on a simulation study, it is concluded that the behavior of several per-

formance metrics is not always simple to describe. The entire distribution of the performance metric

should be evaluated, particularly when run rules are applied.

Chapter 3 addresses the flexibility required to monitor complex processes than the one provided

by simplistic models. Generalized likelihood ratio control charts represent a convenient tool for tailor-

ing monitoring strategies to industrial purposes, but they are less developed for discrete processes.

The generalized likelihood framework is applied to monitor aggregate data over time. In this chapter,

several improvements of generalized likelihood ratio-based control charts are discussed. First, it is

shown that for the geometric and negative binomial control charts, introducing an artificial bound-
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ary is not required to guarantee that the statistic is fully defined. Since the artificial bound acts like a

tuning parameter, this practice defies the purpose of using GLR charts. Additionally, it is noted that

the correct parameter estimation is often overlooked in the literature. Generalized likelihood ratio

control charts typically outperform competitors in detecting a wide range of parameter shifts.

Composite null and alternative hypotheses offer an extra layer of flexibility, allowing to design control

charts based on industry-tailored change-point models. The indifference interval and the epidemic

shift models are introduced, representing two expected deviation modes in the chemical manufactur-

ing industry. The first allows a margin within which changes in the distributional parameters are not

of practical importance; the latter describes the situation when a feedback controller is active and the

deviation from the in-control state is corrected, but information about the change-point can be help-

ful for post-diagnostic. The indifference interval model suffers from instability when the set-up allows

for bidirectional shifts, while the one-sided version proved to be effective at detecting only changes of

practical importance. The control chart based on the epidemic shift model shows better performance

when the length of the shift is short, which is expected when a feedback controller is active.

Chapter 4 addresses the need of correcting the monitoring characteristics for other variables. Us-

ing regression models in statistical process control provides a contextualization of the process devia-

tions from normality by integrating real-time correction for external factors. The most common strat-

egy is to monitor the residuals with respect to the fixed regression model. It is shown that different

types of predictive residuals are effective at detecting such shifts, showing comparable performance.

Nonetheless, implementing predictive residuals requires a Phase I calibration where a moderately

large number of observations are collected to establish the in-control baseline. This requirement is

often granted in practice, but this information is not always available for new products or short cam-

paigns. One could use recursive residuals for short runs and the initial monitoring phase of long runs

control charts. The regression coefficients used in the recursive residuals are updated at each new

observation. Recursive residuals show shorter delays when more observations are available in the

burn-in period at the expense of the probability of missing a change. These two aspects can be bal-

anced based on the application requirements and criticality.
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Chapter 5 In practice, most industrial manufacturing processes are characterized by several param-

eters exhibiting strong dependency. Such dependencies make designing monitoring schemes more

challenging since one has to account for these often complex relationships to obtain reliable control

limits. This chapter explores a bivariate model for dependent count data with Poisson marginals. It

is demonstrated that the sum of these counts leads to the so-called Hermite distribution. It By em-

bedding these distributions into continuous-time through dependent Poisson processes and using

the sums of the counts as control chart statistics, a Gauss-Poisson process (also known as a stuttering

Poisson process) is obtained. The Gauss-Poisson is a stochastic process that, unlike the Poisson pro-

cess, has a positive probability of having two events co-occurring, extending the application of such

schemes to case studies involving correlated counts.

6.2 Recommendations for future work

In the sequel, several ideas for future work are recommended that would extend the framework dis-

cussed in this dissertation.

• Other performance metrics than the average length of inspection in-control (ALI0) could be ex-

plored for the task of calibrating the control chart. The average length of inspection is preferred

in industrial contexts because it represents an intuitive metric to use as design parameter,

which helps practitioners and non-statisticians taking informed and practical decisions about

the monitoring capabilities of the control chart. Nonetheless, from a Bayesian point of view, the

performance comparison could be based on the probability of false alarm PFA = P(N < τ), if

there is a prior on the change-point τ . This approach is more consistent with the use of the

conditional expected delay, being the PFA itself a steady-state metric.

• It is realistic to expect prior process information to be available, being high-purity processes

generally well-documented and analyzed, particularly in the health sector. As future work, it is

interesting to explore in detail how prior information can be utilized during the design phase of

a monitoring scheme.

• It is well known that parameter estimation severely affects the performance of control charts.

The severity of the effect of the estimation uncertainty and the model misspecification needs
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to be studied more in detail for both the generalized likelihood ratio and the generalized linear

model-based control charts.

• In the generalized linear model framework presented in Chapter 4, the random effects of the

covariates are neglected. This might be a strong assumption and it might affect drastically the

performance of such schemes. Therefore, the performance should be reassessed including the

random effects of the covariates.

• The robustness of the generalized likelihood ratio and generalized linear model statistics to

deviations from the binomial and Poisson distribution should be studied in comparison to more

traditional monitoring approaches.
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Appendix A

Statistical Monitoring Procedures for

High-Purity Processes: A Hierarchical

Simulation Structure in R

A.1 Introduction

The numerical results supporting the main conclusions of this thesis originate from an intercon-

nected, hierarchical simulation structure for simplifying, automating, and efficiently reproducing the

results. At the higher level, the order of the steps required to obtain any monitoring scheme’s perfor-

mance is the following

• Process simulation;

• (Optional) Statistic computation;

• Performance metrics estimation.

