

Process Mining for Systems with Shared Resources and
Queues
Citation for published version (APA):
Denisov, V. V. (2023). Process Mining for Systems with Shared Resources and Queues: Process Modeling,
Conformance Checking, and Performance Analysis. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Eindhoven University of Technology.

Document status and date:
Published: 01/06/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/7fc55c5b-b431-4462-8724-ef084dd6455f

Process Mining for Systems with Shared
Resources and Queues

Process Modeling, Conformance Checking, and Performance Analysis

V.V. Denisov

Copyright © 2023 by V.V. Denisov. All Rights Reserved.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Denisov, V.V.

Process Mining for Systems with Shared Resources and Queues- Process Mod-
eling, Conformance Checking, and Performance Analysis by V.V. Denisov.
Eindhoven: Technische Universiteit Eindhoven, 2023. Proefschrift.

A catalogue record is available from the Eindhoven University of Technology
Library

ISBN 978-90-386-5742-4

Keywords: Process mining, Performance analysis, Conformance checking, Log
repair, Modeling, Process model, Material handling system, Event data, Par-
tial order, Performance pattern, Performance spectrum, Predictive performance
monitoring, Root cause analysis

ProefschriftMaken || www.proefschriftmaken.nl

The work in this thesis has been partially funded by Vanderlande Industries
B.V., Vanderlandelaan 2, 5466 RB Veghel, the Netherlands, under the “Process
Mining in Logistics” project.

Process Mining for Systems with Shared
Resources and Queues

Process Modeling, Conformance Checking, and Performance Analysis

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magnificus prof.dr. S.K. Lenaerts,
voor een commissie aangewezen door het College voor Promoties, in
het openbaar te verdedigen op donderdag 1 juni 2023 om 13:30 uur

door

Vadim Vladimirovich Denisov

geboren te Leningrad, Sovjet-Unie

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de pro-
motiecommissie is als volgt:

Voorzitter: prof.dr. E.R. van den Heuvel
Promotoren: dr. D. Fahland

prof.dr.ir. W.M.P. van der Aalst (RWTH Aachen University)
Promotiecommissieleden: prof.dr.ir. I.J.B.F. Adan

prof.dr. M. Montali (Free University of Bozen-Bolzano)
prof.dr. S. Rinderle-Ma (TU Munich)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Dedicated to my family and parents.

Abstract

Organizations transform digitally to improve their processes, implement new business
models, and develop new capabilities. Information systems execute their processes
and store detailed data about the execution progress and outcome. Process mining is a
field of data science that exploits such data for identifying process improvements and
providing operational support. It is achieved through the tasks of data-driven discovery
of process models, conformance checking, performance analysis, and so on. Historically,
most process mining techniques address the analysis of process instances, or cases, in
isolation, i.e., assuming that various cases do not affect each other. However, this
assumption does not hold if cases interact on limited shared resources. In this case,
applying many existing process mining techniques is infeasible as it would lead to
poor or even inaccurate results.

In this dissertation, we study material handling processes of Material Handling
Systems (MHSs) in logistics, such as Baggage Handling Systems (BHSs) of airports
or warehouse solutions. In MHSs, cases are not isolated. For example, bags in BHSs
interact on conveyors of finite capacity while competing for shared machines. The pri-
mary concern of MHS operators is to keep the MHS performance at the desired level.
It makes improving material handling processes and providing operational support
an actual problem. However, existing process mining techniques fail to capture inter-
actions between cases. This dissertation aims to bridge this gap by adapting existing
techniques and creating new ones, primarily targeting MHSs.

The proposed techniques aim at enabling the main process mining tasks for MHSs.

• We propose a generic technique for process performance description and anal-
ysis, called performance spectrum. It can reveal case interactions and various
performance phenomena, which we describe in a taxonomy of performance pat-
terns.

• We identify the key concepts for modeling MHSs: queues, resources, and rout-
ing functions by investigating existing queueing theory approaches and ma-

viii

terialize them in proclets (i.e., sub-models) of the Process-Queue-Resource sys-
tem (PQR-system), which is a dedicated synchronous proclet system, tailored for
modeling MHSs.

• We adopt the concept of generalized conformance checking for the PQR-system by
decomposing it into simpler tasks, for which existing approaches can be used.
We propose a novel method for inferring missing events with timestamps for
the log repair task of generalized conformance checking to address the problem
of MHS data incompleteness.

• We propose a method for root-cause performance analysis, which aligns the per-
formance spectrum with the PQR-system and uses the latter to discover the
origins of undesirable performance scenario propagation observed in the per-
formance spectrum. The performance spectra of the queue and resource di-
mensions are used to determine the root causes at the origins.

• Finally, we exploit the ability of the performance spectrum to capture the sys-
tem dynamics to formulate a large class of predictive performance monitoring
problems as a generic regression problem over the performance spectrum. We
suggest a PQR-system-based method for selecting features relevant to learning
the corresponding regression models.

The proposed techniques have been implemented as ProM plugins and stand-alone
tools and evaluated on real data.

Contents

Abstract vii

Contents ix

List of Figures xvi

List of Tables xxiv

Acknowledgments xxvii

1 Introduction 1
1.1 Challenges and Opportunities of Material Handling System Analysis . . 2

1.1.1 Process Mining in Logistics . 3
1.1.2 Material Handling Systems in Logistics 3
1.1.3 Challenges for Analysis of Material Handling Processes 8
1.1.4 Event Data Collected by Material Handling Processes 11

1.2 Techniques for Analysis of Material Handling Processes 14
1.2.1 Established Techniques . 14
1.2.2 Process Mining . 16
1.2.3 Knowledge Gaps in Techniques for Analysis of Processes with

Non-Isolated Cases . 18
1.3 Research Questions and Solution Approaches 22
1.4 Thesis Overview . 26
1.5 Contributions . 38

1.5.1 Performance Spectrum and Performance Patterns 38
1.5.2 Modeling Systems with Shared Resources and Queues 40
1.5.3 Generalized Conformance Checking 41
1.5.4 Multi-Dimensional Performance Analysis 42
1.5.5 Predictive Performance Monitoring 44

2 Preliminaries 45

x CONTENTS

2.1 Notations - Set, Multiset, Relation, Function, Sequence, Graph, and
Partial Order . 45

2.2 Process Model and Process Runs . 46
2.2.1 Labeled Petri Nets . 47
2.2.2 The Semantics of Petri Nets . 50
2.2.3 Workflow Nets . 53

2.3 Colored Petri Nets . 55
2.3.1 Colored Petri Nets . 55
2.3.2 Timed Colored Petri Nets . 60

2.4 Events, Attributes, Event Logs, and Event Tables 62
2.5 Chapter Summary . 66

3 Fine-Grained Description of Processes Performance from Event Data 67
3.1 Motivation . 67
3.2 Performance Spectra . 70

3.2.1 Segments, Segment Occurrences, and Performance Classifiers . 70
3.2.2 Performance Spectra . 72
3.2.3 Aggregate Performance Spectra . 74
3.2.4 Combined Performance Spectra . 77

3.3 Performance Patterns . 78
3.3.1 Elementary Patterns . 78
3.3.2 Taxonomy of the Parameters of Elementary Patterns 79

3.3.2.1 Scope Parameters . 80
3.3.2.2 Shape Parameters . 81
3.3.2.3 Workload . 82
3.3.2.4 Performance . 83

3.3.3 Composite Patterns . 84
3.3.4 Demonstration . 85

3.3.4.1 The Performance Spectrum Miner 85
3.3.4.2 Baggage Handling System of a Major European Airport 88
3.3.4.3 Road Traffic Fine Management Process 90
3.3.4.4 Comparison of Event Logs 92

3.3.5 Performance Spectrum Replication Study 93
3.4 Practical Aspects of MHS Analysis Using Performance Spectra 95

3.4.1 Object-Centric Event Logs of Material Handling Processes 96
3.4.2 Causality in Performance Spectra of MHSs 97

3.5 Evaluation . 98
3.5.1 Analysis . 100
3.5.2 Evaluation Results . 109

3.6 Chapter Summary . 109

CONTENTS xi

4 The Nature of Material Handling Systems 111
4.1 Classes of Material Handling Systems . 111

4.1.1 Building Blocks . 112
4.1.1.1 Conveyors . 112
4.1.1.2 Resources and Units . 114

4.1.2 Material Handling Systems with and without Batching 116
4.2 Analysis Questions . 117
4.3 Modeling Building Blocks and Units with Queues 119

4.3.1 Resource Model . 119
4.3.2 Conveyor Model . 122

4.3.2.1 Speed-Density Effect . 122
4.3.2.2 Modeling Conveyors as State-Dependent Queues . . . 129

4.4 Modeling Material Handling Systems with Queueing Networks 131
4.4.1 Modeling with Open Queueing Networks 131
4.4.2 Queueing Networks with Blocking 131
4.4.3 Modeling MHSs Using Open Queueing Networks 134
4.4.4 Modeling MHSs using Closed Queueing Networks 136

4.5 Analysis Limitations . 138
4.5.1 Limitations of Analysis with Queueing Theory 138

4.5.1.1 Variable Conveyor Capacity Due To TSU-to-TSU Dis-
tances . 138

4.5.1.2 State-Dependent Queues and Protective Space Policies 140
4.5.1.3 Routing . 140
4.5.1.4 The Nature of Conveyor Departure Processes 141
4.5.1.5 Analysis of Queueing Networks Under Transient and

Steady State Conditions 142
4.5.1.6 Limitations of Approximation Techniques and Simula-

tion . 144
4.5.2 Limitations of Analysis with Queue Mining 144

4.6 Chapter Summary . 146

5 Review of Literature 149
5.1 Analytical and Behavior Models . 150
5.2 Conformance Checking and Log Repair . 154
5.3 Descriptive Performance Analysis . 156
5.4 Predictive Performance Analysis . 158

6 Modeling Systems with Shared Resources and Queues 159
6.1 Challenges for Modeling Systems with Shared Resources and Queues . 159

6.1.1 Complicated Dynamics of BHSs . 160
6.1.2 BHS Modeling Challenges . 162

xii CONTENTS

6.2 Concepts for Modeling Systems with Shared Resources and Queues . . 163
6.2.1 Distinguishing Same-Type Entities by Token Identifiers 163
6.2.2 Distinguishing Multiple Interacting Entities by Synchronous Pro-

clets . 166
6.2.3 Behavior of BHSs through Synchronous Proclets 170

6.3 Approaching Modeling: PQR-Systems . 174
6.3.1 Labels . 175
6.3.2 Syntax . 176
6.3.3 Semantics . 180

6.4 The Formal Model of PQR-systems . 186
6.4.1 P-Proclet . 186
6.4.2 Q-Proclet . 189
6.4.3 R-proclet . 189
6.4.4 PQR-system . 189

6.5 Semantics of PQR-Systems . 191
6.5.1 Replaying a Trace Over a CPN . 191

6.5.1.1 Labeled Transition Occurrences 192
6.5.1.2 Replaying Traces Over CPNs 192

6.5.2 Replaying an Event Table Over a PQR-System 195
6.6 Properties of PQR-Systems . 197
6.7 Demonstration . 198
6.8 Chapter Summary . 202

7 Conformance Checking for Systems with Shared Resources and Queues 205
7.1 Motivation for Generalized Conformance Checking 205
7.2 Conformance Checking of PQR-Systems 211

7.2.1 Problem Statement . 211
7.2.2 Trajectory Conformance for P-Proclets 213

7.2.2.1 Problem . 214
7.2.2.2 Motivation . 214
7.2.2.3 Approach . 216

7.2.3 Trajectory Conformance for Q- and R-Proclets 217
7.2.3.1 Problem . 217
7.2.3.2 Problem Instances . 217
7.2.3.3 Approach . 221

7.2.4 Synchronization Conformance Checking 225
7.2.4.1 Problem . 225
7.2.4.2 Motivation . 226
7.2.4.3 Approach . 226

7.2.5 Limitations . 227
7.3 Inferring Unobserved Events . 228

CONTENTS xiii

7.3.1 Motivation . 228
7.3.2 Information Loss . 231
7.3.3 Sequential View on Event Tables 236
7.3.4 Partially Ordered View on Event Tables 238
7.3.5 Relation between Sequential and Partially-Ordered View 239
7.3.6 Problem Statement . 240
7.3.7 Performance Spectra with Uncertainty 242
7.3.8 Inferring Timestamps Along Entity Traces 243

7.3.8.1 Infer Potential Complete Runs from a Partial Run . . . 245
7.3.8.2 Restoring Timestamps of Unobserved Events by Linear

Programming . 247
7.3.9 Evaluation . 252

7.4 Chapter Summary . 254

8 Multi-Dimensional Performance Analysis 257
8.1 Introduction . 257

8.1.1 State-of-the-Art Approaches . 258
8.1.2 Research Questions . 261
8.1.3 Method Outline . 262

8.2 Relating Performance Spectra to PQR-Systems 263
8.2.1 Running Example . 264
8.2.2 Relating P-Proclets to Process Performance Spectra 266
8.2.3 Relating R-Proclets to Resource Performance Spectra 270
8.2.4 Relating Q-Proclets to Queue Performance Spectra 273
8.2.5 Combining Resource and Queue Performance Spectra along Syn-

chronization Channels . 275
8.3 Method for Multi-Dimensional Performance Analysis 279

8.3.1 Running Example . 279
8.3.2 Method Overview . 280
8.3.3 Step 1. Detecting Undesirable Performance Patterns in the PS-P 284
8.3.4 Understanding Propagation of Blockage and High Load Instances288
8.3.5 Step 2. Propagation Chain Discovery 294
8.3.6 Step 3. Merging Propagation Chains Due To High Load Propa-

gation to Alternative Routes . 297
8.3.7 Step 4. Merging Propagation Chains Due To High Load After

Blockage Completion . 299
8.3.8 Step 5. Analysis of High Load Instances 300
8.3.9 Step 6. Multi-Dimensional Analysis of Blockage Instances 301

8.3.9.1 Sub-Step M1. Determining and Obtaining PS-Q and
PS-R Segments for Analysis. 302

xiv CONTENTS

8.3.9.2 Sub-Step M2. Detecting Performance Patterns in the
PS-Q and PS-R. 303

8.3.9.3 Sub-Step M3. Identifying Root Causes of the Given
Pattern Instance . 304

8.3.10 Completing the Running Example Analysis. 310
8.4 Evaluation . 311

8.4.1 Experimental Setup . 312
8.4.2 Implementation . 313
8.4.3 Analysis Using Synthetic Data . 315
8.4.4 Monitoring Using Synthetic Data 319
8.4.5 Analysis Using Real Datasets . 320
8.4.6 Evaluation Results . 322

8.5 Chapter Summary . 323

9 Predictive Performance Monitoring 327
9.1 Motivation . 327

9.1.1 Predictive Performance Monitoring 327
9.1.2 Data-Driven Feature Identification 331
9.1.3 Research Questions . 333
9.1.4 Method Outline and Evaluation Results 335

9.2 Problem Formulation over Performance Spectra 336
9.2.1 Intuition behind Using Performance Spectrum for Capturing Sys-

tem Dynamics . 336
9.2.2 Capturing MHS Dynamics Using Performance Spectra 339
9.2.3 Formulation of the Problem over Multi-Channel Performance

Spectrum . 342
9.2.4 Problem Instance Examples . 345

9.3 Method for Predictive Performance Monitoring 348
9.3.1 Overview . 348
9.3.2 Step 1. Define Target Spectrum Parameters 350
9.3.3 Origins of the Performance on Target Segments 351
9.3.4 Step 2. Identify Historic Spectrum Parameters 357
9.3.5 Step 3. Extract Feature and Dependent Variable Values 360
9.3.6 Step 4. Train Predictive Model . 362

9.4 Evaluation . 362
9.4.1 Experimental Setup . 362
9.4.2 Experimental Results . 364

9.4.2.1 Evaluation Using Synthetic Data 364
9.4.2.2 Evaluation Using Real Datasets 365

9.5 Chapter Summary . 368

CONTENTS xv

10 Conclusion 371
10.1 Contribution . 371
10.2 Implemented Tools . 376
10.3 Limitations and Open Issues . 380
10.4 Future Work . 381

Bibliography 385

Index 403

Summary 407

Curriculum Vitæ 411

List of Figures

1.1 Baggage handling system at an airport. 5
1.2 Sorting loop P 2 of the system in Figure 1.1. 8
1.3 Main types of process mining. 18
1.4 Performance analysis using a graph-based model (a), and the perfor-

mance spectrum (b). 20
1.5 Overview of research questions and methods. 23
1.6 “Regular” performance spectrum (a), aggregate performance spectrum

(b), and combined performance spectrum (c). 27
1.7 Modeling approach in Chapter 4 and Chapter 6. 29
1.8 Combination of M/G/1/K and M/G/c/c queues models the BHS con-

veyors of Figure 1.2. 30
1.9 PQR-system example. 31
1.10 Performance spectrum built from a complete event table, i.e., an event

table containing known missing events. 33
1.11 Aggregate performance spectrum built from a complete event table. . . 35
1.12 Problem of predictive performance monitoring over the performance

spectrum. 37

2.1 MFD of a BHS (a) and an example of the corresponding labeled, marked
Petri net (b). 49

2.2 Occurrence nets. 51
2.3 Marked Petri net (a), its run (b), and its labeled partial order (c). 52
2.4 Marked, labeled Petri net of Figure 2.1 transformed into a workflow net. 54
2.5 FIFO queue. 55
2.6 CPN model of the queue shown in Figure 2.5. 57
2.7 Timed CPN model of the queue in Figure 2.5. 61

3.1 Performance analysis using a graph-based model (a), and the perfor-
mance spectrum (b). 68

3.2 Occurrence of segment (a,b). 71
3.3 Multiple occurrences of segment (a,b). 71

LIST OF FIGURES xvii

3.4 Classified segment occurrences. 72
3.5 In the performance spectrum (a) the color-coded lines show cases with

different speed classes, while the aggregate performance spectra with
various grouping (b-d) capture various performance aspects of case
handling for each time window (bin). 75

3.6 Multi-channel performance spectrum. 76
3.7 Combined performance spectrum (a), obtained by visualizing the ag-

gregate performance spectrum for grouping start (b) on top of the “reg-
ular” performance spectrum. 78

3.8 The entire performance spectrum of segment (Insert Fine Notification,
Add penalty) of the road traffic fines management log exhibits an el-
ementary pattern instance showing the FIFO behavior with a constant
waiting time. 79

3.9 Taxonomy of the parameters of elementary patterns. 80
3.10 Three elementary patterns E1, E2, and E3 (left), and two occurrences

of a composite pattern consisting of E1-E3 (right). 84
3.11 Pattern context (a), and context parameters (b). 84
3.12 The initial panel of the ProM for starting the PSM (a), pre-processing

configuration (b), and caching mode (c). 86
3.13 The PSM shows the “regular” performance spectrum (a), and the ag-

gregate performance spectrum (b). 87
3.14 THe PSM additional options for segment and case level filtering. 88
3.15 Path from check-in counter a1 to sorter entry point s. 89
3.16 Performance spectrum of cases (bags) moving from the check-in coun-

ters toward the sorter s. 90
3.17 Performance spectrum of the RTFM process for years 2002 and 2003

for trace variant R1-R3. 91
3.18 Aggregate performance spectrum of the road traffic fines management

log (2000-2012) . 92
3.19 UML class diagram for MHS event log. 96
3.20 BHS fragment (a) and the corresponding performance spectrum (b)

show how pid6 could not merge on (d ,b) because of densely located
pid1−pid5 on the conveyor with a higher merge priority. 98

3.21 BHS fragment (a) and the corresponding performance spectrum (b)
show how pid2 − pid6 were blocked by pid1; process model (c) de-
scribes a business process with activities a−d that follow each other in
the same way as in the system (a). 99

3.22 High-level MFD of the BHS, obtained by aggregating exact system lo-
cations into the names of their areas. 101

xviii LIST OF FIGURES

3.23 Combined performance spectrum, computed from the aggregate log
L2, shows many periods of zero or low load at different system areas,
for example, elementary pattern instances z1 − z3, z6, z9, z10 and com-
bined ones z4, z5, z7 and z8. 102

3.24 Aggregate performance spectrum of the combined one shown in Fig-
ure 3.23. 102

3.25 Longer segment occurrences on pre-sorter P 1 show its inactivity during
interval INT 1. 103

3.26 Recirculation of bags on pre-sorter P 2 grows during the first half of
interval INT 2, and decreases during the last one. 104

3.27 Many recirculating bags had to be automatically or manually identified
(tasks AutoScan and RouteToMC respectively), but were dumped out of
the system via exit D2 instead. 105

3.28 Growing lost-in-tracking on P 2 during INT 2 (line 4), and no activity on
P 2 during INT 3. 106

3.29 Errors on diverting toward the manual encoding stations (line 7) and
dump exit D2 (line 8); no activity at the manual encoding stations
during INT 4 (line 9). 107

3.30 Availability of the manual encoding stations during the whole period
(green bars in line 10). 107

3.31 Reconstructed chain of events. 108

4.1 Conveyor belt carrying TSUs pid1 and pid2 from location b toward e. . 113

4.2 Linear conveyor (a), accumulating linear conveyor with “main” belt
c and accumulating belts a1 − a3 for keeping waiting TSUs (b), and
accumulating linear conveyor before a workstation (c). 113

4.3 Passing TSU obstructs the sensor light beam. 114

4.4 Merging unit (a), consisting of a main and incoming conveyor, and a
diverting unit (b), consisting of a main and outgoing conveyor; TSUs
can be merged/diverted if there is some free space fs available. 115

4.5 Loop with shortcut cshortcut going through a workstation and skipping
path a −x −b. 116

4.6 Detecting TSUs by sensor b: pid1 and pid2 are arriving to a : b (a), the
front of pid1 is detected (b), the back of pid1 is detected (c), and the
front of pid2 is detected (d). 120

4.7 Representation of M/G/1/K queue. 121

4.8 Speed-density effect observed for a long MHS conveyor with a capac-
ity of 52 TSUs. Instead of TSU speed, median traveling duration is
provided: longer duration shows a slower average speed. 123

LIST OF FIGURES xix

4.9 Speed-density effect observed for a short MHS conveyor with a capac-
ity of 7 TSUs. Similarly to Figure 4.8, median traveling duration is
provided instead of speed: longer duration shows a slower average
speed. 124

4.10 TSU pid2 merges without delays. 125
4.11 TSUs pid1 and pid2 started their journey at time t2 (a), the correspond-

ing performance spectrum contains starting occurrences on top (b);
segments a : m and d : m are shown on top of each other. 126

4.12 Both TSU reached the merge location almost simultaneously by time
t4. However, pid2 could not be diverted onto d : e at t4 because pid1

occupied the merge location. 127
4.13 pid2 had to wait for t6 − t4 (occurrence o′′

5) till pid1 left the merge
location, and protective space PrS was created. 128

4.14 Under high load conditions, fewer gaps, long enough to accommodate
a TSU and the surrounding protective spaces, were available; at the
same time, free but unreachable spaces (e.g., f ′ and f ′′) were wasted,
decreasing the effective capacity of the conveyors. 129

4.15 M/G/c/c state-dependent queue graphical notation: stationary Marko-
vian arrival M (arrival rate λ), general service process G with c parallel
servers and capacity (i.e., no queue). 130

4.16 Queueing network modeling the merging unit m and its incoming and
outgoing conveyors. 132

4.17 Resource x blocks conveyor d : e; as a result, a : m gets blocked as well
due to inability to hand over pid3 onto a : m. 133

4.18 Chains of M/G/1/K and M/G/c/c queues. 135
4.19 Combinations of the M/G/1/K and M/G/c/c queues model merge (a)

and divert (b) units. 136
4.20 Combination of M/G/1/K and M/G/c/c queues models the system in

Figure 6.1(a). 136
4.21 Closed queueing network modeling a merge unit. 137
4.22 Combinations of M/G/1/K and M/G/c/c queues modeling a loop with

a shortcut going through the workstation (see Figure 4.5). 138
4.23 Different policies for protective space on MHS conveyors. 139
4.24 Routing in MHSs. 141
4.25 TSU flow split. 142
4.26 Transient and steady states of a queueing system. 143

5.1 Review of literature follows the main flow of this thesis, starting with
modeling and going toward predictive performance monitoring. 149

6.1 MFD (a) and CPN model (b) of a BHS. 164

xx LIST OF FIGURES

6.2 Run of the CPN of Figure 6.1(b). 165
6.3 Diagram of the BHS of Figure 6.1, including resources and queues (a)

and its CPN model (b). 167
6.4 Resource proclets. 168
6.5 Queue proclet. 169
6.6 Synchronous proclet model of the BHS shown in Figure 6.1(a). 170
6.7 The run of the synchronous proclet system of Figure 6.6, part 1. The

second part is shown in Figure 6.8. 172
6.8 The run of the synchronous proclet system of Figure 6.6, part 2. The

first part is shown in Figure 6.7. 173
6.9 R-proclet template. 177
6.10 Q-proclet template. 179
6.11 Example of a PQR-system modeling the BHS in Figure 2.1(a). 181
6.12 Labeling of the input and output transitions of process step a. 187
6.13 P-proclet in the initial state. 188
6.14 Material flow diagram. 200
6.15 PQR-system visualization. 201
6.16 Simulation model control panel. 203
6.17 Complete (a) and incomplete (b) event logs. 204

7.1 Classical conformance checking (a) and generalized conformance check-
ing for the PQR-system-based setting (b). 207

7.2 Conformance checking using PQR-systems. 213
7.3 A BHS (a) and possible control flow outliers over the corresponding

P-proclet (b). 215
7.4 Sorting loop with a shortcut. 218
7.5 PQR-system of the sorting loop in Figure 7.4 (R-proclets are omitted).

Only the transitions drawn as filled rectangles are recorded. 219
7.6 Concept drift due to the protective space policy change. 221
7.7 R-proclet converted into a data Petri net. 222
7.8 Q-proclet converted into an extended data Petri net. 224
7.9 R-proclet as a data Petri net, extended for synchronization confor-

mance checking. 227
7.10 BHS model example (a), the observed imprecise behavior for two cases

pid = 50 and pid = 51 (b), and two possible alternatives of the actual
behavior (c) and (d). 229

7.11 In a BHS fragment (a), where the red arrows correspond to the in-
stalled sensors, and grey ones correspond to not installed, and the cor-
responding material flow diagram (b). 232

7.12 PQR-system of the BHS in Figure 7.11. 233
7.13 System run (a), and its labeled partial order (b). 234

LIST OF FIGURES xxi

7.14 In the performance spectrum with uncertainty, the possible intervals
for timestamps are shown as lines in (a), as a region in (b), and as a
reduced region in (c). 244

7.15 Partially complete traces of the Process (a), Resource (b), and Queue
(c) proclets, restored by oracles O1,O2. Only observed events are or-
dered, e.g., f 9 <d1

rid f 16, while the other events are isolated. 245
7.16 Equations 7.1-7.5 define time intervals for unobserved events (a), defin-

ing regions for the possible traces (b). Equations 7.6-7.7 propagate or-
ders of cases observed on one resource to other resources (b), resulting
in tighter regions (c). 249

7.17 In the BHS bags come from check-in counters c1−4 and another ter-
minals d1−2, f , go through mandatory screening and continue to other
locations. 252

7.18 Restored performance spectrum for synthetic (a,b) and real-life (c,d)
logs. The estimated load (computed on estimated timestamps) for syn-
thetic (e,f) and real-life (g,h) logs. For the synthetic logs, the load error
is measured and shown in red (e,f). 253

8.1 Performance spectrum with performance pattern instances bl1 − bl5,
hl0 −hl5 does not explain why they occurred. 259

8.2 BHS material flow diagram. 264
8.3 PQR-system of the BHS of Figure 8.2. 265
8.4 Performance spectrum (a), and the spectrum computed from a start-

only event log (b). 268
8.5 R-proclet fragment (a), and resource performance spectrum (b). 272
8.6 Q-proclet fragment (a), and queue performance spectrum (b). 273
8.7 PQR-system fragment (a), and PS-P segment with its MDC view (b). . . 276
8.8 PS-P (a), and the MDC view for segment (cs ,d1s) (b). 281
8.9 Six method steps. 282
8.10 Instances and pictograms of blockage (a,b) and high load (c,d) respec-

tively. 286
8.11 Detected pattern instances in the PS-P (a), and as pictograms (b). . . . 287
8.12 P-proclet fragment of the PQR-system in Figure 8.3 (a) and its PS-P

with detected pattern instances (b). 288
8.13 Propagation chain of blockage instances. 291
8.14 Propagation chain of high load instances. 294
8.15 Propagation link link0 shows that bl5 propagated as high load instance

hl0. 298
8.16 Merging propagation chain due to ended blockage instances propa-

gated as high load instances. 301
8.17 MDC view for PS-P segment (cs ,d1s) showing Variant 1 of Table 8.5. . . 303

xxii LIST OF FIGURES

8.18 MDC view for PS-P segment (cs ,d1s) showing Variant 2 of Table 8.5. . . 307
8.19 MDC view for PS-P segment (cs ,d1s) showing Variant 3 of Table 8.5. . . 309
8.20 Obtained performance spectrum (PS-P). 314
8.21 Detected blockage and high load instances. 316
8.22 Blockage and high load instance propagation. 317
8.23 MDC view for segment (b3

0s ,b4
0s). 319

8.24 PS-P with estimated ongoing segments at time t1. 321

9.1 PPM problem example: predicting load on the scanners at location S1

using historic event data recorded from the check-in islands. 329
9.2 In the PS-P with detected pattern instances, bag pid1 could make it to

the destination d2S , while bag pid2 was delayed by blockage instance
bl4. 330

9.3 Simplified MFD of a BHS showing two possible paths from check-in
counters a and e toward exit d . 332

9.4 Thesis architecture. 334
9.5 Route and the estimated time of arrival (a) based on information about

congestion (b). 337
9.6 Combined performance spectrum shows the speed of vehicles in traffic

on highway leg (a,b). 338
9.7 MFD of a sorter loop fragment. 340
9.8 Performance dynamics at the locations of the sorter loop shown in Fig-

ure 9.7. 340
9.9 Historic and target spectra “around” the current time of the sliding

window. 345
9.10 Check-in and pre-sorting areas. 346
9.11 Method for PPM. 349
9.12 BHS material flow diagram. 351
9.13 Sliding windows with target and historic spectra over channels ch1 (a)

and ch2 (b). 353
9.14 Target and performance spectra in sliding windows sw4 of channel ch1. 356
9.15 Sliding window technique over a multi-channel performance spectrum. 360
9.16 Target and historic spectrum values in a sliding window. 361
9.17 Real, predicted by (A1), and predicted by (A2) load of the baggage

screening machines, in % of the maximal load (top): each bin repre-
sents the load for one minute, filled and blank circles show matched
peaks and dips, while the X’s show mismatches. The residuals of the
predicted load in % of max. load per bin (bottom): the baseline (or-
ange) shows greater deviations than the performance spectrum-based
model (blue). 366

LIST OF FIGURES xxiii

9.18 Peaks of re-circulation within 30-second bins (in % of the max. load):
the FF NN model (A1) predicted peaks A, B, C in the correct bins,
whiles the baseline (A3) predicted them with a significant delay as a
result of auto-correlation. However, several peaks (e.g., D and E) were
not predicted by the model (A1). 367

10.1 Overview of the developed software tools. 377
10.2 Screenshot of animation of a BHS simulation model in AutoMod: two

links from the check-in area go via hold baggage scanners at the bottom
right corner and continue to the sorting loop with laterals. The cubes
represent bags on the conveyors. 379

10.3 Further development of the PSM and PQR-system viewer based on rep-
resenting the graph of a process model, and an object-centric event log
in the form of an event graph in a graph database. 384

List of Tables

1.1 Events generated by the handling of bags with identifiers 1 and 2. . . . 13

2.1 Complete time-monotone event table. 64

3.1 Presence of the selected pattern classes in the real-life event logs. 93

6.1 Execution of the PQR-system of Figure 6.11 corresponding to the run
of Figure 6.7. 184

6.2 Event logs from the event table shown in Table 6.1. 184
6.3 Trace σ5 of the queue with identifier qid3 of Table 6.1 193
6.4 Labeled occurrences and markings. 194

7.1 Bag pid1 incomplete trace. 218
7.2 Possible variant 1 of bag pid1 complete trace. 218
7.3 Possible variant 2 of bag pid1 complete trace. 219
7.4 Events and attributes of the trace σ8 of Table 6.2. 223
7.5 Alignment of events trace σ8 (Table 7.4) with the transitions of the

model in Figure 7.7. 224
7.6 Trace of resource rid4 of the system in Figure 7.3(a) (see Figure 6.6 for

the whole PQR-system). 226
7.7 Complete event table. 235
7.8 Recorded incomplete event table. 235
7.9 Trace with unobserved events e2 −e4. 242
7.10 Trace with lower uncertainty of timestamps than one in Table 7.9. . . . 244
7.11 Partial event table containing events for bags 53 and 54, used as a

running example in Section 7.3.8. 245
7.12 Estimated load (computed on estimated timestamps) Root Mean Squared

Error (RMSE) and Mean Absolute Error (MAE) are shown in % of max.
load. 254

8.1 Execution of the PQR-system of Figure 8.3. 266

LIST OF TABLES xxv

8.2 Start-only process event log obtained from Table 8.1 (in the form of an
event table). 269

8.3 Resource event log obtained from Table 8.1 (in the form of an event
table). 272

8.4 Queue event log obtained from Table 8.1 (in the form of an event table).274
8.5 Mapping cardinality combinations of sets Z top

busy ,Zqueue and Zbtm
busy to root

cause in the resource and queue dimensions. 304
8.6 Mapping cardinality of sets Z top

busy, Zqueue, and Zbtm
busy to a root cause. . . . 305

8.7 Mapping cardinality of sets Z top
busy, Zqueue, and Zbtm

busy to a root cause. . . . 307

8.8 Mapping cardinality of sets Z top
busy, Zqueue, and Zbtm

busy to a root cause. . . . 308

8.9 Mapping cardinality of sets Z top
busy, Zqueue, and Zbtm

busy, related to blockage
bl4 in Figure 8.11(b), to its root cause. 310

9.1 Trace prefix proximity. 332
9.2 Mapping PPM methods to their identifiers in text. 363
9.3 Model error measures, where RMSE and MAE are in % of max. load

for (a) and (b), and re-circulation (c). ∗R squared values for FF NN are
provided for the sake of completeness. 365

Acknowledgments

First of all, I would like to thank my first promoter Dirk Fahland for his endless pa-
tience, support, and guidance throughout the entangled unmarked paths of process
mining research. Next, I wish to thank my second promoter Wil M.P. van der Aalst
for directing my research toward tangible results and for his invaluable feedback. By
discussing research with both, I could learn their ways of approaching scientific prob-
lems and reasoning about their solutions. Hope I was able to train myself a bit in their
way of reasoning. Thank you both so much for helping me grow from an engineer to
a researcher.

Next to my supervisors, I would like to thank the other committee members: Ste-
fanie Rinderle-Ma, Marco Montali, and Ivo Adan, for making time to read the thesis,
provide feedback, and attend the ceremony.

I would like to express my sincere gratitude to Vanderlande for making this project
possible and for providing access to various material handling systems, invaluable
datasets, and knowledgeable domain experts. Hilda Fabiola Bernard, Joost van Mont-
fort, Erik Blokhuis, and Liam McMenamin – thank you for steering my research from
the industry’s side.

While at TU/e, I had the privilege to be part of the Process Analytics group. It
gave me a unique opportunity to learn from the group’s researchers. I’m grateful
to Boudewijn van Dongen, Natalia Sidorova, Hajo Reijers, Marwan Hassani, Renata
Medeiros de Carvalho. Undoubtedly, nothing could be accomplished without the help
of Ine van de Moosdijk and Eric Verbeek.

I am grateful to my fellow Ph.D. students (many of whom are doctors already)
Mitchel, Ayda, Rashid, Eva, Yorik, Azadeh, Gungming, Mohammadreza, Bart, Marcus,
Xixi, Felix, Bas, Mike, Sander, Niek, Maikel, Eduardo, Cong for adding so much fun
to the (sometimes unbearable) life of a Ph.D. student. Thanks should also go to the
PADS, RWTH Aachen University, where I was welcome many times while meeting
Wil.

I am incredibly grateful to Julia Kiseleva for inspiring me to become a researcher.
It took some time to become ready for the defense after my Ph.D. ended. All this

time, I have been with Process Optimization at ServiceNow, working on cutting-edge

xxviii Acknowledgments

process mining software. I am grateful to Jochen Pohle, Andrei Vlad Oteanu, Jeroen
van Gassel, Siddhant Sinha, Bojan Tomic, and the NowX team for their support and
guidance.

Last but not least, no research could be possible without the unconditional support
of my family, Lena, Anya, and Eva, and my parents, Liudmila Vasilevna and Vladimir
Vasilevich. Lena looked after the kids, Anya entertained me in my free time, and Eva
(impatiently) observed how the thesis was finalized. Meantime, my parents could
support each of us when it was needed. I am enormously grateful to them.

Vadim Denisov
Amsterdam, April 2023

Chapter 1

Introduction

Performance analysis is an essential element in process management, relying on pre-
cise knowledge about the actual process behavior and performance. It can be done
postmortem on historic data for enabling process improvements, and in real-time for
detecting and mitigating emerging performance problems [1]. In logistics, Material
Handling Systems (MHSs) provide short-distance movement (e.g., within a building)
of discrete units according to material handling processes. For instance, an airport
Baggage Handling System (BHS) accepts passengers hold baggage at check-in coun-
ters, move it throughout the terminal building(s), stores it temporarily in case of early
check-in, and off-loads the baggage toward the aircraft. In this type of system, which
this thesis is focused on, poor performance can lead to various undesirable perfor-
mance scenarios, such as congestion, inefficient management of manual operations,
materials mishandling (e.g., baggage being late for a flight), and results in lower cus-
tomer satisfaction and higher operational costs. The following tasks, when executed
systematically, can help to keep the performance at a desired level:

1. postmortem root cause analysis of undesirable performance scenarios for en-
abling improvements of material handling processes,

2. real-time detection and root cause analysis of undesirable performance scenar-
ios for eliminating their root causes and preventing further performance deteri-
oration,

3. predicting undesirable performance scenarios for preventing them from hap-
pening.

Event data emitted by machines and sensors in MHSs [2, 3], as well as in manufactur-
ing [4] and the Internet of Things (IoT) [5, 6], offer opportunities for process mining,
whose event data-driven techniques address problems of process analysis and moni-
toring. In turn, process mining techniques can help in approaching the creation of

2 Introduction

AI-augmented business process management systems [7], and digital twins of business
processes based on historical and current data [8, 9, 10].

However, MHSs is a challenging and perhaps one of the most interesting domains
for process mining because it combines the physical world (e.g., systems with ma-
chines, conveyors, and so on) and human work [11]. Prior to this thesis, existing
process mining techniques had limited applicability to those problems in the MHS do-
main. The understanding of this situation, when existing process mining techniques
could not realize opportunities provided by the availability of event data, triggered
the materialization of our project, called “Process mining in logistics”, and research
presented this thesis.

In this chapter, we briefly introduce our project and MHSs in Section 1.1.1 and
Section 1.1.2 respectively. We discuss how keeping the MHS performance on a de-
sired level is one of the main concerns of the system operators and why it is a chal-
lenge for process analysis techniques in Section 1.1.3. We consider the event data
MHSs generate in Section 1.1.4. We overview established and recent techniques for
analysis of material handling processes and identify a gap in these techniques affect-
ing MHS analysis in Section 1.2. We formulate our research questions in Section 1.3.
Finally, we outline the approaches of this thesis in Section 1.4 and summarize our
contributions in Section 1.5.

1.1 Challenges and Opportunities of Material Handling
System Analysis

In this section, first, we briefly describe our project and Vanderlande1 — the company
that funded it together with the Dutch Research Council (NWO)2 and participated in
steering our research toward the goals. Then, we introduce MHSs by the example of
an airport BHS, discuss the challenges that the MHS operators face, and consider why
their analysis and improvement are difficult. We consider how MHSs usually record
information about their operations in the form of event data, and how it becomes an
opportunity for their performance analysis.

Most information in this section comes from our practical experience obtained at
Vanderlande. During the project years, this information has been collected from inter-
views with domain experts of both the manufacturer and its customers’ sides, project
documentation, experiments with simulation models of MHSs, analysis of real event
datasets, and evaluation of newly created techniques.

1https://www.vanderlande.com/
2https://www.nwo.nl/

https://www.vanderlande.com/
https://www.nwo.nl/

1.1 Challenges and Opportunities of Material Handling System Analysis 3

1.1.1 Process Mining in Logistics

The project “Process mining in logistics” was organized for enabling research collab-
oration between the Eindhoven University of Technology and Vanderlande.

Vanderlande is a material handling and logistics automation company based in Veg-
hel, Netherlands; it supplies MHSs for airports, warehousing, and parcel distribution
industry [12]. For example, their BHSs and related passenger solutions can move over
four billion pieces of baggage worldwide annually in more than 600 airports, includ-
ing 12 of the world’s top 20 [13]. As a BHS records dozens of events while handling
each piece of baggage, i.e., a bag, all the Vanderlande-built BHSs record around a
trillion events per year. Such an amount of data potentially provides a great variety
of opportunities for applying process mining to analyze material handling processes.
However, back to the project start time, process mining was not frequently used in
the industry, and no studies were done regarding its applicability to material handling
processes.

To shed light on it and enable process mining for the analysis of MHSs, “Process
mining in logistics” included two Ph.D. projects, targeting research for materializing
the following three “big rocks”:

1. descriptive process mining,
2. predictive process mining, and
3. prescriptive process mining

of MHSs. This thesis is the result of one of these Ph.D. projects, which is completed
first.

Next, we introduce MHSs by the example of a BHS.

1.1.2 Material Handling Systems in Logistics

We start by explaining how a BHS of a large airport handles passenger baggage and
then discuss what other MHS types (besides BHSs) exist.

Material Handling Systems. An MHS handles Transport and Storage Units (TSUs)
and delivers them to their destinations within a facility the system serves on time.
For BHSs, security standards must be additionally observed. An MHS handles TSUs
according to some material handling process, in order to provide the service reliably
and fast. The process ensures that each TSU goes through a sequence of required
process steps. Although these steps and their possible sequences vary from system to
system, most MHSs have much in common. In the following, we consider an example
of a BHS and then summarize the commonalities of MHSs and their processes.

Example. Now, let us consider a BHS at an airport as an MHS example. In a nutshell,
a BHS is a network of connected conveyors that can transport bags. In the MHS

4 Introduction

domain, a Material Flow Diagram (MFD) is typically used for documenting the system
logical layout (i.e., its material flows), and key equipment in the system areas.

An MFD of a large BHS is shown in Figure 1.1. It has several areas:

• a check-in area with check-in counters q1
1 , . . . , q1

nz1, . . . , qn
1 , . . . , qn

nzn,
• transfer in/our area for transfer baggage,
• connection to another airport terminal (for baggage),
• preliminary sorting area with sorting loops P 1 and P 2, X-ray hold baggage scan-

ners S1 −Sk , cameras a, x, manual stations m1,m2, and dump area u,
• early bag storage, and
• final sorting area with final sorters Y 1,Y 2 and laterals (exits) y1

1 , . . . , y1
nl, y2

1 , . . . , y2
nl.

The areas and their equipment are connected by conveyors. In Figure 1.1, each thin
line represents a flow built from a single conveyor link, and each thick line represents
multiple parallel links. A conveyor itself is either a series of belts or a series of trays.
For the former, no permanent “lots” for placing TSUs are preserved on the belts, i.e.,
they can be placed anywhere on the belt. For the latter, each bag must be placed on
a single free tray. Various equipment is installed over the conveyors for performing
various process steps. For example, X-ray scanners S1 −Sk screen bags for detecting
prohibited items.

Now, we consider an example of bag handling.

• A bag enters the system at check-in counter q1
1 .

• On check-in, the system immediately assigns it an internal bag identifier. This is
the very first process step performed over the bag.

• Afterward, the bag travels to preliminary sorting loop P 1 via the link between
the check-in and preliminary sorting areas. On the way, the system tracks its
locations when it passes optical sensors, installed at various places over convey-
ors. As the system knows the exact speed of each conveyor, it can infer which
bag passes a sensor. We consider passing a system location as a process step.

• Eventually, the bag reaches location b1.
• At this location, the bag is identified by a camera installed at b1. It reads the

attached baggage tag with a bar code to recognize the global bag identifier. Us-
ing this identifier, the system associates the bag’s internal identifier with the
passenger information available for the global identifier (flight number, desti-
nation, class, etc.).

• Then, the bag is merged onto P 1 by merge unit b1.
• After merging, the bag is screened by scanner S1 and obtains clearance to con-

tinue to the aircraft. When prohibited or suspicious items are detected in a bag,
it is offloaded out of the system to dump area u via exits D1 and D2 for further
examination.

1.1 Challenges and Opportunities of Material Handling System Analysis 5

Final sorting

Preliminary sorting

Transfer
in/out

Check-In

Scanner
Sk

MS
m1

MS
m2

Dump
u

P1
P2

Y1
Y2

Laterals

Single conveyor line

Multiple parallel conveyor lines

x
a

Early bag storage

Scanner
S1

c1 … c4

q11 …q1nz1

d1

f

Other
terminal

link

y2
1 … y2

nl

y1
1 … y1

nl

b1 … b4

qn
1 … qnnzn

ed2

D2
D1

Figure 1.1: Baggage handling system at an airport.

6 Introduction

• The bag is diverted via a diverting unit toward final sorter Y 1, where it leaves
the system via lateral y1

1 , to be transported toward the aircraft. This is the last
process step for this bag.

This is an example of a so-called happy (shortest) path throughout the system to
the final destination. However, other paths are possible as well. For example,

• a bag is sent to a manual station for manual identification if it cannot be identi-
fied automatically,

• a bag can recirculate on a preliminary sorting loop if paths to its destination
(e.g., scanners, manual stations, diverting units) are unavailable,

• a bag must be identified again if it is lost in tracking, i.e., if it was tracked at
some location at an unexpected time,

• and so on.

Moreover, a bag can be sent to its destination via a longer path when the shortest
path is unavailable (e.g., due to a mechanical failure or congestion).

To summarize, a BHS usually performs multiple process steps over a bag, such
as registering, tracking at different locations, identification, screening, merging, etc.
The next process step depends on both the bag status (e.g., whether it is identified)
and the system state, i.e., equipment availability, load on system areas, etc..

To provide the required performance and the possibility to perform process steps
in different orders, the system design and material handling process must

• be able to handle the maximum expected load,
• provide high availability, i.e., eliminate single points of failure,
• ensure alternative paths to destinations.

For example, the Heathrow Terminal 3 Integrated Baggage Facility is capable of han-
dling 7.200 bags per hour. The BHS of Istanbul Airport (IST) handles up to 22.000
bags per hour and provides an availability of 99.99%. For details about BHSs of other
large airports where Vanderlande-built systems are installed, e.g., Amsterdam Airport
Schiphol, Las Vegas McCarran Airport, Hong Kong International Airport, Vancouver
International Airport, and so on, we refer to Vanderlande’s website.

In the BHS in the Figure 1.1, these requirements affect

• the number of check-in counters q and laterals y ,
• the number and throughput of parallel conveyors in links between the system

areas, e.g., the link between check-in and preliminary sorting areas,
• the number and throughput of sorting loops P 1, P 2, Y 1, Y 2, including their

additional equipment (e.g., scanners S1 −Sk , manual stations m1,m2),
• capacity of the other system areas, e.g., the early check-in storage,
• the number of alternative paths between areas,
• etc.

1.1 Challenges and Opportunities of Material Handling System Analysis 7

Redundant equipment (e.g., multiple scanners) helps both handle load peaks and
provide high availability. As a result,

• a BHS usually has a complex network of conveyors with various equipment
installed at different locations,

• the material handling process is large and complicated, and
• bags follow a great variety of paths throughout the system.

So far, we introduced BHSs. Next, we consider other types of MHSs.

Warehouse Systems, and Systems with Batching. General merchandise, fashion,
and food retail companies use warehouse systems to handle TSUs (e.g., cartons or
trays) carrying goods by means of conveyors.

For example, cartons come to a warehouse system from supplier trucks at the
warehouse gates, and go to picking stations, either directly, or with an intermediate
stop at short-term storage. At a picking station, customer orders are assembled from
goods available in cartons and handed over for packing and delivery.

Often, such systems handle TSUs one by one, i.e., not consolidating them in
batches, similar to the BHS we consider above. To refer to such systems in this thesis,
we introduce a sub-class of MHSs that we call MHSs without batching.

However, there is another sub-class of MHSs, capable of handling TSUs grouped in
batches. For example, a BHS can have an area where multiple bags are consolidated
into large containers to be loaded onto the aircraft faster and in a more compact
way. Some warehouse systems can distribute goods from pallets among cartoons, or
consolidate multiple pieces of goods together on a tray to fulfill a customer order. We
call this sub-class of systems MHSs with batching.

Thus, Vanderlande’s warehousing solutions are the first choice for many of the
largest global e-commerce players and retailers in food, fashion, and general mer-
chandise across the globe. The company helps them to fulfill their promise of same-
day delivery for billions of orders, with nine of the 15 largest global food retailers re-
lying on its efficient and reliable solutions [14]. For example, Vanderlande has a fully
automated distribution center in Zaandam for Albert Heijn, the largest supermarket
chain in the Netherlands. It has an area of 48.000 m2, and there are 1.800 trucks that
drive to and fro every day to supply more than 330 Albert Heijn stores [15]. Among
Vanderlande’s warehouse solutions customers, Lidl’s distribution center in Køge, Den-
mark, Zalando in Sweden, Vegalsa-Eroski, Bosch in Karlsruhe, Asda in Warrington,
and many others.

In the next section, we consider the challenges of material handling process anal-
ysis, actual for both sub-classes.

8 Introduction

1.1.3 Challenges for Analysis of Material Handling Processes

In this section, we discuss problems that the MHS operators face daily, and why these
problems are difficult to solve.

The MHS performance is crucial for customer satisfaction, so keeping it on a de-
sired level is one of the main concerns of the system operators. Therefore, the perfor-
mance is typically estimated through Key Performance Indicators (KPIs), such as:

1. the throughput of individual system areas, e.g., the throughput of hold baggage
scanners S1 −Sk in Figure 1.1, in bags per hour,

2. the throughput of the whole system, e.g., the number of bags offloaded from
laterals y1

1 − y1
nl, y2

1 − y2
nl,

3. the number of outliers, e.g., the number of TSUs that did not follow the optimal
path, or could not reach their destination on time,

4. the equipment availability time, e.g., the availability time of manual stations
m1, m2,

5. and so on.

Keeping these KPIs on the desired level requires avoiding undesirable performance
scenarios that deteriorate the MHS performance.

Undesirable Performance Scenario Example. Let us consider an example of such
a scenario for the BHS shown in Figure 1.1. For that, we consider its preliminary
sorting loops P 2 in more detail. Its MFD is shown in Figure 1.2. Bags come onto P 2

from the check-in links via merge units c1 − c4, transfer links via d1,d2, and from the
other terminals via link f . After merging, bags are screened at scanners S1 −Sk , and
diverted toward their destinations. If a bag cannot be diverted toward a scanner or
its destination, it keeps circulating on P 2.

to
 F

in
al

 so
rt

er
s

to Early bag storage

Sc
an

ne
rs

a
c1 c2 c3 c4 d1 d2 f

s1 s2 sk

c’1c’2c’3c’4 d’1 d’2 f’
from Check-in

counters
from Transfer

area
from other
terminals

S1 S2 Sk

r1
r2
r3
r4

Figure 1.2: Sorting loop P 2 of the system in Figure 1.1.

Initially, the system operated normally. Suddenly, at time t1, a bag got stuck at
location s1 during diverting toward scanner S1, so the system stopped the entire belt

1.1 Challenges and Opportunities of Material Handling System Analysis 9

of P 2 to avoid piling bags before s1. As a result, all bags on P 2 stopped moving, and
the other bags, coming to P 2 through incoming conveyors c ′1−c1, c ′2−c2, c ′3−c3, c ′4−c4,
d ′

1 −d1, d ′
2 −d2, and f ′− f , started accumulating before merge units c1 −c4,d1,d2, and

f , unable to merge onto P 2. Later, at time t2, engineers arrived and fixed the problem,
so P 2 resumed. Immediately, the bags, accumulated before the merge units, started
merging onto P 2, causing load peaks for the scanners. As the scanner’s throughput is
limited and designed to handle some average load, many bags started recirculating
on P 2 waiting for a chance to be scanned. Later, the peak was eventually handled,
and the load on P 2 returned to normal. However, many bags were delayed due to:

1. the sorter halt during time interval [t1, t2], and
2. recirculation on P 2 (due to waiting for an available scanner).

As a result, part of these bags arrived at their destination on final sorters Y 1,Y 2 too
late and could not make it to the flight. So, this undesirable performance scenario
worsened all of the aforementioned KPIs, caused additional costs on bag delivery, and
lowered the satisfaction of the affected passengers.

Such scenarios can be potentially (1) prevented, or at least (2) mitigated quickly.
For the former,

• the post-mortem scenario analysis can reveal flaws in the system and/or pro-
cess design, the need for more frequent maintenance, inefficiencies in manual
operation processes, etc., so the corresponding processes can be improved, or

• predictive performance monitoring can raise an alarm early enough to prevent
an undesirable performance scenario from happening.

For the latter, determining the root causes of an undesirable performance scenario
immediately after its detection (in real-time settings) can reduce the reaction time
and minimize the impact. However, such prevention and mitigation are difficult to
do because of the complexity of material handling processes. In the following, we
consider the aspects of MHSs that cause this complexity.

Non-Isolated Cases. In processes, cases can be executed in isolation or interact with
other cases on shared resources. As TSUs are not usually handled in isolation in
MHSs, we consider the example of a Road Traffic Fine Management (RTFM) process
instead to illustrate the former. Let us consider only a part of this process, responsible
for registering fine tickets in the system. When a road camera detects a vehicle whose
speed is above a certain limit, the RTFM process automatically

1. creates a ticket in a database, and
2. generates a notification for the driver.

The system behavior is never affected by the number of drivers violating a speed limit
at the same moment in time. The system handles each case (ticket) as if it were
the only case in the system, i.e., in isolation. Indeed, it is difficult to imagine that

10 Introduction

a camera, installed, for example, at a ring road near the Eindhoven University of
Technology, fails to create new tickets because too many drivers had been already
fined there in the last 15 minutes. We call this type of process processes with isolated
cases, i.e., process instances can be considered in isolation.

Conversely, in other processes, cases remind vehicles on roads rather than tickets.
That is, the cases, like vehicles in heavy traffic, affect each other. For example, in
the undesirable performance scenario example of this section, the bag stuck at s1

effectively stopped handling the other bags on the same sorting loop and its incoming
conveyors, which later caused also load peaks for the scanners. That is, this case
caused multiple performance issues affecting many other cases through interactions
on shared resources (conveyors, merge units, and so on). We call this type of process
processes with non-isolated cases.

It comes as no surprise, the non-isolation of cases drastically impacts the way how
the process behavior can be represented and analyzed. For example, ticket registra-
tion in the RTFM system can be analyzed one by one (i.e., case by case) without
losing any information about the process behavior. However, the analysis of the un-
desirable performance scenario in a BHS is much more difficult because it requires
considering all the cases (bags) together for revealing their interactions and inferring
the scenario’s root causes.

Resource availability, spatial limitations, and queues. MHS resources can be tem-
porarily unavailable due to TSU handling problems (as we showed above), mechan-
ical failure, or maintenance. They also have finite capacity. Some “simple” pieces of
equipment, e.g., scanners S1 −Sk , or merge units, have the capacity of just one TSU.
In contrast, conveyors can usually move multiple TSUs at the same time. However,
an MHS conveyor has a finite length and can accommodate only a finite number of
TSUs. Moreover, its capacity depends on the length of TSUs (e.g., passenger bags
usually have different dimensions), and the minimum allowed distance between the
neighboring TSU. Thus, the actual conveyor capacity is a function of

• the length of each TSU,
• their spatial configuration, i.e., where they are located on the conveyor, and
• the minimum allowed distance between the neighboring TSUs.

So, the conveyor’s actual capacity constantly varies while baggage is transported by
the conveyor. When the maximum capacity is reached, no more TSUs can be added,
so it becomes effectively (temporarily) unavailable for the other TSUs, and can trigger
an undesirable performance scenario (e.g., massive recirculation).

As a result, the capacity and availability of each piece of equipment are not static
but dynamically depend on TSUs handled by the system and constantly change over
time. Knowing the exact equipment capacity and availability at each moment is valu-
able for understanding the system’s behavior. However, it is difficult because many

1.1 Challenges and Opportunities of Material Handling System Analysis 11

factors, such as variable conveyor capacity, must be meticulously inferred from, for
example, recorded event data.

Process complexity. MHSs are often large and complex. For example, a large BHS
consists of thousands of interconnected conveyors and hundreds of other equipment
pieces. This allows for many possible variants of TSU handling. Different variants
are engaged under different load conditions, in case of equipment failure, during
maintenance, and so on. As a result, the process that describes all these situations is
large and difficult for understanding.

External factors. Some external factors can affect MHSs, for example, an unex-
pected flight schedule or supplier truck timetable change, traffic jams near the facility,
weather conditions making bags wet and slippy, and so on. They may invalidate the
analyst’s (or model’s) assumptions about probabilities of certain events, or stationar-
ity of the process.

Batching. Last by not least, batching adds an additional level of complexity because
(1) TSU consolidation behaviors and (2) additional types of TSUs (consolidated TSUs
in a tray, empty trays, and so on) must be additionally analyzed.

The aforementioned factors make the MHS behavior overwhelmingly complicated,
thereby making its analysis a challenging and painstaking problem. Next, we consider
the event data that MHSs usually record to facilitate their analysis and monitoring.

1.1.4 Event Data Collected by Material Handling Processes

An MHS has numerous machines and workstations, which we consider as resources,
performing process steps. An MHS can have sensors detecting TSU movement through-
out the system, cameras identifying tags attached to the TSUs, devices that measure,
weigh, and screen the TSUs, and workstations for manual operations. When a re-
source performs a process step, an event is generated and either recorded to the sys-
tem database or dropped, depending on the logging architecture in place. In this
section, we consider these events in more detail and show how they form traces,
event logs, and event tables.

Event Data and Event Tables. Typically, an event generated by an MHS resource on
a TSU handling has the following attributes:

1. a unique TSU identifier,
2. a timestamp of the process step start or completion,
3. the location of where the process step was performed,
4. the outcome of the process step execution.

Each machine and workstation is permanently installed for performing a particular
process step. As a result, the location attribute value unambiguously identifies both
the process step and the resource that performs it. That is, the information about the

12 Introduction

resources performing process steps is typically presented in MHS events. Last but not
least, different process steps may have a different outcome, including a flag whether
the process step succeeded or failed due to an error. For example, the result of a bag
identification in a BHS is

• the bag’s unique identifier read from the attached sticker with a bar code,
• associated flight number,
• passenger class, and
• final destination.

Table 1.1 shows the example of events of bags with identifiers 1 and 2, which
were handled by the sorting loop P 2 of the BHS in Figure 1.2 (the events generated
at the locations before and after P 2 are not shown for clarity). In these events, each
process step and resource is encoded through the process step execution location,
e.g., merging is encoded by the location of the merge unit c1, and so on. Bag 1 was
handled as follows.

1. Event e1 (time t1). The bag was merged by unit c1 onto P 2 with the empty (“-”)
process step outcome and flag “Success”.

2. Event e3. The bag was diverted by unit s1 (“-”, “Success”) toward S1.
3. Event e4. The bag obtained clearance (“Level 1 clearance”, “Success”) at scan-

ner S1.
4. Event e7,e9,e11 and e12. The system tried to divert bag 1 onto each link go-

ing to the final sorters but failed due to the unavailability of units r1 − r4 (“-”,
“Unavailable”). As a result, it started another round on P 2.

5. Event e13. The bag was identified by camera a, that (re-)identifies all bags
recirculating on P 2. It recognized the bar code attached to the bag on check-
in, and associated the bag with encoded attributes “KL812;Economy;LED”, i.e.,
flight “KL812” with the final destination in the airport “LED”, the passenger class
was “Economy”. As this step succeeded, the resulting flag is “Success”.

6. Events e14,e15, time t3. Finally, bag 1 passed s1 and was successfully diverted
by r1 (“-”, “Success”).

Another bag 2 entered P 2 later (e2) and followed a similar path but was success-
fully diverted at r 2 without an extra round on P 2 (the events in Table 1.1 shows the
events ordered by time). That is, bag 2 entered P 2 later than bag 1 but left it earlier,
effectively overtaking bag with id = 1 due to temporal unavailability of r1 − r4. These
two sequences of events show how the bags competed for shared resources r1 − r4,
and how the bag that entered P 2 last “won” the competition. Note, although such
interpretation is possible assuming some domain knowledge of the system, the event
data in Table 1.1 do not describe TSU competition explicitly.

Note, not all events generated during the bag handling are shown in Table 1.1. For
example, events from locations c2 − c4,d1,d2, and f are missing. In MHSs, events can

1.1 Challenges and Opportunities of Material Handling System Analysis 13

Event ID Bag ID Timestamp Location Outcome Flag
e1 1 t1 c1 - “Success”
e2 2 t2 c1 - “Success”
e3 1 t3 s1 - “Success”
e4 1 t4 S1 “Level 1 clearance” “Success”
e5 2 t5 s1 - “Success”
e6 2 t6 S1 “Level 1 clearance” “Success”
e7 1 t7 r1 - “Unavailable”
e8 2 t8 r1 - “Unavailable”
e9 1 t9 r2 - “Unavailable”

e10 2 t10 r2 - “Success”
e11 1 t11 r3 - “Unavailable”
e12 1 t12 r4 - “Unavailable”
e13 1 t13 a “KL812;Economy;LED” “Success”
e14 1 t14 s1 - “Success”
e15 1 t15 r1 - “Success”

Table 1.1: Events generated by the handling of bags with identifiers 1 and 2.

be not recorded due to various reasons that we discuss later. These events are called
unobserved. They introduce incompleteness of recorded event data, which usually
affects the quality of analysis and monitoring, based on such data.

Next, we consider how events, recorded by various processes, are usually orga-
nized into data structures convenient for the process analysis, and what terms are
used to refer to these data structures and their elements.

Process Instances, Traces, and Event Logs. Process steps are usually executed over
individual entities, often referred to as cases. The processing of a single case, e.g., the
handling of a particular bag by a material handling process, is referred to as a process
instance. During its execution, each executing process step generates an event. For
example, handling of bag 1 in the example above corresponds to a process instance,
where process steps c1, s1,S1,r1, . . . ,r4, a, s1,r1 were executed over the case of bag 1,
and generated the event sequence

• 〈e1,e3,e4,e7,e9,e11, . . . ,e15〉.
Such a sequence is called a trace. In a trace, the events preserve the execution order
of the process steps that generate them. To organize events into traces, the following
attributes are usually recorded for the events:

1. case identifier, in order to group the events into traces by the value of this iden-
tifier;

2. timestamp, for ordering events in traces.

No additional attributes are required to distinguish the traces of different cases. How-
ever, the information of the performed process step called an activity label, is usually

14 Introduction

needed for most process analysis techniques and is often considered as a trace manda-
tory attribute. In Table 1.1, column “Bag ID” contains case (bag) identifiers, column
“Timestamp” contains the event timestamps, and column “Location” contains loca-
tions that can be interpreted as activity labels.

When particular attributes of a set of events are considered as the case identifier
and timestamp, these event data can be seen as the set of traces for a case notion
defined by the chosen case identifier attribute. Such a set is called an event log. For
example, the event table in Table 1.1 can be seen as the event log for case notion Bag
ID, containing traces

• σ1 = 〈e1,e3,e4,e7,e9,e11, . . . ,e15〉, and
• σ2 = 〈e2,e5,e6,e8,e10〉.
Note different event attributes can be chosen as different case notions for the same

events, thereby materializing the traces of different entities in the event data. For
example, choosing attribute “Location” as a case notion for events in Table 1.1 results
in traces describing how machines at each location handled bags. For example, the
trace of the scanner at location S1 (i.e., a trace with case identifier S1 for case notion
“Location”) is an event sequence 〈e4,e6〉. Event data in different forms are extensively
used as input for various kinds of process analysis and monitoring techniques, which
we consider next.

1.2 Techniques for Analysis of Material Handling Pro-
cesses

As MHSs have been used for decades, there are established techniques for their perfor-
mance analysis. These techniques include the design and analysis of MHS simulation
models, the creation and use of dashboards with statistics describing TSU handling,
and the modeling and analysis of MHS parts using queueing theory. The recent rapid
progress of storage technologies made it affordable to store large amounts of system
event data describing material handling. As a result, data-driven techniques started to
be used. Nowadays, analysis of recorded system events using SQL and spreadsheets
like Microsoft Excel is a common practice, while various data science techniques are
applied as well. In the following, we consider the established and new techniques
driven by data and then identify the knowledge gap they need to bridge when ap-
plied in the MHS domain.

1.2.1 Established Techniques

MHSs are classically studied using queueing networks and simulation. We consider
both in the following.

1.2 Techniques for Analysis of Material Handling Processes 15

Queueing Theory. Queueing theory allows modeling MHSs in the terms of queue
models. Jobs arrive at a server according to an arrival process. If the server is busy, the
jobs not processed yet wait in the server’s queue until it is available. Various queue
models have different parameters of their arrival process, server service time, queue
discipline, queue capacity, etc., thereby comprising a variety of queue model types.
However, a single queue model is capable of describing only a simple system [16].
Queueing networks are used for modeling complex systems. A queueing network com-
prises multiple queue models (nodes), and a routing function, defining the probability
of transferring jobs from one node to the others, and outside the network. If a queue
has a finite capacity, i.e., it can be full, so no jobs can be routed to it. If a queue-
ing network has such queues, it is called a queueing network with blocking, and
the blocking behavior [17] is additionally defined. Further, queueing networks are
defined either as open or closed. The former is for studying the system for various
scenarios of arrival processes, while the latter is for studying the system under certain
load conditions when the job number in the system is constant.

Let us show how these concepts can be used for modeling sorting loop P 2 (Fig-
ure 1.2). In this BHS,

• the system resources, such as scanners S1 −Sk , merge units c1 − c4, divert units
s1 − sk , etc. can be seen as servers,

• conveyors can be seen as queues with FIFO ordering (as TSUs cannot overtake
each other on a conveyor), and

• the system layout and routing can be seen as a routing function, thereby defin-
ing a queueing network.

In this network, each node represents a conveyor with a resource operating at its end,
for example, a conveyor (c1,c2) (of capacity 10 bags) with merge unit c2 at the end. As
the conveyor capacity is always finite, it is a network with blocking, e.g., if conveyor
(queue) (c1,c2) is full, it cannot receive new TSUs, and blocks all the TSUs waiting for
merging onto it on conveyors (a,c1) and (c ′1,c1).

Among works addressing the MHS performance analysis using queueing theory,
we identified recent works supporting queueing network with blocking [18, 19, 20].
They exploit the analogy between TSUs on conveyors and vehicle traffic, and the
speed-density effect, observed on roads [21] (vehicle speed drops when traffic becomes
heavier). The same effect is observed in MHSs as well, i.e., TSU travel time increases
as the conveyor load increases [18]. It is caused by spatial limitations, dictating how
TSUs can be placed on conveyors, e.g., the need for free protective space between the
neighboring TSUs on the same belt. To model this effect, each conveyor is modeled
as a state-dependent queue [18], i.e., a queue whose waiting time depends on the
number of jobs in the queue such that a greater job number causes a longer service
time.

16 Introduction

Even assuming that a state-dependent queue can accurately model an MHS con-
veyor, other challenges for modeling MHSs with queueing networks still remain. For
example, routing between BHS conveyors is driven by complicated algorithms consid-
ering the whole system state, i.e., all bags in the system and all equipment, and it can
be hardly modeled through routing probabilities. Additionally, external factors, like
changes in the flight schedule, affect it dynamically. These and other challenges make
the use of queueing networks for the analysis of MHS notoriously hard and infeasible
in practice. So, simulation-based analysis is typically used instead.

Simulation. The MHS performance can be studied in the fully controllable environ-
ment of a simulation model. For example, problem-oriented simulation models al-
lowed the identifying of bottlenecks and critical operations for inbound baggage han-
dling [22] and automatic security screening [23], learning dependencies between se-
curity policies and time characteristics of manual baggage screening [23], and so on.
While such simulation models can be precise, their design requires in-depth knowl-
edge of a system design and proved to be time-consuming. Moreover, the number
of replications needed for covering various variants of each scenario of interest ex-
ponentially grows with the system size. As a result, in practice simulation of MHSs
is commonly used for a limited number of scenarios, and for either relatively small
systems or for particular areas (parts) of larger MHSs. As a result, simulation does
not fully solve the problems of MHS performance analysis.

In the next section, we discuss how data-driven techniques aim to overcome the
drawbacks of queueing theory and simulation.

1.2.2 Process Mining

Recently, the possibility to store and analyze large amounts of data due to decreased
costs of data storage solutions triggered the rapid growth of data-driven technologies,
including process mining studying business processes through the event data they
generate [1]. In the following, we consider the main types of process mining.

Across various industries, business processes are the subject of improvements,
compliance checking, and automation activities [1, 24, 25]. Process mining is the
field of data science that addresses the two former problems directly, and helps to au-
tomate processes in a conjunction with other techniques. Process mining has two key
characteristics that distinguish it from the other disciplines studying processes [1]:

1. process mining is event data-driven, i.e., it studies processes from event data
generated by execution of process steps of the system or process of interest
rather than assuming its behavior from domain knowledge,

2. most process mining techniques are process model-centric, i.e., they take a pro-
cess model as input to reason about the information captured in event data.

1.2 Techniques for Analysis of Material Handling Processes 17

These properties allow process mining techniques to obtain insights into the process
behavior, and various findings that (1) reflect the real behavior, and (2) are unbiased,
i.e., they are not affected by existing assumptions of the domain experts. The obtained
results, in turn, are used for making the process compliant, and efficient, and to
identify process steps, and/or sub-processes for potential automation.

Figure 1.3 shows the core process mining types and artifacts, comprising a typical
process mining architecture, as follows.

• A system or process records (or streams) event data, that are typically repre-
sented in the form of an event log. An event log usually contains informa-
tion about process steps execution, their observed sequences, and performance.
Most process mining techniques assume a complete event log, i.e., a log where
all events generated by executed process steps are recorded.

• Various event data-driven process discovery algorithms take an event log as input
to create a generalized process description in the form of a process model.

• Conformance checking relates event data to the process model to detect outliers,
which are used for

– taking countermeasures to address frequent deviations,
– model repair if the model is considered as descriptive,
– log repair if the model is considered as prescriptive [24], or
– outlier analysis.

• A process model can be enhanced by projecting various performance informa-
tion, derived from event data.

• The process performance can be analyzed using the discovered process model
and given event log.

• Last but not least, an event log can be used for deriving features for training
various predictive models.

Obtained analysis results and outliers can be used for process improvements.
Similarly, predictions are used by an analyst (operator) or operating software to

prevent undesirable scenarios. The circle arrows in Figure 1.3 indicate that these pro-
cess mining tasks are performed iteratively, gradually enabling a better process, more
accurate event log, process model, and predictive models, i.e., this architecture allows
for continuous process improvement through repeating iterations [26]. However, the
described process mining architecture is highly generic. Each process requires the use
of concrete process mining and process modeling techniques to solve actual problems.

In Section 1.1.3, we considered what challenges MHS operators are facing for op-
erational support, and why it is crucial to keep the MHS performance on a desired
level. Process mining types, shown in Figure 1.3, can be potentially used for ad-
dressing these challenges. However, historically process mining considers processes
with isolated cases. As a result, applying process mining techniques that assume

18 Introduction

Event log

Business
process

Analyst

Log repair

Process model

Findings

Process discovery

Model
enhancement/

repair

Conformance
checking

Performance
analysis

Feature
engineering

ML pipeline

Training/test
sets

Predictive
model,

predictions

Process
improvements,

actions

Goals
Descriptive

performance
analysis

Predictive
performance
monitoring

Data preparation,
process modeling, and
conformance checking

Outliers

Data/information flows Process model flows Iterations

Results

Figure 1.3: Main types of process mining.

processes with isolated cases fails to obtain tangible results for processes with non-
isolated cases, like material handling processes.

In the next section, we discuss why the state-of-the-art queueing theory and pro-
cess mining techniques are not currently applicable for the analysis of MHS processes
in detail.

1.2.3 Knowledge Gaps in Techniques for Analysis of Processes
with Non-Isolated Cases

In this section, we consider queueing theory and process mining, which we identified
as the primary choice for MHS analysis. We discuss what is still missing in their tech-

1.2 Techniques for Analysis of Material Handling Processes 19

niques to address the challenges we formulated previously and conclude by choosing
process mining for research in this thesis.

Queueing Theory. Previously, we considered the state-of-the-art queueing theory
techniques for MHS analysis capable of modeling cases interacting through queues
and their networks with blocking [18, 19, 20], and a speed-density effect caused
by spatial limitations [21, 27]. Although these approaches effectively model simple
MHSs under certain conditions, they have serious limitations for practical use. For
queueing networks, the possession of a product-form solution is the key characteris-
tic [17]. It is an analytical formula for the queue-length distribution at the network
nodes. Its existence enables various techniques, for example, aggregation and de-
composition results for product-form queueing networks yield Norton’s theorem for
queueing networks [28, 29], and the arrival theorem implies the validity of mean
value analysis for product-form queueing networks [17, 30]. Conversely, if there is
no product-form solution for a queueing network available, its non-analytic analysis
becomes notoriously difficult and usually infeasible. For the works we identified, the
product-form solution is available under the assumption that the arrival process in
each node is a Poisson arrival process. However, as we show in Chapter 4, this is not
usually the case, as the routing in MHSs is not random but depends on the overall
system state. That makes this approach inapplicable for the performance analysis of
the real-world MHSs used in logistics.

Besides that, most queueing theory approaches, including the one we consider [18],
are designed for the analysis of systems in the equilibrium state rather than in transient
state [31]. An equilibrium state means that the number of jobs in the system does not
depend on time, otherwise, the system is in a transient state. This assumption does
not hold for MHSs due to flight schedule changes (in BHSs), load peaks, and many
other factors. Last but not least, queueing theory techniques cannot use event data,
recorded from a process execution, for the postmortem performance analysis. For ex-
ample, we cannot “replay” an event log, recorded from an undesirable performance
scenario in a BHS, over a queueing network to analyze individual paths of each bag,
bag interactions over time, availability of resources, etc.

Next, we consider what is missing in process mining, whose techniques, unlike
queueing theory ones, are designed to be driven by recorded (or streamed) event
data.

Process Mining. The process mining architecture, shown in Figure 1.3, comprises
different process mining types for the fulfillment of various process analysis objec-
tives. Among them, descriptive and predictive analysis directly match the challenges
of MHS analysis formulated in Section 1.1.2. However, process mining techniques
mainly consider processes with isolated cases. For example, in Section 1.1.2, we
discussed how cases (tickets) of the RTFM process do not interact during the initial

20 Introduction

process steps, i.e., how they are isolated. However, when they do interact during later
process steps, existing process mining methods fail to describe such case interactions.

For example, aggregate durations of process steps, projected on the process model
in Figure 1.4(a), are unaware of the case dependencies and fail to describe the com-
plex behavior, shown in Figure 1.4(b) in the form of a performance spectrum that we
propose in Chapter 3. This performance spectrum reveals how tickets were accumu-
lated in batches

• to be printed out and sent by post to the violators (hourglass-shaped patterns in
the spectrum), and

• to be sent to a credit collection company if a violator refuses to pay (triangle
patterns at the spectrum bottom).

Within the RTFM process, this batching is needed to save the working time of costly
human resources handling the paperwork. As a result, cases (tickets) usually wait till
these limited shared resources become available. Similarly, existing methods fail to
reveal much more complicated behaviors of TSUs in MHSs.

89 d

16 mths 36.4 wks

5 d

16 d

60 d

Create Fine

Send Fine

Insert Fine
Notification

Add penalty

Send for
Credit Collection Payment

(a) (b)Create Fine:
Payment

Create Fine:
Send Fine

Send Fine:
Insert Fine Notification

Insert Fine Notification:
Add Penalty

Add Penalty:
Payment

Add Penalty:
Send for Credit Collection

Figure 1.4: Performance analysis using a graph-based model (a), and the performance spec-
trum (b).

For predictive analysis, the typical problems of predicting the next case process step,
and case remaining time have been studied in many works [32, 33]. To address them,
various ways of identifying and extracting features, relevant to training predictive
Machine Learning (ML) models, are suggested in process mining works [34, 35, 36,
37, 38]. With process mining, such features are identified using information about
the actual process behavior over time. Thus, for predicting the next case process step,

1.2 Techniques for Analysis of Material Handling Processes 21

the control-flow perspective of processes significantly contributes to identifying and
extracting relevant features.

For example, the trace prefix, i.e., a sequence of already performed (observed)
process steps for a case, can help predict the next process step [39]. Then, for pre-
dicting the remaining case time, dependencies between process step durations and
trace prefix variants can be effectively used to train corresponding models. However,
in processes with non-isolated cases, this information is much less relevant than for
processes with isolated cases. For example, the remaining case time in the RTFM pro-
cess significantly depends on which batch a case is handled in [40, 41]. It depends
on the dynamics of case accumulation. In MHSs, both the next process step and the
remaining case time depend on the load in system areas, resource availability, TSU
spatial configuration, etc. Moreover, these conditions continuously change over time.
So, current process mining techniques essentially ignore most phenomena caused by
inter-case dynamics and are not helping much in the analysis of such processes.

Last but not least, a process model is a central artifact of the process mining archi-
tecture. First, a process model itself provides insights into the process it models. Var-
ious visualization techniques replay recorded, or project ongoing cases on the model
for providing insights into case execution over time. Then, conformance checking
techniques relate data recorded from the process execution to a process model for
outlier analysis, model enhancement, or data preparation tasks like log repair. These
techniques usually expect a Petri net [42] as a process model. A Petri net initial mark-
ing (state) is typically defined as a single token representing a single case, i.e., a Petri
net in process mining is typically used to describe the execution of a single case at a
time [1].

For example, for a BHS, such a model usually describes the system layout (the
map of conveyors) with nodes corresponding to the equipment locations. Although
it is capable of correct modeling and visualizing possible paths of bags throughout
the system, it does not describe any resources, and how cases interact on them. As
a result, even a single BHS conveyor cannot be described by such a model in a way
that captures the behavior of more than one bag on it at a time, while visualization
techniques are incapable of helping a human to spot the root causes and development
of undesirable performance scenarios.

However, can a Petri net model with a single token in its initial marking still be
valuable for conformance checking, model enhancement, and data preparation in the
MHS domain? Yes, but in a very limited way. For example, trace alignment [43],
the state-of-the-art technique for conformance checking, does not consider any con-
straints related to resource characteristics, and the ways in which cases interact. As
a result, physically impossible behaviors can be seen in traces aligned with a process
model. Moreover, incomplete logging, typical for modern MHS architectures, dramat-
ically increases the chances of such errors. For example, traces with some unobserved
(unrecorded) events after alignment can describe the number of bags on a conveyor

22 Introduction

that cannot be physically fitted there, or even bags overtaking each other while they
are being moved on the same conveyor. These errors can dramatically impede the
conformance checking outcome, and model/log repair. Alternatively, an appropriate
process model and trace alignment algorithm must consider, for example, conveyor
capacity constraints while reducing the trace alignment search space, to avoid a priori
impossible alignments.

To summarize, both queueing theory and process mining have the potential for the
analysis of processes with non-isolated cases but certainly have a gap in knowledge
of how to address the challenges we previously discussed. As a result, their state-of-
the-art techniques yield relatively modest practical value when applied to processes
of this type. All things considered, process mining covers these challenges better, and
the gap seems to be smaller and easier to bridge. The following section discusses how
this thesis is designed for that.

1.3 Research Questions and Solution Approaches

In this section, we formulate Research Questions (RQs) and outline our methods for
solving them. However, let us first scope the research of this thesis.

As this is the first systematic study of material handling processes (with non-
isolated cases) using process mining,

• we focus on MHSs without batching (and not on MHSs with batching) to limit
the scope,

• we assume the process model itself to be known from the system design docu-
mentation, so we do not aim to create a process model discovery technique.

To structure this thesis, we design the RQs to “customize” the problems for the
main types of process mining, shown in the diagram of Figure 1.3, for processes with
non-isolated cases. These RQs assume analyzing from scratch, i.e., nothing but the
system’s informal description, and analysis goals are known a priori. The version
of the diagram Figure 1.3, “customized” for MHS analysis, is shown in Figure 1.5.
From now, we consider only processes with non-isolated cases interacting on shared
resources.

In Figure 1.5, the general analysis is shown as a path from the initial goals, via
descriptive performance analysis toward predictive performance monitoring. Further,
a process with non-isolated cases, i.e., a material handling process to be analyzed, is
presented as a cloud. It generates an event log (or event table that we define later)
that is the input for all data-driven approaches of this thesis, starting with RQ-1
formulated as follows.

1.3 Research Questions and Solution Approaches 23

Process with
non-isolated

cases

Goals Descriptive performance
analysis

Predictive
performance
monitoring

RQ1 (Ch. 3)
Performance

spectrum

RQ4 (Ch. 7)
Generalized

conformance
checking

RQ6 (Ch.8)
Multi-dimensional

performance
analysis

RQ3 (Ch.6)
Modeling

RQ7 (Ch.9)
Predictive

performance
monitoring

Predictive
model,

predictions

PQR-system

Analysis results
and outliers

Performance
spectrum

Event log/
table

Data/information flows

Knowledge flows

Analyst,
operator

RQ2 (Ch.4)
Systems with

shared resources
and queues

RQ5 (Ch. 7)
Inferring missing

events

Trace alignment
& outliers

Improvements,
preventive

actions*

Data preparation,
process modeling and
conformance checking

Modeling
concepts

M
odel

im
provem

ents

Process model flows

* Outside the thesis scope
Iterations

Figure 1.5: Overview of research questions and methods.

• RQ-1. Given an event log of a process, how to describe the performance informa-
tion the log contains in a way that reveals both the performance of individual cases
and how these cases interact over time?

To approach RQ-1, we propose the performance spectrum in Chapter 3 (see Fig-
ure 1.5), which is a fine-grained process performance description showing how cases
interact both during the same process step and across different ones. It is a model-
less technique, which can be used as a generic stand-alone visual analytics tool for the

24 Introduction

performance analysis of processes from event data. In the following, we use the per-
formance spectrum as input for other approaches because it captures well interactions
of non-isolated cases.

The process mining architecture in Figure 1.3 shows that most process mining
techniques are model-centric, i.e., they benefit from a given process model. The prob-
lem of modeling processes with non-isolated cases we approach in two steps, as the
path from RQ-2 to RQ-3 shown in Figure 1.5.

In Step 1, we identify key concepts for such a model using

• actual analysis questions,
• domain knowledge about MHSs, and
• findings about MHS performance presented in Chapter 3 (RQ-1),

to address the following RQ in Chapter 4.

• RQ-2. Given the informal description of a process with non-isolated cases, and the
questions of its descriptive and predictive performance analysis, how to identify
the key entities and concepts required for modeling case interactions in a way
facilitating answering these questions?

Additionally, we introduce the term systems with shared resources and queues to refer
to the class of systems/processes that we study in this thesis.

In Step 2, we define the process model in Chapter 6, using the outcome of Chap-
ter 4, by addressing an RQ that reads as follows.

• RQ-3. Given the modeling concepts obtained by answering RQ-2, and the problems
of descriptive and predictive performance analysis of systems with shared resources
and queues, how to design a process model facilitating answering these questions?

We approach RQ-3 by proposing a Process-Queue-Resource System (PQR-system)
that describes not only the control-flow (process) perspective but also MHS resources
and queues for modeling case interactions. We also define the PQR-system replay
semantics. Note, RQ-3 does not aim at the creation of a process model discovery
technique but assumes that existing system documentation can be used to generate
the corresponding PQR-system.

The PQR-system enables the core model-centric data-driven process mining tech-
niques for processes with non-isolated cases. Thus, to relate event data to the PQR-
system, we address the problem of conformance checking in Chapter 7 as follows.

• RQ-4. Given event data generated by a process with non-isolated cases in the
form of an event table, and the PQR-system, how to relate the data and model
to determine if the model correctly describes both the process for individual cases
and case interaction observed in the event data, and if the event table fits into the
behavior described by the PQR-system?

1.3 Research Questions and Solution Approaches 25

However,

• most process mining techniques assume (and benefit) complete event logs, but
MHSs usually generate incomplete ones, and

• if MHS documentation is outdated, the generated PQR-system is incorrect.

Because such errors must be detected before the system analysis, we go beyond clas-
sical conformance checking when addressing RQ-4. We adopt the concept of gener-
alized conformance checking [44] for PQR-systems and material handling processes,
which allows for doing both model and log repair tasks, instead of choosing whether
a model is descriptive or predictive, as with “classical” conformance checking. Addi-
tionally, we address the problem of data incompleteness via log repair in Section 7.3
by inferring unobserved events with timestamp information. The corresponding RQ-5
reads as follows.

• RQ-5. Given event data generated by a system with shared resources and queues
in the form of an event table where some events are unobserved (missing), and the
PQR-system, how to reconstruct the unobserved events, including their timestamps,
so that the resulting event table can be replayed over the given PQR-system?

The resulting method transforms a given incomplete event log (table) into a complete
one, which is shown in Figure 1.5 by the path from the event table via RQ-5 back to
the event table. The resulting complete event table can be successfully replayed over
the PQR-system (according to its replay semantics).

The (repaired) PQR-system and complete event table, obtained after generalized
conformance checking, are used as input for the methods answering the consequent
RQs, which address performance analysis problems.

Thus, the descriptive performance analysis problem is addressed in Chapter 8 as
follows.

• RQ-6. How to relate a PQR-system, describing the process (control-flow), queue
and resource dimensions of a process/system, and the corresponding performance
spectra computed from complete and correct event tables?

The method of Chapter 8 serves to improve processes through their post-mortem
analysis. However, no improvements cannot guarantee the absence of undesirable
performance scenarios. Our final RQ addresses the problem of predictive performance
monitoring (Chapter 9) to prevent such scenarios, as follows.

• RQ-7. Given a PQR-system, a complete event table, an aggregate process perfor-
mance indicator, and a prediction horizon, how to predict this indicator so that
both its gradual and sudden changes are predicted?

We discuss these methods in more detail and summarize the thesis contributions
in the next section.

26 Introduction

1.4 Thesis Overview

Most results, discussed in this thesis, have been published in peer-reviewed confer-
ences, journals, and workshops. The remaining chapters of this thesis are structured
along the process mining workflow, shown in the diagram of Figure 1.5, which groups
the related RQs, chapters, and methods in the boxes as follows.

Preliminaries in Chapter 2. We start by introducing the basic notations and key
concepts, such as sets, multisets, partial orders, Petri nets, and colored Petri nets.
We define events, traces, and event logs. We also define event tables, which can be
seen as multi-case notion event logs. These notations, concepts, and definitions are
extensively used throughout the subsequent chapters.

Performance Spectra in Chapter 3. We address RQ-1 by introducing and defining
the performance spectrum, a data structure and visual analytics technique for describ-
ing a system or process performance. It is computed from an event log whose directly
following events in traces form segments. Each segment is a pair of activities (a,b)

that represents a transition from activity a to b, handover of work from resource a to
b, or movement of materials from location a to b. A performance spectrum comprises
one or multiple segment spectra. In a nutshell, the spectrum of a segment shows
the aforementioned along the time axis for all the process instances presented in the
given event log, thereby describing their performance.

Let us show an example of the performance spectrum built from the log of the
undesired performance scenario on the sorting loop P 2 (Figure 1.2), discussed in Sec-
tion 1.1.2. This spectrum, shown in Figure 1.6(a), has two segments. Segment (c ′3,c3)

corresponds to the conveyor of an incoming check-in link that connects the check-in
area with sorting loop P 2 (see also Figure 1.1). Segment (c3, s1) corresponds to the
path from the merge unit c3 to diverting unit s1. In the spectrum, each line, called
a segment occurrence, shows the transition from the first process step of the segment
to the second one for a single case along the time axis. Longer lines correspond to
longer durations, and shorter ones correspond to shorter ones.

Additionally, each segment occurrence has an assigned performance class to make
reading the performance information easier for humans. In Figure 1.6(a), these per-
formance classes are {normal speed,2 times slower,3 times slower, and very slow}. Each
class shows how fast a bag was moved from location c ′3 to c3 (top segment), or from
c3 to s1 (bottom segment). For segment (c3, s1), we see a period of regular processing
(blue lines), then a period of slow processing (yellow lines) that ends after several
minutes (see the timeline), when regular processing resumes. In our example, the
slow processing period corresponds to the time when sorting loop P 2 was stopped
due to the bag that got stuck at s1. As a result, bags on P 2 were not moving at a con-
stant speed as before but standing still until P 2 resumed. Yellow lines clearly show
this situation. In the meanwhile, bags on (c ′3,c3) were waiting for the resume of P 2 as

1.4 Thesis Overview 27

c’3

c3

s1

normal
speed

2 times
slower

3 times
slower

very
slow

c’3

c3

s1

c’3

c3

s1

(a)

(b)

(c)

Figure 1.6: “Regular” performance spectrum (a), aggregate performance spectrum (b), and
combined performance spectrum (c).

they could not merge onto the stopped sorting loop (dark blue lines corresponding to
performance class very slow.

Interestingly, this example shows that each case (bag) can be followed along its
full path from c ′3 to s1 because segment (c3, s1) directly follows (c ′3,c3). That is, it is

28 Introduction

possible because the end of any segment occurrence line of (c ′3,c3) is the beginning
of the segment occurrence line of (c3, s1) for the same case (bag). It also reveals the
interactions of non-isolated cases, e.g., slow yellow cases on (c3, s1) delay dark blue
cases on (c ′3,c3).

While the performance spectrum describes each segment occurrence in a detailed
manner, the quantified information about these occurrences can be useful for anal-
ysis as well. For that, we propose an aggregate performance spectrum, which is a
sequence of bins per segment. Each bin represents a histogram for a time window. In
each histogram, a bar height shows how many occurrences started or ended within
the corresponding time window or intersected it for the corresponding performance
class. The way in which segment occurrences are assigned to a bin, meaning start,
end, and intersection, is called grouping. The aggregate performance spectrum of Fig-
ure 1.6(a) is shown in Figure 1.6(b). If a performance spectrum is visualized over its
aggregate (or the other way around), it is called a combined performance spectrum
(see Figure 1.6(c)).

Both types of the performance spectrum separately and/or when combined reveal
various performance patterns in processes, such as ordering, batching, various load
patterns, etc. For example, the non-intersecting lines of segment occurrences in Fig-
ure 1.6(a) describes the FIFO order. We provide a comprehensive taxonomy for these
patterns in Section 3.3.2.

The aggregate performance spectrum can serve as a building block for more com-
plex data structures, containing more information about the process performance.
Thus, we introduce the aggregate performance spectrum built for the same segments
but different performance classifiers and/or grouping, comprising different channels,
called a multi-channel performance spectrum. The details are provided in Chapter 3,
which is based on [45, 46, 47].

The nature of MHSs in Chapter 4. We address RQ-2 by investigating how MHSs can
be modeled using queueing networks, and the limitations of such approaches. For
modeling, the starting points are

1. a typically available description of an MHS in the form of an MFD (see Fig-
ure 1.7) that describes the system stations, servers, conveyors and their layout,
and

2. the dynamics of interest, consisting of the blocking behavior of TSUs on the sys-
tem conveyors, aspects of the TSU placement policy, including the TSU spatial
configurations, and the need to analyze the behavior of each individual TSU
rather than their aggregate characteristics.

As we focus on processes with non-isolated cases, it is crucial that a resulting
model captures inter-case dynamics that can be revealed and explored using the per-
formance spectrum. So, our approach is to

1.4 Thesis Overview 29

Material flow diagram

Stations and servers

Queueing network PQR-system

Dynamics of interest

TSU placement policy

Individual entity behavior

State-independent queues

Resource proclets

Tokens with identifiers

Conveyors

State-dependent queues

Queue proclets

System layout

Routing function

Process proclet

Blocking behavior

Blocking policy

Synchronization and
constraints

RQ-3 Ch. 6RQ-2 Ch. 4

Figure 1.7: Modeling approach in Chapter 4 and Chapter 6.

1. investigate these dynamics with performance spectra built from real-world MHSs,
2. map the MHS entities and performance phenomena learned from the perfor-

mance spectra, whenever it is possible, to the queues of different types, a rout-
ing function, and blocking policies of queueing networks (Figure 1.7),

3. check whether the state-of-the-art approach for modeling MHSs as queueing
networks [18, 20] can capture it.

For example, the queueing network modeling the BHS fragment consisting of con-
veyors (c ′2,c3), (c ′3,c3) and (c3,c4) accordingly to this approach [18, 20] is shown in
Figure 1.8. In this model, units c ′2,c2,c3, and c4 are modeled as classical M/G/1/K
nodes, and the conveyors are modeled as state-dependent M/G/c/c queues. This
queueing network represents:

• the system layout,

30 Introduction

• conveyor final capacities (parameter c of M/G/c/c queues) and blocking behav-
ior caused by them,

• service time of resources (units) c ′2,c2,c3 and c4,
• spatial limitations on conveyors (c ′2,c3), (c ′3,c3) and (c3,c4) through the speed-

density effect modeled by the state-dependent M/G/c/c queues.