In the following sections, the simulation setup developed in R is reported per each item mentioned

above, accompanied by a brief description of the files and functions.
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A.2 Process Simulations

To streamline the simulation procedure of the underlying high-purity processes, the cumulative quan-

tities, i.e., the total number of items or total time elapsed between two or more events, are simulated

directly, circumventing the simulation of the original observations, modeled following the binomial

or Poisson distributions, respectively.

In the sequel, the non-homogeneous Poisson process and the sequence of negative binomial obser-

vations simulation function are described. In general, the process simulation output consists of an

n × m matrix P and a vector I of size n, where n is the number of iterations and m is the size of each

simulation. Each row of the matrixP represents a sequence of observations Xi, i.e., an iteration. There-

fore, the element Xij represents the observation at time i, for the iteration j. Each element of the row

vector I represents the time at which at change has occurred for the iteration j, i.e. the change-point.

The matrix P can be readily passed as input to the functions for statistic computation or performance

metric evaluation, while the vector I is needed for the calculation of the conditional metrics, for which

the position of the change-point is important.

A.2.1 Non-homogeneous Poisson process simulation

Several methods exist to generate pseudo-random observations from a non-homogeneous Poisson

process. The algorithm described in detail in Section 3.1, is exact and based on the time scale trans-

formation of a non-homogeneous Poisson process (NHPP). The function HPP_Simulation requires in

input the number of iterations, the length of each iteration, the order of the chart r, the fixed change-

point in the process time scale, and the explicit inverse cumulative intensity function with its param-

eters. In addition, it returns the process simulation matrix P, while the function index_NHPP returns

the index per each iteration at which the shift has happened, the vector I.

If the inverse cumulative intensity function is not available in an explicit form, the generic cumulative

intensity and the inverse cumulative intensity functions can be used to solve the inversion numeri-

cally using the functions Lambda.g and Lambda.inv.g, respectively. The catalog also contains the in-

tensity function for an abrupt change in the intensity parameter and for the epidemic shift described

in Section 3.3.
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1 ##########################################################################

2 ## High -Purity Process (HPP) Simulation

3 ## Caterina Rizzo (crizzo@dow.com)

4 ##########################################################################

5

6 ##########################################################################

7 ## Intensity functions catalog

8 ## If the explicit inverse cumulative function is not available

9 ## the user can select an intensity function and use the generic

10 ## cumulative and inverse intensity functions to compute them

11 ## numerically. This approach is more time -consuming.

12 ##########################################################################

13

14 # Generic (inverse and) cumulative intensity functions

15 Lambda.g <- Vectorize(function(tupper , tau , lambda_in , lambda_out)

16 integrate(function(x){lambda(x,tau ,lambda_in, lambda_out)}, lower = 0, upper = tupper)$

value)

17

18 Lambda.inv.g <- Vectorize(function(y,tau ,lambda_in , lambda_out){

19 uniroot(function(x){Lambda.g(x,tau ,lambda_in, lambda_out) - y}, c(0 ,100000))$root})

20

21 # Explicit inverse cumulative intensity function (Unknown permanent shift)

22 Lambda.inv.step <- function(s, tau , lambda_in, lambda_out){

23 ifelse(s<= lambda_in*tau , s/lambda_in, (s-(( lambda_in-lambda_out)*tau))/(lambda_out))

24 }

25

26 # Explicit inverse cumulative intensity function (Epidemic shift)

27 Lambda.inv.step_EP <- function(s, tau1 , tau2 , lambda_in , lambda_out){

28 if(s<= lambda_in*tau1){

29 s/lambda_in

30 } else if (s <= (lambda_out*tau2 - (lambda_out - lambda_in)*tau1)) {

31 (s+( lambda_out -lambda_in)*tau1)/(lambda_out)

32 } else {

33 (s+(( lambda_out -lambda_in)*tau1)+( lambda_in - lambda_out)*tau2)/(lambda_in)

34 }

35 }

36

37 ##########################################################################

38 ## Function: High -Purity Process (HPP) Simulation

39 ## This function generate a matrix of simulations of specified size

40 ## using the Time -Inverse transformation method.

41 ## The output of the function is a list with the inter -arrival times matrix
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42 ## and a vector containing the first opportunity to detect the change.

43 ###########################################################################

44

45 HPP_Simulation <- function (iterations =100, size , r, shift , inv_func = Lamda.inv.step ,

...){

46 hpp_e <- matrix(rexp(size*iterations , rate = 1), nrow=iterations , byrow=T)

47 hpp_t <- t(apply ((hpp_e), 1, cumsum))

48 nhpp_t <- t(apply(hpp_t, 1, function(x){sapply(x, function(y){inv_func(y, ...)})}))

49 nhpp_tr <- t(apply(nhpp_t,1,function(x) x[seq(from = r, to=length(x), by = r)]))

50 nhpp_e <- t(apply(nhpp_tr, 1, diff))

51 return(nhpp_e)

52 }

53

54 index_NHPP <- function(data , shift){

55 time <- t(sapply (1: nrow(data), function(x){cumsum(data[x,])}))

56 index <- sapply (1: nrow(time),

57 function(x){ifelse(any(time[x,]>= shift), which(time[x,] >= shift)[1],

ncol(time))})

58 }

Listing A.1: Non-homogeneous Poisson Process Simulations Supporting Functions.

A.2.2 Sequence of negative binomial observations simulation

Simulating negative binomial observations is easier than the continuous counterpart because of their

discrete nature. The function NB_ProcessSimulation requires in input the number of iterations, the

length of each iteration, the order of the chart, the change-point and the in-control and out-control pa-

rameters. The index of change is not random and fixed at the change-point in the control chart scale.

The difference with the previous function is that the size of each iteration is not fixed nor depends on

the realization of the random variable. Therefore, the output of the function is a list of iterations of

different sizes, rather than a matrix.

1 ##########################################################################

2 ## Negative Binomial Process Simulation

3 ## Caterina Rizzo (crizzo@dow.com)

4 ##########################################################################

5

114



A Hierarchical Simulation Structure in R

6 NB_ProcessSimulation <- function(iterations =100, size , r, shift , p_in , p_out){

7 size_in <- size*shift

8 size_out <- size - size_in

9 sample_in <- matrix(rbinom(size_in*iterations , 1, p_in), nrow = iterations , byrow = T)

10 sample_out <- matrix(rbinom(size_out*iterations , 1, p_out), nrow = iterations , byrow = T)

11 sample <- cbind(sample_in, sample_out)

12 events <- sapply (1: iterations , function(x){which(sample[x,] == 1)})

13 sample_geom <- sapply (1: iterations , function(x){c(events [[x]][1], diff(events [[x]]))})

14 }

Listing A.2: Negative Binomial Process Simulations R Function.

A.3 Statistic computation

In most of the designs proposed in the thesis, the monitored variable is a transformation of the mea-

sured observations. Generally, the generic statistics computation function receives as input the raw

observation matrix (P) and returns a new n × m matrix G. Each row of the matrix G represents a se-

quence of statistics Yi.

A.3.1 The EWMA and CUSUM statistics

The ewma.fun and cusum.fun return the exponentially weighed moving average and the cumula-

tive sum statistics, respectively. The ewma.fun function requires in input the matrix P, the weight

w, the starting point z0 and the type of chart (i.e., two-sided, one-sided lower, one-sided upper).

The cusum.fun requires the matrix P, the tuning in-control and out-of-control parameters, the ini-

tialization value and the type of chart. The cusum.fun function is specifically designed for gamma-

distributed data. The EWMA and CUSUM charts are described in detail in Section 1.1.

1 ##########################################################################

2 ## EWMA and CUSUM functions

3 ## Caterina Rizzo (crizzo@dow.com)

4 ##########################################################################

5

6
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7 ewma.fun <- function(data , w, z0, type ="two -sided"){

8 if(type == "two -sided"){

9 z <- t(apply(data , 1, Reduce , f = function (v,y) {w*y+(1-w)*v}, init = z0, accumulate =

TRUE))}

10 if(type =="upper"){

11 z <- t(apply(data , 1, Reduce , f = function(v,y) {max(z0 , w*y+(1-w)*v)}, init = z0 ,

accumulate = TRUE))}

12 if(type == "lower"){

13 z <- t(apply(data , 1, Reduce , f = function(v,y) {min(z0 , w*y+(1-w)*v)}, init = z0 ,

accumulate = TRUE))}

14 return(z)

15 }

16

17

18 cusum.fun <- function(data , p_in, p_out , init , type ="two -sided"){

19

20 k <- ((log(1/p_out)-log(1/p_in))/(1/p_out - 1/p_in))

21

22 if(type == "two -sided"){

23 s_pos <- t(apply(data , 1, Reduce , f = function(v,x) {max(0, v+(x-k))}, init = init ,

accumulate = TRUE))

24 s_neg <- t(apply(data , 1, Reduce , f = function(v,x) {min(0, v+(x-k))}, init = init ,

accumulate = TRUE))

25 return(list(s_pos , s_neg))}

26

27 if(type =="upper"){s_pos <- t(apply(data , 1, Reduce , f = function(v,x) {max(0, v+(x-k))},

init = init , accumulate = TRUE))

28 return(s_pos)}

29

30 if(type == "lower"){s_neg <- t(apply(data , 1, Reduce , f = function(v,x) {min(0, v+(x-k))

}, init = init , accumulate = TRUE))

31 return(s_neg)}

32 }

33

34

35 ## Note: p_in and p_out are expressed in rates - not in means

Listing A.3: EWMA and CUSUM Functions R File.
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A.3.2 Generalized likelihood ratio statistics

The R file Gamma GLR Statistic Calculation Supporting Functions contains the supporting

functions for computing the generalized likelihood ratio statistics, for the simple-hypotheses, epi-

demic shift and indifference interval models, as discussed in Sections 3.1 and 3.3. The GLR Stat

Computation function requires in input the process simulation matrix (P), the order of the chart, the

in-control parameter and the change-point model type.