However, this model works only under conditions that do not hold for most real-world
MHSs.

μ(N)

c2:c3
λ/2

c’3:c3

M/M/1/K

c3

μ

μ(N)

c3:c4

μ(N)

θ

M/G/c/c

M/G/c/c

M/G/c/c

M/M/1/K

c2

μ

M/M/1/K

c’3

μ

M/M/1/K

c4

μλ/2

Figure 1.8: Combination of M/G/1/K and M/G/c/c queues models the BHS conveyors of Fig-
ure 1.2.

As a result, we identify the concepts for modeling MHSs (see the mapping in
Figure 1.7), but conclude that no queueing network type can really capture the dy-
namics of interest. Additionally, we introduce the term systems with shared resources
and queues to refer to the class of systems/processes we study in this thesis.

The PQR-System in Chapter 6. We answer RQ-3 by modeling systems with shared
resources and queues as a Process-Queue-Resource system (PQR-system). This ded-
icated synchronous proclet system [48] is tailored for the needs of MHS modeling
and consists of colored Petri net models [49] called proclets whose transitions can
synchronize via synchronization channels. These proclets and channels represent a
system using the concepts identified in Chapter 4 as follows:

• the routing function is modeled as a process proclet,
• queues are modeled as queue proclets, and
• servers are modeled as resource proclets.

The blocking behavior due to TSU placement policies, which is not fully captured
by the queueing networks we considered, is described on the level of proclet syn-
chronization and in the models of the queue and resource proclet. Additionally, the
individual entity behavior, which cannot be modeled through queueing networks, is
modeled in the proclet system by introducing tokens with unique identifiers.

1.4 Thesis Overview 31

A PQR-system example, which models the same BHS fragment as the queueing
network in Figure 1.8, is shown in Figure 1.9. In this figure,

• the process proclet (red) describes the system layout and routing, i.e., how bags
can enter the system at c2 and c ′3, merge at c3, and exit at c4,

• the resource proclet (green) models merge unit c3, and
• the queue proclets (blue) model queues (conveyors) c2 : c3, c′3 : c3, and c3 : c4.

Resource proclets of c ′3,c2, and c4 are not shown for simplicity. The process, resource,
and queue proclets synchronize through synchronization channels defined between
the proclet transitions. They limit the ways in which cases (e.g., bags) can interact on
the resources and queues throughout the system.

Figure 1.9: PQR-system example.

In Chapter 6, we define the PQR-system formally, as well as its replay semantics.
This chapter is based on [50, 51].

32 Introduction

Generalized Conformance Checking in Chapter 7. We address the problem of gen-
eralized conformance checking for systems with shared resources and queues, which
gathers the tasks of conformance checking, model repair, and log repair under the
common roof [44], in RQ-4 and RQ-5. First, we show how to adopt this concept for
our setting. Then we consider conformance checking and model repair tasks using
the PQR-system and its semantics. For addressing RQ-4, we divide the problem of
PQR-system conformance checking into two parts:

1. trajectory conformance checking of the P-, Q- and R-proclets,
2. and synchronization conformance checking on the proclet system level.

We reduce the problem of P-proclet trajectory conformance checking to the well-
studied problem of conformance checking of Petri nets with black tokens [24]. For
trajectory conformance of the Q- and R-proclets and synchronization conformance
checking, the extension of data-aware Petri nets [52] is considered, in order to apply
the existing approach [53].

To address RQ-5, we propose a novel method for inferring unobserved events with
the timestamp information. For that, we first reconstruct unobserved events (without
timestamps yet), using trace alignment [43] with the P-proclet. Then, we consider
event tables with the case notions of the P-, Q- and R-proclets as a family of sequen-
tial event logs, and as a partial order. These views allow formulation constraints
over timestamps of the unobserved (and reconstructed) events for defining a linear
program, using

• ordering of events along the traces of the different case notions, and
• temporal parameters of the Q- and R-proclets.

As a result, the timestamp intervals of the unobserved (and reconstructed) events are
inferred for these events.

The BHS, whose fragment is shown in Figure 1.2, records incomplete logs. All
events generated by merge unit c1 − c4,d1,d2, and f are unobserved (not recorded)
if a bag comes from the sorter and not from the incoming conveyors (c ′1,c1), (c ′2,c2),
(c ′3,c3), (c ′4,c4), (d ′

1,d1), (d ′
2,d2) and (f ′, f). As a result, the recorded event table shows

that bags often “skip” various process steps. For example, in the performance spec-
trum in Figure 1.6(a), bags going from c ′3 via c3 toward s1 “skipping” process steps
c4,d1,d2 and f . As a result, this event table, as well as the performance spectrum, does
not show the real bag behavior accurately. Such incomplete event data drastically im-
pede any further analysis. Our log repair method reconstructs unobserved events and
their possible timestamps. A performance spectrum built from the reconstructed com-
plete event table is shown in Figure 1.10, where segments “swallowing” unobserved
intermediate segments (like (c3, s1)) do not exist, but real segments (c3,c4), (c4,d1),
(d1,d2), (d2, f) and (f , s1) are presented. For instance,

1.4 Thesis Overview 33

1. a bag bag1 came from c2 to c3,
2. was delayed on (c4,d1),
3. continued at normal speed at (d1,d2) and (d2, f), and
4. was delayed again on (f , s1).

c’3

c3

c4

d1

d2

f

s1

normal
speed

2 times
slower

3 times
slower

very
slow

bag1

bag1bl1

bl4

bl5

bl6

bl2

bl3

Figure 1.10: Performance spectrum built from a complete event table, i.e., an event table con-
taining known missing events.

Finally, we organize these two approaches into a framework for generalized con-
formance checking, which can be used for addressing RQ-4 and RQ-5 in different
real-world scenarios. This chapter is based on [50, 51].

34 Introduction

Multi-Dimensional Performance Analysis in Chapter 8. For addressing RQ-6, we
propose a PQR-system-based method for the performance analysis of systems with
shared resources and queues using performance spectra. First, we relate performance
spectra to the PQR-system. We define the performance spectra of the queue and
resource dimensions, in addition to the performance spectrum of the control flow, and
also show how performance spectra can be used to analyze synchronization among
the process, queue, and resource proclets.

Afterward, we propose our method for multi-dimensional (meaning the process,
queue, and resource dimensions) performance analysis of systems with shared re-
sources and queues. It uses the PQR-system and performance spectra of the process,
queue, and resource together to detect undesirable performance scenarios, like one
we described in Section 1.1.2, and identify their root causes. We show that such a
scenario is usually a chain of instances of performance patterns, proposed in Chap-
ter 3 (RQ-1). The following patterns are frequently observed in the performance
spectra of undesirable performance scenarios in MHSs:

1. slow performance called also blockage,
2. high amount of workload called also high load.

A blockage instance is a piece of a segment spectrum where cases were handled
slower than usual. For example, blockage instance bl6 in Figure 1.10 shows slower
bags. A high load instance is a piece of a segment spectrum when a greater number
of cases than usual were handled. Instances of this type are easier observed in an ag-
gregate performance spectrum. In Figure 1.11, higher bars show high load instances
hl1−8.

Using these observations, we design the following steps for our method.

1. Detect blockage and high load instances in the performance spectrum of the
control-flow dimension.

2. Discover their propagation chains and identify their initial segments (where the
chains originate) using the PQR-system.

3. Detect blockage instances in the queue and resource performance spectra of the
initial segments.

4. Map the combination of the detected instances to the root cause.

Note that the detection of performance patterns does not require a process model.
However, the PQR-system is needed for understanding how instances caused each
other to discover their propagation chains. Thus, a high load instance (e.g., a group
of densely placed TSUs on an MHS conveyor) moves forward in the control flow
dimension described by the P-proclet, dividing on split nodes (diverting units). For
example, one part of bags in hl8 in Figure 1.11 can continue on the sorting loop, and
another part can be diverted toward scanner S1.

1.4 Thesis Overview 35

c’3

c3

c4

d1

d2

f

s1

normal
speed

2 times
slower

3 times
slower

very
slow

bl1

bl3

bl2

bl6

hl2

hl3

hl4

hl5

hl6

hl7

hl8

hl1

bl4

bl5

Figure 1.11: Aggregate performance spectrum built from a complete event table.

Conversely, a blockage instance corresponds to a longer waiting time in a queue of
the corresponding Q-proclet. As soon as the queue reaches its maximum capacity, all
incoming queues become blocked (this behavior is explained in Chapter 4, RQ-2). As
a result, the segments corresponding to these incoming queues get blockage instances
as well. To describe this situation, we say that blockage instances propagate backward
in the control-flow direction.

Additionally, we consider how blockage instances can cause high load instances.
For example, TSUs, accumulated during a blockage, can cause a high load instance
when the blockage instance ends because the TSUs are handed over to available
queues (conveyors) in a batch. We use such observations to merge propagation chains

36 Introduction

into larger ones and identify the origins of undesirable performance scenarios more
accurately.

The propagation chain, discovered for the undesirable performance scenario of
Section 1.1.2, is shown in Figure 1.11. It is discovered using the following steps.

1. Blockage and high load instances bl1 −bl6, hl1 −hl8 were detected.
2. The chain of blockage instances (shown by black arrows) was discovered using

the P-proclet (Figure 1.11(left)). Blockage instance bl1 triggered this chain by
propagating from (f , s1) backward in the control-flow direction toward (c ′3,c3).

3. Two chains of high load instances, consisting of hl1, . . . ,hl5 and hl6, . . . ,hl8 (shown
by red arrows) were discovered. Instances hl1 and hl6 triggered these chains by
propagating from (c3,c4) and (d1,d2) respectively in the control-flow direction
toward (f , s1).

4. However, hl1 and hl6 did not appear by their own. Actually, ending of blockage
instances bl5 and bl3 triggered them. So, we merged these chains accordingly
(blue arrows).

5. As a result, one large chain, comprising all the instances, was discovered. It
originated in segment (f , s1) (bl1).

Next, the performance spectra of the queue and resource spectra of (f , s1) are to
be investigated, to identify what queue or resource caused the blockage. We refer to
Chapter 8.3.9 for the detailed description.

Last but not least, we also discuss what is required for doing the same in the
real-time setting for monitoring. Chapter 8 is based on on [47, 54].

Predictive Performance Monitoring in Chapter 9. To address RQ-7, we

1. show how the performance spectra are capable of capturing dynamics of systems
with shared resources and queues, and why it can be used as the source of both
rich performance-related features and information required to derive the values
of PPIs,

2. formulate a regression problem of predicting a given aggregate Process Perfor-
mance Indicator (PPI) over the multi-channel performance spectrum (instead
of an event table), and

3. propose a method to identify relevant performance-related features in the per-
formance spectrum and extract them for training ML predictive models.

Let us illustrate how we formulate the problem, using the running example of
Section 1.1.2. Given a target PPI showing the load on segment (f , s1) in bags that
enter this segment per 30 seconds, we want to predict it within a prediction horizon
tph of one minute. This PPI can be derived from the aggregate performance spectrum
of segment (f , s1) directly as the bin height, which shows exactly the number of bags
entering the segment in a 30-second interval. We call the performance spectrum
required to derive the target PPI a target spectrum (shown in red in Figure 1.12).

1.4 Thesis Overview 37

a

c1
c’1

c1
c’2

c2

c’3

c3
c’4

c4

f

s1

target spectrumhistoric spectrum

prediction horizon tph

sliding window

Figure 1.12: Problem of predictive performance monitoring over the performance spectrum.

Then, we introduce a historic spectrum (shown in green in Figure 1.12) that is
needed to estimate (predict) the target spectrum within tph. The regression problem
is to predict the target spectrum, using the observed historic spectrum.

The historic and target spectrum can be materialized for each required time now,
using the sliding window technique [55]. The main challenge is to identify features
that are relevant for predicting the target spectrum. To do it, we build on observations
about the propagation of performance pattern instances (considered in Chapter 8,
RQ-6) as follows.

38 Introduction

1. We show that the propagation of any load can be discovered in the same way
as high load propagation is discovered in Chapter 8.

2. We estimate the propagation time (in addition to propagation paths) using the
minimum queue waiting and minimum resource service time, known from the
Q- and R-proclet parameters.

3. We identify the historic spectrum, using the identified propagation paths and
time.

4. We use the sliding window technique to extract features, and the standard ML
pipeline to train a regression model.

Thus, we again combine the PQR-system and performance spectrum, as in Chapter 8.
Note, we use multi-channel performance spectra to capture all required dynamics
aspects in the historic spectrum.

In our example, we identify that segments (a,c1), (c ′1,c1), (c ′2,c2), (c ′3,c3), and (c ′4,c4)

can be used in the historic spectrum to estimate the target spectrum within tph = 60

seconds (i.e., two bins).
This chapter is based on [47].

Conclusion in Chapter 10. Finally, we summarize the main contribution of this
thesis for both academia and industry, overview the software tools we implemented,
consider the limitations of our approaches, and briefly discuss how some of them can
be overcome in future work.

Next, we discuss the contributions of this thesis.

1.5 Contributions

In this section, we summarize both the scientific and practical contributions of this
thesis. We organize it along the thesis structure, i.e., we start with the performance
spectrum and PQR-system, because they are used for the remaining methods and
techniques of the thesis. Then, we discuss the contributions of our methods for
conformance checking, descriptive performance analysis, and predictive performance
monitoring of systems with shared resources and queues.

1.5.1 Performance Spectrum and Performance Patterns

We proposed the performance spectrum, a novel technique for fine-grained perfor-
mance description of systems with shared resources and queues from event logs. It
is a generic technique that takes an event log to describe transitions between directly
following process steps for each case in the log over time. The power of this technique
comes from the following key properties.

1.5 Contributions 39

• The provided performance description is unbiased because no model, that would
most probably introduce a bias, is required for computing.

• The performance spectrum is capable of describing non-stationary processes be-
cause the time is represented explicitly and no aggregation is used.

• The performance spectrum reveals case interactions on shared resources be-
cause it describes the performance of all cases together, thereby allowing for
analysis of systems with shared resources and queues.

• Finally, it can be tailored for the analyst’s needs by defining a performance
classifier over any information available from the event log (e.g., from event
attributes).

Additionally, we proposed the aggregate performance spectrum, useful if quantifica-
tion of the performance description is required. We also proposed how to capture
more performance aspects by combining performance spectra that use different per-
formance classifiers and aggregation types into a three-dimensional structure.

The performance spectrum can be used as:

1. a data structure capturing process dynamics, and
2. a visual analytics technique allowing for its analysis by stakeholders.

To facilitate performance spectrum-based analysis, we suggested a taxonomy of
performance patterns observed in the spectra of processes of various domains. It helps
detect, isolate, and describe various performance phenomena in terms of distinct
pattern instances.

Our evaluation had two main goals. First, we wanted to validate whether the in-
formation in the performance spectrum visualization containing performance pattern
instances, can be

• perceived by various analysts, and
• recognized unambiguously.

Second, we wanted to prove that

• the performance spectrum-based analysis can be used for solving complex per-
formance analysis problems of large processes, and

• the multi-channel performance spectra allow us deeper insights into process
behaviors.

For the former, we conducted an empirical study [56] aimed to prove that the
findings reported in [45] can be reproduced by untrained analysts, using [45] as a
guideline, and the Performance Spectrum Miner (PSM) [46] as a software tool for
working with performance spectra. We asked six participants the following questions
over the same 12 event logs that were considered in [45] (except the BHS log that
could not be shared).

40 Introduction

1. ExQ-1. Whether the performance patterns, provided in the taxonomy [45] (Fig-
ure 3.9), can be identified in the performance spectra of various processes?

2. ExQ-2. Whether the analyst can identify the same performance patterns as the
authors of [45]?

As a result, the participants could do both, i.e., they could identify patterns, and
these patterns were mostly the same as the authors’ ones. The main problem was the
absence of concrete time information for the examples in [45]. It made the analysis
more time-consuming.

For the latter, we conducted a study at Vanderlande. For that, Vanderlande’s do-
main experts shared a BHS event dataset and formulated a performance analysis
problem as follows.

• In a major European airport, a BHS experienced severe performance problems.
How detect these problems and find their root causes, using the system material
flow diagram, and a dataset of recorded event data?

We were informed that this was a difficult problem, whose analysis was already done
but took a long time — around three man-months. However, no analysis results were
shared beforehand.

We computed “regular” and multi-channel performance spectra, using the given
dataset. We used various event attributes to define different performance classifiers
for the multi-channel performance spectrum. As a result, we successfully detected and
explained the incident scenario, and explained its root causes. This scenario showed
how the bag interactions on the system resources, together with equipment problems,
eventually caused the complete system halt. Validation with Vanderlande’s engineers
showed that our results were similar to theirs but obtained significantly faster — in
three man-weeks instead of three man-months.

Our evaluation proved that the performance spectrum is a powerful technique
for the performance description and analysis of processes and systems, including sys-
tems with shared resources and queues. Additionally, the performance patterns allow
an expressive high-level performance description, easily understandable even by un-
trained analysts.

1.5.2 Modeling Systems with Shared Resources and Queues

For modeling systems with shared resources and queues, we proposed the PQR-
system, a dedicated synchronous proclet system modeling the process, queue, and
resource dimensions. Its purpose is to enable model-based process mining techniques
for systems with shared resources and queues. Our contribution here is twofold:

1. the model (i.e., PQR-system) itself, and
2. the way we approached its design.

1.5 Contributions 41

The latter showed how the problem of modeling systems with shared resources
and queues (and perhaps many other types of systems/processes) can be approached.
We showed how

• the actual analysis questions were formulated first,
• the state-of-the-art techniques were considered next, using process mining tech-

niques (performance spectrum) to determine whether their assumptions held
for the studied systems, and

• concepts to be reused in our own design were identified in the existing ap-
proaches.

Following this approach, we used a queueing network-based state-of-the-art ap-
proach [18, 20] for modeling MHS performance and validated its assumptions using
the performance spectrum and domain knowledge. Although we concluded they did
not hold for the systems we studied, we identified the key elements capable of ex-
plaining MHS behaviors conceptually:

• finite-capacity FIFO queues with pre-defined time characteristics,
• resources (servers) with pre-defined time characteristics,
• and a routing function that defines the handover of jobs (TSUs, cases) among

them.

Further, we represented these concepts with a synchronous proclet system [48].
That is, we mapped the queues, resources, and routing function to dedicated queue,
resource, and process proclets respectively, using channels to synchronize their inter-
actions. We used a small subset of the CPN syntax to model these proclets. We also
defined the PQR-system replay semantics that checks whether a given event table can
be generated by the modeled system. The resulting model enables process model-
based techniques for the analysis of systems with shared resources and queues.

Last but not least, we designed and implemented a BHS simulation model and the
corresponding PQR-system to demonstrate how a concrete system can be modeled
with the PQR-system, and what kind of event data it generates3. It allows for materi-
alizing of a sample BHS for any researcher that needs it for doing experiments in the
fully controllable environment of this simulation model.

Next, consider how the PQR-system replay semantics allows addressing confor-
mance checking of systems with shared resources and queues.

1.5.3 Generalized Conformance Checking

We addressed the problem of generalized conformance checking that combines con-
formance checking, model repair, and log repair under the common roof [44]. We

3The source code and documentation are available on https://github.com/
processmining-in-logistics/psm/tree/pqr.

https://github.com/processmining-in-logistics/psm/tree/pqr
https://github.com/processmining-in-logistics/psm/tree/pqr

42 Introduction

chose it instead of “classical” conformance checking because in real-world settings we
cannot consider either an MHS model (PQR-system) or event data as fully trusted.

For conformance checking, we

• discussed conformance checking use cases for the MHS domain, and
• showed how existing techniques (sometimes after minor extensions) can be

used for PQR-system-based conformance checking and model repair.

Thus, we showed that conformance checking of the P-proclet allows for the detection
of sensor malfunctioning and manual interventions in material handling processes,
as well as the detection of incomplete logging. Conformance checking of Q- and R-
proclets allows for the detection of some control-flow outliers that cannot be detected
through P-proclet conformance checking, to be used for the same purposes. Addi-
tionally, it allows for concept drift detection for Q- and R-proclets parameters, and
estimation of log repair accuracy (if log repair was applied). Finally, synchroniza-
tion conformance checking allows for revealing issues in data that violate correlation
constraints defined by the PQR-system.

For log repair, which is a part of generalized conformance checking, we proposed
a novel method for inferring unobserved events with timestamp information using the
PQR-system. It allows for obtaining complete event tables from usually incomplete
ones recorded by nowadays MHSs. Such complete event tables are correct, i.e., they
can be replayed over a PQR-system according to its replay semantics. The evaluation
of our implementation using synthetic and real-life data showed that

• the error of the estimated timestamps and derived performance characteristics
(load) was less than < 5% under regular performance, and

• real-life dynamics (i.e., load peaks) were correctly restored after irregular be-
havior (e.g., after completion of blockage or high load instances).

1.5.4 Multi-Dimensional Performance Analysis

The contributions of our method for multi-dimensional performance analysis of sys-
tems with shared resources and queues are threefold:

1. the way to relate performance spectra to the PQR-system,
2. model enhancement via combining the PQR-system with performance spectra,

and
3. the method itself.

The stand-alone performance spectrum, as we introduced it first in Chapter 3, is
a powerful technique. However, alone it (1) has a lack of structure, and (2) its inter-
pretation is possible only using domain knowledge in the analyst’s mind. Both factors
limit its application in practice. Relating the performance spectrum to the PQR-system

1.5 Contributions 43

adds structure to the performance spectrum: its segments now can be sorted accord-
ing to valid sequences of process steps, known from the P-proclet. Additionally,

• the segments of the process (control-flow) performance spectrum get interpreted
as transitions between the process step in the P-proclet,

• queue performance spectra show actual queue waiting times for cases, and
• resource performance spectra show actual resource service and idle time during

and after case handling respectively.

Additionally, temporal parameters of the Q- and R-proclets can be used for defining
performance classifiers with accurate thresholds for performance classes.

Interestingly, there is another view on it. In process mining, a process model
can be enhanced by projecting, for example, performance information onto its ele-
ments [1]. However, it must not be understood only literally, i.e., as drawing some
information on top of the model visualization. By relating performance spectrum
segments to the places and transitions of the PQR-system, we map the performance
information to the model elements, as our tool [54] demonstrates. In essence, we
effectively enhance the model with a performance spectrum. Mentally, it can be seen
as the stripes of performance spectrum segments attached to the model places in a
three-dimensional space.

Last but not least, our method for performance analysis goes beyond outlier or
bottleneck detection. It allows for identifying the origins of performance problems,
pretty much without any domain knowledge outside one captured by the PQR-system.
Further, it switches the view on the performance description from one in the pro-
cess dimension to others in the queue and resource dimension to identify which root
causes have the phenomena in the performance spectra of these dimensions.

We consider our method as a foundation for methods for the analysis of processes
in other domains. For example, assuming an “extended” PQR-system supporting pools
of resources (assignment groups) and non-FIFO ordering, the performance spectra of
additional dimensions can be computed and analyzed for identifying root causes of
performance issues, using more pattern types from our performance patterns taxon-
omy in Chapter 3.

For evaluation, we developed a proof-of-concept implementation as an open-source
tool4 [54], while a software solution based on this approach for the MHS domain was
implemented internally by Vanderlande and evaluated by their domain experts for
several systems and use cases. The evaluation outcome is twofold. First, the ap-
proach revealed findings that could not be obtained using other tools. Second, it
allowed faster results than classical tools for MHS performance analysis. Addition-
ally, the integrated model and performance spectrum allowed for a shallow learning
curve for experts previously unfamiliar with the MHS and performance spectrum.

4The source code and further documentation are available on https://github.com/
processmining-in-logistics/psm/tree/pqr

https://github.com/processmining-in-logistics/psm/tree/pqr
https://github.com/processmining-in-logistics/psm/tree/pqr

44 Introduction

1.5.5 Predictive Performance Monitoring

Finally, in Chapter 9 we studied the problem of forecasting the performance of systems
with shared resources and queues.

We showed that the multi-channel performance spectrum, derived from the event
log of a process, allows for modeling a variety of process performance features over
time, capturing also inter-case dependencies in systems with shared resources and
queues. Specifically, we showed how its bins, defined over the three basic dimensions
of process step, performance measure, and time interval, capture features and allow
for the formulation of a large class of performance prediction problems as a regression
problem. This vision can be used by other approaches for formulating PPM problems
that must consider case interactions on shared queues and resources.

We proposed a method for obtaining a feature set, required for solving this re-
gression problem as an ML task. It includes an approach for feature selection, that
can be to a large extent “formalized”, using domain knowledge available from the
PQR-system. That is, the features are not obtained by trial and error, or by using
some domain knowledge in the data scientist’s mind, but are identified by computing
the “locations” of origins of future performance in the performance spectrum (in the
space of time and segments) using the PQR-system.

We provided examples of real-life problem instances for a BHS and evaluated our
method by training sound models for solving these problem instances on the real
event log of a major European airport BHS. We demonstrated the feasibility of our
approach and compared it to the current state-of-the-art approaches, e.g., [35]. The
experiments showed that our performance spectrum-based linear model outperforms
the more complex non-linear model of [35]-based approach, and the performance
spectrum-based non-linear model outperforms the naive baseline for the problem in-
stance where [35] was not applicable due to the optionality of the target process step.

The remainder of the thesis is structured as follows. We introduce basic defini-
tions and notations in chapter 2. We propose the performance spectrum in Chap-
ter 3. We explore the modeling of systems with shared resources and queues with
queueing theory in Chapter 4, review related work in Chapter 5, and model the PQR-
system in Chapter 6. We address the problems of generalized conformance checking
in Chapter 7. We suggest our methods for descriptive performance analysis and PPM
in Chapter 8 and Chapter 9 respectively. We conclude the thesis in Chapter 10.

Chapter 2
Preliminaries

This chapter introduces basic concepts used throughout this thesis. In Section 2.1,
we recall sets, multisets, sequences, relations, functions, and partial orders. In Sec-
tion 2.2, we review the key concepts we use for process modeling, such as Petri nets.
Then in Section 2.3, we recall colored Petri nets, including their version with support
of time. We consider both syntax and semantics for these types of nets, described
through process runs represented through occurrence nets. Finally, as in process min-
ing, the behavior of processes and systems is typically captured through events they
generate, we define concepts needed for describing event-based data, such as events
with attributes, event traces, event tables, and event logs, in Section 2.4.

2.1 Notations - Set, Multiset, Relation, Function, Se-
quence, Graph, and Partial Order

We use the following notations on multisets, sequences, functions, graphs, and rela-
tions.

• We denote sets by capital letters X , Y , etc., and write {x1, x2, ...} = X for the
elements of a set. A set can be infinite.

• We write R ⊆ X ×Y for a binary relation R on sets X ,Y , and (x, y) ∈ R when x is
R-related to y . For some relations, we write xR y for (x, y) ∈ R. We write relation
on X for a subset of X ×X .

• We write R+ for the transitive closure of binary relation R on set X , that is the
smallest relation on set X that contains R and is transitive, i.e., whenever R+

relates a to b and b to c, then R+ also relates a to c. We write R⊗ for a transitive
reflexive closure of binary relation R on set X . that is the union of the transitive
closure R+ and the relation {(x, x) | x ∈ X }. We write R− for a transitive reduction

46 Preliminaries

of relation R, that is a minimal relation on X which has the same transitive
closure as R.

• A total function f from X to Y , denoted as f : X → Y , is a relation that maps
every element from X to an element of Y .

• A partial function f from X to Y , denoted as f : X 6→ Y , is a relation that maps
every element from a subset X ′ ⊆ X to an element of Y . We write f (x) =⊥ if f is
undefined for x, i.e., when x ∈ X \ X ′.

• We write f
∣∣

X ′ for the restriction of function f : X → Y to a smaller domain X ′ ⊆ X ,
i.e., for a new function f

∣∣
X ′ : X ′ → Y such that f

∣∣
X ′ (x) = f (x) for x ∈ X ′.

• A multiset (or bag) over finite set X is a total function m : X → N that maps
every element from X to a number of its occurrences in the multiset. We write,
for example, m = [a,b3] for a multiset m over the set {a,b,c} where m(a) = 1,
m(b) = 3 and m(c) = 0. We write [] for the empty multiset. We denote the set of
all multisets over X as B(X).

• We denote sequences by small Greek letters σ,θ etc., and write 〈a1, a2, . . . , an〉 =σ
for the ordered elements of a sequence, and |σ| for the sequence length,

• We write G = (V ,E) for graph G consisting of a non-empty set of vertices V , and
a set of edges E . A graph is called directed if E consists of ordered vertex pairs,
and undirected otherwise. A graph is connected if there is a path from any vertex
v ∈V to any other v ′ ∈V .

A partial order is a binary relation < on set Y if for all y , y ′, and y ′′ in Y it is:

1. irreflexive, i.e., ¬(y < y),
2. antisymmetric, i.e., y < y ′ =⇒ ¬(y ′ < y),
3. transitive, i.e., y < y ′∧ y ′ < y ′′ =⇒ y < y ′′.

We write (Y ,<) for partial order < over the set Y . For a labeled partial order on a set
Y for the set Σ of labels, we write (Y ,<,`) where (Y ,<) is a partial order, and function
` : Y → Σ maps the elements of Y to the labels of Σ. We write e1 < e2 if event e1

precedes event e2, and we write e1le2 iff e1 directly precedes e2, i.e., when e1 < e2 and
there is no other event e3 with e1 < e3 < e2.

2.2 Process Model and Process Runs

Process models are typically used for describing either intended or observed behavior
of processes. A process model usually documents and represents process activities and
their causal dependencies using a graph-based notation. In this thesis, we extensively
use the Petri net notation as it is widely used in process modeling and serves our
needs well. In this section, we recall Petri nets, explain their semantics in terms of
process runs and introduce workflow nets, a sub-class of Petri nets widely used for

2.2 Process Model and Process Runs 47

modeling business processes. Since we only explain the basic notions, we refer to
[42] for more details.

2.2.1 Labeled Petri Nets

Here we formally define the syntax of labeled Petri nets, i.e., Petri nets where nodes
have labels, and their semantics, i.e., the state of Petri nets, called a marking, and
how a state of a labeled Petri net changes from one marking to another. We assume
that these labels, i.e., the names of process steps to be projected on the model, are
given.

A labeled Petri net is a directed graph with nodes of two types, called transitions
and places. Each transition node can only have adjacent nodes of the type place,
and each place node can only have adjacent nodes of the type transition. Each node
of a labeled Petri net has a label from the set Σ of labels. A transition label can be
considered as the observable action. A place label can be considered as a name of a
state between actions, represented by adjacent transitions of the place.

In this thesis, we use labels that clearly show the regular structure of the models
of material handling processes For that, we introduce a special naming convention for
transition and place labels in Section 6.3.1. Later, it is used for simplifying definitions
related to the process models of this thesis.

Sometimes, it is necessary to express that a particular transition is not observable.
For this, we reserve the label τ ∈Σ. A transition whose label is τ is unobservable. Such
transitions are often referred to as silent or invisible in literature [1].

The formal definition of a labeled Petri net reads as follows.

Definition 2.1 (Labeled Petri net). Let Σ be a finite set of labels. A labeled Petri net
N = (P,T,F,`) over Σ is a tuple in which:

• P is a finite set of places,
• T is a finite set of transitions such that P ∩T =;,
• F ⊆ (P ×T)∪ (T ×P) is a set of directed arcs, called the flow relation,
• ` : T ∪P →Σ is a labeling function.

For every transition t ∈ T , •t = {p ∈ P |(p, t) ∈ F } is the set of pre-places of t and
t• = {p ∈ P |(t , p) ∈ F } is the set of post-places of t , pre- and post-transitions of a place are
defined correspondingly. We write N1∩N2, N1 ∪N2, and N1 ⊆ N2 for an intersection,
union, and subset of nets respectively, which is defined element-wise on the sets of
nodes and arcs of N1 and N2, and we write ; for the empty net.

A state of a labeled Petri net is defined by its marking m ∈ B(P) that assigns a
number m(p) of tokens to each place p ∈ P . Given the significance of a model’s initial
state, the initial marking is often included in the net structure as follows.

48 Preliminaries

Definition 2.2 (Labeled, Marked Petri net). A labeled, marked Petri net is a tuple
(N ,m0) = (P,T,F,`,m0) in which:

• N is a labeled Petri net,
• m0 is a marking of N .

A state of a labeled, marked Petri net changes when a transition occurs. A tran-
sition t ∈ T is enabled, i.e., can occur, at marking m of N , when each pre-place of
transition t contains at least one token, i.e., iff ∀p ∈ •t m(p) > 0.

When transition t occurs, it consumes one token from each of its pre-places and
produces one token on each of its post-places, thereby generating a new marking

m′(p) =

m(p)−1 if p ∈ •t \ t•

m(p)+1 if p ∈ t• \ •t

m(p) otherwise.

We write m
t−→ m′ for the occurrence of transition t that changes the marking from

m to m′, and call it a step. Let us consider two markings m1,mn ∈ B(P). If for those
markings there exists a sequence of transitions σ = 〈t1, t2, . . . , tn−1〉 such that m1

t1−→
m2

t2−→ m3 . . .
tn−1−−−→ mn , we write m1

σ−→ mn and call this sequence an occurrence sequence
of N . In this case, marking mn is reachable from marking m1. The marking m′′ is
unreachable from marking m1 if there is no sequence of transitions starting at marking
m1 that reaches marking m′′.

A toy example of an airport BHS is shown in Figure 2.1(a). It has two check-in
counters a1, a2, a merge unit b where the flows from check-in counters a1, a2 merge
into a single flow that goes to lateral (exit) c, where bags are off-loaded to aircraft.

The corresponding labeled, marked Petri net that models the BHS is shown in
Figure 2.1(b). In Petri nets, we model process steps with transitions whose labels
describe the corresponding process steps. For example, when a bag front side passes
location a1, we consider that as the start of checking in at counter a1, and label the
corresponding transitions as a1s . Respectively, when a bag back side finally leaves
the counter, we consider that as the completion of this process step, and label the
corresponding transitions as a1c . We draw transition identifiers outside the transition
rectangles, and we draw labels inside the transition rectangles. For example, the
top left transition in Figure 2.1(b) has identifier t1 and label a1s . A place between
start and complete transitions of the same process step defines that a bag is being
processed, and the place label is the name of this process step. For example, the
place with label a1 defines that a bag is being processed (at process step a1). A place
between transitions of different process steps defines that a bag is in transit from one
process step to the next one. For example, the place with label a1:b′ defines that a
bag is in transit from process step a1 to process step b′. As for transitions, we draw
place identifiers and labels outside and inside the nodes respectively.

2.2 Process Model and Process Runs 49

(a) (b)

pid1

pid2

pid3

a1 a2

Check-in counters

Lateral c

Merge unit b

Figure 2.1: MFD of a BHS (a) and an example of the corresponding labeled, marked Petri net
(b).

The diagram in Figure 2.1(a) also shows the current state of the system, where
two bags are traveling from location a1 to b, and one bag is traveling from location b

to c. The net shown in Figure 2.1(b) models bags, transported through the BHS, as
tokens. The state of the system is described by a distribution of tokens on the places,
i.e., by its marking. In Figure 2.1(b), the current state is described by the marking
[a1:b′2,b:c1], which is visualized as two tokens on place p2 with label a1:b′ and one
token on place p6 with label b:c.

50 Preliminaries

2.2.2 The Semantics of Petri Nets

Processes often have parallelism, for example, to speeding-up their steps or due to dis-
tributed nature of systems. In literature [42, 57, 58, 59], among others, two semantics
for analysis of such processes have been considered: (1) interleaving semantics and
(2) true concurrency semantics. Interleaving semantics equates the concurrent execu-
tion of actions with their execution in an arbitrary but global order. The assumption
about the global order can be undesirable. For example, in Figure 2.1(b) bag pid1

is located on conveyor b : c, while bags pid2 and pid3 are located on conveyor a1 : b,
i.e., they are in different parts of the system. Any ordering of pid2 and pid3 to pid1,
assumed by interleaving semantics, is inadequate unless they reach a common part
where they synchronize. So such an interpretation has a significant drawback, as it
provides an inaccurate description of what can happen. By contrast, true concurrency
semantics allows multiple actions to be executed simultaneously, thereby allowing, for
example, unordered execution of process steps b′

s for pid2 and cs for pid1. As a result,
systems with concurrency can be modeled more adequately.

Petri net theory has a long tradition of studying true concurrency by way of partial
order semantics [57], which we recap in this section. Most often, a partial-order
semantics of Petri nets is based on so-called distributed runs [42] (that we refer to
further in this thesis as runs). Runs are based on a special relatively simple class of
nets, called in literature either causal nets or occurrence nets. We use the latter term
in this thesis.

Definition 2.3 (Occurrence net). An occurrence net π= (B ,E ,G) is a net, as defined in
Definition 2.1, but without labeling where:

1. each place b ∈ B is called a condition,
2. each transition e ∈ E is called an event,
3. the transitive closure G+ is irreflexive,
4. π is finitely preceded, i.e., the set past(x) = {y | (y, x) ∈G+} is finite for each x ∈ B∪E ,
5. each condition b ∈ B has at most one pre-event and at most one post-event, i.e.,

|•b| ≤ 1 and |b•| ≤ 1.

We write min(π) ⊆ B to refer to the conditions that have the empty preset.

Definition 2.4 (Run). A run of a labeled marked Petri net N = (P,T,F,`,m0) is a la-
beled occurrence net π = (B ,E ,G ,λ) where the labeling function λ satisfies the following
properties:

1. λ(B) ⊆ P and λ(E) ⊆ T , i.e., the labeling function λ preserves the nature of nodes,
2. let t = λ(e); for each b ∈ •e exists exactly one p ∈ •t with p = λ(b), and for each

p ∈ •t exists exactly one b ∈ •e with λ(b) = p, and similarly for each b ∈ e• exists
exactly one p ∈ t• with p = λ(b), and for each p ∈ t• exists exactly one b ∈ e• with
λ(b) = p, i.e., λ preserves the environments of events,

2.2 Process Model and Process Runs 51

pp

t

a

b

c

t

a

b d

c

represent

represents

(a)

(c)

(b)

(d)

d

c

p

Figure 2.2: Occurrence nets.

3. π “starts” at initial marking m0 as follows:

• for each b ∈ min(π) there exists exactly one p ∈ m0 such that p =λ(b), and
• for each p ∈ m0 the number of corresponding conditions in min(π) is equal

to the number of tokens on p in initial marking m0, i.e., m0(p) = |{b | b ∈
min(π),∀b1,b2 ∈ min(π),b1 6= b2,λ(b1) =λ(b2) = p}|.

To show what a run of a net is, we first provide examples of the building blocks
of a run and then provide a run of a net with concurrency. In an occurrence net of
a run, each occurrence of a token is represented as an individual, labeled place. For
example, if during a run two tokens occurred on a place, such a place is represented
in the corresponding occurrence net as two conditions (Figure 2.2(a)). However, a
condition alone cannot be seen as a building block because a token occurrence in a
run is always related to a transition firing (besides conditions corresponding to the
initial marking). So, a fact of a transition firing and its effect on the tokens involved is
described as a net of a particular structure, shown in Figure 2.2(b), called a transition
occurrence. An occurrence of transition t of the model of Figure 2.2(d) is shown in
Figure 2.2(c). Notice that place c, from which a token is consumed and also produced
by transition t , is represented through two condition places in the occurrence net. So,

52 Preliminaries

a run of a net is composed of transition occurrences, connected into an occurrence
net.

p1

(a)

t1

p2 t2 p3 t3 p4

t5

p6 t6 p7

p8

p1

t1

p2 t2 p3 t3 p4

t5 p8

p6 t6 p7

p5

p5

p5

t1

t2 t3

t5

t6

e1

e2

e3

e4

e5

e1

e2 e3

e4

e5

(b)

(c)

t4

Figure 2.3: Marked Petri net (a), its run (b), and its labeled partial order (c).

Figure 2.3(b) shows a run π= (B ,E ,G ,λ) of a net with concurrency and a choice,
shown in Figure 2.3(a), where the transition occurrences are shown within dashed
rectangles. The run shows the ordering of events. For clarity, we extract the labeled

2.2 Process Model and Process Runs 53

partial order π′
E of events of π: π′

E = (E ,<E ,λ
∣∣
E), with <E= (G+ ∩ (E × E))− shown

in Figure 2.3(c). We can clearly see that event e2 is directly followed by event e3,
while the order among e2 and e4, or e3 and e4 is not defined. In a run, concurrent
events represent transitions that can occur concurrently, e.g., events e2 and e4 in
Figure 2.3(b).

2.2.3 Workflow Nets

For modeling business processes, a sub-class of Petri nets known as WorkFlow nets
(WF-nets) is often used [1].

Definition 2.5 (Workflow net). Let N = (P,T,F,`) be a labeled Petri net. N is a workflow
net if

1. P contains a unique input place i ∈ P , also called a source place, such that •i =;,
2. P contains a unique output place o ∈ P , also called a sink place, such that o• =;,
3. every node in P ∪T is on a path from i to o (along the arcs of F).

The transition bounded labeled Petri net N = (P,T,F,`), shown in Figure 2.1, is not
a WF-net because it contains neither place p ′ ∈ P such that •p ′ =; nor sink place p ′′

such that p ′′• =;. To illustrate how it can be transformed into a WF-net NWF , we do
the following:

1. we add places i and o to P , i.e., PWF = P ∪ {i ,o} to have the unique source and
sink places, and

2. extend relation F as FWF = F ∪{(i , a1s), (i , a2s), (cc ,o)} to connect the current non-
unique input and output transitions with these places.

As a result, each node of this net becomes on a path from unique source i to unique
sink o, i.e., it becomes a workflow net. The corresponding example is shown in Fig-
ure 2.4. The formal definition of the transformation of a transition bounded labeled
Petri net into a WF-net reads as follows.

Definition 2.6 (Transformation of a transition bounded labeled Petri net into a WF-
net). Let N = (P,T,F,`) be a transition bounded labeled Petri net, i.e., ∀p ∈ P •p 6= ;
and p• 6= ;. Let i ,o 6∈ P be the source and sink places, and let PWF = P ∪ {i ,o} be a set
of places of N joined with the sink and source places. Let Fi = {(i , t) | t ∈ T,•t = ;} be
arcs between the source place and transitions of N without preset. Let Fo = {(t ,o) | t ∈
T, t• =;} be arcs between the transitions of N without postset and the sink. The WF-net
NWF = (PWF ,T,F ∪Fi ∪Fo ,`) is the corresponding WF-net of N .

Not every WF-net represents a correct process, so a sound WF-net [1] is desirable.
A sound WF-net is characterized by the following properties.

• Safeness. In any reachable marking, there is no place holding multiple tokens at
the same time.

54 Preliminaries

Figure 2.4: Marked, labeled Petri net of Figure 2.1 transformed into a workflow net.

• Proper completion. Any marking that assigns a token on sink place o is [o], i.e.,
when a token reaches the sink, there are no other tokens “in progress” on other
places.

• Option to complete. The marking [o] (corresponding to the proper completion)
is reachable from any marking of the net.

• Absence of dead parts. For each transition t ∈ T there is an occurrence sequence
that enables it.

2.3 Colored Petri Nets 55

Checking for soundness allows for avoiding coarse design errors that can drastically
impede the quality of process analysis based on such problematic nets.

2.3 Colored Petri Nets

In this section, we recap the concepts of Colored Petri Nets (CPNs), a language for
the modeling and validating of various complex systems, including concurrent and
distributed ones. In this thesis, we use CPNs to model system aspects that are difficult
or even impossible to model using Petri nets with black tokens, e.g., element orderings
in queues and time-related system characteristics. In the following, we provide a
running example and explain the key elements of CPN syntax and semantics required
for describing FIFO queues and time. For additional information on CPNs, we refer
to [49].

Running Example. Because we use CPNs for modeling FIFO queues with time pa-
rameters in Chapter 6, we use such a queue as a running example of this section
(Figure 2.5). A FIFO queue can be implemented as a list data structure. An element
is added to the queue (enqueued) by appending it to the tail and is taken out of the
queue (dequeued) by removing the head element of the queue. The queue has a
fixed non-zero capacity and the minimum waiting time twQ ∈ T, i.e., each enqueued
element waits for at least twQ before dequeuing. Additionally, queue elements must
be identifiable. Given such a queue, we want to model it as a CPN.

enqueueing

dequeuing

tail

head

Figure 2.5: FIFO queue.

2.3.1 Colored Petri Nets

In the following, we show how CPNs extend labeled Petri nets by adding types, vari-
ables, inscriptions, etc., to the net structure, and explain their semantics.

56 Preliminaries

Places, Transitions, and Arcs. We assume the set Types of types, set Var of variables,
and set Exp of expressions explained in detail below. Similarly to labeled Petri nets
(see Definition 2.1), the CPN structure N = (P,T,F,`,Var,colSet,m0,arcExp) consists of
disjoint finite sets of places P and transitions T , directed arcs F connecting places
with transitions and transitions with places, i.e., F ⊆ (P ×T)∪ (T ×P), and an optional
labeling function ` : T ∪P →Σ. Although such a labeling function is not typically part
of a CPN, we include it in the CPN structure for reasons provided in Section 2.2.1,
and we use it extensively later, especially in Chapter 6. On top of this skeleton, the
CPN syntax adds variable declarations Var and inscriptions:

• for color sets: function colSet : P ∪Var → Types assigns for color sets (i.e., types)
to values a place or variable can hold,

• for initial marking: function m0 : P → B(Values) assigns values that places hold
initially,

• for arc expressions: function arcExp : F → Exp is evaluated when a transition
occurs and defines which values to consume/produce.

Further, we explain these concepts in more detail.

Color Sets and Markings. As in labeled Petri nets, in CPNs each place can be marked
with one or more tokens, but tokens in CPNs are not “black”, they have data values
attached to them. Such a data value is called a token color. CPNs allow defining types
Types for places that are called color sets, each place can have only tokens of the same
(as the place type) color. Each Type ∈ Types describes a set of values Type ⊆ Values.
The color set function colSet : P ∪Var → Types assigns to each place p ∈ P and variable
var ∈ Var a color set colSet(p). A marking in a CPN assigns to each place a multiset of
values of the type of this place, i.e., it is a function m : P → B(Values) so that for each
place p and each value v ∈ m(p) holds v ∈ colSet(p).

In the environments for CPN modeling and simulation [60, 61], the CPN ML lan-
guage is used for defining color sets, declaring variables, defining expressions, and so
on. The CPN ML language is based on the functional programming language Stan-
dard ML (SML) [62]. Similarly to other programming languages, a library with the
implementation of the common data structures is available, from which we use only
structure list in this thesis. Later in the thesis, we assume the use of the CPN ML
language in CPN models.

In our CPN model of the queue (Figure 2.6), places p0 and p1 have a color set
ID to distinguish different elements, e.g., identifiers for bags, which for technical
reasons we model as a string (colset ID= STRING). Marking m0 assigns initially a
multiset of values to each place p, it is called an initial marking. To specify ini-
tial markings, n‘X++m‘Y in CPN ML denotes the multiset [X n ,Y m]. For example,
the expression 5‘a++10‘b denotes the multiset [a5,b10]. Place p0 is initialized with
a multiset of token identifiers for elements (e.g., bags) to enter the queue, e.g.,
1‘pid1++1‘pid2++1‘pid3 is the multiset of elements [pid1,pid2,pid3] = m0(p0) as-

2.3 Colored Petri Nets 57

signed to place p0 initially. In Figure 2.6, place p1 is initialized with token identifiers
of the queue, modeling how many items can still enter the queue. We distinguish
queues through their unique identifiers, exactly as TSUs (bags), e.g., k‘QID describes
that there are k tokens (queues) of value QID.

Figure 2.6: CPN model of the queue shown in Figure 2.5.

Place p2 has color set colset QUEUE= product ID∗list ID, i.e., a pair (tuple) of
a queue identifier (ID) and a list of element identifiers (of color set ID), the list im-
plements the queue data structure. For example, a token on place p2 can have value
(QID, [pid1,pid2]), describing a queue with identifier QID that contains two elements
with identifiers pid1 (in the head) and pid2 (in the tail). The element to be dequeued
first is pid1 because it is in the head. The initial marking of p2 is m0(p2) = [qid1,[]],
where [] denotes the single empty list 〈〉. As a result, the initial marking of the net is

• m0(p0) = [pid1,pid2,pid3],
• m0(p1) = [QIDsize],
• m0(p2) = [(QID, [])],
• m0(p3) = [].

Expressions and Variables. Each arc (x, y) ∈ F is annotated with a structured expres-
sion arcExp(x, y) that can be evaluated to a value of a particular type. This value is
then consumed or produced when a transition occurs. The expressions have variables
and constants as atoms and use various ML functions. In this thesis, we only use a

58 Preliminaries

limited set of functions. In our running example of Figure 2.6, we define three vari-
ables: pid,qid of type ID and q of type list ID. The incoming arcs of transition t1

(labeled enq) in Figure 2.6 have the following expressions:

• arc (p0, t1) has expression pid (variable pid of type ID),
• arc (p1, t1) has expression qid (variable qid of type ID),
• arc (p2, t1) has expressions (qid,q). This tuple consists of variable qid of type

ID and variable q of type list ID.

The outgoing arcs of transition t1 have the following expressions:

• arc (t1, p3) has expression pid (variable pid of type ID),
• arc (t1, p2) has expression (qid,q ˆ̂ [pid]). This tuple consists of variable qid

of type ID and the expression q ˆ̂ [pid] which describes that element qid is ap-
pended to list q.

Transition t2 has one expression different from the expressions of t1:

• outgoing arc (p2, t2) has expression (qid,pid :: q), where expression pid :: q de-
scribes a token (qid, q ′) where list q ′ is decomposed into its head in variable pid

and the rest elements in list q.

Variables pid,qid, and q are called free variables. If we bind values to the variables,
we can evaluate the expressions on the arcs to concrete values. In this way, both in-
dividual identifiers and structures, such as a pair of a (1) concrete identifier and (2)
list of identifiers, can be evaluated to a value v ∈ Values. A binding bind is a mapping
of free variables to concrete values. For example, we can bind the following values to
pid, qid, and q: bind(pid) = pid3, bind(qid) = QID1, bind(q) = [pid2,pid1]. We write
bind = {(pid,pid3), (qid,qid1), (q, [pid2,pid1])} in the following. We write exp〈bind〉 for
the result of evaluating expression exp under binding bind. If we evaluate the expres-
sion (qid,q ˆ̂ [pid]) of outgoing arc (t1, p2) using binding bind, we obtain the expres-
sion (qid1, [pid2,pid1] ˆ̂ [pid3]) which we evaluate to (qid1, [pid2,pid1,pid3]), in other
words we enqueued pid3 in the queue q . The evaluation of the expression pid of the
outgoing arc (t1, p3) using the same binding is basically just mapping of variable pid

to value pid3, defined by binding bind.

Enabling and Occurrences. For transition t1, a binding bind yields a value x for
the expression exp of each input arc (p, t1), i.e., x = exp(bind). Thus, evaluating the
expression on the input arcs of t1 for bind tells:

1. which values must be on the respective input places to enable and fire t1 for
bind,

2. which values are to be produced when firing t1.

2.3 Colored Petri Nets 59

Transition t1 is enabled for binding bind at marking m if the resulting value x of the
expression of each arc (p, t1) is on place p, i.e., x ∈ m(p). An enabled transition can
occur. When an enabled transition t1 occurs under binding bind,

• it consumes from place p a token carrying value x yielded by the binding for
expression on the arc (p, t1),

• it produces on each output place p ′ connected with t1 by an outgoing arc (t1, p ′)
that carries the result of the evaluated expression on arc (t1, p ′).

We use m
(t ,bind)−−−−−→ m′ to write the occurrence of binding (t ,bind) that changes the

marking from m to m′ and call it a transition occurrence. Let us consider two mark-
ings m1 and mn . If for these markings exists a sequence of bindings
σ= 〈(t1,bind1), (t2,bind2), . . . , (tn−1,bindn−1)〉 such that
m1

(t1,bind1)−−−−−−→ m2
(t2,bind2)−−−−−−→ m3 . . .

(tn−1,bindn−1)−−−−−−−−−−→ mn , we write m1
σ−→ mn and call this se-

quence a transition occurrence sequence of N .
In the CPN in Figure 2.6, we can bind pid to pid1; qid to QID; and q to the

empty list. Transition t1 is enabled for this binding, firing t1 for this binding results
in enqueuing of pid1 and consuming one token of place p1(QIDsize), decreasing the
free capacity of the queue. That leads to the following marking:

• m1(p0) = [pid2,pid3],
• m1(p1) = [QIDsize−1],
• m1(p2) = [(QID, [pid1])],
• m1(p3) = [pid1].

At this new marking, the following bindings are possible:

• bind1 = 〈(pid,pid2), (qid,QID), (q, [pid1])〉 and bind2 = 〈(pid,pid3), (qid,QID), (q, [pid1])〉
for t1, and

• bind3 = 〈(pid,pid1), (qid,QID), (q, [])〉 for t2.

Transition t1 with binding bind1 occurs. As a result, element (bag) pid2 is enqueued,
and another token of place capacityQID is consumed, decreasing the free capacity
again. This occurrence leads to the marking representing two elements in the queue:

• m2(p0) = [pid3],
• m2(p1) = [QIDsize−2],
• m2(p2) = [(QID, [pid1,pid2])],
• m2(p3) = [pid1,pid2].

To fire t2, we need a binding that bind pid to the head element of the queue in place
p2, i.e., binding 〈(pid,pid1), (qid,QID), (q, [pid2])〉. This occurrence leads to dequeuing
of pid1 and producing (“returning”) of one token on place capacity:

• m3(p0) = [pid3],

60 Preliminaries

• m3(p1) = [QIDsize−1],
• m3(p2) = [(QID, [pid2])],
• m3(p3) = [pid2].

We write this occurrence sequence, which changes marking m0 to m3, as σm0−m3 =
• 〈(t1,〈(pid,pid1), (qid,QID), (q, [])〉),
• (t1,〈(pid,pid2), (qid,QID), (q, [pid1])〉),
• (t2,〈(pid,pid1), (qid,QID), (q, [pid2])〉)〉.
So far, we recapped the syntax and semantics of CPNs. The next section recalls

how the concept of time, required for modeling many complex systems, is supported
in CPNs.

2.3.2 Timed Colored Petri Nets

In timed CPNs, timing information can be added to CPN models when the correctness
of the system relies on the proper timing of the events. For example, in Figure 2.6, an
element can only leave the queue on place p2 when the minimum waiting time twQ

passes for the element. For that, a token in timed CPNs besides the color can carry
the second value, called a timestamp. A color set of a place with such tokens must
be timed, in CPN ML it is declared by appending the keyword timed to the color set
name, e.g., ID timed. Additionally, the model has a global clock, representing model
time. There are two widely used options for a model global clock: clock supporting
integer timestamps, and clock supporting real timestamps. For models of this thesis,
we select the more general global clock version with real timestamps.

A distribution of tokens on the places, together with their timestamps and the
value of the global clock, is called a timed marking. The timestamp (a non-negative
value) specifies the time at which the token is ready to be used, i.e., the earliest time
when it can be consumed by an occurring transition. For example, the initial marking
m0 on place p0 at time 0 becomes m0(p0) = [pid1@0,pid2@0,pid3@0], i.e., each token
is immediately ready at time 0. Without any time-related restrictions, a produced
token is available immediately after it is produced. To model that a token is only
available in some time after the transition occurred, the expression of an outgoing
arc of the transition can be appended with a delay. In the CPN Tools, the following
syntax is used: exp @delay. As a result, a token produced by an occurrence of the
corresponding transition at time time1 becomes ready at time time1+delay. Note that
formally, these timed extensions just enrich the “structure” of the possible Values, and
Types assigned to places P and variables Var by function colSet, and of the expressions
assigned to arcs F by function arcExp; see [49] for details.

Let T be the set of time durations and timestamps, e.g., the rational or real num-
bers. A state of the CPN at time ts ∈ T is a tuple (m, ts) of a marking m (over timed

2.3 Colored Petri Nets 61

tokens) and a timestamp ts. We write m
(t ,bind)@time−−−−−−−−−→ m′ for an occurrence of transition

t at time time that changes marking m to m′, i.e., for an occurrence of transition t

that changes state (m, time) to state (m′, time). Note, we write markings (not states)
before and after the arrow because this notation allows for chaining multiple labeled
occurrences into a sequence, while the time information for the state before and after
occurrences can be easily derived from the occurrence time time and marking m and
m′ respectively.

Now, we convert the CPN model in Figure 2.6 to a timed one because we want to
ensure the minimum waiting time t1wQ of elements in queues on place p2. For that,
we

1. add a new place p3 of color ID (see Figure 2.7),
2. add an arc from transition t1 to place p3 with arc inscription pid@t1wQ, and
3. add an arc from place p3 to transition t2 with arc inscription pid.

As a result, each occurrence of transaction t1 produces a token with element identifier
pid on place p3, whose presence is required to remove this element from the queue
later. Arc inscription pid@ ensures that such a token becomes ready on place p3 only
after waiting time t1wQ.

Figure 2.7: Timed CPN model of the queue in Figure 2.5.

Let us reconsider sequence σm0−m3 (see the previous section) for this timed CPN,
assuming t1wQ = 10, size = 3 and initial marking m0 at model time 0, i.e., initial state
(m0,0). In the CPN semantics [63] time has to advance at most until the next tran-
sition becomes enabled. However, input places p0 and p1 are not timed, so let
us assume that two bindings for t1 (i.e., bindings 〈(pid,pid1), (qid,QID), (q, [])〉 and

62 Preliminaries

〈(pid,pid2), (qid,QID), (q, [pid1])〉) occurred at time 0 and 1 respectively, i.e., at time 1

we have the following marking m1:

• m1(p0) = [pid3@0],
• m1(p1) = [QID@0],
• m1(p2) = [(QID, [pid1,pid2])@1],
• m1(p3) = [pid1@10,pid2@11].

Note, in state (m1,1) transition t2 is not enabled because token pid1 on p3 becomes
available at time 10. When time advances, at time 10 at marking m2 transition t2 is
enabled with the third binding (t2,〈(pid,pid1), (qid,QID), (q, [pid2])〉) and fires, leading
to the following marking m3:

• m3(p0) = [pid3@0],
• m3(p1) = [QID@0,QID@10],
• m3(p2) = [(QID, [pid2])@10],
• m3(p3) = [pid2@11].

In Chapter 6, we use CPN models, including an extension of the model considered in
this example, for defining a dedicated synchronous proclet system [48] for modeling
MHSs, i.e., for defining a model consisting of multiple CPN models connected into
a system through synchronous channels, which are a piece of syntax and semantics
defined for such systems.

2.4 Events, Attributes, Event Logs, and Event Tables

The behavior of a process can be captured through the events it generates. In process
mining, such events are typically used for various kinds of process analysis. Usually,
events are grouped in traces (i.e., sequences) such that each trace contains events
related to the same case. For example, if we consider a web shop, one case can be
a shopping session of a customer, and a trace of such a case contains events related
to the customer’s actions, e.g., logging in, search requests, payments, etc. For this
example, a customer session identifier, assigned to each event as its attribute, can be
used as a unique case identifier for grouping events into a trace. Such an attribute is
called a case notion. Most process mining techniques require that an attribute carrying
case identifiers is defined for each event.

While event logs where events have a single case notion are widely used in process
mining, this view on event data may be too simplistic for complex processes. For
example, in a web shop, besides customer-related processes, other processes such as
a delivery process, may exist. So, a payment can initiate the start of a delivery case.
Thus, event payment belongs to two cases: (1) a shopping session case, and (2) a
delivery case. Each delivery case has its own case identifier, e.g., a delivery identifier.

2.4 Events, Attributes, Event Logs, and Event Tables 63

We say that event payment has two case notions: a shopping session and delivery.
In general, event logs where events have multiple case notions allow for describing
multiple processes in one event log.

In this thesis, we consider MHSs that have entities of different types (case no-
tions), for example, bags, resources, conveyors, etc. The events they generate are
typically recorded into database tables and exported into CSV files for analysis. Re-
cently, such data started to be represented in object-centric formats, such as Object-
Centric Event Logs (OCEL) [64], instead of single-case notion event logs in the XES
format [65]. However, in this thesis, we use “raw” event tables for representing multi-
case notions event data because it is a much simpler structure that still suffices our
needs.

In an event table, each row is an event, and each column contains values of event
attributes, where one or multiple attributes are case notions. Each event refers to at
most one case for one case notion. An event table allows for deriving a “classical”
single-case notion event log for one of its case notions. This event log can be seen as
a view on the event table data.

In the following, we define event-related universes, a generic event table, whose
events have some minimal attribute set, and then a complete event table, whose at-
tribute set is sufficient for techniques considered in this thesis. Finally, we define
“classical” event logs and traces.

Note, we use the term process step instead of activity for describing MHS processes,
while we keep the classical terms activity and activity name for the corresponding
event attributes, as an event is a general concept that is not necessarily related to
MHS processes.

First, we define the universes required for our event model.

Definition 2.7 (Events-related universes). We write the following notations for the
universes:

• T denotes the set of time durations and timestamps, e.g., the rational or real num-
bers.

• AN denotes the set of all possible event attribute names.
• CN⊆ AN denotes the set of all possible case notions.
• Val denotes the set of all possible event attribute values.
• I ⊆ Val denotes the set of identifiers.
• Act ⊆ Val denotes the set of all possible activity names.

The definition of a generic event table reads as follows.

Definition 2.8 (Event table). Let E be the event universe, i.e., the set of all possible
event identifiers. An event table ET = (CN ,E ,#) has:

1. a non-empty set of case notions CN ⊆CN,

64 Preliminaries

event ID pid qid time act

e1 pid1 qid1 1 a
e2 pid1 qid1 2 b
e3 pid2 ⊥ 3 d
e4 pid2 qid2 4 a

Table 2.1: Complete time-monotone event table.

2. a set of events E ⊆ E ,
3. an attribute function # ∈ AN ×E 6→ Val that maps an attribute name n ∈ AN and

event e ∈ E to the value of n. If the value is undefined, it returns ⊥. We write #n(e)

for calling # for attribute name n and event e.

Function # must define the following attribute values for each event e ∈ E:

1. an activity name #act(e) ∈ Act,
2. at least one case identifier #cn(e) ∈ I for a case notion cn ∈ CN , i.e., ∃cn ∈ CN |

#cn(e) 6=⊥.

A case notion cn ∈ CN is a global case identifier iff for each e ∈ E #cn(e) is defined.

In an event table, some timestamp information can be missing, for example, if
some events were restored through a log repair technique that does not restore event
timestamps. Because the timestamp information is required for many analysis tech-
niques we consider in this thesis, we define a complete event table, where each event
has a defined timestamp, as well.

Definition 2.9 (Complete and incomplete event table). An event table ET = (CN ,E ,#)

(Definition 2.8) is complete iff function # defines a timestamp value for each event e ∈ E ,
i.e., #time(e) 6=⊥. Otherwise, ET is called an incomplete event table.

Table 2.1 shows a complete event table ({pid,qid}, {e1,e2,e3,e4},#) in a tabular
form, where each row is an event in E , and the columns contain the following in-
formation, i.e., the cell values define the attribute function #:

• column event ID contains event identifiers,
• column pid contains values of attribute pid carrying process identifiers,
• column qid contains values of attribute qid carrying queue identifiers,
• column time contains values of attribute time carrying event timestamps,
• column act contains contains values of attribute act carrying activity names.

If an attribute value is undefined, the corresponding cell contains ⊥, e.g., #qid(e3) =⊥.
pid is a global case identifier because it is defined for each event in ET . The value of
another case notion qid ∈ CN is undefined for e3, so identifier qid is not global.

Let us consider event e1 ∈ ET , which has the following attributes:

2.4 Events, Attributes, Event Logs, and Event Tables 65

• #act(e) = a ∈ Act,
• #pid(e) = pid1 ∈I ,pid ∈ CN ,
• #qid(e) = qid1 ∈I ,qid ∈ CN ,
• #time(e) = 1 ∈T.

When we refer to an event as a set of attribute name/value pairs, we use a sim-
plified notation. For example, we write 〈(act, a), (pid,pid1), (qid,qid1), (time,1)〉 for
{(act,#act(e1)), (pid,#pid(e1)), (qid,#qid(e1)), (time,#time(e1))}.

Additionally, we define a time-monotone event table for event tables where no two
events of the same case have identical timestamps.

Definition 2.10 (Time-monotone event table). An event table ET = (CN ,E ,#) (Defini-
tion 2.8) is time-monotone iff for distinct e,e ′ ∈ E ,cn ∈ CN ′ holds if #cn(e) = #cn(e ′) then
#time(e) 6= #time(e ′).

The complete event table in Table 2.1 is time-monotone.
In general, an event table contains events related to multiple case notions. How-

ever, in many cases, a simpler “classical” single-notion view on data is required, for
example, to apply existing process mining techniques. For that, we define a single
case notion, or “classical”, event log, its cases, and traces.

The event log definition reads as follows.

Definition 2.11 (Event log, complete event log, time-monotone event log). An event
log L = (cn,E ,#) is a set E of events, and a designated case notion attribute cn ∈ CN.
Similarly to Definition 2.8, an attribute function # ∈ AN ×E 6→ Val maps an attribute
name n ∈ AN and event e ∈ E to the value of n. If the value is undefined, it returns ⊥.
We write #n(e) for calling # for attribute name n and event e. Function # must define for
each event e ∈ E:

1. an activity name #act(e) ∈ Act,
2. a case identifier #cn(e) ∈I .

We call an event log complete if each event has a timestamp defined, i.e., ∀e ∈
E ,#time(e) 6=⊥, otherwise the event log is incomplete. We call an event log time-monotone
if for any two events with the same defined identifier id of case notion cn and defined
timestamps, the values of the timestamps are different, i.e., ∀e,e ′ ∈ E ,#cn(e) = #cn(e ′),⊥6=
#time(e) 6= #time(e ′) 6=⊥. Let L be the set of all event logs.

We can obtain an event log from an event table as follows.

Definition 2.12 (Event log from event table). Let ET = (CN ,E ,#) be an event table
(Definition 2.8). Let cn ∈ CN be a case notion. Let the set of events E ′ containing events
that have case notion cn defined, i.e., E ′ = {e | e ∈ E ,#cn(e) 6=⊥}. L = (cn,E ′,#

∣∣
E ′×AN) is an

event log obtained for case notion cn from event table ET .

66 Preliminaries

We write LET
cn for an event log obtained from ET for case notion cn.

Now we define traces and cases of an event log.

Definition 2.13 (Cases and traces). L = (cn,E ,#) be an event log with case notion
attribute cn (see Definition 2.11).

The set of cases in L with respect to cn is cn(L) = {#cn(e) | e ∈ E }, i.e., all case identifier
values in L.

All events that have the same case identifier id ∈ cn(L) are correlated to id, i.e.,
corr(L,cn = id) = {e ∈ E | #cn(e) = id}.

A trace of case id is a non-empty sequence 〈e1, . . . ,en〉 of all events in E correlated to
id that preserves the time ordering, i.e., corr(L,cn = id) = {e1, . . . ,en} and ∀1 ≤ i < j ≤ n

holds if #time(ei) 6=⊥ and #time(e j) 6=⊥ then #time(ei) 6= #time(e j).

In Table 2.1, a trace for case notion pid and identifier pid1 is 〈e1,e2〉. Its events
are ordered by time, i.e., #time(e1) < #time(e2).

2.5 Chapter Summary

In this chapter, we recalled the key concepts of the set theory, and Petri nets, and
provide definitions of various event data structures used throughout the thesis. We
introduced notation on sets, multisets, sequences, relations, functions, and partial or-
ders. We recalled Petri-net with black tokens, and discussed their syntax and seman-
tics, with a focus on their partial-order semantics interpretation. Then, we recalled
CPNs, their semantics, and how they model the time aspects of processes. Finally, we
defined the event-related data structure, such as events, event logs, and event tables.
All these notations, concepts, and definitions are extensively used in the remainder of
this thesis.

Chapter 3
Fine-Grained Description of
Processes Performance from
Event Data

Most process mining techniques for performance analysis are based on a process
model. Usually, a process model is discovered automatically (or created manually)
first and then used, for example, to annotate the model elements with some perfor-
mance information [1]. Intuitively, it implies that a performance description exists
only in the scope of the process description that the model materializes. As a re-
sult, any bias that a process model introduces “propagates” to the description and
analysis of the process performance, impacting the analysis outcome. Moreover, such
techniques cannot be used if a process model is unavailable. In this chapter, we pro-
pose a technique for performance description, called performance spectrum. It does
not inherit any bias of a process model because it is a model-less technique, i.e., the
performance spectrum is derived directly from event data.

3.1 Motivation

Performance analysis is an important element in process management relying on pre-
cise knowledge about actual process behavior and performance to enable improve-
ments [66]. Descriptive performance analysis has been intensively studied within
process mining, typically by annotating discovered or hand-made models with time-
related information from event logs [1, 67, 68]. These descriptive models provide
aggregate measures for performance over the entire data, e.g., an average, median,
or maximum waiting time between two process steps. For example, a model in Fig-

68 Fine-Grained Description of Processes Performance from Event Data

89 d

16 mths 36.4 wks

5 d

16 d

60 d

Create Fine

Send Fine

Insert Fine
Notification

Add penalty

Send for
Credit Collection Payment

(a) (b)Create Fine:
Payment

Create Fine:
Send Fine

Send Fine:
Insert Fine Notification

Insert Fine Notification:
Add Penalty

Add Penalty:
Payment

Add Penalty:
Send for Credit Collection

Figure 3.1: Performance analysis using a graph-based model (a), and the performance spec-
trum (b).

ure 3.1(a) shows a process model of the RTFM process that we briefly considered in
Section 1.1.3. In this model, each arc is annotated with an average time between
directly following process steps that the arc connects, e.g., the average duration be-
tween steps Create Fine and Payment is five days. Models for predicting the waiting
time until the next step or remaining case duration learned from event data distin-
guish different performance classes or distribution functions based on case proper-
ties [36, 69, 70, 71].

However, these techniques assume the time-related observations to be taken from
stationary processes that are executed in isolation, i.e., that distribution functions de-
scribing the performance of a case do not change over time and do not depend on
other cases. These assumptions are often made by a lack of a more precise under-
standing of the (changes in) process performance across cases and over time.

In this chapter, we address RQ-1. Given an event log of a process, how to describe
the performance information the log contains in a way that reveals both the performance
of individual cases and how these cases interact over time?. It considers the problem of
descriptive analytics of the process behavior and performance over time. In particular,
we aim to provide the comprehensive description of the raw process behavior without
enforcing prior aggregation of data, the representational bias of an algorithm, or a
particular formal model.

We approach the problem through visual analytics, which employs structuring of
data in a particular form that, when visualized, allows offloading the actual data pro-
cessing to the human visual system [72] to identify patterns of interest for the subse-
quent analysis. We propose a new simple model for event data, called the performance

3.1 Motivation 69

spectrum, and its visualization. Figure 3.1(b) shows the performance spectrum of the
data used to discover the model in Figure 3.1(a) over a 20-month period. The per-
formance spectrum describes the event data in terms of segments, i.e., pairs of related
process steps. The performance of each segment is measured and plotted for any oc-
currences of this segment over time and can be classified, e.g., regarding the overall
population.

The visualization in Figure 3.1(b) shows that the represented cases performed
very differently due to systematic and unsystematic variability of performance in the
different steps over time and synchronization of multiple cases. We implemented this
visualization in an interactive tool called the Performance Spectrum Miner (ProM pack-
age “Performance Spectrum”) [46].

Exploring the performance spectrum of real-life logs often reveals numerous pat-
terns in the process behavior as shown in Figure 3.1(b) that cannot be seen in process
models as in Figure 3.1(a). To enable documenting and conceptualizing these pat-
terns for further analysis, we propose a taxonomy for describing elementary patterns
in the performance spectrum, which is obtained through analysis of event logs of
various processes. We evaluated the performance spectrum and the taxonomy on 12
real-life logs of business and logistics processes. Many elementary patterns, as well
as larger patterns composed of elementary ones, were detected throughout different
event logs. We showed how these patterns reveal insights into the interplay of the
control flow, resource, and time perspective of processes. For example, the perfor-
mance spectra showed that

1. the case performance may depend on the performance of the other cases,
2. the performance generally varies over time (non-stationarity), and
3. many processes exhibit temporary or permanent concept drift.

We performed also an empirical study that proved that the same performance pat-
terns can be (re)-identified in the processes by independent analysts without skills in
working with the performance spectrum. We reported also on a case study performed
at Vanderlande for identifying and explaining performance problems in very large
logistics processes. Further, we found that each process has a characteristic signa-
ture of the patterns in its performance spectrum and that similar signatures indicate
processes similar not only in the control flow but also in the performance perspective.

The remainder of this chapter is structured as follows. We formally define the
performance spectrum in Section 3.2 and introduce the taxonomy for performance
pattern parameters in Section 3.3, including the reports on our evaluation using real-
life event logs, and re-identification of performance patterns by independent analysts.
We introduce the concept of the multi-channel performance spectrum in Section 3.2.3
and provide the evaluation in Section 3.5. We conclude with the discussion of findings
and future work in Section 3.6.

70 Fine-Grained Description of Processes Performance from Event Data

3.2 Performance Spectra

In this section, we introduce the concept of the performance spectrum. The perfor-
mance spectrum is a data structure, which can be computed from event data. In this
thesis, we consider computing performance spectra from event data in the form of an
event log (see Definition 2.12). We first introduce the performance spectrum “build-
ing blocks”, then define the performance spectrum itself, and finally define its aggre-
gate, which allows quantifying various characteristics over the performance spectrum.

3.2.1 Segments, Segment Occurrences, and Performance Classi-
fiers

Let as consider an event log L = (cn,E ,#) (see Definition 2.11), and its trace σ =
〈e1, . . . ,en〉, n > 1 (see Definition 2.13). Each pair of events (ei ,ei+1),0 < i < n of σ
represents a step from activity #act(ei) to activity #act(ei+1), occurred in an instance
id = #cn(ei) of case notion cn. In general, such a step is a progression from a process
step (or activity) a to a process step (or activity) b, hand-over of work from a re-
source a to a resource b, or transportation of materials from a location a to a location
b that can occur in instances of case notion cn. We call this step a segment. Its formal
definition reads as follows.

Definition 3.1 (Segment). Let a,b ∈ Act be activity names. A tuple seg = (a,b) ∈ Act×Act

is a segment.

When a segment seg = (a,b) is observed in a trace of L, we say that this segment
occurred. The definition of a segment occurrence reads as follows.

Definition 3.2 (Segment occurrence). Let a time-monotone event log L = (cn,E ,#) (see
Definition 2.11), and segment seg = (a,b) (see Definition 3.1). Events e,e ′ ∈ E ,e 6= e ′

comprise a comprise a segment occurrence (e,e ′) if e ′ directly follows e with respect to
their common case identifier for case notion cn, i.e.,

• #cn(e) = #cn(e ′),
• #time(e) < #time(e ′),

and ∀e ′′ ∈ E ,e ′′ 6= e,e ′′ 6= e ′,#cn(e ′′) = #cn(e) holds that either

• #time(e) > #time(e ′′) or
• #time(e ′) < #time(e ′′).

We write occ(a,b,L) for the set of all segment occurrences of (a,b) in L, and occ(L)

for the set of all segment occurrences in L.
Each segment occurrence allows for measuring the time between occurrences of

the segment activities, e.g., the time between occurrences of activities a and b for

3.2 Performance Spectra 71

segment (a,b). For example, an occurrence (e,e ′) of segment (a,b), where #time(e) =
ta ,#time(e ′) = tb is shown in Figure 3.2. There are two axes a and b in this figure, with

Time

ta

tb

Se
gm

en
t

a

b

Segment occurrence

Axis a

Axis b

A

B

Figure 3.2: Occurrence of segment (a,b).

some space in between. Each axis represents time. To visualize segment occurrence
(e,e ′), we draw a point A on axis a at time ta , then draw a point B on axis b at
time tb , and connect them by a line AB , which represents (e,e ′). This example shows
that segment occurrences, when visualized, show the time between events of each
segment occurrence. Further, multiple occurrences of segment (a,b) are visualized
in Figure 3.3. In this figure, the angle or length of each line, visualizing a segment

Time

S
e
g

m
e
n

t

a

b

Figure 3.3: Multiple occurrences of segment (a,b).

occurrence, can be used for estimating its duration, i.e., a time interval tb − ta . We
allow the analyst to classify each segment occurrence duration with respect to the
other observations for the same segment or the whole event log.

For example, if a histogram H = H(a,b,L) ∈ B(T) describes how often all the time
intervals (tb − ta) between a and b have been observed in event log L, a specific classi-
fication function can show to which quartile of the histogram H a segment occurrence
belongs. It allows for faster recognition of various patterns indicating, for example,

72 Fine-Grained Description of Processes Performance from Event Data

bottlenecks in the process. Another example is a classification function that depends
on the remaining time until the case completion. We define such classification func-
tions as follows.

Definition 3.3 (Performance classifier). Let a time-monotone event log L = (cn,E ,#)

(see Definition 2.11), and set O = occ(L) of all segment occurrences in L. Let set C be a
finite set of performance classes. Let CN ′ = {cn} be a set of the log case notions. We call
the function C : O ×L → C that maps each observed segment occurrence of L and log L

itself to a performance class c ∈C , a performance classifier.

The segment occurrences of Figure 3.3, classified according to their duration into
four performance classes, are shown in Figure 3.4, where each class is encoded
through a unique color, according to the legend at the bottom. Comparing Figure 3.3

Time

normal

speed
2 times

slower
3 times

slower

very

slow

S
e
g

m
e
n

t

a

b

Figure 3.4: Classified segment occurrences.

and Figure 3.4, one can conclude that the use of a performance classifier and the
color coding of performance classes within segment occurrence visualization allows,
for example, for quicker recognition of possible bottlenecks, e.g., one shown by the
yellow (performance class “3 times slower”) and orange (performance class “very
slow”) lines in Figure 3.4. In general, we assume that a performance classifier can
use any attributes of events e,e ′ forming a segment occurrence, any occurrences in
O, and any attributes of any event in L if needed. Potentially, that provides richer
possibilities for segment occurrence classification and analysis.

In the next section, we define data structures for multiple segment occurrences of
single and multiple segments.

3.2.2 Performance Spectra

In this section, we define a data structure for segment occurrences, similar to the one
visualized in Figure 3.4 and discussed above, first for a single segment, and then for
multiple ones.

3.2 Performance Spectra 73

The occurrences of a segment seg classified by a performance classifier C describe
the performance observed for seg in event log L. We call this description a perfor-
mance spectrum of a segment, whose formal definition reads as follows.

Definition 3.4 (Segment performance spectrum). Let a time-monotone event log L =
(cn,E ,#) (see Definition 2.11), segment (a,b) (see Definition 3.1), and performance clas-
sifier C (see Definition 3.3). The segment performance spectrum of (a,b) for L is a
multiset PSseg

L ((a,b),C) =
• [(ta , tb ,c) | (e,e ′) ∈ occ(a,b,L),c =C((e,e ′),L)] ∈B(T×T×C).

The visualization of a segment performance spectrum is exactly the same as the
visualization of multiple classified occurrences of a single segment, already shown in
Figure 3.4. Next, we define a performance spectrum of multiple segments, in order to
describe a larger “piece” of the process performance. For that, we first define a data
structure for describing multiple segments as follows.

Definition 3.5 (Segment series). Let SEG be a non-empty set of segments (see Defini-
tion 3.1), i.e., SEG ⊆ {(a,b) | a,b ∈ Act, a 6= b}. A segment series is a sequence of these
segments 〈seg1, . . . ,segn〉,n > 0,seg i ∈ SEG.

Further, we define a data structure for referring to the performance spectra of a
segment series and performance classifier.

Definition 3.6 (Layer). Let a time-monotone event log L = (cn,E ,#) (see Definition 2.11),
segment series SEG (see Definition 3.5), and performance classifier C (see Definition 3.3).
A layer is a tuple lr = (SEG,C).

Consequently, we lift Definition 3.4 to a layer by organizing the performance spec-
tra of the individual segments of a layer into a sequence.

Definition 3.7 (Layer performance spectrum). Let a time-monotone event log L =
(cn,E ,#) (see Definition 2.11), and layer lr = (SEG,C) = (〈seg1, . . . ,segn〉,C) (see Def-
inition 3.6). The layer performance spectrum of lr for event log L is a sequence
PSlr

L (lr) =PSlr
L ((〈seg1, . . . ,segn〉,C)) = 〈PSseg

L (seg1,C), . . . ,PSseg
L (segn ,C)〉 ∈B(T×T×C)∗.

In the following, we usually drop “layer” when referring to the layer performance
spectrum.

The performance spectrum provides a fine-grained performance description on the
level of individual cases and segment occurrences. Nevertheless, this information can
be difficult to precept when there is a large number of segment occurrences, and/or
when multiple occurrences overlay, i.e., multiple occurrences are seen as one when vi-
sualized. In the next section, we introduce the concept of the aggregate performance
spectrum, which represents quantified information about segment occurrences and
their performance classes.

74 Fine-Grained Description of Processes Performance from Event Data

3.2.3 Aggregate Performance Spectra

Let us consider the segment performance spectrum of segment seg whose occurrences
are classified by performance classifier C. As the number of performance classes in
the domain C of C is finite by definition, this performance spectrum can be aggregated
over the “bins” of some chosen, fixed, non-zero duration. For each bin b j , and each
class c ∈ C , we count how many occurrences of segment seg of performance class
c occurred during the time interval defined by b j . The definition of the resulting
aggregate performance spectrum reads as follows.

Definition 3.8 (Aggregate performance spectrum). Let a time-monotone event log
L = (cn,E ,#) (see Definition 2.11), a segment (a,b) (see Definition 3.1), and a per-
formance classifier C (see Definition 3.3). Let PS = PS

seg
L ((a,b),C) be a segment per-

formance spectrum (see Definition 3.4). Let period p > 0 ∈ T be a bin size, and let
g ∈ {start,pending,end} be a parameter called grouping. The occurrences of segment
(a,b) in bin j ∈N (of length p) regarding grouping g are a multiset b j such that:

• b j = [(t , t ′,c) ∈ PS | j ·p ≤ t < (j +1) ·p] if g = start,
• b j = [(t , t ′,c) ∈ PS | j ·p ≤ t ′ < (j +1) ·p] if g = end, and
• b j = [(t , t ′,c) ∈ PS | j ·p > t ∧ t ′ ≥ (j +1) ·p] if g = pending (i.e., the segment starts

before the start of the bin, and ends after (or at) the end of the bin).

The aggregate performance spectrum over performance spectrum PS, bin j , and group-
ing g is the vector v j = 〈v1

j , . . . , vk
j 〉 ∈Nk counting how often performance class c i occurred

in bin v j : v i
j = |[(t , t ′,c i) | (t , t ′,c i) ∈ b j]|. Let APSj

L((a,b),C, g , p, j) = v j .

For example, in Figure 3.5(d) the aggregate performance spectrum for segment
(a,b) over bin 7 and grouping g = end is a vector 〈0,1,2〉, which counts ends of all
segment occurrences in this bin: zero for class c1, one for c2 (b7) and two for c3

(points b5−6).
An aggregate performance spectrum has three dimensions:

1. the segment (a,b),
2. the parameters describing the bins, i.e., the performance classifier C, the group-

ing g, and the period p,
3. the bin number j .

To simplify notation, we call the bin parameters ch = (C,g, p) a channel, and write
APS

j
L(seg,ch, j) for the aggregate vector v j of Definition 3.8.

Multi-Channel Performance Spectra. Now, we show that a bin APS
j
L(seg,ch, j) of

an aggregate performance spectrum is a basic building block for describing various
aspects of the process performance over time. In Figure 3.6, each bin of the aggregate
performance spectrum is placed into a three-dimensional space defined by a segment
series SEG (see Definition 3.5), channel series CH = 〈ch1, . . . ,chx〉, and time interval of

3.2 Performance Spectra 75

<0,0,1> <0,0,0> <0,0,0> <3,0,1> <0,0,1> <0,1,0> <0,1,0> <1,0,0>

<0,0,0> <0,0,1> <0,0,0> <0,0,0> <0,0,1> <0,0,2> <0,0,0> <0,0,0>

<0,0,0> <0,0,0> <0,0,1> <3,0,0> <0,0,0> <0,0,0> <0,1,2> <1,1,0>

a1

a2a3a4a5 a6 a7 a8 a9

b1 b2b3b4 b5 b6 b7 b8 b9

(a)

(b) g=start

(c) g=pending

(d) g=stop

c1 (normal speed) c2 (medium speed) c3 (slow speed)

bins 1 2 3 4 5 6 7 8

b

a
ta1 p tb1

Time

Figure 3.5: In the performance spectrum (a) the color-coded lines show cases with different
speed classes, while the aggregate performance spectra with various grouping (b-
d) capture various performance aspects of case handling for each time window
(bin).

bins [s,e] = 〈s, s + 1, . . . ,e〉 of interest. Adopting notation from algebra software, we
let the arguments of APSL(·, ·, ·) range over the sequences of segments, channels, and
bin numbers to denote the rows, columns, matrices, and cubes of bins along those
dimensions. Let an event log L, and a segment series SEG = 〈(a1,b1), . . . , (an ,bn)〉 (ac-
cording to Definition 3.5). Let a channel series CH = 〈ch1, . . . ,chx〉 be a sequence
of channels (of identical period p), ch ∈ CH, and let [s,e] = 〈s, s + 1, . . . ,e〉 be a se-
quence of bin numbers, j ∈ [s,e]. We write APSseg

L (SEG,ch, j) for the column vector
〈APSj

L((a1,b1),ch, j), . . . ,APSj
L((an ,bn),ch, j)〉>. Note that this vector consists of vectors

v i
j for each segment (ai ,bi) and bin j . In Figure 3.6, such a column vector corresponds

to a column of blocks of size n ×1×1, e.g., area (1).

We write APSseg×b
L (SEG,ch, [s,e]) for the row vector

• 〈APSseg
L (SEG,ch, s),

• . . . ,

• APS
seg
L (SEG,ch,e)〉.

76 Fine-Grained Description of Processes Performance from Event Data

vns=<v
1,…,vk> vne=<v

1,…,vk>

… …
v1s=<v

1,…,vk> v1e=<v
1,…,vk>

Se
gm

en
ts

Binss e

s n
s 1

…

…

…
2

1

3

Figure 3.6: Multi-channel performance spectrum.

Note that each j th entry of this vector corresponds to a column vectorAPSseg
L (SEG,ch, j).

In Figure 3.6, APSseg×b
L (SEG,ch, [s,e]) corresponds to a frontal ’slice’ of size n×1× (e −

s + 1) for channel ch , e.g., area (2). We use this matrix to visualize the aggregate
performance spectrum of segment series SEG over the time period [s,e] in a single
channel ch. For example, Figure 3.5(b) visualizes one row of such a matrix and Fig-
ure 3.6 visualizes the entire matrix.

Performance analysis typically requires considering the information from multiple
channels during the same time period. We write APSseg×ch

L (SEG,CH , j) for the column
vector

• 〈APSseg
L (SEG,ch1, j),

• . . . ,

• APS
seg
L (SEG,chx , j)〉>.

Note that each r th entry of this vector corresponds to a column vectorAPSseg
L (SEG,chr , j).

In Figure 3.6, APSseg×ch
L (SEG,CH , j) corresponds to a vertical ’slice’ of a single bin col-

umn of size n × x × 1, e.g., area (3), where it is shown as a matrix over segments
and channels. Note that the order of segments and channels is arbitrary but fixed,
whereas the order of bins is determined by time.

We write APSL(SEG,CH , [s,e]) for the row vector

• 〈APSseg×ch
L (SEG,CH , s),

• . . . ,

• APS
seg×ch
L (SEG,CH ,e),

which corresponds to the whole cube in Figure 3.6. Note that this vector is a matrix
with columns corresponding to bins, i.e., time, and rows corresponding to segments
and channels. This structure allows for slicing and dicing in the following ways.

• Row vectors can be used for visual analytics, as we show in Section 3.5,

3.2 Performance Spectra 77

• Columns vectors of various bin intervals can serve for extracting independent
and dependent variables for learning a predictive ML model, as we show in
Chapter 9,

• The aggregation along the bin and segment axes allows for feature space reduc-
tion.

We call APSL(SEG,CH , [s,e]) a multi-channel performance spectrum of event log L over
segments SEG, channels CH, and period [s,e].

Next, we discuss how both the performance spectrum and its aggregate together
allow for obtaining deeper insight into the process performance than each of them
separately.

3.2.4 Combined Performance Spectra

In general, the performance spectrum and its aggregate do not replace each other
but complement. Let us consider a performance spectrum PSlr

L (lr) of a layer lr =
(SEG,C), and its aggregate APSL(SEG,〈ch〉, [s,e]) over some time interval [s,e], where
ch = (C,g1, p1), i.e., channel ch has the same performance classifier C as layer lr. For
visualization purposes, each row vector APSseg×b

L (SEG,ch, [s,e]) visualized over PSlr
L (lr)

such that

1. the segments of APSL(SEG,〈ch〉, [s,e]) are “drawn” over the segments of PSlr
L (lr),

2. the time axis origins are aligned, and
3. the scales of the time axes are identical.

We call this view a combined performance spectrum. It often allows for better informa-
tion perception by the user than the “regular” or aggregate spectrum separately.

An example of a combined performance spectrum is shown in Figure 3.7(a), which
shows how an aggregate performance spectrum (Figure 3.7(b)) can be visualized
“over” a “regular” one. In this combined spectrum, the bars in each bin show how
many segment occurrences start during the bin time interval for each performance
class. For example, the three segment occurrences with performance class c1 and one
segment occurrence with performance class c3 start within the fourth bin. However,
this information does not tell, for example, when each of these occurrences ended,
and whether they preserved the initial order. For that, the “regular” performance
spectrum can be used. Its lines show exactly when occurrences (a2,b2), (a3,b3), (a4,b4)

and (a5,b5) started and ended, and if they preserved the initial order.

In the next section, we consider which performance patterns can reveal the regu-
lar, aggregate, and combined performance spectra.

78 Fine-Grained Description of Processes Performance from Event Data

<0,0,1> <0,0,0> <0,0,0> <3,0,1> <0,0,1> <0,1,0> <0,1,0> <1,0,0>

a1

a2a3a4a5 a6 a7 a8 a9

b1 b2b3b4 b5 b6 b7 b8 b9

(a) combined

(b) g=start

c1 (normal speed) c2 (medium speed) c3 (slow speed)

bins 1 2 3 4 5 6 7 8

b

a

Time
ta1 p tb1

Figure 3.7: Combined performance spectrum (a), obtained by visualizing the aggregate perfor-
mance spectrum for grouping start (b) on top of the “regular” performance spec-
trum.

3.3 Performance Patterns

Performance spectra of processes often contain an overwhelming amount of informa-
tion and may read difficult for the untrained eye. However, processes with similar
performance characteristics show similar patterns in their performance spectra, and
vice versa, similar patterns indicate similar performance characteristics. These pat-
terns introduce a higher abstraction level over ‘plain’ performance spectra, thereby
aiding in the performance description and analysis. Next, we illustrate the idea of pat-
terns in the performance spectrum, distinguishing elementary and composite patterns.
We also provide the taxonomy of parameters of elementary patterns in Section 3.3.2.
Additionally, we discuss the composite patterns in Section 3.3.3.

3.3.1 Elementary Patterns

Intuitively, a performance pattern is a specific configuration of the lines and/or bars
in a performance spectrum that

• is visually distinct within a larger part of the spectrum,
• describes a particular performance scenario of multiple cases over time, and
• repeats when this scenario repeats.

An elementary pattern relates to a single segment and cannot be broken down further
without loss of its meaning.

3.3 Performance Patterns 79

For example, in Figure 3.8, segment (Insert Fine Notification, Add penalty) of the
Road Traffic Fines Management (RTFM) log1 exhibits a pattern consisting of many
parallel inclined lines of the same color, corresponding to multiple observations dis-
tributed over time. Non-crossing lines show a strict FIFO order, and identical incli-
nations show the constant waiting time for all the cases. Variation in the density
of the lines (and in the height of the bars of the aggregate spectrum) shows contin-
uous, varying workloads throughout the entire log. Elementary patterns with these
characteristics are typical for highly standardized automated activities with strict time
constraints. Note that existing models describe the performance of this segment as
constant delay of 60 days (Figure 3.1(a)). We consider this pattern to be “elemen-

Figure 3.8: The entire performance spectrum of segment (Insert Fine Notification, Add penalty)
of the road traffic fines management log exhibits an elementary pattern instance
showing the FIFO behavior with a constant waiting time.

tary” in the sense that we cannot decompose it further without losing its key qual-
ities: single segment, strict FIFO with a constant time, and workload is continuous
and varying.

3.3.2 Taxonomy of the Parameters of Elementary Patterns

Real-life processes exhibit a great variety of elementary patterns and their combina-
tions in the performance spectra. As a result, it is impossible to provide their com-
prehensive catalog. However, the comprehensive taxonomy of the parameters of ele-
mentary patterns can be created. The taxonomy proposed in this section allows for a
complete and unambiguous high-level performance description of a process over time
in a way that patterns that correspond to similar performance scenarios have identi-
cal parameters, and the identical parameters of patterns mean similar performance
scenarios. At the same time, changing the value of any parameter in a pattern would
mean a different performance scenario.

These pattern parameters characterize the Shape of lines and bars in a spectrum in
a particular Scope over time. The line density and bar height describe Workload while
their color describes Performance. Figure 3.9 shows the parameter values organized
in a hierarchy, together with typical patterns having these parameter values. We

1https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

80 Fine-Grained Description of Processes Performance from Event Data

also provide a unique short-hand value [in brackets] for each parameter, to allow the
succinct notation of patterns.