1 ##########################################################################

2 ## Gamma GLR statistic calculation supporting functions

3 ## Caterina Rizzo (crizzo@dow.com)

4 ##########################################################################

5

6 ## Main function to select which type of GLR

7

8 GLR_Stat_Computation <- function(sim , r, p0, m, d, type = "Unknown shift"){

9 if(type == "Unknown shift"){

10 return(GLR_Gamma(sim , r, p0, m))

11 } else if (type == "Epidemic shift"){

12 return(GLR_Gamma_ES(sim , r, p0, m))

13 } else if(type == "Indifference Interval"){

14 return(GLR_Gamma_II(sim ,r, p0, m, d))

15 }

16 }

17

18 ## Main function to calculate the GLR for gamma distributed variables

19

20 GLR_Gamma <- function(sim , r, p0, m){

21 if(m < ncol(sim)){

22 sim <- sim[,(ncol(sim)-m):ncol(sim)]}

23 matrix <- matrix(0, nrow = nrow(sim), ncol = ncol(sim))

24 for (i in 1:nrow(sim)){

25 k <- 1: length(sim[i,])

26 matrix[i,] <- sapply(k, function(x){GLR_Fun_Gamma(sim[i,], x, r, p0)})}

27 return(matrix)

28 }

29

30 GLR_Fun_Gamma <- function(sim , k, r, p0){

31 cp <- 0:(k-1)

32 p1 <- sapply(cp, function(x){MLE_Fun_Gamma(sim , k, x, r, p0)})
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33 glr <- sapply(cp, function(x){GLR_Stat_Gamma(sim , k, x, r, p1[x+1], p0)})

34 return(max(glr))

35 }

36

37 ## MLE functions

38

39 MLE_Fun_Gamma <- function(sim , k, cp , r, p0){

40 mle <- (sum(sim[(cp+1):k], na.rm = TRUE))/(r*(k-cp))

41 return(mle)

42 }

43

44 ## GLR Statistic function

45

46 GLR_Stat_Gamma <- function(sim , k, cp, r, p1 , p0){

47 glr <- (r*(k-cp))*(log(p0/p1) + ((p1 -p0)/p0))

48 return(glr)

49 }

50

51 ##########################################################################

52 ## Gamma GLR Statistic calculation supporting functions for the epidemic

53 ## shift model

54 ##########################################################################

55

56 ### Main function , first and second change -point optimization

57

58 GLR_Gamma_ES <- function(sim , r, pm, m){

59 if(m < ncol(sim)){

60 sim <- sim[,(ncol(sim)-m):ncol(sim)]}

61 matrix <- matrix(0, nrow = nrow(sim), ncol = (ncol(sim) -1))

62 for (i in 1:nrow(sim)){

63 k <- 2: length(sim[i,])

64 matrix[i,] <- sapply(k, function(x){GLR_Gamma_ES_T2(sim[i,], x, r, pm)})}

65 return(matrix)

66 }

67

68 GLR_Gamma_ES_T2 <- function(sim , k, r, pm) {

69 cp2 <- 1:(k-1)

70 glr_mat <- sapply(cp2 , function(x){GLR_Gamma_ES_Fun(sim , k, r, x, pm)})

71 return(max(glr_mat))

72 }

73

74

75 GLR_Gamma_ES_Fun <- function(sim , k, r, cp2 , pm){

118



A Hierarchical Simulation Structure in R

76 cp <- 0:(cp2 -1)

77 theta <- sapply(cp, function(x){MLE_GES_Theta(sim , k, r)})

78 eta <- sapply(cp, function(x){MLE_GES_Eta(sim , k, x, r, pm)})

79 xi <- sapply(cp, function(x){MLE_GES_Xi(sim , k, x, cp2 , r, pm)})

80 psi <- sapply(cp, function(x){MLE_GES_Psi(sim , k, cp2 , r, pm)})

81 glr <- sapply(cp, function(x){GLR_Stat_ES(sim , k, x, cp2 , r, theta[x+1], eta[x+1], xi[x

+1], psi[x+1])})

82 return(max(glr))

83 }

84

85 ### MLE ES functions

86

87 MLE_GES_Theta <- function(sim , k, r){

88 mle <- sum(sim[1:k], na.rm = TRUE)/(r*(k))

89 }

90

91 MLE_GES_Eta <- function(sim , k, cp1 , r, pm){

92 ifelse(cp1 == 0, pm, max(sum(sim[0: cp1], na.rm = TRUE)/(r*(cp1)), pm))

93 }

94

95 MLE_GES_Xi <- function(sim , k, cp1 , cp2 , r, pm){

96 mle <- min(sum(sim[(cp1+1):cp2], na.rm = TRUE)/(r*(cp2 -cp1)), pm)

97 }

98

99 MLE_GES_Psi <- function(sim , k, cp2 , r, pm){

100 mle <- max(sum(sim[(cp2+1):k], na.rm = TRUE)/(r*(k-cp2)), pm)

101 }

102

103 ### GLR ES statistic function

104

105 GLR_Stat_ES <- function(sim , k, cp1 , cp2 , r, theta , eta , xi , psi){

106 glr <- r*(k*log(theta)-cp1*log(eta)-(cp2 -cp1)*log(xi)-(k-cp2)*log(psi))

107 return(glr)

108 }

109

110

111 ##########################################################################

112 ## Gamma GLR Statistic calculation supporting functions for the

113 ## indifference interval model (one -sided case)

114 ##########################################################################

115

116 ### Main function and fist change -point optimization

117
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118 GLR_Gamma_II <- function(sim , r, p0 , m, d){

119 if(m < ncol(sim)){

120 sim <- sim[,(ncol(sim)-m):ncol(sim)]}

121 matrix <- matrix(0, nrow = nrow(sim), ncol = ncol(sim))

122 for (i in 1:nrow(sim)){

123 k <- 1: length(sim[i,])

124 matrix[i,] <- sapply(k, function(x){GLR_Gamma_II_Fun(sim[i,], x, r, p0 , d)})}

125 return(matrix)

126 }

127

128

129 GLR_Gamma_II_Fun <- function(sim , k, r, p0 , d){

130 cp <- 0:(k-1)

131 theta <- sapply(cp, function(x){MLE_GII_Theta(sim , k, r, p0 , d)})

132 eta <- sapply(cp, function(x){MLE_GII_Eta(sim , k, x, r, p0 , d)})

133 xi <- sapply(cp, function(x){MLE_GII_Xi(sim , k, x, r, p0 , d)})

134 glr <- sapply(cp, function(x){GLR_Stat_II(sim , k, x, r, theta[x+1], eta[x+1], xi[x+1])

})

135 return(max(glr))

136 }

137

138 ### MLE II functions

139

140 MLE_GII_Theta <- function(sim , k, r, p0 , d){

141 mle <- min((( sum(sim[1:k], na.rm = TRUE))/r*(k)), p0 -d)

142 }

143

144 MLE_GII_Eta <- function(sim , k, cp, r, p0, d){

145 ifelse(cp == 0, p0, min((sum(sim[0:cp], na.rm = TRUE))/(r*(cp)), p0 -d))

146 }

147

148 MLE_GII_Xi <- function(sim , k, cp, r, p0, d){

149 mle <- min((sum(sim[(cp+1):k], na.rm = TRUE)/(r*(k-cp))), p0 -d)

150 }

151

152 ### GLR II statistic function

153

154 GLR_Stat_II <- function(sim , k, cp, r, theta , eta , xi){

155 glr <- (r*(k*log(theta)-cp*log(eta)-(k-cp)*log(xi)))

156 return(glr)

157 }

Listing A.4: Gamma GLR Statistic Calculation Supporting Functions R File.
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A.3.3 Generalized linear model (residuals) statistics

The R file Gamma GLM Residuals Calculation Supporting Functions contains the supporting func-

tions for the generalized linear model calculations, described in Section 4.2. It also includes a modi-

fied version of the non-homogeneous Poisson process simulation code to accommodate the change

in the regression parameters and the co-variate (Regression Simulation). This function requires

an additional list, simul.param, that contains the in-control and out-control regression parameters

and co-variates values for a transient shift. The function returns a list with the co-variate matrix and

the response variable matrix. The Pearson, deviance, and quantile residuals functions require the

co-variate and response variable matrices (X and Y) and the list of model parameters. The recursive

residuals also require the rolling regression coefficients estimates, which can be obtained using the

roll_glm function.

1 ##########################################################################

2 ## Gamma GLM supporting functions

3 ## Caterina Rizzo (crizzo@dow.com)

4 ##########################################################################

5

6 ##########################################################################

7 ## Gamma GLM process simulation function neglecting the random effects

8 ## of the explanatory variables

9 ##########################################################################

10

11 ##########################################################################

12 ## Intensity functions catalog

13 ##########################################################################

14

15 # Explicit inverse cumulative intensity function

16

17 Lambda.inv.step <- function(s, tau , lambda_in, lambda_out){

18 ifelse(s<= lambda_in*tau , s/lambda_in, (s-(( lambda_in-lambda_out)*tau))/(lambda_out))

19 }

20

21 ###########################################################################

22 ## Function: High -Purity Process (HPP) Simulation

23 ## This function generate a matrix of simulations of specified size using the Time inverse

transformation method.

24 ## The output of the function is a list with the inter -arrival times matrix and a vector
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containing the first opportunity to detect the change.

25 ###########################################################################

26

27 Regression_Simulation <- function (iter , size , r, shift , sim.param){

28

29 v0.in = sim.param [1]

30 v1.in = sim.param [2]

31 v0.out = sim.param [3]

32 v1.out = sim.param [4]

33 Xv1 = sim.param [5]

34 Xv2 = sim.param [6]

35

36 lambda_1 <- 1/exp(v0.in + v1.in*Xv1)

37 lambda_2 <- 1/exp(v0.out + v1.out*Xv2)

38

39 hpp_e <- matrix(rexp(size*iter , rate = 1), nrow=iter , byrow=T)

40 hpp_t <- t(apply ((hpp_e), 1, cumsum))

41 nhpp_t <- t(apply(hpp_t, 1, function(x){inv_func(x, tau = shift , lambda_in = lambda_1,

lambda_out = lambda_2)}))

42 nhpp_tr <- t(apply(nhpp_t,1,function(x) x[seq(from = r, to=length(x), by = r)]))

43 Y <- t(apply(nhpp_tr, 1, diff))

44 time <- t(sapply (1: nrow(Y), function(x){cumsum(Y[x,])}))

45 index <- sapply (1: nrow(time),

46 function(x){ifelse(any(time[x,]>= shift), which(time[x,] >= shift)[1],

ncol(time))})

47

48 X = matrix(data = 0, nrow = iter , ncol = (size -1)/r)

49 for (k in 1:nrow(Y)){

50 X[k, 1:index[k]] = Xv1

51 X[k, (index[k]+1):(size -1)/r] = Xv2}

52

53 list(Y, X, index)

54 }

55

56

57 ##########################################################################

58 ## Gamma GLM residuals calculations

59 ##########################################################################

60

61 # Pearson residuals

62 pearson.residuals = function (X, Y, mod.param) {

63 v0 = mod.param [1]