TYPE

detailed combined aggregated

<number of classes>

<subset of classes>

FIFO-variable speed

PERFORMANCE

Classifiers: quartile-based [25%],
median-proportional [x·med]

SHAPE ORDER

unordered FIFO LIFO

batching on start batching on end

FIFO-constant speed

batching on start + end

CLASSES PRESENTED

1 >1

as a local instance

REPETITIONS

periodic

regular

Aggregation functions: {cases started, cases stopped, cases pending}

peaks

<period=T>

WORKLOAD CHARACTER

continuous sparse

WORKLOAD

SCOPE

DURATION= <abs. value>

once

arbitrary

WORKLOAD TRENDS
(total / for class C)

steady variable

growing falling

AMOUNT OF WORKLOAD

Zero [0] non-zero [>0]

low medium high

SIZE

segment 1 sub-sequence >1 sub-sequence

OCCURRENCE

globally

overlapping

OVERLAPPING

non-overlapping

drops

Figure 3.9: Taxonomy of the parameters of elementary patterns.

3.3.2.1 Scope Parameters

Scope parameters capture the place of pattern in the performance spectrum.

• size: one segment [1 seg], one sub-sequence [1 sub-seq], several sub-sequences
[>1 sub-seq]

• occurrence: globally [glob], as a local instance [loc]

3.3 Performance Patterns 81

• repetitions (for patterns occurring in a local instance): once [once], regular
[reg], periodic [per=T], arbitrary [arb],

• overlap (for repeating patterns): overlapping [overlap], non-overlapping
• duration: absolute value [D=T]

Parameter size describes the pattern length from the control-flow perspective:

• a single segment,
• a single sub-sequence, or
• several sub-sequences of segments.

Although all elementary patterns have size 1 seg, we include this parameter in the
taxonomy for compatibility with composite patterns that we discuss in Section 3.3.3.
A pattern occurrence can be either global, when it occurs continuously throughout a
segment without clear boundaries, otherwise it distinctly occurs as a local instance.
Pattern instances may occur once or repeat

• periodically in particular intervals T ,
• regularly, i.e., seemingly systematic but not periodic, or
• arbitrarily.

Repeated pattern instances can be overlapping or non-overlapping in time. Parameter
duration describes the absolute duration over time (e.g., as an interval in seconds).

3.3.2.2 Shape Parameters

Shape parameters describe the appearance of lines and bars in the performance spec-
trum visualization. Thus, parameter type has values

• detailed [det],
• aggregated [agg], and
• combined [comb].

Parameter order has values

• unordered [unord],
• LIFO [LIFO],
• FIFO with variable time [FIFO-var],
• FIFO with constant time [FIFO-const],
• batching on start [batch(s)],
• batching on end [batch(e)], and
• batching on start and end [batch(s+e)].

A pattern described just in terms of lines (bars) of a performance spectrum is
detailed, while the pattern of an aggregate performance spectrum is aggregate. Other-

82 Fine-Grained Description of Processes Performance from Event Data

wise, it is combined. Parameter order describes the configuration of lines in a detailed
pattern:

• unordered when lines irregularly cross each other,
• LIFO when lines end in reversed order of starting,
• FIFO when lines never cross.

For FIFO:

• non-crossing lines of variable inclination mean variable time [FIFO-var], where
multiple lines starting (or ending) in a very short period show multiple cases
batching on start (or on end), and

• lines of identical inclination show constant time [FIFO-const], where multiple
lines starting and ending in a very short period (with no lines before/after)
show batching on start and end.

3.3.2.3 Workload

Workload describes the height of bars in aggregate or combined patterns, and the den-
sity of lines in detailed patterns over time. Parameter aggregate function describes
grouping:

• started [start],
• stopped [stop], and
• pending [pend].

Parameter workload character describes either continuous [cont] or sparse [sparse]
workload. Parameter amount of workload has values:

• zero [0],
• non-zero [>0],
• low [low],
• medium [med], and
• high [high].

Finally, parameter workload trends (for a performance class or in total) describes

• steady [steady],
• variable [var],
• growing [grows], and
• falling [falls]

workload, that can additionally show peaks [peak] or drops [drop].
Workload is characterized by the aggregate function, i.e., grouping (see Defini-

tion 3.8). Workload character can be continuous or sparse (when there are longer gaps
between lines or bars), and it is visible in both detailed and aggregate patterns. Amount

3.3 Performance Patterns 83

of workload is categorized as zero or non-zero, the latter can be categorized further as
low, medium or high in relation to the maximum number of observations made on a
segment (within the bin size p, see Definition 3.8). The trend over time can be steady
(bars have almost the same height) or variable, the latter splits further into steadily
growing or falling workload, or showing peaks (a few high bars surrounded by lower
bars) or drops.

3.3.2.4 Performance

Performance is described in terms of the performance classes present in the pattern
with respect to the performance classifier C (see Definition 3.3), chosen by the analyst.
Thus, we distinguish the following values of parameter classes presented:

• 1,
• > 1,
• number of classes, and
• subset of classes.

Among classifiers, we distinguish quartile-based [25%] (e.g., all observations belong-
ing to the 26%-50% quartile), and median-proportional [x·med] e.g., all observations
2-3 times longer than the median duration).

In the performance spectrum visualization, the classes are encoded by colors. A
monochrome pattern has 1 class presented while a multi-color one has > 1 classes
presented.

Now, we show how this taxonomy describes the elementary patterns E1-E3 found
in the RTFM log and highlighted in Figure 3.10(left). Pattern E1 occurs in a single
segment in local instances with a duration of six months, instances repeat regularly
and overlap; the detailed pattern shows batching on end in a continuous workload for
four performance classes in a quartile-based classifier. Using the short-hand notation,
we write E1 = [Scope(seg,loc,reg,overlap,D=6mo), Shape(det,batch(e)), Work(cont),
Perf(25%,4 classes)]. Similarly, we can characterize

• E2 = [Scope(seg, glob), Shape(det, FIFO-const), Work(sparse), Perf(25%, 1 class)],
and

• E3 = [Scope(seg, loc, reg, overlap, D=1mo), Shape(det, batch(s)), Wo(cont),
Perf(25%, 4 classes)].

Potentially, to create a catalog of elementary patterns, some additional informa-
tion can be added to the pattern description. For example, a pattern’s unique iden-
tifier, name, and meaning. The latter depends on the domain and/or chosen event
classifier.

84 Fine-Grained Description of Processes Performance from Event Data

Figure 3.10: Three elementary patterns E1, E2, and E3 (left), and two occurrences of a com-
posite pattern consisting of E1-E3 (right).

3.3.3 Composite Patterns

In the previous sections, we described the performance of a single segment through
elementary patterns. However, the performance spectrum of real-life processes gives
rise to composite patterns comprising several elementary patterns. While a full taxon-
omy is beyond the scope of this thesis, we outline some basic principles for describing
composite patterns by relating elementary patterns to each other in their context.

The context of some pattern P1, as shown in Figure 3.11(a), consists of

1. observations earlier and later than P1 in the same process segment,
2. observations before and after P1 in the control flow perspective, and
3. a distinct pattern P2 occurring simultaneously to P1 in the same segment.

PERFORMANCE IN CONTEXT

slower faster

the same

diverse

empty

VARIANTS CONTAINED

1 >1

<number of
variants>

after

earlier later

before

P1

P2

context

CONTEXT(a) (b)

Figure 3.11: Pattern context (a), and context parameters (b).

Using this context, the taxonomy in Figure 3.9 can be extended. For instance, the
observations before and after can be used to characterize the performance of a pattern
in context, and the performance variants contained in the same time period, as shown
in Figure 3.11(b).

For example, Figure 3.10(right) shows two instances of a composite pattern con-
sisting of the elementary patterns E1, E2, and E3, described in Section 3.3.2. E1 and
E3 align at a synchronization point SP, which shows synchronization of multiple cases
in a “hourglass” pattern, while the cases in E2 do not synchronize with the cases in
E1 or E3: we can clearly see 2 variants of behaviors contained (E1+E3 and E2). The
performance context of the composite pattern is diverse.

The parameters of the taxonomy in Figure 3.9 and the new parameters in Fig-
ure 3.11 can only partially describe composite patterns. In particular, a comprehen-

3.3 Performance Patterns 85

sive taxonomy for a precise description of the alignment of patterns to each other in
their context is the subject of future work.

3.3.4 Demonstration

For work with performance spectra, we implemented the Performance Spectrum Miner
(PSM) — the tool for the transformation of logs into performance spectra and their vi-
sualization in an interactive ProM2 plug-in in package “Performance Spectrum” [46]3.
Then, we conducted an exploratory analysis of several event logs of processes of dif-
ferent domains. In the following, we introduce the PSM, and summarize findings
obtained from the event log of a BHS, provided by Vanderlande, and from the pub-
licly available log of the Road Traffic Fine Management process. We also compared
the spectra of 11 real-life event logs from business processes (BPI12, BPI14, BPI15(1-
5), BPI17, Hospital Billing, RTFM)4.

3.3.4.1 The Performance Spectrum Miner

The PSM is a tool implemented in Scala for work with performance spectra. It can
be used as part of the ProM or as a stand-alone tool. The former is convenient if the
other ProM plugins are in the analysis pipeline, while the stand-alone mode allows
running the PSM on non-Windows computers.

Figure 3.12(a) shows how to engage the PSM in the ProM. In this figure, an event
log is chosen as the PSM input in panel (1), the PSM is selected in the plugin list (2),
and the output (i.e., the performance spectrum) is shown in panel (3).

After pushing “Start”, the pre-processing configuration window appears (see Fig-
ure 3.12(b)). The user can specify

• the bin size for computing the aggregate performance spectrum,
• the custom implementation of the performance classifier (if needed),
• the quartile-based or median-proportional performance classifier,
• the custom activity classifier (if needed), and
• the folder for saving the performance spectrum files.

After the pre-processing is done and the performance spectrum is saved on disk,
the user can optionally aggregate activities (see Figure 3.12(c)), and choose to load
the whole spectrum in memory, or read it from disk on demand (for working with
large datasets).

The main PSM panel with the performance spectrum is shown in Figure 3.13(a).
In the ProM panel (1), the PSM panel is rendered. For each performance spectrum

2Process Mining Framework https://pa.win.tue.nl/prom/
3source code and documentation are available at https://github.com/

processmining-in-logistics/psm
4available at https://data.4tu.nl/repository/collection:event_logs_real

https://pa.win.tue.nl/prom/
https://github.com/processmining-in-logistics/psm
https://github.com/processmining-in-logistics/psm
https://data.4tu.nl/repository/collection:event_logs_real

86 Fine-Grained Description of Processes Performance from Event Data

(a)

(b)

(c)

(1)

(2)

(3)

Figure 3.12: The initial panel of the ProM for starting the PSM (a), pre-processing configura-
tion (b), and caching mode (c).

3.3 Performance Patterns 87

(a)

(b)

(1)

(2) (3)

(4)
(5)

(6) (7) (8)
(9) (10)

(11)

(12)

Figure 3.13: The PSM shows the “regular” performance spectrum (a), and the aggregate per-
formance spectrum (b).

segment, the segment labels (2) and basic statistics (3) are shown. The grid (4) shows
the absolute time, the scroller (5) allows navigation, and the label (6) shows the ex-

88 Fine-Grained Description of Processes Performance from Event Data

act time corresponding to the mouse pointer position in the spectrum. Checkbox
(7) shows/hides the spectrum occurrences (lines), and list (8) controls the grouping
of the aggregate spectrum (if shown). The scroller (9) allows zooming, and but-
ton Options (10) shows an additional window. Figure 3.13(b) shows the aggregate
performance spectrum with grouping start. Note, the combined spectrum is also sup-
ported in the PSM. The menu (12) allows to show/hide occurrences and/or bars of
particular performance classes.

The options shown in Figure 3.14 allow the user

1. to use regular expressions for filtering in and out segments,
2. to keep only particular cases in the spectrum by providing the set of their iden-

tifiers, and
3. to filter segment based on the average throughput.

For example, expression (Insert.∗ : .∗)|(.∗ : Appeal.∗) keeps only segments whose first
activity label starts with Insert or whose second activity label starts with Appeal.

Figure 3.14: THe PSM additional options for segment and case level filtering.

Next, we demonstrate our findings obtained with the PSM.

3.3.4.2 Baggage Handling System of a Major European Airport

Event Logs. In this case study, we analyzed flows of bags throughout a Vanderlande-
built BHS. In the given event log, each case corresponded to one bag, events were
recorded when bags passed sensors on conveyors, and activity names described the
locations of sensors in the system. For one day of operations, an event table contained
on average 850 activities, 25.000-50.000 cases (for a case notion bag identifier), and
1-2 million events.

3.3 Performance Patterns 89

To provide examples of the BHS performance spectrum and patterns, we selected
conveyor sub-sequence 〈a1,a2,a3,a4,a5,s〉 that forms a path from a check-in counter
a1 to a main sorter entry point s. At location a1, passengers put bags onto the belt
of the check-in counter. We chose this particular part because (1) most BHSs have
at least one path from check-in counters to a sorting area, and (2) it shows many
performance patterns typical for BHSs. The diagram of the corresponding system part
in Figure 3.15 shows that other bags can join from other check-in counters on the way
at locations a2-5. We first discuss elementary detailed patterns in the performance
spectrum, and then show how their compositions explained the complicated system
behavior.

a1 a2 a3 a4 a5 s

Figure 3.15: Path from check-in counter a1 to sorter entry point s.

The performance spectrum in Figure 3.16 shows events over the period of one
hour, using a median-proportional performance classifier. In the first segment S1
a1:a2 we can observe pattern P1 (FIFO, constant waiting time, variable workload,
normal performance) and P2 (batching on start and end with very slow performance).
Empty zone Z1 shows zero workload. In BHSs, FIFO behavior is typical for conveyors
where bags cannot overtake each other, and variable workload is typical for manual
operations: the check-in counter arrival process depends on the passenger flow and
the service time, which varies from passenger to passenger. Although conveyor speed
is constant, segment S1 shows not only pattern P1 but patterns P2 and Z1 as well:
some conveyors were temporarily stopped, so the bags whose occurrences comprised
P2 experienced the same delay.

By looking at S1 alone, we cannot explain the causes of the delays in those pattern
instances. But as segments in a BHS are synchronized through the movement of phys-
ical objects on conveyors, we can identify what caused them by following the control
flow shown in Figure 3.15. After P4 in S2, we observe Z1 in S3 and S4, which contains
non-zero workload earlier (P3) and later (P3, P6), followed by non-zero workload P5
in S5 (FIFO, constant waiting time, high workload, normal performance). This gives
rise to pattern L, comprising P2 or Z1 on S1, P4 on S2, and Z1 on S3 and S4, and its
context is highlighted in Figure 3.16.

Reading pattern L from S4 backward gives the following interpretation: the con-
veyors in S3 and/or S4 stopped operations, so bags from S2 could not move further
to S3. When S2 was stopped, S1 also was stopped (point Y), because bags could
not enter S2. The slow cases of P2 and P4 are the bags waiting on the stopped con-
veyors. This is called a die-back scenario, where delays or non-operation (in S3, S4)

90 Fine-Grained Description of Processes Performance from Event Data

a1:a2

a2:a3

a5:s

S1

S2

S3

S4

S5

Y

P1
P2

P1

P3

P2P1Z1

P3

P6

P4

Z1

P3 Z1 P3

P5

L L with context

normal speed 2 times slower 3 times slower very slow

other patterns

a3:a4

a4:a5

P6

Figure 3.16: Performance spectrum of cases (bags) moving from the check-in counters toward
the sorter s.

propagated backward in the control-flow direction. When S3 and S4 returned to op-
erations, the waiting bags on S1 and S2 (and from other parts that are not included
in Figure 3.16) resumed their movement. The two times slower performance in P6
shows that S2 and S3 were at their capacity limits in this restart phase until all work-
load decreased. Figure 3.16 also shows that pattern L repeats regularly during the
day.

Next, we consider an event log from a non-MHS domain.

3.3.4.3 Road Traffic Fine Management Process

Event Logs. The RFTM event log consists of 11 activities, more than 150.000 cases,
and 550.000 events over a period of 12 years. We analyzed the trace variants R1-R3
of Figure 3.17, which cover more than 80% of the events in the log, by defining a
layer with a segment series

• 〈Create Fine,Payment,Create Fine,Send Fine,
• Insert Fine Notif.,Add penalty,
• Payment,Add penalty,Send for CC〉,

and quartile-based performance classes.
First, we discuss the detailed patterns P1-P5 that can be observed in the perfor-

mance spectrum of a 2-year period in Figure 3.17, which represents the behavior
typical for the entire 12-years period. All cases start from activity Create Fine and
continue either with activity Payment (variant R1) or activity Send Fine (R2 and R3).

3.3 Performance Patterns 91

S1

S2

S3

S4

S5

S6

R1

R2

R3

0-25% 26-50% 51-75% 76-100%

P2

P4

P5

P1

P3

Figure 3.17: Performance spectrum of the RTFM process for years 2002 and 2003 for trace
variant R1-R3.

Pattern P1. Segment S1 Create Fine:Payment globally contains many traces of
variable duration, which are continuously distributed over time and can overtake each
other, i.e., P1 = [Scope(seg,glob), Shape(det,unord), Work(cont), Perf(25%,4 classes)].
We can clearly observe that the traffic offenders pay at various speeds.

Pattern P2. The performance spectrum of Figure 3.17 shows that the sub-trace
〈 Create Fine, Send Fine Insert Fine notification〉 shared by R2 and R3 contains the
composite pattern P2 which we already discussed in Section 3.3.3. P2 consists of two
different performance variants. The “hourglass” pattern of E1+E3 of Section 3.3.1 (see
Figure 3.10(right)) shows that cases are accumulated over a period of six months.
The period until Insert fine notification varies from zero up to four months. Cases in
pattern E2 of Section 3.3.1 are not synchronized but processed instantly.

Pattern P3. The two variants E1+E3 and E2 vanish in the next segment S3 Insert
Fine Notification:Add penalty where all cases show a strong FIFO behavior: P3 =
[Scope(seg,glob), Shape(det,FIFO-const), Work(cont), Perf(25%,2 classes)]. The switch
from CEST to CET in October is shown as a slower performance class in Figure 3.17.
After Add penalty, R2 continues with Payment (S5 in Figure 3.17) and R3 continues
with Send for Credit Collection (S6 in Figure 3.17).

Pattern P4. In segment S5 Add penalty:Payment we unexpectedly observe batching
on start despite the absence of batching on end in the preceding segment S4. It
happened due to the “hourglass” batching in P2 resulting in dense groups of “fast”
occurrences that were “forwarded” (pattern P3 in S4) together and created batching
on start (pattern P4 in S5), which can take months to years to complete the Payment.

92 Fine-Grained Description of Processes Performance from Event Data

Pattern P5. The alternative segment S6 Add penalty:Send for Credit Collection
shows batching on end every 12 months for cases that entered the batch 20 to six
months prior: P5 = [Scope(seg, loc, per= 12mo, D=20mo), Shape(det,batch(e)),
Work(cont), Perf(25%, 4 classes)]. The six-month delay revealed by P5 is mandated
by Italian law.

A unique pattern for this process occurred in segment Add Penalty:Send Appeal to
Prefecture shown in Figure 3.18(b) where a batch on end occurred only once with a
duration of 10 years.

(a)

(b)
SP

gap

gap

gap

LOW LOAD

CONCEPT
DRIFT

Figure 3.18: Aggregate performance spectrum of the road traffic fines management log (2000-
2012)

Aggregate patterns. The aggregate patterns are shown in Figure 3.18(a), where ev-
ery bar shows how many segments started every month. Here we can see patterns
related to workload. For example, in the first quarter of 2004 we can see zero work-
load (named “gap”) for three months, gap=[Scope(seg, loc, once, D=3mo),Shape(agg,
batch(e)), Work(0)]. It propagated to subsequent segments, creating a composite pat-
tern surrounded by context with much higher load. Figure 3.18(a) also reveals concept
drift: the medium non-zero workload in segments Insert Fine Notification:Payment and
Payment:Add penalty drops to 0 in 2007.

3.3.4.4 Comparison of Event Logs

We compared the 11 real-life business process event logs regarding the types of per-
formance patterns they contain. We visualized the performance spectrum of each
log and noted the properties of the immediately visible patterns in the terms of the
taxonomy in Section 3.3.2. Table 3.1 shows the result.

Thus, we identified

• the combined patterns of unordered behavior with low and high workload,

3.3 Performance Patterns 93

Table 3.1: Presence of the selected pattern classes in the real-life event logs.

BPI12 BPI14 BPI15-1 BPI15-2 BPI15-3 BPI15-4 BPI15-5 BPI17 Hospital H-Billing Road Fine

unord,low glob glob glob glob glob gob glob glob glob

unord,high glob glob glob

FIFO glob glob glob

FIFO+unord reg glob

FIFO (weekly) glob glob arb glob

batching arb per per reg

workload spikes arb reg

concept drift once once once arb arb arb once reg

sparse work reg reg glob* glob* glob* glob* glob* glob glob

• the detailed patterns of the FIFO behavior, also overlaid with an unordered vari-
ant, FIFO+unord, and occurring only Mon-Sat, FIFO(weekly), and various forms
of batching, and

• the aggregate patterns showing workload spikes, concept drift, and sparse work.

The cells in Table 3.1 indicate for each log the occurrence and repetition values
of these patterns according to the taxonomy of Figure 3.9. The logs differ strongly
in the presence and repetition of patterns, indicating that very different performance
scenarios occurred in these processes. Interestingly, the BPI15 logs, which all relate to
the same kind of process that is being executed in different organizations, show very
similar patterns: glob* for sparse work means that sparse work co-occurred globally
in a synchronized way, i.e., a large number of segments showed this behavior during
exactly the same days.

3.3.5 Performance Spectrum Replication Study

The previous section showed how the performance spectrum reveals performance
patterns in various types of processes. However, that demonstration cannot be con-
sidered as an evaluation of the technique, because it has been done by the authors,
and therefore is biased. In contrast, a replication study of performance patterns in
different processes, presented in [56], has been done by analysts previously unaware
of the performance spectrum. In the following, we discuss the objectives, setup, and
results of this empirical exploration and our conclusion about its results.

Objectives. In [45], we described the performance patterns, identified by the authors
in various segments of different event logs. The replication study was aimed to prove
that these results can be reproduced by untrained analysts, using [45] as a guideline,
and the Performance Spectrum Miner [46] as a software tool for work with perfor-
mance spectra. The following exploitative questions were aimed to be answered.

1. ExQ-1. Can the performance patterns, provided in the taxonomy [45] (Fig-
ure 3.9), be identified in the performance spectra of various processes?

94 Fine-Grained Description of Processes Performance from Event Data

2. ExQ-2. Can the analyst identify the same performance patterns as the authors
in [45]?

Setup. Six participants were asked to reproduce all the results provided in Section 5
(Evaluation) of [45]. For that, the following scenario was designed:

1. Each participant reads the paper [45].
2. All the participants discuss it together.
3. Each participant gets familiar with the technique independently by using the

PSM.
4. Finally, the paper results have to be reproduced:

• for the Road Traffic Fines Management (RF) log5 in details,
• and for the other logs (Table 3.1) in a form of a summary.

5. Each participant describes if the results could be reproduced, and what difficul-
ties were encountered.

Results. In this section, we summarize the study results [56] (pages 39-138) and
answer ExQ-1 and ExQ-2.

ExQ-1. All the participants could successfully obtain the performance spectra from
the given event logs using the PSM, and easily identify a lot of various performance
pattern instances, according to the taxonomy. However, the following difficulties were
reported as well:

• Ambiguity. There were some “border cases” found in the obtained performance
spectra, i.e., pattern instances that could be related to two patterns of the tax-
onomy. Moreover, some instances could be identified either as elementary ones
or as part of a composite pattern instance.

• Biased human interpretation. Some participants could identify only one pattern
instance in a particular area of a performance spectrum, while others could
identify there the instances of alternative patterns as well.

• Vague taxonomy. Some reports claimed the taxonomy was not precise or de-
tailed enough, so it was sometimes difficult to describe an identified pattern
instance in the terms of the taxonomy parameters.

ExQ-2. The participants could successfully re-identify approximately half of the
same pattern instances as the authors. Difficulties with the re-identification of the
others were mostly caused by the following reasons:

• Missing information about logs pre-processing. The given event logs are large but
the authors of [45] did not describe how the data were pre-processed for ob-

5https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

3.4 Practical Aspects of MHS Analysis Using Performance Spectra 95

taining those concrete results (spectra), and no case identifiers or time intervals
were provided.

• Missing event logs. The BHS dataset from a Vanderlande BHS was not available
due to privacy reasons.

Additionally, the participants reported the good quality of the tool (the PSM) and
its user documentation.

Conclusion. As a result of the participants’ reports analysis [56], we conclude that
the technique generally works because of the following.

• Pattern instances could be identified according to the taxonomy by participants
without any skills in working with performance spectra.

• The patterns presented in [45] could be re-identified if the participant was able
to find the corresponding area in the performance spectrum.

• Although the taxonomy of the performance patterns can be improved further,
especially for composite patterns, its current version still allowed many find-
ings and, therefore can be used for the performance patterns-based analysis of
processes.

• The implementation in the PSM is good enough, i.e., it was never a bottleneck
for the analysis.

To overcome difficulties that the participants encountered during the study, we
recommend the use of the PSM documentation along with [46]. Additionally, auto-
matic performance pattern detection algorithms, such as the one addressed in [41],
can help avoid the time costs and ambiguity of manual detection.

In the next section, we show how “regular” and multi-channel performance spec-
tra together allow for performance analysis of large material handling processes.

3.4 Practical Aspects of MHS Analysis Using Perfor-
mance Spectra

So far, we proposed the performance spectrum as a tool for process performance de-
scription and analysis. However, we did not consider the following important aspects
of its application:

• whether an event log, required for computing a performance spectrum, is a
suitable event data representation for MHS data, and

• if the root cause analysis of MHSs using performance spectra is possible.

We discuss these aspects in the following.

96 Fine-Grained Description of Processes Performance from Event Data

Log

Event
identifier

Event

TSU
(object)

Object
identifier

Location

Process
step

Resource
(object)

Timestamp

Process
step result

0..*

0..*

1..1

1..1

0..1
1..1

0..1

1..1

1..1

1..1

1..*

1..*

Figure 3.19: UML class diagram for MHS event log.

3.4.1 Object-Centric Event Logs of Material Handling Processes

Historically, most process mining techniques require a single-case notion event log,
where each event is related to one “object” of the type corresponding to the case
notion (see Definition 2.11). For example, in the RTFM event log, the case notion
is a fine ticket. However, in complex business processes, many objects of different
types can be related to an event. For example, for the delivery process of a web shop,
one package is related to one or multiple items, while one order can be delivered via
multiple packages. Such event data can be represented as object-centric event logs,
e.g., using the OCEL standard [64]. A multi-case notion event log must be “flattened”
to obtain a single-case notion event log for a chosen case notion.

The performance spectrum (see Definition 3.4) is computed from a single-notion
event log, i.e., it requires the event data to be flattened if they represent multiple case
notions. However, data flattening can cause well-known problems of

• convergence when one event is related to different cases [73], and
• divergence when there are multiple instances of the same activity within a case.

Is this problem actual for event data of material handling processes and, consequently,
the use of performance spectra? To understand it, we customized the UML class
diagram of the OCEL standard [64] for MHSs. The result is shown in Figure 3.19.

In the diagram, two object types, which an MHS event log usually has, are de-
picted: TSU and resource. For clarity, these objects are shown through separate boxes.
In MHSs, the handling of TSUs generates events. Respectively, TSU has zero or more
events in the diagram. Each event is generated at precisely one location at the time
described by a timestamp. A TSU cannot be at more than one location at the same
time, so the cardinality on the arc between the event and location boxes is 1..1. Fur-
ther, each location corresponds to exactly one process step (1..1 on the corresponding

3.4 Practical Aspects of MHS Analysis Using Performance Spectra 97

arc). A location has zero or one resource (0..1), where zero corresponds to the situa-
tion when the resource (e.g., a worker) is unavailable. Finally, both TSU and resource
have an identifier. Additional attributes can be related to an event, e.g., a process step
result.

To summarize,

• an event is always associated with one location, one process step, and one re-
source, and

• a resource is related to at most one event at a time.

Thus, no one-to-many or many-to-many relations exist for event logs corresponding
to the diagram in Figure 3.19. As a result, no flattening is actually required, so no
convergence or divergence problems exist.

3.4.2 Causality in Performance Spectra of MHSs

In Section 3.3.4, we showed how performance spectra could reveal various perfor-
mance phenomena. Their interpretation depends on the process. However, in the
MHS domain, performance spectra show the physical movement of materials in three-
dimensional space. It allows for reasoning about causality among phenomena in per-
formance spectra due to constraints related to MHS equipment and TSU movement.

Let us consider a BHS fragment, shown in Figure 3.20(a). In this system, con-
veyors (a,b) and (b,c) comprise the main conveyor, while (d ,b) merges at location b.
Note the bags of (a,b) have a higher priority at merge unit b than bags on (d ,b).

Let us consider the following scenario. Initially, bags from locations a and d were
evenly merged at b. Figure 3.20(b) shows the corresponding performance spectrum,
where green and blue segment occurrences correspond to the bags that entered the
system at a and d , respectively. However, at time t1, the series of bags pid1−pid5

entered the system via a. By estimating the duration between the bags at a, e.g.,
t2 − t1, we can conclude that these bags were so densely placed on the conveyor that
no other bags could be merged in between. As a result, bag pid6, which arrived at b

at t3, had to wait to merge until it became free at t4 because there was no alternative
way toward c available.

The analyst, given this performance spectrum and knowing the minimum distance
between two neighboring bags such that another bag can be merged in between, can
conclude that bags pid1−pid5 caused the delay of pid6. That is, it was not a coin-
cidence or correlation between higher load on (a,b) and longer segment occurrence
durations on (d ,b).

Another scenario is shown in Figure 3.21(a), where pid1 got stuck on conveyor
(b,c). As a result, the other bags could not continue toward c because the only way
was blocked. In the corresponding performance spectrum, we can see that the delay
on (b,c) indeed caused the delays in (a,b) and (d ,b).

98 Fine-Grained Description of Processes Performance from Event Data

pid3pid5 pid2 pid1

pid
6

a

d

b c

pid4

(a)

(b)

d:b

a:b

b:c
pid1
pid2
pid3
pid4
pid5

pid6

t3

t1 t2 t4

Figure 3.20: BHS fragment (a) and the corresponding performance spectrum (b) show how
pid6 could not merge on (d ,b) because of densely located pid1−pid5 on the con-
veyor with a higher merge priority.

Note domain knowledge about the system or process is required to reason about
causality in the performance spectra. For example, let a process model, shown in
Figure 3.21(c), be the only information about some process where the activities follow
each other in the same way as for the system in Figure 3.20(a). In this case, the
spectra in Figure 3.20(b) and Figure 3.21(b) do not allow for reasoning about any
causalities. For example, assuming that the model in Figure 3.21(c) represents some
customer support process whose activities a −d are executed by different pools of
resources, no direct root causes of the delays in the spectra can be inferred.

In the following, we use the aforementioned aspects to analyze material handling
processes.

3.5 Evaluation

The previous sections show that the performance spectrum can describe the process
performance and reveal various performance pattern instances, which analysts can
identify. However, can this technique be valuable for solving real-world problems of
the process performance analysis, and which types of performance spectra, meaning
a layer performance spectrum or multi-channel one, can be helpful for that? To an-

3.5 Evaluation 99

pid3pid5 pid2

pid
6

a

d

b c

pid4

(a)

(b)

d:b

a:b

b:c
pid1
pid2

pid3
pid4
pid5

pid6

pid1

a

d

b

b

c

(c)

Figure 3.21: BHS fragment (a) and the corresponding performance spectrum (b) show how
pid2−pid6 were blocked by pid1; process model (c) describes a business process
with activities a −d that follow each other in the same way as in the system (a).

swer these questions, an evaluation in the form of a process mining challenge was
conducted at Vanderlande.

Objectives. The evaluation aimed to answer the following questions:

• EvQ-1. Can performance spectra be used for the performance analysis of large
material handling processes?

• EvQ-2. What types of performance spectra are needed for this analysis?
• EvQ-3. Can the performance spectrum-based analysis outperform the perfor-

mance analysis based on other techniques and tools, typically used in the indus-
try?

• EvQ-4. Are there any pitfalls needed to be addressed to facilitate the analysis?
• EvQ-5. Can the analysis results be delivered for an untrained audience in the

form of performance spectrum snapshots?

100 Fine-Grained Description of Processes Performance from Event Data

Problem. The challenge was formulated by Vanderlande as follows. There was a BHS
operating in a large European airport, whose high-level description was similar to the
BHS shown in Figure 1.1 (see Section 1.1.2). Once, a severe performance incident
happened unexpectedly, causing a long delay in handling many passenger bags. As a
result, many bags could not make it to the flight. So, given

1. the recorded event data,
2. basic domain knowledge about the system, including its MFD, and
3. using any tools,

the incident had to be detected, and its root cause(s) had to be determined.

3.5.1 Analysis

Input Data and Data Pre-Processing. The input dataset was given in the form
of a time-monotonic event log L1 = (pid,E1,#1) (see Definition 2.11), recorded as
a Comma-Separated Values (CSV) file. In this table, each event was generated by
the BHS equipment, such as sensors, scanners, etc., and contained the following at-
tributes that we considered as mandatory for this analysis:

• activity name (equipment location) act,
• bag unique identifier pid,
• timestamp time.

The traces in L showed the paths of the bags throughout the BHS. Additionally, the
events had the following optional attributes:

• failed direction errors fd, indicating issues with bag diverting,
• bag tasks bt, describing the current bag task (sub-process),
• lost-in-tracking lt, showing that the current bag had to be re-identified,
• and dozens of others.

The first phase of the challenge was detecting the incident, i.e., where in the system
and during which period(s) of time the incident happened. To determine that, the
high-level overview of the baggage’s progress throughout the system over time could
be helpful, so we made the following preliminary steps.

1. High-level MFD. We designed a high-level MFD, shown in Figure 3.22, using the
available low-level MFD, which was similar to one in Figure 1.1 but much larger
and with more locations. In this high-level MFD, numerous baggage flows are
aggregated into a single flow going from the check-in area to two pre-sorters P 1

and P 2, and afterward toward two final sorters Y 1 and Y 2. A small fraction of
the baggage can return back to the pre-sorters because not all bags can make it
to the flight, i.e., such bags must start their handling over on P 1 or P 2.

3.5 Evaluation 101

2. Data pre-processing. To align the event locations with the high-level MFD, we
replaced the exact bag locations in the event activity labels with the names of
the corresponding system areas. We kept the earliest timestamps for sequences
of events being aggregated into a single one, dropping all optional attributes.
The resulting event log L2 = (pid,E2,#2) contained aggregate events E2, and only
mandatory event attributes.

Text (Only)

check-in

… return to

pre-sorter

… to

pre-sorters

final sorters Y1-Y2

check-in q1…qn

P2: no activity

pre-sorter P1

… to

final sorters

Figure 3.22: High-level MFD of the BHS, obtained by aggregating exact system locations into
the names of their areas.

Combined Performance Spectrum of the Overall System Performance. In this
step, we computed the combined performance spectrum using L2. For that, we first
defined:

1. a segment series SEG2 = 〈seg2
1, . . . ,seg2

12〉, whose names corresponded to the high-
level MFD segments (see these names on the left-hand side of the Figure 3.24),

2. a performance classifier Cdur, which mapped the durations of segment occur-
rences into performance classes {normal,slow}, encoded in Figure 3.24 by the
green and red colors respectively.

3. a bin size p = 15 minutes, corresponding to a single bar of the aggregate perfor-
mance spectrum in Figure 3.24,

4. a channel chdur = (Cdur ,pending, p),
5. a bin interval [s,e], corresponding to the period of 28 hours, for which the events

were provided in the input dataset.

Then, we computed

1. a performance spectrum PSlr
L2

(SEG2,Cdur) (not shown in the figures),

2. its aggregate APSseg×b
L2

(SEG2,chdur , [s,e]) shown in Figure 3.24, and
3. their combined performance spectrum, shown in Figure 3.23.

102 Fine-Grained Description of Processes Performance from Event Data

We also show the aggregate spectrum in Figure 3.24. It helps estimate the load on the
segments because the bins do not read well on the combined spectrum when printed.

Text (Only)

Zooming in…

7:30 14:15 16:459:45

check-in

… return to

pre-sorter

… to

pre-sorter

final sorters Y1-Y2

check-in

P2: no activity

pre-sorter P1

17:15 6:15

Inside check-in q1- qj
Inside check-in qj+1- qk

Check-in q1- qj → P1

Check-in q1- qj → P2

Check-in Link

Check-in qj+1- qk→ P1

Check-in qj+1- ck→ P2

OOG

P1
→ Y1

P1
→ Y2

Y2
→ P1

Y1 → P2

s e
Time

Day 1 Day 2

p
e’

seg21

seg22
seg23
seg24
seg25
seg26
seg27

seg28
seg29

seg210

seg211

seg212

z6

z9

z1

z10

z2 z3

z4

z5 z7 z8

Figure 3.23: Combined performance spectrum, computed from the aggregate log L2, shows
many periods of zero or low load at different system areas, for example, elemen-
tary pattern instances z1 − z3, z6, z9, z10 and combined ones z4, z5, z7 and z8.

Text (Only)

check-in

… return to

pre-sorter

… to

pre-sorter

final sorters Y1-Y2

check-in

P2: no activity

pre-sorter P1

Inside check-in q1- qj
Inside check-in qj+1- qk

Check-in q1- qj → P1

Check-in q1- qj → P2

Check-in Link

Check-in qj+1- qk→ P1

Check-in qj+1- ck→ P2

OOG

P1
→ Y1

P1
→ Y2

Y2
→ P1

Y1 → P2

seg21

seg22
seg23
seg24
seg25
seg26
seg27

seg28
seg29

seg210

seg211

seg212

7:30 14:15 16:459:4517:15 6:15
s e

Time

Day 1 Day 2

p
Bag Speed

Normal

Slow

Zooming in…

Figure 3.24: Aggregate performance spectrum of the combined one shown in Figure 3.23.

Using these spectra, we could easily detect periods z1−z10 of zero or low workload
in multiple areas, surrounded by context with an average load. Their durations varied
from 30 to 90 minutes. In the combined performance spectrum (Figure 3.23), we saw

3.5 Evaluation 103

individual segment occurrences whose durations were up to one or two magnitudes
longer than the durations of segment occurrences in the context around. These peri-
ods were observed during both Day 1 and Day 2 (as 28 hours of the event data were
recorded over two working days). In this section, we provide the analysis of Day 1
only, as the analysis of Day 2 was done in a similar way and showed similar results.
For that, we “zoomed in” the spectrum in Figure 3.23 to explore the performance for
a shorter period [s,e ′], where s and e ′ correspond to the beginning and end of Day 1
respectively (see the area on the left-hand side of Figure 3.23).

Unwinding the Incident Scenario. In the following, we discuss the analysis of the
combined performance spectrum for time interval [s,e ′], built from the initial event
log L1, i.e., for non-aggregate activities forming segments SEG1. For obtaining ag-
gregate spectra, we used the same value of p, and the same grouping pending, but
investigated also additional layers and channels.

For presentation purposes, we gradually add the performance spectrum segments
of different channels/layers on the same canvas. First, we put on top of the canvas the
performance spectrum of segment seg1

1 corresponding to pre-sorter P 1, for which we
observed an interval INT 1 of longer segment occurrences indicating the time interval
of a possible incident. This canvas is shown in Figure 3.25, where the numbers of the
spectrum segment lines (from 1 through 10) are shown on the left-hand side, seg1

1 is
shown on top, and the time axis is shown at the bottom.

Text (Only)

INT1 P1: no activity (seg11, ℂdur)1

2

3

4

5

6

7

8

9

10

Figure 3.25: Longer segment occurrences on pre-sorter P 1 show its inactivity during interval
INT1.

We assumed that interval INT 1 most probably corresponded to a period when pre-
sorter P 1 was presumably stopped. In BHSs, if one sorting loop is unavailable, the
other parallel available loop(s) (if any are presented) handle the whole load. In our

104 Fine-Grained Description of Processes Performance from Event Data

case, it is sorting loop P 2, so we started by exploring its performance around the same
time interval. For that, we defined:

• a domain-specific performance classifier Cre that showed how many “rounds” a
bag made on pre-sorter P 2,

• a layer lrre = (SEG1,Cre), and
• a channel chre = (Cre,pending, p).

Then, we computed the performance spectrum for this layer and channel. Segment
seg1

2 of this spectrum is shown in line 2 of the canvas in Figure 3.26.
Text (Only)

1-3

4-6

7-9

10-12

13-15

16-18

Re-circulation
counters

INT1

INT2

P1: no activity (seg11, ℂdur)

P2: load and re-circulation increased (seg12, ℂre)

1

2

3

4

5

6

7

8

9

10

Figure 3.26: Recirculation of bags on pre-sorter P 2 grows during the first half of interval INT2,
and decreases during the last one.

During interval INT 2, the total load on P 2 increased at the end of INT 1, with a
significant part of bags recirculating on the pre-sorter up to 12-15 times (while it was
normally at most one round). It meant the pre-sorter could not handle the higher
load, caused by extra bags that could not be handled on P 1. Note, the remaining fig-
ures of this section show only aggregate performance spectra because non-aggregate
ones do not read well when printed.

Next, we analyzed which tasks had the bags recirculating on P 2 (on seg1
2), i.e.,

which process steps they were waiting for. For that, we defined

• a domain-specific performance classifier Cbt that mapped each bag task into a
unique performance class using the corresponding event attribute task,

• a layer lrbt = (SEG1,Cbt), and
• a channel chbt = (Cbt ,pending, p),

and computed the performance spectrum for this layer and channel. Its segment seg1
2

(bags on P 2) is shown in line 3 of Figure 3.27.

3.5 Evaluation 105

Text (Only)

Bag Tasks

AutoScan

RouteToMC

INT1

INT2

P1: no activity (seg11, ℂdur)

P2: load and re-circulation increased (seg12, ℂre)

P2: bags tasks (seg1
1) (seg12, ℂbt)

P2: Dump D2 : bags tasks (seg14, ℂbt)

P2: Dump D2 : re-circulation (seg14, ℂre)

1

2

3

4

5

6

7

8

9

10

Figure 3.27: Many recirculating bags had to be automatically or manually identified (tasks
AutoScan and RouteToMC respectively), but were dumped out of the system via
exit D2 instead.

Additionally, we considered segment seg1
4 corresponding to the dump exit D2 to see

if any bags were dumped out of the system. For this segment, we show recirculation
in line 5, and bag tasks in line 6 of Figure 3.27.

In the resulting spectrum (Figure 3.27), we saw the following:

• the majority of bags were waiting for either automatic or manual identification
(see line 3),

• the load on pre-sorter P 2 started decreasing in the middle of INT 2 (see line 3)
because the system started dumping bags that made many rounds on P 2 (line 5)
through the dump exit (seg1

4) out of the system in the middle of INT 2 (see line 6).

To summarize, during the first half of INT 2, many bags were accumulated on P 2

because they could not be identified. To prevent the overflow of P 2, the system started
to dump them out of the system in the middle of INT 2.

Next, we wanted to understand why so many bags on P 2 were waiting for iden-
tification. Indeed, each bag should have been already identified upon entering the
pre-sorter. We decided to check if it happened because of the so-called lost-in-tracking
phenomenon. That is, if a system cannot detect (track) a bag at the location at the
time when it is expected to be there, the bag is considered to be lost-in-tracking. Al-
ternatively, when a system detects a bag at a location when there should not be any
bags, the system considers such a bag to be lost-in-tracking as well. So, we defined a
performance classifier Clt to estimate the number of lost-in-tracking bags. We defined
the corresponding layer, and channel, and computed the spectrum. Its segment seg1

3,
showing the number of lost-in-tracking bags, is shown in line 4 of Figure 3.28.

106 Fine-Grained Description of Processes Performance from Event Data

Text (Only)

INT1

INT2

P1: no activity (seg1
1, ℂdur)

P2: load and re-circulation increased (seg1
2, ℂre)

P2: bags tasks (seg1
1) (seg1

2, ℂbt)

P2: Dump D2 : bags tasks (seg1
4, ℂbt)

P2: lost in tracking (seg1
3, ℂlt)

P2: Dump D2 : re-circulation (seg1
4, ℂre)

INT3

Growing lost-in-
tracking

Massive dumping
through exit D2

No activities on
P2

1

2

3

4

5

6

7

8

9

10

Figure 3.28: Growing lost-in-tracking on P 2 during INT2 (line 4), and no activity on P 2 during
INT3.

In this spectrum, the amount of lost-in-tracking bags was growing within interval
INT 2. Lost-in-tracking typically happens because of equipment malfunctioning, or
bag misplacing. However, the exact reason usually cannot be directly determined
from recorded event data attributes.

Eventually, at the end of the interval INT 2, any activities on pre-sorter P 2 stopped
(see interval INT 3 in Figure 3.28), despite the extensive dumping of bags (line 5).
Why did it happen? To investigate it, we defined a performance classifier Cfd, which
assigned classes according to failed direction errors, i.e., errors of diverting bags to
other conveyors. The resulting performance spectrum is shown in Figure 3.29, lines 7
and 8.

In the resulting spectrum,

• segments seg1
4 (line 7) and seg1

5 (line 8) in Figure 3.29 show how many errors
happened on diverting to the dump exit and manual encoding stations respec-
tively, and

• seg1
6 (line 9) shows the number of bags exiting these stations.

As described in Section 1.1.2, the manual encoding stations serve for identifying bags
manually (task manual identification). In the spectrum, the number of errors Not
available or full was gradually growing for diverting to the dump exit and the manual
encoding stations, while activity on their exits (line 9) dropped to zero during interval
INT 4.

To interpret the information in lines 7-9, we still needed to know if any operators
were actually working at the stations during INT 4. For that, we defined a performance

3.5 Evaluation 107

Text (Only)

Error type

No errors

N/A or Full

INT1

INT2 INT3

INT4

P1: no activity (seg11, ℂdur)

P2: load and re-circulation increased (seg12, ℂre)

P2: Dump D2 : re-circulation

P2: bags tasks (seg1
1) (seg12, ℂbt)

P2: Dump D2 : bags tasks (seg14, ℂbt)

P2: lost in tracking (seg13, ℂlt)

P2: Dump D2 : sortation errors (seg14, ℂfd)

P2: Manual Encoding entry: sortation errors (seg15, ℂfd)

P2: Manual Encoding exit: no activity (seg16, ℂbt)

1

2

3

4

5

6

7

8

9

10

Figure 3.29: Errors on diverting toward the manual encoding stations (line 7) and dump exit
D2 (line 8); no activity at the manual encoding stations during INT4 (line 9).

classifier Cms, which allowed us to see the stations’ state. Thus, seg1
7 (line 10) in

Figure 3.30 shows that some manual encoding stations were available (with operators
logged in) during INT 3. Nevertheless, they were not handling any baggage during this
interval.

Text (Only)

Availability

Unavailable

Logged-Off

Logged-On

INT1

INT2 INT3

INT4

P1: no activity (seg11, ℂdur)

P2: load and re-circulation increased (seg12, ℂre)

P2: Dump D2 : re-circulation

P2: bags tasks (seg1
1) (seg12, ℂbt)

P2: Dump D2 : bags tasks

P2: lost in tracking (seg13, ℂlt)

P2: Dump D2 : sortation errors (seg14, ℂfd)

P2: Manual Encoding entry: sortation errors (seg15, ℂfd)

P2: Manual Encoding exit: no activity (seg16, ℂbt)

P2: Manual Encoding availability (seg17, ℂms)

1

2

3

4

5

6

7

8

9

10

Figure 3.30: Availability of the manual encoding stations during the whole period (green bars
in line 10).

Interpretation. By obtaining the information presented above, we reconstructed the
whole chain of events, shown in Figure 3.31, and interpreted it as follows.

108 Fine-Grained Description of Processes Performance from Event Data

1. Pre-sorter P 1 had stopped for a reason not recorded in the given dataset (see
the box in line 1 in Figure 3.31).

2. The load on another pre-sorter increased, as well as the amount of recirculating
bags (arrow 1 in Figure 3.31).

3. Higher load caused the growth of lost-in-tracking bags (arrow 2 in Figure 3.31).
4. The lost-in-tracking bags had to be identified (arrow 3). As their significant

part received task RouteToMC (orange bars in line 3), they had to be identified
manually at the manual encoding stations.

5. The manual stations were available with operators logged in (green bars in
line 10). However, they could not operate because:

• already identified bags could not leave the stations because they could not
merge onto P 2 due to high load (arrow 5), and

• no new bags could enter the stations because they were fully packed with
the bags waiting to be merged onto P 2 (line 4).

6. As a result, bags that were recirculating too many rounds (because of waiting
for entering the manual stations) (line 6) were dumped out of the system.

7. However, the dump area D2 got fully packed due to massive dumping, and the
system could not get rid of the extra load anymore. As a result, no activity could
be performed on P 2 (except meaningless re-circulations), so the pre-sorter was
stopped (line 8) for removing extra bags manually by workers.

Text (Only)

P1: no activity (seg11, ℂdur)

P2: load and re-circulation increased (seg12, ℂre)

P2: Dump D2 : re-circulation

P2: bags tasks (seg1
1) (seg12, ℂbt)

P2: Dump D2 : bags tasks

P2: lost in tracking (seg13, ℂlt)

P2: Dump D2 : sortation errors (seg14, ℂfd)

P2: Manual Encoding entry: sortation errors (seg15, ℂfd)

P2: Manual Encoding exit: no activity (seg16, ℂbt)

P2: Manual Encoding availability (seg17, ℂms)

1

2

3

4

5

6

7

8

9

10

1

2

3

45
6 7 8

Figure 3.31: Reconstructed chain of events.

First, during the analysis, the inactivity of the manual encoding stations looked
like a problem, but in reality, it was caused by the high load of pre-sorter P 2, i.e.,

3.6 Chapter Summary 109

identified bags could not be injected back onto the pre-sorter from the manual stations
because the pre-sorter had no free space for that.

However, was the incident unavoidable after the failure of P 1? No, it was not. Ap-
parently, some equipment malfunctioning caused a lot of lost-in-tracking bags, which
still could be re-identified automatically. Instead, the system sent them for manual
identification, and this behavior caused the final halt of P 2. This flaw in the baggage
handling process, caused by factors we cannot disclose, was the root cause of this
severe performance incident.

As the evaluation at Vanderlande proved, our analysis led to the right conclusions.
Remarkably, the analysis was done much faster than the same analysis performed
earlier by Vanderlande’s experts without using the performance spectrum. Note, in
the presented slides we did not show non-aggregate performance spectra due to their
poor readability on paper for a large number of segment occurrences. Nevertheless,
during analysis, we used it extensively along with the aggregate ones.

3.5.2 Evaluation Results

This evaluation showed that the performance spectrum can be extremely helpful for
the performance analysis of logistic processes (EvQ-1). Moreover, both layer and
multi-channel performance spectra were needed for different analysis steps (EvQ-2)
because the use of different performance classifiers provided invaluable insight into
the system performance. Another result of crucial importance was the amount of
time spent on the analysis, which was significantly less than the time spent during
the “classical” analysis of the same problem (EvQ-3). However, there were some
difficulties during the analysis: a large amount of information, available in the system
MFD, should be kept in the analyst’s mind (EvQ-4). Finally, after presenting the
analysis results for various types of audiences, including Vanderlande’s top managers,
we concluded that the information represented through the performance spectra can
be easily digested by the audience without any data analysis skills (EvQ-5).

3.6 Chapter Summary

In this chapter, we proposed the unbiased fined-grained process performance descrip-
tion, called a performance spectrum. We defined all the building blocks of the per-
formance spectrum, defined the performance spectrum for a single segment, and lift
these definitions to many segments observed in an event log. We showed how this
novel description of the process performance is capable of capturing various aspects
of the process performance and revealing various performance patterns, whose pat-
tern parameters’ taxonomy we proposed as well. We suggested how the information
in the performance spectrum can be quantified in the aggregate performance spec-

110 Fine-Grained Description of Processes Performance from Event Data

trum, which can, in turn, has multiple channels to represent various performance
classifiers, segments, and ways of aggregation of individual cases. We provided the
results of the empirical study proving that the same performance patterns can be
identified in various event logs by different untrained analysts independently. Finally,
we showed how both types of performance spectra, meaning the non-aggregate and
aggregate ones, allow for the analysis of performance incidents in large complicated
logistic processes for determining their root causes faster than the classical process
mining and general purpose tools. For that, we reported on our evaluation using the
dataset of a Vanderlande-built BHS of a large European airport.

Further in this thesis, the performance spectrum and performance patterns are
extensively used for explaining various performance phenomena in MHSs in Chap-
ters 4, for explaining our log repair method in Chapter 7, for analyzing undesirable
performance scenarios in Chapter 8, and as the source of rich performance-related
features for PPM in Chapter 9.

Chapter 4
The Nature of Material Handling
Systems

The preceding chapter showed how the performance spectrum, i.e., a model-less pro-
cess performance description, can be used for answering difficult performance anal-
ysis questions. However, other things being equal, analysis techniques can benefit
from the information available from the model, potentially allowing for a richer and
more accurate outcome. In this chapter, we consider what an MHS is in a nutshell
and which system entities and behavioral phenomena should be captured by a model
of an MHS for answering particular Analysis Questions (AQs). For that, we first iden-
tify MHS fundamental building blocks and discuss how they handle materials. Then,
we distinguish MHSs with and without batching, and scope this thesis to the latter.
The selection of the AQs is based on the results of the field study conducted with
Vanderlande’s process engineers supporting real-world MHSs all around the world.
Next, by doing a literature study, we identify queueing theory as one of the most
appropriate operations research fields for modeling and the structural, qualitative,
and quantitative analysis of MHS without batching. We consider the state-of-the-art
queueing theory-based techniques designed for the MHS modeling and analysis. Fi-
nally, we consider the limitations they imply and discuss the feasibility of their use for
answering the AQs, as well as the key takeaways that, among other things, inspired
our approach for modeling MHSs, which is presented in Chapter 6.

4.1 Classes of Material Handling Systems

In Section 1.1.2, we considered the BHS example in detail, focusing mostly on the
system functions, processes, and key equipment elements. In this section, we take a
broader look at different types of MHSs (not only BHSs) to identify what commonal-

112 The Nature of Material Handling Systems

ities allow all the equipment pieces to be seamlessly connected into a system. Based
on these commonalities, we identify two types of building blocks, and also units they
can comprise. Then, we show that Transport and Storage Units (TSUs), e.g., bags for
BHSs and cartons for warehouse systems, can be handled individually or in batches,
thereby defining two classes of MHSs.

4.1.1 Building Blocks

As we showed in Section 1.1.2, an MHS is a complex network of conveyors that move
TSUs via locations to their final destinations. On the way, various process steps are
executed either by machines or by workers at workstations. Typically, a TSU never
leaves the surface of conveyors as it goes through the system because the machines
and workstations are installed over or near the conveyors. For example, a screening
X-ray machine is typically installed over a conveyor to screen TSUs passing through.
Similarly, a workstation is typically installed over a conveyor as well, and its worker
handles TSUs passing on the conveyor. Both machines and workers can temporarily
stop the conveyor’s movement for executing a longer process step, e.g., for making
an X-ray shot, or for scanning an attached sticker with a hand scanner. That is, both
machines and workers execute process steps in the same way. In the remainder of this
thesis, we use the term resource for referring to machines and workers, emphasizing
that (1) we do not model them differently, and (2) both are indeed the resources
who execute process steps in MHSs. Thus, we have two types of fundamental building
blocks:

1. resources that execute process steps,
2. and conveyors that move TSUs between resource locations.

In the following, we take a closer look at conveyor types, and basic unit types that
can be assembled from a single resource, and one or multiple conveyors.

4.1.1.1 Conveyors

In this thesis, we call a conveyor belt any surface that moves TSUs, placed onto it,
along a linear trajectory from the beginning to the end. At any moment in time, all
the TSUs placed on the surface move at the same speed as if the surface is solid. When
a conveyor belt starts or stops, the TSUs on it start or stop their movement (in space)
respectively. In Figure 4.1, the conveyor belt surface moves from the beginning b

toward the end e, carrying TSUs pid1 and pid2 (pid2 follows pid1).
We call a linear conveyor a chain of conveyor belts 〈c1, . . . ,cn〉,n ≥ 1, such that any

non-ending conveyor belt ci ,1 ≤ i < n, hands TSUs over to the next conveyor belt
ci+1. Note, if conveyor belt ci+1 is stopped, it is unavailable for taking TSUs from the
previous conveyor belt ci . In this case, ci must stop when a TSU reaches its end. In

4.1 Classes of Material Handling Systems 113

pid2 pid1b e

Figure 4.1: Conveyor belt carrying TSUs pid1 and pid2 from location b toward e.

Figure 4.2(a), the linear conveyor consists of four conveyor belts 〈c1, . . . ,c4〉 and carries
TSUs pid1−pid3. Because conveyor belt c4 is temporarily stopped for maintenance,
pid1 cannot be handed over from c3 to c4, so c3 is also stopped. At the same time, pid2

and pid3 can be moved until pid2 reaches the stopped conveyor belt c3. Based on this
behavior, an accumulating linear conveyor can be assembled. To minimize time when
a linear conveyor is stopped while a TSU on its end is waiting for handing over, it has
a queue at the end. It is made of multiple short conveyor belts, that keep together
several TSUs, waiting for handing over, while the “main” conveyor belt still can move
the other bags on it. Accumulating linear conveyors are typically installed right before
resources and conveyors that can be often temporally unavailable because of a long-
lasting manual operation, the lack of free space for merging incoming bags, and so
on, to minimize the unavailability time of the conveyors leading to them.

Workstation

c1 c2 c3 c4

pid1pid2pid3

c a1 a2 a3

pid1

(a)

(b)

c a1 a2 a3

pid1
(c)

Figure 4.2: Linear conveyor (a), accumulating linear conveyor with “main” belt c and accumu-
lating belts a1−a3 for keeping waiting TSUs (b), and accumulating linear conveyor
before a workstation (c).

For example, in Figure 4.2(b), the accumulating linear conveyor 〈c, a1, . . . , a3〉 con-
sists of one long conveyor belt and three short ones, each of which can hold at most
one TSU. Conveyor belt a3 delivers TSUs to the workstation, i.e., the workstation uses
it as a capacity element to hold a TSU being handled. When the workstation’s worker
is busy with the current TSU, e.g., pid1 on a3 (Figure 4.2(b)), a3 is stopped, while the

114 The Nature of Material Handling Systems

longer conveyor belt c still can operate unless (1) the accumulating conveyor belts
(a1 −a3) are occupied, and (2) some TSU has reached the end of conveyor belt c.

In this thesis, we use the term conveyor when we do not distinguish conveyor belts,
linear conveyors, and accumulating linear conveyors.

4.1.1.2 Resources and Units

In MHSs, a resource is seldom installed stand-alone. Instead, resources and convey-
ors are typically assembled into units of different types, so we exclude stand-alone
resources from this thesis scope. In this section, we describe the most typical unit
types. First, we describe a single resource installed over a conveyor, and then we
describe more complex unit types, consisting of one resource and multiple conveyors.

Single-Resource Single-Conveyor Unit. While conveyors are moving TSUs through-
out the system, precise information about the location of each TSU is required for
computing their optimal routes and triggering the execution of process steps. Al-
though on entering the system, the exact TSU location on the conveyor belt can
be known by the system, later it can be lost due to various reasons. For example,
TSUs can slide forward or backward (e.g., slippy bags in rainy weather), move un-
predictably because of vibration, and so on. As tracking exact TSU positions at every
location is costly, an MHS usually tracks their locations only before process steps that
need this information. For example, a resource diverting (pushing) a TSU to another
conveyor needs to know its exact location on the conveyor, otherwise, it may push
just “the air” between two TSUs, or even push a wrong TSU. To avoid such problems,
sensors, installed on conveyor belts throughout the system, track the precise TSU lo-
cations directly before resource locations. A typical sensor consists of a light source,
installed on one side of the conveyor belt frame, and a photocell, installed across
on another side (Figure 4.3). The photocell is capable of detecting the light of the
source. When a TSU reaches the sensor, it obstructs the light, thus the TSU front side
is detected. When the TSU has passed the sensor, the light is seen by the photocell
again, thus the TSU back side is detected. As a result, the system obtains information
about the precise TSU location. Note, such sensors detect TSUs but do not identify
them. Dedicated resources serve for identification instead.

pid1

light source

photocell

Figure 4.3: Passing TSU obstructs the sensor light beam.

4.1 Classes of Material Handling Systems 115

Merging and Diverting Units. Combinations of conveyors and single-resource single-
conveyor units can form a variety of linear paths. However, material handling pro-
cesses, as well as many system design constraints, typically require a more compli-
cated network topology (e.g., like one in Figure 1.1) for connecting resource loca-
tions. As a result, units for merging TSUs coming from several conveyors into one, as
well as units diverting TSUs from one conveyor to others, are required. We call the
former merging units, and the latter diverting units. We call all the TSUs being trans-
ported by the same conveyor within some time interval a flow. We limit ourselves to
the units merging two flows, and the units diverting TSUs from one flow to another,
assuming that most complex units can be built from combinations of simple ones.

Figure 4.4(a) shows a merging unit, consisting of a “main” conveyor cmain and
incoming conveyor cinc, where cinc inserts TSUs at the merge location (shown in or-
ange) in the middle of cmain from its ”right-hand” side, i.e., not at the beginning. In
the figure, TSU pid4 is about to be merged. However, it must wait until free space fs

between pid3 and pid5 reaches the merge location.

pid3pid5 pid2 pid1
pid
4

cmain

cinc

pid1

cmain

(a)

(b)

fs

cout

fs

Figure 4.4: Merging unit (a), consisting of a main and incoming conveyor, and a diverting unit
(b), consisting of a main and outgoing conveyor; TSUs can be merged/diverted if
there is some free space fs available.

Figure 4.4(b) shows a diverting unit, consisting of a “main” conveyor cmain and
outgoing conveyor cout, where cmain diverts TSUs onto cout. Similarly to merging
units, some free space must be available at the beginning of cout for diverting a TSU.
Otherwise, it cannot be diverted and continues its journey on cmain. Note, on MHS
conveyors typically some space, that we call protective space, is needed around (i.e.,

116 The Nature of Material Handling Systems

before and after) a TSU to avoid an accidental involvement of neighboring TSUs into
a process step executed for a TSU. Otherwise, for example, on divert, the surrounding
TSUs can be accidentally diverted as well.

Loops. We call a short-circuited conveyor a loop. In Figure 4.5, a loop is shown
together with a conveyor cshortcut that “shortcuts” the loop for allowing TSUs to skip a
part of the loop (e.g., path a−x−b in Figure 4.5) if needed. In reality, a loop is usually
connected with multiple incoming and outgoing conveyors and can have zero, one,
or multiple shortcuts. For example, sorting loop P1 in Figure 1.1 has several incoming
conveyors (b1, . . . ,b4, d1,d2 etc.), several outgoing conveyors, k shortcuts for routing
baggage through the security scanners, and one shortcut for manual encoding station
M1.

a

b

x

W
or
ks
ta
tio

n

cshortcut

Figure 4.5: Loop with shortcut cshortcut going through a workstation and skipping path a−x−b.

4.1.2 Material Handling Systems with and without Batching

So far, we considered how MHSs handle TSUs with conveyors and resources, assum-
ing an individual TSU, e.g., a single bag or carton, as the only type of material being
handled. However, it is true only for a part of the real-world MHSs. Some MHSs
are capable of consolidating items of different types and handling them together in
a batch [74]. For example, some warehouse systems allow consolidating heteroge-
neous Stock Keeping Units (SKUs) as prescribed in incoming customer orders, e.g., a
dozen coca-cola bottles can be consolidated with a box of chips. After consolidation
on a tray, the SKUs travel together on the system conveyors. Additionally, one set of
consolidated SKUs (batches) can be re-consolidated into another set, and so on. As a
result, the complete system behavior comprises the handling of individual SKUs, their
batches, full and empty trays, etc. We relate the former and latter system types to the
following two MHS classes:

1. MHSs without batching, and
2. MHSs with batching.

4.2 Analysis Questions 117

Nowadays, the majority of existing MHSs are systems without batching. However,
many large systems have batching [74].

Taking into account a large number of open questions, related to systems without
batching, we limit the thesis scope to this class of systems. In the remainder of this
thesis, we use the term MHS for referring to systems without batching. In the next
section, we provide the AQs actual for analysis and operational support of MHSs that
we collected at Vanderlande.

4.2 Analysis Questions

The most important and difficult problem of MHS operators, and process engineers
supporting the systems, is keeping the system performance on a desired level. It re-
quires abilities for understanding the system behavior, especially when it differs from
“normal”. Previously, we showed how an MHS can be seen as a composition of some
simple building blocks and units, whose behavior in isolation may seem relatively sim-
ple. However, real MHSs consist of hundreds or thousands of interconnected units,
controlled by complicated business rules. It makes the system behavior overwhelm-
ingly complicated and difficult to understand and analyze.

To identify the most actual problems related to MHS performance analysis, we
conducted a field study with Vanderlande’s process engineers, whose daily duty was
to help the customers to keep the performance of their MHS on the designed level. We
collected and documented the problems as 60 user stories. Afterward, we organized a
workshop for ranking them according to their importance (from the engineers’ point
of view). Among the top-ranked user stories, we selected eight for our research. They
were selected (1) as most actual, (2) as not solved by existing techniques, and/or
(3) because they blocked our research related to the other selected stories. In the
following, we present these stories, which we refer to as the AQs throughout this
thesis. Note, we keep the language of the stories mostly intact, to avoid introducing
any bias to the stories.

AQ1. A high-level overview of the system behavior. “As a Process Engineer
or Customer, I want to see the main parameters of a system such as throughput
(e.g., in bags per minute), travel durations between system locations, flows between
process steps, re-circulations on loops, and so on, projected on an MFD. I need that
for communicating with the customers and for learning the system. For example, I
want to know the travel time between check-in counters q1

1 −qnz1
1 and scanner S1 for

the last 20 minutes (see Figure 1.1).”
AQ2. An animated or dynamic representation of the system. “As a Process

Engineer, I want to see a dynamic view of the system as the most understandable
one. I need that for engaging the Customer for further collaboration. For example, I
want to see how the preliminary sorting area is working right now (see Figure 1.1).”

118 The Nature of Material Handling Systems

AQ3. Detecting bottlenecks and understanding their causes. “As a Process
Engineer or Customer, I want to detect bottlenecks in general or for particular flows
and understand their root causes. I need that for communicating and improving the
system performance, and for root causes analysis. For example, I see that the link
between the transfer-in area and the sorting loop P 2 is a bottleneck. I want to under-
stand what caused it and how to get rid of it for improving the system performance.”

AQ4. The Detection, analysis, and prediction of whether a bag can make it
to the flight. “As a Process Engineer or Customer, I want to detect all bags that are
late for the flight, understand why they are late, and I want to predict such cases. I
need that for analysis of root causes to understand how to avoid such problems, and
I want to predict such cases to prevent costs related to the delivery of such bags to
passengers. For example, a bag of passenger X could not make it to the flight. Its
delivery to X costs extra 200$. The bag was late because it failed to be identified
automatically and had to wait too long for manual identification, making rounds on
loop P 1, due to temporal unavailability of MS m1. I want to predict such scenarios
for, for example, making MSs available timely.”

AQ5. Analysis of the stalling of sorting loops. “As a Process Engineer or Cus-
tomer, I want to analyze and find the root cause for the sorting loop stalling. I need
that for the fast understanding of the problem causes and their quick fixing. For ex-
ample, the stalling of sorting loops P 1,P 2 of the system of Figure 1.1 can happen
because of one or many of the following reasons:

• overload of MSs m1,m2,
• overload of scanners S1 −Sk ,
• delays in the manual part of the screening process,
• the load balancing between P 1 and P 2 is not proper.

The actual reason is needed to be found and fixed as soon as possible for avoiding the
extra costs of late bag delivery.”

AQ6. Detecting and analysis of control flow outliers. “As a Process Engineer or
Customer, I want to detect all cases when cases (bags) did not follow paths allowed
by the system design to analyze such cases further. I need that for (1) timely main-
tenance of sensors and photocells, (2) checking consistency of recorded event data,
(3) conformance checking of process models. For example, while analysis of recorded
event data, a direct path, that bag pid1 took, between the transfer-in area and scanner
S1 is observed. That means that sensors between these locations failed to detect this
bag and need maintenance, or the event recording process has errors.”

AQ7. Detecting outliers in terms of time taken to reach the destination. “As
a Process Engineer or Customer, I want to see descriptive statistics about paths taken
for the cases (bags) that took (1) the expected duration, (2) more than the expected
duration, and (3) much lesser than the expected duration. I need that for root cause
analysis, making feasibility reports, and system testing. For example, I want to see

4.3 Modeling Building Blocks and Units with Queues 119

descriptive statistics over bags that took paths from scanners S1 −Sk , for each path
variant I want to see which bags traveled faster and slower than on average.”

AQ8. Detecting and predicting aggregate KPIs. “As a Process Engineer or Cus-
tomer, I want to detect and predict when a load of a particular part of a system is
above a certain threshold. I need that for preventing overload of system parts, and
for preventing bottlenecks on sorting loops. For example, I want to know that the
flow of bags to MS M1 (see Figure 1.1) in bags per minute is below some thresh-
old, e.g., 0.5 bags per minute, and I want to predict when it is going to be higher,
to prevent overload of sorting loops P 1,P 2 because of bags waiting for the manual
identification.”

4.3 Modeling Building Blocks and Units with Queues

Previously, we identified queueing theory as the most appropriate way of model-
ing systems without batching. In this section, we show how the state-of-the-art ap-
proaches allow for modeling MHSs with queues of two different types. For that, we
first consider a single-server queue for modeling a single conveyor/resource unit in
Section 4.3.1. Then, we study the speed-density effect observed on MHS conveyors
and discuss how multiple-server queues can model them, taking the speed-density
effect into account, in Section 4.3.2.

4.3.1 Resource Model

To explain how the single-resource single-conveyor unit can be modeled with queue-
ing theory, we consider the behavior of an MHS sensor, using its performance spec-
trum as a detailed performance description. Then, we provide its queueing theory
model, which also works for single-resource single-conveyor units.

Let us consider a conveyor a : b with some finite capacity, moving TSUs from a
location a to location b, and a sensor b installed at the conveyor end. Note, we use
the same “name” (b) for the sensor and location, as it is usually done in real MHSs.
The conveyor and sensor are shown in Figure 4.6(a).

Conveyor a : b moved TSUs toward sensor b at a constant speed. Initially (Fig-
ure 4.6(a)), pid1 and pid2 were going toward a : b. At time t1, pid1 was ready to
enter it, while pid2 was slightly behind. Later, at time t3, pid1 reached the sensor
(Figure 4.6(b)). At time t3, sensor b became busy with pid1. In the performance
spectrum in Figure 4.6(e), the corresponding part of its journey is shown as occur-
rence o1 of segment waiting (on conveyor a : b). In the meanwhile, after pid1 entered
the conveyor and before it reached the sensor, pid2 also entered the conveyor at time
t2 (occurrence o4 in the performance spectrum).

120 The Nature of Material Handling Systems

pid1pid2

pid1pid2

pid1pid2

pid1pid2

(a)

(b)

(c)

(d)

w
ai
tin

g
(c
on

ve
yo
r)

se
rv
ic
e

(s
en

so
r)

id
le

(s
en

so
r)

Time

(e)

t1 t2 t3 t4 t5

pid1 pid2

a b

a b

a b

a b

o1

o2

o3

o4

o5

t1

t3

t4

t5

Figure 4.6: Detecting TSUs by sensor b: pid1 and pid2 are arriving to a : b (a), the front of pid1

is detected (b), the back of pid1 is detected (c), and the front of pid2 is detected
(d).

At time t3, the sensor detected the front side of pid1 and became busy with it until
time t4, when it detected its back side. The sensor processed pid1 in the service time
t4 − t3, shown as occurrence o2 in the performance spectrum. Afterward, the sensor
was idle till the other TSU arrived (occurrence o3). The idle time included:

1. the time required for making protective space between neighboring TSUs (pid1

and pid2 in our example),
2. the time when the sensor had no TSUs to handle.

4.3 Modeling Building Blocks and Units with Queues 121

Eventually, pid2 arrived at time t5, and the sensor served it in the same way (occur-
rence o5). Note, because the conveyor moved at a constant speed, the service time
was proportional to the length of the TSU being processed, and the idle time was
proportional to the distance between the TSUs directly following each other, e.g., the
distance between pid1 and pid2. In general, the service time may depend not only
on the speed of the TSUs, passing the resource but also on many other things. For
example, the time required for a TSU to be identified by a worker (a person) depends,
among other things, on the presence and readability of the sticker with a bar code,
attached to the TSU.

In queueing theory, MHS resources are typically modeled as servers and conveyors
as queues. Indeed, a conveyor can be naturally seen as a queue where bags wait to
be served, like bags on conveyor a : b wait to be detected by the sensor. A conveyor
moving bags toward a resource can be modeled as the classical general service model
with a finite buffer [18]. It describes a queue with a single server, which serves jobs
(bags), in the order of their arrival. This order is called the First-Come-First-Served
(FCFS), or the First-In-First-Out (FIFO). In the extended Kendall’s notation [75], it is
written as M/G/1/K meaning the following.

• The M stands for a queueing system with stationary Poisson arrival process at a
given rate λ, i.e., the times between job arrivals have an exponential distribution
with parameter λ.

• The G stands for General service process. Job service times are generally dis-
tributed, and the service times of different jobs are mutually independent. When
a job has been served, it departs from the queue.

• The 1 stands for the single server.
• The K stands for the finite capacity K of the waiting room, i.e., the conveyor

capacity, including the capacity element of a job (bag) in service.

We write θ for the mean throughput rate, and µ for the service rate. The queue
graphical representation is shown in Figure 4.7.

M/G/1/K

λ θ

μ

Figure 4.7: Representation of M/G/1/K queue.

122 The Nature of Material Handling Systems

4.3.2 Conveyor Model

In the previous section, we model the single-resource single-conveyor unit as a queue
system where the service time is independent of the queue state. This approach
may look good for MHSs, where conveyors typically move at constant speeds, and
resources process each TSU independently. However, works on MHS modeling [18,
19, 20], as well as our research, show that conveyors have much more complicated
dynamics. In the following, we explain how traffic speed on a road junction, i.e., the
junction “performance”, can be modeled using queueing theory. Then we show why
the same approach can be used for modeling the (accumulating) conveyors of MHSs.

4.3.2.1 Speed-Density Effect

Vehicular Traffic Flow Example. Let us consider highway traffic. When traffic is
light, vehicles can go through the link smoothly at the highest speed permitted. When
traffic is moderate, drivers have to watch more vehicles around and take over slow-
moving trucks, so the average speed drops. When traffic is heavy, it becomes difficult
to overtake slow movers. As a result, these slow movers significantly impede the aver-
age speed and can cause congestion. In literature, this situation is typically illustrated
by a curve showing how a traffic speed decreases as a car’s density increases [21]. The
similar dependency between the density of pedestrian traffic and its average speed is
described in [27].

TSU Flows. Considering MHSs, we can use the analogy with vehicular traffic: TSUs
are vehicles, and conveyors are roads. Indeed, TSUs have much less movement free-
dom, e.g., they cannot overtake each other. Nevertheless, there are a lot of sim-
ilarities: TSUs must keep some minimal distance (protective space) between each
other, they must follow roads (conveyors), they have speed limits (maximal conveyor
speed), and so on. So, it comes as no surprise that the same speed-density effect is
observed for MHS conveyors [18], i.e., the conveyor average speed drops as density
(i.e., the conveyor load) increases.

We investigated if this effect can be observed in Vanderlande-built MHSs. For
that, we analyzed several conveyors of different capacities (i.e., length), operating
in the areas with different purposes. We computed the speed-density effect, using
a dataset collected during six continuous months of operations. In Figure 4.8, the
effect is presented as a curve showing the dependency between the conveyor load
in TSUs (density) and median travel time (travel duration) through the conveyor (in
seconds).

A similar trend was also observed for the other conveyors. Remarkably, the lower
the conveyor capacity, the higher the effect. For example, for the conveyor with
the designed capacity of 52 TSUs (see Figure 4.8), the difference between median
duration under low and high load is just 5%, while for the conveyor with the smaller

4.3 Modeling Building Blocks and Units with Queues 123

Figure 4.8: Speed-density effect observed for a long MHS conveyor with a capacity of 52 TSUs.
Instead of TSU speed, median traveling duration is provided: longer duration
shows a slower average speed.

designed capacity of 7 TSUs (see Figure 4.9), it is 32%. However, what phenomena
cause this effect? To understand that, we explored the conveyor behavior using its
performance spectrum (see Chapter 3).

Complex Conveyor Dynamics. To analyze the speed-density effect on MHS con-
veyors, we consider the following scenarios for an accumulating conveyor a : m that
merges bags onto conveyor d : e through merge unit m (see Figure 4.10(a)):

1. a single-TSU scenario without the speed-density effect,
2. a two-TSU scenario with the speed-density effect,
3. a multiple-TSU scenario with the higher (than in the previous scenario) speed-

density effect.

In the first scenario, TSU pid2:

1. started at the beginning of conveyor a : m,
2. traveled at a constant conveyor speed,
3. reached merge unit m,
4. merged onto conveyor d : e via unit m,
5. continued travelling at the conveyor d : e constant speed,
6. reached the end of conveyor d : e.

124 The Nature of Material Handling Systems

Figure 4.9: Speed-density effect observed for a short MHS conveyor with a capacity of 7 TSUs.
Similarly to Figure 4.8, median traveling duration is provided instead of speed:
longer duration shows a slower average speed.

Note, it had no obstacles (other TSUs) on the way, so it

• traveled at constant speed on both conveyors,
• smoothly (without any delays) merged onto conveyor d : e.

The performance spectrum of this journey is shown in Figure 4.10(b), where seg-
ments s1 and s3 describe traveling on a : m and m : e, and segment s2 describes the
merge at m, i.e., passing through the merge unit and shifting to conveyor d : e. In
this performance spectrum, occurrences o1−o3 show the fastest possible performance
scenario because there were no delays on the way.

Now, we consider the second scenario where another TSU pid1, traveling from
location d to e, delayed the merging of pid2. For this scenario, we assumed that
conveyor d : e had a higher priority than a : m, so TSUs merging from a : m onto
d : e had to yield TSUs on d : e at merge location m. In this scenario, the TSUs were
handled as follows.

Step 1. TSU pid1 started first at location d at time t1.

Step 2. A bit later, pid2 started at a (t2). Their locations are shown in Fig-
ure 4.11(a), where pid1 had already been moved from the beginning of d : e toward

4.3 Modeling Building Blocks and Units with Queues 125

a2

(a)

a1

m

pid2

a:
m

m
er

ge
 a

t m

Time

(b)

t1 t2 t3

pid2

o1

o2

o3

d

e

a

t4

m
:e

s1

s2

s3

Figure 4.10: TSU pid2 merges without delays.

its end. The corresponding performance spectrum is shown in Figure 4.11(b), where
the occurrences of segments a : m (s1) and d : m (s′1) are shown on top.

Step 3. TSU pid1 reached merge location at time t3.

Step 4. A bit later at t4, pid2 reached m as well. However, pid1 effectively blocked
pid2 from merging onto d : e (Figure 4.12(a)). The corresponding performance spec-
trum is shown in Figure 4.12(b), where occurrence o1 of d : m describes traveling of
pid1 from d to m, and occurrence o′

5 describes travelling of pid2 from a to m till it
became blocked by pid1. Note, that while o1 is shown as a single straight line, o5 for
pid2 is split into two parts o′

5’ and o"5 to distinguish the movement time from waiting
time at m. Note, the performance spectrum, as it is defined in Chapter 3, does not al-
low such compound occurrences; however, we use them to explain better the system
behavior.

Step 5. While pid2 remained blocked at m, pid1 smoothly continued on m : e.

126 The Nature of Material Handling Systems

a2

(a)

a1

m

a:
m

an
d

d:
m

se
rv

ic
e

at
 m

id
le

 a
tm

Time

(b)

t1 t2

pid1 pid2
d

e

a

m
:e

pid1

s1 and s’1

s2

s3

s4

pid2

Figure 4.11: TSUs pid1 and pid2 started their journey at time t2 (a), the corresponding per-
formance spectrum contains starting occurrences on top (b); segments a : m and
d : m are shown on top of each other.

Step 6. Finally at t6, there was enough free space at m on d : e for merging a TSU,
so pid2 merged onto d : e at t7 (Figure 4.13(a)).

Note, to enable merging, all the following conditions must be satisfied:

• no TSUs are presented at merge location m on d : e, and
• there is some protective space PrS between a TSU that is the closest to m on

m : e (e.g., pid1), which we assume to be equal to the TSU average length.

4.3 Modeling Building Blocks and Units with Queues 127

a2

(a)

pid1a1

m

pid2

a:
m

an
d

d:
m

se
rv

ic
e

at
 m

id
le

 a
tm

Time

(b)

t1 t2 t3 t4

pid2

o1 o’5

d

e

a

m
:e

s1 and s’1

s2

s3

s4

pid1

o”5

Figure 4.12: Both TSU reached the merge location almost simultaneously by time t4. How-
ever, pid2 could not be diverted onto d : e at t4 because pid1 occupied the merge
location.

That is, pid2 had to wait not only till pid1 left the merge location, but also till
it traveled far enough to ensure PrS in between. The corresponding performance
spectrum is shown in Figure 4.13(b), where:

• occurrence o2 describes how pid1 passed m.
• an additional segment idle at m shows how m ensured space PrS between pid1

and pid2 (o4) by waiting till pid1 was moved further from m toward e (the
beginning of o3).

• o6 describes how pid2 merged at m,
• and o7 describes the future movement of pid2 on m : e.

128 The Nature of Material Handling Systems

a2

(a)

pid2a1

m

a:
m

an
d

d:
m

se
rv

ic
e

at
 m

id
le

 a
tm

Time

(b)

t1 t2 t3 t4 t6

pid2

o1

o2

o4

o’5

d

e

a

m
:e

PrS
p

pid1

t5

s1 and s’1

s2

s3

s4

o”5

pid1

o3 o7

o6

m

t7

Figure 4.13: pid2 had to wait for t6 − t4 (occurrence o′′
5) till pid1 left the merge location, and

protective space PrS was created.

Finally, let us consider the third scenario where the load on conveyor d : e was
higher, as shown in Figure 4.14.

Initially, there were TSUs pid1 and pid2 (Figure 4.14) surrounded by protective
spaces PrS. There was also a “free” area f ′ (filled with green squares) between the
protective spaces. However, it was too short for a TSU to be merged. At the same time,
accumulating conveyor a : m had a queue of three TSUs (pid3−pid5) at the end (belts
a1 : a2, a2 : a3, and m). Moreover, there was already TSU pid6 before accumulating
belt a1 : a2, and pid7 at the conveyor beginning (location a). As a result,

4.3 Modeling Building Blocks and Units with Queues 129

a2a1

m

pid3

d

e

a PrS
p

pid4pid5pid6
PrS

p
pid1

pid2

PrS
p

pid7 f’

a3

f”

Figure 4.14: Under high load conditions, fewer gaps, long enough to accommodate a TSU
and the surrounding protective spaces, were available; at the same time, free
but unreachable spaces (e.g., f ′ and f ′′) were wasted, decreasing the effective
capacity of the conveyors.

• TSUs pid1 and pid2 did not utilize the capacity of d : e optimally because free
space f between them was too small for a TSU to be merged, so it was a
“wasted” capacity unit of conveyor d : e,

• pid6 could not be handed over onto a1 : a2, so belt a : a1 was stopped till a1 : a2

was available. Additionally, free space f " between pid6 and pid7, i.e., some
capacity of d : e, was wasted since no TSUs could reach it.

In this scenario, conveyor d : e was not exceeding its maximal capacity, but it was
still unavailable because of some non-optimal TSU spatial configuration that did not
allow its full utilization.

We conclude that in general, a higher conveyor load increases the chances of a
delay, as demonstrated in Figures 4.8 and 4.9, and explained by the examples above.
Next, we show how conveyors exposing this effect can be modeled using queueing
theory.

4.3.2.2 Modeling Conveyors as State-Dependent Queues

Previously, we explored the speed-density effect for vehicle traffic and TSU flows. If
we use the state-independent queue, like M/G/1/K queueing system we introduce
before, for modeling conveyors with this effect, we fail to reflect the dependency
between the speed (or traveling duration) and density (conveyor load). To take this
effect into account, the M/G/c/c state-dependent models have been described for
modeling vehicular and pedestrian traffic flows [21, 27], as well as for modeling
MHS conveyors [18]. In Kendall’s notation, the M stands for stationary Markovian
arrival (Poisson) process, G stands for General service process, the first c stands for c

130 The Nature of Material Handling Systems

parallel servers, and the last c stands for a queue of capacity c, including the capacity
element of jobs in service. Because the capacity element of jobs in service is equal to
the server number, it means actually no queue, as the whole capacity is used for jobs
in service. µ(N) stands for the exponential mean service rate depending on the active
job number. This queue graphical representation is shown in Figure 4.15.

M/G/c/c

μ(N)

λ θ

Figure 4.15: M/G/c/c state-dependent queue graphical notation: stationary Markovian arrival
M (arrival rate λ), general service process G with c parallel servers and capacity
(i.e., no queue).

Let us provide some intuition about the idea behind this model. Jobs arrive ac-
cording to a Poisson process at arrival rate λ. Note when all c servers are busy,
arriving jobs (representing TSUs) are lost to the system. The service times are dis-
tributed according to a general distribution G. In contrast to M/G/1/K system in
Section 4.3.1, the service rate depends on the current number n of jobs in the sys-
tem, i.e., each system server works at rate f (n). So, when a job arrives or departs,
the service rate changes to f (n +1) or f (n −1), respectively. A speed-density curve,
such as we showed in Figure 4.8 and 4.9, can be linearly or exponentially approxi-
mated [21, 27]. For MHS conveyors, an exponential state-dependent delay curve is
more accurate [18, 76]. Such an approximation can be incorporated into the model
for deriving the probability distribution P (n) of the number of jobs in the system.

Let the state of the system at any time be the amount of work already performed
on jobs that are still in the system, i.e., the state is x = (x1, x2, . . . , xn), x1 ≤ ·· · ≤ xn . As
argued in [27], if there are n jobs (n ≤ c) in the system and x1, x2, . . . , xn is the amount
of work already performed on these jobs, the process of successive states will be a
Markovian process in the sense that the conditional distribution of any future state
will depend only on the present state. In the theorem presented in [27], Equation 8
defines the probability distribution for the M/G/c/c state-dependent queue model,
depending on the number n of jobs in the system. This equation incorporates an
approximated speed-density curve we discuss above. Then, in the corollary to the
theorem, it is said that in the M/G/c/c state-dependent model, the departure process
(including both jobs completing the service and those that are lost) is a Poisson pro-
cess at rate λ. For further details, we refer to [27, 76]. That corollary is of crucial
importance because it allows to chain M/G/c/c systems into a queueing network, as
both, their arrival and their departure, are Poisson processes.

4.4 Modeling Material Handling Systems with Queueing Networks 131

So, an (accumulating) conveyor of capacity c (TSUs) can be modeled as a M/G/c/c
queue, in order to take the speed-density effect into account [18]. In the following,
we show how the M/G/1/K and M/G/c/c models can be used for modeling the MHS
building blocks, units, and their various configurations.

4.4 Modeling Material Handling Systems with Queue-
ing Networks

Previously, we considered the state-dependent M/G/1/K model as a model of the
single-resource single-conveyor unit, and state independent M/G/c/c queue model as
a model of the accumulating conveyor. However, we need to model more complicated
merging and diverting units, and connections between conveyors and units as well.
For that, queue models can be organized into queueing networks. Queueing networks
can be classified in different ways. However, in this section, we consider how MHSs
can be modeled using open and closed queueing networks [75] with blocking [17],
and how different MHS configurations can be modeled, using queueing networks of
these classes.

4.4.1 Modeling with Open Queueing Networks

Open queueing networks assume external arrivals and departures, so the number of
jobs varies over time. Within the network, a job that completed service at one queue
can either leave the network, or go to another queue, according to the routing. The
routing can be either probabilistic or deterministic. The example of an open queueing
network with deterministic routing is shown in Figure 4.16. This queueing network
represents the merge unit shown in Figure 4.10 and discussed in Section 4.3. We
model it through a single M/G/1/K queue for the merge unit resource, and three
M/G/c/c queues for the incoming and outgoing conveyors, as in [18]. TSUs arrive
to either queue a : m or d : m according to a Poisson process with rate λ/2. After
service is finished at either of the queues, it is deterministically routed to the queue
m, and then to queue m : e, where it finally leaves the system. Note, in our example,
the unit resource has a single capacity element (shown in orange in Figure 4.10), so
parameter K is actually 1. Parameters c of the M/G/c/c queues a : m, d : m, and m : e

are equal to the corresponding conveyor’s capacity.

4.4.2 Queueing Networks with Blocking

Queueing theory studies queues of infinite and finite capacity. A queue with infinite
capacity can always receive a job from another queue or the arrival process. Although
infinite capacity allows simpler models, it does not reflect the characteristics of many

132 The Nature of Material Handling Systems

a:mλ/2

d:mλ/2

M/G/1/K

m

μ

μ(N)

μ(N)

m:e

μ(N)

M/G/c/c

M/G/c/c

M/G/c/c

θ

M/G/1/K

x

μ

Figure 4.16: Queueing network modeling the merging unit m and its incoming and outgoing
conveyors.

real systems. For example, the capacity of MHS conveyors is always finite. In this case,
queues with finite capacity can be used. In queueing networks with such queues, if a
job is routed to a queue that is currently full, the phenomenon of blocking is observed,
i.e., the job becomes blocked until its queue-receiver is available.

Let us explain the phenomenon of blocking in more detail by example. For that,
we consider again the behavior of merge unit m, shown in Figure 4.10. So far, we
considered the scenarios where the receiving conveyor m : e is not full, i.e., when
it still had some free capacity for receiving TSUs. In reality, this is not always the
case. For example, a conveyor can be fully occupied under high load conditions, or
when a consequent conveyor/resource is unavailable. Let us consider a scenario when
conveyor m : e was fully occupied because some resource x at its end is temporarily
unavailable. The corresponding state (at time moment t6) is shown in Figure 4.17(a),
where TSUs pid1 and pid2 have already been merged onto conveyor m : e, but pid3

and pid4 are still waiting for merging.
The corresponding performance spectrum (with “compound” occurrences) in Fig-

ure 4.17(b) describes this scenario in detail. First, pid1 and pid2 traveled through
a : m (occurrences opid1

a:m and opid2
a:m), then passed the merge location m (opid1

m and
opid2

m), and continued on m : e (o′pid1
m:e and o′pid2

m:e) until conveyor m : e stopped at time
t6 because of resource x unavailability. We call it a blockage. Note that at time t6, pid3

was almost ready to be merged because protective space PrS2 was almost provided.
However, when m : e stopped, conveyor belts of a : m, carrying pid3 and pid4, also
stopped as there was no space to hand pid3 over. As a result, there was another block-
age on the preceding conveyor a : m. In such a scenario, we say that a blockage of
conveyor m : e propagated backward onto conveyor a : m. The blockage was observed
until time t7, when resource x resumed, so conveyor m : e could continue. In the
performance spectrum, all the occurrences for the time interval [t6, t7] are visualized
as horizontal lines because there was no progress of the corresponding entities. For
example, TSU pid3 in occurrence o′′pid3

a:m was not moving from a to m but standing

4.4 Modeling Material Handling Systems with Queueing Networks 133

still. When conveyor m : e continued its moving, pid3 could be merged immediately,
and in the following everything went on smoothly.

In this example, we considered the scenario that affected just four TSUs in a tiny
system. In real MHSs, a blockage can cause a cascade of other blockages, as well as
the propagation of load peaks throughout the system [77, 78].

To model blocking in systems, queueing networks with blocking have been exten-
sively studied [17]. Several different blocking types have been proposed in the liter-
ature, which describe different types of behaviors on blocking. We assume Blocking
After Service (BAS) as suggested in [18]. BAS assumes the following blocking sce-

a2

(a)

a1
m

pid3

a:
m

m
er

gi
ng

at

 m
id

le
at

 m

Time

(b)

t1 t2 t3 t4 t6

pid1
pid2

oa:mpid1

d

e

a

t7 t8 t9 t10

m
:e

PrS2

t5

s1

s2

s3

s4

PrS1
pid1

pid4

pid3 pid4

oa:mpid2 o’a:mpid3

o’a:mpid4

t11 t12 t13

o”a:mpid4

o’’’a:mpid4

o”a:mpid3

o’m:e
pid1

o”m:e
pid1

o’’’m:e
pid1

o’m:d
pid2
o”m:e

pid2

o’’’m:e
pid2

om:e
pid3 om:e

pid4

ompid1 ompid2 ompid3 m
pid4

oPrS1 oPrS2 oPrS3

pid2

x

t=t6

Figure 4.17: Resource x blocks conveyor d : e; as a result, a : m gets blocked as well due to
inability to hand over pid3 onto a : m.

134 The Nature of Material Handling Systems

nario. When a job on completion of its service at one queue a attempts to enter
another full queue b (i.e., the queue b is blocked), it is forced to wait at queue a,
occupying the server space, until a space becomes available at destination queue b.
As a consequence, server a is forced to stop (i.e., the server is blocked) until its space
becomes available for another job waiting in its queue. Server a can resume as soon
as the blocking job departures to b.