64 v1 = mod.param [2]
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65 r = mod.param [3]

66 Yp = exp(v0 + v1*X)

67 rp = (Y-Yp)/(Yp)

68 return(rp)

69 }

70

71 # Deviance residuals

72 deviance.residuals = function (X, Y, mod.param) {

73 v0 = mod.param [1]

74 v1 = mod.param [2]

75 r = mod.param [3]

76 Yp = exp(v0 + v1*X)

77 res = (Y-Yp)

78 d = 2*(-log(Y/Yp) + res/Yp)

79 rd = sign(res)*sqrt(d)

80 return (rd)

81 }

82

83 # Randomized Quantile residuals

84 quantile.residuals = function (X, Y, mod.param) {

85 v0 = mod.param [1]

86 v1 = mod.param [2]

87 r = mod.param [3]

88 Yp = exp(v0 + v1*X)

89 cdf = pgamma(Y, scale = Yp/r, shape = r)

90 rq = qnorm(cdf)

91 return(rq)

92 }

93

94 # Recursive Residuals

95 recursive.residuals = function (X, Y, r, RegressionCoefficients) {

96 v0 = RegressionCoefficients [[1]]

97 v1 = RegressionCoefficients [[2]]

98 Y = Y[,-c(1: stup)]

99 Yp = t(sapply (1: nrow(Y), function(y) {sapply (2: ncol(Y), function(x) exp(v0[y, x-1] +

v1[y, x-1]*X[y, x])/r)}))

100 Y = Y[,-1]

101 rr = (Y-Yp)/(Yp)

102 return(rr)

103 }

104

105 # Regression Coefficients Base Functions

106
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107 roll_glm = function(X, Y, stup){

108 roll_glm <- lapply(seq(stup , length(Y)), function(x){glm( Y[1:x] ~ X[1:x], family =

Gamma(link = ’log’))})

109 }

110

111 # Regression Coefficients

112

113 regression.coefficients = function(X_reg , Y_reg , stup){

114 roll <- t(sapply (1: nrow(Y_reg), function(x){roll_glm(X_reg[x,], Y_reg[x,], stup)}))

115 v0 <- matrix(unlist(lapply (1: length(roll), function(x){roll[[x]]$coefficients [1]})),

nrow = iter , ncol = size)

116 v1 <- matrix(unlist(lapply (1: length(roll), function(x){roll[[x]]$coefficients [2]})),

nrow = iter , ncol = size)

117 RegressionCoefficients <- list(v0, v1)

118 }

Listing A.5: Gamma GLM Residuals Calculations Supporting Function R File.

A.4 Performance metrics estimation

The performance metric functions require as input the process simulation matrixP and, if applicable,

the statistic matrix G and return the desired performance metrics or the control limits. The catalog

of functions to calculate several performance metrics and/or their distribution for raw observation or

derived statistics are contained in the R file Performance measures supporting functions.

1 ##########################################################################

2 ## Performance metrics supporting functions

3 ## Caterina Rizzo (crizzo@dow.com)

4 ##########################################################################

5

6 ##########################################################################

7 ## The h_solve and q_solve functions return the control limit(s) based on the

8 ## ALI and the optimization function in input

9 ##########################################################################

10

11 h_solve <- function(y, pfun , SearchRange , ...){

12 uniroot(function(x){pfun(x, ...) - y}, SearchRange , f.lower = -100000, f.upper =
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100000 , extendInt = "yes")$root}

13

14 q_solve <- function(y, pfun , SearchRange , ...){

15 uniroot(function(x){pfun(x, ...) - y}, SearchRange , extendInt = "yes")$root}

16

17 ##########################################################################

18 ## Functions to calculate the ARL and ALI values and distributions

19 ## The averageRunLength function is for all types of charts

20 ## The inspectionRun_Stat function is for EWMA , CUSUM and GLR charts

21 ## The inspectionRun is for Shewhart charts

22 ##########################################################################

23

24 averageRunLength <- function(origin , runRulesFun , ...){

25 minIndex <- runRulesFun(data = origin , ...)

26 runLength <- sapply (1: nrow(origin), function(x){ifelse(is.finite(minIndex[x]), minIndex

[x], NA)})

27 mean(runLength , na.rm = T)

28 }

29

30 inspectionRun <- function(type = "Shewhart", ...){

31 if(type == "Shewhart"){

32 inspectionRun <- inspectionRun_Shewhart (...)

33 } else if (type == "Statistic"){

34 inspectionRun <- inspectionRun_Stat (...)

35 }

36 return(inspectionRun)

37 }

38

39 inspectionRun_Shewhart <- function(origin , runRulesFun , ...){

40 minIndex <- runRulesFun(data = origin , ...)

41 inspection_length <- sapply (1: nrow(origin), function(x){ifelse(is.finite(minIndex[x]),

sum(origin[x, 1: minIndex[x]]), NA)})

42 n.na <- sum(is.na(inspection_length))

43 mean(inspection_length , na.rm = T)

44 }

45

46 inspectionRun_Stat <- function(statistic , origin , runRulesFun , ...){

47 minIndex <- runRulesFun(statistic , ...)

48 inspection_length <- sapply (1: nrow(origin), function(x){ifelse(is.finite(minIndex[x]),

sum(origin[x, 1: minIndex[x]]), NA)})

49 n.na <- sum(is.na(inspection_length))

50 return(mean(inspection_length , na.rm = T))

51 }
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52

53 inspectionRun_Shewhart_Distribution <- function(origin , runRulesFun , ...){

54 minIndex <- runRulesFun(origin , ...)

55 inspection_length <- sapply (1: nrow(origin), function(x){ifelse(is.finite(minIndex[x]),

sum(origin[x, 1: minIndex[x]]), NA)})

56 }

57

58 inspectionRun_Stat_Distribution <- function(statistic , origin , runRulesFun , ...){

59 minIndex <- runRulesFun(statistic , ...)

60 inspection_length <- sapply (1: nrow(origin), function(x){ifelse(is.finite(minIndex[x]),

sum(origin[x, 1: minIndex[x]]), NA)})

61 }

62

63 ##########################################################################

64 ## Functions to calculate the CED values and distributions

65 ## condExpDelay_Stat function is for EWMA , CUSUM and GLR charts

66 ## condExpDelay_Shewhart function is for Shewhart data

67 ## condExpDelay is the supporting function for both metrics

68 ##########################################################################

69

70 condExpDelay_fun <- function(type = "Shewhart", ...){

71 if(type == "Shewhart"){

72 condExpDelay <- condExpDelay_Shewhart (...)

73 } else if (type == "Statistic"){

74 condExpDelay <- condExpDelay_Stat (...)

75 }

76 return(condExpDelay)

77 }

78

79 condExpDelay_Shewhart <- function(origin , index , runRulesFun , ...){

80 minIndex <- runRulesFun(data = origin , ...)

81 expected_delay <- condExpDelay(minIndex , origin , index)

82 CED.na <- sum(is.na(expected_delay))

83 return(mean(expected_delay , na.rm = T))

84 }

85

86

87 condExpDelay_Stat <- function(statistic , origin , index , runRulesFun , ...){

88 minIndex <- runRulesFun(statistic , ...)

89 expected_delay <- condExpDelay(minIndex , origin , index)

90 CED.na <- sum(is.na(expected_delay))

91 return(list(mean(expected_delay , na.rm = T), sd(expected_delay , na.rm = T), CED.na))

92 }
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93

94 condExpDelay_Shewhart_Dist <- function(origin , index , runRulesFun , ...){

95 minIndex <- runRulesFun(origin , ...)

96 expected_delay <- condExpDelay(minIndex , origin , index)

97 }

98

99 condExpDelay_Stat_Dist <- function(statistic , origin , index , runRulesFun , ...){

100 minIndex <- runRulesFun(statistic , ...)

101 expected_delay <- condExpDelay(minIndex , origin , index)

102 }

103

104 condExpDelay <- function(minIndex , data , index_array){

105 CED_array <- sapply (1: nrow(data),

106 function(x){ifelse(minIndex[x] > index_array[x] & is.finite(

minIndex[x]), sum(data[x, (index_array[x]+1):minIndex[x]]), NA

)})

107 return(CED_array)

108 }

109

110 ##########################################################################

111 ## Functions to calculate the PSD

112 ## The probDet_Metric function works for all types of charts

113 ## The probDet function is the supporting function

114 ##########################################################################

115

116 probDet_Metric <- function(origin , index , index_arrayd , runRulesFun , ...){

117 minIndex <- runRulesFun(data = origin , ...)

118 probDet_array <- probDet(minIndex , origin , index , index_arrayd)

119 return(mean(probDet_array))

120 }

121

122 probDet <- function(minIndex , data , index_array , index_arrayd){

123 probDet_Array <- sapply (1: nrow(data),

124 function(x){ifelse(minIndex[x] > index_array[x] & minIndex[x] <= (

index_array[x]+ index_arrayd[x]) & is.finite(minIndex[x]), 1,

0)})

125 return(probDet_Array)

126 }

127

128 ##########################################################################

129 ## Supporting functions for quantile limits calculations

130 ##########################################################################

131
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132 propFunc <- function(data , type = "lower", L){

133 if (type == "lower"){

134 prop <- sum(data < L)/(length(data))}

135 if (type == "upper"){

136 prop <- sum(data > L)/(length(data))}

137 return(mean(prop))

138 }

139

140 ##########################################################################

141 ## Supporting functions that , given the chosen rule , return the first

142 ## position at which a violation occurs

143 ##########################################################################

144

145 # Applied to the simulation matrix

146

147 runRulesMinL <- function (data , L){

148 LCL <- mean(data , na.rm = T) - L*sd(data , na.rm = T)

149 UCL <- mean(data , na.rm = T) + L*sd(data , na.rm = T)

150 return(sapply (1: nrow(data),

151 function(x) {min(LowerShewhart(data[x, ], LCL), UpperShewhart(data[x, ], UCL))})

)

152 }

153

154 runRulesMin <- function (data , LCL , UCL){

155 sapply (1: nrow(data),

156 function(x) {min(LowerShewhart(data[x, ], LCL), UpperShewhart(data[x, ], UCL))})

157 }

158

159 lowerRule <- function (data , LCL){

160 sapply (1: nrow(data),

161 function(x) (LowerShewhart(data[x, ], -LCL)))

162 }

163

164 upperRule <- function (data , UCL){

165 sapply (1: nrow(data),

166 function(x) (UpperShewhart(data[x, ], UCL)))