If we consider the scenario with blockage and assume BAS for the model in Fig-
ure 4.16, we can describe it as follows. At time t6, queue m : e got blocked, so pid2

could not depart from resource m (as its protective space was still in the merge lo-
cation, we considered it occupied). Consequently, queue a : m became blocked. At
time t7, queue m : e got a free capacity element again, so resource m and queue a : m

resumed.
The analysis of queueing networks with blocking allows estimating various perfor-

mance metrics per node, such as utilization, throughput, mean queue length, mean
response time, the number of non-empty and non-blocked servers, etc. Additionally,
the distribution of various random variables is typically used for the detailed analy-
sis. For example, the distribution of the job number, distribution of job passage time
through the node, stationary queue length distribution, i.e., the stationary probability
of having n jobs at a node in the steady state (see Section 4.5.1.5) can be used. In
principle, by estimating the throughput of a node, AQ8 can be answered. Using the
metrics of individual nodes, average performance metrics for the whole queueing net-
work can be derived, for example, the throughput, mean population, mean residence
time, mean passage time from node i to node j , etc. For detailed information about
queueing networks with blocking, we refer to [17]. In this thesis, for queueing net-
works we assume BAS. In the following, we show how various MHS configurations
can be modeled using queueing networks with blocking.

4.4.3 Modeling MHSs Using Open Queueing Networks

Previously, we showed how to compose the fundamental building blocks of our choice,
i.e., M/G/1/K and M/G/c/c queues, into an open queueing network to model a merge
unit (Figure 4.16). Now, we consider how to model the other typical configurations
of conveyors and resources, and finally how to model the whole system.

To model sequentially connected conveyors and resources, M/G/1/K and M/G/c/c
queues can be connected into a series, as shown in Figure 4.18. In the model in
Figure 4.18(a), queue M/G/c/c is prepended to queue M/G/1/K. In this way, for
example, a conveyor, moving TSUs toward a machine (resource), can be modeled.
In Figure 4.18(b), the queues are connected in the opposite order, modeling, for
example, a conveyor moving TSUs from a machine (resource). In Figure 4.18(c), two
M/G/c/c are connected. This configuration can be used to describe two connected
conveyors with different characteristics, e.g., with different speed-density curves. In

4.4 Modeling Material Handling Systems with Queueing Networks 135

M/G/c/c

μ(N)

θ

M/G/1/K

μ

M/G/c/c

μ(N)

λ

M/G/c/c

μ(N)

θ

λ(b)

(c)

M/G/c/c

μ(N)

θ

M/G/1/K

μ

λ(a)

Figure 4.18: Chains of M/G/1/K and M/G/c/c queues.

principle, such conveyors can be modeled using a single M/G/c/c queue. However,
introducing two queues can result in a more precise description of the system and
more accurate analysis results. Inside each series, routing is deterministic, because
each TSU on service completion arrives in the next queue.

Then, the queueing network of a diverting unit model is shown in Figure 4.19.
Similarly to the merge unit model in Figure 4.16, the M/G/1/K queue, modeling the
resource, is connected to the incoming and outgoing conveyors. For this model, a
more complicated routing model is needed to support various policies of this unit. A
simple routing function would assign equal probability to each possible route, while
a more complicated one would receive the overall system state as its argument, for
example, to model load balancing.

Finally, we model the whole system we discussed in Chapter 2 (see Figure 6.1) to
illustrate how it can be modeled from the building blocks. We assemble it using the
models of series and merge units discussed above (Figure 4.20). For that, we assume
that one resource is allocated per each check-in counter a1 and a2. TSUs (bags)
arrive in queues a1 and a2 according to a Poisson process at rate λ/2 and are served
at service rate µ. For the check-in counters, merge unit, and exit unit we assume the
exponential service time. On the check-in completion, bags depart to state-dependent
queues a1 : b′ or a2 : b, where their service rate µ(N) depends on the number of bags in
the queue. After the completion of service in queue b, bags go to the state-dependent
queue b : c and afterward to queue c, where they leave the system. For this queueing

136 The Nature of Material Handling Systems

M/G/1/K

μ

θ/2

θ/2

μ(N)

μ(N)

M/G/c/c

μ(N)

λ

M/G/c/c

M/G/c/c

Figure 4.19: Combinations of the M/G/1/K and M/G/c/c queues model merge (a) and divert
(b) units.

a1:b’
λ/2

a2:b

M/M/1/K

b

μ

μ(N)

μ(N)

b:c

μ(N)

θ

M/G/c/c

M/G/c/c

M/G/c/c

M/M/1/K

a1

μ

M/M/1/K

a2

μ

M/M/1/K

c

μλ/2

Figure 4.20: Combination of M/G/1/K and M/G/c/c queues models the system in Fig-
ure 6.1(a).

network, we can use deterministic routing, as no alternative routes are possible. We
provide the example of a BHS; however, other types of MHSs can be modeled in the
same way.

4.4.4 Modeling MHSs using Closed Queueing Networks

For the throughput analysis under constant load conditions, a closed queueing net-
work can be used. In contrast to an open queueing network, there are no external
arrivals or departures in a closed queueing network, so some constant number of
jobs continually circulates in the queueing network. On service completion, a job is
routed to another queue in either a probabilistic or deterministic way similar to open
queueing networks, except it cannot leave the system. This way of modeling allows
controlling the amount of work.

4.4 Modeling Material Handling Systems with Queueing Networks 137

For example, the conveyors of merge unit m, shown in Figure 4.10, have some
finite known capacity, which can be fully utilized under high load. If we assume this
condition lasts infinitely long, it means a large (infinite) number of TSUs constantly
waiting for arriving to the system. When one TSU exits, another TSU is ready to
enter. In closed queueing networks, a job that finished its service is “reused”. A
closed queueing network, modeling the merge unit, is shown in Figure 4.21, where
the output of queue m : e is short-circuited to the input of queues a : m and d : m.
Closed queueing networks are used for determining the throughput in the out-to-in
links, so this “short-circuited” model allows exploring the merge unit under a chosen
load.

a:m

d:m

M/G/1/K

m

μ

μ(N)

μ(N)

m:e

μ(N)

M/G/c/c

M/G/c/c

M/G/c/c

Figure 4.21: Closed queueing network modeling a merge unit.

Similarly, a model of a conveyor series (Figure 4.18), a model of a diverting unit
((Figure 4.19)), and the whole MHS (Figure 4.20) can be short-circuited and con-
verted into a closed queueing network, in order to do the throughput analysis for a
chosen amount of work.

In the MHS domain, the throughput analysis of loop sorters is the subject of par-
ticular interest, as they are usually the most critical pieces of the whole system. Typ-
ically, high-load conditions are the focus of the analyst. The model of a loop sorter
of Figure 4.5 is shown in Figure 4.22. In the model, the series of queues a : b, b,
b : a, a model the loop itself, and queues b : s and s : b model the shortcut, where a
workstation is installed. The network is short-circuited from queue a to a : b.

138 The Nature of Material Handling Systems

a:b

M/G/1/K

b

μμ(N)

s:b

μ(N)

M/G/c/c

M/G/c/c

b:a

μ(N)

M/G/c/c M/G/1/K

a

μ

b:s

M/G/1/K

s

μ

Figure 4.22: Combinations of M/G/1/K and M/G/c/c queues modeling a loop with a shortcut
going through the workstation (see Figure 4.5).

So far, we showed that an MHS can be potentially modeled as a queueing net-
work, by assembling it from the building block. In the next section, we consider the
limitations and drawbacks of this approach.

4.5 Analysis Limitations

Previously, we described how MHSs can be modeled with queueing networks, us-
ing state-of-the-art approaches. Now, we discuss their limitations for answering our
AQs. We start by discussing the MHS analysis limitations using queueing networks
in general, and the described approach [18] in particular, and conclude by discussing
another approach that uses queues for modeling — queue mining, aimed to overcome
(at least partially) these limitations.

4.5.1 Limitations of Analysis with Queueing Theory

In this section, we discuss multiple factors limiting the analysis of MHSs with queue-
ing theory using analytical methods.

4.5.1.1 Variable Conveyor Capacity Due To TSU-to-TSU Distances

In Section 4.3, we described the merge unit and protective space required between
neighboring TSUs on a conveyor, which is required for the correct operation of the
system equipment. Depending on the conveyor type, there exist various policies for
providing protective space. For example, in Figure 4.23(a) the conveyor has divided

4.5 Analysis Limitations 139

into trays of equal size, each tray carries exactly zero or one bag, and at least two trays
must be empty between neighboring TSUs (as protective space). While the whole con-
veyor has eight trays, at most three TSUs can be carried at the same time. If TSUs
are placed in a way that more than two trays are empty between two neighboring
TSUs, these extra trays are “wasted” unless more TSUs get inserted in between. For
example, in Figure 4.23(b) the real capacity is just 66% from the maximum one. If
there are only three or four empty trays in between, merging in between is impossible
because that would violate the policy. As a result, the actual capacity of the conveyor
decreases. In Figure 4.23(c), the conveyor has another policy for protective space: the
distance between the back sides of one bag and the front side of the directly following
bag (on the same conveyor) must be at least δ (δ is shown as a block of black and
white bars). This policy takes into account the length of each TSU, thereby maximiz-
ing the conveyor utilization. A non-optimal placement of TSUs leads to the decrease
of the conveyor capacity in a similar way as for the conveyor in Figure 4.23(a,b).

(a)

(b)

(c)

pid3 PrS PrS pid2 PrS PrS pid1PrS

pid2 PrS PrS PrS PrSPrSPrS pid1

pid1

pid2pid3

PrSpid4 PrSPrS

Figure 4.23: Different policies for protective space on MHS conveyors.

As a result, while the maximum capacity can be computed for a conveyor (for
example, assuming an average TSU length), its current capacity at each moment is a
function of the protective space policy, the length of each TSU placed on a conveyor,
and their spatial configuration. Moreover, the policy can be changed dynamically
depending on the overall system state, or the system operator’s decision. So, a con-
veyor queue model with some finite capacity c is always an approximation, which can
significantly differ from the actual one and can cause significant errors during the
performance analysis.

140 The Nature of Material Handling Systems

4.5.1.2 State-Dependent Queues and Protective Space Policies

Modeling MHS conveyors using state-dependent M/G/c/c queues is based on the ob-
servation that the TSU travel time depends on the conveyor load. Let us consider it
in more detail. Indeed, we observe the dependency between the conveyor load and
the travel time, for example, in Figure 4.8 and 4.9. However, does it depend only on
the load? As we show in Figure 4.14, this effect can be caused by short-term delays
occurring when a TSU cannot be smoothly (i.e., without a delay) handed over to the
consequent conveyor d : e because this conveyor does not have room at the merge
location m. The heavier load on both conveyors, the higher the delay probability for
the TSUs being merged. That is, the service time in M/G/c/c queue modeling con-
veyor a : m additionally depends on the state of the consequent queue (conveyor)
d : e where TSUs can be routed afterward. In turn, the state of d : e depends on the
previous states of a : m because it (at least partially) forms the load and TSU spa-
tial configuration (including protective space) on d : e. As a result, the departure
process of an M/G/c/c queue, modeling an MHS conveyor, actually depends on the
previous states of the previous and next queues. So, by taking into account just the
speed-density effect, these queues cannot approximate conveyors accurately.

4.5.1.3 Routing

In queueing networks, the routing function usually defines the probabilities of a job to
be routed to each queue in the system, and the probability of leaving the system (for
open queueing networks). In work we considered [18], stochastic routing is used as
well. Nevertheless, let us consider the routing in MHSs in more detail to understand
when stochastic routing is the right choice, and when it is not, by the example of the
BHS in Figure 1.1.

In this system, the material handling process defines the current TSU destination,
taking into account

• the time before the actual flight departure,
• TSU location,
• TSU state (e.g., whether it is successfully identified or not),
• overall system state,
• and so on (see Figure 4.24).

Then, to route TSUs to their destinations, a prioritized list of possible routes to each
destination is dynamically defined in dynamic routing tables. Normally, a TSU is sent
through a route with the highest priority. However, a lower prioritized path can be
chosen instead because of the occupancy or unavailability of certain conveyors and/or
resources along the way with a higher priority. As a result, routing depends on both
system process and system state at each moment of time, i.e., it can be defined as a
function frouting(ni ,n j ,process,state) of the path from node ni to n j , system process and

4.5 Analysis Limitations 141

system state. In practice, the routing is typically implemented as a large complicated
software component continuously watching the system state in order to compute an
optimal route for each TSU in the system.

MHS Process

Routing

System state

Environment

Figure 4.24: Routing in MHSs.

How to model this routing? The answer depends on the analysis goals. For
throughput analysis during the system design or extension phase, defining a stochastic
routing function that approximates the main behavior under some chosen conditions
would be a practical and accurate way to describe routing. However, other analysis
types require modeling of outlier behaviors (routing for outliers) as well. For ex-
ample, post-mortem bottleneck analysis requires a deep understanding of where and
why each TSU traveled at each moment of time, especially for outliers. During anal-
ysis, the analyst “replays” recorded information about TSU locations in the system,
in order to explain how the behavior of many TSUs together resulted in a bottle-
neck (AQ3, AQ5, and AQ6). For this type of analysis, a stochastic routing function,
modeling the general behavior only, would not help because (1) it does not model
outliers, and (2) each “turn” on a TSU way has to be explained by facts and not by its
probability.

However, defining an accurate stochastic routing function would be extremely
useful for answering AQ8 because it does not require to consider individual TSU
paths. In the next section, we discuss whether a queueing network model, assembled
from the queue models discussed earlier in this chapter, is capable of modeling the
routing of real-world MHSs accurately.

4.5.1.4 The Nature of Conveyor Departure Processes

For a state-dependent M/G/c/c queue, modeling an MHS conveyor, the departure
process is considered to be Poisson [18, 19, 20, 76]. However, we identified two

142 The Nature of Material Handling Systems

reasons that make this approximation accurate only under very limiting conditions.
First, in Section 4.5.1.2 we discussed that the queue state depends on its own previous
states, as well as on the states of the queue from/where its TSUs are routed, and
therefore cannot be considered as a Poisson process. Second, let us consider how
the routing affects the nature of the arrival process of queues where TSUs come after
a split. For example, in Figure 4.25, TSUs from conveyor (queue) a can be either
diverted toward the early bag store through conveyor c, or kept on the loop (b). If we
assume that the original process is Poisson process, and if the probabilistic splitting
is done in a manner that is independent of the inter-arrival times of the original
arrival process, then one can easily show that the processes obtained after splitting
are Poisson processes as well. However, as we discussed above, the routing process
is not probabilistic. Even if we assume a Poisson process for conveyor A departures,
a non-random split makes the arrival processes to those two destination queues non-
Poisson. So, the assumption about the Poisson nature of conveyor departures hardly
holds for real-world MHSs.

Early Bag Store

ab

c

Figure 4.25: TSU flow split.

4.5.1.5 Analysis of Queueing Networks Under Transient and Steady State Con-
ditions

In queueing theory, the transient and steady states are typically distinguished for a
queueing system. The steady state means that the system is in its equilibrium state,
i.e., the probability Pn(t) of having n jobs at time moment t does not depend on t .
Otherwise, the system is in the transient state. An illustration of a possible transition
from the transient state into a steady state is shown in Figure 4.26, where the system
starts operating in a transient state, then eventually reaches the steady state. It is
often assumed that after a queue system has been operative for a sufficiently long
period of time, probability Pn(t) becomes independent of time t . There also exists

4.5 Analysis Limitations 143

the term temporary steady state [79] for referring to a finite, relatively short period of
steadiness in the system.

Time

Transient state
Steady
state

0

P
n
(t

)

Figure 4.26: Transient and steady states of a queueing system.

Typically, the analysis of queueing systems is done for steady-state conditions for
the following reasons [80]:

1. the analysis of a system in equilibrium allows to study its structure, limits and
connections between various parameters that characterize it, and

2. many systems come to a steady state soon after their operations start.

When the focus of the analysis is on the system behavior before it reaches the
steady state, or if the system never reaches it, or reaches it in unknown period of
time, the transient state analysis is needed. However, the problem of the transient
analysis is much harder than the problem of the steady-state analysis, so the number
of known results and related algorithmic tools is significantly less than for the steady
state analysis [81]. As a result, the transient-state analysis is usually done through
simulation [82].

However, when is an MHS in the transient state, and when is it in the steady state?
Let us consider again the system example shown in Figure 1.1. The material handling
process of this system aims to maintain the best performance for the incoming pas-
senger baggage flow, taking into account the flight schedule, occasional flight delays,
and correcting operators’ actions. The passenger arrival process depends on the flight
schedule and information about flight delays, i.e., the probability of having n bags in
the system heavily depends on the time. We can assume that the system can be in a
temporary steady state from time to time, for example, at night if there are no flights
scheduled, but such states are barely interesting for the analyst. So, we assume that
MHSs are mostly in the transient state, so their analysis under steady state conditions
cannot answer our AQs.

Although the approaches we considered before [18, 19, 20] use complicated mod-
els of MHS conveyors, they are designed for MHS analysis in the steady state. How-
ever, there are queue mining approaches, relevant to our AQ8, that do not require the
system being analyzed to be in a steady state.

144 The Nature of Material Handling Systems

4.5.1.6 Limitations of Approximation Techniques and Simulation

So far, we considered the limitations of analytical methods. However, if analytical
methods cannot be used, approximation techniques can be applied. For example, the
individual queues of a queueing network can be analyzed in isolation based on their
arrival and departure processes [83], and a network with blocking after service is
decomposed into individual nodes with modified arrival processes, to solve it using
flow balance and Maximum Entropy techniques in [84]. However, many approxima-
tion techniques also have limitations making their application in the MHS domain
infeasible, for example:

• analysis under the steady state conditions,
• a small to medium network size,
• a deadlock-free network,
• static routing,
• first-block-first-served policy,
• etc.

Moreover, the accuracy of the results cannot be guaranteed [75].
When restrictive assumptions do not allow for system analysis using analytical

or approximation methods, simulation is usually used. It often allows for reflecting
reality better than analytical models or approximation techniques because simula-
tion does not require many simplifying assumptions. For example, the frequent as-
sumptions about Poisson arrivals and exponentially distributed service time are not
required for simulation. Additionally, the simulated routing algorithm can closely
reflect the real one, even if it is dynamic, as is often the case in MHSs.

On the other hand, the design and implementation of complex processes or sys-
tems require deep knowledge of the system and excellent engineering skills. More-
over, it is time-consuming. Speaking from experience obtained at Vanderlande, in-
cluding simulation of a small-sized BHS that we consider later, simulation is usually
used for relatively “small” MHSs to determine a limited set of the equipment param-
eters during the system design phase and to visualize the system for the customer.
However, simulation is infeasible for larger MHSs due to much manpower required
for implementing an accurate model, and the high number of computational-intensive
experiments required for obtaining comprehensive results. As a result, emulation sys-
tems, built using real system components, are usually used in practice instead.

4.5.2 Limitations of Analysis with Queue Mining

A particular class of process mining tasks for process performance analysis is called
queue mining [85]. It establishes a queueing perspective in process mining and con-
siders queues as first-class citizens. Queue mining techniques [34, 85, 86, 87, 88]

4.5 Analysis Limitations 145

are partially grounded in process mining, and partially in queueing theory. For exam-
ple, their input can be an event log and a process model (given or discovered from
the event log). Similarly to the process model, the characteristics of queues, used
by a technique, are also derived (mined) from the log. The resulting model can be
used to compute the waiting time of cases (i.e., the time interval when a case was
waiting in a queue), and the service time of cases (i.e., the time interval when a
case was served by a server), at any time moment. These characteristics can be used
for revealing bottlenecks, detecting SLA violations, computing descriptive statistics of
different performance measures, and calculating various KPIs. For doing visual ana-
lytics, a queueing network can be visualized in a graphical form, where each queue
and server can be annotated with their state, e.g., the number of waiting cases can be
visualized for each queue.

For this thesis, we consider queue mining works to be most relevant for solving
AQ8. The most recent queue mining work, related to AQ8, addresses the case remain-
ing time prediction problem, using so-called congestion graphs [87]. This problem
can be potentially converted to the problem of aggregate performance KPI prediction.
This approach

1. automatically discovers congestion graphs from event logs,
2. extracts features related to congestion in the system for any observed time mo-

ment, and
3. enriches existing ML-based approaches with the features related to congestion,

derived from congestion graphs.

The congestion graph is built from the process queueing network model. Let us con-
sider this underlying model in more detail. As a queueing network, a Generalized
Jackson Network (GJN) has been chosen as the most general model in single-server
queueing theory [89]. GJN allows renewal arrival processes and independent, identi-
cally distributed non-exponential service times. Jobs are assumed to be indistinguish-
able, and routing is assumed to be Bernoulli distributed. Each server has only one
resource. The state of GJN corresponds to a Markov process, known as the Markov
State Representation (MSR) that comprises the following triplet per node [16, 89]:

1. the queue length,
2. the elapsed time since the most recent arrival,
3. the time since the start of the most recent service.

The MSR characterizes congestion at each system queue. The congestion graph is the
transformation of a GJN, where each edge corresponds to the GJN queue, and the
node labeling is based on the MSR. Given an event log where the activities describe
the GJN servers, the MSR can be restored from event logs for any moment of the
observed time interval besides the ongoing cases because, for the ongoing cases, the
queues where they are waiting are not observed yet. Because of this uncertainty for

146 The Nature of Material Handling Systems

the ongoing cases at the time when a prediction is made, the approximation of MSR
that does not require knowledge of the next activity of the ongoing cases is used
for the node labeling (we refer to [87] for the exact definition). This labeling can be
used as the source of congestion-related features for various ML-based time prediction
approaches, potentially relevant for answering AQ8.

However, what are the limitations of this approach with respect to AQ8? As we
discussed previously, much less general queueing networks, built form state depen-
dent M/G/c/c queues, assuming not general but Poisson processes, cannot provide a
good approximation of systems without batching yet has many limitations, caused,
for example, by the complexity of routing in MHSs. It comes as no surprise that a
more general GJN introduces even more inaccuracy and limitations. We consider the
most important ones the following.

• In GJNs, a renewal arrival process is a less strict requirement than a Poisson
process in queueing networks of [18] because other than exponential holding
times (i.e., intervals between consequent arrivals) are allowed. However, hold-
ing times still must be independent, but this is not the case for systems without
batching, as we showed in Section 4.5.1.4.

• The MSR does not take into account the TSU-to-TSU distance (protective space),
thereby losing crucial information about the TSU state on the conveyors.

• Complicated system routing is not taken into account by assuming Bernoulli
distributed routing.

So, while the congestion graph state characterizes congestion in the system over time,
it fails to capture the larger part of MHS dynamics and cannot answer AQ8.

4.6 Chapter Summary

This chapter addresses the problem of MHS modeling and analysis using queueing
theory-based approaches. In the beginning, we distinguished two large classes of
MHS — with and without batching and decided to scope this thesis to the former
class. Then, we formulated the actual analysis questions, obtained from the study
conducted among Vanderlande’s process engineers. This study aimed identification
of actual problems for solving by any suitable analysis techniques. Using the ability
to answer these questions as a criterion for selecting the modeling and analysis tech-
nique, we started our exploration from queueing theory. We successfully identified
the building blocks queueing theory has for modeling the real-world MHSs and found
the relevant work for modeling and analysis of MHSs. We partially verified the find-
ing of these works, including the so-called speed-density effect. However, the MHS
behavior is so complex that the existing approaches, despite their sophisticated math-
ematical models, provide a good approximation only under strict limiting conditions,

4.6 Chapter Summary 147

thereby making them hardly applicable for the given AQs. In contrast, the more sim-
ple and more general models behind the queue mining approaches imply even more
limitations, therefore having even less applicability. Obtaining the precise model and
doing the detailed analysis of a real-world MHS using queueing theory appears to be
overwhelmingly hard, and no work allowing that could be found during the literature
study.

Nevertheless, the key concepts of the queueing theory-based modeling approaches,
such as modeling MHS conveyors as FIFO queues where TSUs wait for the service
provided by the servers (MHS resources), and routing between the queues, reflect
the nature of MHSs very well. This understanding is the input of crucial importance
for reasoning about the behavior of system without batching. In the remainder of
this thesis, we use the term systems with shared resources and queues instead of sys-
tems without batching and MHS (when applicable) because it describes this class of
systems more accurately. In the next chapter, we review works related to the AQs,
and in Chapter 6 we adopt these concepts to define the process model of systems
with shared resources and queues, using the concept of FIFO queues for modeling
conveyors, the concept of servers for modeling resources, and the concept of routing
for modeling the material handling process.

Chapter 5

Review of Literature

In this chapter, we review existing works related to answering the AQs formulated
in Section 4.2 and the methods, outlined in Section 1.3 and proposed in this thesis.
Figure 5.1 shows how this chapter is organized.

Goals Descriptive performance
analysis

Predictive
performance
monitoring

Data preparation,
process modeling and
conformance checking

RQ1 (Ch. 3)
Performance

spectrum

RQ4 (Ch. 7)
Generalized

conformance
checking

RQ6 (Ch.8)
Multi-dimensional

performance
analysis

RQ3 (Ch.6)
Modeling

RQ7 (Ch.9)
Predictive

performance
monitoring

RQ2 (Ch.4)
Systems with

shared resources
and queues

RQ5 (Ch. 7)
Inferring missing

events

Section 5.1 Section 5.2

Section 5.3

Section 5.4

Figure 5.1: Review of literature follows the main flow of this thesis, starting with modeling and
going toward predictive performance monitoring.

150 Review of Literature

We consider works related to modeling of material handling processes in Sec-
tion 5.1 and review works on conformance checking in Section 5.2. We consider
works on descriptive process performance analysis and predictive performance mon-
itoring in Section 5.3 and Section 5.4 respectively. Note, we review works related to
Chapter 3 and Chapter 8 together in Section 5.3 because both the performance spec-
trum and method for multi-dimensional performance analysis address the related
problems.

5.1 Analytical and Behavior Models

In this section, we consider queueing theory-based analytical models, queue mining
approaches, and behavioral process models.

Queueing Models and Networks. There were deterministic and stochastic queue
models developed [17]. In one of the first works on MHS deterministic models [90],
the authors considered a system consisting of one loading station, one unloading
station, and a conveyor in between, providing insight into a fundamental under-
standing of a conveyor as the part of a dynamic system, and the way of obtaining
variables for a smooth flow between the conveyor endpoints using simulation. In ex-
tensions [91, 92, 93] of this work, algorithms calculating these values and conveyor
stochastic models were proposed.

Stochastic models are generally more complicated than deterministic ones but
reflect reality better. A travel time between the series of stations in a closed loop
was considered first as a random exponentially distributed value in work on discrete
stochastic models [94]. This work was extended for generally distributed values for a
system with two stations [95] and for larger systems and multiple job classes [96, 97].

The founding works on continuous stochastic models of conveyor systems [98,
99, 100] were extended by the works of other researcher [91, 101, 102, 103] who
considered various system topology, the phenomenon of blocking, and so on.

Among recent works related to the MHS domain, analytic solutions for queueing
models with multiple waiting lines, where either (1) jobs choose servers or (2) servers
pick up jobs, were reviewed in [104], where the 2×2 switch can be seen as a model of
a combined merge/diverting unit. However, only isolated service centers were in the
scope, i.e., no queueing networks capable to model an entire MHS were considered.
Analytic results for two-carousel systems for getting insights for large-scale systems,
when analytic studies or simulation are intractable, were presented in [105]. How-
ever, this work did not consider the whole system or sorters that have multiple entries
and exits. An analytical model to determine the maximum throughput capability
of zone picking systems, which is also applicable to BHSs, was proposed in [106].
It extended [107] by additionally considering congestion and blocking at conveyor
merges, which can significantly affect the system throughput. The system was mod-

5.1 Analytical and Behavior Models 151

eled as a closed queueing network. The resulting queueing network considers a con-
stant number of jobs (e.g., bags) in the system, thereby targeting its application to
the design phase of the MHS lifecycle.

Other works addressed actual problems of business process analysis disregard-
ing the process domain. Thus, advanced queueing models for quantitative analysis
of business processes with many-to-many relations between activities and resources,
and case types with different performance properties were proposed in [108], and
extended with an approximation for the parallel construct in [109]. These works al-
low translating BPMN models into queueing networks, but assume block-structured
models [110, 111] (and processes respectively), the FIFO discipline for serving, and
Poisson arrivals. All these assumptions do not hold for the MHS considered in this
thesis (see Chapter 4). Waiting times in models with multi-server queues where ser-
vice times are affected by the load were analyzed in [112]. The authors concluded
that such differences in service times are inadequate to ignore if they exist in practice,
e.g., in call centers.

A dependency between waiting times and load was exploited in the series of
works [18, 19, 20, 21, 27]. The authors proposed models based on a state-dependent
M/G/c/c queue that is capable of modeling a so-called speed density effect observed
for pedestrian and vehicle traffic [21, 27], when speed drops when the traffic den-
sity grows. Further, they showed the same effect in BHSs and applied the same ap-
proach [18, 19, 20]. These works are based on the key assumption about Poisson
arrivals that does not hold for MHSs considered in this thesis.

Queue Mining. If an analytical solution is unavailable, or its underlying assumptions
do not hold, the queue characteristics can be assigned manually using a-priori domain
knowledge [34, 113], or inferred automatically using data recorded from process ex-
ecution. Thus, the field of queue mining [79] uses an event log and process model,
either given or automatically discovered from event logs, to derive a queueing net-
work topology, and the characteristics of this queueing network. From the perspective
of addressing AQ1-AQ8, the most relevant work is [87], where a so-called congestion
graph is built from a generalized Jackson network whose topology is derived from
a process model. The states of all the queueing network nodes, annotating the con-
gestion graph nodes, describe the current process state. This information is used as
the source of congestion-related features for various ML-based time prediction ap-
proaches. In contrast to approaches in [18, 19, 20], this work has fewer assumptions
about the distribution of the waiting and service times in the system.

For a detailed discussion about queueing theory- and queue mining-based ap-
proaches, we refer to Section 4.5.

Behavioral Models. In the fields of business process management and process min-
ing, Perti net theory lays the foundation for process modeling. Over decades, Petri nets
with black tokens, as well as various model notations based on Petri nets, have been

152 Review of Literature

widely used for describing the control-flow perspective of business processes. For a
more detailed discussion, we refer to [1]. However, black tokens do not allow distin-
guishing the behavior of multiples instances (cases) together in one run, thereby lim-
iting process analysis that is based on these models. ν-Petri nets [114] overcome this
drawback by introducing token identities. Nonetheless, such models usually describe
the behavior of a single entity in the control-flow perspective, leaving the behavior of
other entities across the process perspectives, as well as their relations, out of scope.

The problem of modeling behaviors of multiple entities across various process per-
spectives is addressed by various approaches. In the series of works [115, 116, 117],
the authors addressed the problem of verification of data and processes. Thus, DB-
nets were proposed as the marriage of process models and relational databases [115].
For that, a process is modeled with CPNs [63] as a variant of ν-Petri net with name
creation and management, called ν-CPN, while special “view” places serve for retriev-
ing data from the database. Update logic on transitions serves for updating the per-
sistent data. The extension of this work [116] allows getting rid of the view places by
using ν-CPNs with priorities. Finally, catalog nets, proposed in [117], can be seen as
a modeling approach based on “pure” CPNs for the case of read-only persistent data
represented as catalogs on places, while read-write data are still partially represented
through tokens attributes. Within these approaches, multiple entities can be modeled
in a monolithic ν-CPN, while their relations are modeled in the relational database
for [115, 116], and directly in a ν-CPN in [117]. However, modeling multiple entities
in the same net makes it difficult to apply existing analysis techniques to such models.

Process structures [118] integrate relational modeling and behavior modeling but
use dedicated behavioral models without existing analysis techniques.

The model of proclets, called a proclet system, defines one behavioral model (a Petri
net) per entity. In proclet systems, entities can interact asynchronously via message
exchange [119] or synchronously via dynamic transition synchronization [48], allowing
to describe many-to-may relations with correlation and cardinality constraints between
the entities. When a Petri net with token identifiers, e.g., a ν-Petri net, is used as a
proclet model, same-entity instances are distinguishable in a system run. Object-
centric Petri nets [120] are the special class of CPNs, which are structured to model
the flow and synchronization of different objects (or entities). They correspond to
synchronous proclet systems [48] where the synchronization has been materialized
in the model structure.

Synchronous proclet systems [48], on the one hand, allow modeling multiple en-
tities and their relations with constraints, but on the other hand, they are too com-
plicated for simpler relations of the process, queues, and resources in MHSs. At the
same time, their proclets in the form of ν-Petri nets cannot describe the token orders
in queues.

Instance Spanning Constraints (ISC) and Process Spanning Constraints (PSC) [121]
limit ways in which instances of the same or different processes respectively can be

5.1 Analytical and Behavior Models 153

executed. For example, if batching on the execution of a process step a is mandatory,
it is an ISC. However, if the instances of multiple processes must execute their partic-
ular activities simultaneously, it is a PSC. In [121], four categories of ISC/PSC have
been considered:

1. simultaneous execution of activities,
2. constrained activity execution,
3. order of activity execution, and
4. non-concurrent execution of activities,

and algorithms for their discovery have been suggested. Formalization of these ISCs
and PSCs using proclet systems [119] and CPNs [49] has been proposed in [122].

Interestingly, many phenomena caused by ISCs [121] (e.g., different types of
batching) can be observed in performance spectra as instances of various performance
patterns (see Chapter 3). However, these instances do not necessarily correspond to
ISCs, they can be also ISC exceptions [123] or just arbitrarily happening behaviors.

In MHSs, spanning constraints of the constrained activity execution category, such
as batching and FIFO order, are usually observed. However, are they instance or
process spanning constraints? As we showed in Chapter 4, these phenomena happen
because of the behavior of resources and queues. If we consider them as separate pro-
cesses in terms of [121], the constraints they introduce are PSCs. However, describing
these constraints through constrained activity execution may be overwhelmingly dif-
ficult. Instead, if the MHS resources and queues are modeled explicitly as separate
entities, simpler PSCs — simultaneous execution of activities — can be sufficient to
limit behaviors.

PQR-Systems. All things considered, we conclude that none of the existing models
can serve as a “backbone” for the methods of this thesis, capable of answering the
AQs. Having said that, we determine that

• queues, servers, and routing functions of queueing networks [17] can perfectly
represent MHS conveyors, machines, and system layouts, and

• synchronous proclet systems [48] can be seen as a model allowing some super-
set of capabilities required for modeling MHSs.

In Chapter 6, we model MHSs as a dedicated synchronous proclet system, called
PQR-system, which describes the process, queues, resources, and their relations and
synchronization. In the PQR-system, we limit relations cardinality to one-to-one, en-
sure that correlation constraints are never violated, and extend ν-Petri nets to nets
with a richer syntax, which is a sub-set of CPN syntax [49] (similarly to ν-CPNs
of [115, 116]) for modeling queues. “Embedding” queues into a model is similar, to
some extent, to congestion graphs [87] of queue mining [79]. However, introducing
PQR-systems, we focus mostly on the queueing behavior and designed performance
characteristics rather than on inferring actual queue performance characteristics from

154 Review of Literature

data, in contrast to queue mining. Additionally, we define the replay semantics [1]
for the PQR-systems. It allows addressing the problem of relating data to the model,
which we consider next.

5.2 Conformance Checking and Log Repair

As we learned at Vanderlande, event data recorded from MHSs are usually incomplete
because of the logging approaches widely used in the industry, while a process model
may become incorrect due to concept drift, i.e., changing system parameters over
time. As a result, a classical assumption about a fully trusted event log or process
model [24] does not work. To deal with it, we adopt the concept of generalized
conformance checking that does not require trust in either log or data but unites the
three tasks of model repair, log repair, and conformance checking under a common
roof [44]. In the following, we consider works related to these tasks.

Conformance Checking. Conformance checking is one of the main types of process
mining [1, 24], and considered in many works. Alignment of an event log trace with
some “correct” process trace was suggested in [124] but it cannot be used to align a
trace with a process model. In contrast, a precise relationship between log events and
elements of a Petri net model is established through replaying event log traces over
the model by computing alignments between them in the founding work [43] and
its many extensions [24]. Conformance checking with uncertainty via satisfiability
modulo theories [125] is actual when event logs contain uncertain data [126, 127,
128]. However, the direct application of these approaches is limited to black-token
Petri nets and the control-flow process perspective that they describe, i.e., they do not
address the challenge of conformance checking of multiple process perspectives [24],
e.g., the process, queue, and resource ones described by the PQR-system.

In existing works, this challenge is addressed in various ways. Data-aware behav-
ioral compliance checking is addressed in [129, 130] by applying compliance rules per
trace and not per event log. An approach aligning an event log with a so-called Petri
net with data, that, besides the control-flow perspective, takes into account the data,
time, and resource perspectives, is considered in [52], and a way to obtain extended
conformance checking diagnostics for its result was considered in [53]. In [131]
authors extended [52] and treated all the process perspectives equally rather than
assuming the control flow as the most important. The aforementioned works con-
sider “flat” Petri nets, i.e., not-nested models without any hierarchy. The problems of
conformance checking of nested Petri nets are addressed in [132], while conformance
checking of artifact-centric process models is addressed in [133, 134] through behav-
ioral conformance checking of artifact models per model, and interaction conformance
checking of the interactions of artifact instances described by these models.

5.2 Conformance Checking and Log Repair 155

While existing works address the problems of conformance checking actual for
conformance checking over PQR-systems, none of them can be applied directly be-
cause the Q- and R-proclets use a more complex language than Petri nets with data [52]
or artifact models [133, 134]. However, the way how the time and data perspectives
are modeled and checked in Petri nets with data, and how the interactions of dif-
ferent artifacts (modeled by different models) are checked in [133, 134] are indeed
relevant for the problem of conformance checking of PQR-systems. We build on these
approaches by proposing their extensions and combining them for doing conformance
checking of PQR-systems.

Log Repair. In all operational processes in logistics, manufacturing, healthcare, ed-
ucation, and so on, complete and precise event data, including information about
workload and resource utilization, are highly valuable since they allow for process
mining techniques uncovering compliance and performance problems. Event data
can be used for replaying processes on top of process models [1], predicting process
behavior [32], and so on. All these techniques rely on the completeness and correct-
ness of given event data. It makes the problem of event log (data) repair actual in the
MHS domain, where data are usually incomplete.

Various approaches exist for dealing with incomplete data of processes with non-
isolated cases that compete for scarce resources. In call-center processes, thoroughly
studied in [135], queueing theory models can be used for load predictions under
assumptions about distributions of unobserved parameters, such as customer patience
duration [136] while assuming high load snapshot principle predictors show better
accuracy [85]. For time predictions in congested systems, the required features are
extracted using congestion graphs [87] mined using queuing theory.

Techniques to repair, clean, and restore event data before analysis have been sug-
gested in other works. An extensive taxonomy of quality issue patterns in event logs is
presented in [137]. Repairing inadvertent time intervals [137] is considered in [138].
In [139] resource availability calendars are retrieved from event logs without the
use of a process model, but assuming the presence of start and complete life-cycle
transitions, as well as case arrival time in the event log. Using a process model,
classical trace alignment algorithms [24] restore missing events but do not restore
their timestamps. The authors concluded (see [24], p. 262) that incorporating other
dimensions, e.g., resources, for multi-perspective trace alignment and conformance
checking is an important challenge for the near future.

Data models for event data over multiple entities have been studied extensively
in three forms. One type of event log describes entities just as a sequence (or col-
lection) of events [73, 140] where each event carries multiple entity identifier at-
tributes, possibly even having multiple entity identifier values. Behavioral analysis
requires extracting a trace per entity, thereby constructing a set of related sequen-
tial event logs [140, 141]. Other works construct a partial order over all events
using graphs: nodes are events, edges describe when two events directly precede/-

156 Review of Literature

follow each other and are typed with the entity for which this relation was ob-
served [142, 143, 144, 145].

Our log repair approach, proposed in Section 7.3.8, contributes to the problem
of reconstructing the behavior of cases and limited shared resources for which the
cases compete. Given a PQR-system and event table (see Section 2.4), we reconstruct
missing events through classical trace alignments over the proclet of the PQR-system,
representing the control flow. The dynamic synchronization [48] of all proclets in
the PQR-system allows inferring how and when sequential traces of resource entities
must have traversed over the process steps, which we express as a linear programming
problem [146] to compute timestamp intervals for the reconstructed events. For the
construction of the linear program, we make extensive use of the partial ordering of
events.

Enabling conformance checking over PQR-systems, and log repair for inferring
missing events with timestamp information, we enable generalized conformance check-
ing [44] based on these approaches.

5.3 Descriptive Performance Analysis

The process performance analysis from event data can be divided into descriptive,
predictive, and visual analysis, we refer to [36] for an extensive discussion. We sum-
marize descriptive performance analysis and visual analysis here, and predictive per-
formance analysis in the next section.

Descriptive Performance Analysis and Visual Analytics. Commonly, the process
performance is described by enhancing a given or discovered process model with in-
formation about activity durations (nodes in a model), or the waiting time between
activities (edges in a model) [1]. In the visualization, each node and edge can be
annotated with aggregate performance measures, e.g., average, minimal, or maxi-
mal value, for all the cases passing through this node or edge, as illustrated in Fig-
ure 3.1(a). The performance visualization on a model is more accurate if the discov-
ery algorithm takes the underlying performance information into account [147, 148].
A non-fitting log can be aligned to a model to visualize the performance informa-
tion [43]. However, a more detailed visualization of the performance characteristics
requires more dimensions. Wynn et al. [68] plotted different process variants (with
different performances) into a 3-dimensional space “above” the process model. Tran-
sition system discovery allows to split occurrences of an activity based on its context
and visualize performance in each context separately [67].

Techniques for describing the performance of all cases construct simpler models
through stronger aggregation [67]. Also, the recent temporal network representation
abstracts non-stationary changes in the performance over time [148].

5.3 Descriptive Performance Analysis 157

The representational bias of models, assumptions, and aggregation can be avoided
through visualization and visual analytics [72]. Dotted Chart [149] plots all events
per case (y-axis) over time (x-axis) allowing us to observe arrival rates and seasonal
patterns over time. Story graphs [150] plot a case as a poly-line in a plane of event
types (y-axis) and time (x-axis) allowing to observe the patterns of similar cases with
respect to the behavior and performance over time but convolutes quickly with many
crossing lines.

Performance Spectra. In Chapter 3 we proposed the performance spectrum, a model
and visualization that avoids the problems of [150] by describing the performance of
each process step without assumptions about the data (except having a log of discrete
events). The visualization reveals where a process violates typical assumptions about
the performance such as non-stationarity or cases influencing each other. Additionally,
we provided a taxonomy that describes these phenomena (see Section 3.3).

Process Model-Less and Model-Based Descriptive Performance Analysis. Build-
ing on phenomena revealed by the performance spectrum [45, 46, 151] (see Chap-
ter 3) and described in the performance patterns taxonomy [45] (see Section 3.3.2),
a method for detecting system-level behavior leading to dynamic bottlenecks in MHSs
is proposed in [77] for patterns describing congestion and higher load (blocking and
high-load system-level events in terms of [77]). This method is extended into a frame-
work for detecting system-level behaviors of high-level events of any type, configured
for the framework, for “classical” business processes in [78].

However, the method of [77], and the framework of [78] are model-less ap-
proaches, i.e., they cannot benefit from domain knowledge captured by a process
model. It results in several drawbacks, among which the incapability of root-cause
analysis of undesirable performance pattern instances (e.g., bottlenecks) is the most
important. We refer to Section 8.1 for a detailed discussion.

In Chapter 8, we contribute to the problem of root cause process performance
analysis by “marring” the performance spectrum and PQR-system. First, we intro-
duce the performance spectra of the queue and resource dimensions described by
PQR-systems, and show how the synchronization of the PQR-system proclets can be
explored in the spectra of the process, queue and resource dimensions. Then, we
propose a method for

1. tracking developments of blockage and high load instances in the performance
spectra down toward their origins, i.e., initial pattern instances, using knowl-
edge about the process captured in the PQR-system, and

2. doing their root cause analysis with the queue and resource performance spec-
tra.

Next, we review works on predictive performance analysis.

158 Review of Literature

5.4 Predictive Performance Analysis

For business processes, the remaining processing time for a case can be predicted by
regression models [70] or by decorating a transition system with remaining time [69],
prior trace clustering improves the prediction [152]. In [36], a Naive Bayes classi-
fier predicts the future path of a single running case and a regression model predicts
the transition durations on this path. The likelihood of future activities can be pre-
dicted using Markovian models [153], but without providing any time predictions.
The completion time of the next activity can be predicted by training an LSTM neural
network [39], or by learning process models with arbitrary probability density func-
tions for time delays through non-parametric regression from event logs [154] that
can also be used for learning simulation models to predict performance [71, 155].
Competing for shared resources can be taken into account through simulation mod-
els or with queuing models [156]. However, using only features of a single case,
these models cannot predict PPIs for non-isolated cases. Estimating an aggregate PPI
through the outcome of individual cases [157] cannot be used for non-mandatory
outcomes of non-isolated cases. Prediction of the remaining time for a single case
in processes with non-isolated cases is addressed in [35], where the intra-case fea-
tures of a running case of interest are coupled with inter-case features of concur-
rently running cases that are “close” to the case of interest in terms of control-flow
and temporal distances. However, in processes with tightly coupled dynamics such as
MHS processes, cases influence each other, e.g., congestions propagate through the
system, and resource problems affect groups of cases, impacting the overall system
performance. In [158], context data are considered as a possibly impactful factor for
process outcomes in logistics and manufacturing.

Among MHSs, BHSs are studied extensively. In the BHS domain, relationships be-
tween some bag- and system-related properties can be learned by feedforward neural
network models [159], but the results reported as just acceptable, even for the fully
controllable environment of a simulation model. A risk of baggage mishandling can be
predicted with an aggregate probabilistic flow graph as a function of travel durations
between system locations [160], while dynamic routing is not supported. Problem-
oriented simulation models allow identifying of bottlenecks and critical operations for
inbound baggage handling [22] and learning dependencies between security policies
and time characteristics of manual baggage screening [23]. In [161] the overview of
various simulation-based performance prediction techniques for baggage screening is
provided. While these simulation models are precise, their design requires in-depth
knowledge of a system design and proved to be time-consuming.

Our method, proposed in Chapter 9, contributes to the problem of predicting
aggregate PPIs for systems with shared resources and queues. We capture inter-case
dependencies by leveraging the performance spectrum and learning the unknown
system behavior from performance-related features of the performance spectrum.

Chapter 6
Modeling Systems with Shared
Resources and Queues

In Chapter 4, we showed how systems with shared resources and queues, i.e., a class
of systems without batching we focus on, can be considered as queues (conveyors)
and servers (resources) serving jobs (TSUs) interconnected through a routing func-
tion, defined according to the system layout. In Chapter 4, we also identified the lim-
itations of queueing networks related to our analysis questions AQ1-AQ8, provided
in Section 4.2. In this chapter, we propose a model that does not have these limita-
tions. For that, we first formulate the challenges for modeling systems with shared
resources and queues. Then, we introduce the main concepts for their modeling,
based on ν-Petri nets [114, 162, 163] and synchronous proclet systems [48, 119]. Fi-
nally, we introduce Process-Queue-Resource systems (PQR-systems) as a special class
of systems with shared resources and queues that allows the performance analysis
of individual MHS entities, as the analysis questions AQ1-AQ8 require. We provide
both PQR-systems formal definition and semantics. Additionally, we introduce a sim-
ulation model of a BHS and the corresponding PQR-system to demonstrate modeling
concepts. Further in the thesis, we use the PQR-system as input for our methods and
the simulation model as a source of synthetic event data.

6.1 Challenges for Modeling Systems with Shared Re-
sources and Queues

In this section, we discuss how the interactions of various MHS entities result in
complicated system behavior, and in turn, what modeling challenges rise because of
this complexity. To provide more concrete examples, we mostly consider BHSs and

160 Modeling Systems with Shared Resources and Queues

the bags they handle, assuming that our reasoning is also applicable to the other types
of MHSs.

6.1.1 Complicated Dynamics of BHSs

As we showed in Chapter 4, BHSs can be described and analyzed in terms of entities
of the following types.

1. Bags (jobs in the queueing theory terms) that travel throughout the system and
visit locations where various process steps are executed.

2. Resources (servers in the queueing theory terms) that perform process steps.
While a machine’s resource is “wired” to the machine performing a particular
process step, e.g., to a scanner performing baggage security screening, a work-
station is operated by a worker who can also do other process steps at other
workstations.

3. Conveyors (queues in the queueing theory terms) that move bags throughout the
system via its resources, e.g., an accumulating conveyor can move bags from a
divert unit of a sorting loop to a security scanner.

Each type of these entities serves a different purpose and therefore behaves dif-
ferently. In the system, each separate entity follows its own behavioral rules to fulfill
its purpose but must synchronize interactions of its “interfaces” with the other enti-
ties. Let us show that for all the entity types, using a BHS shown in Figure 1.1 as an
example.

Bags. Each bag has to reach its final destination on time, undertaking mandatory
process steps on the way. Initially, each bag is handed over to the system, then it goes
along one of the multiple possible paths leading to its final destination. Depending
on the bag’s current state, the sequence of process steps to be completed can change
on the way. For example, if a bag could not be identified automatically, it must
undergo the manual identification process before resuming the “standard” sequence
of process steps. Each bag is processed independently, i.e., its sequence of process
steps to be completed does not depend on the states of the other bags in the system,
transportation means (e.g., accumulating or non-accumulating conveyors), and so
on. Finally, a bag journey ends by exiting the system.

Resources. A system resource receives bags from one or multiple incoming conveyors
(its input), performs a process step, and hands the bag over to one of the outgoing
conveyors (its output). Disregarding the input/output configuration, each resource
has the following life cycle:

1. it is idle initially,
2. it receives a bag through its input and becomes busy,

6.1 Challenges for Modeling Systems with Shared Resources and Queues 161

3. it performs a process step in some service time, needed, for example, to transport
a bag through the resource location/equipment,

4. it becomes free again when the bag is handed over to the subsequent conveyor.
However, as we described in Section 4.1.1, some protective space is typically
required between neighboring bags. Because of that, a transition from state
busy to state idle typically takes some non-zero time, which we call the resource
waiting time twR. The resource waiting time allows the processed bag to travel
a bit further from the resource location, thereby making protective space in
between.

In order to maintain this cycle for each individual bag,

1. a resource naturally synchronizes at least twice with a bag: when it takes a bag
in and starts working on it, and when it finishes working on a bag and moves it
out/forward,

2. all resources in this thesis are assumed to have the capacity limit of one, i.e.,
when a resource synchronizes with a bag and takes it in, it is busy and cannot
take in another bag (i.e., it always synchronizes with one bag at once between
the start and complete.

This life cycle is valid for both machines and workers. However, there are two aspects
that are different:

• the service time of machines is usually similar or the same for each bag, while
for workers it depends on their skills, physical state, and so on.

• workers, in contrast to machines, are not permanently attached to a single loca-
tion and/or process step but can perform different steps at different locations.

Conveyors. Each conveyor has exactly one input and one output. It takes in bags
handed over by a resource on one end, then moves them toward the other end, and
hands them over to another resource. On a conveyor, the bags stay in the order
they entered it, and need non-zero time to pass through. The conveyor properties,
such as the speed, capacity, and whether it is accumulating or not, vary. Similarly
to resources, conveyors do not operate in isolation but synchronize with the other
system entities as follows.

1. Conveyors continuously synchronize with bags: every bag that is put onto a
conveyor is tied to this conveyor (i.e., both are synchronized in their move-
ment). The conveyor belt movement naturally determines how the bags on it
move forward, so we observe conveyor to bag influence.

2. At the end, i.e., while handing the bag over, whether the bag can be handed over
impacts the conveyor, because the conveyor may have to stop (see Chapter 4),
i.e., we observe bag to conveyor influence.

162 Modeling Systems with Shared Resources and Queues

6.1.2 BHS Modeling Challenges

As Chapter 4 shows, to answer our AQs (see Section 4.2), a BHS model needs

1. to distinguish the individual behavior of multiple bags, and
2. to describe how bags compete for shared resources (conveyors, machines).

It is needed because most of our AQs require the behavioral analysis of either one
or multiple individual bags that synchronize with various individual resources and
conveyors. For example, the bottleneck root-cause analysis (see AQ3 in Section 4.2)
requires the analysis of load to individual conveyors and resources, to understand
when, where, and why particular bags caused periods of higher load, congestion,
and eventually bottlenecks. For such analysis, the behavior of bags, queues, and
resources have to be described as distinguishable entities. Moreover, because the
entities synchronize (as described in Section 6.1.1), the model needs to describe the
interaction of these entities as well.

These requirements make the direct use of classical process models, such as Petri
nets, difficult, so more sophisticated process modeling techniques are needed. To
describe the behavior of entities of different types, we adopt the model of synchronous
proclets [48], which

1. describes different entities as separate proclets (e.g., separate Petri nets), and
2. describes how the proclets synchronize using synchronous channels between

them.

Further, to distinguish individual entities of the same entity type modeled by the same
proclet, we use the ideas of unique identifiers of ν-Petri nets [114, 162, 163]. Using
these ideas together, we tailor a dedicated synchronous proclet system, which we
call a PQR-system, capable to describe BHS entities of these types (bags, resources,
queues) with multiple distinguishable instances of the same entity (e.g., multiple
different bags), and their synchronization on the level of individual entities.

In the following, in Section 6.2, we recall basic ideas of ν-Petri nets and syn-
chronous proclets, and illustrate how they can be used to describe systems with
shared resources and queues by defining a proclet P for processing TSUs according
to the system layout, proclets Q for queues (conveyors), and proclets R for resources.
The synchronization of these proclets then allows for describing and decomposing
the system behavior from the perspective of all three entity types. In Section 6.3, we
design a PQR-system by describing the Q- and R-proclets using a subset of CPNs, and
explain PQR-system replay semantics. Finally, in Sections 6.4 and 6.5, we define the
PQR-system and its semantics formally.

6.2 Concepts for Modeling Systems with Shared Resources and Queues 163

6.2 Concepts for Modeling Systems with Shared Re-
sources and Queues

Before we present the formal definition of PQR-systems, we first introduce the neces-
sary concepts informally. For that, we introduce

• how to describe different uniquely identifiable entities of systems with shared
resources and queues, and

• how to describe the behavior of these entities using the CPN concepts we recap
in Chapter 2

Later in this chapter, we build on these concepts to define the PQR-system and its
semantics.

6.2.1 Distinguishing Same-Type Entities by Token Identifiers

A classical process model NE (Section 2.2) describes the processing or behavior of
instances of a single entity E , e.g., transportation of a bag in a BHS. This can be for-
malized as a single labeled net NE = (PE ,TE ,FE ,`E). The behavior of one instance of
E , e.g., a concrete bag, then follows from consuming and producing “black” tokens in
NE , which defines an occurrence sequence, i.e., a run of NE (see Definition 2.4) [164].
Black tokens in such nets are indistinguishable. In Section 2.2, we model a toy BHS
that accepts bags at check-in counters a1 and a2, merges bag flows from these coun-
ters at location b, and finally delivers bags at lateral c (Figure 2.1(a)). It is modeled
as a labeled Petri net in Figure 2.1(b). Let us consider two black tokens on place p2

in the net. It is impossible to say which token corresponds to which bag in the system
(Figure 2.1(a)). So process models, based on nets with black tokens, significantly
limit the capabilities of analysis of individual instances of an entity when multiple
instances are present in a run.

Petri nets with token identities [114, 162, 163] are a way to describe the behavior
of multiples instances of an entity together in one run, e.g., to describe the handling
of multiple bags together in a BHS. We can express the ideas of Petri nets with token
identifiers in a CPN where each place has a color set of token identifiers, as follows.

The CPN model NBHS in Figure 6.1(b) extends the model in Figure 2.1(b). It
describes the handling of individual entities of type bag. In the model, each arc has
expression pid, where variable pid has type ID (defined as string) that models the
set I of identifiers (see Definition 2.7). The initial transitions without pre-places are
always enabled. A new instance of the entity, described by such a CPN, is created
by generating a new identifier id ∈ I by a transition with an empty preset. In our
example, when transition t1 or t4 occurs, a new identifier value id ∈ I is bound to
variable pid on arc (t1, p1) or (t4, p3) respectively. For our work, we assume that in

164 Modeling Systems with Shared Resources and Queues

a1 a2

Check-in counters

Lateral c

Merge unit b

pid1

pid2

pid3

(a) (b)

Figure 6.1: MFD (a) and CPN model (b) of a BHS.

a CPN for any transition with the empty preset and outgoing arcs with variable pid,
variable pid is always bound to a new value of the identifier id ∈I never seen before.

Further, net NBHS behaves as usual. The instance id advances by an occurrence of
an enabled transition of the net in that instance id: any transition t ∈ NBHS is enabled in
instance id when each pre-place of t contains an id token; firing t in instance id then
consumes and produces id tokens as usual. The distribution of identifier tokens over
the places of NBHS, which also have color set ID, describes the state of each instance

6.2 Concepts for Modeling Systems with Shared Resources and Queues 165

id. The state of the entire entity NBHS for all its instances is then a distribution of
multiple tokens from I over the places of NBHS. That is the state of the entity is
described by its current marking. In our example, the current marking (the state of
the entity) is:

• mcurrent (p1) = m(p3) = m(p4) = m(p5) = m(p7) = [],
• mcurrent (p2) = [pid2,pid3],
• mcurrent (p6) = [pid1].

From marking mcurrent (p2) = [pid2,pid3], we see that bags pid2 and pid3 are in state
p2 (at location p2), while bag pid1 is in state p6 (at location p6). Note, as a result of
assigning unique identifiers to the tokens, the tokens on place p2 become distinguish-
able, in contrast to Figure 2.1(b).

The partially ordered run (Definition 2.4), leading to marking mcurrent , is shown
in Figure 6.2, where we can see that the events and conditions of each instance are
completely independent of the events and conditions of the other instances. The run
describes a partial order of events.

Figure 6.2: Run of the CPN of Figure 6.1(b).

166 Modeling Systems with Shared Resources and Queues

6.2.2 Distinguishing Multiple Interacting Entities by Synchronous
Proclets

The previous section showed how to distinguish the instances of the same entity using
tokens with identifiers. It also showed that within a single entity, instances are com-
pletely independent. That is not true for BHSs. For example, bags interact through
shared resources and conveyors. So, to describe the behavior of a BHS more ade-
quately, entities of all three types have to be modeled, as well as their synchronization.
Using synchronous proclet systems [48], different entities can be modeled as different
nets that are called proclets, and their synchronization can be described through so-
called synchronization channels. In the following, we explain the ideas and concepts
of synchronous proclet systems as they were introduced in [48] along the BHS exam-
ple. Later in Section 6.3, we point out how this model needs to be extended to fully
describe BHS dynamics.

Bags. This entity type refers to the process of bag handling according to the system
layout, i.e., entering the system, visiting various locations for performing process
steps (by resources), and leaving the system at the assigned final destination. In our
example of a simple BHS, we have two start locations a1 and a2 where bags can enter
the system, one possible path from each start location (a1 → b → c and a2 → b → c

respectively), and the only exit c. The CPN model of this entity is already described in
a detailed manner in Section 6.2.1 and shown in Figure 6.1(b). In the proclet system,
this CPN becomes a proclet that we call a Process proclet (or a P-proclet). There is
always just one P-proclet in the proclet system, i.e., only this proclet describes the bag
handling process (entity bag).

Resources. The second entity type is resource. In our example, we have:

1. two check-in counters (workstations) with two resources (workers) rid1 and
rid2 (Figure 6.3(a)),

2. one merge unit with a single resource rid3,
3. one lateral (exit) with a single resource rid4.

In the following, we show that we model the life cycle of each resource identically.

First, we consider the check-in counters. At their locations (a1 and a2), the sys-
tem has two operators (workers), and each operator can work at any counter, for
example, to replace the other operator who has a break. We describe them as en-
tity R-operators (R stands for Resources) of type resource, where each operator is an
instance of this entity, modeled through a unique resource identifier token. We call
proclets that model resource entities R-proclets. The model of entity R-operators is
shown in Figure 6.4(a). Two resources are represented (and easily distinguishable)
as tokens rid1 and rid2 on place idleops. Each of them has the following life cycle.

6.2 Concepts for Modeling Systems with Shared Resources and Queues 167

a1
a2

b

Check-in counter
operators

Lateral c

Merge unit b

pid2

pid3

(a) (b)

rid1 rid2

pid1

qid1
(a1:b’)

qid2
(a2:b)

qid3
(b:c)

rid3

rid4

Figure 6.3: Diagram of the BHS of Figure 6.1, including resources and queues (a) and its CPN
model (b).

1. When a bag enters one of the workstations, a free token (rid1 or rid2) on place
idleops is consumed by an occurrence of transition startops, and that resource
identifier is produced on place busyops, i.e., the corresponding resource becomes
busy and starts the bag handling.

2. After the bag handling is completed and the bag has completely left the ma-
chine location, the “busy” token on place busyops (rid1 or rid2, depending on
which one was previously consumed from place idleops) is consumed by an

168 Modeling Systems with Shared Resources and Queues

occurrence of transition completeops, and that resource identifier is produced
“back” on place idleops, i.e., the resource becomes free and available for serving
the next bag.

Figure 6.4: Resource proclets.

Next, we consider a different resource – merge unit b that has two inputs and one
output. It receives bags coming either from check-in counter a1 or a2 and merges
them into the single conveyor b : c going to exit c. We describe it as R-proclet R-
merge-b (Figure 6.4(b)) as follows. Because a merge unit can handle only a single
bag at a time, entity R-merge-b has only one instance with resource identifier rid3.
The merge unit lifecycle is as follows.

1. The resource of the unit is free initially (the only token is on place idle).
2. On receiving a bag, resource rid3 switches into state busy (by an occurrence of

transition startrid3).
3. After merging is finished and the bag has left the unit, the resource switches

back to state idle (by an occurrence of transition completerid3 token rid3 is con-
sumed from place busyrid3 and the same resource identifier is produced on place
idlerid3).

4. Finally, lateral (exit) c receives bags through its only input and off-loads them
out of the system (for example, for further loading onto a dolly-tug and trans-
portation to aircraft). It also has only one resource rid4 as it can process one
bag at a time.

This resource is modeled as R-proclet R-exit-c (Figure 6.4(c)), similarly to the merge
unit resource rid3. As we can see, the life cycles of all those resources are identical.
However, their parameters, such as the service and waiting time, can be different.
Later in this chapter, we introduce them in resource models, and we use them in
Chapter 7 for our log repair approach.

6.2 Concepts for Modeling Systems with Shared Resources and Queues 169

Conveyors. The third entity type is conveyor. A conveyor takes a bag in, moves it
forward, and hands it over to the following machine. Depending on the conveyor
capacity (proportional to its length), it can move one or multiple bags at the same
time, while the bags leave conveyors in the same order they entered them. As we
discussed in Chapter 4, we consider conveyors as FIFO queues, where incoming bags
are enqueued to the queue, and outgoing bags are dequeued from it. In Section 2.3,
we used a CPN model of a FIFO queue as a running example (see Figure 2.7), so we
refer to it for the detailed description. In this chapter, we re-use this model for the
implementation of conveyor entities as Q-proclets (Q stands for Queue). Because one
conveyor is a single queue, each conveyor entity has only one instance. In our exam-
ple, conveyor a1 : b′ between check-in counter a1 and merge unit b (Figure 6.3(a))
is modeled as Q-proclet Q-a1:b’ (Figure 6.5), where place qqid1 contains the queue
instance identifier qid1, and place capacityqid1 has 3 tokens for capacity 3. The other
queues Q-a2:b and Q-b:c are modeled identically, while the values of the queue in-
stance identifiers (qid2 and qid3 respectively), and queue capacity (3 bags per each
queue) are configured per entity. In Figure 6.6, the system with all the P-, Q- and
R-proclets is shown.

Figure 6.5: Queue proclet.

To summarize, we model a BHS as a single P-proclet for describing different in-
stances of the entity bag, and multiple Q- and R-Proclets for describing different en-
tities of the types of conveyor and resource. Each R-proclet and Q-proclet is the same
but their parameters, such as instance identifiers, capacities, etc. can be different.
Note, that the models shown in Figure 6.1(b), Figure 6.4, Figure 6.5, and Figure 6.6
still miss some more technical details for a complete formalization, but they illustrate
the ideas behind the final formal model what we define in this chapter. In Section 6.3,
we introduce the templates of Q- and R-Proclets that can be configured by such pa-
rameters and used for modeling all the system resources and conveyors uniformly.
Next, we show how proclets representing separate entities synchronize in the proclet
system.

170 Modeling Systems with Shared Resources and Queues

Figure 6.6: Synchronous proclet model of the BHS shown in Figure 6.1(a).

6.2.3 Behavior of BHSs through Synchronous Proclets

So far we described bags, conveyors, and resources as separate P, Q, and R-proclets,
and made each entity instance distinguishable through unique token identifiers. To
describe how bags interact with resources and queues, a proclet system has channels
that describe how transitions of different entities can synchronize.

Synchronous Channels. In the proclet system, a synchronous channel is defined by
the pair of transitions (ti , t j), thereby connecting two transitions. Usually, these tran-
sitions belong to different proclets. A local transition that is not connected via any
channel always occurs on its own. However, two transitions, connected by a syn-
chronous channel, occur simultaneously. For example, transitions t1 of proclet Pro-
cess and transition t12 of proclet R-operators in Figure 6.6 are connected by channel
(t1, t12), which is shown as a dotted line, and therefore occur simultaneously.

In general, a transition can be connected by channels with multiple transitions,
and synchronize with one or multiple different transitions at a time. For example,
transition t12 synchronizes either with transition t1 or t4, while transition t2 synchro-

6.2 Concepts for Modeling Systems with Shared Resources and Queues 171

nizes with t10 and t13 simultaneously. To distinguish these situations, the channels
are labeled, and only transitions connected by channels with the same label occur
simultaneously.

For example, in Figure 6.6, channels (t1, t12) and (t4, t12) have different labels
a1s and a2s respectively, so either transitions t1, t12 or t4, t12 occur simultaneously.
In contrast, channels (t2, t10) and (t2, t13) have the same label a1c , so transitions t2,
t10, and t13 occur simultaneously.

In the following, we first explain how channels synchronize transition occurrences,
then describe how to interpret the run in the terms of baggage handling, and finally
discuss the partial-order semantics of synchronous proclet systems.

Semantics. We explain the intuitive semantics of synchronous proclet systems using
the run of the system of Figure 6.6, shown in Figure 6.7(a) as follows.

1. In the run, the bordered transition t1 (a1s of the bag process) occurs (event e1

in the run) and creates token pid2 ∈I on place a1, thereby creating an instance
of the entity bag.
Because transition t1 is connected with transition t12 (i.e., the start transition of
proclet R-operators) through channel (t1, t12), t12 occurs (event e1′ in the run)
together at once with t1 in a single synchronized event e1∗. We refer to such
synchronized events by appending the asterisk symbol ’*’ to event identifiers.
Note, transition t12 was enabled initially because the initial marking provided
resource identifier tokens rid1 and rid2 on place idleops.
The occurrence of t12 (event e1′) consumed (i.e., “engaged”) resource rid1 for
handling bag pid2, and produced the same resource identifier on place busyops,
making rid1 busy, i.e., unavailable for handling other bags.

2. Similarly, the other bordered transition t4 (a2s of the bag process) occurs (event
e7) and creates token pid1 ∈ I on place a2, creating another instance of the
entity bag.
Again, together with t4, the start transition t12 of proclet R-operators occurs
(event e7′) in the synchronous event e7∗, because t4 and t12 are connected
through channel (t4, t12).
This time, t12 consumed the other resource identifier token rid2 from place
idleops and made it busy by producing the same resource identifier on place
busyops.

3. Then, t2 (transition a1c for the bag process) synchronizes with t13 (the com-
plete transition for R-operators) and t10 (the entire transition for queue Q-a1:b’)
in event e2∗ (synchronization of events e2, e2′, e2′′) for identifier tokens pid2,
rid1 and qid1 respectively. It means the bag pid2 moves from location a1 to the
queue (conveyor) a1 : b′ and resource rid1 becomes free (idle) again.

In the run, events of the same instances directly cause each other, e.g., e2 is di-
rectly caused by e1, and e2′ is directly caused by e1′. As those events occurred as

172 Modeling Systems with Shared Resources and Queues

Figure 6.7: The run of the synchronous proclet system of Figure 6.6, part 1. The second part is
shown in Figure 6.8.

6.2 Concepts for Modeling Systems with Shared Resources and Queues 173

Figure 6.8: The run of the synchronous proclet system of Figure 6.6, part 2. The first part is
shown in Figure 6.7.

174 Modeling Systems with Shared Resources and Queues

synchronized events e1∗ and e2∗, e2∗ is directly caused by e1∗. The labeled partial
order in Figure 6.8(b) shows causalities between synchronized events. While e1∗ and
e2∗ are related to each other, some other events are not. For example, e1∗ and e7∗
do not causally depend on each other, so they are unordered in the partial order.

Let us follow the rest of the path of bag pid2 through the system.

1. In event e3∗ three transitions synchronize. An item on queue qid1 reaches the
end of the queue and is dequeued, i.e., t11 fires. Bag pid2 starts process step b,
i.e., t3 fires. Free resource rid3 of R-merge-b starts handling pid2 and switches
from state idle to busy (t14). As a result, bag pid2 starts merging onto the main
linear conveyor b : c.

2. Afterward, t15 (resource rid3 finishes handling) synchronizes with t7 (the com-
pletion of process step b for pid2) and t20 (the enqueue transition for queue
Q-b:c) in event e4∗, bag pid2 is merged onto conveyor b : c.

3. Subsequently, bag pid2 leaves queue Q-b:c (e5∗) and gets out of the system by
exit c (e6∗). If we continue applying these concepts, we obtain the full run of
synchronized events in Figure 6.7. In contrast with the run in Figure 6.2, the
sub-runs of instances pid1,pid2 are not independent but ordered in queue qid3

(conveyor b : c) at events e4∗,e10∗,e5∗ and e11∗. This can be clearly seen in
the labeled partial order of the event in Figure 6.7(b).

Because we model each system entity (bags, conveyors, resources) separately, and
distinguish entity instances through unique identifier tokens, the run for the entire
system is an interaction of runs of each of the involved instances of the entities, i.e.,
we can find the run of each entity back in the run of the full system. This property is
crucial for defining the semantics of such models for conformance checking and log
repair.

Nevertheless, the existing definitions of synchronous proclet systems [48] can-
not precisely capture the behavior of systems with shared resources and queues be-
cause they have no support for data types with element ordering, such as queues, and
no support for modeling time characteristics, such as the minimum waiting time in
queues. So in Section 6.4 we provide the exact definition capturing this behavior.

6.3 Approaching Modeling: PQR-Systems

In this section, we present the example of Section 6.2 now in the full formal syntax
of PQR-systems and describe the system run example of Section 6.2 using these con-
cepts. We focus on how the identifiers of the process, queue, and resource proclets
interact, especially through the queue proclets. For that, we introduce the syntax of
the PQR-system and complete CPN models of its proclets, and semantics of the PQR-

6.3 Approaching Modeling: PQR-Systems 175

system. The section starts by introducing a way in which we label proclet transitions,
to make the following discussion clearer.

6.3.1 Labels

Problem and Idea. A BHS comprises many interconnected resources and conveyors,
whose entity models have a strict internal “structure”. For example, each resource has
states idle and complete, and each queue has transitions for enqueuing/dequeuing,
etc. Expressing this structure through unique transition labels serves two goals:

• make the discussion clearer by referring to transitions through unique struc-
tured labels, and

• allow the more compact and simple formal definition of the PQR-system.

We use the regular structure of PQR-systems to provide a robust way of transition
labeling. As we can see in the example of the PQR-system in Figure 6.11, it consists
of the only P-proclet, which forms a “backbone” for connecting the other types of
proclets to its transitions. Note the following:

• each process step of the P-proclet has start and complete life-cycle transitions
from the set LT PQR = {start,complete},

• a process step can have multiple start and/or complete transitions, e.g., merge
step b has two start transitions t3 and t6 because it can start merging a bag
coming either from a1 or a2, so we have additional superscript (tag) ′ in the
label of t3, so the label of t3 is b′

s , while the label of t6 is just bs , i.e., it does not
have any subscript,

• the way how transitions are connected by channels is strict: the start transitions
of the P-proclet can be connected only with start transitions of the R-proclets
and enqueue transitions of the Q-proclets, while the complete transitions of the
P-proclet can be connected only with complete transitions of the R-proclets and
dequeue transitions of the Q-proclets.

Using these observations, we introduce an internal structure for transition labels of
P-, Q- and R-proclets.

P-Proclet Labels. For P-proclet transition labels, we introduce transition labels as
triplets containing an activity name, a life cycle transition name, and a tag.

Definition 6.1 (Transition labels of P-proclets). Let LT PQR = {start,complete} be the set
of life-cycle transitions, and let Tags be the set of tags, where ε ∈ Tags is an empty tag. A
set ΣtP = Act ×LT PQR ×Tags ⊂Σ is the set of P-proclet transition labels.

While Act×LT PQR describes the activity and the life-cycle transition such as (b,start),
the tag allows us, for example, to distinguish two different ways to start activity b, see
t3 and t6 in Figure 6.6. In this example, t3 and t6 has label (b,start,′) and (b,start,ε)

176 Modeling Systems with Shared Resources and Queues

respectively. We write a label by placing the life-cycle transition name and tag below
and above a process step name respectively, e.g., the label of t3 (label (b,start,′)) is
written succinctly as b′

start or even shorter as b′
s in Figure 6.6, while for the label of t6

we write nothing for tag ε (label b′
s in Figure 6.6). In the remainder of this thesis, for

P-proclet labels, we write start and s, complete and c interchangeably for the sake of
space and clarity.

Labels of Q- and R-Proclets. The labels of the Q- and R-Proclets are defined in their
templates as

• ΣtQ = {enq,deq,queue,capacity,ready}×I ⊂Σ, and
• ΣtR = {start,complete, idle,busy}×2I ⊂Σ

respectively, where I is the set of identifiers (Definition 2.7). The use of the unique
identifiers I as the second element makes the labels unique per entity and allows
for referring to the corresponding transitions and places via their labels. We write
a label of a Q- or R-proclet using its identifier as a superscript for the step in the
queue or resource. For example, we write enqqid1 for label (enq,qid1) of transition t10

(Figure 6.6).

6.3.2 Syntax

Process. We model the baggage handling process as a single P-proclet of the PQR-
system. It represents process steps connected according to the logical layout of the
system conveyors, which can be typically derived from the system MFD, as discussed
in Section 4.4. As each resource proclet life-cycle has start and complete transitions,
we also define these life-cycle transitions in the P-proclet for the process steps. The
R-proclets synchronizes their start and completion of serving with the corresponding
life-cycle transitions of the process steps. For example, for process step a1 of the
system in Figure 6.6, transition a1s models the beginning of the checking-in step, and
transition a1c models its completion. For the P-proclet, the following properties hold.

• No “dangling” start or complete transitions are possible in the P-proclet, i.e.,
these transitions always come together in a pair with a place in between. Mul-
tiple start and/or complete transitions of the same process step are possible as
well if for each pair of those start and complete transitions there is always the
same place in between.

• The P-proclet net is a state machine because in systems with shared resources
and queues a bag cannot be divided into pieces, i.e., no parallel process steps
are possible for a bag.

• The P-proclet is transition-bordered and new instances are generated by transi-
tions without preset.

6.3 Approaching Modeling: PQR-Systems 177

• The P-proclet typically has multiple input and output transitions (e.g., t1 and t4

in Figure 6.6) because a typical BHS has multiple entries and exits.
• The P-proclet can be transformed into a WF-net according to Definition 2.6.

The last property makes existing conformance checking techniques [24, 43] applica-
ble to P-proclets, this is utilized in Chapter 7.

Resources. In Section 6.2.2 we showed how a BHS resource life-cycle can be modeled
as a CPN (see Section 2.3), but we intentionally omitted some technical details, such
as arc annotations and time characteristics, to make the main ideas clearer. In this
section, we transform the model shown in Figure 6.4 into a template for instantiating
R-proclets and add three parameters for specifying the resource identifiers, minimum
service, and waiting time. Later, we do the same for Q-proclets.

First, we annotate the places and arcs as shown in Figure 6.9. As the R-proclet
has tokens carrying resource identifiers, each place has color set ID, which we earlier
introduced for modeling bag identifiers, and is timed. Correspondingly, we annotate
the arcs with variable rid of color set ID for consuming and producing tokens with
resource identifiers. Initial marking {RID1, . . . ,RIDn} provides a multiset of resource
identifiers on place idle{RID1,...,RIDn }, thereby defining what resources this proclet mod-
els. The initial marking on place busy{RID1,...,RIDn } is empty since no case (bag) handling
started yet.

Next, we implement the time characteristics. During bag handling, each resource
is busy from the moment the bag’s front side entered its location (transition start)
until the moment its back side left the location (transition complete). So we assume

Figure 6.9: R-proclet template.

178 Modeling Systems with Shared Resources and Queues

that the minimum service time required for a bag to pass a resource location through
completely is tsR. The actual service time can be ≥ tsR but cannot be less. To maintain
this characteristic, we append the expression of arc (start,busy) (Figure 6.9) with a
delay . . .@tsR such that a token producing by transition start is ready in time tsR after
its occurrence.

Additionally, in BHSs some protective space is typically kept between bags. To
take it into account, we assume that the minimum waiting time twR has to pass after
a bag has left the resource location to let it be transported further, thereby making
this protective space. To maintain this characteristic, we append the expression of
arc (complete, idle) with a delay . . .@twR so a token producing by transition complete is
ready in time twR after its occurrence.

Finally, we want to use the template to instantiate and model multiple resource
entities separately. For that, the template, shown in Figure 6.9, has parameters
(IR , tsR, twR), where

1. parameter IR is a set of resource identifiers,
2. parameter tsR is the minimum service time,
3. parameter twR is the minimum waiting time.

Note, the parameter IR is used also to generate the superscript of the proclet transi-
tion and place labels to make them unique within the proclet system. For that, the set
of identifiers is used as the label superscript, as we explained in Section 6.3.1.

To instantiate this template, each parameter should be replaced with a value di-
rectly in the CPN definition, for example, to instantiate R-proclet R-merge-b:

1. the initial marking IR = {RID1, . . . ,RIDn} on place idle is replaced with the set
{rid3},

2. the minimum service and waiting time tsR and twR on arcs (start,busy) and
(complete, idle) are replaced with values 1 and 2 respectively,

3. and the set IR = {RID1, . . . ,RIDn} of resource identifiers for all the label super-
scripts is replaced with {rid3}.

We write the tuple (IR , tsR, twR) to refer to a copy of the R-proclet template with con-
crete values for IR , tsR, and twR, e.g., ({rid3},1,2) for proclet R-merge-b.

Queues. Similarly to the R-proclet, we add missing implementation details to the
queue model in Figure 6.5. In Section 2.3 (Figure 2.7) we modeled a FIFO queue
with the time characteristics. In this section, we adopt this model for modeling BHS
conveyors and convert it into a template. The resulting template is shown in Fig-
ure 6.10. The template has parameters (QID,size, twQ), where

1. parameter QID ∈I is the unique queue identifier,
2. parameter size is the queue (conveyor) capacity, i.e., the maximal number of

elements the queue can contain,

6.3 Approaching Modeling: PQR-Systems 179

3. parameter twQ is the minimum waiting time, i.e., the minimum time required to
pass since enqueuing of an element before its dequeuing.

Note, parameter QID is additionally used as the superscript of the proclet transition
and place labels to compose unique transition and place labels within the proclet
system (see Section 6.3.1).

To instantiate this template, each parameter should be replaced with a value di-
rectly in the CPN definition, for example, to instantiate Q-proclet Q-a1:b’:

1. parameter QID in the markings on places capacity and queue is replaced with
identifier qid1,

2. parameter size is replaced with capacity 2,
3. parameter twQ is replaced with duration 10,
4. and the superscripts of each label is replaced with qid1 (i.e., the value of pa-

rameter QID).

Similarly to R-proclets, we write the tuple (QID,size, twQ) to refer to a copy of the
Q-proclet template with concrete values for QID, size and twQ, e.g., (qid1,2,10) for
proclet Q-a1:b’.

In contrast to the implementation of the queue in Section 2.3, this template does
not model an arrival process, so variable pid on the arcs (t1, p2) and (t1, p3) is not
bound by any input arc, i.e., it is unbound. Instead, the arrival process to the queue
emerges when we synchronize the enqueue transitions of the Q-proclet with a process
step of the P-proclet. We explain that in more detail in Section 6.3.3.

System. So far, we described the system building blocks as the P-, Q- and R-proclets.
An example of the PQR-system of the BHS of Figure 6.1(a) is shown in Figure 6.11.
To keep the focus on the system structure, i.e., on the proclets and channels, the

Figure 6.10: Q-proclet template.

180 Modeling Systems with Shared Resources and Queues

implementation details of the Q- and R-Proclets are hidden. The model provides
connections between the building blocks as follows:

1. Start and complete transitions of each process step are connected with tran-
sitions of at least one R-proclet so that all start transitions of each P-proclet
process step are connected to the start transition of this R-proclet, and all com-
plete transitions of that process step are connected to the complete transition of
this R-proclet. As a result, each process step has at least one resource that can
perform it (completely).

2. Each transition of the P-proclet, except bordered transitions without preset or
postset, is connected with one Q-proclet such that a complete transition of the P-
proclet is always connected to the enqueue transition of this Q-proclet, and the
dequeue transition of the Q-proclet is connected to the start transition of one of
the directly following process steps (of the P-proclet). That is, on completion of
a non-terminal process step, a bag is always handed over to a directly following
process step through a queue (conveyor).

6.3.3 Semantics

Now, we describe how the building blocks, i.e., the P-, Q- and R-proclets, synchronize
through synchronous channels. For that, we explain how identifiers from different
proclets interact, and how the process identifiers of the P-proclet synchronize with
variable pid of the Q-proclet. Then, we explain the replay semantics of PQR-systems.

Binding. In Section 6.2.3 we explained the semantics of a proclet system, which
is similar to Figure 6.11, in terms of a system run. However, that example does not
explain how variable pid of the Q-proclets is bound to a value during synchronization.
Let us now extend this explanation for the PQR-system of Figure 6.11, starting from
event e4∗ of the run in Figure 6.7, because this part of the run can demonstrate the
idea the best.

First, we briefly recap how the situation was developing before the occurrence of
e4∗. For bag pid2,

1. channel a1s (transitions t1, t12) fires synchronously,
2. then channel a1c (t10, t2, t13) fires,
3. and eventually channel b′

s (t11, t3, and t14) fires synchronously as well .

As a result, pid2 is on place b, queue qid1 is , resource rid1 is in state idle, and resource
rid3 is in state busy. The marking (see Section 2.3.2) at time time3 after event e3∗
occurred, is as follows.

• m3(b) = [pid2@time3],
• m3(idlerid3) = [],

6.3 Approaching Modeling: PQR-Systems 181

• m3(busyrid3) = [rid3@time3],
• m3(queueqid3) = [(qid3,[])@time3],
• m3(readyqid3) = [],
• m3(capacityqid3) = [qid3capacityqid3

@time3].

In another part of the system, bag pid1 reached place a2 : b after firing channels
a2s (transitions t12, t4) and a2c (t13, t5, t18). Correspondingly, queue qid2 is not
yet, resource rid2 is in state idle since it already handed pid1 over (to the conveyor
modeled by qid2). The marking at time time8 is as follows.

Figure 6.11: Example of a PQR-system modeling the BHS in Figure 2.1(a).

182 Modeling Systems with Shared Resources and Queues

• m8(a2 : b) = [pid1@time8],
• m8(idlerid2) = [],
• m8(busyrid2) = [rid2@time8],
• m8(queueqid2) = [(qid2,[pid1])@time8],
• m8(readyqid2) = [pid1@time8],
• m8(capacityqid2) = [qid2capacityqid3−1@time8].

Now, transitions t7, t15 and t20 are enabled. In the system, these transitions syn-
chronize by channels (t7, t15) and (t7, t20) (labeled bc) and occur simultaneously, for
example, in event e4∗ at time time4 (Figure 6.7). For all three transitions to synchro-
nize in e4∗, they have to agree on a binding, i.e., the variables that occur at the arcs
of t7, t15, and t20 have to be bound to the same value. In a PQR-system, this is only
variable pid. Thus, to fire t7 (bc) in the P-proclet, we have to bind pid to an identifier
that is on the input place b of t5 in the P-proclet, i.e., for instance bag pid2. Transition
t20 in the Q-proclet has pid only on its outgoing arcs. Transition t15 in the R-proclet
R-merge-b does not have pid on any arc. Thus, binding pid to pid2 and synchronizing
all three transitions

• consumes pid2 from place b (in the P-proclet),
• produces pid2 on place b : c (in the P-proclet),
• enqueues pid2 into the queue (in Q-proclet qid3).

As a result of enqueuing, transition enqqid3 (1) “appends” the value of pid to the queue
on place queueqid3, , and (2) produces the bag identifier pid2 (received through pid)
on place readyqid3. The current marking of these places is as follows:

• m4(queueqid3) = [(qid3,[pid2])@time4],
• m4(readyqid3) = [pid2@(time4+ t qid3

wQ)],

where t qid3
wQ is the minimum waiting time of the queue qid3. As we show, distinguish-

able tokens on these places allow maintaining the FIFO ordering and the mandatory
minimum waiting time twQ of the queue.

When later transitions t7, t15 and t20 occur as a synchronized event e10∗ at time
time10 for the other instance pid1 of the P-proclet, variable pid on the arcs of proclets
Process and Q-b:c is bound to pid1 correspondingly. The synchronous firing of all three
transitions for this binding

• consumes pid1 from place b (in the P-proclet),
• produces pid1 on place b : c (in the P-proclet),
• enqueues pid1 into the queue (in Q-proclet qid3).

Now, transition enqqid3 “appends” the value of pid (pid1) to the queue and produces
this bag identifier on place readyqid3. As shows the resulting marking

• me10∗(queueqid3) = [(qid3,[pid2,pid1])@time10],

6.3 Approaching Modeling: PQR-Systems 183

• me10∗(readyqid3) = [pid2@(time4 + t qid3
wQ),pid1@(time10 + t qid3

wQ)],

(1) the queue qid3 contains a list of two bags identifiers, ordered according to the
FIFO discipline (i.e., in the order of enqueuing), and (2) place readyqid3 has the cor-
responding bag identifier tokens, which become available for consumption at time4 +
t qid3

wQ and time10 + t qid3
wQ in the order of enqueuing as well.

Interestingly, transition t20 of queue qid3 essentially works as the initial transitions
of the P-proclet with a ν-semantics, but the difference is that where the P-proclet (and
ν Petri nets in general) generate completely new identifiers, the Q-proclet gets one
from an arrival process.

In event e5∗, transitions t8, t16, t21 synchronize with binding pid= pid2 for vari-
able pid. Note, that here transition t8 in the P-proclet and t21 in the Q-proclet both
have variable pid on the input arc, so for t8 and t221 to synchronize, the following
must hold:

• the bag pid2 must be at the head of the queue in place queue,
• the timeout token pid2 on place readyqid3 must be ready, i.e., at least time t qid3

wQ
(the minimum waiting time of the queue qid3) has to pass since the occurrence
of event e4∗, and

• the bag must be available in the input place of t8.

This happened for event e5∗ for pid2 at time time4 + t qid3
wQ . So, bag pid2 is dequeued

first (but not earlier than the minimum waiting time t qid3
wQ since its enqueuing (e4∗)).

Afterward, bag pid1 is dequeued by t11 at time11 ≥ time10 + t qid3
wQ . So, the FIFO order

and the queue minimum waiting time are preserved.

Replay Semantics. So far, we explained the ideas behind the semantics of PQR-
systems. We do not define operational semantics, but define the semantics of replay-
ing an event table (see Definition 2.8) over a PQR-system for conformance checking
and log repair that states when a set of events together forms an execution that can be
described by the PQR-system (i.e., can be replayed by the PQR-system). Concretely,
for a given event table ET we provide conditions required for ET to be the execution
of the PQR-system.

The example of a possible execution in the form of the event table ET = ({pid,qid,rid},

{e1∗, . . . ,e12∗},#) of the system in Figure 6.11 is shown in Table 6.1. Additionally, we
assume the following parameters for all the Q- and R-Proclets of the system:

• tsR = 1,
• twR = 2,
• twQ = 10.

In this event table (Definition 2.8), case notions pid and rid are global (see Sec-
tion 2.4), i.e., defined for each event, while qid is undefined for events e1∗,e6∗,e7∗
and e12∗. When this event table is considered as the execution of the PQR-system,

184 Modeling Systems with Shared Resources and Queues

Event Activity Time pid qid rid
e1∗ a1s 0 pid2 - rid1

e2∗ a1c 1 pid2 qid1 rid1

e3∗ b′
s 11 pid2 qid1 rid3

e4∗ bc 12 pid2 qid3 rid3

e5∗ cs 24 pid2 qid3 rid4

e6∗ cc 25 pid2 - rid4

e7∗ a2s 1 pid1 - rid2

e8∗ a2c 11 pid1 qid2 rid2

e9∗ bs 21 pid1 qid2 rid3

e10∗ bc 22 pid1 qid3 rid3

e11∗ cs 34 pid1 qid3 rid4

e12∗ cc 35 pid1 - rid4

Table 6.1: Execution of the PQR-system of Figure 6.11 corresponding to the run of Figure 6.7.

Trace # Event log Proclet Trace
σ1 LET

pid Process 〈e7∗,e8∗,e9∗,e10∗,e11∗,e12∗〉
σ2 LET

pid Process 〈e1∗,e2∗,e3∗,e4∗,e5∗,e6∗〉
σ3 LET

qid Q-a1:b’ 〈e2∗,e3∗〉
σ4 LET

qid Q-a2:b 〈e8∗,e9∗〉
σ5 LET

qid Q-b:c 〈e4∗,e10∗,e5∗,e11∗〉
σ6 LET

rid R-operators 〈e1∗,e2∗〉
σ7 LET

rid R-operators 〈e7∗,e8∗〉
σ8 LET

rid R-merge-b 〈e3∗,e4∗,e9∗,e10∗〉
σ9 LET

rid R-exit-c 〈e5∗,e6∗,e11∗,e12∗〉

Table 6.2: Event logs from the event table shown in Table 6.1.

for each event, the process step name refers to the transition label of the P-proclet
that should occur. Case notion attributes pid,rid, and qid (if defined) refer to the
corresponding variables pid, rid, and qid of P-, R- and Q-proclet respectively, the
timestamp refers to the time when the synchronized event occurred.

Interpreting the event table in Table 6.1 in this way for each case notion pid,
qid and rid (according to Definition 2.12) yields three event logs, shown in Table 6.2.
Each trace of these event logs describes the trajectory of an instance of the correspond-
ing process, queue, or resource entity through the system and its synchronization with
other entities.

We now provide the conditions by which an event table is an execution of a PQR-
system. First, we require traces σ1 −σ9 to be the traces of the corresponding proclet

6.3 Approaching Modeling: PQR-Systems 185

instances, as defined for CPNs (see Section 2.3). For example, trace σ2 is a trace
of the P-proclet, because it can be generated by the sequence 〈t4, t5, t6, t7, t8, t9〉 of
transition occurrences with corresponding bindings of the P-proclet. Likewise, trace
σ8 is a trace of instance rid3 of R-proclet R-merge-b because

1. it can be generated by the sequence 〈t14, t15, t14, t15〉 of transition occurrences
with corresponding bindings of proclet R-merge-b,

2. the service time of each bag ≥ tsR (e.g., #time(e4∗)−#time(e3∗) = 1 ≥ tsR = 1),
3. the waiting time between each consequent bags ≥ twR (e.g., #time(e9∗)−#time(e4∗) =

9 ≥ twR = 2).

In the same way, we can confirm that also traces σ1,σ3 −σ7, and σ9 can be generated
by the respective proclets and replayed on them. The details of the replay semantics
are considered in Section 6.5.

Second, we require all the traces together not to contradict the synchronization
declared in the PQR-system through channels as follows.

1. Events with multiple case notions correspond to synchronized transitions
of the respective proclets. We check if each event in ET corresponds to the
occurrences of transitions that indeed synchronize, i.e., for each event e∗ the
corresponding P-proclet transition t with `(t) = #act(e∗) has

• a channel (t , tR) to a transition tR in an R-proclet that contains resource
instance #rid(e∗), and

• a channel (t , tQ) to a transition tQ in an Q-proclet that contains queue in-
stance #qid(e∗) if #qid(e∗) 6=⊥.

For example, event e2∗ in Table 6.1 has the defined values of attributes #qid(e2∗) =
qid1 and #rid(e2∗) = rid1, that corresponds to the instances of proclets Q-a1:b’
and R-operators respectively. Both proclets indeed synchronize with t2 through
channels (t2, t10) and (t2, t13) labeled a1c .

2. The start and complete transitions of the same process step synchronize
with the same R-proclet instance. For each event ec∗ of a complete transition
in an instance pidX of the P-proclet, in which the instance of the synchronizing
R-proclet has identifier ridX , the directly preceding start event es∗ of pidX must
synchronize with ridX as well, i.e., #rid(es∗) = #rid(ec∗). For example, start event
e3∗ in Table 6.1 directly precedes complete event e4∗ along the trace of instance
pid2, according to the order defined by the timestamps, and these events have
the same value for case notion rid, i.e., #rid(e3∗) = #rid(e4∗) = rid3.

3. For any two consequent process steps, the complete transition of the first
step and the start transition of the second one synchronize with enqueue
and dequeue transitions of the same Q-proclet instance respectively. For
each event es∗ of a start transition with preset (i.e., a non-bordered transition)

186 Modeling Systems with Shared Resources and Queues

in an instance pidX of the P-proclet, in which the instance of the synchronizing
Q-proclet has identifier qidX 6=⊥, the directly preceding complete event ec∗ of
pidX must synchronize with qidX as well, i.e., #qid(ec∗) = #qid(es∗). For example,
event e2∗ in Table 6.1 directly precedes event e3∗ along the trace of instance
pid2, according to the order defined by the timestamps, and these events have
the same value for case notion qid, i.e., #qid(e2∗) = #qid(e3∗) = qid1.

If all the requirements are satisfied, we can conclude that ET is the execution of the
PQR-system.

In the following, Section 6.4 and Section 6.5 provide the formal definitions for
syntax and semantics explained in the current section.

6.4 The Formal Model of PQR-systems

In the following, we define first each of the P-, Q- and R-proclets, and then the PQR-
system formally.

6.4.1 P-Proclet

The definition of a P-proclet reads as follows.

Definition 6.2 (P-proclet). A P-proclet is a CPN N = (P,T,F,`,Var,colSet,m0,arcExp),
where `= (T →ΣtP)∪ (P →Σ), that has the following properties:

1. each process step a ∈ Act is modeled by one or more alternative start transitions
producing on place pa with label `(pa) = a and one or more alternative complete
transitions consuming from pa as shown in Figure 6.12:

(a) pa has one or more input transitions, i.e., •pa 6= ;, and pa has one or more
output transitions, i.e., pa

• 6= ;,
(b) any input transition is labeled (a,start, tag) and any output transition is la-

beled (a,complete, tag),
(c) all transitions bordering pa are labeled differently, i.e., all input and all out-

put transitions differ in their tags.

2. each complete transition t a
c ∈ T of process step a ∈ Act is either a bordered tran-

sition, i.e., t a
c
• = ;, or directly followed by exactly one place pab that is directly

followed by only one start transition t s
b ∈ T of process step b ∈ Act, i.e., ∀p1 ∈

t a
c
•, p2 ∈ •

t b
s , p1 = p2 = pab ,

3. each place p ∈ P has color set I of token identifiers, i.e., colSet(p) =I ,
4. each arc inscription of the net has variable pid as an expression. This variable car-

ries a token identifier pid ∈I , i.e., for each (x, y) ∈ F,arcExp(x, y) = pid,colSet(pid) =
I ,

6.4 The Formal Model of PQR-systems 187

5. the net is transition-bounded , i.e., ∀p ∈ P •p 6= ;∧p• 6= ;,
6. the WF-net NWF , derived from N according to Definition 2.6, is sound.

In the following, we write TN for the transitions of proclet N . The net N is
transition-bound. For creating new identifiers, as the semantics in Section 6.5 defines,
transitions without preset, which are always enabled, generate new fresh identifiers
(i.e., create instances) as described in Section 6.2.1 and shown in Section 6.2.3 for
the PQR-system run. As a consequence of points 1, 2, and 5 in Definition 6.2, net N

can produce at most one token to its post-place, i.e., the net is a state machine and
can be in exactly one of a finite number of states at any given time with respect to
each unique identifier pid ∈I .

An example of a P-proclet is shown in Figure 6.13, it is identical to the P-proclet
of the system in Figure 6.1(b) except the marking: in Figure 6.13 the model is in its
initial state (i.e., without tokens on its places).

As a consequence of point 1 of Definition 6.2, a start transition can be only fol-
lowed by a complete transition of the same process step, and a complete transition can
be only followed by a start transition of a different process step. We define these pairs
as follows.

Definition 6.3 (Start-complete pair). Let N be a P-proclet, according to Definition 6.2.
A pair (t1, t2), t1, t2 ∈ TN is a start-complete pair in N iff:

1. t1
• = •t2,

2. `(t1) = (a,start, tag1), a ∈ AN , tag1 ∈ Tags,
3. `(t2) = (a,complete, tag2), tag2 ∈ Tags.

For example, in Figure 6.13, (t3, t7) is a start-complete pair because:

• t3
• = •t7 = {p5}, i.e., transitions t3 and t7 are connected place p5,

• `(t3) = (b,start,′) and `(t7) = (b,complete,ε), i.e., transitions t3 and t7 are start
and complete transitions respectively of the same process step b.

Definition 6.4 (Complete-start pair). Let N be a P-proclet, according to Definition 6.2.
A pair (t1, t2), t1, t2 ∈ TN is a complete-start pair in N iff:

Figure 6.12: Labeling of the input and output transitions of process step a.

188 Modeling Systems with Shared Resources and Queues

Figure 6.13: P-proclet in the initial state.

1. t1
• = •t2,

2. `(t1) = (a1,complete, tag1), a1 ∈ AN , tag1 ∈ Tags,
3. `(t2) = (a2,start, tag2), a2 ∈ AN , a1 6= a2, tag2 ∈ Tags.

For example, in Figure 6.13, (t7, t8) is a complete-start pair because:

• t7
• = •t8 = {p6}, i.e., transitions t7 and t8 are connected via place p6,

• `(t7) = (b,complete,ε) and `(t8) = (c,start,ε), i.e., transitions t7 and t8 are complete
and start transitions respectively of two different process steps b and c.

6.4 The Formal Model of PQR-systems 189

6.4.2 Q-Proclet

As the name implies, Q-proclets model FIFO queues with a known finite non-zero
capacity and minimum waiting time twQ ∈T, e.g., a conveyor of a BHS. We define the
Q-proclet by referring to its template presented in Section 6.3 as follows.

Definition 6.5 (Q-proclet). A Q-proclet is a CPN N = (P,T,F,`,Var,colSet,m0,arcExp),
where `= (T →ΣtQ)∪(P →Σ), instantiated from the template shown in Figure 6.10 with
the following parameters:

1. the queue instance identifier QID ∈I ,
2. the maximal queue size size ∈N,
3. the minimum waiting time twQ ∈T.

We call the transition pair (enqQID,deqQID) a complete-start pair of the Q-proclet
because we later synchronize enqQID with a complete transition of the P-proclet and
deqQID with a start transition of the P-proclet. Each copy of the Q-proclet template
has such a complete-start pair.

6.4.3 R-proclet

An R-proclet models one or multiple resources of the same entity with the minimum
waiting time twR and the minimum service time tsR, e.g., a merge unit b of the BHS
of Figure 6.1(a). We define the R-proclet by referring to its template presented in
Section 6.3 as follows.

Definition 6.6 (R-proclet). A R-proclet is a CPN N = (P,T,F,`,Var,colSet,m0,arcExp),
where `= (T →ΣtR)∪ (P →Σ), instantiated from the template shown in Figure 6.9 with
the following parameters:

1. the non-empty set of instance identifiers IR ⊆I ,
2. the minimum service time tsR ∈T,
3. the minimum waiting time twR ∈T.

We call the transition pair (startIR ,completeIR) a start-complete pair of the R-
proclet. Each copy of the R-proclet template has such a start-complete pair.

6.4.4 PQR-system

In the previous sections, we defined the P-, Q- and R-proclets. Now, we define a PQR-
system consisting of one P-proclet and multiple Q- and R-Proclets. Note, the initial
marking of a P-proclet is the empty multiset [] but the initial markings of Q- and R-
Proclets are non-empty, so the initial marking of the PQR-system is the union of the
initial markings of its Q- and R-Proclets.

190 Modeling Systems with Shared Resources and Queues

Definition 6.7 (PQR-system). Let N P be a P-proclet, N Q and N R be sets of Q- and
R-Proclets respectively, which we enumerate as N P = N0, N Q = {N1, . . . , Nm} and N R =
{Nm+1, . . . , Nn}. A PQR-system S = ({N0, . . . , Nn},mν,C ,`C) has:

1. all transitions in {N0, . . . , Nn} have unique transition labels, i.e., ∀0 ≤ i 6= j ≤ n,
∀t ∈ Ti ,∀t ′ ∈ T j , t 6= t ′, and `(t) 6= `(t ′),

2. an initial marking mν :
⋃n

i=1 Pi → NI assigns on each place pi ∈ Pi , i > 0 of the
Q- and R-Proclets a multiset mν(pi) of token identifiers that do not occur in a
place p j ∈ P j of any other proclet Ni 6= N j , i.e., ∀1 ≤ i < j ≤ n,∀pi ∈ Pi , p j ∈ P j :

mν(pi)∩mν(p j) =;,
3. a set C of channels where each channel in C is defined between the P-proclet and

one of the Q- or R-Proclets, i.e., ∀(t0, t j) ∈C , t0 ∈ T0, t j ∈ T j , 1 ≤ j ≤ n, such that:

(a) for each start-complete pair (t1, t2) of N0, there exists channels (t1, t1′) and
(t2, t2′) so that (t1′, t2′) is the start-complete pair of an R-proclet N j ∈N R ,

(b) for each complete-start pair (t1, t2) of N0, there exists exactly one pair of chan-
nels ((t1, t1′), (t2, t2′)) so that (t1′, t2′) is the complete-start pair of a Q-proclet
Ni ∈N Q ,

(c) for any two complete-start pairs (t1, t2) 6= (t3, t4) of N0 with channels (t1, t1′),
(t2, t2′), (t3, t3′), (t4, t4′), the complete-start pair (t1′, t2′) of Q-proclet Nk and
the complete-start pair (t3′, t4′) of Q-proclet Nl are from different proclets,
i.e., Nk 6= Nl .

4. a channel labeling function `C : C →Σ that provides a label for each channel in C .

An example of a PQR-system is shown in Figure 6.11. It has:

• the only P-proclet Process,
• three Q-proclets Q-a1:b’, Q-a2:b and Q-b:c,
• three R-proclets R-operators, R-merge-b and R-exit-c.

All the labels of these proclets are unique, e.g., the enqueuing transition of Q-a1:b’
has label enqqid1, while the enqueuing transition of Q-a2:b has label enqqid2. The Q-
and R-Proclets of the system have the initial markings, thereby composing the initial
marking mν of the whole system. Although the places of the Q- and R-Proclets are
not shown in Figure 6.11, we can derive their markings from the provided template
parameters, using the templates in Figures 6.9 and 6.10, as follows:

• mν(capacityqid1) = [qid1sizeqid1
] (proclet Q-a1:b’),

• mν(queueqid1) = [(qid1,[])] (proclet Q-a1:b’),
• mν(idle{rid1,rid2}) = [rid1,rid2] (proclet R-operators),
• and so on.

6.5 Semantics of PQR-Systems 191

Note, the places of the P-proclet do not have any tokens initially, because its tokens
are generated by the transitions without preset (t1 and t4).

Further, each start-complete pair of the P-proclet is connected with a start-complete
pair of one R-proclet, e.g., (t1, t2) is connected with (t12, t13) by channels (t1, t12) (la-
beled as a1s) and (t2, t13) (labeled as a1c) respectively. Similarly, each complete-start
pair of the P-proclet is connected with a complete-start pair of one of the Q-proclets,
e.g., (t2, t3) is connected with (t10, t11) by channels (t2, t10) (labeled as a1c) and
(t3, t11) (labeled as b′

s) respectively.
As a consequence of point 3 of Definition 6.7, each R-proclet is connected (via

channels) with at least one start-complete pair of the P-proclet, while each Q-proclet is
connected with exactly one complete-start pair of the P-proclet. Note, in each channel
(t , t ′) the first element t is always a transition of the P-proclet, and the second element
is always a transition of a Q- or R-proclet, according to point 3 of Definition 6.7. That
is required to avoid defining multiple channels between the same pair of transitions,
e.g., (t , t ′) and (t ′, t).

6.5 Semantics of PQR-Systems

In this section, we formally define replay semantics of PQR-systems that states when
an event table (Definition 2.8) forms an execution that is also described by the PQR-
system, i.e., can be replayed by the PQR-system. For that, we first discuss the replay
semantics for the P-, Q- and R-proclets, and then define it for the PQR-system.

6.5.1 Replaying a Trace Over a CPN

As each of P-, Q- and R-proclets is a CPN, we first consider when a trace can be re-
played over a CPN. For example, when trace σ= 〈e3∗,e4∗,e9∗,e10∗〉, derived from the
event table ET , shown in Table 6.1, for case notion RID and identifier rid3, can be re-
played over the R-proclet R-merge-b (Figure 6.6). For a CPN N and an event sequence
of the trace, we assume that the attribute names of each event match the names of
free variables of the corresponding transition in the CPN. The trace can be replayed
if event attribute names and values match a binding of this transition occurrence. To
be able to match an event sequence in a trace to a sequence of transition occurrences
by matching activity names in event sequence to transition labels, we define a labeled
transition occurrence and labeled transition occurrence sequence. Then, we define
how to interpret a single event as a labeled transition occurrence, and a sequence
of events in a trace as a labeled transition occurrence sequence. Finally, we define
that a trace can be replayed over the CPN if its interpretation as a labeled transition
occurrence sequence under certain conditions is a labeled occurrence sequence of the
CPN.

192 Modeling Systems with Shared Resources and Queues

6.5.1.1 Labeled Transition Occurrences

In Chapter 2, we introduced occurrences of CPN transitions. However, such occur-
rences do not preserve transition labels, which are needed to match events to tran-
sitions by the activity attributes and the transition labels. Now, we define labeled
transition occurrences and their sequences. The definition of a labeled transition oc-
currence reads as follows.

Definition 6.8 (Labeled transition occurrence). Let N be a CPN, and let m
(t ,bind)@time−−−−−−−−−→

m′ be an occurrence of transition t with binding bind = 〈(var1,val1), . . . , (varn,valn)〉
from state (m, time) with marking m to state (m′, time) with marking m′. We call
m

(`(t),bind)@time−−−−−−−−−−−→ m′ a labeled transition occurrence of the transition labeled `(t) with
binding bind from state (m, time) to state (m′, time).

Now, we can lift Definition 6.8 to a sequence of transition occurrences by turn-
ing each of its occurrences into a labeled one by replacing transition identifiers with
transition labels.

Definition 6.9 (Labeled transition occurrence sequence). Let N be a CPN, and let

σ= m1
(t1,bind1)@time1−−−−−−−−−−−→ m2 . . .mm

(tm ,bindm)@timem−−−−−−−−−−−−−→ mm+1 be transition occurrence sequence
with markings m1 . . .mm+1 and bindings bind1 . . .bindm from state (m1, time1) to state

(mm+1, timem). A sequence m1
(`(t1),bind1)@time1−−−−−−−−−−−−−→ m2 . . .mm

(`(tm),bindm)@timem−−−−−−−−−−−−−−−→ mm+1 is a
labeled transition occurrence sequence with markings m1 . . .mm+1 and bindings bind1 . . .

bindm from state (m1, time1) to state (mm+1, timem).

6.5.1.2 Replaying Traces Over CPNs

In processes, executing a process step generates an event. We can interpret a gener-
ated event e (Definition 2.8) as a labeled transition occurrence. For replaying, we can
consider the attribute-value pairs (Section 2.4) defined by an event as a binding of
values to variable names.

Definition 6.10 (Binding from event). Let ET be an event table and e be an event with
attributes an1 . . .ann defined, i.e., #ani (e) 6=⊥. We call a sequence of all the pairs of the
attribute names and the corresponding attribute values 〈(an1,#an1 (e)), . . . , (ann,#ann (e))〉
a binding from event e. We write binde for the binding from event e.

Using such a binding from events, we can interpret an event as an occurrence of
a labeled transition as follows.

Definition 6.11 (Event as a labeled transition occurrence). Let N be a CPN, let m

and m′ be markings of this CPN, let e be an event in E , and binde be the binding
from e according to Definition 6.10. Let the state (m,#time(e)) of N with marking m.
Let function β : Act → Σ be a mapping between activity names and transition labels of

6.5 Semantics of PQR-Systems 193

Event Activity Time pid qid rid
e4∗ bc 12 pid2 qid3 rid3

e10∗ bc 22 pid1 qid3 rid3

e5∗ cs 24 pid2 qid3 rid4

e11∗ cs 34 pid1 qid3 rid4

Table 6.3: Trace σ5 of the queue with identifier qid3 of Table 6.1

N . The interpretation of event e as a labeled transition occurrence is the occurrence

m
(#act(e),binde)@#time(e)−−−−−−−−−−−−−−−−→ m′ of a transition labeled #act(e) (according to Definition 6.8) with

binding binde from state (m,#time(e)) to state (m′,#time(e)) with marking m′.

The above definition uses a mapping β between activity names and transition
labels and assumes that the other attribute names exactly match the variables. In
reality, systems record events whose attributes rarely exactly match free variables of
CPNs modeling those systems, so we assume there is a mapping anToVars : AN → Var

between the attribute names and free variables. Note, we also can ignore variables in
bindings that do not occur in the arc expressions of the firing transition (the events
can have more attributes than needed for the transition).

Next, we lift Definition 6.11 to an event sequence by interpreting each event as a
labeled transition occurrence.

Now, we define when a trace can be replayed over a CPN, using Definition 6.9.

Definition 6.12 (Replaying a trace over a CPN). Let σ be a trace 〈e1, . . . ,en〉. Let N

be a CPN, let m1 . . .mm+1 be its markings. Let function β be a mapping between activity
names and transition labels of N , as defined in Definition 6.11. We can replay trace σ
on CPN N iff the sequence

(m1, time1)
(β(#act(e1)),binde1)@time1−−−−−−−−−−−−−−−−−−→ (m2, time1) . . .

(mm , timem)
(β(#act(em)),bindem)@timem−−−−−−−−−−−−−−−−−−−→ (mm+1, timem) is a labeled occurrence sequence of

N from state (m1,#time(e1)) to state (mm+1,#time(em)) with markings m1 . . .mm+1 and
bindings binde1 . . .bindem , where ∀1 ≤ i ≤ m, timei ≤ #time(ei).

We explain the definitions above by an example. The event table in Table 6.3
contains the subset of events of the event table in Table 6.1, related to queue qid1.
These result in the following trace σ5 for case notion qid in instance qid1: σ5 =
〈e4∗,e10∗,e5∗,e11∗〉.

We now replay trace σ5 over the Q-proclet Q-b:c of the PQR-system of Figure 6.7,
where we assume that Q-b:c was instantiated from the template in Figure 6.10 with
the following parameters: QID = qid3, capacity = 3, twQ = 10. Let us define the map-
ping β= {(bc ,enqqid3), (cs ,deqqid3)}

Let us assume state ψ1 = (m1,12) with marking

194 Modeling Systems with Shared Resources and Queues

i trep Event mi (queueqid3) i th labeled occurrence mi+1(queueqid3)

1 12 e4∗ [(qid3,〈〉)] 〈enqqid3〈(qid,qid3), (act,bc), (pid,pid2)〉@12 [(qid3,〈pid2〉)]

2 22 e10∗ [(qid3,〈pid2〉)] 〈enqqid3〈(qid,qid3), (act,bc), (pid,pid1)〉@22 [(qid3,〈pid2,pid1〉)]

3 22 e5∗ [(qid3,〈pid2,pid1〉)] 〈deqqid3〈(qid,qid3), (act,cs), (pid,pid2)〉@24 [(qid3,〈pid1〉)]

4 32 e11∗ [(qid3,〈pid1〉)] 〈deqqid3〈(qid,qid3), (act,cs), (pid,pid1)〉@34 [(qid3,〈〉)]

Table 6.4: Labeled occurrences and markings.

1. m1(queueqid3) = [(qid3,〈〉)],
2. m1(capacityqid3) = [qid33],
3. m1(readyqid3) = [].

Assuming start in state ψ1, the events of σ5 define the following transition occurrences
according to Definition 6.9 (the markings are omitted):

• 〈enqqid3〈(qid,qid3), (act,bc), (pid,pid2), (rid,rid3), (time,12)〉@12,
• enqqid3〈(qid,qid3), (act,bc), (pid,pid1), (rid,rid3), (time,14)〉@14,
• deqqid3〈(qid,qid3), (act,cs), (pid,pid2), (rid,rid4), (time,24)〉@24,
• deqqid3〈(qid,qid3), (act,cs), (pid,pid1), (rid,rid3), (time,34)〉@34〉.
Let us now derive a labeled occurrence sequence from state ψ1, using the tran-

sition occurrence order and bindings (for the free variables) in σ5. Table 6.4 shows
the occurrences and markings for place queueqid3 before and after each occurrence
(columns mi and mi+1 respectively). The CPN state before and after each occurrence
can be derived as the marking before or after the occurrence, and the occurrence
time, e.g., the state before the occurrence in the top row is ([(qid3,〈〉)],12). Note,
in the table the attributes rid and time, and the markings of places capacityqid3 and
readyqid3 are omitted for clarity.

Event e4∗ describes the binding binde4∗ = 〈(qid,qid3), (act,bc), (pid,pid2)〉, accord-
ing to Definition 6.10. By binding variable pid to value pid2, variable qid to value
qid3, and variable q to value 〈〉 (available through marking m1), transition β(bc) =
enqqid3 becomes enabled and fires at time #time(e4∗) = 12, resulting in marking
m2(queueqid3) = [(qid3,〈pid2〉)].

Next, we bind variable pid to value pid1, variable qid to value qid3, and variable
q to value 〈pid2〉 (according to binding binde10∗), transition enqqid3 becomes enabled
and fires at time 22, resulting in marking m3(queueqid3) = [(qid3,〈pid2,pid1〉)].

At time 22, token pid2 becomes ready on place readyqid3. The binding from e5∗
provides values qid3 and pid2 for variables qid and pid respectively, so transition
deqqid3 becomes enabled and fires (event e5∗), removing element pid2 from the queue
on place queueqid3.

Similarly, at time 32, token pid1 becomes ready on place readyqid3. The binding
from e11∗ provides values qid3 and pid1 for qid and pid, so deqqid3 fires, removing

6.5 Semantics of PQR-Systems 195

the last element pid1 from the queue on place queueqid3, and resulting in marking
m5(queueqid3) = [(qid3,〈〉)].

As the derived occurrence sequence is indeed the labeled transition occurrence,
and each occurrence time (column trep) is less or equal to the corresponding event
timestamp #time(ei∗), trace σ (Table 6.3) can be replayed over proclet Q-b:c. Similarly,
we can show that each trace of the event table, presented in Table 6.1, can be replayed
over the corresponding proclet of the PQR-system.

6.5.2 Replaying an Event Table Over a PQR-System

Previously, we introduced the semantics of the P-, Q- and R-proclets through the
replay of event traces. Now, we introduce the overall semantics of PQR-systems by
combining the semantics of its proclets and adding correlation constraint semantics.
In the following, we define that a given event table ET can be replayed over all the
proclets of a PQR-system iff:

1. all traces in the event table can be replayed over all the P-, Q-, and R- proclets
in the PQR-system individually (Definition 6.13), and

2. all the traces together satisfy the synchronization and correlation constraints of
the PQR-system (Definition 6.14).

Definition 6.13 (Replaying an event table over a set of P-, Q- and R-proclets). Let
CNPQR be the set of case notions of PQR-systems, CNPQR = {pid,qid,rid} ⊆ CN . Let ET =
(CNPQR,E ,#),E ⊆ E be an event table. Event table ET can be replayed over the P-, Q- and
R-proclets of the PQR-system S = ({N1, . . . , Nn},mν,C ,`C) iff:

1. case notions pid and rid are global in event table ET according to Definition 2.8,
i.e., each event ei ∈ E is related to a process with some identifier pid ∈ I and a
resource with some identifier rid ∈I ,

2. for each trace σpid = 〈e1, . . . ,en〉 in an event log LET
pid derived from ET for case no-

tion pid (Definition 2.12), all events e2, . . . ,en−1 are related to a queue with some
identifier qid ∈I , i.e., #qid(ei) = qid 6=⊥,1 < i < n,

3. for each value p ∈ I | ∃e ∈ E | #pid(e) = p, each trace σpid ∈ LET
pid with identifier p

can be replayed in the P-proclet of system S. For each event e j , we write tP (e j) for
the P-proclet transition that fires when replaying e j ,

4. for each value q ∈I | ∃e ∈ E | #qid(e) = q, each trace σqid in an event log LET
qid derived

from ET for case notion qid can be replayed in a Q-proclet of S. For each event e j ,
we write tQ (e j) for the Q-proclet transition that fires when replaying e j ,

5. for each value r ∈I | ∃e ∈ E | #rid(e) = r , each trace σrid in an event log LET
rid derived

from ET for case notion rid can be replayed in an R-proclet of S. For each event e j ,
we write tR (e j) for the R-proclet transition that fires when replaying e j .

196 Modeling Systems with Shared Resources and Queues

For example, the event table ET in Table 6.1 can be replayed over the P-, Q- and
R-proclets of the system in Figure 6.11 because:

1. case notions pid and rid are global for ET ,
2. all the events of traces σ1 and σ2 of case notion pid (Table 6.2), except events

e1∗,e6∗,e7∗,e12∗ of the bordered transitions, are related to a queue, i.e., they
have defined values of attribute qid,

3. each trace can be replayed over the corresponding proclet, as we showed in
Section 6.5.1 for trace σ5. The same can be shown for the other traces as well.

If event table ET can be replayed over a set of P- Q- and R- proclets, then any
event e ∈ ET by Definition 6.13:

1. defines a channel cR = (tP (e j), tR (e j)),
2. and if additionally •tP (e j) 6= ; or tP (e j)• 6= ; it also defines channel cQ = (tP (e j), tQ (e j))

so that labels of cR and cQ are the same, i.e., `C(cR) = `C(cQ).

Definition 6.14 (Execution of a PQR-system). Let ET = (CNPQR,E ,#),E ⊆ E be an event
table. Event table ET is the execution of the PQR-system S = ({N1, . . . , Nn},mν,C ,`C) iff
(1) it can be replayed over the P-, Q- and R-proclets of S according to Definition 6.13,
and (2) the following holds:

1. in any trace σpid = 〈e1, . . . ,en〉 in an event log LET
pid derived from ET for case notion

pid (Definition 2.12) if there exists e j with `P (tP (e j)) = (a,complete, tag) then for
the directly preceding event e j−1 holds

(a) #rid(e j) = #rid(e j−1),
(b) #time(e j−1) < #time(e j).

That is, step a is completed by the same resource that started the step in the previous
event.

2. in any trace σpid = 〈e1, . . . ,en〉 ∈ LET
pid if there exists e j ,2 < j < n with `P (tP (e j)) =

(a,start, tag) then for the directly preceding event e j−1 holds

(a) #qid(e j) = #qid(e j−1),
(b) #time(e j−1) < #time(e j),

i.e., there is a queue #qid(e j) between the resource that completed the previous step
#act(e j−1), and the resource that completed step (#act(e j)) (i.e., step a).

By Definition 2.8, in event table ET = (CNPQR,E ,#), at most one identifier of each
case notion in CNPQR is presented for each event. This means that each synchronized
event e∗i synchronizes at most one proclet of each proclet type of the PQR-system.
That corresponds to 1 : 1 cardinality constraint, defined in [48].

Let us show that the event table ET presented in Table 6.1 can be replayed over
the PQR-system of Figure 6.11. In the event table, case notions pid and rid are global,

6.6 Properties of PQR-Systems 197

while case notion qid is defined for all the events of instances pid1,pid2 of case notion
pid, except the first and last events in their traces. That is, the event table satisfies
points 1 and 2 of Definition 6.13. Further, as shown in Section 6.5.1, each trace can be
replayed over the corresponding proclet, i.e., ET satisfies points 3-5 in Definition 6.13,
thereby satisfying point (1) in Definition 6.14. Then, for each complete event of the
traces pid1 and pid2, there exists a directly preceding start event with the same value
of attribute rid, e.g., for event e2∗, there exists the directly preceding event e1∗ such
that #rid(e1∗) = #rid(e2∗) = rid1 (point (2)1 of Definition 6.14). Finally, for each start
event of the traces pid1 and pid2 (except the events of bordered transitions t1 and
t4, i.e., e1 and e6∗), there exists a directly preceding start event with the same value
of attribute qid, e.g., for event e3∗, there exists the directly preceding event e2∗ such
that #qid(e2∗) = #qid(e3∗) = qid1 (point (2)2 in Definition 6.14). So, we conclude
event table ET can be replayed over the PQR-system, i.e., it is an execution of the
PQR-system in Figure 6.7.

6.6 Properties of PQR-Systems

In the previous sections, we defined the PQR-system and its semantics. Now, we
provide some intuition on the PQR-system properties.

A “classical” marked Petri-net (see Definition 2.2) has well-studied properties. For
example, it can be bounded, safe, and deadlock free. Its transitions can be live, and
markings can be reachable, and be explored via a reachability graph. A workflow net
(see Definition 2.5) is sound if it has properties of safeness, proper completion, option
to complete, and absence of dead parts. Knowing these and other properties allows
us to understand how well a model captures the modeled process and if the model
contains errors. We refer to [1] for details.

Understanding such properties of a PQR-system is undoubtedly valuable for mod-
eling MHSs. The P-proclet can be converted into a sound workflow net by Defini-
tion 6.2. However, does it make the entire PQR-system sound? No, it does not because
it also consists of the timed CPNs of the Q- and R-proclets, and the synchronization
channels. So, the properties of the entire PQR-system cannot be “inherited” from its
P-proclet only. Moreover, the meaning of soundness may be different than soundness
of marked Petri nets.

Problems of checking the properties of various “non-classical” process models have
been addressed in many works. Thus, the properties of various workflow nets with
resources have been studied in [165, 166, 167], time-soundness of timed CPNs has
been suggested in [168], and soundness of object-centric Petri nets [120] has been
proposed in [169].

198 Modeling Systems with Shared Resources and Queues

Works [168] and [169] are particularly interesting because (1) soundness is per-
haps the most critical property, and (2) these works study nets with characteristics, of
which some are close to the PQR-system ones. That is,

• the Q- and R-proclets are timed CPN, and
• each PQR-system proclet can be seen, to a certain extent, as a sub-net of an

object-centric Petri net with a colorset corresponding to the entity that the pro-
clet model, but without the ability to distinguish the objects on the places.

In [168, 169], soundness has been redefined to address the model analysis pur-
poses. Thus, time-soundness guarantees the deterministic behavior of the system,
disregarding the time of transition occurrences, and soundness of object-centric Petri
nets is checked for a single object but allows for the presence of tokens of the other
objects on the net places.

Building on these works, how can soundness of the PQR-system be understood?
Let us provide some intuition, assuming the P-proclet is converted into a workflow
net.

• Similarly to soundness of object-centric Petri nets, proper completion and op-
tion to complete must hold per individual token of interest of the P-proclet, yet
allowing other tokens on the P-proclet places after completion.

• Each resource of the R-proclets, engaged in handling the token of interest, must
be released afterward, i.e., the resource token must return on place idle.

• Each capacity element of the Q-proclets, engaged in handling the token of in-
terest, must be released, i.e., the capacity token must return on place capacity.

• Proper completion and option to complete for the token of interest must hold,
disregarding the actual waiting and service time of the Q- and R-proclets.

Another property of crucial importance for PQR-systems is deadlock free, which
guarantees that at least one transition is enabled for each reachable marking. How-
ever, a reachability graph for a PQR-system is infinite due to countless combinations
of timestamps for markings of the Q- and R-proclets.

To conclude, the definitions and decidability of the PQR-system properties are
unknown yet, and subject to future work.

6.7 Demonstration

In the previous sections, we define the PQR-system and its semantics formally. In this
section, we demonstrate how:

1. a BHS can be modeled using a PQR-system, and
2. what kind of event data it generates,

6.7 Demonstration 199

by introducing a simulation model of an airport terminal BHS. Besides demonstration
purposes, its fully controlled environment is used to evaluate our methods, presented
in the next chapters, on synthetic datasets so that the ground truth is known.

The MFD of the BHS we modeled is shown in Figure 6.14. It includes the prelim-
inary sorting loop, the most critical (performance-wise) part of medium- and large-
sized BHSs, that works as follows.

• Incoming baggage enters the system at locations a1
0−a7

0. In particular, bags from
the terminal checked-in counters enter the system at a1

0 − a4
0, transferred bags

enter it at enter at a5
0 −a6

0, and bags from the other terminals come via a7
0.

• After entering the system, the bags travel toward the preliminary sorting loop
(the red circle in the middle of the MFD), where they merge it at a1

4 −a7
4.

• The preliminary sorting loop serves for:

– diverting bags for screening to scanners at zone S,
– arranging a queue of bags when diverting toward S is impossible,
– diverting bags toward their destinations b1

1 −b6
1 via b1

0 −b6
0,

For example, if a bag cannot be diverted toward S because there is no free space,
it starts recirculating on the loop till diverting is possible.

• For evaluation purposes, we model the sorting loop not as a solid belt but as
a circle conveyor consisting of three independent belts, connected at locations
x, y , and z.

• At destinations b1
1 −b6

1, bags leave the system.

Note, in this system, we do not model many system areas, such as check-in counters
and islands, early bag store, final sorting loops, and so on for simplicity.

Using this MFD, we designed a corresponding PQR-system, providing the mini-
mum resource service time tsR, minimum resource waiting time twR, and minimum
queue waiting time twQ parameters for the Q- and R-proclets. These parameters are
chosen such that they repeat the proportions of the travel time of a real BHS, not
revealing their exact values due to confidentiality.

The resulting PQR-system is quite large, so we present it here in a compact way.
Figure 6.15(a) shows a “zoomed-out” model, where the Q- and R-proclets are col-
lapsed into the blue and green boxes, and no place and transition labels are shown.
The model layout repeats the MFD layout, to make its reading easier.

Its “zoomed-out” fragment for process step IN_5_3-x (a5
4 in the MFD) is shown

in Figure 6.15(b). Note, the simulation model historically uses prefixes IN and OUT
instead of a and b respectively, and underscores in label names to make it easier to
record textual event logs. Additionally, labels include x, y , and z for merging and
diverting units, to show what part of the sorting loop is connected. Figure 6.15(c)
illustrates this labeling for the bottom model part.

Using this PQR-system as input, we developed

200 Modeling Systems with Shared Resources and Queues

a14

b10

a34

a44
a54 a64

a74

a13a12a11
a10

a23a22a21

a20

a33a32a31 a43
a42

a41
a53

a52
a51

a63
a62
a61

a73
a72
a71

a30

a40

a50

a60
a70

s10

x

s17

a24

b20b30
b40

b50

b60

b11
b21

b31

b41

b51

b61

S

z

y

s20
s30

s40

s20 s30
s40

Figure 6.14: Material flow diagram.

6.7 Demonstration 201

(b)(a)

(c)

Figure 6.15: PQR-system visualization.

202 Modeling Systems with Shared Resources and Queues

1. a simulation model that implements a BHS modeled by the PQR-system in Fig-
ure 6.15,

2. an API to define a simulation scenario,
3. and a control panel that

• visualizes the system stated in real-time, and
• allows interactively modifying the running scenario, e.g., to introduce a

delay.

The control panel is shown in Figure 6.16(a), where

• sliders (1,2) allow horizontal and vertical zooming,
• field (3) shows the current simulation time (from the start of the epoch),
• button (4) pauses/resumes simulation,
• text field and button (5) allow to send a command to the simulation engine to

interactively block/unblock conveyors1, and
• checkboxes (6) allow to show/hide case identifiers and final destination.

Figure 6.16(b) and (c) show bags on the conveyors when they are moving (b), and
blocked (c). The bags are color-coded to show their current destination2.

The model records both complete and incomplete event logs. In incomplete logs,
some events are unobserved in the same way as they are unobserved in real event
logs. It is needed for the evaluation using incomplete event data. In Figure 6.17(a),
the complete event log has an event (inside the red box) that is unobserved in the
corresponding incomplete log, shown in Figure 6.17(b).

In the next chapters, we design different scenarios to generate event complete
and incomplete event logs and evaluate our methods for log repair, descriptive per-
formance analysis, and predictive process monitoring using these synthetic logs (as
well as real data).

6.8 Chapter Summary

In this chapter, we considered the modeling of BHSs. We highlighted the key as-
pects of the complex BHS behavior and formulated the most important modeling
challenges they imply. Then, we transformed the concepts and insight about the
BHS behavior, obtained in Chapter 4 through queueing model- and network-based
view on BHSs, into process-model level building blocks and concepts, which we infor-
mally introduced. We introduced the concepts of the synchronous proclet system [48]
and showed how it could be modified to model not only the process but queue and

1The source code and documentation are available on https://github.com/
processmining-in-logistics/psm/tree/pqr.

2The screencast showing the model animation is available on https://youtu.be/O0_tjfRInFo.

https://github.com/processmining-in-logistics/psm/tree/pqr
https://github.com/processmining-in-logistics/psm/tree/pqr
https://youtu.be/O0_tjfRInFo

6.8 Chapter Summary 203

(b)

(a)

(c)

Figure 6.16: Simulation model control panel.

204 Modeling Systems with Shared Resources and Queues

(b)(a)

Figure 6.17: Complete (a) and incomplete (b) event logs.

resource dimensions of BHSs as well by extending its proclets from ν-Petri nets to
CPNs, thereby introducing the process, queue, and resource synchronous proclet sys-
tem (called a PQR-system). We explained its semantics through the system run. We
showed how the sub-runs of the PQR-system proclet instances form the partial order
in the overall system run, thereby ordering the otherwise isolated sub-runs of individ-
ual process instances (bags). Finally, we defined the PQR-system formally, providing
the definitions of all its proclet types, meaning the process, queue, and resource pro-
clets, the system itself, including synchronization between its entities, and constraints,
and the PQR-system replay semantics.

The resulting formal process model serves as a backbone for the process mining
techniques in the remainder of this thesis, concretely, for conformance checking and
log repair in Chapter 7, for multi-dimensional process performance analysis and mon-
itoring in Chapter 8, meaning the process, queues, and resources as the dimensions,
and finally, for predictive performance monitoring in Chapter 9.

Chapter 7
Conformance Checking for
Systems with Shared Resources
and Queues

The preceding chapter introduced the PQR-system for modeling systems with shared
resources and queues and its replay semantics. This chapter considers the problem
of relating event data to the PQR-system. In process mining, conformance checking
is used to identify inconsistencies between a process model and data. Typically, iden-
tified inconsistencies are used to repair either the process model or data, i.e., one of
them is assumed to be fully trusted. However, here we go beyond this approach and
adapt the concept of generalized conformance checking [44]. It assumes that neither
model nor the log can be fully trusted. That fits our needs better because we usually
trust neither while analyzing material handling processes.

To enable generalized conformance checking in our setting, we propose a PQR-
system-based conformance checking pipeline in Section 7.1, consider PQR-system-
based conformance checking in Section 7.2, and our novel approach for inferring
unobserved events in systems with shared resources and queues in Section 7.3.

7.1 Motivation for Generalized Conformance Check-
ing

Conformance checking is one of the main process mining tasks [1]. It addresses the
problem of relating event data to the process model. Conformance checking aims
to detect all situations when the process behavior, captured through the event data,

206 Conformance Checking for Systems with Shared Resources and Queues

deviates from the behavior described by the process model. Each detected deviation
is potentially an input for other process mining tasks, such as:

• model repair that aims to fit the process model better in the behavior described
by the data,

• log repair that aims to remove noise from the event data, and reconstruct miss-
ing events,

• local diagnostics to investigate the nodes in the model where model and log
disagree (e.g., to detect desirable and undesirable deviations for prescriptive
models),

• explaining outliers with decision mining [170],
• and so on.

As a result, detected outliers can be used for obtaining a more accurate model, cleaner
event data for further process analysis, explaining outliers, etc.

Let us consider the classical conformance checking settings and approach (see
Figure 7.1(a)). The input is:

• an event log,
• a Petri net with black tokens.

During conformance checking, the event log is analyzed trace by trace. As Petri
nets have token replay semantics, each trace is replayed over the model. If it can be
replayed, there is no deviation. Otherwise, trace alignment [43] is used to identify
whether events in the log and/or transitions in the model are missing. However, how
to determine if the detected deviations require model or log repair? For that, one of
the following interpretations of the given process model is usually assumed.

1. The event log is fully trusted. In this case, a process model is considered as
descriptive [24], and the problem of conformance checking reads as follows.

• How to determine if a process model S describes the behavior of an ac-
tual process/system S represented by an execution EX , i.e., if the model
describes the observed (through the data) behavior accurately?

2. The process model is fully trusted. In this case, the process model is con-
sidered as prescriptive [24], and the problem of conformance checking reads as
follows.

• How to determine if an execution EX fits into the behavior of an actual
process/system S prescribed by a process model S, i.e., if these data can
be generated by the actual (modeled) process/system?

So, the detected deviations can be used for either model repair or log repair tasks for
a descriptive and prescriptive model respectively. In Figure 7.1(a), arrows (1) and

7.1 Motivation for Generalized Conformance Checking 207

Event log Petri net
single net and token

Incomplete event
table

PQR-system
multiple nets and
tokens with IDs

Conformance checking
replaying traces in isolation using

alignments

PQR-system conformance
checking - Phase 1

replaying the entire event table (all
traces) combining multiple

techniques

Control-flow
deviations

Deviations in P, Q,
R dimensions and
synchronization

Log repair Model repair

Repaired event log Repaired Petri net

Log repair
reconstructing missing
P-, Q-, R-proclet evens

Model repair
repairing Q- and R-

proclet temporal
parameters

Repaired event
table 1

no timestamps for
reconstructed events

Repaired
PQR-system

Correct and
complete event

table(a) (b)

(1) (2)

PQR-system conformance
checking – Phase 2

event timestamp reconstruction

No

(5)(4)

Model
error

(3)

Yes

for other process
mining tasks

(6)

Figure 7.1: Classical conformance checking (a) and generalized conformance checking for the
PQR-system-based setting (b).

208 Conformance Checking for Systems with Shared Resources and Queues

(2) from Control-flow deviations point to Log repair and Model repair respectively,
resulting in a Repaired event log or Repaired process model.

Generalized Conformance Checking. In practice, the analyst rarely has a fully
trusted event log or process model. Often, neither can be fully trusted. To overcome
this situation, the concept of generalized conformance checking is suggested in [44].
Generalized conformance checking goes beyond the detection of deviations, it catego-
rizes them as:

• event log anomalies,
• process model errors,
• unsolvable inconsistencies.

That is, generalized conformance checking unites the three tasks of model repair, log
repair, and conformance checking under a common roof. So, it aims at altering both
model and log, so paths (1) and (2) in Figure 7.1(a) can be followed in parallel,
leading to a “better” process model and event log together.

In the following, we consider which type of conformance checking is actual for
the MHS domain, and what conformance checking problems for systems with shared
resources and queues are actual. In the remainder of this chapter, we use the term
BHS for clarity of examples.

Conformance Checking of Systems with Shared Resources and Queues. Mate-
rial handling processes can be modeled using the PQR-system that we introduced in
Chapter 6. Later in this thesis, we use PQR-systems, as well as event data in the form
of an event table (see Definition 2.8) as input for approaches answering AQ1-AQ8
(Section 4.2). So, a more accurate process model or event table would lead to more
accurate analysis results. However, for what relating event data, recorded by a BHS,
to the corresponding PQR-system can be used in practice? Let us consider several use
cases.

For instance, when a bag’s trace cannot be replayed over the control-flow model
(P-proclet), this situation can indicate a sensor malfunctioning, manual intervention
in the process, or information loss due to incomplete logging. For these use cases,
the process model can be considered prescriptive (due to the physical constraint for
possible process step sequences), and log repair can be done to reconstruct missing
events.

In contrast, other situations can indicate model errors. For instance, if a resource
trace cannot be replayed over the model (R-proclet), it can indicate concept drift. That
is, the configuration of the modeled machine is changed, e.g., because a new protec-
tive space policy (see Section 1.1.2) is engaged. So, the model no longer describes
the system accurately. In this case, the process model can be considered descriptive,
and model repair can be done to, for example, change the R-proclet waiting time
parameter twR.

7.1 Motivation for Generalized Conformance Checking 209

Last but not least, the performance analysis problems in our AQs require the pres-
ence of the time information in event attributes. For example, the load on a particular
machine can be predicted accurately (AQ8) only if the information about the load on
incoming conveyors, i.e., the bag locations at various time moments, is known. So,
event time information reconstruction is an important part of the log repair task.
However, the state-of-the-art log repair approach [43] does not reconstruct times-
tamps. Since the PQR-system describes temporal parameters of queues and resources,
the task of timestamp reconstruction can be potentially done for logs with events re-
constructed without timestamps.

To summarize, both model interpretations are useful for answering the AQs for the
same model and data. So, we conclude that the concept of generalized conformance
checking is more suitable for our setting than the classical one. However, how to
adapt generalized conformance checking [44] to our setting? All things considered,
we do it for systems with shared resources and queues as follows.

• The input is a possibly incomplete event table with multiple case notions defined
and PQR-system, as shown at the top of Figure 7.1(b) (instead of a single-case
notion and complete event log and Petri net with black tokens in Figure 7.1(a)).

• Generalized conformance checking has two phases (two larger boxes in Fig-
ure 7.1(b)):

– Phase 1. Model and log repair excluding timestamp reconstruction.
– Phase 2. Reconstructing timestamps of missing (and repaired) events.

• During Phase 1, all deviations are detected and categorized as a data or model
error (see the decision box in Figure 7.1(b)), and the corresponding task, i.e.,
log or model repair, is done accordingly.

• Domain knowledge is used to categorize deviations. We assume if a deviation
cannot be categorized as a model error, it is categorized as a log error.

• During log repair (Phase 1), all missing events of the P-, Q- and R-proclets are
reconstructed (arrow (3) in Figure 7.1(b)), still without timestamps but in the
correct ordering with respect to the control flow (P-proclet’s case notion pid).

• During model repair of Phase 1, the parameters of the Q- and R-proclets (case
notions qid and rid) are repaired (arrow (4) in Figure 7.1(b)).

• Whenever model repair can be (at least partially) done before log repair, the
repaired model should be used for log repair (arrow (5) in Figure 7.1(b)) for
improving log repair accuracy.

• Note, both log repair (arrow 3) and model repair (arrow 4) are performed
during generalized conformance checking, in contrast to classical conformance
checking.

• When the missing events of the given event table are reconstructed (Event ta-
ble 1 in Figure 7.1(b)), and the given PQR-system is repaired, Phase 2 starts.

210 Conformance Checking for Systems with Shared Resources and Queues

• During Phase 2, the timestamp information of all the reconstructed events of
Event table 1 is reconstructed together so it becomes (time) complete correct, i.e.,
it can be replayed over the repaired PQR-system according its replay semantics
(Definition 6.14).

Note, we focus on the tasks of model and log repair because most deviations in our
setting can be only caused by either model or log errors.

To address the problem of generalized conformance checking for systems with
shared resources and queues, we formulate two RQs for Phases 1 and 2 respectively.
The former reads as follows.

• RQ-4. Given event data generated by a process with non-isolated cases in the
form of an event table, and the PQR-system, how to relate the data and model
to determine if the model correctly describes both the process for individual cases
and case interaction observed in the event data, and if the event table fits into the
behavior described by the PQR-system?

To address RQ-4, we systematically explore various practical problems (use cases
from the BHS domain), and whether and how existing techniques can solve them.
For that, we build on [131], and ideas behind the PQR-system replay semantics. That
is, we exploit the module structure of PQR-systems by decomposing the general prob-
lem into multiple simpler problems related to a particular proclet of process, queue,
or resource, and applying existing techniques for these problems. We consider how
deviations can be categorized as log and model errors using domain knowledge. Fi-
nally, we consider the synchronization of all the system proclets. To summarize, for
each smaller problem of RQ-4 we

1. provide a practical motivation,
2. explain how existing techniques can solve this problem,
3. check whether these techniques can solve the problem completely, and
4. identify what is still missing, i.e., how these existing techniques can be extended

to fully solve the problem,
5. provide reasoning of how detected deviations can be categorized.

To address the problem of log repair with timestamp reconstruction (i.e., Phase 2),
we formulate the following RQ:

• RQ-5. Given event data generated by a system with shared resources and queues
in the form of an event table where some events are unobserved (missing), and the
PQR-system, how to reconstruct the unobserved events, including their timestamps,
so that the resulting event table can be replayed over the given PQR-system?

To solve this problem, we suggest an approach that takes an incomplete event table
where unobserved events are missing, and a PQR-system as input, to reconstruct miss-

7.2 Conformance Checking of PQR-Systems 211

ing events with time information. This approach uses existing techniques for event
reconstruction and our novel approach for reconstructing timestamp information.

As a result, we “assemble” our approach for generalized conformance checking as
a combination of existing and novel techniques. Having said that, we admit that we
do not provide complete implementation and evaluation for Phase 1. Historically, we
approached RQ-5 first as it was needed for addressing the other RQs of this thesis.
As a result, we used solely alignments [43] for the P-proclet and not PQR-system-
based conformance checking that we suggest in this chapter. We made this choice to
provide implementation and evaluation of RQ-5 timely within the project schedule.
In the future, the Phase 1 approach can be used instead without changing the log
repair approach.

In the remainder of this chapter, we formulate the conformance checking prob-
lem in Section 7.2.1. We consider the conformance checking problem, motivation,
and approach for P-proclets, Q- and R-proclets, and proclets synchronization in Sec-
tion 7.2.2, Section 7.2.3, and Section 7.2.4 respectively. Finally, we suggest the log
repair method in Section 7.3.

7.2 Conformance Checking of PQR-Systems

In this section, we address RQ-4. For that, we formulate the problem over an event ta-
ble and PQR-system, and use the PQR-system semantics to determine if a given event
table can be replayed over the given PQR-system. As the semantics (Definitions 6.14)
is defined as a composition of requirements for the proclets and their synchroniza-
tion, we decompose the problem into simpler ones along this definition, motivate the
practical use of each problem, and consider how they can be solved using existing
techniques.

7.2.1 Problem Statement

As we mentioned above, the classical conformance checking settings assume as in-
put [1]:

• an event log recorded for a single case notion,
• and a Petri net with black tokens.

During conformance checking, each trace of the event log is related to the model in
isolation, i.e., as if no other cases exist. For that, a trace is replayed over the given
model [43]. If it can be replayed, it means that either

• the model describes the piece of the behavior, observed through the trace events,
accurately (descriptive models),

• the trace can be generated by the actual system/process (prescriptive models).

212 Conformance Checking for Systems with Shared Resources and Queues

However, our setting is different. Instead of a single case notion event log, we
have an event table (Definition 2.8) whose events are related to the process (case
notion pid), queues (qid) and resources (rid). This event table can be seen as a set
of three event logs derived for case notions pid,qid and rid (Definition 2.12), whose
traces are not isolated but describes the interplay of the corresponding entities. Then,
instead of a single Petri net we have the PQR-system, i.e., multiple CPNs whose tokens
(corresponding to process, queue, and resource instance) are not replayed in isolation
but synchronize.

In the following, we formulate the conformance checking problem for PQR-systems
that aims to address the problem of multi-dimensional conformance checking for di-
mensions of the process, queues, and resources, as well the consistency of synchro-
nization of all the traces in the execution together. Let us describe the input first.

Input. Let a system S , which records its execution EX , i.e., the occurrences of its pro-
cess step life-cycle transitions with labels ΣtP (Definition 6.1) as events with attributes
in an event table ET = (CNPQR,E ,#) (Definition 2.8) such that:

1. case notions pid and rid are global, exactly as point 1 in Definition 6.13 says,
2. in each non-empty trace σ= 〈e1, . . . ,en〉 of an event log LET

pid, derived from event
table ET for case notion pid according to Definition 2.12, all the events but the
very first and last are related to a queue with some identifier qid ∈I , exactly as
point 2 in Definition 6.13 says, i.e., ∀1 < i < n,∀ei ∈σ,#qid(ei) 6=⊥.

Let model S be a PQR-system.

Given this input, the problem reads as follows.

Problem. Can the entire execution EX , i.e., all the events together, be replayed over
the PQR-system S according to Definitions 6.14? If not, why it cannot be replayed,
i.e., which violations of the replay semantic are detected while relating PQR-system S

and event table ET?

This problem statement is explained in the diagram in Figure 7.2, where PQR-
system S presumably models the actual system S , which generated execution EX in
the form of even table ET . By taking PQR-system S and event table ET as input, a
conformance checking approach is to determine whether ET can be replayed over S,
and if not, how ET violates the PQR-system replay semantics.

To approach this problem, we use the PQR-system replay semantics (see Defini-
tion 6.14), i.e., we check if an event table can be replayed over the given PQR-system.
For that, we build on [133] and exploit the module structure of PQR-systems, decom-
posing the problem into several simpler problems for different proclet types, and for
system-level synchronization. Thus, we address separately:

1. behavioral conformance [133], that we call trajectory conformance in the light of
the PQR-system semantics,

7.2 Conformance Checking of PQR-Systems 213

Event
table
ET

System
S

• yes/no,
• outliers

Replay

PQR-system
S

models

Figure 7.2: Conformance checking using PQR-systems.

2. and interaction conformance [133], that we call synchronization conformance to
emphasize synchronization properties of the PQR-system.

For that, we consider clauses of Definition 6.14 top-down. Thus, it requires that

• all the clauses in Definition 6.13 hold, this is addressed in Section 7.2.2,
• and additionally defines conditions 1 and 2 in its clauses (2), this is addressed

as synchronization conformance in Section 7.2.4.

In turn, clauses 1 and 2 of Definition 6.13 hold by the conditions in the problem
statement input above, while its clauses 3-5 require that all the traces in event table
ET have to be replayed over the P-, Q- and R-proclets according to Definition 6.12.
This is addressed separately as

• the trajectory conformance problem for P-proclets in Section 7.2.2,
• the trajectory conformance problem for Q- and R-proclets in Section 7.2.3.

Next, we introduce conformance checking of P-proclets.

7.2.2 Trajectory Conformance for P-Proclets

This section formulates the sub-problem of conformance checking for P-proclets, pro-
vides the motivation for that as well as problem instances found in real-world systems,
and suggests an approach for solving the sub-problem.

214 Conformance Checking for Systems with Shared Resources and Queues

7.2.2.1 Problem

For the P-proclet, we check whether a trace of a classical event log can be replayed
over the P-proclet net. The problem reads as follows.

Trajectory Conformance for P-Proclets. Let N0 be the P-proclet of PQR-system S.
Let LET

pid be an event log, derived from event table ET for case notion pid according to
Definition 2.12. The trajectory conformance problem for P-proclets is the following:
can each trace σ ∈ LET

pid be replayed over net N0 according to Definition 6.12?

7.2.2.2 Motivation

Before we discuss the approach of conformance checking for P-proclets, let us intro-
duce practical reasons for doing that in the BHS domain. For that, we recall the
running example of the simple BHS we discussed throughout the preceding chapters.
In Figure 7.3(a), the sensors tracking passing bags are shown additionally. These sen-
sors are installed according to the pattern we often observe in the real BHSs, i.e., they
are installed:

• at the system entrances and exits (sensors a1, a2 and c),
• before merge units from the side of a conveyor with a lower priority (sensor b).

Note, there is no sensor before merge unit b on the conveyor coming from check-in
counter a2 because this is the “main road”, i.e., this conveyor has a higher priority and
never yields bags coming from a1, so the bag tracking is not needed on this side for
normal system operating. Moreover, we assume that the system records only events
of start life-cycle transitions, as we observe in the real BHSs. As a result of this sensor
configuration for the system in Figure 7.3(a), the traces of bags pid1 and pid2 (after
leaving the system) look as follows:

• σpid2 = 〈a1s ,b1s ,cs〉,
• σpid1 = 〈a2s ,cs〉.

Note, events from sensor b for pid1 are missing because there was no sensor before
merge unit b on its way. Given this system configuration, we explain three frequent
use cases for the P-proclet conformance checking application.

Sensor Malfunctioning. A sensor is a photo-electronic device for bag detection, as
explained in Section 4.3 in detail. It can fail to detect a bag because it is dirty, mis-
placed due to vibration, or broken. A sensor can either fail to detect all passing bags
or fail to detect just some of them. In case of sensor b failure, the trace of pid2 from
our example in Figure 7.3(a) is as follows:

• σ∗
pid2 = 〈a1s ,cs〉,

7.2 Conformance Checking of PQR-Systems 215

a1
a2

b

Check-in counters

Lateral c

Merge unit b

pid2

(a) (b)

pid1

o1

o2

Sensor a2

Sensor c

Figure 7.3: A BHS (a) and possible control flow outliers over the corresponding P-proclet (b).

i.e., it looks as if process step b was never executed for pid2. Conformance checking
allows detecting trace σ∗

pid2 as an outlier, which is shown as an arrow o1 over the P-
proclet net in Figure 7.3(b). Detection of this type of outlier can trigger the root-cause
analysis in order to find and fix this failure in the system.

Manual Interventions. In BHSs, some emergency situations may require the engage-
ment of workers in the baggage handling process. We call that manual interventions.
For example, in case of merge unit b malfunctioning from the side of check-in counter

216 Conformance Checking for Systems with Shared Resources and Queues

a1, bag pid2 can be manually brought to conveyor b : c by a worker. In this case, the
event(s) of activity b for pid2 are missing in the trace, exactly as in the case of sensor
b failure discussed above (trace σ∗

pid2). Still, these two situations can be distinguished
as follows.

• In the case of manual intervention, the time difference between the events be-
fore and after the skip is longer than in the case of sensor malfunctioning and
has greater variety (in duration) since it is a manual operation.

• Manual intervention affects a smaller number of bags for a shorter period of
time because any problems requiring manual interventions are typically solved
urgently. In contrast, sensor malfunction usually lasts longer, until the problem
is noticed and sensors are replaced.

So, using the information about the frequency and location of outliers during P-proclet
conformance checking, possible root causes of outliers can be identified as well (in
addition to outlier detection).

Incomplete Logging In the real world, recorded event logs are often incomplete
due to various reasons [1]. In the BHS domain, one large and important source
of this incompleteness is the architecture of bag tracking, as we saw in the previous
examples. For the system in Figure 7.3(a), it results in losing all the events of complete
transitions, and in losing the events of step b for all the bags coming from location
a2. While the recorded trace of pid1 is

• σ∗
pid1 = 〈a2s ,cs〉,

the complete trace is

• σc
pid1 = 〈a2s , a2c ,bs ,bc ,cs ,cc〉.

Event log incompleteness dramatically impedes the system performance analysis qual-
ity. Availability of the process model describing the control-flow perspective, i.e., the
P-proclet, allows restoring unobserved (unrecorded) events in traces through confor-
mance checking approaches that we consider next.

7.2.2.3 Approach

Now, we show how the problem of replaying a token over a CPN (Definition 6.12) in
case of P-proclets can be reduced to the problem of conformance checking for Petri
nets with black tokens, i.e., for cases executing in isolation, which has been exten-
sively studied in process mining [24]. Concretely, we propose using an alignment-
based approach [43].

In [43], a sound WF-net and event log are the input for conformance checking. In
Section 6.3 we discussed that a P-proclet can be seen as a transition-bordered Petri
net with black tokens, transformed into a CPN by adding color ID to tokens and

7.2 Conformance Checking of PQR-Systems 217

places for distinguishing tokens of different instances. As trajectory conformance is
checked per instance in isolation, we do not have to distinguish case identifiers. So, we
remove the colors of tokens and places and obtain a Petri net with black tokens. Next,
we can convert the obtained net into a sound WF-net N WF

0 , according to clause 6
in Definition 6.2. As a result, we have WF-net N WF

0 . By applying alignment-based
conformance checking [43] to each trace of LET

pid, we determine whether it can be
replayed over WF-net N WF

0 . The outcome for each trace can be used for solving the
problem instances discussed above.

7.2.3 Trajectory Conformance for Q- and R-Proclets

This section follows the same structure as the previous section, formulating the sub-
problem, motivation, problem instances, and approaches for Q- and R-proclet confor-
mance checking.

7.2.3.1 Problem

For Q- and R-proclets, we check whether the trace of an event log, derived for case
notion qid or rid respectively from the given event table ET , can be replayed over the
net of a Q- or R-proclet. This sub-problem reads as follows.

Trajectory Conformance for Q- and R-proclets. Let Ni be a Q- or R-proclet of the
PQR-system S. Let LET

cn be an event log, derived from event table ET for case notion
cn = qid if Ni is a Q-proclet, or for case notion cn = rid if Ni is an R-proclet, according
to Definition 2.12. The trajectory conformance problem for Q- and R-proclets is the
following: can each trace σ ∈ LET

cn be replayed over net Ni ?

7.2.3.2 Problem Instances

As we discussed in Section 6.5, the intuition behind a trace replaying over a CPN
(Definition 6.12) assumes that the interpretation of a trace as a labeled transition
occurrence sequence (Definition 6.9) provides a valid sequence of transition labels
and bindings, while time distances between directly following occurrences (events)
cannot be less than the corresponding minimum waiting or service time in the CPN.
So, we are interested in problem instances for which detecting a wrong occurrence
sequence and/or timing has a valuable practical use. In the following, we discuss
three such problem instances.

More Accurate Trace Alignment of P-Proclet Traces Using Q-Proclets. Traces can
be accurately aligned during conformance checking of the P-proclet when a single
alignment variant is possible. However, it is possible to have multiple ones. Let us
consider the loop with a shortcut in Figure 7.4, where the sensors track bags:

• before unit a,

218 Conformance Checking for Systems with Shared Resources and Queues

Event identifier Activity Time pid
e1 as 1 pid1

e4 bc 12 pid1

Table 7.1: Bag pid1 incomplete trace.

Event Activity Time pid
e1 as 1 pid1

e2 ac ? pid1

e3 bs ? pid1

e4 bc 12 pid1

Table 7.2: Possible variant 1 of bag pid1 complete trace.

• after unit a on the path to the shortcut,
• after merge unit b.

The corresponding PQR-system is shown in Figure 7.5, where the observed transitions
are drawn as filled rectangles. Note that in this figure, the R-proclets are not shown
for simplicity. Let us now consider the trace of instance pid1 (case notion pid), shown
in Table 7.1. In this trace, only events of the observed transitions are recorded. No
identifies for case notions qid and rid are recorded, as it is usually the case in real
systems. This trace can be alignment with the P-proclet in two different ways:

1. bag pid1 followed a longer path a : b, see the complete trace in Table 7.2, and
2. bag pid1 followed shortcut a′ : b′, see the complete trace in Table 7.3.

Sensor a’

Sensor a

Sensor b

Figure 7.4: Sorting loop with a shortcut.

7.2 Conformance Checking of PQR-Systems 219

Event Activity Time pid
e1∗ as 1 pid1

e2∗ a′
c ? pid1

e3∗ ss ? pid1

e4∗ bc 12 pid1

Table 7.3: Possible variant 2 of bag pid1 complete trace.

Figure 7.5: PQR-system of the sorting loop in Figure 7.4 (R-proclets are omitted). Only the
transitions drawn as filled rectangles are recorded.

220 Conformance Checking for Systems with Shared Resources and Queues

If only P-proclet is used for trace alignment, these variants are valid, and there is no
reason to prefer one to another. However, conformance checking of the Q-proclets
can help to choose the right one. To explain how it works, we consider both trace
alignments (in Table 7.2 and Table 7.3).

1. First, we assume e2 and e3 are due to the ac and bs (Table 7.2). The observed
time distance between events e1 and e4 #time(e4)−#time(e1) = 11. The time dis-
tance between events e2 and e3 cannot be greater than #time(e4)−#time(e1) be-
cause e2 and e3 happened after e1 and before e4, i.e., #time(e3) − #time(e2) ≤
#time(e4)−#time(e1) = 11. As we assume e2 and e3 are due to the ac and bs , then
the bag traveled the conveyor a : b and e2 and e3 are part of a trace of pro-
clet Q-a:b, i.e., they are the part of a trace 〈. . . ,e2,e3, . . .〉 for case notion qid and
instance qid1. In this trace, events e2 and e3 are recorded for enqueuing and de-
queuing of bag pid1, so the time distance between e2 and e3 cannot be less than
t qid1

wQ = 20, i.e., the condition #time(e3)−#time(e2) ≥ t qid1
wQ = 20 must hold for replay-

ing this trace over the Q-proclet. As this is not the case, the trace 〈. . . ,e2,e3, . . .〉
for case notion qid and instance qid1 cannot be replayed over proclet Q-a:b.

2. In contrast, if we assume e2 and e3 are due to the a′
c and b′

s (Table 7.3), condi-
tion #time(e3)−#time(e2) ≥ t qid2

wQ = 10 must hold. Since it is the case, this alignment
is valid.

In practice, more accurate trace alignment results in more accurate analysis results
on the aligned traces (event logs).

Concept Drift Detection for R-Proclets. The previous problem instance is about
detecting problems on the data side when the model is assumed to be prescriptive.
Now, we consider a problem instance caused by a descriptive model that becomes
incorrect due to concept drift. Let us consider a conveyor where the protective space
policy normally requires two protective space units between neighbor bags (see the
right-hand part in Figure 7.6). While this policy provides plenty of room between
bags for reliable work of the system equipment, it also “wastes” a lot of conveyor
space. If the load becomes heavy, another policy can be invoked for better utiliza-
tion of the conveyor space, for example, by keeping only one protective space unit
between neighbor bags (see the left-hand part in Figure 7.6). As a result, the current
template parameter twR, defining the minimum distance between neighboring bags,
is no longer correct. Detection of systematic violations of this time characteristic can
reveal this concept drift in the resource behavior, so the R-proclets can be tuned ac-
cordingly, i.e., the minimum waiting time of the corresponding R-proclets can be set
to the correct (observed) value.

Imperfect Log Repair (Q- and R-proclets). So far, we considered problems on the
data side caused by logging issues. Now, let us consider problems on the data side
caused by the possible application of log repair techniques [50, 137, 138]. When

7.2 Conformance Checking of PQR-Systems 221

a log repair approach restores missing events, the timestamps of these events can
be restored inaccurately because, for example, there is no sufficient information for
accurate restoring available [50]. The resulting inaccuracy can cause wrong results
of consequent performance analysis when unnoticed. These timestamp errors can be
often detected through conformance checking of Q- and R-proclets, and taken into
account by the analysts. Later, we additionally show how this type of conformance
checking facilitates our conformance checking and log repair framework.

7.2.3.3 Approach

To address the problem of conformance checking for Q- and R-proclets, an approach
capable to do conformance checking of CPNs would perfectly work. However, it is a
rather complicated problem, and we could not find an existing approach in the lit-
erature. Fortunately, because the Q- and R-proclets use only a very restricted subset
of the CPN syntax and semantics, this problem can be reduced to less general ap-
proaches. In this section, we focus on a work addressing compliance checking of tem-
poral compliance requirements [53]. It leverages a data-aware conformance checking
technique allowing conformance checking with respect to a given data-aware Petri
net [52]. In the following, we explain how to apply this technique in our setting by
the example of a simple CPN —R-proclet —first, and then discuss how this technique
can be potentially extended for conformance checking of the more complex Q-proclet.

The approach [53] idea is as follows. A data-aware Petri net describes both the
control flow perspective and temporal compliance requirements. The control flow is
described as usual through the net of connected transitions and places [1], while the
temporal conditions are defined through the predicates of transition guards. The R-
proclet, converted into a data-aware Petri net, is shown in Figure 7.7. The minimum
waiting and service time are defined through the guards on transitions t2 and t3

respectively.
While replaying a trace, the attribute values of each replaying event can be stored

in the variables of the net, shown as triangles in Figure 7.7. The transition guards
evaluate the predicates, composed from these net variables, and the variables are
bound to the current event attribute values, e.g., for a currently replaying event e, a
variable e.time is bound to the attribute value #time(e). If any predicate of the tran-
sition guards is evaluated as false, the replaying trace does not fit into the model.

pid7 PrS PrS pid5 PrSPrS pid6 pid3 PrS PrS pid2 PrS PrS pid1pid4 PrS

Figure 7.6: Concept drift due to the protective space policy change.

222 Conformance Checking for Systems with Shared Resources and Queues

Figure 7.7: R-proclet converted into a data Petri net.

While further diagnostics can be obtained [53], these are not needed for solving our
problem. Note, that other event attributes, besides time, can be used in a data-aware
Petri net as well, e.g., a variable e.pid can be used for accessing the process instance
identifier #pid(e).

This approach can determine whether a trace can be replayed over an R-proclet,
according to Definition 6.12, through:

1. conformance checking of the control-flow perspective, i.e., by checking if the in-
terpretation of a trace as a labeled transition occurrence sequence has a correct
sequence of labels (event activities) according to the R-proclet,

2. evaluation of transition guards, i.e., by checking if the time intervals between
start-complete and complete-start pairs of occurrences are equal or greater than
the minimum service and waiting time of the R-proclet respectively.

To obtain it, we first converted the initial model (Figure 6.9) into a WF-net and
then added the variables and guards. For the conversion into a WF-net, the following
steps have been done.

7.2 Conformance Checking of PQR-Systems 223

Event Activity Time pid qid rid
e3∗ b′

s 11 pid2 qid1 rid3

e4∗ bc 12 pid2 qid3 rid3

e9∗ bs 21 pid1 qid2 rid3

e10∗ bc 22 pid1 qid3 rid3

Table 7.4: Events and attributes of the trace σ8 of Table 6.2.

1. We removed all the variables and color sets from the initial model because we
do not have to distinguish different cases for replaying a single trace in isolation,
as in [53].

2. We converted the resulting black token Petri net model into a WF-net by adding
a source place i , a sink place o, and two transitions τ1,τ2 to connect them with
place idle.

Afterward, we converted the resulting WF-net into a data-aware Petri net, capable to
check the compliance to time characteristics of the R-proclet, in the following way.
We defined two variables tstart and tcomplete to store the timestamps of events being
replayed on transitions start and complete respectively. We also connect variables tstart

and tcomplete with transitions complete and start respectively for reading their values.
Finally, we provided guards on these transitions for checking compliance with the
minimum waiting and service time.

To explain those modifications by example, let us assume tsR = 1, twR = 2. Now, we
replay trace σ8 = 〈e3∗,e4∗,e9∗,e10∗〉 of Table 6.2, whose event attributes are shown
in Table 7.4, as follows.

1. Initially, we have a model move [43] at transition t1. We use it to initialize
variable tcomplete with the timestamp of the very first trace event #time(e3∗) = 11,
shifted to twR = 2 back at time, to make the very first check of the guard of
transition t2 successful. The corresponding alignment is shown in Table 7.5,
where model moves are written as −.

2. After the initialization, we continue by replaying e3∗ on t2, whose firing stores
the timestamp of e3∗ in variable tstart . The guard of t2 holds as 11− (11−2) ≥ 2.

3. Next, we replay e4∗ on t2. Now, its guard expression uses the timestamp of the
previous event e3∗, stored in variable tstart. It also holds. Firing of t2 stores the
timestamp of e4∗ in variable tcomplete.

4. Applying the same, we can show that trace σ8 can be replayed on this net. The
resulting alignment is presented in Table 7.5.

If at least one of the guards did not hold (e.g., if the timestamp of e4∗ were 11.5),
we would say the trace cannot be replayed. In our example, control-flow conformance
is checked as in [43], which we do not discuss explicitly.

224 Conformance Checking for Systems with Shared Resources and Queues

Event Transition
− t1

e3∗ t2

e4∗ t3

e9∗ t2

e10∗ t3

− t4

Table 7.5: Alignment of events trace σ8 (Table 7.4) with the transitions of the model in Fig-
ure 7.7.

So, we showed that temporal compliance checking [53] can be used for checking
whether a trace can be replayed over an R-proclet. Now, let us consider the use of
this technique for Q-proclet conformance checking. First, we converted the model of
the Q-proclet (Figure 6.10) into a WF-net (Figure 7.8) in the same way as we have
done for the R-proclet. Then, we have to provide the following constraints:

1. the minimum waiting time for queue elements, distinguished by the value of
attribute pid, is greater or equal to twQ, and

2. the FIFO ordering is observed for queue elements.

Figure 7.8: Q-proclet converted into an extended data Petri net.

Note, if we consider a trace of a Q-proclet for case notion qid, the directly follow-
ing events of the transitions enq and deq do not necessarily relate to the same queue
element (with the same value of pid). So, memorizing and using just the previous
time of an enq or deq occurrence would not help in computing the actual waiting
time for each queue element. Instead, some data structure is needed to keep the en-
queuing time per element (pid) for checking on dequeuing of the same element. As

7.2 Conformance Checking of PQR-Systems 225

we have to verify the FIFO ordering of elements as well, we can use a list structure
to kill two birds with one stone. However, data-aware Petri nets have no support
for data structures. Assuming a conformance checking approach that can manage
lists of values becomes available, the following procedure can be used for Q-proclet
conformance checking.

To preserve the ordering, we define a variable Q of type list of tuples, where each
tuple is in T×I . On the replay of an event corresponding to enqueuing, the values
of the event timestamp and attribute pid are appended to the list (as a tuple). On the
replay of an event corresponding to dequeuing, the following conditions are checked:

1. the list Q is not empty, i.e., there is an element for dequeuing,
2. the identifier pid of the element to be dequeued (according to the ordering in

Q) is equal to #pid(e) being currently replayed over t2,
3. the time interval between enqueuing and dequeuing (for the element with this

pid) is not less than twQ.

If these conditions, defined in the guard of transition t3, hold for an event being
replayed over t3, event replay for the trace can be continued, and the tuple is removed
from the list head. If all the events of a trace can be replayed, it means this trace can
be replayed over the corresponding Q-proclet.

7.2.4 Synchronization Conformance Checking

So far, we discussed trajectory conformance for the P-, Q- and R-proclets, which
considers replaying of traces over the corresponding proclet in isolation. However,
this type of conformance checking does not address the problem of synchronization,
which is the key process behavioral property described by the PQR-system. This sec-
tion addresses this problem, following the structure of the two previous sections.

7.2.4.1 Problem

The precondition for the problem input is that process, queue, and resource traces
have trajectory conformance to the P-, Q-, and R-proclets. The problem reads as
follows.

Synchronization Conformance Checking. Let PQR-system S and event table ET

be so that all traces of event logs derived for case notions pid,qid and rid (Defi-
nition 2.12) can be replayed over the P-, Q- and R-proclets respectively. The syn-
chronization conformance checking problem is the following: is event table ET an
execution of S, according to Definition 6.14?

Reducing The Problem. Before providing a problem instance example, let us revisit
Definition 6.14. By the trajectory conformance checking of the P-, Q- and R-proclets
we ensure clause (1) of Definition 6.14, i.e., that an event table can be replayed

226 Conformance Checking for Systems with Shared Resources and Queues

Event Activity Time pid qid rid
e1 cs 1 pid1 qid3 rid4

e2 cc 2 pid2 − rid4

e3 cs 6 pid2 qid3 rid4

e4 cs 7 pid1 − rid4

Table 7.6: Trace of resource rid4 of the system in Figure 7.3(a) (see Figure 6.6 for the whole
PQR-system).

over the P-, Q- and R-proclets. For that, we can use the techniques of Sections 7.2.2
and 7.2.3. By the trajectory conformance checking of the Q-proclets we also ensure
clause (2)2 of Definition 6.14, i.e., the FIFO ordering of queue elements is preserved
with respect to the pid identifier. The ordering is checked by the guard on transition
t3 that ensures that the element, being currently dequeued, is in the head of queue
data structure Q (see Figure 7.8 of Section 7.2.3).

Finally, clause (2)1 of Definition 6.14, which requires that cases (for case notion
pid) do not overtake each other within an R-proclet, is to be checked. For that, we
assume that trajectory conformance of all the proclets has already been successfully
checked. In the following, we consider the corresponding problem instance and the
corresponding approach.

7.2.4.2 Motivation

Let us consider the trace of resource rid4 of the PQR-system in Figure 6.6, shown in
Table 7.6. Assuming

• t rid4
sR = 1, and

• t rid4
wR = 2,

we can check that trajectory conformance holds for this trace, as the event order
and timing are correct. Nevertheless, the start event e1 is related to bag pid1, while
the directly following event e2 is related to bag pid2, i.e., this trace shows that rid4

started handling pid1 but then completed handling pid2, whose handling actually
had not started yet. The same issue we see with events e3 and e4 of this trace.
That is, the correlation constraint of the PQR-system is violated, and point (2)1 in
Definition 6.14 does not hold. Detecting such problems allows for revealing issues in
data, for example, due to incomplete logging or inaccurate log repair.

7.2.4.3 Approach

To check point (2)1 in Definition 6.14, it is sufficient (additionally to what is already
checked for R-proclets in Section 7.2.3) to check whether each event ei of a complete

7.2 Conformance Checking of PQR-Systems 227

transition t3 has the same value of attribute pid as the directly preceding event ei−1

of the start transition t2, i.e., if #pid(ei−1) = #pid(ei). For that, we extend the model we
used for temporal compliance checking of the R-proclet (Figure 7.7) as follows:

1. the value of attribute pid is stored for each start event in variable pid (Fig-
ure 7.9), and

2. condition #pid(ei−1) = #pid(ei) is checked in the guard of the complete transition
as #pid(e) = pid.

Figure 7.9: R-proclet as a data Petri net, extended for synchronization conformance checking.

Using the model of Figure 7.9 for trajectory conformance of R-proclet, we can
check point (2)1 of Definition 6.14 together with trajectory conformance of R-proclets.

7.2.5 Limitations

In this section, we made an initial step toward conformance checking of PQR-systems.
However, its approaches have the following limitations.

228 Conformance Checking for Systems with Shared Resources and Queues

• Optimality of an alignment for the control-flow perspective of P-proclets and
data-aware Petri nets is inherited from the corresponding approach [43] and
expressed in the number of model and log moves. This definition of optimal-
ity does not consider the other perspectives and can lead to erroneous align-
ments, as shown in Section 7.2.3. However, incorporating other perspectives
like resources causes an increase in the complexity of the problem and makes it
difficult to apply to real-life problems [24].

• The data-aware Petri net, constructed for conformance checking of R-proclets
and synchronization conformance checking in Section 7.2.4 uses single vari-
ables for saving timestamps and identifiers of events. It does not allow for sup-
porting true concurrency because these variables cannot store this information
for events with different identifiers generated concurrently.

• The approaches allow for limited diagnostics and aimed to only detection of
outliers.

A full-scale multi-perspective conformance checking approach with the support of true
concurrency and extended diagnostics is the subject of future work.

So far, we discussed conformance checking and model repair. Next, we consider
our log repair approach.

7.3 Inferring Unobserved Events

In Section 7.1, we discussed how generalized conformance checking can be applied
in our setting. Its conformance checking and model repair tasks are considered in
Section 7.2. In this section, we propose our approach for the log repair task, using
the PQR-system as a process model.

We provide motivation for log repair, and informal problem formulation, in Sec-
tion 7.3.1. We consider reasons for information loss in BHSs in Section 7.3.2. We
discuss partially ordered view on event tables, and their relation with the sequential
view, in Sections 7.3.4 and 7.3.5. We formulate the problem formally in Section 7.3.6
and propose a visualization of performance spectra for event data with uncertainty
in Section 7.3.7. We present our approach in Section 7.3.8, and its evaluation in
Section 7.3.9.

7.3.1 Motivation

Precise knowledge about the actual process behavior and performance is required for
identifying causes of performance issues [66], as well as for predictive process mon-
itoring of important process performance indicators [32]. For MHSs, performance
incidents are usually investigated offline, using recorded event data for finding root
causes of problems [45], while online event streams are used as input for predictive

7.3 Inferring Unobserved Events 229

m3s

d1s

d2s

m4s

m3s

m3c

m4s

m4c

d1s

m
3
’s

pid=51

pid=50

d1c

d2s

d
1
’c

m
4
’s

(b)
observed

(c)
variant 1

(d)
variant 2

d
2
’c

(a)

t1

Lo
ad

Lo
ad

observed event unobserved event

e3

e1

e7

e5

e11

Time

e3e5 e5

e9

e9e7
e7

e1 e1

e11 e11
t0 t2

t3
t1 t1 TimeTime

PARTIAL LOG

Id,Activity,Time

50,m3, t0
50,d1, t2
51,m4, t1
51,d2, t3

Figure 7.10: BHS model example (a), the observed imprecise behavior for two cases pid = 50

and pid = 51 (b), and two possible alternatives of the actual behavior (c) and (d).

performance models [160]. Both analysis and monitoring heavily rely on the com-
pleteness and accuracy of the input data. For example, events may not be recorded
and, as a result, we do not know when they happened, even though we can derive
that they must have happened. Yet, when different cases are competing for shared
resources, it is important to reconstruct the ordering of events and provide bounds
for non-observed timestamps.

However, in most real-life systems, items are not continuously tracked, and not all
events are stored for cost-efficiency, leading to incomplete performance information,
which impedes precise analysis. For example, a BHS tracks the location of a bag via
hardware sensors placed throughout the system, generating tracking events for the
system control, monitoring, analysis, and prediction. Historically, to reduce costs, a
tracking sensor is only installed when it is strictly necessary for the correct execution
of a particular operation, e.g., only for the precise positioning immediately before
shifting a bag from one conveyor to another. Moreover, even if a sensor is installed,
an event still can be systematically discarded for particular situations (e.g., if a bag was
not diverted). As a result, the recorded event data of a BHS are typically incomplete,
hampering the analysis based on these incomplete data. Therefore, it is essential to
repair the event data before the analysis.

230 Conformance Checking for Systems with Shared Resources and Queues

For example, Figure 7.10 shows a BHS fragment where not all events are always
recorded. The process model is given, and for two cases the recorded incomplete
sets of events are depicted, using the performance spectrum (see Chapter 3). In
Figure 7.10(b), bag pid = 50 entering the system via m3 at time t0 (event e1) and
leaving the system via d1 at time t2 (e7), and item pid = 51 entering the system via
m4 at time t1 (e5) and leaving the system via d2 at time t3 (e11). As only these four
events are recorded, the event data do not provide any information about in which
order both cases traversed the segment m4 → d1. Naively interpolating the movement
of both items, as shown in Figure 7.10(b), suggests that item pid = 51 overtakes item
pid = 50. This contradicts that all items are moved from m4 to d1 via a conveyor belt,
i.e., a FIFO queue: item 51 cannot have overtaken item 50.

In contrast, Figure 7.10(c) and Figure 7.10(d) show two possible variants of the
behavior, which are consistent with our knowledge of the system. We know that a
conveyor belt (FIFO queue) is a shared resource between m4 and d1. Both variants
differ in the order in which items 50 and 51 enter and leave the shared resource, the
speed with which the resource operated, and the load and free capacity the resource
had during this time.

In general, the longer the duration of naively interpolated segment occurrences,
the larger the potential error. Errors in load, for example, make the performance
outlier analysis [45] or short-term performance prediction [47] rather difficult. Errors
in the order impede the root-cause analysis of performance outliers, e.g., determining
the cases that caused or were affected by the outlier behavior.

Problem. In this section, we address a novel type of problem as illustrated in Fig-
ure 7.10 and explained above. The behavior and performance of the system cannot
be determined by the properties of each case in isolation but depends on the behavior
of other cases and the behavior of the shared resources involved in the cases. Crucially,
each case is handled by multiple resources, and each resource handles multiple cases,
resulting in many-to-many relations between them.

The concrete problem we address is to reconstruct the unobserved behavior and
performance information of each case and each shared resource in the system that
is consistent with both observed and reconstructed unobserved behavior and perfor-
mance of all other cases and shared resources.

Input. More specifically, we consider the following information as given:

1. a PQR-system S (see Definition 6.7), i.e., a process model that describes possible
paths for handling each individual case, resources and queues involved in each
step, and their parameters, such as the ordering, minimum service and waiting
times,

2. a monotone event table ET 1 = (E1, {pid},#) (Definition 2.10) such that:

(a) case notion pid is global, i.e., ∀e ∈ E1,#pid(e) 6=⊥,

7.3 Inferring Unobserved Events 231

(b) some activities of the P-proclet of S are unobservable,
(c) no events are explicitly related to instances of the Q- and R-proclets, i.e.,

identifiers for the case notions qid and rid are not recorded: ∀e ∈ E1,#qid(e) =
#rid(e) =⊥.

Problem. Given the input above, we want to provide an event table ET 2 = (E2,CNPQR,#3)

that describes:

1. for each instance of the P-proclet, i.e., for a case of case notion pid, the exact
sequence of process steps,

2. for each unobserved event e ∈ Eu = E2 \ E1, a time-window of the earliest and
latest occurrence of the event so that either all earliest or all latest timestamps
altogether describe a consistent execution of the entire process over all shared
resources and queues, described in S,

3. for each event, related to a Q-proclet and/or R-proclet, the corresponding case
identifier for case notions qid and rid respectively.

The resulting event table ET 2 can be converted into a complete event table (Defini-
tion 2.9) ET 3 that is also correct, i.e., it can be replayed over S (see Definition 6.14)
by choosing exact timestamp values from the defined timestamp intervals for events
in Eu.

7.3.2 Information Loss

In this section, we introduce a running example that has a typical logging architecture
of the BHSs we analyzed. We show how and why information is lost, resulting in
incomplete event logs (tables), by the example of a system run.

Running Example. In Section 6.7, we introduced a BHS simulation model that we
use throughout Chapters 7-9 for providing examples and evaluation on synthetic data.
Although it is much simple than any real BHS, it is still too large to explain the ideas
behind our approach for inferring unobserved events concisely. In this section, we use
its simplified modification.

Figure 7.11(a) shows the BHS. It has four parallel check-in counters c1− c4 that
merge into one “main” linear conveyor through merge units m2−m4. Incoming con-
veyors before c2− c4 are accumulating (see Chapter 4), i.e., they have several short
independent belts at the end. They are used for accumulating bags when the main
conveyor is unavailable so that their other belts do not need to stop in this case. Di-
verting units d1 and d2 can divert bags from the main conveyor toward scanners s1

and s2.
Figure 7.11(b) shows an MFD of the system in Figure 7.11(a). The corresponding

PQR-system (Definition 6.7) is shown in Figure 7.12.

232 Conformance Checking for Systems with Shared Resources and Queues

id=51

c2 m2

s1

c1

d1

c2
c1
m2’

s1
d1

m2

p

(a) (b)

id=50

m3’ m3

m4’ m4

c3

c4

c3 m3

c4 m4

d2
s2 s2 d2

Figure 7.11: In a BHS fragment (a), where the red arrows correspond to the installed sensors,
and grey ones correspond to not installed, and the corresponding material flow
diagram (b).

For this system, we assume the event logging architecture that we often observed
in real BHSs. That is, the sensors tracking bag movement are installed only if it is re-
quired for internal system needs, and not for logging all process steps. The installed
and “missing” sensors are shown in Figure 7.11(a) by red and grey arrows respec-
tively. The dashed red arrows show sensors whose events are not always recorded
(only if a bag is diverted toward s1, s2). The installed (red) sensors correspond to the
P-proclet transitions shown as filled boxes in Figure 7.12. To summarize, a process
step is recorded when

• a bag is merged onto another conveyor (sensors m2′−m4′ in Figure 7.11(a)),
• a bag is diverted toward scanners s1, s2 (sensors d1,d2) (if a bag is not diverted,

events of d1,d2 are unobserved), and
• a bag reaches a scanner location (sensors s1, s2).

Events of process steps executed in the remaining situations are unobserved (not
recorded). As Figure 7.12 shows, most transitions of the P-proclet in Figure 7.12
generate unobserved events. Next, we show by example what are the consequences
of the logging architecture for recorded event logs.

System Run and Event Log. Now, we consider how the BHS handles two bags, what
system run it generates, and what information is missing in the recorded event table.
To demonstrate the latter, we proved two resulting event tables:

• an event table ET , shown in Table 7.7, contains both observed and unobserved
events, and identifiers of case notions in CNPQR,

7.3 Inferring Unobserved Events 233

Figure 7.12: PQR-system of the BHS in Figure 7.11.

234 Conformance Checking for Systems with Shared Resources and Queues

Figure 7.13: System run (a), and its labeled partial order (b).

7.3 Inferring Unobserved Events 235

event ID pid act time is recorded qid rid

e0 50 c3c t0 (9:00:15) no c3 : m3 ⊥
e1 50 m3′s t1 (9:00:30) yes c3 : m3 m3
e2 50 m3c t2 (9:00:40) no m3 : m4 m3
e3 50 m4s t3 (9:00:45) no m3 : m4 m4
e4 50 m4c t4 (9:00:50) no m4 : d1 m4
e7 50 d1s t7 (9:01:05) yes m4 : d1 d1
e8 50 d1′c t8 (9:01:10) no d1 : s1 d1

e18 50 s1s t18 (9:01:15) yes d1 : s1 ⊥
e17 51 c4c t17 (9:00:35) no c4 : m4 ⊥
e5 51 m4′s t5 (9:00:55) yes c4 : m4 m4
e6 51 m4c t6 (9:01:00) no m4 : d1 m4
e9 51 d1s t9 (9:01:15) no m4 : d1 d1

e10 51 d1c t10 (9:01:20) no d1 : d2 d1
e11 51 d2s t11 (9:01:25) yes d1 : d2 d2
e12 51 d2′c t12 (9:01:30) no d2 : s2 d2
e19 51 s2s t19 (9:01:35) yes d2 : s2 ⊥

Table 7.7: Complete event table.

event ID pid act time

e1 50 m3′s t1

e7 50 d1s t7

e18 50 s1s t18

e5 51 m4′s t5

e11 51 d2s t11

e19 51 s2s t19

Table 7.8: Recorded incomplete event table.

• an event table ET ′, shown in Table 7.8, contains only observed events, whose
identifiers for case notions qid and rid are not recorded, as it usually is for real
BHSs.

Bag handling happens as follows.

1. First, bag 50 is inserted in the system via input transition c3c at time t1. As a re-
sult, event e0∗ is generated (see Figure 7.13(b)). This event is a synchronization
of e0 and e0′′ (see the system run in Figure 7.13(a)) when c3c occurs for bag
50 in the P-proclet queue c3 : m3 respectively (see Figure 7.13(a)). The attribute
values of e0∗ are shown in ET in Table 7.7. However, e0 is not recorded to ET ′

(see Table 7.8), according to the logging architecture.
2. At least the minimum waiting time t c3:m3

wQ must pass before bag 50 reaches the
end of c3 : m3, and next process step m3 can be started.

236 Conformance Checking for Systems with Shared Resources and Queues

3. In process step m3 (e1), bag 50 is merged onto the main conveyor. For that, bag
50 leaves c3 : m3 (e1′′), and resource m3 starts its merge (e1′). These tree events
result in synchronized event e1∗ in Figure 7.13(b). Event e1 is recorded to ET ′,
however resource identifier m3 and queue identifier c3 : m3 are not recorded, as
in real BHSs.

4. When merge starts, resource m3 switches from idle to busy. At least minimum
service time t m3

sR must pass before it completes merge (process step m3c , event
e2∗). Complete process steps are never recorded to ET ′.

5. Concurrently, bag 51 is inserted via c4c (e17∗), moves via queue c4 : m4 toward
merge unit m4 to enter queue m4 : d1.

6. Both bags start competing for merge unit m4.
7. m4 executes m4s and m4c for bag 51 (e5∗ and e6∗) after they are completed for

bag 50 (e3∗ and e4∗). Thus, 51 enters the queue (e6∗) after bag 50 (e5∗) but
before bag 50 leaves it (e7∗).

8. As a result, unit d1 first serves (and diverts) bag 50 (e7∗ and e8∗) toward s1

(e18∗), and serving bag 51 afterward (e9∗ and e10∗).
9. Finally, bag 51 reaches scanner s1 (e19∗).

On completion, only six out of 16 generated events in ET are recorded to ET ′ (com-
pare Table 7.7 and Table 7.8).

In this section, we showed by example how logging implemented in real-world
BHSs makes a significant part of event information unobserved in recorded event
data. In the next sections, we consider how event tables can be considered via the
views of different types, which we exploit for inferring unobserved events later in this
chapter.

7.3.3 Sequential View on Event Tables

view!sequential
Event tables that we considered so far lack explicit structure, required for reason-

ing about the behavior they capture. In this and the next section, we introduce two
views on them that are capable to express the captured behavior:

1. as a set of sequential logs,
2. as partial order.

First, we define a sequential event log as follows.

Definition 7.1 (Sequential event log). L = (cn,E ,#) be an event log with case notion
attribute cn (see Definition 2.11) and the set of cases cn(L) (see Definition 2.13). If
multiple events in E with the same case id in cn(L) have identical timestamps, i.e., ∃e,e ′ ∈
E ,#cn(e) = #cn(e ′) and #time(e) = #time(e ′), case id has multiple traces (see Definition 2.13).

7.3 Inferring Unobserved Events 237

We write σ(L,cn = id) for the set of traces of case id. A sequential event log of L that is
a set σ(L,cn) which contains for each id ∈ cn(L) exactly one trace σ ∈σ(L,cn = id).

If an event log L is incomplete (see Definition 2.11), the notion of trace and se-
quential event log are non-deterministic because events without timestamps can be
placed at arbitrary positions of traces, thereby allowing multiple traces for a case.
However, for a time-monotone event log, each case id has a unique trace {σid

cn} =
σ(L,cn = id) and the log σ(L) is is uniquely defined. We then write σid

cn =σ(L,cn = id).
The recorded event table in Table 7.8 is a complete, time-monotone event log for

case notion (entity type) pid defining cases {50,51} and traces

• σ(L,pid,50) =σ50
pid = 〈e1,e7,e18〉, and

• σ(L,pid,51) =σ51
pid = 〈e5,e11,e19〉.

This is a “classical” sequential interpretation of observed events in the complete event
table shown in Table 7.7, it describes how bags 50 and 51 travel from check-in coun-
ters c3,c4 to scanners s1, s2.

However, what is a sequential interpretation of an event table with multiple case
notions, such as the event table shown in Table 7.7? To represent it, we define a se-
quential view on an event table as follows (note that the functions cn(L), corr(L,cn, id),
σ(L,cn, id), σ(L,cn) of Definition 2.13 are well-defined over event tables).