167 }

168

169 # Applied to one vector

170 # Western Electric Rule 1 (1 point outside the control limits)

171

172 UpperShewhart <- function(data , UCL){

173 results <- data > UCL
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174 ifelse(any(results),which.max(results), Inf) }

175

176 LowerShewhart <- function(data , LCL){

177 results <- data < LCL

178 ifelse(any(results), which.max(results), Inf) }

179

180 # Western Electric Rule 2 (if runlength = 9, 9 points in a row on same side of the centre

line)

181 SameSideCL <- function(data ,CL,runlength){min(InaRowBelowCL(data ,CL ,runlength),

InaRowAboveCL(data ,CL,runlength))

182 }

183

184 # Western Electric Rule 3 (all increasing , if runlength = 6, 6 points in a row all

increasing)

185 AllIncreasing <- function(data ,runlength){

186 pattern <- (diff(data) > 0)

187

188

189 results <- (rle(pattern)$lengths >= runlength -1) & rle(pattern)$values

190

191 indexrle <- ifelse(any(results),which.max(results), Inf)

192

193 ifelse(indexrle == Inf , Inf , ifelse(indexrle ==1,runlength ,sum(rle(pattern)$lengths [1:(

indexrle -1)])+runlength))

194 }

195

196 runRulesMin <- function (data , LCL , CL){

197 minIndex <- sapply (1: nrow(data),

198 function(x) {min(LowerShewhart(data[x, ], LCL), SameSideCL(data[x,

], CL, 9), AllIncreasing(data[x,], 6))})

199 return(minIndex)

200 }

Listing A.6: Performance Measures Supporting Functions R File.
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Samenvatting

Productieprocessen in de chemische industrie zijn complex, maar de technologische vooruitgang in

het huidige “Industry 4.0” tijdperk helpen fabriekspersoneel de inherente lagen van complexiteit van

chemische processen te kwantificeren en doorgronden. Een groeiend aantal productiesystemen wor-

den gemonitord door digitale apparaten die continu afwijkingen meten om een indicatie te geven

van proceskwaliteit en efficiëntie. Waar “Statistical Process Control (SPC)” technieken nog wijdver-

spreid zijn in industrie om procesvariabiliteit te meten en afwijkingen ten opzichte van “in-control”

of verwachte condities te meten, zijn de traditionele methodes die vaak gebruikt worden niet in staat

om de meer geavanceerde scenario’s te volgen. De resulterende afwijkingen van de beoogde karak-

teristieken van productkwaliteit kunnen leiden tot off-grade materiaal, met financiële en ecologis-

che gevolgen. Productieprocessen met een hoge mate van efficiëntie vormen een grotere uitdaging

voor kwailteitscontrole door de extra lagen van complexiteit. Deze doctorale scriptie onderzoekt een

aantal praktische statistische uitdagingen in het monitoren van complexe processen met een hoge

productzuiverheid. De scriptie heeft als uitgangspunt de begrippen “process time” en “control chart

time”, allebei kenmerkende eigenschappen van het monitoring kader voor processen met hoge pro-

ductzuiverheid. Gebaseerd op deze concepten worden conditionele statistische prestatieparameters

van procescontrole aangepast aan het monitoring kader voor processen met hoge productzuiverheid

voor een eerlijke evaluatie en vergelijking met de nieuwe voorgestelde monitoringstrategiën. Deze

acties worden gebruikt om toepassing-specifieke “control charts” gebouwd op “composite change-

point”-modellen te kunnen vergelijken met de traditionele alternatieven. Deze flexibele “charts” zijn

gebaseerd op “Generalized Likelihood Ratios (GLR)”. De voorgestelde modellen zijn ontwikkeld vanuit

de industrie en representeren twee industriële scenario’s uit de praktijk: het “indifference interval” en

“epidemic shift” modellen. Het eerste beschrijft de situatie waarin de gemonitorde prestatieparam-

eter verandert met een hoeveelheid die als insignificant wordt beschouwd. De tweede beschrijven
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een tijdelijke toestand van falen, kenmerkend voor feedback controlesystemen. In beide gevallen

presteert de specialistische aanpak beter dan de alternatieven door een snellere detectie. Een ander

aspect dat vaak ontbreekt in literatuur is de invloed die een covariaten-set heeft op de kwaliteitspa-

rameter. “Generalized Linear Models (GLM)”-gebaseerde “control charts” kunnen worden gebruikt om

contextuele afwijkingen te identificeren in systemen waarin de verwachte fluctuaties van een aantal

procesvariabelen (zoals bijvoorbeeld gemeten gewicht of volume) een significante invloed hebben op

de uitkomstvariabele. “Predictive residuals” laten uitstekende prestaties zien in het detecteren van

aanhoudende veranderingen ten opzichte van de in-control condities tijdens “real-time” monitoring,

terwijl “recursive residuals” gebruikt kunnen worden in de vroege stadia van het monitoring proces

of voor “short run schemes”. Het relatief jonge onderzoeksveld van “multivariate point process con-

trol charts” wordt uitgebreid met monitoring van een bivariate Poisson proces beschreven door de

Hermite distributie, op een continue schaal. Deze aanpak is adequaat wanneer het productieproces

beschreven kan worden door meerdere gecorreleerde temporele puntmodellen met simpele corre-

latiestructuren.
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