Definition 7.2 (Sequential view on event table). Let ET = (CN ,E ,#n) be an event table
(Definition 2.8). A sequential view on ET is a family 〈σ(ET ,cn)〉cn∈CN of sequential event
logs (one per each entity type in CN).

Similarly to sequential logs, if ET is time-monotone (see Definition 2.10), each
sequential log σ(ET ,cn) is unique, and the sequential view on ET is unique.

Let us provide an example of a sequential view on event table ET shown in Ta-
ble 7.7. It is time-monotone, as can be seen from the absolute values of the times-
tamps, so such a view is unique.

ET has three case notions pid,qid and rid, so it has three sequential logs σ(ET ,pid),
σ(ET ,qid) and σ(ET , rid).

The traces of σ(ET ,pid) are

• σ(ET ,pid,50) = 〈e0,e1,e2,e3,e4,e7,e8,e18〉, and
• σ(ET ,pid,51) = 〈e17,e5,e6,e9,e10,e11,e12,e19〉.

Similarly to the example above, they describe how bags 50,51 travel in the system.
The traces of σ(ET , rid) are

• σ(ET , rid,m3) = 〈e1,e2〉,
• σ(ET , rid,m4) = 〈e3,e4,e5,e6〉,
• σ(ET , rid,d1) = 〈e7,e8,e9,e10〉, and
• σ(ET , rid,d2) = 〈e11,e12〉.

238 Conformance Checking for Systems with Shared Resources and Queues

These traces describe the order in which each machine, corresponding to a case (case
notion rid), handled bags 50 and 51, thus

• e1,e2,e3,e4,e7,e8 ∈ corr(ET ,pid,50), and
• e5,e6,e9,e10,e11,e12 ∈ corr(ET ,pid,51).

That is, some traces σ(ET , rid,m4) and σ(ET , rid,d1) contain events related to differ-
ent bags. It can be seen as these traces go “accross” bag traces σ(ET ,pid,50) and
σ(ET ,pid,51).

Finally, the traces of σ(ET ,qid) are

• σ(ET ,qid,c3 : m3) = 〈e0,e1〉,
• σ(ET ,qid,m3 : m4) = 〈e2,e3〉,
• σ(ET ,qid,m4 : d1) = 〈e4,e6,e7,e9〉,
• σ(ET ,qid,d1 : s1) = 〈e8,e18〉,
• σ(ET ,qid,c4 : m4) = 〈e17,e5〉,
• σ(ET ,qid,d1 : d2) = 〈e10,e11〉, and
• σ(ET ,qid,d2 : s2) = 〈e12,e19〉.

These traces describe the order in which bags (cases of pid) 50 and 51 entered and left
each queue. In σ(ET ,qid,m4 : d1), e4,e7 ∈ corr(ET ,pid,50), and e6,e9 ∈ corr(ET ,pid,51).

In a sequential view, the same event can be a part of different event logs, as we
show above. The rid and qid traces describe how pid traces synchronize on shared
resources (rid) and queues (qid). However, the sequential view does not show it
explicitly. Next, we propose a partial-order view on event tables.

7.3.4 Partially Ordered View on Event Tables

view!partially ordered
In this section, we encode the timestamp-based order of events of the same traces

not within traces of multiple sequential event logs, but as a partial order, that is a
Strict Partial Order (SPO) due to the monotonicity of the #time(.) values. We start by
ordering events e1 < e2 only if they are related to the same entity, and then extend
this ordering across multiple different entities through the transitive closure. In the
remainder of this chapter, we refer to case notions in CN as entity types because we
consider event tables related to PQR-systems.

The partial order view definition reads as follows.

Definition 7.3 (Partial-order view, system-level run). Let ET = (CN ,E ,#) (Definition 2.10)
be a monotone event table. Let cn ∈ CN and id ∈ cn(ET). Event e1 ∈ E precedes event
e2 ∈ E in entity id of type cn, written e1 <id

cn e2 iff

1. ⊥6= #time(e1) < #time(e2) 6=⊥, i.e., the timestamp of e1 is before the timestamp of e2,
and

7.3 Inferring Unobserved Events 239

2. #cn(e1) = #cn(e2) = id, i.e., both events are related to the same entity id.

e1 directly precedes e2 in entity id of type cn, written e1 lid
cn e2, iff there exists no e ′ ∈ E

with e1 <id
cn e ′ <id

cn e2. This ordering lifts to entity types and entire ET:

• e1 directly precedes e2 in entity type cn, written e1 lcn e2, iff e1 <id
cn e2 for some

id ∈ cn(ET), and
• e1 directly precedes e2, written e1 le2, iff e1 lcn e2 for some cn ∈ CN .
• The transitive closures (lcn)+ =<cn and (l)+ =< define (indirectly) precedes per

entity type and for all events in ET , respectively.

The partial-order view on ET or system-level run of ET (induced by #time) is
π= (E ,<,CN ,#).

Note, if an event table is incomplete, events with undefined timestamps are un-
ordered to all other events.

Figure 7.13(b) visualizes the directly precedes relations lpid, lrid, lqid induced
by #time for the event table shown in Figure 7.11(c). It shows that cases pid = 50 and
pid = 51 are independent under the control-flow perspective <pid (e.g., e4 6<pid e5 6<pid

e7), but mutually depend on each other under <rid and <qid (e.g., e4lrid e5lrid e6,
and e6lqid e7).

Let us show that < is an SPO.

Lemma 7.4. Let ET = (CN ,E ,#) (Definition 2.10) be a monotone event table. Let π =
(E ,<,CN ,#) be a system-level run of ET . Then (E ,<) is an SPO.

Proof. We have to show that < is transitive and irreflexive. <= (l)+ is transitive by
construction in Definition 7.3. Regarding irreflexivity: e1 le2 holds only if #time(e1) <
#time(e2). As ET is monotone, either #time(e1) < #time(e2) or #time(e2) < #time(e1) holds
(Definition 2.10) but not both, hence < is irreflexive.

7.3.5 Relation between Sequential and Partially-Ordered View

Now, we establish a more explicit relation between the traces in the sequential view
on ET , and the system-level run π. Later, we use it for defining and solving the
problem of this section.

Given a system-level run π= (E ,<,CN ,#), we write πcn for the projection of π onto
entity type cn ∈ CN there πcn = (Ecn,<cn, {cn},#) contains only events E

∣∣
cn = {e ∈ E , |

#cn(e) 6=⊥} related to cn. Relation <cn is already well-defined with respect to E
∣∣
cn. We

call πcn the entity-type level run of ET for entity type cn.
Correspondingly, given an identifier id ∈ cn(ET), the projection πid

cn = (E id
cn,<id

cn, {cn},#)

contains only the events E
∣∣id
cn = corr(ET ,cn = id) of id. We call πid

cn the entity-level run
of ET of entity id of type cn.

240 Conformance Checking for Systems with Shared Resources and Queues

For example, from the system-level run in Figure 7.13(b), we can obtain the entity-
level runs

• π50
pid and π51

pid from the process perspective,

• πm3
rid ,πm4

rid ,πd1
rid,πd2

rid from the resource perspective, and
• πc3:m3

qid ,πm3:m4
qid ,πc4:m4

qid ,πm4:d1
qid ,πd1:d2

qid ,πd1:s1
qid ,πd2:s2

qid from the queue perspective.

Each entity-level run πid
cn corresponds to a sequential trace σid

cn in the sequential
view of ET because either view derives the direct precedence/succession of events
from the same principles.

Lemma 7.5. Let ET = (CN ,E ,#) (Definition 2.10) be a monotone event table. Let π =
(E ,<,CN ,#) be a system-level run of ET .

For all e1,e2 ∈ E holds: e1 l e2 iff there exists cn ∈ CN and id ∈ cn(ET) so that
〈. . . ,e1,e2, . . .〉 =σ(L,cn = id) is a trace in the sequential view 〈σ(ET ,cn)〉cn∈CN of ET .

Proof. If e1le2 then by Definition 7.3, e1lid
cne2 for some cn ∈ CN and id ∈ cn(ET). Thus,

#cn(e1) = #cn(e2) and #time(e1) < #time(e2) (by Definition 7.3 and ET being monotone).
By Definition 2.13, e1,e2 ∈ corr(ET ,cn = id) (correlated into the same case id for cn).
Further, because there is no e ′ ∈ corr(CN ,cn = id) with #time(e1) < #time(e ′) < #time(e2)

(definition of l in Definition 7.3), e1 and e2 are ordered next to each other in the
sequential trace 〈. . . ,e1,e2, . . .〉 = σ(ET ,cn = id). The converse holds by the same argu-
ments.

Corollary 7.5.1. Let ET = (CN ,E ,#) (Definition 2.10) be a monotone event table. Let
π= (E ,<,CN ,#) be the system-level run of ET . For any πid

cn for cn ∈ CN , id ∈ cn(ET) holds
e1 lid

cn e2 iff 〈. . . ,e1,e2, . . .〉 = σ(ET ,cn = id) and ei lid
cn e j iff 〈. . . ,ei , . . . ,e j , . . .〉 = σ(ET ,cn =

id).

The above relation we use in the next sections from being able to change per-
spectives at will and study (and operate on) behavior as a classical sequence (and
use sequence reasoning for a single entity) as well as a partial order (and use partial
order reasoning across different entities). For instance, the directly precedes relations
lpid,lqid,lrid, visualized in Figure 7.13(b), directly define the sequences of events
we find in σ(ET ,pid),σ(ET ,qid), and σ(ET , rid).

7.3.6 Problem Statement

In this section, we formulate the problem addressing RQ-5. For that, we first define
what is a correct and complete event table with respect to a given PQR-system S.

Definition 7.6 (Correct and complete event table). Let S be a PQR-system (see Defi-
nition 6.7) that defines proclets for a process, queues, and resources with case notions
(entity types) pid,qid and rid respectively. Let CNPQR be the set of the PQR-system case

7.3 Inferring Unobserved Events 241

notions {pid,qid,rid} ⊆CN. Let ET = (CN ,E ,#),CNPQR ⊆ CN (Definition 2.8) be an event
table. Event table ET is a correct and complete event table iff it can be replayed over
the entire system S according to Definition 6.14.

However, only a subset of events in E without defined identifiers qid and rid has
been often recorded in an event table in reality, as we discuss in Section 7.2.2. It
makes such an event table partial.

Definition 7.7 (Partial event table, observed event, corresponds). An event table ET ′ =
({pid},E ′,#′), where events in E have attribute names in some set AN ′ ⊆ AN , is a partial
(and correct) event table of PQR-system S if there exist a correct and complete event log
ET = (CN ,E ,#) of S such that:

1. E ′ ⊆ E , and #′ = #
∣∣
E ′×AN ′ ,

2. no queue or resource identifiers are defined for events in E ′, i.e., ∀cn ∈ CNPQR \

{pid},e ∈ E ′,#cn(e) =⊥,
3. for each e ∈ E ′ #time(e) 6=⊥, and
4. for each complete trace σ(ET ,pid = id) = 〈e1, . . . ,en〉, the partial trace σ(ET ′,pid =

id) = 〈 f1, . . . , fk〉 contains at least the first and last event of the complete trace, i.e.,
e1 = f1 and en = fk .

We call each event in E ′ an observed event and say that complete event table ET corre-
sponds to the partial event table ET ′.

For example, in Figure 7.11(c) a complete and correct event table corresponds to
a recorded partial event table whose (observed) events are highlighted.

In general, events of a partial event log are less ordered because case notions qid

and rid are missing. For example, the observed events of the incomplete event table
in Figure 7.11(c), shown as filled boxes in Figure 7.13(b), are less ordered than in
the complete event table. For example, events e1 and e5, and events e5 and e7 are
unordered, while they are ordered in the complete event table.

This allows hypothesizing that this missing ordering can be inferred for recon-
structed unobserved events if their qid and rid identifiers are known (reconstructed).
We formulated it next.

Formal Problem Statement. Given a PQR-system S (see Definition 6.7), and a partial
log ET 1 of S (Definition 7.7), we want to reconstruct a complete and correct event
table ET 2 of S (Definition 7.6) that corresponds to ET 1.

However, restoring exact timestamp of unobserved events is usually infeasible and
also not required for most cases. Thus, our problem formulation does not require
reconstructing the exact timestamps. Our CPN replay semantics (see Chapter 2) allow
firing transitions after their first moment of enabling. However, they have to fire
“early” or “late” enough to not conflict with earlier or later observed events, i.e., in a
way that

242 Conformance Checking for Systems with Shared Resources and Queues

event act time tmin tmax

e1 a 1 ⊥ ⊥
e2 b ⊥ 2 6
e3 c ⊥ 5 8
e4 d ⊥ 7 10
e5 e 11 ⊥ ⊥

Table 7.9: Trace with unobserved events e2 −e4.

1. the minimum service time tsR and waiting time twQ of the R- and Q-proclets of
S,

2. and the FIFO ordering of the queues

hold. Thus, we have to reconstruct time-windows providing minimum and maximal
timestamps for each unobserved event, resulting in the following sub-problems:

• Infer unobserved events Eu for all process cases in ET 1 and their relations to
queues and resources, i.e., infer their missing identifiers.

• Infer for each unobserved event e ∈ Eu a time-window of the earliest and lat-
est occurrence of the event #tmin(e),#tmax(e) so that setting #time(e) = #tmin(e) or
#time(e) = #tmax(e) for e ∈ Eu results in a complete and correct event table of S.

7.3.7 Performance Spectra with Uncertainty

The problem formulation above uses time intervals for defining an interval of possi-
ble timestamps for unobserved (and inferred) events, i.e., when an exact timestamp
is unknown. These intervals are represented through event attributes tmin and tmax

as interval [#tmin(e),#tmax(e)]. However, when considering multiple events of multi-
ple traces, examples consisting purely of formulas are difficult to comprehend. We
deal with these difficulties by using performance spectra with uncertainty, which we
informally introduce in this section.

Let us consider trace σ, shown in Table 7.9. In this trace:

• each observed event has an exact timestamp #time(e), while the attributes tmin

and tmax are undefined (i.e., assigned to ⊥),
• each unobserved event has a timestamp interval defined through the value of

attributes tmin and tmax, while the exact timestamp value is unknown and
assigned to ⊥.

For example, for the observed event e1 in Table 7.9, the value of attribute time

is defined, i.e., #time(e1) = 1, while attribute values tmin and tmax are undefined,
i.e., #tmin(e1) = #tmax(e1) =⊥. For an unobserved event e2 its timestamp interval is
[#tmin(e2),#tmax(e2)], i.e., its timestamp can have a value in [2,6].

7.3 Inferring Unobserved Events 243

In Chapter 3, we introduced the performance spectrum (see Definition 3.7) for
events with defined timestamps. For each segment (see Definition 3.1, the perfor-
mance spectrum is a multiset of triples (ta , tb ,c), i.e., a multiset of classified time in-
tervals [ta , tb]. To extend the performance spectrum for supporting unobserved events
with timestamps defined as intervals, we introduce a performance spectrum with un-
certainty, where the performance spectrum of each segment is a multiset of triples
([t tmin

a , t tmax
a], [t tmin

b , t tmax
b],c); in each triple, [t tmin

a , t tmax
a] is the interval [#tmin(e),#tmax(e)]

of the corresponding event e. If an event e has the value of attribute time defined, the
corresponding interval is set to [t time

a , t time
a], i.e., it represents the exact value #time(e).

Figure 7.14 shows how we visualize the performance spectrum with uncertainty.
For that, as usual, we draw segments and the time axis. Then, we draw points cor-
responding to the interval borders of each segment occurrence. For example, in the
occurrence of segment (a,b) (events e1 and e2), event e1 is observed while event e2

is not, so this occurrence is visualized as a single point A at time #time(e1) and two
points B1 and B2 for event e2 at time #tmin(e2) and #tmax(e2) respectively, as shown in
Figure 7.14(a). In Figure 7.14(a), the other occurrences are visualized in the same
way. Finally, for each segment occurrence, we connect by a line

• points representing the minimal timestamp interval (e.g., line AB1 in
Figure 7.14(b)), and

• points representing the maximal timestamp interval (e.g., line AB2 in
Figure 7.14(b)).

As a result, shapes that we call regions materialize if the segments in the spectrum
are sorted according to the control flow. For example, the region R1 in Figure 7.14(b)
represents the performance spectrum with uncertainty for the trace in Table 7.9.

In a performance spectrum with uncertainty, each region covers all possible loca-
tions of the lines visualizing the corresponding segment occurrences. The wider a re-
gion, the higher uncertainty about the exact values of the corresponding unobserved
event timestamps, and vice versa. For example, a trace in Table 7.10 has shorter
timestamp intervals of events e2 and e3 than the trace in Table 7.9. As a result, the
region R2 of its performance spectrum, shown in Figure 7.14(c), is more narrow than
region R1 in Figure 7.14(b).

In the next sections, we extensively use the performance spectrum with uncer-
tainty to explain our method.

7.3.8 Inferring Timestamps Along Entity Traces

In Section 7.3.6, we formulated a problem of restoring a correct and complete event
table ET 2 (see Definition 7.6) for PQR-system S from a partial event table ET 1 (see
Definition 7.7). In this section, we solve this problem. For that, we extensively use
the fact that event table ET 1 can be seen either

244 Conformance Checking for Systems with Shared Resources and Queues

(a)
a

b

d

e

c

(b)

Time

observed events segment
occurrences

regions

#time(e1)

#tmin(e2)

#tmin(e3)

#tmin(e4)

#time(e5)

#tmax(e2)

#tmax(e3)

#tmax(e4)

timestamp
intervals

(c)

R1 R2

B1 B2

A

B1 B2

A

Figure 7.14: In the performance spectrum with uncertainty, the possible intervals for times-
tamps are shown as lines in (a), as a region in (b), and as a reduced region in
(c).

event act time tmin tmax

e1 a 1 ⊥ ⊥
e2 b 2 2 3
e3 c 5 5 6
e4 d 7 7 10
e5 e 11 ⊥ ⊥

Table 7.10: Trace with lower uncertainty of timestamps than one in Table 7.9.

• as a sequential view (see Definition 7.2) consisting of multiple sequential logs
(see Definition 2.13) of entity types in CNPQR,

• or as a system level run π(ET 1) = (E1,<1, {pid},#2) (see Definition 7.3) with SPO
(E1,<1).

In Section 7.3.8.1, we show how to obtain an under-specified intermediate system-
level run π2(ET 2) = (E2,<2,CNPQR,#2), where E2 also contains unobserved events Eu =
E2 \E1. These events still do not have timestamps, but <2 already contains all ordering
constraints that must hold in S.

7.3 Inferring Unobserved Events 245

event ID pid act time is recorded
f 1 53 c1 8:00:00 no
f 3 53 m2 8:00:15 no
f 5 53 m3 8:00:30 no
f 6 53 m4 8:00:45 no
f 9 53 d1 8:01:00 yes
f 0 54 c3 8:01:20 yes

f 12 54 m3 8:00:35 yes
f 14 54 m4 8:00:50 no
f 16 54 d1 8:01:05 yes

Table 7.11: Partial event table containing events for bags 53 and 54, used as a running example
in Section 7.3.8.

In Section 7.3.8.2, we refine π2 int π(ET 3) = (E2,<3,CNPQR,#3), where <3 is no
longer explicitly constructed but completely inferred from timestamps that fit S. We
determine minimal and maximal timestamps #3

tmin and #3
tmax for each unobserved

event e ∈ Eu (through a linear program) so that if we set #3
time = #3

tmin or #3
time = #3

tmax,
the induced partial order <3 refines <2, i.e., <2⊆<3. By construction of #3

tmin and #3
tmax,

ET 3 is a complete and correct event table of S and has ET 1 as a partial event table.
In this section, we use another example for two bags 53 and 54, processed in the

system of Figure 7.11. The corresponding event table is shown in Table 7.11, and the
traces of logs of its sequential view are shown in Figure 7.15.

(a)

(b)

(c)

Figure 7.15: Partially complete traces of the Process (a), Resource (b), and Queue (c) proclets,
restored by oracles O1,O2. Only observed events are ordered, e.g., f 9 <d1

rid f 16,
while the other events are isolated.

7.3.8.1 Infer Potential Complete Runs from a Partial Run

We first infer from the partial event table ET 1 an under-specified intermediate system-
level run π2 containing all unobserved events and an explicitly constructed SPO <2 so

246 Conformance Checking for Systems with Shared Resources and Queues

that each entity-level run πid
2,pid is complete (i.e.,, can be replayed on the process pro-

clet in S). In a second step, we relate each unobserved event e ∈ Eu to a corresponding
resource and/or queue identifier that orders observed events with respect to <rid and
<qid. All unobserved events in Eu lack a timestamp and hence are left unordered with
respect to <rid and <qid in ET 2. We later refine <2 in Section 7.3.8.2.

We specify how to solve each of these two steps in terms of two oracles O1 and O2,
and describe concrete implementations for either.

Restoring Process Traces. Oracle O1 has to return a set of sequential traces L2 =
{σid

pid | id ∈ pid(L1)} = O1(L1,S) by completing each partial trace σ(L1,pid = id) of any

process case id ∈ pid(L1) into a complete trace σid
pid that can be replayed on the P-

proclet of S (see Definition 6.13). Let E2 = {e ∈ σid
pid | σid

pid ∈ L2}. The restored un-
observed events Eu = E2 \ E1 only have attributes act and pid, and events are totally
ordered along pid in each trace σid

pid. O1 can be implemented using well-known trace
alignment [43] by aligning each sequential trace σ(L1,pid = id) on the labeled Petri
net (P,T,F,`) of the P-proclet of S. For example, applying O1 on the partial log of
Table 7.11 results in the complete process traces of Figure 7.15(a).

At this point, the events e ∈ Eu have no timestamps and the ordering of events is
only available in the explicit sequences σid

pid = 〈e1, . . . ,en〉. Until we have determined
#time(ei), the SPO <2 has to be constructed explicitly from the ordering of events in
the traces σid

pid, i.e., we define <2 as ei < e j iff there exists a trace 〈. . . ,ei , . . . ,e j , . . .〉 =
σid

pid ∈ L2 (see Corollary 7.5.1).

Moreover, as each trace σid
pid can be replayed over the process proclet, each event

is either a start event (i.e., replays a start transition) or a complete event (replays a
complete transition, see Definition 6.13).

Inferring Dependencies Due To Shared Resources and Queues. Oracle O2 has to
enrich events in E2 with information about queues and resources so that for each
e2 ∈ E2 if resource r is involved in the step #act(e), then #rid(e) = r and if queue q was
involved, then #qid(e) = q.

Moreover, in order to formulate the linear program to derive timestamps in a
uniform way, each event e has to be annotated with the performance information of
the involved resource and/or queue. That is, if e is a start event and #rid(e) = r 6=⊥,
then #tsr(e) and #twr(e) hold the minimum service and waiting time of r , and if #qid(e) =
q 6=⊥, then #twq(e) hold the minimum waiting time of q.

For the concrete PQR-system considered in this section, we set #rid(e) = r based
on the model S if r is the identifier of the resource proclet that synchronizes with
a transition that generated e via a synchronous channel of S (there is at most one).
Attributes #tsr(e) and #twr(e) can be set from the model as they are parameters of the
resource proclet. To ease the LP formulation, if e is unrelated to a resource, we set
#rid(e) = r∗ to fresh identifier and #tsr(e) = #twr(e) = 0. Values #rid(e) = r and #twq(e)

are set correspondingly. By annotating the events in E2 as stated above, we obtain

7.3 Inferring Unobserved Events 247

π2 = (E2,<2,CNPQR,#2). Moreover, we can update the SPO <2 by inferring lrid and
lqid from #time(e) for all events where #rid(e) 6=⊥ and #qid(e) 6=⊥ (see Definition 7.3).

The system-level run π2, contains complete entity-level runs for pid (except for
missing timestamps). The entity-level runs of queues (qid) and resources (rid) already
contain all events to be complete with respect to S but only the observed events are
ordered (due to their time stamps). For example, Figure 7.15(b) shows the entity-
level run πmd:d1

qid containing events f8, f9, f16, f15 with only f9 <qid f16. Next, we define
constraints based on the information in this intermediate run π to infer timestamps
for all unobserved events.

7.3.8.2 Restoring Timestamps of Unobserved Events by Linear Programming

The SPO π2 = (E2,<2,CNPQR,#2) obtained in Section 7.3.8.1 from partial log ET 1 in-
cludes all unobserved events Eu = E2 \ E1 of the correct and complete event table but
lacks timestamps for each event in Eu, i.e., e ∈ Eu,#time(e) =⊥. Each observed e ∈ E1

has a timestamp #time(e) and we also added minimum service time #tsr(e), minimum
waiting time #twr(e) of the resource #rid(e) involved in e, and minimum waiting time
#twq(e) of the queue involved in e. We now define a constraint satisfaction problem
that specifies the earliest #tmin(e) and latest #tmax(e) timestamps for each e ∈ Eu so that
all earliest (latest) timestamps yield a consistent ordering of all events in E with re-
spect to <pid (events follow the process), <rid (events follow the resource life-cycle),
and <qid (events satisfy the queueing behavior). The problem formulation propagates
the known #time(e) values along with the different case notions <pid, <rid, <qid, us-
ing tsR, twR, and twQ. For that, we introduce variables xtmin

e , xtmax
e ≥ 0 for representing

event attributes tmin,tmax of each event e ∈ Eu. For all observed events e ∈ E1, we
set xtmin

e = xtmax
e = #time(e) as here the correct timestamp is known. We now define

two groups of constraints to constrain the xtmin
e and xtmax

e values for the unobserved
events further.

In the following, to have simpler constraints, we assume that all observed events
are start events (which is in line with logging in the systems we focus on). These
constraints can easily be reformulated to assume only complete events were observed
(as in most non-BHS event logs), or a mix (requiring further case distinctions).

Propagate Information along Process Traces. The first group propagates con-
straints for attribute #time(e) along <pid, i.e., for each process-level run (viz. process
trace) πid

pid of pid in π. By the steps in Section 9.3.2, events in πid
pid are totally ordered

and we derived from the trace σid
pid = 〈e1 . . .em〉. Each process step has a start and com-

plete event in σid
pid, i.e., m = 2 · y, y ∈ N, odd events are start events, and even events

are complete events. For each process step 1 ≤ i ≤ y , the time between start event e2i−1

and complete event e2i is at least the service time of the resource involved (which we
stored as #tsr(e2i−1) in Section 9.3.2). Thus, the following constraints must hold for

248 Conformance Checking for Systems with Shared Resources and Queues

the earliest and latest time of e2i−1 and e2i :

xtmin
e2i

= xtmin
e2i−1

+#tsr(e2i−1), (7.1)

xtmax
e2i

= xtmax
e2i−1

+#tsr(e2i−1). (7.2)

For the remainder, it suffices to formulate constraints only for start events. We make
sure that tmin and tmax define a proper interval for each start event:

xtmin
e2i−1

≤ xtmax
e2i−1

. (7.3)

We write e s
i = e2i−1 for the start event of the i-th process step in σid

pid and write

θid
pid = 〈e s

1, . . . ,e s
m〉 for the sub-trace of start events of σid

pid. Any event e s
i ∈ θid

pid that

was observed in ET 1, i.e., e s
i ∈ E1, has #2

time(e s
i) 6=⊥ defined. By Definition 7.7, σid

pid as

well as θid
pid always start and end with observed events, i.e., e s

1,e s
y ∈ E1,#2

time(e s
1) 6=⊥,

and #2
time(e s

y) 6=⊥. An unobserved event e s
i has no timestamp #2

time(e s
i) =⊥ yet, but

#2
time(e s

i) is bounded by #2
time(e s

1) (minimally) and #2
time(e s

y) (maximally). Furthermore,
any two succeeding start events in θid

pid = 〈. . . ,e s
i−1,e s

i , . . .〉 are separated by the service
time #2

tsr(e s
i−1) of step e s

i−1 and the waiting time #2
twq(ei) of the queue from ei−1 to

ei . Similarly to Equation 7.1 and Equation 7.2, we formulate this constraint for both
xtmin

e and xtmax
e variables:

xtmin
es

k
≥ xtmin

es
k−1

+ (#2
tsr(e s

k−1)+#2
twq(e s

k)), (7.4)

xtmax
es

k
≤ xtmax

es
k+1

− (#2
tsr(e s

k)+#2
twq(e s

k+1)). (7.5)

Figure 7.16 uses the performance spectrum with uncertainty to illustrate the effect
of applying our approach step by step to the partially complete traces of Figure 7.15,
obtained in the steps of Section 9.3.2. The straight lines in Figure 7.16(a) from f1 to
f9 (for pid = 53) and from f12 to f16 (for pid = 54) illustrate that ET 2 (after applying
O1) contains all intermediate steps that both process cases passed through but not
their timestamps. Further (after applying O2), we know for each process step the
resources (i.e., c1, m2, m3, m4, d1) and the queues (c1 : m2,m2 : m3, etc.), and their
minimum service and waiting times tsR, twR, twQ. The sum tsR+twQ is visualized as bars
on the time axis in Figure 7.16(a), the duration of twR is shown in Figure 7.16(b).

We now explain the effect of applying Equation 7.4 on pid = 53 for f3, f5 and f7.
We have θ53

pid = 〈 f1, f3, f5, f7, f9〉 with f1 and f9 observed, thus xtmin
fi

= xtmax
fi

= #2
time(fi)

for i ∈ {1,9}. By Equation 7.4, we obtain the lower-bound for the time for f3 by
xtmin

f3
≥ xtmin

f1
+#2

tsr(f1)+#2
twq(f3) with #2

tsr(f1) and #2
twq(f3) the service time of resource

7.3 Inferring Unobserved Events 249

(a)

pid=53

pid=54

c1

m2

m4

d1

m3

(b)

Time

Eq. (6.5)

observed events
segment
occurrence

resulted regions

tsr+twq

#time(e1)

#tmin(e3)

#tmin(e5)

#tmin(e7)

#time(e9)

#tmax(e3)

#tmax(e5)

#tmax(e7)

R1

timestamp intervals

Eq. (6.7)

#tmax(e3)

#tmax(e5)

#time(e16)

#tmax(e14)

#time(e12)

#tmin(e12)

(c)

R2

sum of min. resource service
and queue waiting timetsr+twq

#time(e9) #time(e16)

twr

Eq. (6.4)

Figure 7.16: Equations 7.1-7.5 define time intervals for unobserved events (a), defining regions
for the possible traces (b). Equations 7.6-7.7 propagate orders of cases observed
on one resource to other resources (b), resulting in tighter regions (c).

c1 and the waiting time of queue c1 : m2. Similarly, Equation 7.4 gives the lower
bound for f5 from the lower bound of f3, etc. Conversely, the upper bounds xtmax

fi
are

derived from f9 “downwards” by Equation 7.5. This way, we obtain for each fi ∈ θ53
pid

an initial interval for the time of fi between the bounds xtmin
fi

≤ xtmax
fi

as shown by the

intervals in Figure 7.16(a). As xtmin
f1

= xtmax
f1

= #2
time(f1) and xtmin

f1
= xtmax

f1
= #2

time(f9), the
lower and upper bounds for the unobserved events in θ53

pid form a polygon as shown
in Figure 7.16(b). Case 53 must have passed over the process steps and resources as
a path inside this polygon, i.e., the polygon contains all admissible solutions for the
timestamps of the unobserved events of θ53

pid. We call this polygon the region of case
53. The region for case 54 overlays with the region for case 53.

Propagate Information along Resource Traces. We now introduce a second group
of constraints by which we infer more tight bounds for xtmin

ei
and xtmax

ei
based on

the overlap with other regions. While the first group of constraints traversed token
trajectories along pid (i.e., process traces), the second group of constraints traverses
token trajectories for resources along rid.

Each resource trace πr
rid in π contains all events E r

rid resource r was involved in
- across multiple different process traces. The SPO <r

rid orders observed events of

250 Conformance Checking for Systems with Shared Resources and Queues

this resource trace due to their known timestamps. For example, in Figure 7.16(b)
f9 <m1

rid f16 with f9 from pid = 53 and f16 from pid = 54.
The order of the two events e s

p1 <r
rid e s

p2 for the same step #2
act(e s

p1) = #2
act(e s

p2) = t1 in
different cases #2

pid(e s
p1) = p1 6= #2

pid(e s
p2) = p2 propagates “upwards” and “downwards”

the process traces πp1
pid and π

p2
pid as follows. Let events f s

p1 ∈ E p1
pid and fp2 ∈ E p2

pid be

events in process traces πp1
pid and π

p2
pid of the same step #2

act(f s
p1) = #2

act(f s
p2) = tn . We

say t1 and tn are in FIFO relation iff there is a unique path 〈t1 . . . tn〉 between t1 and
tn in the process proclet (i.e., no loops, splits, parallelism) so that between any two
consecutive transitions tk , tk+1 only synchronize with single-server resources or FIFO
queues. If t1 and tn are in FIFO relation, then also f s

p1 <r2
rid f s

p2 on the resource r2

involved in tn (as the case p1 cannot overtake the case p2 along this path). Thus,
xtmin

f s
p1

≤ xtmin
f s

p2
must hold. More specifically, xtmin

f s
p1

+#2
tsr(f s

p1)+#2
twr(f s

p1) ≤ xtmin
f s

p2
must hold

as the service time and waiting time of the resource involved in f s
p1 must elapse.

For any pair e s
p1,e s

p2 ∈ E r
rid with e s

p1 <r
rid e s

p2 and any other trace θr2
rid for resource

r2 and any pair f s
p1, f s

p2 ∈ E r2
rid such that #2

pid(e s
p1) = #2

pid(f s
p1),#2

pid(e s
p2) = #2

pid(f s
p2) and

transition #2
acte

s
p1 that is in FIFO relation with #2

act(f s
p1), we generate the following

constraint for tmin between different process cases p1 and p2:

xtmin
f s

p1
≤ xtmin

f s
p2

− (#2
tsr(f s

p1)+#2
twr(f s

p1)), (7.6)

and the following constraint for tmax:

xtmax
f s

p1
≤ xtmax

f s
p2

− (#2
tsr(f s

p1)+#2
twr(f s

p1)). (7.7)

In the example of Figure 7.16(b), we observe f9 <d1
rid f16 (both of transition d1s)

along resource d1 at the bottom of Figure 7.16(b). By Figure 7.12, d1s and m3s are
in FIFO-relation. Applying Equation 7.7 yields xtmax

f5
≤ #2

time(f12)− (#2
tsr(f5)+#2

twr(f5)),
i.e., f5 occurs at latest before f12 minus the service and waiting time of m3. This
operation significantly reduces the initial region R1. By Equation 7.5, the tighter up-
per bound for f5 also propagates along the trace pid = 53 to f3, i.e., xtmax

f3
≤ xtmax

f5
−

(#2
tsr(f3)+#2

twq(f5)), resulting in a tighter region as shown in Figure 7.16(c). If another
trace 〈m3s ,d1s〉 were present before trace 53, then this would cause reducing the tmin

attributes of the events of trace 53 by Equations 7.4 and 7.6 in a similar way. In gen-
eral, the more cases interact through shared resources, the more accurate timestamp
intervals can be restored by Equation 7.1-Equation 7.7 as we show in Section 9.4.

To construct the linear program, we generate Equation 7.1 to Equation 7.5 by
iterating over each process trace in ET 2. Further, by iterating over each resource trace
and each pair of events ep1 <r

rid ep2, we generate Equation 7.6 and Equation 7.7 for
each other pair of events fp1 <r2

rid fp2 that is in FIFO relation. The objective function to
maximize is the sum of all intervals

∑
e∈E2 (xtmax

e − xtmin
e), to maximize the coverage of

possible timestamp values by those intervals.

7.3 Inferring Unobserved Events 251

Solving this linear program assigns to each event e ∈ E2 upper and lower bounds
#tmin(e) and #tmax(e) for timestamp #time(e). For all e ∈ E1,#tmin(e) = #tmax(e) = #time(e)

(by Equation 7.1 and Equation 7.2 the solutions for the start events propagate to
complete events with time difference tsR). Be assigning #time(e) = #tmin(e) (or #time(e) =
#tmax(e)), we obtain ET 3 = (E2,CNPQR,#3) where SPO <3 of the system-level run π(ET 3)

refines SPO <2 constructed explicitly in Section 9.3.2.

By oracle O1, σ(ET 3,pid) can be replayed on the P-proclet.

By Equation 7.1 and Equation 7.6, for any two events e lrid e ′ the time difference
is #time(e ′)−#time(e) > twR or #time(e ′)−#time(e) > tsR of the corresponding R-proclet Ri

(depending on whether e replays by the start or complete transition of Ri). Thus,
σ(ET 3,r) can be replayed on the corresponding R-proclet for any resource r ∈ ET 3.

By Equation 7.1 and Equation 7.4, the timestamps of e lpid e ′ where e replays enq

and e ′ replays deq of a Q-proclet Qi have at least time difference twQ of Qi (i.e., the
time constraint of Qi is satisfied). If for two process cases p1 and p2 we observe
ep1 <rid ep2 at the same step #act(ep1) = #act(ep2) with #pid(ep1) = p1 6= p2 = #pid(ep1)

at some step, we also observe fp1 <rid fp2 at another step #act(fp1) = #act(fp2) with
#pid(fp1) = p1 6= p2 = #pid(fp1) at later events e1 <pid f1 and e2 <pid f2 (by Equation 7.6
and Equation 7.7). As in a PQR-system, for each queue, the enqueue transition syn-
chronizes with a different resource than the dequeue transition, the relation ep1 <qid

ep2 and fp1 <qid fp2 also holds if ep1,ep2 are enqueue events and fp1, fp2 are dequeue
events of the same queue Qi . Thus the FIFO constraint of Qi is satisfied. Thus,
σ(ET 3, q) can be replayed on the correspond Q-proclet for any queue q in ET 3.

Altogether, ET 3 is a complete and correct event table that can be replayed on the
PQR-system S (by Definitions 6.7 and 6.14).

Computational Complexity. Last but not least, the computational complexity of this
method is of crucial importance in real-world settings. It depends on the computa-
tional complexity of

1. inferring all the constraints (Equations 7.1-7.7),
2. solving the linear program.

The worst-case complexity of the former we estimate as quadratic, assuming that
each event has constraints with respect to all the other events for each process step
and resource. Note, we do not take into account the number of constraints, process
steps, and resources because it is usually much less than the number of events in an
event log. To estimate the computational complexity of the latter, we assume the use
of Dantzig’s simplex algorithm (or simplex method) [171], whose numerous special-
izations and generalizations have dominated operations research for decades [146].
Although its worst-case computational complexity is exponential, it is often polyno-
mial in practice. As a result, the complexity of solving a linear program defines the
complexity of our method. Potentially, it is possible to split an input event log into

252 Conformance Checking for Systems with Shared Resources and Queues

to
 a

irp
la

ne
s

to early bag store

X-
Ra

y
sc

re
en

in
g

a c1 c2 c3 c4 d1 d2 f
s

Figure 7.17: In the BHS bags come from check-in counters c1−4 and another terminals d1−2, f ,
go through mandatory screening and continue to other locations.

partitions and apply the method for each partition individually to make its scalability
easier.

7.3.9 Evaluation

To evaluate our approach, we formulated the following questions.

• (Q1) Can timestamps be estimated in real-life settings and used to estimate
performance reliably?

• (Q2) How accurately can the load (items per minute) be estimated for different
system parts, using restored timestamps?

• (Q3) What is the impact of sudden deviations from the minimum service/wait-
ing times, e.g., the unavailability of resources or stop/restart of a BHS conveyor,
on the accuracy of restored timestamps and the computed load?

For answering them, we extended the interactive ProM plug-in “Performance Spec-
trum Miner” with an implementation of our approach that solves the constraints using
heuristics1. As input, we considered the process of a part of real-life BHS shown in
Figure 7.17 and used Synthetic Logs (SL) (simulated from a model to obtain ground-
truth timestamps) and Real-life Logs (RL) from a major European airport. Regarding
Q3, we generated SL with regular performance and with blockages of belts (i.e., a tem-
porary stand-still); the RL contained both performance characteristics. All logs were
partial as described in Section 7.3.2. We selected the acyclic fragment highlighted in
Figure 7.17 for restoring timestamps of steps c1−4,d1−2, f , s.

We evaluated our technique against the ground truth known for SL as follows. For
each event we measured the error of the estimated timestamp intervals [tmin, tmax]

against the actual time t as max(|tmax − t |, |tmin − t |), normalized over the sum of the
minimum service and waiting times of all the involved steps (to make errors compara-
ble). We report the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)
of these errors. Applying our technique to SL with the regular behavior, we observed
very narrow time intervals for the estimated timestamps, shown in Figure 7.18(a),

1The simulation model, simulation logs, ProM plugin, and high-resolution figures are available on
https://github.com/processmining-in-logistics/psm/tree/rel.

https://github.com/processmining-in-logistics/psm/tree/rel

7.3 Inferring Unobserved Events 253

a:c1
c1:c2
c2:c3
c3:c4
c4:d1
d1:d2
d2:f
f:s
a:c1
c1:c2
c2:c3
c3:c4
c4:d1
d1:d2
d2:f
f:s

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.18: Restored performance spectrum for synthetic (a,b) and real-life (c,d) logs. The
estimated load (computed on estimated timestamps) for synthetic (e,f) and real-
life (g,h) logs. For the synthetic logs, the load error is measured and shown in red
(e,f).

and an MAE of < 5%. The MAE of the estimated load (computed on estimated times-
tamps), shown in Figure 7.18(e), was < 2%. For SL with the blockage behavior, the
intervals grew proportionally with the duration of blockages (Figure 7.18(b)), lead-
ing to a proportional growth of the MAE for the timestamps. However, the MAE of
the estimated load (Figure 7.18(f)) was at most 4%. The load MAE for different pro-
cessing steps for both scenarios is shown in Table 7.12. Notably, both observed and
reconstructed loads showed load peaks each time the conveyor belt starts moving
again.

When evaluating on the real-life event log, we measured errors of timestamp es-
timation as the length of the estimated intervals (normalized over the sum of the
minimum service and waiting times of all the involved steps). Performance spectra,
built using the restored RL logs, are shown in Figure 7.18(c,d), and the load, com-
puted using these logs, is shown in Figure 7.18(g,h). The observed MAE was < 5%

in the regular behavior and increased proportionally as observed on SL. The load er-
ror could not be measured, but similarly to the synthetic data, it showed peaks after
assumed conveyor stops.

The obtained results on SL show that the timestamps can be always estimated,
and the actual timestamps are always within the timestamp intervals (Q1). When
the system resources and queues operate close to the known performance parameters
tsR, twR, twQ, our approach restores accurate timestamps resulting in reliable load es-
timates in SL (Q2). During deviations in resource performance, the errors increase
proportionally with performance deviation while the estimated load remains reliable
(error < 4% in SL) and show known characteristics from real-life systems on SL and
RL (Q3).

254 Conformance Checking for Systems with Shared Resources and Queues

Scenario MAE, c4 : d1 RMSE, c4 : d1 MAE, d1 : d2 RMSE, d1 : d2 MAE, f : s RMSE, f : s

no block. 0.16 1.01 0.22 1.66 0.17 0.89
blockages 1.67 4.8 3.19 7.17 0.15 0.75

Table 7.12: Estimated load (computed on estimated timestamps) Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) are shown in % of max. load.

We showed how incomplete event logs can be repaired using the PQR-system as
the source of linear programming constraints for restoring missing timestamps. Next,
conclude this chapter.

7.4 Chapter Summary

In this chapter, we studied how to relate event data to the PQR-system. We chose gen-
eralized conformance checking instead of “classical” conformance checking because,
in the real-world setting, we can fully trust neither event data nor PQR-system. We
adopted the generalized conformance checking pipeline of [44] to our settings. We
showed how the decomposition of the PQR-system into its proclet allows for the use
of existing techniques for conformance checking and model repair. We identified gaps
in these techniques and suggested possible approaches for bridging them. Finally, we
proposed a novel approach for inferring unobserved events with timestamp informa-
tion for systems with shared resources and queues. It is required for the analysis of
BHSs, whose data are usually significantly incomplete.

However, the proposed PQR-system-based conformance checking has limitations.
It is based on its replay semantics and can determine whether an execution can be
replayed over the system. However, little to no diagnostic information is available
for some conformance checking scenarios. Thus, for Q- and R-proclet trajectory con-
formance, if a trace is not conformable to a Q- or R-proclet, our approach neither
can align the trace to the model nor can suggest how to repair the model. Another
limitation of Q- and R-proclet trajectory conformance is assuming the support for
list structures in data-aware Petri nets. Additionally, our PQR-system conformance
checking has not been evaluated yet.

Our log repair approach has the following limitations.

• Although the proclet formalism allows for arbitrary, dynamic synchronizations
between process steps, resources, and queues, we limited ourselves in this work
to a static known resource/queue identifier per process step. The limitation is
not severe for some use cases such as analyzing BHS, but generalizing oracle O2

to a dynamic setting is an open problem.

7.4 Chapter Summary 255

• The LP constraints to restore timestamps assume an acyclic process proclet with-
out concurrency. Further, the LP constraints assume 1:1 interactions (at most
one resource and/or queue per process step). Both assumptions do not hold in
business processes in general; formulating the constraints for a more general
setting is an open problem.

• Our approach ensures consistency of either all earliest or all latest timestamps
with the given model, it does not suggest how to select timestamps between the
latest and earliest such that the consistency holds.

• When the system performance significantly changes, e.g., due to sudden un-
availability of resources, the error of restored timestamps is growing propor-
tionally with the duration of deviations.

• For evaluation, we used heuristic algorithms instead of solving a linear program.
As a result, we did not evaluate the computational complexity using BHS data
and did not explore the scalability of our method.

Chapter 8
Multi-Dimensional Performance
Analysis

In this chapter, we discuss how performance spectra, proposed in Chapter 3, can be
related to the formal process model of systems with shared resources and queues—
the PQR-system, suggested in Chapter 6. For that, we first introduce the performance
spectra of the queue and resource dimensions, described by the PQR-system. Addi-
tionally, we discuss how synchronization channels of a PQR-system allow for obtain-
ing a view on the spectra of the queue and resources related to a segment of interest
of the “regular” performance spectrum (describing the process control flow). We
show how such a view helps explain the root causes of various performance issues.
Further, we propose a method for process performance root cause analysis in sys-
tems with shared resources and queues, using the PQR-system and the performance
spectra of the process (control flow), queue, and resource dimensions. We evaluated
our method using both synthetic data, generated by the BHS simulation model (see
Section 6.7), and datasets recorded by real Vanderlande-built BHSs.

8.1 Introduction

Performance analysis is an important element in process management relying on pre-
cise knowledge about the actual process behavior and performance [66]. It allows
us to get insights into actual process performance, detect performance deviations,
and explain their root causes. The latter is often referred to as Root Cause Analysis
(RCA). RCA is crucial for process management since it helps to come up with pro-
cess improvements as a result of post-mortem analysis and mitigate these deviations
in real-time settings. A classical example of process performance RCA is bottleneck
RCA. Approaches for process performance analysis depend on both the process type

258 Multi-Dimensional Performance Analysis

and possible root cause. Thus, in processes with isolated cases, the analysis of cases
can be done in isolation. For example, a technical support ticket can be delayed
because the initial information was incomplete.

However, in this thesis, we focus on systems with shared resources and queues,
where cases are not processed in isolation but affect each other. As a result, per-
formance analysis of systems with shared resources and queues is a hard problem
because it requires considering the dynamics of all cases in the system or process. In
this section, we discuss state-of-the-art approaches for solving it, formulate the RQ,
and outline our methods for performance analysis, which we propose in this chapter.

8.1.1 State-of-the-Art Approaches

In the following, we recall the limitations of the performance spectrum, proposed in
Chapter 3, and also discuss the limitations of the method for detecting system-level
behavior [77, 78]. We consider both as state-of-the-art techniques for performance
analysis of systems with shared resources and queues. Their limitations are used as
input for the RQ formulation later in the next section.

Performance Spectrum-Based Analysis. The performance spectrum is capable of de-
scribing the performance of both individual cases (e.g., bags) and all the cases (bags)
together, thereby enabling performance analysis of systems with shared resources
and queues. However, our exploratory analysis of systems with shared resources and
queues in Chapter 4 showed that their performance is significantly affected by case
interaction on shared conveyors and machines, so we identify the concepts of queues
and resources for modeling this aspect of systems with shared resources and queues.
This understanding allows identifying the following major limitation of the perfor-
mance spectrum-based analysis of Chapter 3:

• the use of performance spectra describing the performance only along the case
level (control flow) is not sufficient for explaining which behavior of the queues
and/or resources caused performance problems, i.e., domain knowledge (in the
analyst’s mind) is additionally required.

For example, the performance spectrum in Figure 8.1 shows instances bl1−bl5, hl0−hl5

of performance patterns but provides no clue about why they occurred.
Besides that, many other factors impede performance spectrum-based analysis.

For example, domain knowledge is required for:

• interpreting process steps comprising performance spectrum segments,
• sorting and following segments according to the process flow,
• interpreting duration of segment occurrences,
• choosing particular segments (among hundreds) for analysis.

As the evaluation in Section 3.5 showed, the analyst is usually delayed by:

8.1 Introduction 259

a1s:bs

a2s:bs

bs:cs

cs:d2s

cs:d1s

bl1

bl2

bl3

bl4

bl5

hl1

hl2

hl3

hl4

hl5

hl0

Figure 8.1: Performance spectrum with performance pattern instances bl1 −bl5, hl0 −hl5 does
not explain why they occurred.

• the constant need for referring to the system MFD for relating the performance
spectrum segments to the system conveyors and machines,

• involving domain experts for explaining and interpreting succinct information
provided in the MFD,

• inability to see the conveyor travel time (queue waiting time) and bag han-
dling time by a machine (i.e., the resource service time) in the total duration of
segments,

• the frequent need to reorder segments in the order of a particular path in the
system/process.

As a result, this analysis involves many manual operations with the tools and paper
documents, and multiple communication rounds with domain experts, still without
seeing behaviors and root causes in the queue and resource dimensions.

However, there is another closely related technique that addresses the perfor-
mance analysis of systems with shared resources and queues, created within the same
project as the methods of this thesis. Let us discuss its limitations as well.

Method for Detecting System-Level Behavior. The method for detecting system-
level behavior [77] also addresses the problem of performance analysis of processes
with non-isolated cases. For that, the authors introduced segment events on top
of “classical” events, which directly correspond to segment occurrences (see Defi-
nition 3.2 and [45]). Next, they defined system-level events that are instances of
performance patterns [45], proposed in Section 3.3, that we, in contrast, do not de-
fine formally in this thesis. On top of this event data model, they suggested a method

260 Multi-Dimensional Performance Analysis

for automatic detection of two types (patterns) of system-level events, also building
on [172].

Further, they argued that system-level events that are close to each other in space
and time, form a cascade, i.e., multiple system events connected by correlation re-
lationship. A detected cascade can potentially describe an undesirable performance
situation. The authors also pointed out that early detection of a cascade develop-
ment, leading to an undesirable performance situation, can potentially help predict
performance problems at the end of a cascade development.

In this paper, the authors made a significant contribution to the problem by for-
malizing performance patterns, suggesting performance pattern automatic detection,
and introducing cascades as “traces” describing the behavior on the level of a process
or system. This work has been extended in [78], whose authors proposed a frame-
work allowing for the detection of system-level events of many types, in order to
make [77] applicable in non-MHS domains.

However, the following limitations, we believe, affect applying this method [77]
and framework [78] in practice.

The method detects but does not explain bottlenecks. In practice, the detection of
a performance problem is not sufficient for its mitigation or coming up with process
improvements, the identification of the problem’s root causes is of crucial importance.
However, the authors do not suggest or discuss any approaches for explaining the root
causes of cascades. For example, the question “Why did the blockage instances, which
triggered the whole cascade, happen?”, cannot be answered. We believe it cannot be
answered without providing some domain knowledge (e.g., in a form of a process
model) to input of [77, 78].

Longer adoption due to relying on automatic pattern detection. In general, auto-
matic pattern detection is preferable to manual. However, it is difficult to design an
algorithm that works reliably for different segments and systems due to the following
reasons:

• for each segment in the system, thresholds to detect pattern instances vary [172],
• a pattern detection configuration, working for one system, may not be transfer-

able to other systems,
• when a small number of segment events (i.e., segment occurrences) describes

the performance during some period, it may be not enough information to re-
liably detect a system-level event (pattern instance) if a statistical approach (as
in [77, 172]) is used.

We also believe that the precise information about resources’ and queues’ temporal
parameters has to be considered for implementing a reliable pattern instance detector.
As a result, adoption of such an approach may be difficult because it would require
many iterations to adjust the detector configurations per each system segment. At the

8.1 Introduction 261

same time, each error, leading to too large or too small cascades, would undermine
domain experts’ trust and decrease the chances of a successful adoption.

Shallow approach for assigning time distance directions between system-level events.
To determine time distance directions, the start time of system-level events are com-
pared in [77]. However, this approach requires detecting the start time of each per-
formance pattern instance precisely, otherwise, the direction can be determined in-
correctly. In practice, determining the start times of pattern instances is hard because
segment events (occurrences) provide no information about performance between
the corresponding process steps (i.e., in the middle of the segment occurrence line
in the performance spectrum). As a result, a pattern instance start time can be seen
more like a time interval when an instance could start rather than an exact times-
tamp. In both cases (as in [77] or using time intervals), a time-based approach for
determining directions between system-level events is problematic. As a result, direc-
tions between system events in a cascade might not be used to determine the system
events that triggered the cascade, whose identification is required for their root cause
analysis.

The method accuracy is very sensitive to event data incompleteness. The method ex-
ploits spatial distances to detect correlated system-level events. It is computed based
on an assumption that correlated segment events follow each other, i.e., segment (a,b)

is followed by a segment started by activity b as well, e.g., (b,d), and segment (e,b)

is followed by (b, f). However, when events of b are unobserved, resulting segments
(a,d) and (e, f) are not close. Since event data incompleteness is a typical issue for
many real-world MHSs, it can significantly affect detection results’ accuracy.

To summarize, both approaches considered above have an important common
limitation: they do not explain the root causes of detected performance problems.
Moreover, the latter may be difficult to adopt in the industry. Next, we consider the
RQs addressing these limitations.

8.1.2 Research Questions

In this chapter, we focus on performance analysis of systems with shared resources
and queues because we identified the related AQs in Section 4.2. AQ3-AQ5 and
AQ7 address RCA of various kinds of performance deviations, while AQ8 (predictive
performance monitoring) can potentially benefit from answering AQ3-AQ5 and AQ7.

To formulate RQs for addressing those AQs, we first briefly recap what foundation
we already laid in the previous chapters (see Figure 1.5 in Section 1.3 for details).
First, we introduced the performance spectrum in Chapter 3. Next, we identified
queues and resources as key building blocks for reasoning about systems with shared
resources and queues in Chapter 4. Then, using these building blocks, we proposed
the PQR-system, a process model of systems with shared resources and queues, in
Chapter 6 to enable process model-aware methods and inject some domain knowl-

262 Multi-Dimensional Performance Analysis

edge for them. Using the PQR-system, we adopted generalized conformance check-
ing, including our novel method for inferring unobserved events, in Chapter 7. As a
result, now we can build on (besides the performance spectrum):

• the PQR-system, i.e., process models of systems with shared resources and
queues that describe the process, queue, and resource dimensions, and

• the availability of complete and correct event tables (see Chapter 7) that do not
have missing events, and can be replayed over the PQR-system.

Assuming it helps overcome the identified limitations of the performance spectrum-
based analysis proposed in Chapter 3, we formulate the following general RQ.

• RQ-6. How to relate a PQR-system, describing the process (control-flow), queue
and resource dimensions of a process/system, and the corresponding performance
spectra computed from complete and correct event tables?

This general RQ we further divide into two sub-questions. The first one addresses
the problem of describing the performance/behavior of resources and queues using
performance spectra as follows.

• RQ-6.1. What are performance spectra of the queue and resource dimensions
modeled by Q- and R-proclets of a PQR-system, and how synchronization among
the PQR-system proclets can be described using performance spectra?

The second one addresses the problem of RCA within the process, queue, and resource
dimensions, which is not addressed by the state-of-the-art methods of Chapter 3 [45]
and in [77, 78], as follows.

• RQ-6.2. Given a complete and correct event table, and PQR-system, how to do root
cause performance analysis of a system with shared resources and queues?

Next, we outline our methods for RQ-6.1 and RQ-6.2.

8.1.3 Method Outline

In this section, we outline how RQ-6.1 and RQ-6.2 have been approached in this
chapter.

Relating Performance Spectra and PQR-systems. We start by introducing a sim-
plified version of performance spectra, that does not describe complete transitions of
process steps in Section 8.2.2. We define a resource event log and consider the corre-
sponding resource performance spectrum in Section 8.2.3. We define a queue event
log and discuss the corresponding queue performance spectrum in Section 8.2.4. Fi-
nally, we introduce the notion of a multi-dimensional context of a performance spec-
trum segment of the process dimension, in Section 8.2.5. This context includes the
segments of the related queue and resources. As a result, a multi-dimensional context

8.2 Relating Performance Spectra to PQR-Systems 263

view of the performance of the related queue and resources can be obtained. Further,
this view is used for enabling RCA (for RQ-6.2).

Method for Multi-Dimensional Performance Analysis. We start with a motivat-
ing example that describes an undesirable performance scenario in a BHS in Sec-
tion 8.3.1. We provide an overview of the method, which helps to navigate in the
description of the method’s steps, in Section 8.3.2. Then, we describe the following
method steps, given a PQR-system and performance spectra of the process, queue,
and resource dimensions as input.

• The performance pattern detection in Step 1 is described in Section 8.3.3.
• The dependencies among the detected pattern instances are discovered in Step 2.

For that, the information captured in P-proclet of the given PQR-system is used
to identify how these instances triggered each other, to organize them in graphs
called propagation chains. This step is described in Section 8.3.5.

• In Steps 3 and 4, the propagation chains, discovered in the previous step, are
merged using reasoning based on the properties of the PQR-system, and obser-
vations of performance pattern instances in performance spectra of real-world
MHSs. These steps are described in Sections 8.3.6 and 8.3.7 respectively.

• In Steps 5 and 6 (Sections 8.3.8 and 8.3.9), the root causes of instances that
triggered propagation chains obtained in Step 4, are identified for each prop-
agation chain. For that, a multi-dimensional context view is analyzed for such
instances. Performance pattern instances are detected in the spectra of these
views. Based on the combination of the detected instances, the root cause of
the instance is identified. As a result, the root causes explain why the whole
propagation chain was triggered. Additionally, a propagation chain describes
the whole scenario triggered by those root causes. This is the final result of the
analysis.

The remainder of this chapter is organized as follows. We introduce the perfor-
mance spectra of the queue and resource dimensions in Section 8.2 and describe our
method for process performance analysis in Section 8.3. We discuss its evaluation in
Section 8.4 and its limitations in Section 8.5.

8.2 Relating Performance Spectra to PQR-Systems

In this section, we address RQ-6.1. For that, we introduce a running example in
Section 8.2.1 and explain what the performance spectrum describes for the process,
resource, and queue dimensions, and which data are required to compute each one
of them, in Sections 8.2.2,8.2.3, and 8.2.4. Finally, we discuss how performance
spectra of different process dimensions can be combined using the information about

264 Multi-Dimensional Performance Analysis

a1 a2

b

c

d1 d2

Figure 8.2: BHS material flow diagram.

transition synchronization (i.e., the synchronous channels of the PQR-system) in Sec-
tion 8.2.5.

8.2.1 Running Example

For a running example, we slightly extended the BHS we consider in Chapters 6 (see
Figure 6.1(a)) such that it explains typical phenomena, occurring in real MHSs, better.
We transformed exit c into a diverting unit and connected it with new conveyors c : d1

and c : d2. The resulting MFD is shown in Figure 8.2, and the corresponding PQR-
system is shown in Figure 8.3.

Let us explain the scenario of our running example, whose execution is provided in
the form of an event table in Table 8.1. In the beginning, two bags with identifiers pid1

and pid2 were checked in at counters a2 and a1 respectively at the same time t1. The
system started moving them toward merging unit b. Unit b is potentially reachable
from both check-in counters in the same minimal time δ. However, resource rid3 at b

can handle only one bag at a time. As a result, while bag pid1 indeed reached b at time
t3 = t1 +δ, pid2 had to wait till time t11 on conveyor a1 : b since this conveyor had a
lower priority at b. As a result, its travel time to b was longer, i.e., t11 − t1 > δ= t3 − t1.
After merging at b, both bags continued to their final destinations d2 and d1 via c

without delays. Note, the minimal travel times from c to d1 and d2 are equal in this
BHS.

The event table (Table 8.1) shows events for both bags for each transition of the
PQR-system they “passed”. Whenever multiple transitions of different proclets syn-
chronized, the corresponding event has the attributes for the corresponding case no-
tions defined. For example, when resource rid2 (check-in counter) at process step a2

(check-in counter location a2) handed bag pid1 over to queue qid2 (conveyor a2 : b),
the corresponding event e2 got these case notion identifiers as its attributes.

For this toy example, we formulate the following analysis question.

8.2 Relating Performance Spectra to PQR-Systems 265

Figure 8.3: PQR-system of the BHS of Figure 8.2.

• ExampleAQ. Why did bag pid2 arrive at its final destination later than pid1

despite the minimal travel time from a1 to d1 and from a2 to d2 being equal?

266 Multi-Dimensional Performance Analysis

Event Activity Time pid qid rid
e1 a2s t1 pid1 - rid2

e2 a2c t2 pid1 qid2 rid2

e3 bs t3 pid1 qid2 rid3

e4 bc t4 pid1 qid3 rid3

e5 cs t5 pid1 qid3 rid4

e6 cc t6 pid1 qid5 rid4

e7 d2s t7 pid1 qid5 rid6

e8 d2c t8 pid1 - rid6

e9 a1s t1 pid2 - rid1

e10 a1c t2 pid2 qid1 rid1

e11 b′
s t9 pid2 qid1 rid3

e12 bc t10 pid2 qid3 rid3

e13 cs t11 pid2 qid3 rid4

e14 cc t12 pid2 qid4 rid4

e15 d1s t13 pid2 qid4 rid5

e16 d1c t14 pid2 - rid5

Table 8.1: Execution of the PQR-system of Figure 8.3.

In the following, we show how performance spectra can be computed for the process,
queue, and resource dimensions and used for answering the ExampleAQ.

8.2.2 Relating P-Proclets to Process Performance Spectra

The P-proclet (see Definition6.2) describes the process dimension, e.g., how process
steps can be executed within a baggage handling process. When an event table
ET (Definition 2.8) is an execution of the process modeled by this PQR-system, an
event log LET

pid for process case notion pid can be derived from ET according to Def-
inition 2.12. Then, for segments SEG (Definition 3.1) and performance classifier C
(Definition 3.3), defining a layer lr (see Definition 3.6), a performance spectrum
PS

seg

LET
pid

(lr) of the process dimension can be computed according to Definition 3.7, as

we showed in Chapter 3.
Thus, event log LET

pid, computed from table in Table 8.1, contains two traces:

• σpid1 = 〈e1, . . . ,e8〉, and
• σpid2 = 〈e9, . . . ,e16〉.

The process performance spectrum, computed from this event log for segment se-
quence

• 〈(a2s , a2c),
• (a2c ,bs),

8.2 Relating Performance Spectra to PQR-Systems 267

• (bs ,bc),
• (bc ,cs),
• (cs ,cc),
• (cc ,d2s),
• (d2s ,d2c),
• (a1s , a1c),
• (a1c ,b′

s),
• (′bs ,bc),
• (cs ,c ′c),
• (c ′c ,d1s),
• (d1s ,d1c)〉,

is shown in Figure 8.4(a). For simplicity, we do not consider any performance classi-
fier in this example.

In the P-proclet (Figure 8.3), each pair of transitions producing a token onto a
place, and a transition consuming a token from this place, corresponds to a segment in
the process performance spectrum. Each segment occurrence (Definition 3.2) shows
transitioning (“moving”) between the corresponding steps or steps’ lifecycle transi-
tions. For example, transitions t4 (label a2s) and t5 (a2c) around place a2 corre-
spond to segment (a2s , a2c). Its occurrences show transitioning from lifecycle start to
complete of process step a2.

Vice versa, each segment in the process performance spectrum corresponds to a
pair of producing and consuming transitions in the P-proclet. For example, occur-
rence o1 of segment (a2s ,bs) corresponds to transitioning from transition t5 (step a2

completion) to t6 (step b start) via place a2 : b in between.
As the P-proclet places and performance spectrum segments correspond to each

other, these segments can be ordered according to the possible paths in the P-proclet.
For example, segment sequence

• 〈(a2s , a2c),
• (a2c ,bs),
• (bs ,bc),
• (bc ,cs),
• (cs ,cc),
• (cc ,d2s),
• (d2s ,d2c)〉

is ordered according to the path from a2 to d2, while the remaining segments partially
describe the path from d1 to a1. They describe it only partially because segment
(bc ,cs) is common for both and sorted to show the former.

Although the process performance spectrum, computed from event log LET
pid, de-

scribes the process performance, it has the following drawbacks.

268 Multi-Dimensional Performance Analysis

d2s:d2c

a1c:b’s

bs:bc

c’c:d1s

d1s:d1c

t1

a2c:bs

bs:bc

bc:cs

cs:cc

cc:d2s

a2s:a2c

a1s:a1c

cs:c’c

t1

t2

t2

t3

t4

t5

t6

t7

t8

t9

t10

t10

t11

t11

t12

t13

t14

a1s:bs

cs:d1s

t1

a2s:bs

bs:cs

cs:d2s

t1

t3

t5

t7

t9

t10

t11

t11

t13

t9

(a) (b)

o1

o3

o2

o4

o5

o6

o0

Figure 8.4: Performance spectrum (a), and the spectrum computed from a start-only event log
(b).

8.2 Relating Performance Spectra to PQR-Systems 269

Event Activity Time pid qid rid
e1 a2s t1 pid1 - rid2

e3 bs t3 pid1 qid2 rid3

e5 cs t5 pid1 qid3 rid4

e7 d2s t7 pid1 qid5 rid6

e9 a1s t1 pid2 - rid1

e11 bs t9 pid2 qid1 rid3

e13 cs t11 pid2 qid3 rid4

e15 d1s t13 pid2 qid4 rid5

Table 8.2: Start-only process event log obtained from Table 8.1 (in the form of an event table).

• The number of segments is often large because each process step is presented
with its start and complete lifecycle transitions. For example, process step b is
presented in five segments of SEG.

• Additionally, tags in transition and segment labels increase the segment number,
for example, transitions with labels bs ,bc and b′

c result in two segments (bs ,bc)

and (bs ,b′
c).

That makes it difficult for the analyst to digest this information. Moreover, compara-
tive analysis of segment occurrences when they are in different segments, like (bs ,bc)

and (bs ,b′
c), is time-consuming.

To overcome these drawbacks, we propose a “simplified” process performance
spectrum. It is derived from an event table where all events corresponding complete
transitions are dropped, and activity labels of the remaining events are transformed
by removing all the tags. The definition of such a log reads as follows.

Definition 8.1 (Start-only process event log). Let ET = (CN ,E ,#) be an event table
(Definition 2.8). Let elem be a function that maps a tuple to its nth element. Let set
E P ⊆ E be the set of all start events in E , i.e., E P = {e | e ∈ E ,elem2(#act(e)) = start}. Let #P

be an attribute function that maps all event attributes exactly as # but always provides
empty tag value ε for the tags of activity labels, i.e., #P (e,an) : E P ×AN 6→ Val ={

(elem1(#act(e)),elem2(#act(e)),ε) an = act,

#an(e) otherwise.

Let ET P = (CN ,E P ,#P) be an event table. An event log LET P

pid derived for pid from ET P

according to Definition 2.12 is a start-only process event log.

The start-only process event log, obtained from the event table in Table 8.1, is
shown in Table 8.2 in the form of an event table.

The corresponding performance spectrum, built from this log, is shown in Fig-
ure 8.4(b). In this spectrum, each segment corresponds to transitioning from the

270 Multi-Dimensional Performance Analysis

start of one process step via this step’s completion to the start of the next process
step, thereby aggregating the complete lifecycle transition of the first process step. For
example, occurrences o0 and o1 in Figure 8.4(a) are aggregated as an occurrence o5

in Figure 8.4(b). As a result,

• the number of segments is less than in the spectrum in Figure 8.4(a) – five and
13 respectively,

• the number of segment occurrences is less as well– six and 14 respectively.

So, the analyst can read and understand this spectrum much easier. In the re-
mainder of this thesis, we refer to this type of performance spectrum, computed from
a start-only event log, as the process performance spectrum and write PS-P for referring
to it.

Next, we consider the performance spectrum of R-proclets.

8.2.3 Relating R-Proclets to Resource Performance Spectra

Each R-proclet in a PQR-system describes the workflow of the corresponding resource,
which is modeled through transitions start and complete, and states idle and busy, as
shown in Figure 8.5(a). A modeled resource (potentially endlessly) switches from
state idle to state busy and back. An event log for resource case notion rid can be
obtained from an event table according to Definition 2.12 in the same way as for case
notion pid and P-proclets. Respectively, a performance spectrum can be computed for
such a log.

Let us consider traces of event log LET
rid for process case notion rid, derived from

the event table in Table 8.1:

• σrid1 = 〈e9,e10〉,
• σrid2 = 〈e1,e2〉,
• σrid3 = 〈e3,e4,e11,e12〉,
• σrid4 = 〈e5,e6,e13,e14〉,
• σrid5 = 〈e15,e16〉,
• σrid6 = 〈e7,e8〉.

These traces describe the firing of the resource lifecycle transitions. For example,
trace σrid3 shows switching from start to complete, then back to start, and finally to
complete again. However, if we consider the corresponding activity labels of these
events, we get the following sequence

• σrid3 = 〈bs ,bc ,b′
s ,bc〉,

and segments

• (bs ,bc),
• (bc ,b′

s),

8.2 Relating Performance Spectra to PQR-Systems 271

• (b′
s ,bc)

in the corresponding performance spectrum. These segments describe transitioning
from start to complete and back in an unclear way. To prevent it, we introduce a
resource event log with activity labels showing the resource lifecycle transition and
identifier, thereby allowing better readability of the corresponding resource perfor-
mance spectrum. Its definition reads as follows.

Definition 8.2 (Resource event log). Let ET = (CN ,E ,#) be an event table (Defini-
tion 2.8). Let #R be an attribute function that maps each event e ∈ E and an attributes
name an ∈ AN (see Definition 2.7) to attribute values in Val as follows: #R (e,an) :

E ×AN 6→ Val ={
(elem2(#act(e)),#rid(e)) an = act,

#an(e) otherwise.

Let ET R = (CN ,E ,#R) be an event table. An event log LET R

rid derived for rid from ET R

according to Definition 2.12 is a resource event log.

We write activity labels of queue event log events as the R-proclet transition label
start or complete with a superscript showing the resource identifier rid. For example,
we write label (start,rid3) as startrid3.

The resource event log, obtained from the event table in Table 8.1, is shown in
Table 8.3 in the form of an event table. In this log, the activity label sequence of σrid3

is

• 〈startrid3,completerid3,startrid3,completerid3〉.
Now, it describes the resource lifecycle clearly.

When we compute the corresponding performance spectrum, it describes the re-
source performance through the two following segments:

• (start,complete),
• (complete,start).

Each occurrence of the former describes the resource’s transitioning from the moment
it enters state busy till it leaves this state, and corresponds to place busy. Each occur-
rence of the latter describes the resource’s transitioning from the moment it enters
state idle till it leaves this state, and corresponds to place idle. The duration of occur-
rences of (start,complete) corresponds to the resource service time, and the duration
of occurrences of (complete,start) corresponds to the resource waiting time. In the
following, we call it a resource performance spectrum and write PS-R for referring to
it.

Let us consider a PS-R, computed from a resource event log, containing the only
trace σrid3, for segments SEGR = 〈(startrid3,completerid3) and (startrid3,completerid3)〉. It

272 Multi-Dimensional Performance Analysis

Event Activity Time pid qid rid
e9 startrid1 t1 pid2 - rid1

e10 completerid1 t2 pid2 qid1 rid1

e1 startrid2 t1 pid1 - rid2

e2 completerid2 t2 pid1 qid2 rid2

e3 startrid3 t3 pid1 qid2 rid3

e4 completerid3 t4 pid1 qid3 rid3

e11 startrid3 t9 pid2 qid1 rid3

e12 completerid3 t10 pid2 qid3 rid3

e5 startrid4 t5 pid1 qid3 rid4

e6 completerid4 t6 pid1 qid5 rid4

e13 startrid4 t11 pid2 qid3 rid4

e14 completerid4 t12 pid2 qid4 rid4

e15 startrid5 t13 pid2 qid4 rid5

e16 completerid5 t14 pid2 - rid5

e7 startrid6 t7 pid1 qid5 rid6

e8 completerid6 t8 pid1 - rid6

Table 8.3: Resource event log obtained from Table 8.1 (in the form of an event table).

t3

t9

o2

startrid3:completerid3

completerid3:startrid3

t9

o4

o'2

(a) (b)startrid3

completerid3

busyrid3

idlerid3

t4 t10

Figure 8.5: R-proclet fragment (a), and resource performance spectrum (b).

is shown in Figure 8.5(b). Again, for simplicity, we do not consider any performance
classifier in this example.

8.2 Relating Performance Spectra to PQR-Systems 273

enqueueqid3:dequeueqid3

(a) (b)
enqueueqid3

dequeueqid3

queueqid3

pid1 pid2

t4

t5

t10

t11

o7 o8

Figure 8.6: Q-proclet fragment (a), and queue performance spectrum (b).

This trace starts at time t3 when resource rid3 entered state busy to handle a bag.
Occurrence o2 shows how rid3 stayed in this state till time t4 when it switched to
state idle. It remained idle till time t9 (o′

2) when it switched back to busy for handling
another bag. Finally, it switched from busy to idle again at time t10. However, an
occurrence corresponding to this period of time when it was busy is not presented in
this PS-R because it was not fully observed in the event log (i.e.,, its second event
is missing). We do not see any performance anomalies in this spectrum, so we still
cannot answer the ExampleAQ.

In the following, we consider the performance spectra of queues.

8.2.4 Relating Q-Proclets to Queue Performance Spectra

Each Q-proclet in a PQR-system describes the workflow of the corresponding queue,
which is modeled through transitions enqueue and dequeue, as shown in Figure 8.6(a).
The elements are modeled as tokens with identifiers of the process (P-proclet). For
the queue analysis, we are interested in the actual waiting time of cases in queues.
To analyze that using the performance spectrum, we need a segment showing how
long each case waits in the queue. To get an event log describing this behavior, we
introduce a queue event log that has Q-proclet transition labels as activity labels, and
pid as a case notion for describing the performance of individual process cases. To
distinguish queues, we also add queue identifiers to activity labels. Additionally, we
exclude all events irrelevant to queues, i.e., events with undefined queue identifiers
qid. The queue event log definition read as follows.

Definition 8.3 (Queue event log). Let ET = (CN ,E ,#) be an event table (Definition 2.8).
Let set EQ ⊆ E be the set of all start events in E that have defined attribute qid, i.e.,
EQ = {e | e ∈ E ,#qid(e) 6=⊥}. Let #Q be an attribute function that maps each event e in
EQ and an attributes name an in AN (see Definition 2.7) to attribute values in Val as

274 Multi-Dimensional Performance Analysis

Event Activity Time pid qid rid
e10 enqqid1 t2 pid2 qid1 rid1

e11 deqqid1 t9 pid2 qid1 rid3

e2 enqqid2 t2 pid1 qid2 rid2

e3 deqqid2 t3 pid1 qid2 rid3

e4 enqqid3 t4 pid1 qid3 rid3

e12 enqqid3 t10 pid2 qid3 rid3

e5 deqqid3 t5 pid1 qid3 rid4

e13 deqqid3 t11 pid2 qid3 rid4

e14 enqqid4 t12 pid2 qid4 rid4

e15 deqqid4 t13 pid2 qid4 rid5

e6 enqqid5 t6 pid1 qid5 rid4

e7 deqqid5 t7 pid1 qid5 rid6

Table 8.4: Queue event log obtained from Table 8.1 (in the form of an event table).

follows: #Q (e,an) : EQ ×AN 6→ Val =

(enq,#qid(e)) an = act and elem2(#act(e)) = complete,

(deq,#qid(e)) an = act and elem2(#act(e)) = start,

#an(e) otherwise.

Let ETQ = (CN ,EQ ,#Q) be an event table. An event log LETQ

pid derived for pid from ETQ

according to Definition 2.12 is a queue event log.

We write activity labels of queue event log events as the Q-proclet transition label
enq or deq with a superscript showing the queue identifier qid. For example, we write
label (enq,qid3) as enqqid3.

The queue event log, obtained from the event table in Table 8.1, is shown in Ta-
ble 8.4 in the form of an event table. It does not contain events e1,e8,e9,e16 because
they have an undefined value of qid.

To compute a performance spectrum from a queue event log, we choose segments
whose labels are related to the same queue, for the queue event log in Table 8.4 these
segments are SEGQ =:

• 〈(enqqid1,deqqid1),
• (enqqid2,deqqid2),
• (enqqid3,deqqid3),
• (enqqid4,deqqid4),
• (enqqid5,deqqid5)〉.

8.2 Relating Performance Spectra to PQR-Systems 275

We call a performance spectrum computed from a queue event log for segments re-
lated to the same queue a queue performance spectrum and write PS-Q to refer to
it.

The PS-Q for segment (enqqid3,deqqid3), built from the queue event log in Table 8.4,
is shown in Figure 8.6(b). In this figure, occurrence o7 shows that bag pid1 was
enqueued qid3 at time t4. Later, another bag pid2 was enqueued at time t10 as well.
Finally, these bags were dequeued at time t5 and t11 respectively in the same order
as they were enqueued, i.e., they observed the FIFO discipline. They waited in this
queue for time t5− t4 and t11− t10 respectively, and they shared this queue from t10 till
t5.

For answering the ExampleAQ, we combine PS-R and PS-Q according to synchro-
nization described in the PQR-system in the next section.

8.2.5 Combining Resource and Queue Performance Spectra along
Synchronization Channels

As we discussed previously, the performance spectra of processes, resources, and
queues describe the system performance in the corresponding dimensions. For their
analysis, it is crucial to be able to identify segments of the PS-P, PS-Q, and PS-R,
related to each other, and analyze them together, preferably collocated on a com-
puter screen or paper. To identify and group such segments, we exploit PQR-system
synchronization channels and unique identifiers of entities.

Identifying Related Entities. We introduced the PS-P for facilitating the analysis,
i.e., for easier detection of zones of interest. So, we choose a PS-P segment (xs , ys) as
a starting point for grouping the spectra of the other dimensions “around” it. For this
segment, we identify all Q- and R-proclets (their queue/resource identifiers) whose
transitions synchronize with the P-proclet transitions corresponding to process steps
xs , ys . Finally, these identifiers are used to identify PS-Q and PS-R segments. For
example, if a queue qid is identified as a related one, the corresponding PS-Q segment
is (enqqid,deqqid). If a resource rid is identified as a related one, the corresponding PS-
R segments are (startrid,completerid) and (completerid,startrid).

For example, let us consider segment (a1s ,b′
s). The corresponding transitions t1

and t3 (see Figure 8.7(a)), generating occurrences of (a1s ,b′
s), synchronize with enti-

ties of the other (non-process) dimensions as follows:

• t1 synchronizes with R-operators transition t12 (resources rid1 and rid2),
• t3 synchronizes with R-proclet R-merge-b transition t14 (resource rid), and Q-

proclet Q-a1:b’ transition t11 (queue qid1).

As a result, we can identify one related queue qid1, two resources rid1,rid2 related
to the first process step a of the given PS-P segment (a1s ,b′

s), and one resource rid3

related to the second process step b.

276 Multi-Dimensional Performance Analysis

enqueueqid1:dequeueqid1

t1

t2

t3

t4

t9

t10

o3

o4

t9

startrid1:completerid1

completerid1:startrid1

startrid3:completerid3

completerid3:startrid3

id
le

rid
1

bu
sy

rid
1

w
ai
tin

gq
id
1

bu
sy

rid
3

id
le

rid
3

o'3

o2

o'2

a1s:bs t9

o6
t1 PS-P

(Process)
PS-Q

(Q
-a1:b’)

PS-R
(R-operators)

PS-R
(R-m

erge-b)

pid2

pid2

(a)

(b)

o0

o’0

o’4

M
DC view

Figure 8.7: PQR-system fragment (a), and PS-P segment with its MDC view (b).

8.2 Relating Performance Spectra to PQR-Systems 277

We call such entities PS-P segment multidimensional context, its definition reads as
follows.

Definition 8.4 (Multidimensional context of a PS-P segment.). Let S be a PQR-system
(see Definition 6.7), let a,b ∈ Act be activity labels, and sega,b = ((a,start,ε), (b,start,ε))

be a PS-P segment. Let T a
P = {t | t ∈ T0,elem1(`0(t)) = a,elem2(`0(t)) = start} be the set

of the P-proclet transitions that executes the start of process steps a, and T b
P = {t | t ∈

T0,elem1(`0(t)) = b,elem2(`0(t)) = start} be the set of the P-proclet transitions that exe-
cutes the start of process steps b. Let

• I a
R =⋃

Ni∈N R
⋃

tr ∈{t |t∈Ti such that ∃t1∈T a
P ,(t1,t)∈C } elem2(`i (tr)), and

• I b
R =⋃

Ni∈N R
⋃

tr ∈{t |t∈Ti such that ∃t1∈T b
P ,(t1,t)∈C } elem2(`i (tr))

be the non-empty sets of all identifiers of resources whose transitions can synchronize
with transitions in T a

P and T b
P respectively. We call I a

R and I b
R top and bottom context

respectively. Let qida,b ∈I be the identifier of a queue related to segment sega,b such that

• ∃N j ∈N Q , te , td ∈ T j ,` j (te) = (enq, {qida,b},ε),` j (td) = (deq, {qida,b},ε), ∃t3 ∈ T0, t4 ∈
T b

P , and p34 ∈ P0, such that (t3, p34) and (p34, t4) ∈ F0, (t3, te) and (t4, td) ∈C .

The triple (I a
R ,I b

R ,qida,b) is the Multi-Dimensional Context (MDC) of PS-P segment
sega,b.

In MDC (I a
R ,I b

R ,qida,b), the top and bottom context describe one or multiple re-
sources that synchronize with start transitions of process step a and b respectively.
Resources of top context enqueue cases in the only queue qida,b to hand them over
to resources of bottom context. We write MDC(S,sega,b) for PQR-system S and PS-P
segment sega,b. For the example above, MDC(S, (a1,b)) = ({rid1,rid2}, {rid3},qid1).

Grouping Performance Spectra of Related Entities. In MDC (Definition 8.4), the
resources of the top and bottom context synchronize with one MDC queue. First, a
resource from the top context handles a case and enqueues it to the queue. Then, a
resource from the bottom context dequeues this case and handles it subsequently. In
general, all combinations of resources from the top and bottom contexts are possible.
However, it is easier for the analyst to analyze them separately, grouping the corre-
sponding performance spectrum segment in the execution direction. Because of that,
we introduce an MDC view that describes such a combination.

Definition 8.5 (MDC segment series.). Let (I a
R ,I b

R ,qida,b) be an MDC (Definition 8.4).
Let ridt ∈I a

R and ridb ∈I b
R . The segment series SEG =

• 〈(completeridt startridt), (startridt ,completeridt),
• (enqqida,b

,deqqida,b
),

• (startridb ,completeridb), (completeridb startridb)〉
is an MDC segment series.

278 Multi-Dimensional Performance Analysis

An MDC segment series always contains five segments. Note, resource segments
are ordered in a way that the segments of the top context resource and the segments
of the bottom context resource have the opposite sorting order. It allows connecting
their lines across these five segments. Given an MDC MDCi , we write MDCSeg(MDCi)

for its MDC segment series. We call the segments of the PS-R and PS-Q, chosen and
arranged according to an MDC segment series, an MDC view.

MDC View Example. Let us provide an example of an MDC view for PS-P segment
(a1s ,bs). We choose rid1 as a top context resource for an MDC segment series for
our example because rid1 handled the delayed case pid2. The corresponding segment
series SEG1 =

• 〈(completerid1startrid1), (startrid1,completerid1),
• (enqqid1,deqqid1),
• (startrid3,completerid3), (completerid3startrid3)〉.

Figure 8.7(b) shows PS-P of (a1s ,bs), and its MDC view for SEG1 at the bottom.
In this PS-P, we already detected a slower occurrence o6 (case pid2). Now, in the

MDC view, we can see how pid2 was handled by resources rid1,rid3 and queue qid1.

1. Initially, resource rid1 was idle (occurrence o′
0) till time t1. Note, o′

0 is shown as
a dashed line because it is unobserved in the given event table. We provide it
for consistency.

2. At t1, rid1 started handling pid2 (o0). The corresponding P-proclet transition
t1 and R-proclet transition t12 synchronize, so occurrences o6 and o0 started
at the same time t1 (highlighted in orange in the PQR-system and performance
spectrum). Note, o′

0 visually continues as o0 because the ordering defined in
SEG1 defines (completerid3,startrid3) right after (completerid1,startrid1).

3. At t2, rid2 completed handling and enqueues pid2 in queue qid1. The corre-
sponding R-proclet transition t2 and Q-proclet transition t10 synchronize. As a
result, the end of o0 and the beginning of o3 have the same timestamp (high-
lighted in cyan), and o0 visually continues as o3.

4. At t9, rid3 dequeued pid2 from qid1 and started handling pid2. The correspond-
ing R-proclet transition t14 and Q-proclet transition t11 synchronize (the end
of o3 and the beginning of o4 are highlighted in magenta). Again, o3 and o4

visually form a continuous line.
5. Finally, rid3 became idle at t10. The corresponding (unobserved) occurrence o′

4

finishes the line that o′
0,o0,o3 and o4 form.

6. Additionally, occurrences o2 and o′
2 show how rid3 handled another case pid1,

and line o′
3 show the minimum waiting time of qid1.

Let us now explain why o3 is longer than o′
3. At time t3, pid2 could potentially

merge at b, but the corresponding resource rid3 was busy handling pid1 (o2). As a
result, pid2 had to wait in qid3 extra time t9 − t3.

8.3 Method for Multi-Dimensional Performance Analysis 279

To summarize, an MDC view shows the performance of the resources and queue
related to a given PS-P segment. It allows for explaining the performance of cases
described in the PS-P. In the next section, we show how various undesirable perfor-
mance scenarios that impact many cases can be detected in a PS-P, and explained
using MDC views.

8.3 Method for Multi-Dimensional Performance Anal-
ysis

In this section, we propose the method for answering RQ-6.2. The section is or-
ganized as follows. We describe a running example in Section 8.3.1. We provide
the method overview in Section 8.3.2. We describe six steps of the method in Sec-
tions 8.3.3, 8.3.5, 8.3.6, 8.3.7, 8.3.8 and 8.3.9, additionally explaining phenomena of
performance pattern instances propagation in Section 8.3.4. Finally, we complete the
analysis for the running example in Section 8.3.10.

8.3.1 Running Example

In Section 8.2.1, we introduced a BHS (see Figure 8.2), the corresponding PQR-
system (see Figure 8.3), and a simple scenario to explain PS-P, PS-R, and PS-Q. Now,
we introduce the following new scenario for the same system, which helps explain
the method better.

1. The system started accepting baggage for flights F 1 and F 2 at check-in counters
a1 and a2, to move it to exits d1 and d2 for F 1 and F 2 respectively. After exiting
the system, bags accumulate near the exits d1 and d2 to be loaded onto dollies
and transported to the aircraft.

2. The system was operating normally till one bag got stuck on conveyor c : d1.
3. The system started using the remaining path c : d2 to deliver all the baggage to

d2. Workers started sorting bags, exiting via d2, to the dolly corresponding to
their flight number.

4. Eventually, space near exit d2 became fully occupied with bags (due to the
increased load on this exit and the slow speed of manual sorting).

5. The workers at d2 could not handle the incoming baggage anymore due to the
lack of space and take rid6 at d2 out of service, thereby effectively stopping
conveyor c : d2.

6. Gradually, all still operating conveyors stopped as well because they could not
hand over their bags to the subsequent conveyors.

280 Multi-Dimensional Performance Analysis

7. Over some time, the problematic bag was manually removed from conveyor
c : d1 and the workers managed to provide free space at d2. Resource d2 was
returned back into service.

8. All the conveyors started working again, but some bags, affected by the delay,
did not make it to flight F 1 that departed earlier than F 2.

Afterward, the system operator was notified that several bags were checked in at
location a1 on time, but still could not make it to flight F 1, i.e., they were delivered at
their exit location too late. The operator computed the PS-P (see Figures 8.8(a)) and
obtained the MDC views (see Figures 8.8(b)) for the corresponding period. Note, for
simplicity, only the MDC view for segment (cs ,d1s) is shown in Figures 8.8(b).

There are anomalies in these spectra:

• all PS-P segments have some longer occurrences in the context of shorter occur-
rences,

• all PS-P segments have a higher frequency of occurrences after the longer oc-
currences, and

• the MDC view segments have some longer occurrences and also periods of ab-
sence of any occurrences for the same time period.

The operator’s analysis question for this scenario is as follows.

• How to understand why these bags could not make it to the flight, using these
spectra, and the PQR-system?

Next, we provide an overview of our method, explaining it through this running
example.

8.3.2 Method Overview

In this section, we provide a high-level overview of the method input, output, inter-
mediate results, and steps. The method input is:

1. PQR-system S, and
2. PS-P, PS-Q, and PS-R, i.e., performance spectra built for the process (control-

flow), queue, and resource dimensions of S.

The method consists of the six steps shown in Figure 8.9. Let us describe each step in
more detail.

Step 1. In the first step, described in Section 8.3.3, all instances of high load and
blockage performance patterns are detected. Each instance is described according to
a pattern instance definition we introduce in Section 8.3.3, and inserted into a set PI

of all detected instances. This set is the result of Step 1.

8.3 Method for Multi-Dimensional Performance Analysis 281

a1s:bs

a2s:bs

bs:cs

cs:d2s

cs:d1s

startrid3:completerid3

startrid5:completerid5

completerid5:startrid5

completerid3:startrid3

enqueueqid4:dequeueqid4

id
le

 b

us
y

 w

ai
tin

g

bu

sy

id
le

(a)

(b)

Figure 8.8: PS-P (a), and the MDC view for segment (cs ,d1s) (b).

Step 2. In the second step, described in Section 8.3.5, dependencies among instances
in PI are discovered. That is, if one instance zi in segment seg i was caused by another
instance z j in the same or other segment seg j (i.e., it is possible that seg i = seg j),
we say that z j propagated from seg j to seg i and triggered zi . We say that two such

282 Multi-Dimensional Performance Analysis

PS-PPQR-system S
Step 1. Performance

pattern detection
(Section 7.4.3)

Detected instances PI

Step 2. Propagation chain
discovery

(Section 7.4.5)

Propagation chains
Chains1

Step 3. Propagation chain
merge – alternative routes

(Section 7.4.6)

Merged propagation
chains Chains2

Step 6. Multi-dimensional
analysis of blockages

(Section 7.4.9)

PS-Q

PS-R

Step 4. Propagation chain
merge – blockage ends

(Section 7.4.7)

Merged propagation
chains Chains3

Step 5. Analysis of high load
instances

(Section 7.4.8)

High load root causes
RChl

Propagation chain root
causes RCall

Figure 8.9: Six method steps.

8.3 Method for Multi-Dimensional Performance Analysis 283

instances form a propagation link. Multiple connected propagation links form a prop-
agation chain that we define in Section 8.3.4. Propagation chains allow a richer
description of the system behavior than individual instances in PI. So, they are dis-
covered in this step, using both PS-P and PQR-system, and described according to
the definition. Each discovered propagation chain description is inserted into a set
Chains1 of initially discovered propagation chains. Note, each instance in PI belongs
to exactly one propagation chain in Chains1. If an instance was not triggered by any
instances in PI, and did not trigger any other instances in PI, it forms a propagation
chain consisting of just this single instance. Set Chains1 is the result of Step 2.

In Step 2, only propagation chains consisting of instances of the same type are dis-
covered. That is, each instance in Chains1 either contains only high load or blockage
instances. However, it is possible that blockage instances propagate and trigger high
load instances. Steps 3 and 4 consider these situations.

Step 3. In this step, all propagation links corresponding to blockage propagation that
triggered high load instances due to unavailability of alternative paths are discovered.
These links are used further to merge chains in Chains1 into larger ones that describe
the behavior more completely than the initial ones.

In P-proclets, multiple paths from one process step to another may exist. If some
of them are blocked (i.e., have blockage instances), the load often divides among the
remaining unblocked paths. It can cause high load on these paths and, as a result,
high load instances in the PS-P. In terms of propagation, we say that a blockage
instance propagates and triggers the high load instance(s). If a blockage instance bli

triggers a high load instance hl j , they comprise a propagation link linkij = (bli ,hl j). If
these instances belong to different chains in Chains1, these chains become connected
by this link and can be merged into one. In Step 3, the analyst discovers such links and
merges the corresponding chains. Our approach for discovering them is described in
Section 8.3.6. The result is a set Chains2 containing all merged chains and the chains
in Chains1 that were not merged.

Step 4. Similarly to Step 3, chains in Chains2 are merged due to blockage propa-
gation that causes high load instances due to the following reason. During a time
period when a blockage instance bli is observed in some segment seg i , the incoming
segments of seg i can accumulate cases (see Chapter 4). As a result, when bli ends, all
these accumulated cases are handed over to seg i in a batch. It can cause a load peak,
i.e., a high load instance hli in seg i that starts immediately after the end of bli . These
instances form a propagation link (bli ,hli) that allows the merging of the chains they
belong to. Our approach for discovering them is described in Section 8.3.7. The result
is a set Chains3 of propagation chains.

After Step 4, set Chains3 contains propagation chains that describe undesirable
performance scenarios. However, a chain in Chains3 does not explain why the cor-
responding scenario was initially triggered, i.e., its root causes. The approaches of

284 Multi-Dimensional Performance Analysis

final Steps 5 and 6 address this problem for high load and blockage instances respec-
tively. For that, in each chain in Chains3 they determine initial instances that were
not triggered by any other instances and do their root cause analysis as follows.

Step 5. In Step 5, root causes of initial high load instances are considered. Because
Steps 3 and 4 already considered two reasons why high load can be triggered, this
step is trivial. We identify the root cause of all initial high load instances in Chains3

as caused by arrival process. This step is described in Section 8.3.8. The result is a
set RChl of tuples, where each tuple has a propagation chain in Chains3 as the first
element and a set of initial high load instances as the second element.

Step 6. In Step 6, the root causes of initial blockage instances are identified using the
analysis of the queue and resource dimensions (see Section 8.3.9). For that, an MDC
view (see Section 8.2.5) is obtained for each such instance, and blockage instances
are detected in the corresponding PS-Q and PS-R. Information about these newly de-
tected blockage instances is used to determine which resource or queue triggered the
initial blockage instance in the PS-P. We identify three root causes that are consid-
ered in detail in Section 8.3.9.3. Additionally, we identify situations when blockage
instances in the PS-Q and/or PS-R are detected incorrectly. The result of this step is
a set RCall of tuples, that contains full information about each propagation chain in
Chains3, including high load instances root causes. Thus, each tuple contains:

1. propagation chain chaini ∈ Chains3 as the first element,
2. the corresponding set of initial high load instances from RChl,
3. a set RCbl of tuples whose elements describe initial blockage instances and their

root causes.

RCall is the final result of the method. It allows explaining how undesirable perfor-
mance scenarios developed, and what caused them.

Last but not least, we consider a running example throughout Sections 8.3.3-
8.3.9, whose final result we provide in Sections 8.3.10.

In the following, we explain each step in more detail.

8.3.3 Step 1. Detecting Undesirable Performance Patterns in the
PS-P

In this step, given

1. PQR-system S, and
2. PS-P PS,

the analysts manually detects and describes all blockage and high load instances in the
given PS-P. For a performance pattern instance description, the following information
is provided:

8.3 Method for Multi-Dimensional Performance Analysis 285

• a pattern instance type,
• a pattern instance textual label for referring to the instance,
• segment occurrences comprising the instance.

Definitions of the sets of pattern instance types, labels, and pattern instances read as
follows.

Definition 8.6 (Sets of pattern instance types and labels). PIType = {blockage,highLoad}

is the set of pattern instance types. PILab is the set of pattern instance labels.

Definition 8.7 (Pattern instance and set of pattern instances). Let cn be a case no-
tion in CNPQR (see Definition 6.13), ET be an event table (see Definition 2.8), SEG be
a segment series (see Definition 3.5), C be a performance classifier (see Definition 3.3),
and PSlr

LET
cn

((SEG,C)) be a performance spectrum (see Definition 3.7). Let piType ∈ PIType

be a pattern instance type, and piLab ∈ PILab be a pattern instance label (see Defini-
tion 8.6). Let segment (a,b) ∈ SEG. Let tleft, tright ∈ T, tleft ≤ tright such that set OC =
{(e,e ′) | (e,e ′) ∈ occ(a,b,LET

cn), tleft ≤ #time(e),#time(e ′) ≤ tright} of occurrences is not empty. A
tuple (piType,OC, tleft, tright,piLab) is a pattern instance.

For a pattern instance z, time interval [tleft, tright] describes the time interval when
it is observed. The start and end timestamps of all segment occurrences in OC are in
this interval. We write piStart(z) and piEnd(z) for tleft and tright of z respectively. We
write piSeg(z) for the segment of z.

An example of a blockage instance is shown in Figure 8.10(a). In this example,
slower occurrences (e1,e4), (e2,e5), and (e3,e6) (orange lines in a dashed rectangle)
are shown in the context of faster occurrences (blue lines). The instance label bl1 is
shown on the right-hand side of the instance. According to Definition 8.7, the analyst
describes this blockage as follows:

• (blockage, {(e1,e4), (e2,e5), (e3,e6)},bl1).

In the following, we use the pictogram shown in Figure 8.10(b) for drawing blockage
instances in performance spectra.

An example of a high load instance is shown in Figure 8.10(c), where more fre-
quent occurrences (e1,e6), . . . , (e5,e10) (orange lines in a red dashed rectangle) are
shown in the context of less frequent ones (blue lines). The instance is labeled as
hl1. The analyst describes this instance as follows (Definition 8.7):

• (highLoad, {(e1,e6), . . . , (e5,e10)},hl1).

In the following, we use the pictogram shown in Figure 8.10(d) for depicting high
load instances in performance spectra.

Result. The result of this step is a set PI of all pattern instances detected by the
analyst. We call it a pattern instance set.

286 Multi-Dimensional Performance Analysis

e1
e2

e3

e4
e5

e6

a

b

bl1

(a)

bl1

(b)

e1

e5

e6

e10

a

b

hl1

(c)

hl1

(d)

Figure 8.10: Instances and pictograms of blockage (a,b) and high load (c,d) respectively.

For our PS-P example in Figure 8.8(a), the detected blockage and high load in-
stances are shown in Figure 8.11, where each blockage instance is highlighted using
a dashed black rectangle, and each high load instance is highlighted using a dashed
red rectangle. Each instance has a label. Figure 8.8(b) shows the same pattern in-
stances as pictograms, the lines of occurrences are not shown to avoid clutter. In
the following, we use a pictogram-based visualization for the PS-P of this running
example.

For this PS-P, pattern instance set PI =

• {bl1, . . . ,bl5,

• hl1, . . . ,hl5}.

It consists of both blockage (bli) and high load (hl j) instances. Note, we use pattern
instance labels (see Definition 8.6) for referring to the instances.

Next, we consider how dependencies among the instances in PI can be discovered,
using given PQR-system S.

8.3 Method for Multi-Dimensional Performance Analysis 287

a1s:bs

a2s:bs

bs:cs

cs:d2s

cs:d1s

bl1

bl2

bl3

bl4

bl5

hl1

hl2

hl3

hl4

hl5

hl0

a1s:bs

a2s:bs

bs:cs

cs:d2s

cs:d1s

o1 o2

bl1

bl2

bl3

bl4

bl5

hl1

hl2

hl3

hl4

hl5

(a)

(b)

Figure 8.11: Detected pattern instances in the PS-P (a), and as pictograms (b).

288 Multi-Dimensional Performance Analysis

(a) (b)

a2s:bs

bs:cs

bl2

bl3

t2t0 t4

t1

t9

t3

y1

y6

y2
y3 y4 y5

y7 y8 y9

a2s:bs

bs:cs

t0 t9

hl2

hl3

t5

t6

t7

t8

y9
y10

y11

y3 y4

y12

y13
y14
y15

(c)

t1

y1 y2

t2

Figure 8.12: P-proclet fragment of the PQR-system in Figure 8.3 (a) and its PS-P with detected
pattern instances (b).

8.3.4 Understanding Propagation of Blockage and High Load In-
stances

In the first step, the analyst detects blockage and high load instances. However,
often such instances are not independent but cause each other, i.e., one instance can
propagate as a blockage or high load instance(s). Now, we consider this phenomenon
for both pattern types in more detail.

Blockage Propagation Phenomenon. Let us explain the blockage propagation phe-
nomenon with a simple example. For that, we use a P-proclet fragment of our running
example PQR-system, shown in Figure 8.12(a), and the corresponding PS-P, provided
in Figure 8.12(b). The P-proclet fragment describes the baggage handling process
from process step a2 till c, and the PS-P describes the performance of baggage han-
dling during time interval [t0, t9].

During this time interval, multiple bags were handled. Let us assume that during
period [t0, t1] the system operated as expected, and the bags traveled at maximum
speed. As a result, the corresponding segment occurrences have the shortest possible
durations, for example, occurrences y1, y2, and y6. However, at time t1 conveyor b : c

was stopped for some short time period. As a result, bags represented by occurrences

8.3 Method for Multi-Dimensional Performance Analysis 289

y7 and y8 of segment (bs ,cs) were delayed because they had to wait till conveyor b : c

resumed.
At the same time, the preceding conveyor a2 : b could work till the bag corre-

sponding to occurrence y3 had to be handed over onto b : c. Since it was stopped,
that could not be done. As a result, conveyor a2 : b had to stop as well, thereby delay-
ing all its bags (occurrences y3 and y4). When b : c resumed, its bags could continue
their travel, thereby giving room to bags waiting on a2 : b to be handed over to b : c.
Conveyor a2 : b resumed at the same time as well.

However, this situation caused longer travel duration for the affected bags (y3, y4, y7,
and y8). Thus, the analyst can identify blockage instances formed by these delays. In
Figure 8.12(b), these instances are shown as blockage pictograms with labels bl2 and
bl3 over segments (a2s ,bs) and (bs ,cs) respectively.

This behavior can be explained using the PQR-system (see Figure 8.3). When
queue Q-b:c is unavailable for enqueuing, resource R-merge-b cannot hand over bags
from a2 : b to b : c, so queue a2 : b becomes eventually unavailable for enqueuing as
well, and resource rid2 (R-operators), in turn, cannot hand over any bags to Q-a2:b.
So, the number of queues where groups of bags are delayed gradually increases.
We use the term blockage propagation to refer to this phenomenon, and say that bl3

propagates as bl2. When bl3 propagates as bl2, it means that one blocked queue
eventually blocks another queue, so these blockages overlap in time. For example,

• propagated blockage bl2 starts not earlier than blockage bl3 that propagates,
i.e., piStart(bl2) ∈ [piStart(bl3),piEnd(bl3)].

As we discussed, a blockage instance propagates through a resource to the pre-
ceding queue. If such a resource is a merge unit, blockage propagates on both incom-
ing queues that this resource serves. In PQR-systems (Definition 6.7), the P-proclet
describes this behavior through synchronization of the P-, Q- and R-proclets. So,
the P-proclet can be used for understanding possible paths of blockage propagation.
However, blockage instances propagate backward in the control flow direction.

For example, in Figure 8.12(b), instance bl3 is in segment (bs ,cs) that corresponds
to a path between the start transitions t6 and t8 of directly following process steps
b and c (see the P-proclet in Figure 8.12(a)). At time t2, bl3 propagates in segment
(a2s ,bs) because a2 is followed by b.

When one pattern instance propagates as a new one, we call this pair a propaga-
tion link. Its definition reads as follows.

Definition 8.8 (Propagation link). Let z,z′,z 6= z′ be pattern instances (see Defini-
tion 8.7) such that z propagated as z′. A tuple (z,z′) is a propagation link.

For example, blockages bl3 and bl2 comprise a propagation link (bl3, bl2).
Next, we consider how to discover propagation links in pattern instance set PI

obtained in Step 1, and what larger structure such links can form.

290 Multi-Dimensional Performance Analysis

Ideas behind Blockage Propagation Discovery. As the previous step result, we
obtained blockage and high-load instances in pattern instance set PI. Now, we want
to discover which blockage instances in PI are the result of the propagation of the
others. For that, we introduce propagation tracking reasoning.

Any z ∈ PI can propagate as other instance(s), or be the result of the other in-
stance(s) propagation. Discovery of the former we call propagation back-tracking,
and discovery of the latter we call propagation forward-tracking. As we discuss ear-
lier, blockage instance propagation paths follow backward the control-flow direction
described by the P-proclet. As a result,

• propagation forward-tracking is done backward in the control-flow direction, as
blockage instances propagate over time, and

• propagation chain back-tracking is done in the control-flow direction, to identify
the segment(s) where the chain started.

Let us explain how propagation forward and back tracking can be done using our run-
ning example (see the PQR-system in Figure 8.3, and the PS-P with detected pattern
instances in Figure 8.11(b)).

Let us start by choosing blockage instance bl3 (segment (bs ,cs)). First, we track
the propagation chain forward, which means backward in the control-flow direction.
This blockage instance can potentially propagate on the segments that connect start
transitions t3 or t6 (labeled b′

s and bs) with the other directly preceding start transi-
tions. To identify them, we refer to the P-proclet net layout. There are two directly
preceding start transitions t1 and t4 (labeled a1s and a2s). Note, we skip the complete
transitions, e.g., t2 and t5, as we analyze the PS-P built from events of process step
start life-cycle transitions.

As the process execution advances from t1 and t4 toward t3 and t6, these transition
labels form the following segments in the PS-P (note that the tag ′ in b′

s is dropped):

• (a1
s ,bs),

• (a2
s ,bs).

For them, we check whether the pattern instance set contains blockage instances that
overlap with bl3 in time. Segment (a1s ,b′

s) has blockage bl1 such that piStart(bl1) ∈
[piStart(bl3),piEnd(bl3)]. Similarly, segment (a2s ,bs) has blockage bl2 such that piStart(bl2) ∈
[piStart(bl3),piEnd(bl3)], i.e., they overlap in time with bl3. We add corresponding
propagation links1 = (bl3,bl1) and links2 = (bl3,bl2) to a resulting set of propagation
links Links. These links are shown in Figure 8.13 as arrows with labels links1 and
links2 respectively.

Note, instance bl3 is the first element of links1 and links2 because bl3 propagates
as bl1 and bl2. As transitions t1 and t4 do not have any incoming arcs in the P-proclet,
propagation forward-tracking stops, and propagation back-tracking starts from the
initial pattern instance bl3.

8.3 Method for Multi-Dimensional Performance Analysis 291

bl1

bl2

bl3

bl4

bl5

hl1

hl2

hl3

hl4

hl5

hl0

a1s:bs

a2s:bs

bs:cs

cs:d2s

cs:d1s

link1

link2

link3
link4

Figure 8.13: Propagation chain of blockage instances.

For that, we identify the start transitions that directly follow t8 (labeled cs), i.e.,
we track propagation forward in the control-flow direction. These transitions are
t23 (d1s) and t8 (d2s), and the corresponding segments are (cs ,d1s) and (cs ,d2s).
Again, they have blockage instances bl5 and bl4 that overlap in time with bl3, i.e.,
piStart(bl3) ∈ [piStart(bl5),piEnd(bl5)] and piStart(bl3) ∈ [piStart(bl4),piEnd(bl4)]. We
add propagation links (bl5,bl3) and (bl4,bl3) to set Links (see the corresponding arrows
in Figure 8.13). Then propagation back tracking stops because complete transitions
t24 and t9 of process steps d1 and d2 do not have outgoing arcs.

As a result, set Links contains propagation links (bl3,bl1), (bl3,bl2), (bl4,bl3), (bl5,bl3).
Blockage instances in {bl1, . . . ,bl5} and set Links can be seen as nodes and arcs of a di-
rected graph that describes related propagation links, that we call a propagation chain.
Its definition reads as follows.

Definition 8.9 (Propagation chain). Let Z be a non-empty set of pattern instances (see
Definition 8.7), let Links be a possibly empty set of propagation links (see Definition 8.8)
such that

1. a pattern instance comprising any link in Links is in Z, i.e., ∀(z1,z2) ∈ Links,z1,z2 ∈
Z,

2. if Z contains more than one instance, all these instances form links in Links, i.e., if
|Z| > 1,∀z1,z2 ∈ Z ,z1 6= z2, either (z1,z2) ∈ Links or (z2,z1) ∈ Links.

The directed graph chain = (Z ,Links) (see Section 2.1) is a propagation chain if there is
an undirected path between any two nodes in Z, i.e., the corresponding undirected graph
(Z ,Links) is connected (see Chapter 2).

292 Multi-Dimensional Performance Analysis

Note, if Links = ;, Z contains exactly one pattern instance, thereby describing a
special case when a pattern instance does not belong to any propagation chain.

A propagation chain shows how involved pattern instances propagated as other
instances. Instances corresponding to nodes without incoming arcs are ones that
triggered the whole propagation chain, and instances corresponding to nodes without
outgoing arcs are ones where propagation ended. For example, in propagation chain
Links, shown in Figure 8.13,

1. instances bl1 and bl2 triggered the whole chain by
2. propagating as bl3 via links (bl4,bl3), (bl5,bl3),
3. that consequently propagated as bl1 and bl2 via links (bl3,bl1), (bl3,bl2).

High Load Propagation Phenomenon. Now, let us explain the high load propagation
phenomenon, using the same P-proclet fragment in Figure 8.12(a) that we used to ex-
plain blockage propagation above, and the same PS-P, provided in Figure 8.12(c). In
this example, the system operated normally in time interval [t0, t1], then experienced
blockages in [t1, t6], and eventually resumed at t5.

However, during [t0, t1], a line of passengers accumulated at check-in counters
a1, a2. When the system resumed at t5, the awaiting passengers checked in their
baggage one by one as quickly as the counters allowed. As a result, new occurrences
in segment (a2s ,bs) started two times more frequently than before t1. For example,
the time distance between the beginning of y9 and y10 is two times shorter than
between y1 and y2. So, the load on this segment in period [t5, t7] was higher than
the load on this segment earlier in period [t0, t2]. The analyst can detect a high load
instance hl2 shown in Figure 8.12(c).

According to the P-proclet in Figure 8.12(a), baggage from (a2s ,bs) is handed over
by resource rid3 onto (bs ,cs). The time distance between the neighboring occurrences
preserves on (bs ,cs). For example, time distance between y13 and y15 is the same as
the time distance between y9 and y10. The same is true for the other occurrences of
hl2. As a result, this higher load propagated to the next segment. The same scenario
for another check-in counter a1 made the load even higher. The analyst can detect
another high load instance hl3 (Figure 8.12(c)).

To summarize, high load instances propagate in the control flow direction, and an
instance that triggered propagation starts earlier than the instance that was triggered.
However, the latter may not hold, for example, if a high load instance started earlier
because of a different reason. For example, in Figure 8.12(c), occurrences y11 and
y12 started almost “together” because bl1 and bl2 ended, so the analyst may consider
them as the start of high load instance hl3. Note, high load instances going at the
same time via a merge unit propagates as an instance with an even higher load (load
from conveyor a1 : b does in our example), while a diverting unit can divide the load
between its outputs, so the instance can even dissolve.

8.3 Method for Multi-Dimensional Performance Analysis 293

Ideas behind High Load Propagation Discovery. To track high load propagation,
we use the same approach as for blockage propagation discovery. The only difference
is in the direction of blockage and high load propagation: they propagate in opposite
directions. That is,

• high load propagation forward-tracking is done in the control-flow direction,
• and high load propagation back-tracking is done backward in the control-flow

direction, to identify the segment(s) where propagation started.

Let us explain how propagation forward and back tracking can be done using our
running example (see the PQR-system in Figure 8.3, and the PS-P with the detected
pattern instances in Figure 8.11(b)).

The analyst chooses high load instance hl3 (segment (bs ,cs)), and starts tracking
propagation backward, which means also backward in the control-flow direction. hl3

can potentially be the result of propagation from segments that connect start transi-
tions t3 or t6 (labeled b′

s and bs) with the other directly preceding start transitions.
As in our blockage propagation tracking example, we refer to the P-proclet net layout
to identify them. These are transitions t1 and t4. Again, we skip complete transitions
t2 and t5, as we analyze the PS-P built from start events only. These transition labels
form the following segments in the PS-P:

• (a1
s ,bs), and

• (a2
s ,bs).

We check whether pattern instance set PI contains high load instances in these
segments that overlap with hl3 in time. Segment (a1s ,bs) has blockage hl1 such that
piStart(hl1) ∈ [piStart(hl3),piEnd(hl3)]. Similarly, segment (a2s ,bs) has hl2 such that
piStart(hl2) ∈ [piStart(hl3),piEnd(hl3)], i.e., they overlap in time with hl3. We add cor-
responding propagation links links5 = (hl1,hl3) and links6 = (hl2,hl3) to a resulting set
of propagation links Links. These links are shown in Figure 8.14.

Transitions t1 and t4 do not have any incoming arcs in the P-proclet, so propagation
back-tracking stops, and propagation forward-tracking starts from the initial pattern
instance hl3.

For that, we identify the next segments in the control-flow direction using the P-
proclet, and check if they contain overlapping in time high load segments that are
already in PI. These segments are (cs ,d1s) and (cs ,d2s), and the high load instances
are hl4 and hl5. We add propagation links link7 = (hl3,hl4) and link8 = (hl3,hl5) to
set Links (see the corresponding arrows in Figure 8.14). Then propagation forward
tracking stops because complete transitions t24 and t9 of process steps d1 and d2 do
not have outgoing arcs.

As a result, set Links contains links link5 − link8, comprising a propagation chain
({hl5, . . . ,hl8}, {link5, . . . , link8}) (see Definition 8.9). Note, in Figure 8.14 high load in-

294 Multi-Dimensional Performance Analysis

bl1

bl2

bl3

bl4

bl5

hl1

hl2

hl3

hl4

hl5

hl0

a1s:bs

a2s:bs

bs:cs

cs:d2s

cs:d1s

link5

link6

link7

link8

Figure 8.14: Propagation chain of high load instances.

stance hl0 is not connected with any other instances, it forms its own propagation
chain ({hl0},;).

Next, we propose a propagation chain discovery algorithm for both blockage and
high load propagation.

8.3.5 Step 2. Propagation Chain Discovery

In this step, we use

• given PQR-system S, and
• pattern instance set PI, obtained in Step 1,

to discover blockage propagation chains comprised of blockage instances in PI. The
analyst also introduces an empty set Chains to add discovered propagation chains.

To discover propagation chains, we iteratively consider each instance in PI, and
discover a propagation chain that contains it. All already considered instances, as well
as instances already included in propagation chains, are excluded from the further
analysis by marking them as visited in PI. Iterating stops when all instances in PI are
marked as visited. For each iteration, our propagation chain discovery method takes
as input

1. given PQR-system S, and
2. pattern instance set PI containing a non-zero number of unvisited instances.

At the start of each iteration, the analyst introduces four empty sets:

8.3 Method for Multi-Dimensional Performance Analysis 295

1. the set of unvisited pattern instances notVisitedPI, where the instances belonging
to the current propagation chain are “waiting” for the analysis of their possible
propagation to/from the neighboring segment(s),

2. the set of already visited segments visitedSegments,
3. the set Links for storing discovered propagation links, and
4. the set Z for storing pattern instances comprising propagation links in Links.

To start an iteration, the analyst

1. selects a pattern instance z0 ∈ PI such that z0 is not marked as visited in PI,
2. inserts z0 into notVisitedPI,
3. marks z0 as visited in PI, and
4. inserts segment seg = piSeg(z0) in visitedSegments.

Then, the analyst iterates over the elements of notVisitedPI. On each iteration, the
following sub-steps are executed for the current instance zi ∈ notVisitedPI.

• Sub-Step D1. Tracking propagation in the control-flow direction.
• Sub-Step D2. Tracking propagation backward in the control-flow direction.
• Sub-Step D3. Removing zi from notVisitedPI and checking whether iterating

must stop.

In sub-steps D1 and D2,

• new instances are added to notVisitedPI for the consequent propagation track-
ing, and

• newly discovered propagation links and corresponding instances are added to
the resulting sets Links and Z.

When iterating stops, a directed graph (Z , link) is the resulting propagation chain.
Note, the type of the initial pattern instance z0 defines whether blockage or high
load propagation is discovered, i.e., if piType(z0) = blockage, a blockage propagation
chain is discovered, and a high load propagation chain is discovered otherwise. In the
following, we describe sub-steps D1-D3 in more detail.

Sub-Step D1. Tracking Propagation in the Control-Flow Direction. As we dis-
cussed earlier, high load instances propagate to the neighboring segments in the
control-flow direction, while blockage instances propagate in the opposite direction.
So, in the control-flow direction, we do forward tracking of high load instances prop-
agation and back tracking of blockage instances propagation.

Let zi ∈ notVisitedPI be the instance we are currently tracking. For tracking prop-
agation of zi in the control-flow direction, its directly following segments in this di-
rection have to be determined. For that, a transition t2, corresponding to the second
process step of instance zi segment, is taken as a starting point. Then, it is used to
identify all segments whose first process step label is `(t2), and the second one is a

296 Multi-Dimensional Performance Analysis

label of a start transition of a directly following process step. That is, these segments
SEGdf = {(`(t2),`(t)) | t ∈ T,`(t) = (a,start, tag), a ∈ Act, tag ∈ Tags,∃p1, p2 ∈ P, p1 6= p2, t ′ ∈
T such that (t2, p1), (p1, t ′), (t ′, p2), (p2, t) ∈ F and (`(t2),`(t)) 6∈ visitedSegments}.

Then, each segment seg j ∈ SEGdf is analyzed for the presence of a pattern instance
z j such that it:

1. has the same type (i.e., blockage or high load) as instance zi , i.e., piType(zi) =
piType(z j),

2. overlaps with zi such that the following holds:

• if we track blockage propagation, zi ends not earlier than z j starts and
not later than z j ends, i.e., piEnd(zi) ∈ [piStart(z j),piEnd(z j)] if piType(z j) =
blockage, or

• if we track high load propagation, z j starts not earlier than zi starts and
not later than zi ends, i.e., piStart(z j) ∈ [piStart(zi),piEnd(zi)] if piType(zi) =
highLoad.

When z j satisfies these conditions, the analyst:

• adds a propagation link (z j ,zi) to Links if the type of z j is blockage, and adds a
link (zi ,z j) otherwise,

• marks z j as visited in PI,
• adds z j to notVisitedPI, and
• adds seg j to visitedSegments.

Sub-Step D2. Tracking Propagation Backward in the Control-Flow Direction. This
step is similar to the previous one but has the following differences.

1. Considering zi ∈ notVisitedPI be the instance we are currently tracking, all its di-
rectly preceding segments are considered for tracking instead of directly follow-
ing. For that, a transition t1, corresponding to the fist process step of instance
zi segment, is taken as a starting point. Then, it is used to identify all segments
whose second process step label is `(t1), and the first one is a label of a start
transition of a directly preceding process step. That is, these segments SEGdp =
{(`(t),`(t1)) | t ∈ T,`(t) = (a,start, tag), a ∈ Act, tag ∈ Tags,∃p1, p2 ∈ P, p1 6= p2, t ′ ∈ T

such that (t , p1), (p1, t ′), (t ′, p2), (p2, t1) ∈ F and (`(t),`(t1)) 6∈ visitedSegments}.
2. overlapping in time is checked differently:

• if we track blockage propagation, z j starts not earlier than zi starts and
not later than zi ends, i.e., piStart(z j) ∈ [piStart(zi),piEnd(zi)] if piType(zi) =
blockage, or

• if we track high load propagation, zi ends not earlier than z j starts and
not later than z j ends, i.e., piEnd(zi) ∈ [piStart(z j),piEnd(z j)] if piType(z j) =
highLoad.

8.3 Method for Multi-Dimensional Performance Analysis 297

3. If instance z j is found, the corresponding propagation links are created in the
opposite directions, i.e., the analyst adds a propagation link (zi ,z j) to Links if
the type of z j is blockage, and adds a link (z j ,zi) otherwise.

Sub-Step D3. Excluding Current Pattern Instance from Further Tracking. This
step is trivial, zi is removed from notVisitedPI. Discovery ends when notVisitedPI is
empty, otherwise, the next iteration (Sub-Step D1) starts.

When the discovery phase completes, set Links contains all the discovered prop-
agation links, and set Z contains pattern instances included in the chain, thereby
forming propagation chain chain = (Z ,Links) (see Definition 8.9). It is added to the
resulting set Chains.

8.3.6 Step 3. Merging Propagation Chains Due To High Load
Propagation to Alternative Routes

Typically, multiple routes to the same destination or area exist in an MHS in order to
provide:

• high availability for avoiding single points of failure, and
• load balancing (see Section 1.1.2).

When one or multiple alternative routes are unavailable, bags follow the routes re-
maining available. As a result, the load on the segments of these routes becomes
higher, and high load instances can emerge.

For example, the system in Figure 8.3 has two routes from location c to the bag-
gage off-loading area at locations d1 and d2 (conveyors (c,d1) and (c,d2) respec-
tively). When one of them is unavailable, the baggage follows through the other.
The PS-P in Figure 8.15 shows that segment (cs ,d1s) is unavailable during blockage
instance bl5. As a result, the baggage goes through another still available segment
(c,d2s), thereby causing high load instance hl0. We say that bl5 propagates to alterna-
tive segment (route) (cs : d2s) as a high load instance hl0. As a result, a propagation
link link0 = (bl5,hl0) is identified. Note, in this case, the high load instance must start
within the time interval when the blockage instance that triggered it is observed.

When a blockage instance propagates as a high load one, it connects two chains:
one that contains the blockage instance, and one that contains the high load instance.
As a result, these chains can be merged into one to show a more complete propaga-
tion chain. For example, after propagation link link0 is identified, the corresponding
propagation chains

• chain0 = ({hl0},;),
• chain1 = ({bl1, . . . ,bl5}, {link1, . . . , link4}),

can be merged into a new chain

298 Multi-Dimensional Performance Analysis

bl1

bl2

bl3

bl4

bl5

hl1

hl2

hl3

hl4

hl5

hl0

a1s:bs

a2s:bs

bs:cs

cs:d2s

cs:d1s

link1

link2

link3
link4

link0

Figure 8.15: Propagation link link0 shows that bl5 propagated as high load instance hl0.

• chain01 = ({bl1, . . . ,bl5,hl0}, {link0, . . . , link4}).

The propagation chain discovery approach, which we considered earlier, does not
discover propagation of blockage instances as high load ones. To discover more com-
plete propagation chains, showing how high load is triggered by blockages, we for-
mulate the following sub-problem.

• Given the PQR-system, PS-P and the set of discovered chains Chains, how to
merge chains if blockage instance(s) of one propagated as high load instance(s)
of another?

Approach for Discovery of High Load Instance Triggered by Blocked Alternative
Routes.

To solve this problem, we propose the following approach.

1. For each high load propagation chain in Chains, we identify initial high load
instances that are not triggered by the other high load instances of the same
chain.

2. For each initial instance, we look for a propagation chain, whose blockage in-
stance(s) triggered the current initial instance. If such a chain is found, we
create the corresponding propagation link(s) and merge these two chains into
one.

Note that each blockage instance is visited only once, but while searching for a re-
lated chain, all the other chains are considered. This is required to be able to merge
multiple chains. Let us describe these steps in more detail.

8.3 Method for Multi-Dimensional Performance Analysis 299

1. At the beginning, we create a set Chainshl of all high load propagation chains
in Chains, Chainshl ⊆ Chains, and a set Chainsblm of all blockage propagation
chains in Chains, Chainsblm ⊆ Chains,Chainshl ∩Chainsblm =;.

2. We iterate over each chain chaini = (Zi ,Linksi) ∈ Chainshl.
3. In chaini , all initial pattern instances, i.e., the instances that are not the result

of propagation of the other instances in Zi , are identified:

• Zinit = {z j | z j ∈ Zi } such that ∀zk ∈ Zi ,zk 6= z j , (zk ,z j) 6∈ Linksi .

4. For each initial high load instance zinit ∈ Zinit, the following steps are performed
to identify propagation chains in Chainsblm that triggered zinit:

(a) for segment ((a,start, taga), (b,start, tagb)) = piSeg(zinit), alternative segments
are determined as follows:

• SEGalt = {((a,start, taga), (x,start, tagx)) | (x,start, tagx) 6= (b,start, tagb),
∃t , t ′ ∈ T,`(t) = (a,start, taga),`(t ′) = (x,start, tagx),∃p1, p2 ∈ P, p1 6= p2, t ′′ ∈
T such that (t , p1), (p1, t ′′), (t ′′, p2), (p2, t ′) ∈ F }.

(b) For each chain chain j = (Z j ,Links j) ∈ Chainsblm, a set of propagation links
from blockage instances of chain j , overlapping in time with zinit, to high
load instances of chaini on segments SEGalt are identified:

• Links j ,init = {(z j ,zinit) | z j ∈ Z j ,piType(z j) = blockage,piSeg(z j) ∈ SEGalt,
piStart(zinit) ∈ [piStart(z j),piEnd(z j)]}.

If Links j ,init 6= ;,

i. chain j is removed from set Chainsblm,
ii. chains chain j and chaini are merged into a new chain chain j ,init = (Z j ∪

Zi ,Links j ∪Linksi ∪Links j ,init),
iii. chain chain j ,init is inserted in Chainsblm,

else chaini is inserted in Chainsblm.

As a result, set Chainsblm contains both chains that were merged, and the chain re-
mains intact, i.e., high load propagation chains whose initial instances were not trig-
gered by blockage instances on alternative routes.

8.3.7 Step 4. Merging Propagation Chains Due To High Load After
Blockage Completion

Earlier, we considered how a high load instance can be triggered by the propagation of
another high load instance or a blockage from an alternative route. Now, we consider
how load increases right after a blockage instance ends on the same segment. That
happens when cases (bags) were accumulating on the preceding segment(s) during a

300 Multi-Dimensional Performance Analysis

blockage and then were handed over to the segments that just recovered. As a result,
the load becomes higher than usual, and a high load instance can emerge.

For example, in Figure 8.12(c), segment occurrences y11 and y12 have a shorter
time distance than the segment occurrences in context before t1, and can be con-
sidered as a high load instance, or as a part of hl3. However, this higher load was
triggered by blockage instance bl3 (Figure 8.12(b)) that resumed right before the
high load on this segment began.

Similarly to the situation with blockage instances propagating to alternative seg-
ments, blockage instances that propagated as high load instances can potentially con-
nect multiple propagation chains. Such chains can be merged to describe propagation
more accurately. For example, chain

• chain01 = ({bl1, . . . ,bl5,hl0}, {(bl3,bl1), (bl3,bl2), (bl4,bl3), (bl5,bl3), (bl5,hl0)}),

shown in Figure 8.15, can be merged with chain

• chain2 = ({hl1, . . . ,hl5}, {(hl1,hl3), (hl2,hl3), (hl3,hl4), (hl4,bl5)}),

shown in Figure 8.13, via propagation links (bl1,hl1), (bl2,hl2), (bl3,hl3), (bl4,hl4), (bl5,hl5),
resulting in chain

• chain012 = ({bl1, . . . ,bl5,hl0, . . . ,hl5},

• {(bl3,bl1), (bl3,bl2), (bl4,bl3), (bl5,bl3), (bl5,hl0),

• (hl1,hl3), (hl2,hl3), (hl3,hl4), (hl4,bl5),

• (bl1,hl1), (bl2,hl2), (bl3,hl3), (bl4,hl4), (bl5,hl5)}),

shown in Figure 8.16.

Approach for Discovery of High Load Instance Triggered by Ended Blockage In-
stances. To solve this problem, we propose the following approach similar to the
approach of the previous section. The differences are as follows.

1. Identification of segments SEGalt is not needed because in this case a blockage
instance always propagates from the segment of the current high load instance.

2. Propagation links Links j ,init are identified within the segment of zinit, and the
instances do not overlap but the high load instance follows the blockage one,
i.e., Links j ,init =

• {(z j ,zinit) | z j ∈ Z j ,piType(z j) = blockage,piSeg(z j) = piSeg(zinit),piStart(zinit) =
piEnd(z j)}.

8.3.8 Step 5. Analysis of High Load Instances

In this step, the analyst determines all initial high load instances, i.e., instances that
are not triggered by the other blockage or high load instances, and identifies their
root causes as follows.

8.3 Method for Multi-Dimensional Performance Analysis 301

bl1

bl2

bl3

bl4

bl5

hl1

hl2

hl3

hl4

hl5

hl0

a1s:bs

a2s:bs

bs:cs

cs:d2s

cs:d1s

link1

link2

link3
link4

link5

link6

link7

link8

link9

link10

link11

link12

link13

link0

Figure 8.16: Merging propagation chain due to ended blockage instances propagated as high
load instances.

1. The analyst introduces an empty set RChl of initial high load instances.
2. Each chaini = (Zi ,Linksi) ∈ Chains3 is considered.
3. In chaini , initial high load instances are the set Z hl

i = {zi | zi ∈ Zi ,piType(zi) =
highLoad, such that ∀(z j ,zk) ∈ Linksi holds that k 6= i }.

4. The analyst identifies the root cause of these instances as triggered by arrival
process. That is, we conclude that if a high load instance is not triggered by
any other high load or blockage instances in a chain, it is caused by the system
arrival process.

5. The analyst inserts a tuple (chaini , Z hl
i) into RChl.

As a result, set RChl contains such a tuple per each propagation chain in Chains3 that
has high load instances triggered by the arrival process.

In our running example, chain012 does not contain any initial high load instances,
so RChl =;.

In the next section, we consider blockage analysis using MDC views.

8.3.9 Step 6. Multi-Dimensional Analysis of Blockage Instances

In Step 5, we identified the root causes of initial high load instances for chains in
Chains3. In this step, we do the same but for initial blockage instances, and consoli-
date the root causes of high load and blockage initial instances as follows.

1. The analyst introduces the empty set RCall of final results.
2. The analyst iterates over chains in Chains3,

302 Multi-Dimensional Performance Analysis

3. In the current chaini , the analyst determines initial high load instances as a
set Z bl

i = {zi | zi ∈ Zi ,piType(zi) = blockage, such that ∀(z j ,zk) ∈ Linksi holds that
k 6= i }.

4. For each initial blockage instance zi ∈ Z bl
i , the analyst obtains an MDC view and

identifies what queue or resource idi ∈I triggered zi .
5. As a result, a tuple (zi , idi) describes the root cause of zi .
6. After all initial blockage instances in Z bl

i are analyzed, a set of all tuples RCbl =
{. . . , (zi , idi), . . .} describes the root causes of all blockage instances of chaini .

7. To complete the analysis of chaini , the analyst merges the results of its high load
initial instances analysis from RChl, i.e., the set of initial high load instances Zhl

i
for chain chaini , into a new tuple (chaini ,Zhl

i ,RCbl) and inserts it into RCall.

As a result, set RCall contains tuples describing root causes of initial high load and
blockage instances for each chain in Chains3.

We split the step of analysis of blockage instances zi using MDC views in multiple
sub-steps.

• Sub-Step M1. Determining an MDC view for Analysis. Given blockage in-
stance zi in the PS-P, the analyst determines an MDC segment series (see Def-
inition 8.4) for this blockage instance segment, and obtains the corresponding
MDC view (see Section 8.2.5).

• Sub-Step M2. Detecting Blockage Instances in the MDC View. The analyst
detects all blockage instances in the PS-R and PS-Q of the MDC view, high load
instance detection is not required.

• Sub-Step M3. Identifying Root Causes. The analyst identifies possible RCs
depending on the combination of detected blockage instances in the PS-R and
PS-Q segments.

In the following, we describe these sub-steps in more detail.

8.3.9.1 Sub-Step M1. Determining and Obtaining PS-Q and PS-R Segments for
Analysis.

Given blockage instance zi , and its segment ((a,start,ε), (b,start,ε)) = piSeg(zi), the
analyst determines

• its MDC according to Definition 8.4, i.e., MDCi = (I a
R ,I b

R ,qida,b) = MDC(S, (a,b)),
• the segment series of MDCi according to Definition 8.5, i.e., SEGa,b = MDCSeg(MDCi).

Afterward, SEGa,b is used to choose the corresponding segment performance spectra
in the given PS-R and PS-Q, and arrange them in a top-bottom order according to the
ordering in SEGa,b . As a result, the corresponding MDC view is obtained.

In our running example, to analyze blockage bl5,

8.3 Method for Multi-Dimensional Performance Analysis 303

bl5

startrid3:completerid3

cs:d1s

startrid5:completerid5

completerid5:startrid5

completerid3:startrid3

enqueueqid4:dequeueqid4

bl6

bl7

bl8

id
le

 b

u
sy

w
a

it
in

g

 b

u
sy

id

le

o1 o2
o’1

o’’1

o’2

o’’2

o1
o2

Figure 8.17: MDC view for PS-P segment (cs ,d1s) showing Variant 1 of Table 8.5.

• MDCbl5 = ({rid3}, {rid4},qid4), and
• the only possible MDC segment series SEGbl5 =

– 〈(completerid3startrid3), (startrid3,completerid3),
– (enqqid4,deqqid4),
– (startrid4,completerid4), (completerid4startrid4)〉.

Blockage instance bl5 and the corresponding MDC view is shown in Figure 8.17. The
view describes the PS-R of resources rid3,rid4 and PS-Q of queue qid4.

8.3.9.2 Sub-Step M2. Detecting Performance Patterns in the PS-Q and PS-R.

During this step, the analyst manually detects all blockage instances in the MDC view
that overlap with zi in time, i.e., each blockage instance z j in SEGbl5 such that

• piStart(z j) ∈ [piStart(zi),piEnd(zi)],
• or piEnd(z j) ∈ [piStart(zi),piEnd(zi)],
• or piStart(zi) ∈ [piStart(z j),piEnd(z j)],
• or piEnd(zi) ∈ [piStart(z j),piEnd(z j)]

are detected. The analyst introduces a set per each segment in the MDC segment
series SEGa,b for “storing” these blockage instances as follows:

1. Z top
idle for blockages in (completeridt startridt),

304 Multi-Dimensional Performance Analysis

Variant No |Ztop
busy

| |Zqueue | |Zbtm
busy | Root cause in RCs

1 − > 0 0 rcQueue
2 > 0 0 − rcTopContResource,
3 − > 0 > 0 rcBtmContResource

4 0 0 − rcDetectionError

Table 8.5: Mapping cardinality combinations of sets Z
top
busy ,Zqueue and Zbtm

busy to root cause in the
resource and queue dimensions.

2. Z top
busy for blockages in (startridt ,completeridt),

3. Zqueue for blockages in (enqqida,b
,deqqida,b

),
4. Zbtm

busy for blockages in (startridb ,completeridb), and

5. Zbtm
idle for blockages in (completeridb startridb).

For example, for the MDC view in Figure 8.17, the following blockage instances
are detected:

1. Z top
idle = {bl6},

2. Z top
busy =;,

3. Zqueue = {bl7},
4. Zbtm

busy =;, and

5. Zbtm
idle = {bl8}.

All these instances overlap with bl5, e.g., piStart(bl6) ∈ [piStart(bl5),piEnd(bl5)], piStart(bl7) ∈
[piStart(bl5),piEnd(bl5)], and so on.

8.3.9.3 Sub-Step M3. Identifying Root Causes of the Given Pattern Instance

Finally, the analyst infers what caused the given blockage instance zi using a mapping
between various combinations of the cardinality of sets |Z top

busy|, |Zqueue|, and |Zbtm
busy|,

detected in the previous step, to the root cause in the queue and resource dimensions.
We distinguish the following root causes:

1. problems with queue qida,b ,
2. problems with top context resource ridt ,
3. problems with bottom resource ridb , and
4. the special situation pattern detection errors.

We write rcQueue, rcTopContResource, rcBtmContResource, and rcDetectionError for
them respectively, and introduce the set of the queue- and resource-related root
causes RCs = {rcQueue,rcTopContResource,rcBtmContResource,rcDetectionError}. The
mapping is shown in Table 8.5. If a cell contains the symbol ’−’, the cardinality of
the corresponding set does not affect conclusions. Note, the cardinality of sets Z top

idle

8.3 Method for Multi-Dimensional Performance Analysis 305

Variant No |Ztop
busy

| |Zqueue | |Zbtm
busy | Root cause

1 0 1 0 queue rcQueue

Table 8.6: Mapping cardinality of sets Z
top
busy , Zqueue, and Zbtm

busy to a root cause.

and Zbtm
idle are not used in Table 8.5. However, information about blockage instances

detected in the corresponding segments can help to reason about possible root causes
if pattern detection was done inaccurately, for example, because of a small number of
observed cases.

In the following, we consider each one of them and provide the corresponding
examples.

Variant 1. Queue Problems. The first line of Table 8.5 describes a cardinality combi-
nation when set Zqueue has a non-zero cardinality, i.e., there are detected blockages in
the corresponding segments, while set Zbtm

busy have zero cardinality, i.e., no blockage in-

stances are detected there. The cardinality of Z top
busy does not matter. This combination

is mapped to the root cause problems with queue.

This mapping is created due to the following reasoning.

• The segment occurrences of the given blockage instance zi in the PS-P can be
seen as an approximation of occurrences in segments (startridt

,completeridt
) and

(enqqida,b
,deqqida,b

).
• Only segment (enqqida,b

,deqqida,b
) contains blockages that overlap with zi in time

(|Z top
busy| = 0 and |Zqueue| > 0). So,

– the top context resource ridt did not “contribute” to zi ,
– the queue itself caused zi either due to its own problems or because the

bottom context resource ridb could not dequeue cases from this queue.

• However, segment (startridb
,completeridb

) has no blockage instances (|Zbtm
busy| = 0),

i.e., no cases were not delayed due to any serving problems caused by ridb .
• By excluding both resources from potential root cause sources, we conclude that

the queue itself caused blockage instance zi .

For our running example, cardinality of sets Z top
busy, Zqueue, and Zbtm

busy are shown in
Table 8.6. According to Table 8.5, this configuration is mapped to root cause problems
with queue qida,b , i.e., with queue qid4. Let us explain the reasoning behind Variant
1 of Table 8.5 by the example shown in Figure 8.17.

• Given blockage bl5 is comprised by occurrences o1 and o2, as shown in Fig-
ure 8.11(b). These occurrences can be seen as approximations of occurrences
o′

1,o′′
1 and o′

2,o′′
2 in Figure 8.17.

306 Multi-Dimensional Performance Analysis

• Occurrences o′
1 and o′

2 (rid4) have almost the same durations as the other occur-
rences of the same segments in context around, so segment (startrid4,completerid5)

does not contain blockages instances. At the same time, o′′
1 and o′′

2 (qid4) have
significantly longer durations and form blockage bl7. So,

– the top context resource rid4 did not “contribute” to bl5,
– the queue caused bl5 either itself or due to the bottom context resource

rid5.

• However, segment (startrid5,completerid5) has no blockage instances, i.e., rid5

was not busy with any other cases longer than usual.
• We conclude that the queue itself caused blockage instance bl5.

We can additionally consider the idle segments of rid4 and rid5, to validate our
reasoning. Both segments have blockage instances bl6 and bl8 respectively. They
show that these resources were not serving any cases during the time interval of bl5,
and thereby did not delay cases of occurrences o1,o2, or dequeuing from qid4.

Next, we explain the reasoning behind the remaining Variants 2 and 3 of Table 8.5.

Variant 2. Top Context Resource Problems. The second line of Table 8.5 describes a
cardinality combination that is mapped to the root cause top context resource problems.
It is created due to the following reasoning.

• Similarly to Variant 1, we consider the occurrences of segments
(startridt

,completeridt
) and (enqqida,b

,deqqida,b
) as ones that can directly form given

blockage instance zi .
• Among these segments, only (startridt

,completeridt
) has blockage instance(s)

(|Z top
busy| > 0 and |Zqueue| = 0). So,

– the top context resource ridt “contributed” to zi , and
– the queue itself did not.

• Since the queue segment does not contain blockage instances, the behavior of
the bottom context resource did not cause any delays related to cases of zi

(symbol “-” in the corresponding cell of Table 8.5).
• By excluding the queue and bottom context resource from the potential root

cause sources, we conclude that the top context resource ridt caused blockage
instance zi .

To explain Variant 2 by example, we slightly modified the performance spectra
shown in Figure 8.17 as follows:

• we removed all the occurrences corresponding to the case of o1 from the spectra,
• we introduced a delay for o′

2.

8.3 Method for Multi-Dimensional Performance Analysis 307

startrid3:completerid3

enqueueqid4:dequeueqid4

startrid5:completerid5

completerid5:startrid5

completerid3:startrid3

bl10

bl11

bl9
cs:d1s

id
le

 b

u
sy

w
a

it
in

g

 b

u
sy

id

le

o2

o1
o2

o’2

o’’2

Figure 8.18: MDC view for PS-P segment (cs ,d1s) showing Variant 2 of Table 8.5.

Variant No |Ztop
busy

| |Zqueue | |Zbtm
busy | Root cause

2 1 0 0 rcTopContResource

Table 8.7: Mapping cardinality of sets Z
top
busy , Zqueue, and Zbtm

busy to a root cause.

The resulting spectra and detected blockage instances are shown in Figure 8.18, and
the cardinality combination of the sets is shown in Table 8.7. According to Table 8.5,
it is mapped to root cause problems with top context resource rida,b , i.e., resource rid3

(Variant 2).
Let us explain the reasoning behind Variant 2 by our modified running example in

Figure 8.18.

• Given blockage bl5 comprises occurrence o2. This occurrence has a longer dura-
tion than the others in context because resource rid4 served the corresponding
case longer than the others in context (occurrence o′

2 in Figure 8.18).
• Queue segment (enqqid4,deqqid4) does not contain any blockage instances, so

qid4 did not cause zi , and consequently, the behavior of rid5, which could po-
tentially delay dequeuing from qid3, did not matter (symbol “-” in Table 8.5).

• We conclude that resource rid4 caused blockage instance bl5.

308 Multi-Dimensional Performance Analysis

Variant No |Ztop
busy

| |Zqueue | |Zbtm
busy | Root cause

3 0 1 1 rcBtmContResource

Table 8.8: Mapping cardinality of sets Z
top
busy , Zqueue, and Zbtm

busy to a root cause.

If we additionally consider the idle segments of rid4, we see it does not contain any
occurrences during the time interval of bl5, i.e., rid4 was busy with serving a single
case.

Next, we explain the remaining Variants 3 of Table 8.5.

Variant 3. Bottom Context Resource Problems. The third line of Table 8.5 maps
a cardinality combination that represents blockage instances in both queue and bot-
tom resource segments to bottom context resource problems because of the following
reasoning.

• Similarly to Variant 1, we consider the occurrences of segments
(startridt

, completeridt
) and (enqqida,b

,deqqida,b
) as ones that can directly form

given blockage instance zi .
• Among segments (startridt

,completeridt
) and (enqqida,b

,deqqida,b
) that can cause zi ,

only (startridt
,completeridt

) has blockage instance(s) (|Zqueue| > 0). So, similarly
to Variant 1, either queue itself caused zi or the bottom context resource ridb

could not dequeue cases from this queue.
• Segment (startridt

,completeridt
) contains blockage instances (|Zbtm

busy| > 0), so it
could not dequeue cases from the queue and caused zi .

• We conclude that the bottom context resource ridb caused blockage instance zi .

Note, this variant is only possible if the bottom context resource is terminal, i.e., if it
hands over cases outside the system. Otherwise,

• it would have at least one queue that takes the cases it serves,
• blockage instances in (startridb

,completeridb
) would be detected in the PS-P.

As a result, we would observe Variant 2 where this resource would be a top context
one.

We slightly modified the performance spectra shown in Figure 8.17 to explain this
variant:

• we removed any delays for o1 in segments (startrid4,completerid4) and (enqqid4,
deqqid4),

• we introduced a delay for occurrence o′′′
1 in segment (startrid5,completerid5).

The resulting spectra and detected blockage instances are shown in Figure 8.19 where
the modified occurrences o1,o′

1,o′′
1 and o′′′

1 are shown as thick lines. The corresponding
cardinality combination is shown in Table 8.8.

8.3 Method for Multi-Dimensional Performance Analysis 309

startrid3:completerid3

enqueueqid4:dequeueqid4

startrid5:completerid5

completerid5:startrid5

completerid3:startrid3 bl11

bl12

bl13

id
le

 b

u
sy

w
a

it
in

g

 b

u
sy

id

le

bl5
cs:d1s

o2

o’1

o’’1

o’2

o’’2

o1 o2

o’’’1

Figure 8.19: MDC view for PS-P segment (cs ,d1s) showing Variant 3 of Table 8.5.

The reasoning behind Variant 3 for our example in Figure 8.19 is as follows.

• Given blockage bl5 is comprised by occurrences o2. This occurrence has a longer
duration because of occurrence o′′

2 that has a longer duration (blockage instance
bl12).

• Resource segment (startrid4,completerid4) does not contain any blockage instances,
so it did not cause zi .

• However, resource segment (startrid5,completerid5) contains blockage instance
bl13, i.e., it could not dequeue cases from qid4.

• We conclude that resource rid5 caused blockage instance bl5.

If we additionally consider the idle segments of rid5, we see it does not contain any
occurrences during the time interval of bl5, i.e., rid5 was indeed busy with serving a
single case.

So far, we considered cardinality combinations of Variants 1-3 that lead to a con-
clusion. Finally, we consider Variant 4, which indicates errors in the input.

Variant 4. Input Errors. The fourth and last line of Table 8.5 maps a cardinality
combination that represents errors in the input caused by, for example, inaccurate
pattern detection.

310 Multi-Dimensional Performance Analysis

Variant No |Ztop
busy

| |Zqueue | |Zbtm
busy | Root cause

3 0 1 1 rcBtmContResource

Table 8.9: Mapping cardinality of sets Z
top
busy , Zqueue, and Zbtm

busy , related to blockage bl4 in Fig-
ure 8.11(b), to its root cause.

Variant 4 describes no blockages in the top context resource and queue. However,
given blockage instance zi describes a blockage whose occurrences are actually ap-
proximations of occurrences in segments of the resources and queue. So, we conclude
that blockage instance detection for this MDC view was done with errors and should
be reconsidered.

Set RCall is the final result of the analysis that describes

• all detected propagation chains, including pattern instances they contain,
• initial high load instances, triggered by arrival process and caused propagation

chains, and
• tuples of initial blockage instances and queue/resource identifiers that triggered

them.

Next, we complete the analysis of our running example and show the resulting set
RCall.

8.3.10 Completing the Running Example Analysis.

Let us finalize the analysis for our running example. In propagation chain

• chain012 = ({bl1, . . . ,bl5,hl0, . . . ,hl5},

• {(bl3,bl1), (bl3,bl2), (bl4,bl3), (bl5,bl3), (bl5,hl0),

• (hl1,hl3), (hl2,hl3), (hl3,hl4), (hl4,bl5),

• (bl1,hl1), (bl2,hl2), (bl3,hl3), (bl4,hl4), (bl5,hl5)}),

shown in Figure 8.16, we identified two blockages bl4 and bl5 that were not triggered
by any other instances in chain012. We analyzed bl5 above. Now, we analyze the re-
maining bl4. For simplicity, we do not provide the corresponding MDC view but pro-
vide already the cardinality of the sets in Table 8.9. In this table, rcBtmContResource

points to bottom context resource rid6, and we associate bl4 with this resource:

• (bl4,rcBtmContResource,rid6).

As a result, the final set of root causes RCall =

• {(chain012,;, {(bl5,rcQueue,qid4), (bl4,rcBtmContResource,rid6)})}.

8.4 Evaluation 311

Now we “translate” propagation chain chain012, shown in Figure 8.16, and its root
causes in RCall into plain English. We start from the root causes that happened earlier
in time.

1. Blockage instance bl5 happened because of queue qid4 (tuple (bl5,rcQueue,qid4)).
2. Afterward, bl5 caused high load instance hl0 due to increased load on still work-

ing segment c : d2 (propagation link (bl5,hl0)).
3. Immediately after the end of hl0, we detected bl4 in the same PS-P segment. It

was caused by bottom context resource rid6 (tuple (bl4,rcBtmContResource,rid6)).
We assume that it could not handle the increased load, for example, due to the
lack of space for baggage off-loading.

4. Afterward, blockage instances bl5 and bl4 propagated to segments (bs ,cs), (a1s ,bs)

and (a2s ,bs) (propagation links (bl4,bl3), (bl5,bl3), (bl3,bl2) and (bl3,bl1).
5. Eventually, blockage instances bl4 and bl5 ended at the same time, e.g., due to

manual intervention.
6. As a result, blockage instances bl1 − bl3 ended as well because resource rid4

could hand baggage over to (cs ,d1s) and (cs ,d2s), unblocking thereby qid3, that
allowed resources rid1 and rid2 to resume there work as well.

7. However, baggage that accumulated during bl1−bl5 caused high load on the cor-
responding segment (propagation links (bl1,hl1), . . . , (bl5,hl5)). Moreover, high
load instances propagated to the corresponding outgoing segments (propaga-
tion links (hl1,hl3), (hl2,hl3), (hl3,hl4) and ((hl3,hl5)).

8. High load instances hl1 −hl5 eventually ended, and the system started work
normally, i.e., without any blockage or high load instances.

The obtained result can be used to improve the baggage handling process. For exam-
ple, if conveyor c : d1 is stopped, either

• additional resource (e.g., rid5) can be scheduled to help rid6, or
• arrival process can be changed, e.g., the flow of incoming baggage can be de-

creased by taking resource rid1 or rid2 (check-in counters a1 and a2) out of
service.

In the next section, we provide the evaluation of this method.

8.4 Evaluation

We had two use cases to evaluate the performance spectra of the process, queue,
and resource dimensions (RQ-6.1), and the multi-dimensional performance analysis
method (RQ-6.2). For one use case, we used the fully controlled environment of
our simulation model (see Section 6.7) to implement an undesirable performance
scenario in the simulated BHS and generate synthetic event data for analysis. For

312 Multi-Dimensional Performance Analysis

another use case, the performance analysis of real Vanderlande-built MHSs was done
by Vanderlande’s domain experts. However, the amount of information that we can
share about the evaluation at Vanderlande is limited by privacy and confidentiality
regulations in the project agreement. So, we share only its summary, which does not
disclose any sensitive information.

The section is organized as follows. We describe the experimental setup for the
first part of the evaluation in Section 8.4.1 and introduce the tool we developed for
the method evaluation in Section 8.4.2. We demonstrate post-mortem analyses in
Section 8.4.3 and discuss the challenges of real-time monitoring in Section 8.4.4.
We summarize the evaluation with real datasets at Vanderlande in Section 8.4.5 and
discuss our experimental results in Section 8.4.6.

8.4.1 Experimental Setup

For evaluation, we used the simulation model that is introduced in Section 6.7. The
corresponding MFD is shown in Figure 6.14, while the visualization of its PQR-system
is shown in Figure 6.15.

We designed the following scenario to generate event data and evaluate our method.
Initially, after a cold start, the simulation model worked for six minutes of model time,
to obtain some average load to all system conveyors. Afterward, the conveyor on the
sorting loop got blocked. After one minute of model time, it resumed. As a result,
some bags did not make it to the flight because of this failure.

For this scenario, we formulated the following evaluation analysis question:

• EvalAQ-1. What undesirable performance scenario(s) happened, and why?

Answering EvalAQ-1 implied post-mortem analysis. Then, we also considered the
real-time performance monitoring setting.

Real-Time Settings. Potentially, the method can be also applied in the real-time set-
ting to enable performance monitoring. It can aim, for example, to trigger correcting
actions as soon as an undesirable performance incident starts. For instance, as soon
as a propagation chain starts developing,

1. it is discovered,
2. its root causes are identified, and
3. the operator takes countermeasures, e.g., by repairing equipment at the location

of the initial blockage instance.

As a result, the impact of the scenario can be minimized.

To understand the applicability of our method (RQ-6.2) in the real-time setting,
we formulated an additional question:

8.4 Evaluation 313

• EvalAQ-2. Can this method be used in the real-time setting for early detection
and analysis of undesirable performance scenarios?

8.4.2 Implementation

For the method evaluation, we designed a proof-of-concept implementation [54]1,
which we refer to as the tool. This tool consists of two components called

1. the PQR-system interactive viewer (just viewer in the following), and
2. a modification of the PSM [46] presented in Chapter 3, which we call in this

section Multi-Dimensional Performance Spectrum Miner (MDPSM) for clarity.

The viewer visualizes the PQR-system. It has the following features that make it easier
for the analyst (or domain expert) to adopt the PQR-system.

1. The PQR-system layout closely repeats the MFD layout familiar to the analyst.
2. Some verbose model elements, such as arc inscription and place colors (types),

are not shown in the visualization.
3. The Q- and R-proclets can be either shown or hidden, depending on the analyst’s

choice.
4. Zooming, scrolling, and rotating are supported for working with large PQR-

systems.

In the MDPSM, we (compared to the PSM) additionally supported the perfor-
mance spectra of the queue and resource dimensions, visualization of MDC views,
and integration with the viewer. The MDPSM

1. imports event data from disk,
2. computes the corresponding PS-P, PS-Q, and PS-R, and
3. visualizes the PS-P and various MDC views in an interactive UI.

Last but not least, the viewer and MDPSM are integrated to make the method
application easier for the analyst. Thus, the viewer allows seeing which segments
of the performance spectra correspond to a transition or place of the P-, Q-, and R-
proclets. For example, by clicking on a P-proclet place, the analyst is navigated to the
corresponding PS-P segment in the MDPSM, and by clicking on the queue place of a
Q-proclet, the corresponding MDC view is shown in the MDPSM.

The other way around, the MDPSM allows navigating from performance spectra
back to the corresponding elements of the PQR-system. That helps, for example,
to easier track high load and blockage propagation (see Section 8.3.4), using the P-
proclet to determine related segments in the PS-P. Additionally, an MDC view for a

1The source code, binaries, and documentation are available on https://github.com/
processmining-in-logistics/psm/tree/pqr

https://github.com/processmining-in-logistics/psm/tree/pqr
https://github.com/processmining-in-logistics/psm/tree/pqr

314 Multi-Dimensional Performance Analysis

PS-P segment can be automatically obtained from the MDPSM UI without interacting
with the viewer.

In our tool, we configured the viewer to visualize the PQR-system of the simulated
BHS in Figure 6.14, and imported the recorded event table, corresponding to the
scenario of Section 8.4.1, in the MDPSM. The resulting PS-P is shown in Figure 8.20.

Time

a14s:a
2
4s

a23s:a
2
4s

a22s:a
2
3s

a24s:a
3
4s

a34s:a
4
4s

a44s:a
5
4s

a54s:a
6
4s

a64s:xs

xs:a
7
4s

a74s:s
1
0s

s17s:b
1
0s

b30s:b
4
0s

b40s:b
5
0s

C
o
n
tro

l-flo
w

Figure 8.20: Obtained performance spectrum (PS-P).

In the next section, we demonstrate the post-mortem analysis using our method.

8.4 Evaluation 315

8.4.3 Analysis Using Synthetic Data

In this section, we follow our method step by step in order to answer EvalAQ-1.
For analysis, the input was:

• the PQR-system shown in Figure 6.15, and
• the PS-P, PS-Q, and PS-R computed and visualized by the MDPSM.

The PS-P is shown in Figure 8.20, while relevant fragments of the PS-Q and PS-R
we provide later. Note, a part of the PS-P segments is not shown in Figure 8.20
to avoid clutter. Thus, the segments of most incoming and outgoing conveyors, the
segments of scanner shortcuts, and the sorter segments between a7

4s : s1
0s and s1

7s : b1
0s ,

and segments between s1
7s : b1

0s and b3
0s : b4

0s are not shown. We started the analysis
with performance pattern detection.

Step 1. Performance Pattern Detection. In this step, we used the MDPSM as a
visual analytics tool, i.e., the analyst’s brain was used for detecting high-load and
blockage instances (see Section 8.3.3). The result is shown in Figure 8.21, where
blockage instances bl1 −bl12 are shown by shapes with black dashed lines, and high
load instances hl1 −hl11 are shown by shapes with red dotted lines. The resulting
set PI = {bl1, . . . ,bl12,hl1, . . . ,hl11}. Note, the instances on the segments that are not
shown are not in PI. However, we detected blockage instances on the sorter segments
between a7

4s : s1
0s and s1

7s : b1
0s , and between s1

7s : b1
0s and b3

0s : b4
0s .

Step 2. Propagation Chain Discovery. In this step, we iterated over the instances
in PI. We started by choosing (randomly) blockage instance bl4 in segment seg4 =
(a2

4s, a3
4s) as a starting point for propagation discovery algorithm (see Section 8.3.5).

To understand what segments are connected to seg4, we referred to the P-proclet visu-
alized in the viewer. For that, we double-clicked the segment space in the MDPSM to
tell the tool to show the corresponding model elements in the viewer. As a result, in
the corresponding P-proclet fragment we could see that the beginning of seg4 was con-
nected to segments (a1

4s, a2
4s), (a2

3s, a2
4s), and the end of seg4 was connected to (a3

4s, a4
4s).

When we clicked on the corresponding place and got navigated to the corresponding
segments in the MDPSM, we could see there already detected blockage instances bl1,
bl3, and bl5. According to Step 2 in Section 8.3.5, we

1. added propagation chain links (bl4,bl3), (bl4,bl1) and (bl5,bl4) to a set Links

(note, propagation splits on merge unit a2
4 toward segments (a1

4s, a2
4s), and (a2

3s, a2
4s)),

2. added segment (a2
4s, a3

4s) to the list of visited segments visitedSegments,
3. added instances bl1,bl3,bl4, and bl5 to the set of instances Z1, and
4. repeated the discovery steps for blockage instances bl1, bl3, and bl5.

Propagation forward-tracking stopped on instances bl1 and bl2. Propagation back-
tracking stopped on instance bl12 (as the segments in between, not shown in the
figure, had detected blockages as well) because next segment (b4

0s,b5
0s) did not have a

316 Multi-Dimensional Performance Analysis

bl1

bl2

bl3

bl4

bl5

bl6

bl7

bl8

bl9

bl10

bl11

bl12

empty load

hl1

hl2

hl3

hl4

hl5

hl6

hl7

hl8

hl9

hl10

hl11

Time

a14s:a24s

a23s:a24s

a22s:a23s

a24s:a34s

a34s:a44s

a44s:a54s

a54s:a64s

a64s:xs

xs:a74s

a74s:s10s

s17s:b10s

b30s:b40s

b40s:b50s
Control-flow

t1

Figure 8.21: Detected blockage and high load instances.

blockage instance during the time interval of interest. The resulting propagation links
were Links1 =

• {(bl10,bl9), (bl9,bl8), (bl8,bl7), (bl7,bl6), (bl6,bl5),

• (bl5,bl4), (bl4,bl3), (bl3,bl2), (bl3,bl1), . . . },

where . . . stand for the segments that are not shown, i.e., links related to instances
bl11 and bl12 are not in chain1 because the related instances are excluded from the
figure. These links connect instances Z1 = {bl1, ,̇bl12}. The resulting propagation chain

8.4 Evaluation 317

is chain1 = (Z1,Links1). It is shown in Figure 8.22 by orange arrows. We added chain1

to set Chains1.

bl1

bl2

bl3

bl4

bl5

bl6

bl7

bl8

bl9

bl10

bl11

bl12

hl1

hl2

hl3

hl4

hl5

hl6

hl7

hl8

hl9

hl10

hl11

Bl
oc

ka
ge

 p
ro

pa
ga

tio
n

High load propagation

Time

a14s:a24s

a23s:a24s

a22s:a23s

a24s:a34s

a34s:a44s

a44s:a54s

a54s:a64s

a64s:xs

xs:a74s

a74s:s10s

s17s:b10s

b30s:b40s

b40s:b50s

Control-flow

Figure 8.22: Blockage and high load instance propagation.

After chain1 was discovered, only high load instances were among those not vis-
ited yet, so we continued with the discovery of high load instance propagation chains.
Applying the same, we connected high load instances

• Z2 = {hl1,hl2,hl3,hl8, . . . ,hl11} and
• Z3 = {hl4, . . . ,hl7}

through propagation links

318 Multi-Dimensional Performance Analysis

• Z2 = {(hl1,hl2), (hl2,hl3), (hl3,hl8), (hl8,hl9), (hl9,hl10), (hl10,hl11)}, and
• Z4 = {(hl4,hl5), (hl5,hl6), (hl6,hl7)}

as propagation chains

• chain2 = (Z2,Links2), and
• chain3 = (Z3,Links3).

These chains are shown in Figure 8.22 by red arrows. The result of Step 1 was set
Chains1 = {chain1,chain2,chain3}.

Steps 3 and 4. Merging Propagation Chains. In the PS-P, we did not observe any
propagation due to the alternative paths’ unavailability (Step 3). Next, we did Step 4
and check if any high load instances were triggered due to the ending of blockage in-
stances. The initial instances of chain2 and chain3 were hl1 and hl4 respectively. The
beginning time of these instances was equal to the end time of same segment block-
age instances bl4 and bl7 respectively. We concluded that these blockage instances
triggered high load instances immediately after they ended. The resulting links were

• link41 = (bl4,hl1), and
• link74 = (bl7,hl4).

Link link41 connected chain1 and chain2, while link74 connected chain1 and chain3. As
a result, we merged these three chains into one. The resulting chain was chain123 =

• (Z1 ∪Z2 ∪Z3,Links1 ∪Links2 ∪Links3 ∪ {link41, link74}).

It comprised all the instances and links shown in Figure 8.22. The result of Step 4
was set Chains3 = {chain123}.

Step 5. High Load Instance Analysis. In chain chain123, no high load instances were
initial ones, so the result of this step was RChl =;.

Step 6. Multi-Dimensional Analysis of Blockage Instances. In chain chain123,
blockage instance bl12 in segment (b3

0s ,b4
0s) was initial, i.e., it was not triggered by any

other instance of chain123. The corresponding MDC view is shown in Figure 8.23. In
this view, we could detect one blockage instance blq in the queue segment and no
blockage instances in the busy segments of the top and bottom context resources. Ac-
cording to Table 8.5 we chose Variant 1 and root cause rcQueue. That is, the problem
with queue b3

0s : b4
0s caused the whole propagation chain chain123.

So far, we considered the post-mortem analysis. Next, we discuss the same sce-
nario assuming real-time monitoring instead, to identify the challenges of applying
our method in the run-time setting.

8.4 Evaluation 319

8.4.4 Monitoring Using Synthetic Data

In the real-time setting, the MDPSM can receive a stream of events via the network, in-
crementally compute new spectrum occurrences, and update the performance spectra
visualization in the UI in run-time. For answering EvalAQ-2, we set up the MDPSM
to listen to the stream of events that the simulation model generated.

However, there were two problems: the last activity and timestamp of still ongoing
occurrences could not be known. As a result, they needed to be estimated first. The
former is the problem of the next activity prediction, it addressed in many works,
e.g., in [39]. The latter is the problem of next timestamp prediction [32]. However,
these problems are notoriously hard and are not fully solved for systems with shared
resources and queues. Instead, we came up with a simple solution that still allowed
us to evaluate our method in the monitoring mode, assuming that the aforementioned
problems can be eventually solved.

Naive Next Activity Prediction Approach. In the PQR-systems, the P-proclet de-
scribes which process steps (activities) are possible after the execution of the current
process step. Interestingly, the P-proclet allows alternatives only for splits, while for
the other elements the next activity is always known. As a result, the next activities
that do not follow a diverting step can be precisely estimated.

Naive Next Activity Timestamp Prediction. To detect longer occurrences, the ana-
lyst uses end segment occurrence timestamps to estimate if the occurrence duration
is longer than some usual duration δ, i.e., for the occurrences (ta , tb) of a segment
(a,b) duration tb − ta is compared with δ. If tb − ta > δ the analyst can immediately
consider this occurrence as part of a blockage instance. So, we only care whether the
occurrence duration is longer than some threshold and if yes, we do not need its ex-
act value. If we know δ, we can classify a segment occurrence as delayed as soon the
time interval passed since the occurrence started is greater than δ, i.e., tnow − ta > δ.

blq

Time

idle (b3
0)

busy (b3
0)

b3
0c:b4

0s

busy (b4
0)

idle (b4
0)

Resource b3
0

Resource b4
0

Queue b3
0c:b4

0s

Figure 8.23: MDC view for segment (b3
0s ,b4

0s).

320 Multi-Dimensional Performance Analysis

As a result, by applying these approaches together, we can detect blockage instances
in segments whose first process step is not diverting.

We implemented these approaches in the MDPSM. For that, it obtains the next
activity from the P-proclet and compares the ongoing occurrence duration with some
threshold δ, computed for each segment using previously observed segment occur-
rence durations. The MDPSM visualizes the ongoing segment in grey if its duration
is currently equal to or less than δ, and in pink otherwise. For the segments started
by diverting steps, no ongoing occurrences are shown. Such a PS-P is shown in Fig-
ure 8.24 for time t1. In this spectrum,

• the fully observed segment occurrences are shown in blue,
• the ongoing segment occurrences are shown in grey if they are not classified as

slow (yet), and in pink otherwise.

This PS-P shows that many ongoing (pink) occurrences already form blockage
instances. Thus, all blockage instances in Z1 except bl12 can be already detected at t1.
The missing blockage instance bl12 in segment (b3

0s,b4
0s) does not contain any ongoing

occurrences because process step b3
0 is diverting, so the next process step cannot be

estimated using our approach (it can be either b4
0 or b3

1). Nevertheless, the blockage
propagation chain, consisting of links between bl1. . .bl11, can be already discovered.

So we concluded that during an ongoing blockage propagation chain develop-
ment, the chain or its part can be detected before its development completes, and
the initial segments can be (at least partially) localized. In our example, an engineer
could be sent for the completion of the propagation chain discovery on-site, to start
the investigation at the location bl11, and undertake correcting actions.

8.4.5 Analysis Using Real Datasets

Our performance spectrum-based methods, gradually developed over the project span
and proposed in this thesis, were extensively evaluated at Vanderlande. Respectively,
process model-unaware analysis was evaluated using the PSM [46] on the data of a
large European airport BHS (see Section 3.5) at the beginning of the project. After-
ward, the concept of the analysis based on an integrated performance spectrum and
process model gradually evolved. For its evaluation, an internal software tool was
developed by Vanderlande. They used as input (1) our PSM code, and (2) the event
data processing framework that we developed using Scala parallel collections2 and
Apache Spark3 for

• pre-processing MHS event data,
• extracting event log and event tables from large event datasets, and

2https://docs.scala-lang.org/overviews/parallel-collections/overview.html
3https://spark.apache.org/

https://docs.scala-lang.org/overviews/parallel-collections/overview.html

8.4 Evaluation 321

• advanced filtering on the level of events, event attributes, and traces.

Note, this framework is not open-sourced due to the presence of information about
Vanderlande’s internal data structures and other confidential information in its code.

Further, this tool was used for evaluation. For that, multiple sessions of perfor-
mance analysis for different MHSs were accomplished by Vanderlande’s process engi-
neers. The evaluation showed that:

1. the tool allowed to identify scenarios and root causes that the other tool used
at Vanderlande could not reveal,

bl1

bl2

bl3

bl4

bl5

bl6

bl7

bl8

bl9

bl10

bl11

bl12

Time

a1
4s:a2

4s

a2
3s:a2

4s

a2
2s:a2

3s

a2
4s:a3

4s

a3
4s:a4

4s

a4
4s:a5

4s

a5
4s:a6

4s

a6
4s:xs

xs:a7
4s

a7
4s:s1

0s

s1
7s:b1

0s

b3
0s:b4

0s

b4
0s:b5

0s

Control-flow

t1

Figure 8.24: PS-P with estimated ongoing segments at time t1.

322 Multi-Dimensional Performance Analysis

2. the learning curve for process engineers was shallow since a lot of domain
knowledge was already incorporated in the tool, and the performance spectrum
was easy to read and interpret, and

3. the resulting tool made it much easier to do the analysis than the model-unaware
performance spectrum-based approach of Chapter 3.

Next, we summarize the evaluation results.

8.4.6 Evaluation Results

During the evaluation, RQ-6.1 and RQ-6.2 were considered as the sub-questions of
RQ-6. The method for multi-dimensional performance analysis (RQ-6.2) extensively
uses the performance spectra of the process, queue, and resource dimensions of PQR-
systems, so RQ-6.1 was effectively evaluated within the evaluation of RQ-6.2, i.e., by
addressing EvalAQ-1.

The tool we implemented could clearly demonstrate how to relate the elements
of the PQR-system to the corresponding performance spectrum, and vice versa (RQ-
6.1). While the PS-P was used to detect undesirable performance patterns instances,
such as high load and blockages, the spectra of the queue and resource dimensions
showed what behavior caused it in the queue or resource dimension. Last but not
least, the synchronization among the transitions of different PQR-system proclets
could be seen in the performance spectra when they were arranged in an MDC view.
Such views helped to understand the full dynamics related to a PS-P segment.

The method for multi-dimensional performance analysis (RQ-6.2) was evaluated
with two different use cases: using a synthetic dataset with our own scenario and
tool [54], and on the use cases of analysis of real MHSs, using a software tool imple-
mented by Vanderlande. These evaluations showed the following.

• Analysis could be done manually, without any automated pattern detection ca-
pabilities.

• The method allowed us to discover propagation chains of blockage and high
load instances, and explain their root causes in the queue and resource dimen-
sions.

• Integration of performance spectra and PQR-systems:

– helped to interpret performance segments and the process steps compris-
ing them,

– allowed to quickly sort segments according to the control flow,
– allowed to interpret segment occurrences durations by referring to the

minimum service time of resources, and minimum waiting time of queues,
– helped identify segments, related to analysis questions, among many other

segments,
– allowed to not refer to the MFD during analysis, and

8.5 Chapter Summary 323

– minimized the need for the involvement of domain experts.

These capabilities overcame all the limitations of performance spectrum-based anal-
ysis, considered in Section 8.2, and the main limitation of [77], i.e., incapability of
RCA. Additionally,

• the integrated spectra and PQR-system enabled the discovery of propagation
chains without relating to exact time boundaries of the detected pattern in-
stances,

• applicability of manual pattern detection allowed fast adoption without the
need for automatic pattern detection,

• and the presence of a process model (PQR-system) allowed for benefits of gen-
eralized conformance checking, i.e., the use of complete event tables instead of
incomplete.

As a result, the remaining limitations of [77, 78] considered in Section 8.2 were
addressed as well. We conclude that EvalAQ-1 was answered.

Last but not least, evaluation in real-time settings showed that the method is po-
tentially applicable for monitoring (EvalAQ-2) if techniques for predicting the next
activity and timestamp are in place.

In the following, we consider the limitations of the method and summarize this
chapter.

8.5 Chapter Summary

In this chapter, we addressed the problem of process performance RCA. For that, we
first considered the state-of-the-art approaches and discuss their limitation. Then, we
formulated a general research question RQ-6 about relating performance spectra and
the process, queue, and resource proclets of PQR-systems. To answer it, we divide
this question into two sub-questions. The first one (RQ-6.1) addresses the problem
of performance description of the queue and resource dimensions using performance
spectra. The second one (RQ-6.2) addresses the problem of RCA of systems with
shared resources and queues.

For answering RQ-6.1, we defined the event logs of queues and resources required
for computing corresponding performance spectra PS-Q and PS-R. We discussed what
kind of information can be inferred from these spectra, and what performance pat-
terns are of interest there. Additionally, we considered how synchronization among
the P-, Q- and R-proclets of PQR-systems allows for grouping the segments of PS-Q
and PS-R into MDC views that explain the behaviors of the resources and queues
related to two process steps forming a segment in a PS-P. We provided a running ex-
ample that showed how the performance of an individual case, observed in the PS-P,
can be explained through the corresponding PS-Q and PS-R.

324 Multi-Dimensional Performance Analysis

Further, for answering RQ-6.2, we proposed a method for multi-dimensional per-
formance analysis using PQR-systems and performance spectra, computed from com-
plete event tables. This method’s steps include

• performance pattern detection in performance spectra,
• discovery of propagation chains comprised from the detected performance pat-

tern instances,
• merge of smaller propagation chains if under certain conditions derived from

the spectra and PQR-systems, and
• RCA using MDC view obtained from the PS-Q and PS-R.

The final result of this method includes a detailed description of detected and dis-
covered undesirable performance scenarios (i.e., propagation chains) and their root
causes.

We evaluated these techniques using synthetic data with our software tool, and
Vanderlande evaluated it using the tool they implemented in-house. The evaluation
showed that

• the PS-Q and PS-R described the behaviors of queue and resources, and MDC
views described the behaviors of interest with respect to the corresponding seg-
ment of the PS-P.

• the analysis following the method’s steps allowed to identify the root causes of
undesirable performance scenarios,

• the analysis could be done manually by the analyst, and
• the method could be applied for monitoring in the real-time setting, but only

under certain conditions that we discuss in the following as limitations.

Additionally, we showed how this method overcame the discussed limitations of state-
of-the-art methods. As a result, it answers RQ-6.1 and RQ-6.2, and the general RQ-6
as well.

However, we identified the following limitations.

1. Resource availability unawareness. Not taking resource availability into account
can impede the accuracy of inferred root causes if a questionable resource was
unavailable.

2. Merging priority unawareness. Absence of information about priorities for merg-
ing resources in the PQR-system does not allow to discover when high load
instances trigger blockage instances.

3. Unobservability of ongoing segments. If the method is applied in the real-time
setting for monitoring, the end process step activity and time of still ongoing
segments are not observed yet. Although we suggested a simple method that
partially solves this problem, it is desirable to have in place the solutions for
predicting the next process step activity and time.

8.5 Chapter Summary 325

4. Manual analysis. Our method implies that the analyst manually does pattern
detection, propagation chain discovery, and RCA. It is an advantage if a quick
adoption or ad-hoc analysis of a system is required. However, automated detec-
tion, discovery, and RCA are highly desirable for regular method applications.

These limitations can be addressed in future work by extending the PQR-system with
information about resource availability and merge priority, adopting existing perfor-
mance pattern detection algorithms, and automating discovery and RCA steps.

Chapter 9
Predictive Performance
Monitoring

In this chapter, we address the problem of Predictive Performance Monitoring (PPM)
for systems with shared resources and queues. We categorize this general problem
into two categories: predicting PPIs for individual cases separately and predicting ag-
gregate PPIs for many cases together. The latter corresponds to AQ8 (predicting load
on a specific system part). We formulate an RQ addressing the problem of predicting
aggregate process performance indicators given an event table and PQR-system.

To answer it, we show how performance spectra can capture the dynamics of
systems and processes. We formulate our problem over performance spectra, thereby
solving the RQ in the part of capturing system dynamics. Afterward, we propose a
method for identifying relevant features for training predictive ML models, building
on the PQR-system and the performance analysis method of Chapter 8. We provide
evaluation results obtained using both synthetic and real datasets and discuss the
method limitations.

9.1 Motivation

In this section, we provide motivation for addressing the problem of PPM for sys-
tems with shared resources and queues, formulate our RQ, outline our method for
answering this RQ, and summarize evaluation results.

9.1.1 Predictive Performance Monitoring

Along with descriptive performance analysis, PPM is of crucial importance for process
support. It aims to alarm agents supporting a process, or operators supporting a

328 Predictive Performance Monitoring

system, about coming performance issues. To make predictions, historic data about
the process or system execution are usually used [32]. As a result, performance
issues can be potentially prevented, or at least mitigated timely. A classical example is
predicting Service Level Agreement (SLA) violations for ongoing cases. Whenever an
SLA violation for a case is predicted, a responsible manager is notified. This manager
can take countermeasures, for example, the problematic case can be scheduled to be
handled ahead of the others for preventing the SLA breach.

In MHSs, TSU mishandling can be predicted and prevented using the historic
information about handling TSUs in the system. For example, a situation when a bag
in a BHS is going to be late for a flight can be predicted and avoided by the correcting
actions of the system operators. This problem is formulated as AQ4 in Section 4.2. It
requires PPM on the case level.

However, PPM is not restricted to the case level. In systems with shared resources
and queues, multiple cases, co-located in the same system queue, can be delayed to-
gether when the corresponding conveyor stops, or cases in different queues can be
delayed due to competing for the same system resource. In MHSs, the former leads
to congestion, and the latter leads to longer waiting times for such a resource for
multiple cases. As a result, the corresponding TSUs can be mishandled. If informa-
tion about coming congestion or a longer waiting time is available in advance, such
situations can be prevented, or timely mitigated. That is, PPM on the system level is
required for that.

Let us consider a system-level PPM problem example for the BHS fragment shown
in Figure 9.1(a). In this system, baggage enters the system at the check-in islands and
travels via the Links onto the preliminary sorting loops P1 and P2. On these loops,
each bag must be screened for prohibited items by the scanners for obtaining clear-
ance and proceeding to its destination. The availability of these scanners is critical for
the overall system performance. Whenever a bag cannot be diverted toward them,
it starts recirculating on the loop, thereby reducing its free capacity. As a result, it
becomes more difficult for the other bags to join this loop, including bags leaving the
scanners. Travel time to destination increases, and bags can be late for the flight.
In the worst-case scenario, the situation can deteriorate fast and cause the sorter to
halt, causing even longer delays for many bags. Potentially, such situations can be
prevented by predicting load peaks at location S1 (see Figure 9.1(a)) to reduce the
incoming baggage flow coming from the check-in areas timely.

We can formulate the following problem for this example. Let a PPI that shows
load at S1 (e.g., a number of bags within a 30-second interval), and a prediction
horizon tph defining in what time from now we want to predict load at S1. For that,

• recent historic data about the load on check-in counters can be used to capture
the recent states at check-in areas, and

9.1 Motivation 329

To
 so

rtin
g lo

o
p

s F1
-F2

Check-in islands

Links

P2
P1

To sorting loops G1-G2

ScannersPPI?
(future) S1

Prediction horizon tph

TimetnowPast

Future

tnow+tph

Time
Historic event data

PPI

(a)

(b)

Figure 9.1: PPM problem example: predicting load on the scanners at location S1 using historic
event data recorded from the check-in islands.

• historic data about the system execution for past weeks or months can be used
to learn a model for estimating (predicting) future load at S1 within tph.

Figure 9.1(b) illustrates this problem:

• historic data are available till now (tnow),
• historic PPI values are also available till tnow,
• a predictive model can be learned from historic information about dependencies

between historic data and future PPI values, and
• future value of the PPI at time tnow+tph is estimated (predicted) using the recent

historic data as input.

This problem addresses predicting aggregate PPIs, i.e., PPIs describing the perfor-
mance of many cases together co-located in a particular part of a system or process
(system-level PPM), i.e., it addresses AQ8 (see Section 4.2).

In the MHS domain, PPM on both levels is actual, as AQ4 and AQ8 prove. How-
ever, in which order should they be approached, assuming there are no reliably work-
ing techniques yet? To decide, we consider two factors:

1. feasibility of addressing each problem in this thesis scope,
2. impact of solving each problem on improving the overall system performance.

330 Predictive Performance Monitoring

Feasibility. How feasible to target predicting the performance of individual TSUs? To
estimate it, let us reconsider the running example of Section 8.3. In this example,
some bags in the BHS, shown in Figure 8.2, could not make it to the flight due to
blockage instances in the system. The corresponding performance spectrum is shown
in Figure 9.2, which shows that, for example, bag pid2 was delayed by blockage
instance bl4 and could not make it to the flight. Potentially, case-level PPM could help
to avoid this situation.

a1s:bs

a2s:bs

bs:cs

cs:d2s

cs:d1s

o1 o2

bl1

bl2

bl3

bl4

bl5

hl1

hl2

hl3

hl4

hl5

hl0

pid2

pid1

Figure 9.2: In the PS-P with detected pattern instances, bag pid1 could make it to the destina-
tion d2S , while bag pid2 was delayed by blockage instance bl4.

Let us consider the handling of bags pid1 and pid2 in Figure 9.2 in more detail.
While pid1 could make it to the final destination without delays, pid2 was delayed by
bl4. However, if bl4 emerged a bit earlier, pid1 would not make it to the flight as well.
Alternatively, if resource b merged pid2 first, and pid1 afterward, pid2 would not be
delayed, while pid1 would be late for the flight. That is, even such subtle things are
the factors that can dramatically change the outcome of an individual case. In real
large systems, the number of such factors is enormous. It makes it hard to consider
all of them for providing reliable predictions on the case level.

In contrast, factors affecting the performance of many cases together are more
“stable”. For example, bl4 would have happened disregarding whether pid1,pid2,
or both formed it. Additionally, our observations about the propagation of high load
and blockage (see Chapter 8) showed how the performance of many cases together in
past affects the performance of many cases together in the future. It already lays some
foundation for reasoning about predicting the future performance of many collocated
cases, i.e., for system-level PPM.

9.1 Motivation 331

Impact. Case-level PPM allows for correcting actions per TSU. However, the capacity
of the system operators for preventing actions per TSU is limited. As a result, only the
performance of a limited number of TSUs, whose impact on the system performance
is also limited, can be improved. In contrast, predicting performance issues for many
TSUs would allow for correcting the situation for many TSUs simultaneously. As
a result, issues with a higher impact on the overall system performance would be
prevented.

All things considered, we focus on system-level PPM in this thesis, i.e., on AQ8.
Next, we consider a state-of-the-art approach we used as a baseline, and we refer
to the literature review in Chapter 5 for a detailed discussion of other related ap-
proaches.

9.1.2 Data-Driven Feature Identification

After an extensive literature search, we identified a state-of-the-art approach [35]
of PPM for processes with shared limited resources, such as systems with shared re-
sources and queues we consider in this thesis. It allows encoding inter-case features,
i.e., features that capture the interplay of multiple ongoing cases that are being exe-
cuted concurrently, for training an ML model for predicting a chosen PPI on the case
level. Additionally, intra-case features, capturing the properties of each individual
case, are used for the model training.

In [35], inter-case feature identification is data-driven, i.e., it requires no domain
knowledge about the process. For that, concurrently executed cases of interest are
automatically categorized and grouped by their temporal and control-flow proximity.
Proximity assumes competing for the same limited resources, i.e., only the cases in
the same category assumably interplay. For temporal proximity, the city distance and
snapshot metric are used. The former considers the beginning of trace prefixes, and
the latter considers their endpoints. The control-flow proximity uses edit distance
between trace prefixes. Afterward, various properties of these categories, such as
the number of cases in a category, are used as inter-case features describing the case
interplay. This data-driven approach extends a knowledge-driven approach [173]
that uses domain knowledge about a process for categorization. Intra-case features
are extracted from the information about the recent history of a trace prefix. The
resulting feature set contains both inter- and intra-case features. It can be used for
training an ML model of a chosen architecture.

Although this approach is designed for the case-level PPM, it can be used for
system-level PPM by aggregating predictions for multiple concurrently executed cases,
relevant to a target PPI. However, considering its application for PPM of systems with
shared resources and queues, we identified important drawbacks of inter-case feature
selection based on the suggested proximity metrics. To show that, we introduce an
example of a simple BHS, and several trace prefixes first.

332 Predictive Performance Monitoring

start time prefix 〈a,b,c〉 〈e,b,c〉 〈a,b, f 〉 〈e,b, f 〉
0 〈a,b,c〉 - 1,1 1,0 2,1
1 〈e,b,c〉 - 2,1 1,0
0 〈a,b, f 〉 - 1,1
1 〈e,b, f 〉 -

Table 9.1: Trace prefix proximity.

This BHS is shown in Figure 9.3. It has a main flow (a,b), (b,c), (c,d) going from
check-in counter a toward exit d , an additional incoming conveyor (e,b) (connecting
check-in counter e), and a sorting loop s connected via (b, f) and (g ,d). The figure
also shows the minimum travel time for each conveyor, and loop s. The target PPI is
defined as a time to complete for each case.

2 min 1 min

5 min

a b 1 minc d

e

f

s

g

Figure 9.3: Simplified MFD of a BHS showing two possible paths from check-in counters a and
e toward exit d .

Let us consider four trace prefixes that just reached locations c or f at time t =
2min. They are shown in column prefixes of Table 9.1. Each one of them has the same
snapshot metric value because they reached c or f at the same time t . It is usually
the case for PPM settings because a prediction is made at a particular moment in
time, so all active cases have close snapshot metric values. However, the city distance
between their possible pairs is different because these traces started at different times
(see column start time of Table 9.1). The remaining columns show the pairs of the
simplified city and edit distances between the prefixes.

Using these values, we identify two categories of prefixes that are close to each
other with respect to those metrics:

1. {〈a,b,c〉,〈a,b, f 〉}, and
2. {〈e,b,c〉,〈e,b, f 〉}.

So, these categories imply that the cases in each group compete for the same shared
resources. However, the system MFD in Figure 9.3 shows that cases with prefixes
〈a,b,c〉 and 〈e,b,c〉 share the same conveyor (b,c) and compete for the same resource
c, while prefixes 〈a,b, f 〉 and 〈e,b, f 〉 share (b, f) and compete for another resource f .
So, the correct categories are

9.1 Motivation 333

1. {〈a,b,c〉,〈e,b,c〉}, and
2. {〈a,b, f 〉,〈e,b, f 〉}.

The chosen metrics do not work for our example.
Moreover, it is not enough to encode only features of these categories because:

• the merge time at f depends on the current load and baggage spatial configu-
ration on s, and

• the merge time at b depends on the current load on (b,c).

For example, if sorter s is full, waiting for merging at f can take minutes. In real
MHSs, a greater number of dependencies usually exists among the system resources
and conveyors.

To summarize, we identify the following drawbacks of the data-driven inter-case
feature encoding for MHSs:

1. trace prefixes do not necessarily capture information about resources to com-
pete for in near future,

2. start-time proximity does not necessarily capture any information related to the
case interplay, and

3. the load in different parts of a process/system, that is not reached yet by the
prefixes, can significantly affect target PPIs.

All things considered, we conclude that there is still a knowledge gap in the prob-
lem of inter-case feature encoding for PPM of systems with shared resources and
queues. A method, bridging this gap, does not necessarily have to be data-driven.
Instead, a knowledge-driven approach can address this problem, considering a given
process model as the source of missing domain knowledge.

Next, we formulate the research question of this chapter, addressing the identified
knowledge gap.

9.1.3 Research Questions

Before we formulate the corresponding RQ, we recap the thesis architecture. Fig-
ure 9.4 shows that this chapter addresses the final RQ of the thesis. As a result, all
previously proposed models and methods are available for building on them. Thus,
we can use

1. a complete and correct event table (see Chapter 7) as given event data, and
2. a PQR-system (see Chapter 6) as a given process model.

The former allows us to overcome the problem of MHS event data incompleteness
(see Section 7.3.2), and the latter provides some domain knowledge for potential
feature selection improvement. The RQ for this chapter reads as follows.

334 Predictive Performance Monitoring

Process with
non-isolated

cases

Goals Descriptive performance
analysis

Predictive
performance
monitoring

RQ1 (Ch. 3)
Performance

spectrum

RQ4 (Ch. 7)
Generalized

conformance
checking

RQ6 (Ch.8)
Multi-dimensional

performance
analysis

RQ3 (Ch.6)
Modeling

RQ7 (Ch.9)
Predictive

performance
monitoring

Predictive
model,

predictions

PQR-system

Analysis results
and outliers

Performance
spectrum

Event log/
table

Data/information flows

Knowledge flows

Analyst,
operator

RQ2 (Ch.4)
Systems with

shared resources
and queues

RQ5 (Ch. 7)
Inferring missing

events

Trace alignment
& outliers

Improvements,
preventive

actions*

Data preparation,
process modeling and
conformance checking

Modeling
concepts

M
odel

im
provem

ents

Process model flows

* Outside the thesis scope
Iterations

Figure 9.4: Thesis architecture.

• RQ-7. Given a PQR-system, a complete event table, an aggregate process perfor-
mance indicator, and a prediction horizon, how to predict this indicator so that
both its gradual and sudden changes are predicted?

Interestingly, by adding domain knowledge (PQR-system) to its input, we build to
some extent on the previous version of [35], i.e., the knowledge-driven inter-case
feature encoding method of [173].

9.1 Motivation 335

9.1.4 Method Outline and Evaluation Results

In this section, we summarize the problem formulation for addressing RQ-7, method
outline, and evaluation results.

In RQ-7, an event table is considered as input event data. However, formulat-
ing the problem for solving RQ-7 over an event table would effectively ignore all
the results of Chapters 3 and 8, that provided numerous insights about dynamics of
systems with shared resources and queues, and the technique for capturing such dy-
namics (i.e.,, performance spectra). To avoid it, we consider how the outcome of
these chapters can contribute to answering RQ-7. For that, we use an analogy with
vehicle traffic to explain the intuition behind capturing system dynamics by perfor-
mance spectra, in Section 9.2.1. Afterward, we consider a performance spectrum of a
real BHS to explain the same for the MHS domain in Section 9.2.2. Finally, we formu-
late the problem over a multi-channel performance spectrum, and provide problem
instance examples, in Section 9.2.3.

To solve the problem formulated in Section 9.2, we propose our method in Sec-
tion 9.3. It takes a PQR-system, target PPI, prediction horizon, and multi-dimensional
performance spectrum as input, to obtain an ML model for predicting the PPI. In a nut-
shell, this method uses the sliding window technique over the performance spectrum
to extract a feature set. To apply this technique, parameters to extract the dependent
variable and feature values in each window are defined first. We call them the target
and historic spectrum respectively. The parameters of the former are defined by the
analyst. The parameters of the latter are identified using:

• information about load and blockage propagation in the P-proclet of the given
PQR-system, learned in Chapter 8, and

• temporal parameters of the Q- and R-proclets of the given PQR-system,

with respect to the given prediction horizon.
After obtaining the feature set, an ML model is learned, and its metrics are evalu-

ated. Multiple iterations over the method steps may be required if the model metrics
do not show the required prediction accuracy.

We evaluated our method with both synthetic and real datasets for two problem
instances, defined in Section 9.2.4. We used the method in [35] as a baseline. Ad-
ditionally, we introduced a naive baseline for the problem instance that could not be
solved by [35]. For all methods, we learned linear and non-linear models and mea-
sured the root mean squared and mean absolute error. Additionally, we did meticu-
lous residual diagnostics of obtained predictions.

The evaluation showed that our method outperformed the baseline methods with
respect to the error values. Additionally, residual diagnostics showed that our meth-
ods could predict peaks and dips well for the simpler problem instance, but consis-
tently underestimated their actual amplitude. We concluded that the obtained models

336 Predictive Performance Monitoring

were technically sound and the method was feasible. We identify and discuss its lim-
itations in Section 9.5.

9.2 Problem Formulation over Performance Spectra

In this section, we discuss why and how the problem of RQ-7 can be formulated over
performance spectra rather than over event tables. For that, we first provide some
intuition about it by the example of a well-known problem of predicting Estimated
Time to Destination (ETD) in navigation systems and link its solution with the per-
formance description available from performance spectra in Section 9.2.1. Then, we
show how performance spectra allow for inferring the near future performance by the
example of the scenario observed in the real MHS, and what information in perfor-
mance spectra is needed for that, in Section 9.2.2. Finally, we formulate RQ-7 over
performance spectra in Section 9.2.3.

9.2.1 Intuition behind Using Performance Spectrum for Capturing
System Dynamics

In this section, we discuss how performance spectra capture system dynamics re-
quired for both expressing and predicting future dynamics. For that, before diving
into the MHS domain, we provide some intuition by the example of a well-known
problem of predicting ETD in navigation systems like Google Maps. We discuss how
this problem can be converted to the problem of predicting aggregate PPIs over many
vehicles, which is similar to RQ-7, and which information is required to express and
predict such PPIs. Finally, we show how to obtain this information from performance
spectra.

Let us plan a route from the RWTH Aachen University to the Eindhoven University
of Technology using a popular navigation application. The result in Figure 9.5(a)
shows that the ETD is one hour and 27 minutes. It is rather slow for a distance
of 100 kilometers. However, the application explained the reason for the delay. In
Figure 9.5(a), one part of the route is highlighted in red, indicating congestion. If
we zoom in on the map (see Figure 9.5(b)), we see that near Echt “normal” speed
(shown in blue) is gradually changing to slower (orange), and finally to slow (red).
The same is shown again before the bridge across Maas near Roermond.

Let us reformulate this navigation problem in the terms of MHSs. Assuming the
movement of a vehicle from its starting point to its destination as a case, the naviga-
tion software predicts its time to complete (case-level prediction). For that, informa-
tion about the current situation on the roads, and historic information about it can be
used.

9.2 Problem Formulation over Performance Spectra 337

fast slower slow

(a) (b)

Figure 9.5: Route and the estimated time of arrival (a) based on information about congestion
(b).

Although we do not know the exact method that is used to predict ETD in this
application, we can hypothesize that it:

1. predicts dynamics on the route legs at different times from now, and
2. uses this information to estimate the vehicle speed on the entire route to com-

pute the ETD.

However, what forms the route leg dynamics? In highway traffic, most vehicles
usually drive at (almost) the same speed that is close to the speed limit, while some
outliers like slow-moving trucks or speeding cars are also possible. So, to estimate
traffic dynamics on a road leg, one most probably would describe the speed ranges of
driving cars with respect to the speed limit. For example, if 99% of cars before Echt
(blue zone) are driving at 120 kilometers per hour, and 1% are driving significantly
slower, the description of the dynamics is:

1. {(99%,normal), (1%,slower)},

Speed is classified into normal and slower with respect to the speed limit of 120 kilo-
meters per hour. In contrast, the description of dynamics near Echt (red zone) is:

1. {(100%,slow)}.

By predicting such dynamics along the route, the speed of most vehicles on a road
leg at a particular time can be derived, and ETD for the whole route can be inferred.
That is, the system-level predictions are used to predict a case-level metric.

However, what is required to make such predictions? Let us speculate on this
using our observations.

1. The total number of vehicles (load) on a route leg affects the speed on this and
the next legs (see the speed-density effect in Chapter 4).

338 Predictive Performance Monitoring

2. The speed of vehicles (except outliers) on a route leg affects the speed on the
preceding legs, e.g., slow traffic ahead delays traffic behind.

3. Additionally, information about traffic acceleration/deceleration helps infer fu-
ture situations, e.g., deceleration over some periods of time often indicates con-
gestion development.

4. Last but not least, the same information about traffic on incoming/outgoing
roads helps reason about the situations around junctions.

Let us now link this information to performance spectra. For that, let us consider
the combined spectrum of segment (a,b) in Figure 9.6, assuming it represents a one-
way single-lane road leg between junctions a and b with the speed limit of 120 km/h.
Each segment occurrence there represents a vehicle moving from point a to b, their

Time

normal slower slow very slow

Se
gm
en
t

a

b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 9.6: Combined performance spectrum shows the speed of vehicles in traffic on highway
leg (a,b).

start and end time describe the travel time and speed (assuming the distance between
a and b is known). The performance classes are defined as follows depending on
speed v in km/h:

• normal if v ≥ 120,
• slower if 60 ≤ v < 120,
• slower if 40 ≤ v < 60,
• very slow otherwise.

Each bin of the aggregate performance spectrum in Figure 9.6 shows the aggre-
gated performance for one-minute time intervals, i.e., the number of vehicles for each
performance class. For example, bin 11 describes 12 occurrences (vehicles) with class
very slow, 4 occurrences with class slower, and seven with class normal (see grouping
intersect in Chapter 3).

Now, we interpret this performance spectrum in the terms of road traffic. During
the time intervals of bins 1 and 2, we observe some stable load and normal speed.
Then, bins 2-6 show how traffic speed gradually decreases from normal to very slow.

9.2 Problem Formulation over Performance Spectra 339

Afterward, it slowly returns back to normal (bins 7-13). Additionally, we observe a
load peak during the intervals of bins 11-14.

That is, this spectrum describes:

• static load and speed per vehicle performance class for a bin time interval in a
single bin, and

• changes of speed and load per vehicle performance class over time in a series of
consequent bins.

By providing performance spectra for the legs comprising the whole route, and addi-
tionally incoming/outgoing road legs, we describe the information required for pre-
dicting aggregate PPI over traffic.

Last but not least, each spectrum bin contains information for inferring the speed
of most cars during a bin interval. For example, it is v ≥ 120 for bins 1-4 and 12-15,
and v < 40 for the others. Predicting how many cases have a particular class in a
spectrum bin allows for solving the initial problem of ETD prediction.

To summarize, we show a simple example of how the performance spectrum ex-
presses an aggregate PPI to be predicted and also captures the information for making
predictions. Next, we consider how the same is applicable to MHSs.

9.2.2 Capturing MHS Dynamics Using Performance Spectra

In this section, we consider a PPM problem example for a large BHS of a major Euro-
pean airport. We show how it can be formulated over the performance spectra, and
solved using the information in the real performance spectrum, computed from the
event data of this BHS.

Let us first introduce the BHS. For clarity, we consider only the fragment related to
the problem. It is a part of a preliminary sorting loop, shown in Figure 9.7. Baggage
comes from check-in counters and is screened in the X-ray screening machine s. It
is a mandatory step. Afterward, baggage that obtained clearance is diverted to the
aircraft (exits a1 −a3), while “unsafe” bags are dumped out of the system (not shown
in the MFD). If a bag, going from the check-in counters to s for screening, cannot
be diverted to s because the corresponding conveyor entry is unavailable (e.g., occu-
pied), it makes a full round on the sorter before another try. It is called recirculation.
Note, this MFD omits some details and aggregates pieces of equipment for simplicity.

In BHSs, recirculation is highly undesirable because recirculating bags waste equip-
ment capacity, and have greater chances of being late for the flight. So, its prediction
and prevention are the actual problems of BHS support. Let us formulate the corre-
sponding PPI as follows:

• the recirculation metric is the number of bags that started a recirculation round
within the interval of 15 seconds.

340 Predictive Performance Monitoring

to
 a

irc
ra

ft

X-
Ra

y
sc

re
en

in
g

z
s

a1
a2
a3

b1c1

b2c2
b3c3

check-in counters

Figure 9.7: MFD of a sorter loop fragment.

However, how to derive this metric from the performance spectrum? For that, we
consider the real example of a combined performance spectrum in Figure 9.8.

normal speed 2 times slower 3 times slower very slow

s:a2

a2:b2

b2:c2

a3:b3

b3:c3

s:a1

a1:b1

a1:z

Time

z2

z1

z5

z3

z6

z4

z7

z8

z9

average load

Figure 9.8: Performance dynamics at the locations of the sorter loop shown in Figure 9.7.

In this spectrum, each bin has a duration of 15 seconds, and the performance
classes are defined and color-coded as shown in the legend at the bottom. Addition-
ally,

• the real segment names are anonymized to not disclose sensitive information,
• some locations are aggregated into a single one for simplicity, so some segments

can have intersecting occurrence lines as if bags were overtaking each other, and

9.2 Problem Formulation over Performance Spectra 341

• the segment occurrences are computed from incomplete event data exactly as
they were recorded by the system, for avoiding any biases of log repair ap-
proaches.

As a result of the latter, the segments show some longer paths rather than paths
between two neighboring locations in the MFD. For example, segment (s, a2) “skips”
location a1 in between. However, in this system under certain conditions, each bag is
always registered at locations a1 and z. As a result, segment (a1, z) effectively shows
recirculation on the sorter. So, the total occurrence number of each bin of (a1, z) is
equal to the target PPI metric value.

Now, we consider what information in this spectrum can be used to predict this
PPI in near future. For that, we interpret the scenario described by this spectrum,
using “zones of interest”, surrounded by red boxes in Figure 9.8.

1. Initially, the sorter operates normally, i.e., incoming bags are screened at s, and
diverted at a2 or a3. Load is balanced between paths a2− c2 and a3− c3, while
a1− c1 is not used.

2. Suddenly, segment (b2,c2) gets blocked (spectrum zone z1). z1 is a blockage
instance (see Chapter 8).

3. z1 propagates backward in the control-flow direction to (a2,b2) and causes z2.
As a result, baggage cannot be anymore diverted at a2.

4. To ensure load balancing, the system engages path a1−c1 (non-zero load in z3).
5. However, soon this path becomes unavailable (zero load in z4).
6. As a result, the full baggage flow starts going via (a3,b3), causing doubled load

on this segment (z5). In Figure 9.8, the average load is shown by black dashed
lines.

7. Higher load from (a3,b3) propagates forward in the control-flow direction to
(b3,c3) (z6).

8. Apparently, higher load cannot be handled by (b3,c3) and causes another block-
age instance z7.

9. z7 propagates backward to (a3,b3) as z8.
10. As a result, diverting at locations a1−a3 is impossible, so all bags start recirculat-

ing. In z9 we can see how almost zero load showing recirculation dramatically
increases because of z8.

In this example, massive recirculation started in z9 can be predicted as soon as block-
age instance z7 starts. Potentially, it can be predicted even earlier if z7 was caused
by the propagation of other blockage instances originating farther in the system seg-
ments.

Our example shows how a peak of recirculation in a BHS can be explained, and
potentially predicted, using dynamics on related segments observed earlier. However,
it operates on rather coarse pieces of information in the spectrum (z1 − z9) because

342 Predictive Performance Monitoring

it is easier for human perception. At the same time, the spectrum provides quite
fine-grained information. For example,

• inside z1 speed of bags gradually drops over multiple bins,
• inside z3 load drops to zero not instantly but over multiple bins,
• blockage instance z7 was developing over multiple bins before triggering z8 and

z9.

We assume that such fine-grained information can be used for:

• deriving accurate PPI values,
• increasing prediction accuracy,
• allowing a more distant prediction horizon, and
• allowing us to predict even small changes in dynamics, in contrast to the dra-

matic change observed in z9.

As an example of the latter, a relatively small increase or decrease of the load on one
segment can lead to a small increase or decrease of the load on another segment,
allowing for accurate predictions of the corresponding PPIs.

To summarize, information in the aggregate performance spectrum bins allows
for more fine-grained information than, for example, performance patterns detected
in “regular” performance spectra. All things considered, we conclude that aggregate
performance spectra capture the information required for both:

• deriving aggregate PPIs over the performance of many cases, and
• capturing the system/process dynamics required to predict such PPIs.

In the next section, we formulate the problem for answering RQ-7 over aggregate
performance spectra instead of event tables.

9.2.3 Formulation of the Problem over Multi-Channel Performance
Spectrum

Now, we recap what a multi-channel performance spectrum is, and discuss why it
is a richer source of information about system/process dynamics than “just” an ag-
gregate (i.e., single-channel) spectrum. Afterward, we formulate the problem of this
chapter over multi-dimensional performance spectra, and introduce two instances of
this problem, to be used as examples and for the evaluation in the remainder of the
chapter.

System Dynamics in Multi-Channel Performance Spectra. A multi-channel per-
formance spectrum comprises one or multiple aggregate performance spectra (see
Definition 3.8), computed for the same segment series (segment Definition 3.5) and
time period, but for different channels (see Section 3.2.3). A channel defines:

9.2 Problem Formulation over Performance Spectra 343

• performance classifier C (see Definition 3.3),
• grouping g ∈ {start,pending,end} (see Definition 3.8),
• and period (bin length) p.

For example, the aggregate performance spectrum of the combined spectrum in Fig-
ure 9.6 can be seen as a multi-channel performance spectrum, define for segment se-
ries SEG = 〈(a,b)〉, some performance classifier C1, mapping occurrence duration into
classes {normal,slower,slow,veryslow}, and channel ch1 = (C1,pending,15 seconds). In
ch1, grouping pending means that each bin shows how many occurrences intersect it.
However, this information may be insufficient for obtaining accurate dynamic descrip-
tion, and/or inferring a required PPI. Alternatively, channels with grouping start and
end, showing how many occurrences start and end within each bin, can be defined
for adding the corresponding aggregate spectra to the initial multi-dimensional spec-
trum. This information can be used to capture the number of cases (e.g., vehicles or
bags) entering and leaving a segment (e.g., a road leg or BHS conveyor) respectively.

Additionally, other performance classifiers can be introduced for defining even
more channels. For example, another performance classifier C2, mapping each occur-
rence to the flight number, can be introduced for a performance spectrum of a BHS.
As a result, dynamics of any event attribute, available in the given event table, can be
captured in a single multi-channel performance spectrum uniformly as a tensor (see
Figure 3.6 in Section 3.2.3).

In the following, we explain how to formulate the problem over a multi-dimensional
performance spectrum.

Problem Formulation. In research question RQ-7, the following input is provided:

• a PQR-system S,
• a complete event table ET = (CNPQR,E ,#) obtained by applying generalized con-

formance checking,
• a prediction horizon tph ∈T, and
• a target PPI such that its value can be derived from ET = (CNPQR,E ,#).

To formulate the corresponding problem over a multi-dimensional performance spec-
trum instead of ET , we require that this spectrum is computed beforehand from ET ,
for example, by the analyst during the training phase and by software during the
predicting phase.

. For that, a start-only process event log LET
pid (see Definition 8.1) is derived first.

Then, the analyst defines what multi-dimensional performance spectrum is to be com-
puted from this log by defining:

• a segment series SEG,
• a channel sequence CH, and
• a time interval [s,e], s,e ∈T.

344 Predictive Performance Monitoring

As a result, multi-channel performance spectrum APSLET
pid

(SEG,CH , [s,e]) is computed

to replace the given event table in the input.
Along the dimensions of APSLET

cn
(SEG,CH , [s,e]), the problem is to predict the per-

formance characteristics for the segments of interest for a time-interval in the future,
which we call a target spectrum, based on the performance of relevant segments dur-
ing a recent time interval, which we call a historic spectrum. An estimate for the given
PPI is to be derived by aggregating the performance-related features of the target
spectrum.

Using the sliding window technique [55], we assume a time window for the bins
of APSLET

cn
(SEG,CH , [s,e]). In this window, we introduce bin indices such that index 0

points to a bin corresponding to time now, bins with negative indices correspond to
the observed spectrum in past, while bins with indices > 0 correspond to unobserved
yet bins in the future. Then, a target spectrum is specified by

• a segment series SEGt =⊆ SEG,
• a bin interval [st,et], where the boundaries et > st > 0 define the offsets from the

current bin now (with index 0) to the right in the sliding window, and
• target channels CH t ⊆ CH.

That is, the target spectrum points to future bins. Index et defines the prediction
horizon tph.

A historic spectrum is specified by

• a segment series SEGh =⊆ SEG,
• a bin interval [sh,eh], where the boundaries sh < eh ≤ 0 define the offsets from

the current bin now to the left in the sliding window, and
• historic channels CHh ⊆ CH.

In contrast to the target spectrum, the historic spectrum point to historic bins in past.
In general, these spectra can be defined over different channels, i.e., it is possible that
CHh ∩CH t =;.

In Figure 9.9, the target and historic spectra are shown for a sliding window of
a single channel. Both spectra contain multiple segments and bins. The prediction
horizon tph is st, and the historic spectrum includes bins from now till sh. Similarly,
the target and historic spectra can be defined for the other channels.

As a result, the problem can be formulated as a regression problem, using the
historic and target spectra as the sources of independent and dependent variables
over a common time parameter T . It is formalized in Equation 9.1 as follows:

APSLET
cn

(SEGt,CH t, [st +T,et +T]) = ρ(APSLET
cn

(SEGh,CHh, [sh +T,eh +T]))+R, (9.1)

or APSLET
cn ,t (T) = ρ(APSLET

cn ,h(T))+R for short. Function ρ predicts the values of the
target spectrum, and R is a residual, i.e., the deviation between the observed and
predicted values.

9.2 Problem Formulation over Performance Spectra 345

… vh1
sh … vh1

eh vh1
now+1

… … … …

… vhn
sh … vhn

eh vhn
now+1

… vt1
now+1 vt1

ts … vt1
te

… … … …

… vtk
now+1 vtk

ts … vtk
te

sh eh=now 1 st et

Historic spectrum

Target spectrum

H
is

to
ry

 s
ta

rt

H
is

to
ry

 e
n

d

P
re

d
ic

ti
o

n
 h

o
ri

zo
n

Past FutureNow

SE
G

h
SEG

t

Time

Figure 9.9: Historic and target spectra “around” the current time of the sliding window.

To learn function ρ, we use the sliding window method [55] for selecting w sam-
ples (APSLET

cn ,h(Ti),APSLET
cn ,t(T)) of the historic and target spectrum for time T1, . . . ,Tw ,

and apply a ML technique to learn function ρ from these samples. By comparing
the actual values y = 〈APSLET

cn ,t(T1), . . . ,APSLET
cn ,t(Tw)〉 in the target spectrum with the

values predicted by the learned function ρ, y ′ = 〈ρ(APSLET
cn ,h(T1)), . . . ,ρ(APSLET

cn ,h(Tw))〉,
we can estimate the prediction error R in ρ by a function error(y, y ′) ∈R.

In general, the target spectrum does not contain the target PPI directly but con-
tains performance-related features sufficient to compute it. For that, we define the
following function:

ppi(T) = g (APSLET
cn

(SEGt,CH t, [st +T,et +T]))+ε, (9.2)

where error ε= ppi(T)−ppi′(T) and ppi′(T) is the predicted target PPI observed over
interval [st,et]. Next, we provide the instances of this problem, actual for the MHS
domain.

9.2.4 Problem Instance Examples

We now instantiate the generic problem formulation from Equation 9.1 for the con-
crete real-life performance prediction problems of a major European airport BHS. The
fragment of its simplified MFD is shown in Figure 9.10. We formulate the problem
instances in the terms of the MFD segments. As input, we assume an event log LET

pid,
recorded for case notion pid, containing all the segments of the MFD.

346 Predictive Performance Monitoring

A2
2

A2
4

A1
1

A2
1

A1
2

A1
3

A1
4

A2
3

B1
B2
B3
B4

L1

L2 C1 D1

E2

X1

X2
E1

S1 S2

C2 D2

C3 D3

C4 D4

To
 so

rtin
g lo

o
p

s F1
-F2

Check-in island 1
a1

1a1
2 a1

m
I1

Check-in island n

In

Links

P2
P1

an
1an

2 an
m

To sorting loops G1-G2

Scanners

Figure 9.10: Check-in and pre-sorting areas.

Problem Instance 1 (PrIn1). We first consider the bag handling process part from
checking in until security screening. Bags enter the system via one of many check-in
counters a1

1-am
n , and then move via conveyor belts to one of two pre-sorter loops P1,

P2 where each bag has to pass through one of the X-ray baggage screening machines,
e.g., entering via (E1,S1) and leaving via (S2, X1). For operational support, the main
concern is to keep the BHS performance steady at some desired level. In particular,
the workload in a processing step or system part may not exceed its capacity, as
this otherwise leads to long queues or stalling of the sorting loops. Here, workload
prediction is central for proactive management. One concrete problem PrIn1 is to
predict the load (in bags per minute) at the X-ray baggage screening machines on
tph = 4 minutes in advance for pre-sorter P1. In Figure 9.10, this load corresponds to
the load on segment SEGt ,PrIn1 = 〈(E1,S1)〉.

To express this problem in the terms of Equation 9.1, we define the target and his-
toric spectrum. First, to represent the load, we define a single performance spectrum
channel with

• a trivial performance classifier CPrIn1 to map each segment occurrence into the
same performance class c (as load does not distinguish different classes),

• a grouping start, and
• a bin with length 60 seconds,

i.e., the resulting set CHPrIn1 of the historic and target channels CHPrIn1 = 〈(CPrIn1 ,start,60)〉.
For event log LET

pid, the target spectrum for PrIn1 is

9.2 Problem Formulation over Performance Spectra 347

• PSPrIn1 (T) =APSLET
pid

(SEGt ,PrIn1 ,CHPrIn1 , [tph +T, tph +T]).

The predicted load is the sum of all its values, in bags per minute. Then we make
the following hypothesis: the load depends on the average load of the check-in coun-
ters in 1-3 minutes before now. To capture that, we include the check-in segments
to the historic spectrum: SEGh,PrIn1 = 〈(a1

1, I1), . . . , (am
1 , I1), . . . , (a1

n , In), . . . , (am
n , In)〉 and

time-interval [sh
PrIn1 ,eh

PrIn1] as [−3,−1]. This leads to the following regression prob-
lem derived from Equation 9.1:

PSPrIn1 (T) = ρPrIn1 (APSLET
pid

(SEGh,PrIn1 ,CHPrIn1 , [T −3,T −1]))+R. (9.3)

The target PPI is defined as ppiPrIn1
(T) = PSPrIn1 (T)1, where the index means the ag-

gregate of the only first performance class c of performance classifier CPrIn1 .

Problem Instance 2 (PrIn2). Another concern for the BHS operational support is
predicting the risk that baggage being late for a flight, so we now instantiate Equa-
tion 9.1 for this problem. The second part of the process in Figure 9.10 moves bags
from the screening machines to sorting loops F 1 and F 2 (exit the pre-sorters P1 and
P2 via A1

1-A4
2, B 1

1 -B 4
2). It may happen that, for instance, a bag on pre-sorter P1 that has

to go to F 1, cannot be diverted onto any of the conveyors (A1
i ,Bi) because they are

unavailable, e.g., due to high load on all (Ci ,Di). In this case, the bag starts looping
on P1 until it can be finally diverted successfully. Each round increases the bag esti-
mated time to destination test by the loop duration tP . If the new estimate t ′est = test +tp

exceeds the deadline when the bag has to arrive at its destination to reach the flight,
the bag is expected to be late and correcting actions, e.g., making the bag priority
higher, can be undertaken.

So, to predict such late bags, it is sufficient to predict extra re-circulation due
to the unavailability of diverts A1

1-A4
2. We formulate PrIn2 as the problem of pre-

dicting this re-circulation for P1. On P1, any bag traveling the segment (A1
1,L1) is

re-circulating (as it could not be diverted to F 1 or F 2), thus the segments of the
target spectrum are SEGt = 〈(A1

1,L1)〉. Selecting tph = 60 seconds, duration-based clas-
sifier CPrIn2 (whether t = tb − ta is in the 25%-quartile of the histogram H(a,b,L)), and
CHh,PrIn2 = 〈(CPrIn1 ,start,30), (CPrIn2 ,pending,30)〉, we make a hypothesis that the target
spectrum depends on the load and delays of SEGh,PrIn2 =

• 〈(S2, X1), (S2, X2), (A1
i ,Bi), (A2

i ,Bi), (Bi ,Ci), (Ci ,Di) | i = 1, . . . ,4〉
for two bins before now. We predict the target spectrum, defined for a channel set
CH t ,PrIn2 = 〈(CPrIn1 ,start,30)〉, PSPrIn2 (T) =APSL(SEGt ,PrIn2 ,CH t ,PrIn2 , [T +1,T +1]) as fol-
lows:

SPrIn2 (T) = ρPrIn2 (APSL(SEGh,PrIn2 ,CHh,PrIn2 , [T −2,T −1]))+R. (9.4)

The PPI is defined as ppiPrIn2
(T) =APSL(SEGt ,PrIn2 ,CH t ,PrIn2 , [T +1,T +1])1 +ε, i.e., we

select the channel with grouping start and the first performance class in CPrIn1 .

348 Predictive Performance Monitoring

Next, we propose our approach for identifying the target and historic spectrum for
a given problem instance.

9.3 Method for Predictive Performance Monitoring

In Section 9.8, we showed how the prediction of aggregate performance measures for
systems with shared resources and queues, answering RQ-7, can be expressed as a
generic regression problem over the multi-channel performance spectrum. Now, we
present our method for solving it. We start by providing the method overview.

9.3.1 Overview

The method input, intermediate/final results, and main steps are shown in Figure 9.11.
According to the problem formulation in Section 9.2.3, it takes as input:

1. a PQR-system S (the orange box in the diagram in Figure 9.11),
2. target PPI PPI t to be predicted (the grey box on the top),
3. prediction horizon tph (the grey box on the left-hand side), and
4. multi-channel performance spectrum PSmc (the blue box on the right-hand side).

The final result is the predictive model with metrics (the grey box at the bottom) to
be deployed for the PPM of the system or process.

In a nutshell, our method uses the sliding window technique over PSmc to extract
the values of features and dependent variables from the historic and target spectra in
each window position. For that, the method comprises the following steps.

1. Step 1. Define target spectrum parameters. First, the analyst defines which
channels, bins, and segments are required for deriving the value of PPI t from
PSmc. The output of this step is the target spectrum parameters (see Figure 9.9):

• target channels CH t,
• target segments SEGt, and
• a target bin interval [st,et].

2. Step 2. Define target spectrum parameters. In this step, the analyst defines
the same parameters for the historic spectrum. Potentially, an enormous number
of features can be derived from PSmc. A large number of features would lead
to a feature explosion problem, and an inability to obtain a model with the
required accuracy. So, the main challenge is to identify a historic spectrum
that includes only information relevant for predicting PPI t. Reasoning about
load and blockage propagation paths and speed, provided in Section 9.3.3, is
used to define such a spectrum. The output of this step is the historic spectrum
parameters (see Figure 9.9):

9.3 Method for Predictive Performance Monitoring 349

Multi-channel PS-P
PSmc

PQR-system S

Step 1. Define target
spectrum parameters

(Section 8.4.2)

Target spectrum
parameters

Step 2. Identify historic
spectrum parameters

(Section 8.4.4)

Historic spectrum
parameters

Step 3. Extract features and
dependent variables

(Section 8.4.5)

Feature set V

Step 4. Train predictive
model

(Section 8.4.6)

Model M and its
metrics

Prediction horizon tph

Is M
accurate?

PPIt

no

yes

Figure 9.11: Method for PPM.

• target channels CHh,
• target segments SEGh,
• and target bin interval [sh,eh].

350 Predictive Performance Monitoring

Note, that the choices of the channels and segments for the target and historic
spectra are independent, and completely different channels or segments can be
used. That is, it is possible that CH t ∩CHh =;, and SEGt ∩SEGh =;.

3. Step 3. Extract the values of features and dependent variables. After the tar-
get and historic spectra parameters are defined, the sliding window technique
can be applied. For each window, those parameters are used to instantiate the
target and historic spectra and extract their bin values as the feature and de-
pendent variable values. As a result, a feature set V is created.

4. Step 4. Train predictive model. Finally, set V can be divided into training and
test sets for training a predictive model M . The analyst chooses a desired model
architecture and hyper-parameters. Afterward, a standard ML pipeline is used
for training. If the resulting model metrics indicate an accurate model, M is the
final result. Otherwise, Steps 1-4 can be repeated to obtain a more accurate
model.

Next, we describe all the steps in more detail.

9.3.2 Step 1. Define Target Spectrum Parameters

The target PPI is given as input. However, we need to define

1. a target spectrum in the sliding window (see Figure 9.9) for obtaining the train-
ing and test sets for the model training, and

2. function g for the model evaluation and use (see Equation 9.2).

For defining a target spectrum, the analyst determines the following parameters
of the target spectrum in the sliding window:

1. target start and end indices st,et ∈N, st > et, st = tph for defining the target spec-
trum interval [st,et],

2. target segments SEGt ⊆ SEG, and
3. target channels CH t ⊆ CH.

Afterward, conversion function g is defined over the target spectrum and common
time parameter T . In general, the way of defining the target spectrum and function
g depends on the target PPI, as various PPIs require different information to be com-
puted. Nevertheless, the following guidelines can be used by the analyst.

1. Channels CH t and segments SEGt should be defined according to Occam’s razor
principle to minimize the amount of information to be predicted, i.e., the mini-
mal number of segments and channels with simplest classifiers are to be defined.
For example, if just one segment and one channel with a trivial (single-class)
classifier are sufficient to compute the target PPI, no extra segments or channels
should be included in the target spectrum.

9.3 Method for Predictive Performance Monitoring 351

a1 a2

b

c

d1 d2

Figure 9.12: BHS material flow diagram.

2. The duration of the bin interval [st,et] is to be chosen according to the system
dynamics in the target segments. For example, if a load peak can be reliably
detected within a time window of a particular length l , the length of [st,et]

should not be less than l . The exploitative analysis of PSmc can help discover
such characteristics if they are unknown beforehand.

3. Error ε should reflect the potentially achievable accuracy. That is, the informa-
tion needed to compute PPI t is either directly extraditable from the aggregate
performance spectrum, or ε should be large enough to take, for example, possi-
ble noise into account. For instance, if only the part of the bags passing through
some target segment segt is relevant to PPI t, the other bag occurrences in the
target spectrum (i.e., noise) can impede the accuracy of the PPI estimation.
The given PQR-system is referred to for exploring bag flows through the system
segments.

9.3.3 Origins of the Performance on Target Segments

In this section, we provide some intuition behind our approach for historic spectrum
identification (Step 2). It is based on our observations about high load and blockage
propagation in Chapter 8. In the following, we introduce a running example and
consider how knowledge about the propagation of load and blockages allows for
estimating performance along their propagation paths.

Running Example. Let us briefly recap the running example of Section 8.3, which we
use in this section as well. A toy BHS, moving baggage from check-in counters a1, a2

via merge unit b and diverting unit c toward exits d1,d2 is shown in Figure 9.12.
Despite the simplicity, this BHS has two “main” building blocks of MHSs — merge
and diverting units – and can demonstrate typical MHS behaviors well.

To compute its multi-channel performance spectrum, we introduce

352 Predictive Performance Monitoring

• a bin size p ∈T,
• a trivial performance classifier C1 that maps occurrences to the same perfor-

mance class normal speed,
• a performance classifier C2 that maps occurrences to either normal speed or slow

speed,
• a channel ch1 = (C1,start, p), and
• a channel ch2 = (C2,pending, p).

The performance spectra for ch1 and ch2 are shown in Figure 9.13(a) and Fig-
ure 9.13(b) respectively. They show the lines of occurrences for clarity but do not
show bins that we do not consider in this section for simplicity. Additionally, these
figures show detected high load instances hl0−hl5 and blockage instances bl1−bl5. We
refer to Section 8.3.1 and Section 8.3.4 (Figure 8.16) respectively for details about the
scenario which this spectrum is computed for, and the propagation chain discovered
in this spectrum.

To discuss how a historic spectrum can be identified, we choose a PPI showing how
many bags entered conveyor (bs ,cs) during time window p. We call this PPI segment
load. As the BHS is small, we choose prediction horizon tph = 0, i.e., we want to
predict the PPI for a time window that starts at time now.

Then, we define a target spectrum. We choose target segments SEGt = {(bs ,cs)},
and target channel CH t = {ch1} because the PPI can be derived from the total number
of occurrences in bins of (bs ,cs) in ch1 of the given multi-channel performance spec-
trum. The indices are st = et = 1 because (1) tph = p, and (2) the PPI time window is
p.

In the following, we consider sliding windows sw1 − sw3 over the spectrum in
Figure 9.13 to discuss where the load on SEGt comes from, and include its origins in
the historic spectrum.

Identifying Historic Segments Where Load Propagates From. We start by con-
sidering sliding window sw3 in Figure 9.13(a) first because it shows how high load
instances hl1 and hl2 propagate to the target segment as hl3, i.e., high load propaga-
tion that is already discussed in Section 8.3.4 in detail. In sw3, bins with indices −1,0

correspond to the observed spectrum till time now with respect to the sliding window,
and a bin with index 1 corresponds to the future spectrum on the given prediction
horizon. Bin 1 of (bs ,cs) in ch1 is the target spectrum. It shows that two occurrences
o8 and o9 start in this bin, so the PPI value is two bags.

However, which spectrum “zone” in past does this load originate from? We already
know that:

• high load propagates forward in the control-flow direction, and
• hl3 is the result of propagation of hl1 and hl2 (see propagation links link5 and

link6 in Figure 8.16).

9.3 Method for Predictive Performance Monitoring 353

In the spectrum, occurrences o8 and o9 in the target spectrum are of the same cases
(bags) as o6 and o7 in bin 0 of the observed spectrum in segments (a1s ,bs) and

a1s:bs

a2s:bs

bs:cs

cs:d2s

cs:d1s

bl1

bl2

bl4

bl5

hl1

hl2

hl4

hl5

hl0

(a)

bl3 hl3

0 1

sw1

0 1

sw2

-1 0 1

sw3

-1-1

o6

o7

o2

o1 o4

o5

o8

o9

o3

tnow tnow tnow

a1s:bs

a2s:bs

bs:cs

cs:d2s

cs:d1s

bl1

bl2

bl4

bl5

hl1

hl2

hl4

hl5

hl0

(b)

bl3 hl3

0 1

sw1

0 1

sw2

-1 0 1

sw3

-1-1

o3

tnow tnow tnow

Normal speed Slow speedTarget spectrum Historic spectrum

Figure 9.13: Sliding windows with target and historic spectra over channels ch1 (a) and ch2 (b).

354 Predictive Performance Monitoring

(a2s ,bs). That is, some “pieces” of hl1 and hl2 comprise a “piece” of hl3 because
they propagated in the control-flow direction via merge unit b to the target segment.
We conclude, that in case of high load on a target segment, high load propagation
rules can be used to determine the sources of high load in the observed spectrum,
to determine the corresponding historic segments. In our example, because load to
(bs ,cs) comes from (a1s ,bs) and (a2s ,bs), we define the historic spectrum parameters
as:

• SEGh = {(a1s ,bs), (a2s ,bs)},
• sh = eh = 0,

The time interval [sh,eh] includes just a single bin. We add one more bin to capture
the dynamics in case of delays, i.e., we define:

• sh =−1,
• eh = 0.

Note, we do not consider ch2 so far because it is not needed yet (i.e., in sw3) to
estimate the target spectrum.

Now, let us also consider the load that is not high load. Does it propagate in the
same way as high load? To understand it, we consider sliding window sw1 in Fig-
ure 9.13(a), where no high load instances are detected. The target and performance
spectra are defined according to the parameters above. In the target spectrum bin,
just one occurrence o3 starts, so the PPI value is one. It is the result of the propagation
of o2 from the historic spectrum bin 0 of segment (a2s ,bs). At the same time, bin 0 of
another historic segment (a1s ,bs) has no occurrences that start there.

So, the PPI value is two times less than in sw3 because the load on the historic
segment is also two times less. We conclude that non-high load propagates in the
same way as high load. As a result, our approach for high load propagation tracking
can be used for identifying where the load on a segment originates from.

Identifying Historic Segments Where Blockages Propagate From. Now, we con-
sider blockage instances in the target segment. What historic segments are needed
for predicting load when blockage instances occur on target segments? For that, we
consider sw2 in Figure 9.13(a), when blockage instances bl1 −bl5 are observed on all
the segments. The target bin has zero occurrences starting there, so the PPI value is
zero. However, the historic spectrum segments (a1s ,bs) and (a2s ,bs) have such occur-
rences. If a prediction were made using just information from these two segments,
the load would be most probably two since two occurrences start in bin 0 of these
segments. However, in reality bl1 −bl3 prevent this load from propagation to (bs ,cs).
So, blockage propagation should be additionally considered to enable more accurate
predictions.

As we discussed in Chapter 8, blockage propagates backward in the control flow
direction. That is, in our example, it propagates from the outgoing segments of (bs ,cs).

9.3 Method for Predictive Performance Monitoring 355

These are (cs ,d1s) and (cs ,d2s), where instances bl4 and bl5 are observed for bins −1,0

and 1 (see propagation links link3 and link4 in Figure 8.16). Thus, we additionally
include these segments in the historic spectrum:

• SEGh = {(a1s ,bs), (a2s ,bs), (cs ,d1s), (cs ,d2s)}.

However, zero occurrences start in the historic spectrum bins of these segments be-
cause occurrences comprising bl4 and bl5 intersect these bins but do not start within
them. To capture blockage-related information, we need another channel. In ch2 with
grouping pending, we count how many occurrences intersect a bin, while C2 captures
their speed class. As a result, bins −1,0 of (cs ,d1s) and (cs ,d2s) capture information
about bl4 and bl5. A predictive model can potentially use this information to infer that
a blockage is observed on the target segment as well, and predict the target spectrum
accurately.

Combining all the information in the historic spectrum of both channels, we cap-
ture both load and blockage propagation sources. However, in large systems, load
and blockages can propagate through many system segments. How to determine
what segments on the propagation paths are to be included in the historic spectrum?
In the following, we discuss how the given prediction horizon and PQR-system help
determine them.

Considering Prediction Horizon for Load Propagation. Over time, load and block-
ages can propagate through many segments. The longer is tph, the farther segments
affect the target spectrum. How to identify which ones should comprise the historic
spectrum? For that, the distance of load and blockage propagation within the predic-
tion horizon interval is needed to be estimated.

To have a longer propagation path in our example, let us choose a father (from
check-in counters a1, a2) segment (cs ,d2s) as a target one (see Figure 9.12), and a
longer prediction horizon t ′ph = 2p.

In a PQR-system, the minimum load propagation time through a particular control-
flow path in the P-proclet can be estimated using the minimum waiting and service
time of the queues and resources along this path, known from the Q- and R-proclets.
For example, let us consider how much time is required for the load comprised of
bag pid1 to reach cs from a2s . For that, we follow its fastest path throughout the
PQR-system of the BHS, shown in Figure 8.3.

1. Initially, pid1 is served by rid2 in the minimum service time t {rid1,rid2}
sR .

2. Afterward, pid1 waits in qid2 for the minimum waiting time t qid2
wQ .

3. When waiting is completed, rid3 picks pid1 up and serves it in t rid3
sR .

4. Finally, waiting in qid3 for t qid3
wQ is required to reach cs .

Indeed, the fastest total time t f = t {rid1,rid2}
sR + t qid2

wQ + t rid3
sR + t qid3

wQ is comprised by the
minimum service and waiting times of the resources and queues on the way.

356 Predictive Performance Monitoring

In this equation, time t {rid1,rid2}
sR + t qid2

wQ corresponds to the minimal occurrence du-

ration of (a2s ,bs), and t rid3
sR + t qid3

wQ corresponds to the minimal occurrence duration of
(bs ,cs). Let us assume that t f = t ′ph. In this case, load from (a2s ,bs) can reach the
target segment in t ′ph, so the historic spectrum should include (a2s ,bs). Similarly, we

include (a1s ,bs) because t qid1
wQ = t qid2

wQ , so load from (a1s ,bs) reaches (bs ,cs) in the same
time t ′ph.

Note, that only the fastest possible time can be estimated in this way. In reality, it
can take longer time in case of delays, i.e., a longer waiting and/or service time. To
consider “delayed load” as well, extra bins for earlier time periods, that are farther in
time from now, can be included in the historic spectrum.

An example of the resulting historic spectrum is shown in Figure 9.14 in sliding
window sw4, where:

• the historic spectrum includes two bins −1 and 0 of segments (a1s ,bs) and
(a2s ,bs),

• the target spectrum in segment (cs ,d2s) is in bins 2, according to t ′ph = 2p.

So far, we discussed how to determine segments whose load affects the target
spectrum within the prediction horizon. Next, we consider how to estimate blockage
propagation time.

Considering Prediction Horizon for Blockage Propagation.

-1 0

a1s:bs

a2s:bs

bs:cs

cs:d2s

cs:d1s

bl1

bl2

bl4

bl5

hl1

hl2

hl4

hl5

hl0

bl3 hl3

1

sw4

o10

o11

tnow

2

o12

Normal speedTarget spectrum Historic spectrum

Figure 9.14: Target and performance spectra in sliding windows sw4 of channel ch1.

9.3 Method for Predictive Performance Monitoring 357

Let us finally discuss the blockage propagation time. While load propagates as the
corresponding cases progress within the process or materials (bags) move through the
system, blockage propagates differently. In an MHS, when a conveyor gets blocked,
this applies to all the TSU on this conveyor instantly. Afterward, this blockage can
propagate to incoming conveyors at a moment when a TSU fails to be handed over
onto this conveyor. As a result,

• blockage propagation can be much faster than load propagation,
• propagation time depends on the presence of cases along the propagation path.

For example, in Figure 9.14 blockage instance bl3 starts when occurrence o12 could
not be handed over to already blocked (cs ,d2s).

To estimate blockage propagation time via a PS-P segment corresponding to a
resource with ridi and queue qid j , we introduce a coefficient k,0 < k ≤ 1. Using k, we

obtain the blockage propagation time as k(t ridi
sR + t

qid j

wQ). This time is always less than
or equal to the minimum load propagation time for the same segment.

So far, we provided some intuition of how to determine what segments and bins
comprise the historic segment. Next, we formulate sub-steps to determine them for
the given input.

9.3.4 Step 2. Identify Historic Spectrum Parameters

In this step, we identify a historic spectrum in a sliding window. It is defined by:

• historic channels CHh,
• bin interval [sh,eh],
• and historic segments SEGh.

Step 2.1. Identify Historic Channels and Bin Intervals. For our method, we use all
channels of the given spectrum, i.e.,

• CHh = CH.

Then, we compute the right border as an integer number of bin duration p in the
prediction horizon, i.e.,:

• eh = d tph

p e.
To capture dynamics in case of delays, we add an extra bin from the past, i.e.,

• sh = eh −2.

It allows for capturing information about occurrences if load propagation takes a
longer time. However, a smaller or greater number of bins can be used as well if
needed.

358 Predictive Performance Monitoring

Finally, we identify what segments are to be in SEGh, using the intuition provided
in the previous section. For that, we iterate over each target segment segt ∈ SEGt, and
identify historic segments where

1. load originates from, and
2. blockages originate from.

All the identified segments form the final historic segment set. In the following, we
consider these two sub-steps in more detail.

Step 2.2. Identify Segments Where Load Originates From. In this sub-step, we
identify a set of PS-P segments such that load propagates from each one of them to
SEGt within tph. For that, we consider possible control-flow paths in the P-proclet
that end at segt, and choose paths where segt is reachable within tph. To estimate the
time, we use the service and waiting time of the R- and Q-proclets that synchronize
with the transitions comprising the path. The first segment of such a path is a historic
segment. The definition of this set reads as follows.

Definition 9.1 (Set of load-related historic segments). Let

• PQR-system S = (N ,mν,C ,`C) (Definition 6.7),
• its P-proclet N0 = (P0,T0,F0,`0,Var0,colSet0,m0,arcExp0) ∈N (Definition 6.2),
• function pqrStr : T0 ×T0 →T that maps transitions ti , t j ∈ T0 to

– the minimum service time tsR of a R-proclet Nr ∈ N (Definition 6.6) if the
start and complete transitions tstart , tcomplete ∈ Tr synchronize with ti and t j

respectively, i.e., (ti , tstart), (t j , tcomplete) ∈C ,
– and to zero otherwise,

• function pqrWtq : T0 ×T0 →T that maps transitions ti , t j ∈ T0 to

– the minimum waiting time twQ of a Q-proclet Nq ∈N (Definition 6.5) if the
enqueue and dequeue transitions tenq, tdeq ∈ Tq synchronize with ti and t j

respectively, i.e., (ti , tenq), (t j , tdeq) ∈C ,
– and to zero otherwise.

• target segment SEGt, comprised by two transitions in T0,
• and prediction horizon tph ∈T.

The set of load-related historic segments is

• {(`0(t0),`0(t2)) | t0, t2 ∈ T0, and exists sequence σ= 〈t0, t1, t2, t3, . . . , t2n〉 of transitions
in T0 such that:

1. it includes at least five transitions required to comprise one historic and one
target segment, i.e., n ≥ 2

2. it describes a valid path in the P-proclet in the control-flow direction, i.e.,
∀0 ≤ j < 2n,∃p ∈ P0, (t j , p), (p, t j+1) ∈ F0,

9.3 Method for Predictive Performance Monitoring 359

3. no loops are possible in σ, i.e., ∀0 ≤ i < j ≤ 2n, ti 6= t j ,
4. the last and third transitions from the end form the target segment, i.e.,

(`0(t2n−2),`0(t2n)) = SEGt,
5. the total duration pathDur ∈ T of the resource service time (Definition 6.6)

and queue waiting time (Definition 6.5) on the path described by σ, excluding
its tail corresponding to the target segment, is on or beyond the prediction
horizon, i.e.,
pathDur =∑n−2

i=0 (pqrStr(t2i , t2i+1)+pqrWtq(t2i+1, t2i+2)) ≥ tph,
6. and pathDur, decreased by excluding the beginning of the path, corresponding

to segment (`0(t0),`0(t2)), is before the prediction horizon, i.e., pathDur −
pqrStr(t0, t1)−pqrWtq(t1, t2) < tph}.

We write SEGh
l for the set of load-related historic segments.

Step 2.3. Identify Segments Where Blockage Originates From. Now, we apply the
same reasoning as above, additionally considering that:

• blockages propagate backward in the control-flow direction,
• blockages can propagate faster than load, so we use some coefficient k to take

it into account.

As a result, we consider paths going backward in the control-flow direction, and
adjust the service and waiting time of the R- and Q-proclets using k. The definition
of such a set reads as follows.

Definition 9.2 (Set of blockage-related historic segments). Let

• PQR-system S = (N ,mν,C ,`C) (Definition 6.7),
• its P-proclet N0 = (P0,T0,F0,`0,Var0,colSet0,m0,arcExp0) ∈N (Definition 6.2),
• target segment SEGt, comprised by two transitions in T0,
• coefficient k ∈T,0 < k ≤ 1, describing blockage propagation speed in S,
• and prediction horizon tph ∈T.

The set of blockage-related historic segments is

• {(`0(t2),`0(t0)) | t0, t2 ∈ T0, and exists sequence σ= 〈t0, t1, t2, t3, . . . , t2n〉 of transitions
in T0 such that:

1. it includes at least five transitions required to comprise one historic and one
target segment, i.e., n ≥ 2

2. it describes a valid path in the P-proclet backward in the control-flow direc-
tion, i.e., ∀0 < j ≤ 2n,∃p ∈ P0, (t j , p), (p, t j−1) ∈ F0,

3. no loops are possible in σ, i.e., ∀0 ≤ i < j ≤ 2n, ti 6= t j ,
4. the last and third transitions from the end form the target segment, i.e.,

(`0(t2n),`0(t2n−2)) = SEGt,

360 Predictive Performance Monitoring

5. the total duration pathDur ∈T of the resource service time and queue waiting
time on the path described by σ, excluding its tail corresponding to the target
segment, is on or beyond the prediction horizon with respect to coefficient k,
i.e., pathDur = k

∑n−1
i=1 (pqrStr(t2i , t2i−1)+pqrWtq(t2i−1, t2i−2)) ≥ tph,

6. and pathDur, decreased by excluding the beginning of the path, corresponding
to segment (`0(t2),`0(t0)), is before the prediction horizon, i.e., pathDur −
pqrStr(t2, t1)−pqrWtq(t1, t0) < tph}.

We write SEGh
b for the set of blockage-related historic segments. The final target

segment set is SEGh = SEGh
l ∪SEGh

b .
Next, we describe feature extraction.

9.3.5 Step 3. Extract Feature and Dependent Variable Values

In this step, the standard ML pipeline is used for model training. The identified
parameters of the target and historic spectrum are used to instantiate these spectra
from the given multi-channel performance spectrum for various values of time tnow,
using the sliding window technique [55]. Figure 9.15 shows how the sliding window
goes from the spectrum beginning (bin s) toward its end (bin e).

Bins

Bins

Bins

Bins

s e

s e

s e

s e

Current sliding window Outside sliding window

Figure 9.15: Sliding window technique over a multi-channel performance spectrum.

For each sliding window and tnow, the values of these spectra instances are flat-
tened into a vector such that

9.3 Method for Predictive Performance Monitoring 361

• the values of the historic spectrum are feature values, and
• the values of the target spectrum are dependent variable values.

Let us consider a sliding window in Figure 9.16, where the historic spectrum param-
eters are:

• CHh = ch1,ch2,ch3,
• SEGh = seg1,seg3,
• sh =−1,
• eh = 0,

and the target spectrum parameters are:

• CHh = ch1,
• SEGh = seg2,
• st = 1,
• et = 1.

<1, 2> <5, 6>

<7, 8> <11, 12>

<13, 14> <17, 18>

Se
gm

en
ts

Bins-1 1

seg1 <3, 4>

<9, 10>

<15, 16>

seg2

seg3

0

Historic spectrum Target spectrum
Not historic or

target spectrum

Figure 9.16: Target and historic spectrum values in a sliding window.

To generate a vector of a training or test set, we iterate over the target spectrum
bins of each channel in CHh. The order does not matter, but it must be the same
for generating each vector of the test and training set. For ch1 whose bin values are
presented in the figure, the corresponding vector is

• 〈1,2,3,4,13,14,15,16〉.
In the same way, we add values from the other historic channels. Finally, we add the
values of the target spectrum. The resulting vector is

• 〈1,2,3,4,13,14,15,16, . . . ,23〉,

362 Predictive Performance Monitoring

where . . . stand for the values from channels ch2 and ch3, and 11,12 are the values of
the target spectrum. Next, the resulting vector set V is used for model training.

9.3.6 Step 4. Train Predictive Model

In this step, vector set V is used for learning a model. Note, our method does not
specify the model architecture and hyper-parameters, their selection is up to the an-
alyst. When a model M is obtained, a decision on the model accuracy is made. If it
is lower than required, more iterations of Steps 1-4 can be done to change the tar-
get/historic spectrum parameters, model architecture, or model hyper-parameters.
When the required accuracy is obtained, the model is ready for deployment.

Next, we discuss the evaluation of this method.

9.4 Evaluation

In this section, we discuss the evaluated our method on problem instances PrIn1 and
PrIn2 (see Section 9.2.4), using BHS synthetic and BHS data.

9.4.1 Experimental Setup

In the following, we give a brief overview of the scenarios and pipeline we used for
our experiments first and discuss the chosen baseline and tools for the pipeline setup
afterward.

Scenario Overview. Our approach allows us to extract a feature set and learn an ML
model for predicting a given PPI, using a multi-dimensional performance spectrum,
target PPI, and prediction horizon as input. In our pipeline for the evaluation, we
implemented the following steps.

• A preliminary Step 0 to compute a multi-channel performance spectrum from
a given event table (in the form of a CVS file). It was required because our
method takes a spectrum (not an event table) as input.

• Step 1 to define a target spectrum.
• Step 2 to define a historic spectrum.
• Step 3 to extract a feature set.
• Step 4 to learn a predictive ML model. We chose Logistic Regression (LR) and

Feed Forward (FF) Neural Network (NN) models for the evaluation with linear
and non-linear models.

The model itself, as well as its metrics, were the pipeline outcome.
Last but not least, we also took into account the problem of event data incom-

pleteness, considered in Chapter 7. Since the real BHS dataset had this problem, we

9.4 Evaluation 363

included an optional log repair sub-step in Step 0 to evaluate the effect of log repair
on the accuracy of the resulting models.

Baselines. For a baseline approach, we chose the state-of-the-art approach in [35],
allowing us to extract intra- and inter-case related features. As discussed in Sec-
tion 9.1.2, it only predicts case-level PPIs, so we adapted it for predicting aggregate
PPIs as follows.

1. We trained a model for predicting the time between last events of trace prefixes
that end with the occurrences of historic spectrum segments, and the starts of
target segments, using our LR and FF NN models of choice.

2. As a result, the obtained model predicted when each case would progress far
enough to reach the target segment.

3. Finally, we estimated future load by counting how many cases are predicted to
reach the target bin.

The latter could be done only for cases that eventually reached the target segments,
i.e., it assumed beforehand knowledge about the future paths of cases (bags). This
assumption held for historic data on the model training stage and for the mandatory
screening step (PrIn1) but did not hold for the prediction stage of the re-circulation
problem (PrIn2). As a result, this baseline was not applicable to problem instance
PrIn2. We integrated the source code, provided by the authors of [35], into our
pipeline, to be able to use the baseline and our method interchangeably.

Additionally, as a naive baseline, we chose the average value of dependent vari-
ables, observed in a time interval [sh,eh], corresponding to the historic spectrum. It
was needed to evaluate our results for PrIn2, where [35] could not be used.

In the following, we refer to the aforementioned methods as shown in Table 9.2.

Approach Identifier in text
Performance spectrum- and PQR-system-based (A1)
Data-driven inter-case feature encoding [35] (A2)

Naive (average value of the dependent variable) (A3)
Performance spectrum- and PQR-system-based with log repair (A4)

Table 9.2: Mapping PPM methods to their identifiers in text.

Implementation. To implement this pipeline, we

• extended the interactive ProM plug-in “Performance Spectrum Miner” (PSM) [46]
to support:

– multi-channel performance spectra, and
– the sliding window technique for feature extraction,

364 Predictive Performance Monitoring

• implemented the sliding window technique for feature extraction,
• integrated the implementation of [35] into our source code, and
• implemented a Python script for training models using the PyTorch ML frame-

work1.

The extended PSM:

1. computes a multi-channel performance spectrum according to a provided con-
figuration,

2. accepts the configuration of a target and historic spectra, and
3. exports a feature set into a CSV file, where each column corresponds to a bin

value of the historic or target spectrum, and each row corresponds to a feature
vector for a sliding window.

Additionally, used our implementation of the log repair method of Chapter 7.
The resulting dataset set could be imported by the Pythons script to train a model.

To measure the errors, we computed Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and R squared (which is meaningful for linear models only). Addition-
ally, we did meticulous residual diagnostics of predictions for test sets. To run the
experiments, we used a laptop for work with the PSM, and a dedicated server with
40 CPUs, six GPUs, and 400 GB RAM for model training.

Next, we discuss our evaluation results.

9.4.2 Experimental Results

In this section, we first consider results obtained using the synthetic logs recorded by
the BHS simulation model and then consider results obtained from the real dataset.

9.4.2.1 Evaluation Using Synthetic Data

To generate an event log for addressing PrIn1, we re-used our simulation model of
a simple BHS (see Section 6.7), comprising a typical BHS architecture and layout:
conveyors, a sorting loop, a baggage screening machine, diverting and merge units.
As an arrival process, a check-in scenario with normally distributed distances between
bags was replayed to generate an event log with 134.000 events and 11.518 cases for
84 consecutive operating hours. The events were recorded when bags passed through
various locations in the system. The resulting feature set had 15 feature variables and
15.000 samples1, on which we applied approaches (A1), (A2), and (A3). Note, (A4)
was not applied since no data incompleteness was presented in the synthetic logs.
The first row of Table 9.3 (a) shows the resulting measures, where:

1the synthetic event log, ProM plugin, PyTorch script and source code implementing the baseline ap-
proach of [35] are available at https://github.com/processmining-in-logistics/psm/tree/ppm

https://github.com/processmining-in-logistics/psm/tree/ppm

9.4 Evaluation 365

• the LR and FF NN models trained using (A1) had two times smaller errors RMSE
and MAE than the baseline method (A2),

• the LR model trained using (A1) had a greater and closer to 1.0 R squared
measure than the LR model of the baseline approach (A2), i.e., it explained
significantly more variable variations, and

• the naive baseline method had large RMSE and MAE.

Experiment Approach Model R squared RMSE MAE

(a)
BHS simulation model

PrIn1

(A1) LR 0.82 12.1 8.2
(A1) FF NN 0.84∗ 11.6 7.7
(A2) LR 0.35 23.2 15.3
(A2) FF NN 0.46∗ 21.2 16.2
(A3) - - 35.8 23.2

(b)
Real BHS

PrIn1

(A1) LR 0.74 7.0 5.0
(A1) FF NN 0.75∗ 6.9 4.8
(A2) LR 0.38 10.8 7.9
(A2) FF NN 0.69∗ 7.6 5.3
(A3) - - 11.0 7.9
(A4) LR 0.75∗ 6.2 4.1

(c)
Real BHS

PrIn2

(A1) LR 0.05 3.0 1.8
(A1) FF NN 0.45∗ 2.4 1.3
(A3) - - 3.0 1.7
(A4) FF NN 0.45∗ 2.4 1.3

Table 9.3: Model error measures, where RMSE and MAE are in % of max. load for (a) and
(b), and re-circulation (c). ∗R squared values for FF NN are provided for the sake of
completeness.

9.4.2.2 Evaluation Using Real Datasets

In this experiment, we addressed both problem instances PrIn1 and PrIn2 for a Vanderlande-
built BHS of a major European airport. In the event log, each case corresponded to
one bag, events were recorded when bags passed sensors on conveyors, and the ac-
tivity names described the sensor locations in the system. Note that a sensor event
was recorded only if a bag was diverted to another conveyor, and was not recorded
otherwise. As a result, the information about bag locations was significantly incom-
plete. For this system, the event log of one day of operations contained 850 activities,
25.000-50.000 cases (bags), and 1-2 million events on average. The entire log con-
tained 148 million events for 120 consecutive days. Sparse events recorded during
non-operating night hours were excluded from the log.

366 Predictive Performance Monitoring

First, we addressed problem instance PrIn1. For methods (A1) and (A4), the re-
sulting feature set had 68 features and 108.000 vectors. As shown in Table 9.3 (b),

• the LR and FF NN models of (A1) had a smaller RMSE and MAE than the base-
line models,

• the LR model R squared measure of (A1) was close to 1,
• training after log repair (A4) did not improve accuracy.

Figure 9.17 shows how the LR model correctly predicted peaks and dips in the load
of the screening machines compared to the recorded data, proving that the model
was adequate for the workload prediction. While the LR and FF NN models showed
similar metric values, the former is preferred as a simpler solution. Log repair in (A4)
improved accuracy insignificantly, we discuss the reasons for that at the end of this
section.

-25
-15

-5
5

15
25

Error (%)

Predicted
spectrum (A1)

60
%

Observed
spectrum

Baseline
spectrum (A2)

60
%

60
%

Figure 9.17: Real, predicted by (A1), and predicted by (A2) load of the baggage screening
machines, in % of the maximal load (top): each bin represents the load for
one minute, filled and blank circles show matched peaks and dips, while the X’s
show mismatches. The residuals of the predicted load in % of max. load per bin
(bottom): the baseline (orange) shows greater deviations than the performance
spectrum-based model (blue).

Finally, we addressed problem instance PrIn2. We trained an LR model, and a
four-layer FF NN on a dataset with 148 features and 216.000 samples using (A1)
and (A4), and used approach (A3) as a baseline (since [35] was not applicable to
PrIn2). Note, the sample number is two times greater than for problem instance PrIn1

because of the two times shorter duration of bins. Table 9.3 (c) shows:

9.4 Evaluation 367

• a close to zero R squared metric of the LR model of (A1), showing its incapa-
bility to explain variable variations, i.e., the model could not predict infrequent
re-circulation peaks,

• smaller values of RMSE and MAE of the FF NN model, comparing with the
baseline metrics.

Figure 9.18 sheds more light on the model’s performance:

• the FF NN model correctly predicted moments of peaks in re-circulation, but
consistently underestimated its actual amount,

• while the baseline demonstrated auto-correlation.

A

A

A

B

B

C

C

C

D

E

E

30
%

Predicted
spectrum (A1)

Observed
spectrum

Baseline
spectrum (A3)

30
%

30
%

Figure 9.18: Peaks of re-circulation within 30-second bins (in % of the max. load): the FF NN
model (A1) predicted peaks A, B, C in the correct bins, whiles the baseline (A3)
predicted them with a significant delay as a result of auto-correlation. However,
several peaks (e.g., D and E) were not predicted by the model (A1).

Last but not least, applying (A4) did not lead to any improvements. We discuss it next
in more detail.

Using Repaired Event Logs For Feature Extraction. The real dataset used for eval-
uation was incomplete due to the system logging architecture. We applied our log
repair approach (see Section 7.3) to reconstruct missing events and attributes. Due
to the project time and resource limitations, we did not manage to restore the whole
event log but re-used the log repair pipeline we already built for the log repair ap-
proach evaluation (see Section 7.3). That is, we restored the events between check-in
locations I1 − In , and pre-sorter locations E1,E2. To derive exact timestamps from the
timestamp intervals, we used the minimal values, i.e., the left interval border. The
resulting metrics are shown in Table 9.3, approach (A4).

For problem instance PrIn1, the experiments showed just slightly better metrics.
We explain this insignificant improvement by the fact of relatively precise event log-
ging in the check-in area, where all the bags were always registered (and logged) in
the system. Moreover, most historic spectrum segments were outside the areas, which

368 Predictive Performance Monitoring

we repaired the log for. As a result, log repair could not influence the prediction re-
sults significantly.

For problem instance PrIn2, the experiments showed zero improvements. This
result was expected because links A1

1−D1, . . . , A1
4−D4, A2

1−D1, . . . , A2
4−D4 to final sorters

F 1 and F 2 (see Figure9.10), whose state mainly affected the re-circulation amount,
were outside the log repair scope.

To summarize, despite event log incompleteness, the sound predictive models,
trained using (A1), demonstrated the feasibility of the proposed method for PPM of
systems with shared resources and queues. Next, we discuss its limitations and future
work.

9.5 Chapter Summary

In this chapter, we studied the problem of PPM in systems with shared resources and
queues. We addressed the problem of predicting aggregate PPIs using historic event
data and a process model — the PQR-system— that describes the process, queue, and
resource dimensions (RQ-7). We showed how the channels of multi-channel perfor-
mance spectra are capable of capturing different aspects of inter-case dynamics. We
formulated the problem for RQ-7 directly over a multi-channel performance spectrum
and PQR-system such that an observed historic spectrum is used to estimate a future
target spectrum. The target PPI is derived from the predicted target spectrum. This
problem formulation allows for the formulation of a large class of PPM as a regression
problem. We proposed a method for solving this problem by training an ML model
on features extracted from the target spectrum to predict the target spectrum. This
method is built on our method for descriptive performance analysis (see Chapter 8),
and exploits our approach for tracking load and blockage propagation in systems with
shared resources and queues.

We provided examples of real-life problem instances for BHSs and the evaluation
of our approach by training sound models for solving these problem instances on
the event log of a major European airport BHS. We demonstrated the feasibility of
our approach and compared it to the current state-of-the-art approach [35]. The ex-
periments showed that a linear model trained using our method outperformed the
baseline method for the simpler problem instance, while a non-linear model, also
trained using our method, outperformed the baseline method for the more compli-
cated problem instance.

However, our method has the following limitations.

• Our approach has a too simplistic way to estimate blockage propagation time.
We plan to improve it by considering the real propagation durations observed
in historic data per segment.

9.5 Chapter Summary 369

• Although our models are technically sound, they still require validation in prac-
tice. We expect the need for higher accuracy, especially for predictions requiring
a longer prediction horizon.

• Due to the time and resource limitations, our log repair approach was applied
only to a part of the given incomplete event log, leaving the most events, rele-
vant for computing historic spectra, unrepaired. As a result, the impact of log
incompleteness on prediction accuracy is not measured yet. We aim to do more
experiments to measure it.

• We only demonstrated feasibility for the MHS domain. For adopting our ap-
proach for business processes of other domains, we aim to design correspond-
ing process models based on the same concepts and design choices as the PQR-
system.

Last but not least, our method is orthogonal to the ML model of choice and does
not provide any guidance for its selection. However, different models yield results
of different accuracy, as the resulting metrics for PrIn2 showed. Let us consider the
following ML models, ordered by complexity: a linear regression model, a feedfor-
ward neural network, an LSTM model [174], and an encoder-decoder network [175].
Generally, a linear model can be trained on smaller datasets to solve simpler tasks,
such as predicting accumulated load (e.g., PrIn1). A feedforward neural network can
consider non-linearity but perhaps requires larger datasets. A recurrent LSTM net-
work can consider sequential data, such as the bins of the historic spectrum. Finally,
the Recurrent Neural Network (RNN) of the encoder (for encoder-decoder networks)
can produce a thought vector that captures the current state of an MHS such that the
decoder infers the target spectrum based on the “understanding” of this current state.
Additionally, attention can be used to take into account earlier system states. The use
of RNN seems to be promising. However, it would probably require large datasets,
which may not be available for many MHSs. Having said that, we did not conduct any
experiments with RNNs due to time constraints, so coming up with recommendations
for selecting an ML model is the subject of future work.

Chapter 10
Conclusion

This chapter concludes the thesis. For that, the key contributions to process mining of
systems with shared resources and queues are summarized in Section 10.1, and the
implemented software tools are discussed in Section 10.2. The main limitations of
our methods and still open questions are discussed in Section 10.3. Finally, our ideas
on solving the most actual open questions are considered in Section 10.4, including
our vision for the further development of the tools.

10.1 Contribution

In this section, we first consider two central techniques we proposed — the perfor-
mance spectrum (Chapter 3), and the PQR-system (Chapter 6). They bridge the gap
in process mining techniques for performance description and modeling of systems
with shared resources and queues. Then, we discuss how we built on them to cre-
ate methods implementing the process mining tasks actual for answering our AQs,
formulated in Section 4.2. Finally, we discuss how our contributions are valuable to
MHS vendors like Vanderlande.

Performance Spectra. In Chapter 3, the performance spectrum, a technique for
fine-grained performance description of processes, is proposed. The performance
spectrum

• is a generic technique because it requires only a “classical” event log as input,
• provides an unbiased performance description because no model that would

most probably introduce a bias is used for computing,
• describes the performance for all cases together, thereby capturing how cases

interact in systems with shared resources and queues,
• can be tailored for the analyst’s needs by defining a performance classifier over

any information available from event attributes,

372 Conclusion

• can provide the performance description in a quantified form by computing an
aggregate performance spectrum,

• can be visualized in a way that enables visual analytics using human (or artifi-
cial) intellect.

Additionally, the multi-channel performance spectrum, comprising multiple perfor-
mance spectra computed using different performance classifiers, is proposed. It can
capture various aspects of the process/system performance simultaneously.

We showed how the performance spectrum revealed insights about the perfor-
mance of processes of different domains that no existing process mining technique
could provide. We evaluated it on challenging problems of analysis of systems with
shared resources and queues and showed how it allowed for obtaining correct results
quickly.

These properties make the performance spectrum the number one choice for using
in process mining tasks where the process performance must be considered, such as

• descriptive performance analysis, including performance pattern detection, and
• feature engineering for predictive performance monitoring, for example, to

train an ML model predicting the remaining case time.

PQR-Systems. The PQR-system— a process model for systems with shared resources
and queues— is suggested in Chapter 6. It enables model-based process mining tech-
niques for systems with shared resources and queues and captures domain knowledge
valuable for their performance analysis. Our contribution here is two-folded:

1. the PQR-system itself, and
2. the way we approached its design.

For the latter, we investigated existing approaches for performance analysis of
MHSs in Chapter 4. As queueing theory has been studied such systems for decades,
we started by exploring the queueing theory-based state-of-the-art approach. We
identified the basic building blocks of MHSs and considered their (relatively simple)
queue models. Crucially, we used performance spectra, showing typical behaviors
observed in MHSs, to validate the assumptions used in that approach. Finally, we
considered queueing networks with blocking, assembled from the basic building block
models, for modeling the entire MHS.

As a result, we showed that the assumptions used in the mathematical apparatus
behind the state-of-the-art approach did not hold for the behaviors we observed in the
performance spectra. Moreover, their complexity showed that designing an accurate
queueing theory-based model is infeasible. However, we learned the key elements
capable of explaining MHS behaviors at least conceptually:

• finite-capacity FIFO queues with pre-defined time characteristics,
• resources (servers) with pre-defined time characteristics, and

10.1 Contribution 373

• a routing function that defines the handover of jobs (TSUs, cases) between
them.

In Chapter 6, we used these elements as input for designing the PQR-system.
For that, we chose a synchronous proclet system, describing interactions of multiple
proclets (models) as a foundation. Then, we mapped the queues, resources, and
routing function to dedicated queues, resources, and process proclets, respectively,
using channels to synchronize their interactions. We used a small subset of the CPN
syntax to model these proclets. We also defined the PQR-system replay semantics,
i.e., a way to check whether a given event log could be generated by the modeled
system.

The PQR-system, together with the way we came up with its design, showed how
key elements affecting process performance can be identified and modeled using a
relatively simple syntax (in contrast to, for example, full-scale CPNs). In Chapter 7,
we showed how this simplicity, together with the module structure (multiple pro-
clets), allows for using (or easily adapting) existing techniques for PQR-system-based
conformance checking. Consequently, it allowed us to adapt generalized conformance
checking for systems with shared resources and queues, which combines the model
and log repair tasks. For log repair, we proposed a method for inferring unobserved
events with timestamp information, also based on the reasoning over the PQR-system.

PQR-System-Based Descriptive Performance Analysis and Predictive Performance
Monitoring. In practice, using a process model is often limited to providing insights
into the process, projecting descriptive statistics on the model elements, and con-
formance checking. In this thesis, we showed how a process model is actually an
invaluable source of domain knowledge for analysis methods, decreasing, to a cer-
tain extent, the need for the analyst in the loop and potentially allowing for fully
automated process analysis.

Thus, in Chapter 8, we first related performance spectra to the PQR-system. That
allowed us to overcome the main drawback of performance spectra — a lack of any
process-related structure, and see the performance for process steps described in the
model. Additionally, we introduced performance spectra of queues and resources.
That allowed us to develop a method for root-cause performance analysis by

• inferring the origins of propagation of undesirable performance pattern instances
in the performance spectrum along the control flow (using the process proclet),

• identifying root causes of performance problems in these origins using the spec-
tra of the related queues and resources.

Both the performance spectrum and PQR-system together are extensively used in the
method steps to obtain results.

Finally, in Chapter 9, we addressed the problem of predictive performance mon-
itoring of processes. We showed how the performance spectrum can capture the

374 Conclusion

system/process dynamics over time. It allows using it as a source of rich performance-
related features. Our method identifies relevant features in the performance spectrum
to train a predictive ML model. For that, similarly to the method in Chapter 8, the
PQR-system is used for identifying relevant “pieces” of the performance spectrum for
feature extraction.

Contribution to Vanderlande. Now, we summarize our contribution to Vanderlande
and other organizations where process mining of MHSs is an actual problem. We
structure it into the following parts.

• Descriptive performance analysis. We showed that in MHSs, cases interact
with each other on shared resources and queues, and this interaction usually
causes situations of interest for analysis. As a result, “classical” process mining
techniques and tools, considering only cases in isolation and only the control-
flow perspective, are not helpful. Instead,

– event data capturing the behavior of the process, queues, and resources,
– a process model describing them (such as PQR-system), and
– a performance description capturing their interactions in all three dimen-

sions (such as performance spectrum)

are to be used as input for methods solving various process mining tasks. It
is also beneficial to use domain knowledge from the model, so model-based
methods are prime candidates for these tasks.

• Modeling MHSs. Although the use of the PQR-system is beneficial for many
process mining tasks, its manual design for each MHS is time-consuming, and
no algorithms have been proposed for PQR-system discovery from event data
yet. However, in industry, each MHS usually has a complete set of documenta-
tion. As a result, there is no need to discover the PQR-system. Instead, it can
be automatically generated if the required information is described according
to some standard. The PQR-system formal definition, proposed in Chapter 6, is
the input for designing such a standard. It can be used either at Vanderlande
or industry-wide for creating the standard and generating PQR-systems without
extra costs.

• Event data logging and pre-processing. We showed how event data incom-
pleteness impedes the analysis and how complicated and computationally com-
plex log repair algorithms are. In case of incomplete data, analysis costs in-
crease while analysis accuracy drops. Additionally, the lack of standardization
for the event logging architecture causes extra effort for event log extraction.
MHS analysis would benefit from collecting complete multi-case notion event
data represented in some common standard for event data exchange, such as
OCEL [64]. For MHS vendors, it is possible to design and implement an event
data logging architecture that achieves this goal. We recommended introducing

10.1 Contribution 375

a standard for collecting and representing MHS event data for designing new
and updating existing systems.

• Predictive performance monitoring. Although we obtained models for pre-
dicting aggregate process performance indicators, we consider them feasible,
admitting thereby that the problem is still open. It is overwhelmingly difficult
due to complicated system behavior and a large number of “participating” en-
tities (TSUs, queues, resources, etc.) Moreover, no results have been published
so far on the problem of predicting individual process performance indicators
per TSU. We believe, one of the reasons is the limited amount of information
available as input for this problem. For example, additional information on
the system routing decisions over time, flight schedule (for BHSs), system error
description, and so on, can be additionally collected and provided for process
mining solutions.

• Digital twins of MHSs. The problem of creating an MHS digital twin was not in
the project scope but nevertheless was regularly discussed. Although nowadays
it is a broad open research problem, we believe that creating a digital twin
of an MHS can be a reality in a decade, and process mining can significantly
contribute to it. However, what is our contribution? Let us summarize it as
follows.

– We showed how incomplete data and the lack of standardization blocked
approaching analysis problems or affected the outcome. Undoubtedly,
the availability of complete and standardized data is also a crucial “pre-
requisite” for designing a digital twin. However, such data cannot be “ob-
tained” instantly but requires systematic efforts and significant time for
collection. Our project helped to create awareness of this problem.

– We consider this thesis as the first step toward object-centric process min-
ing of MHSs. That is, the PQR-system describes three process dimensions
and their synchronization, while the performance spectrum describes the
interactions of all cases together. We believe that full-scale object-centric
process mining, empowered by techniques of other fields like AI, is es-
sential for creating digital twins. Thereby, our research contributes to the
problem and opens doors for further research in this direction.

– Last but not least, we showed how a process model in the MHS domain
is not mainly an analog of an MFD for the analyst, but a central input
artifact for various algorithms solving different process mining tasks. We
think it will help intensify further research targeting the creation of more
advanced models of material handling processes, to be eventually used as
a rich source of knowledge about the system for its digital twin.

376 Conclusion

10.2 Implemented Tools

We developed several software tools to analyze MHSs using event data and evaluate
new methods. In this section, we discuss how these tools evolved, why they got
particular features, and how they provided an efficient environment for conducting
research in this thesis.

The Performance Spectrum Miner (PSM). We started our research with an ex-
ploratory analysis of available MHS datasets with existing process mining tools. One
of the challenges was detecting and explaining the outlier behavior of TSUs in par-
ticular system areas during specific periods. For that, the most promising approach
was to explore TSUs’ behavior using event log replay and animation over a process
model or map. However, it did not work because of the overwhelming amount of to-
kens in visualization, the inability to see event attributes (e.g., tasks and error codes),
misleading approximation of tokens’ progress in zoomed-out models, and so on.

As a result, we decided to implement a tool for the visual comparison of various
performance metrics over time for multiple time intervals. It was the first version of
the PSM, which could show aggregate performance spectra for two periods simultane-
ously. However, the amount of information was still large, so we started showing just
one period. Then, we expanded the aggregate information, thereby obtaining non-
aggregate performance spectra capable of revealing fascinating patterns in event data
of processes. We introduced performance classifiers for segment occurrences, and
color coding for visualizing them. It made the visualized information similar to the
spectra of electromagnetic or audio waves. This observation helped to come up with
the name. Participating in the Business process intelligence challenge 2018 [151]
helped adjust the PSM features initially designed for MHS processes.

Figure 10.1 shows an MHS system, the data it records, the tools we developed,
the PQR-system, and other artifacts. We started research using (incomplete) event
logs extracted by Vanderlande, that the PSM could import to generate performance
spectra.

Event Log Extraction Approaches. MHSs record large amounts of event data. How-
ever, their storage representation is usually very different from XES or OCEL event
logs. For example, it can be a database with many hundreds of tables. Moreover,
MHS datasets are usually larger than ones recorded by classical business processes
for the same period. As a result, the algorithms of the event log and event table
extraction can be quite complicated, and the datasets themselves do not fit into the
memory of a “good” laptop (e.g., 32GB). As a result, the former can block applying
any process mining technique on “raw” MHS datasets, and the latter can cause the
memory explosion problem for open-source and commercial tools when data for a
relatively large period of time must be analyzed in one piece.

10.2 Implemented Tools 377

MHS

ML trainer
(PyTorch)

Target
spectrum

Performance
spectrum

records Log extraction DSL
(Apache Spark,

Scala Collections)

Third-party
process mining

tools

Complete
event log/

table

Training/test
sets Predictive

model

br
oa

dc
as

ts
 e

ve
nt

s

Incomplete
event log/

table

Performance
Spectrum Miner

de
sc

rib
es generates

generates

extracts

PQR-System
viewer

MHS event
data

PSM-R
Inferring missing

events
BHS simulation

model

PQR-system

interact

extracts

repairs

computes

predicts

trains

Analyst

shows

sh
ow

s

Data/information flows
Process model flows

Figure 10.1: Overview of the developed software tools.

To address the former, i.e., event log extraction and transformation, we imple-
mented a Domain Specific Language (DSL) in Scala on top of Apache Spark, a high-
level framework for distributed data processing implemented in Scala. The corre-
sponding box is shown in Figure 10.1, where it consumes “raw” MHS event data, and
extracts event tables or logs. Besides Apache Spark, the DSL was backed by the stan-
dard Scala parallel collections, to be used in a single-server configuration when the

378 Conclusion

use of a Spark cluster is impossible or infeasible. Although we could not open-source
it or include it in this thesis, we still conclude here that this approach is sound if
analysts with moderate programming skills for using the DSL are available, and the
infrastructure is in place.

To address the latter, i.e., the memory explosion problem, we made the PSM capa-
ble of working with large datasets that did not fit in the memory of a typical laptop.
For that, we implemented partitioning of input logs for computing performance spec-
tra and saving results on disk, to load required pieces of spectra on demand.

The Conveyor “Digital Twin”, BHS Simulation Models, and Log Repair. The MHS
datasets that we extracted and analyzed were incomplete. Because it impeded all
kinds of analysis, we decided to address the problem of log repair. However, the
ground truth, i.e., complete event data for evaluating possible log repair approaches,
was missing. To obtain it, we decided to use a simulation model.

Initially, we started with an attempt of creating a “digital twin” of a single MHS
conveyor in the CPN Tools. The goal was twofold: to study its behavior under dif-
ferent load conditions, and use it later as a building block for simulating larger MHS
areas. However, after designing 80% of the model, we started experiencing long de-
lays after each edit in the CPN Tools’ editor. They were caused by automatic validation
of the entire model after each change. As a result, we could not even complete the
model design. Eventually, we had to give up because the CPN Tools did not work for
that, and no other tools for modeling CPNs were available.

Later, we also attempted to simulate a small BHS in the AutoMod1 — software for
simulation of production and logistics systems. The additional goal was to understand
whether it was a feasible approach for what-if analysis of BHSs. For that, we had a
six-week “internship” in the Simulation and Emulation group of Vanderlande, trying
to design a BHS simulation model that would fit our needs. The screenshot of the
animation of the resulting model is shown in Figure 10.2. However, the overhead
due to the oversimplified yet low-level programming language of AutoMod, requiring
time-consuming coding, and other limitations we encountered made this approach
infeasible, at least under the project time constraints.

Instead, we implemented a simple simulation model (see Section 6.7) capable of
modeling the key aspects of the system behavior we were interested in. It is capable
of recording both complete and incomplete event logs and broadcasting events about
TSUs’ movement in real time over the network. As Figure 10.1 shows, it takes a PQR-
system description as input and generates both incomplete and complete event logs
according to pre-configured scenarios.

Afterward, we implemented our log repair approach. For its evaluation, we incor-
porated our method into a dedicated version of the PSM, called PSM-R, capable of
computing and showing performance spectra with regions. In Figure 10.1, the PSM-R

1https://www.simul8.com/products/automod/

https://www.simul8.com/products/automod/

10.2 Implemented Tools 379

Figure 10.2: Screenshot of animation of a BHS simulation model in AutoMod: two links from
the check-in area go via hold baggage scanners at the bottom right corner and
continue to the sorting loop with laterals. The cubes represent bags on the con-
veyors.

takes an incomplete event table and produces a complete one, additionally taking the
PQR-system as input. We kept the PSM-R as a branch of the “regular” PSM because
converting it into a general-purpose software tool would require too much time for
coding.

Integrated PQR-System and Performance Spectrum. The integrated process model
and performance spectrum empower descriptive performance analysis and predictive
performance monitoring. Vanderlande used this idea for implementing an internal
process mining tool. However, implementing a full-scale general-purpose open-source
software would require a significant amount of project time. Instead, we implemented
a proof-of-concept tool, based on the PSM, showing the key benefits of such integra-
tion. As Figure 10.1 shows, a PQR-system description is used to visualize it in the
PQR-system viewer, a UI application. This PSM modification either loads logs from
disk as usual or receives events over the network in real-time from the simulation
model for evaluating scenarios of process performance monitoring. The PQR-system
viewer and the PSM interact for navigating throughout the PQR-system and the spec-
tra of the process dimensions, filtering/sorting the segments, and so on. As with
PSM-R, this implementation is kept as a separate branch of the regular PSM. Addi-
tionally, a PSM modification integrated with “classical” Petri nets was implemented as
a ProM plugin [176] during a separate project.

Feature Extraction and Model Training. For our PPM method evaluation, we added
to the PSM the ability to extract and export training/test sets from performance spec-
tra. Thus, as Figure 10.1 shows, a performance spectrum can be used for feature
extraction using parameters defined in the PSM configuration. For that, the ability

380 Conclusion

of the PSM to work with large datasets is crucial for handling large datasets. The
PyTorch-based python script uses the obtained training and test sets for training vari-
ous ML models. Note that the predicted target performance spectrum can be loaded
back to the PSM to compare it with the observed spectrum.

10.3 Limitations and Open Issues

This section discusses the main limitations and open questions of the methods in this
thesis.

Modeling Non-Material Handling Systems with Shared Resources and Queues
The proposed PQR-system represents only a sub-class of systems with shared re-
sources and queues. It means MHSs with batching, i.e., systems where TSUs can be
consolidated using containers, trays, and pallets, cannot be modeled. “Classical” busi-
ness processes that have parallelism, interchangeable resources, and different queue
disciplines with priorities are not supported as well. Their support requires revising
the PQR-system to capture these aspects. We consider it as an open and very actual
research question.

Implementing Conformance Checking. We systematically explored how existing
techniques can be used or extended for PQR-system-based conformance checking.
However, we did not provide any implementation and evaluation. Moreover, these
techniques provide little diagnostics in case of outliers. So, the problem of designing
a method for relating event data to PQR-systems with extended diagnostics is open.

Instantiating Exact Timestamp for Inferred Events. The proposed log repair ap-
proach (see Chapter 7) reconstructs events, missing in the given event data, and
possible intervals [a,b] of their timestamps. Then, either interval border (a or b)
can be used to instantiate a correct and complete event table with exact timestamps.
However, this way of timestamp instantiation does not always result in the closest (to
real timestamp) values. Choosing values from the entire intervals [a,b] can lead to
a more accurate reconstruction of the timestamps. How to choose these values is an
open research question, which has been partially addressed in [125, 177].

Automating Descriptive Performance Analysis. We proposed the method for multi-
dimensional root cause performance analysis that extensively uses information about
detected blockage and high load instances in performance spectra. However, it as-
sumes their manual detection by the analyst. The manual way of detection is slow
and error-prone and requires painstaking exploration of large “areas” of performance
spectra. Undoubtedly, the use of algorithms capable of detecting these pattern in-
stances automatically can dramatically speed up the analysis. Moreover, currently,
propagation discovery is also made manually by the analyst. Complete automation of
this method is an open problem.

10.4 Future Work 381

Increasing Prediction Accuracy and Horizon. We proposed a method for predictive
performance monitoring for aggregate process performance indicators and showed its
feasibility using two problem instances. We showed accurate predictions for a practi-
cally meaningful prediction horizon for one of them, while for another, both accuracy
and prediction horizon length were fair. Thus, we consider the problem of predic-
tive performance monitoring for systems with shared resources and queues an open
problem because better accuracy and longer prediction horizon are required in prac-
tice. Moreover, we did not consider the problem of predicting process performance
indicators for individual cases, which remains actual and open.

10.4 Future Work

In this section, we discuss our ideas for overcoming the identified limitations and
solving still open questions of Section 10.3. Additionally, we share our vision for
further development of the software tools discussed in Section 10.2.

Modeling MHSs with Batching. The PQR-system does not model batching, as we
discussed previously. However, there is a way to support it. The idea is to have a
P-proclet per each transportation unit type, for example, per bag/cartoon, container,
palette. For each process type, the process is similar to TSU handling in the PQR-
system, e.g., containers still must follow each other on conveyors (FIFO ordering)
and be merged/diverted at the corresponding units. The main challenge is to model
the consolidating and breaking down processes, which can be modeled, for exam-
ple, through introducing one-to-many or many-to-many relations between the system
entities. The replay semantics of this extended PQR-system would have additional
constraints related to the consolidating and breaking down processes (proclets).

Modeling Manufacturing Processes. This thesis primarily focuses on material han-
dling processes. However, its contributions may also be valuable for process mining of
manufacturing processes because they have much in common. That is, in both domains

• the process/system entities are machines, workers, the software controlling the
machines, the environment, and objects (materials) to be handled, e.g., TSUs
and parts to be assembled,

• the entities interact and affect each other,
• batching can take place,
• machines have queues of entities to be handled,
• most process steps are usually automated, and
• humans play roles of either observers or actors [4].

As a result, we expect that the key concepts for modeling manufacturing processes
are the same as for material handling. In this case, a dedicated synchronous proclet
system, similar to the PQR-system, can be designed. We expect that the support

382 Conclusion

of batching may be the most important extension for such a model, and perhaps
more advanced models for human actors, whose role in MHSs is relatively simple and
therefore modeled as a very simple lifecycle.

Further, generalized conformance checking may be helpful to either detect and
diagnose outliers or infer missing events, for example, not recorded because of digital
gaps [4] of human task execution. Then, the performance spectrum can be used for
root cause performance analysis and predictive performance monitoring.

We consider extending the methods of this thesis to manufacturing processes as
promising future work.

Modeling “Classical” Non-Material Handling Business Processes. Support for
“classical” processes can be achieved by

• introducing a full-scale Petri-net with parallelism for describing the control flow
in the P-proclets,

• modeling case priorities and different ordering disciplines in queues in the Q-
proclets, and

• describing resource management in the R-proclets.

Additionally, pools of resources (e.g., assignment groups) dedicated to solving partic-
ular tasks can be modeled as a new type of proclets — group proclets. Then, resources
should not be “wired” to particular process steps, as in the PQR-system. Last but not
least, many-to-many relations between entities will be required to represent complex
processes.

Timestamp Instantiating for Inferred Unobserved Events. The still unsolved prob-
lem of instantiating exact timestamps from time intervals is discussed in Section 10.3.
While this problem is complex, there is an observation that can help solve it. Analyz-
ing the performance spectra of the ground truth event data, we noticed that the min-
imum timestamp values were usually correct except for the events recorded during
blockage instances, when the actual timestamp values tended to have the maximum
values, besides just one or two events with values from the middle of the interval. The
idea is to learn an ML model estimating the exact timestamps for events comprising
blockage instances on simulation models or systems with better logging, and apply
transfer learning to obtain models for concrete systems/processes.

Improving Predictive Performance Monitoring Accuracy. As we already said, richer
information can help improve prediction accuracy. Additionally, recurrent neural net-
works, such as LSTM [174], can potentially help capture the time dimension and
achieve better results. However, we believe that the problem and the corresponding
analysis questions should be revised and formulated differently to approach reliable
predictive performance monitoring of MHSs.

In MHSs, processes are mainly automated, so software controllers “decide” how
to route TSUs, switch equipment modes, and so on. However, they do not predict

10.4 Future Work 383

undesirable performance scenarios. Predictive monitoring models can predict them
and affect the controllers’ decision-making. However, there is no guarantee that the
resulting (future) performance will be improved and that no undesirable side effects
will be introduced.

Alternatively, the digital twin of the system with what-if capabilities, based on
(among other things) both predictive performance monitoring and exact knowledge
about the algorithms of the controllers, may solve this problem. Process mining, in
general, and the methods and techniques of this thesis, in particular, can help design
and validate digital twins.

Further Development of the Software Tools. To conclude this section, we share our
vision for further development of the software tools implemented for this thesis. They
provide a “framework” designed around the performance spectrum and PQR-system.
While the former is a general-purpose process mining technique implemented as a
process mining tool with a rich set of features, the latter is designed primarily for
MHSs and implemented as a proof-of-concept. Moreover, the log extraction DSL was
not open-sourced. As a result, re-using the entire framework to analyze non-MHS
processes is only possible with further software extension.

Having said that, we do not mean extensive software development. Instead, we
see this extension as integration with existing techniques aimed at supporting object-
centric process mining [73]. The architecture of a revised framework is shown in
Figure 10.3.

In this figure, a business process, described by a process model, records event data
in some custom format. The log extraction and repair module exports the data as an
object-centric event log [64, 73], repairing the data if needed. In the case of MHSs,
the implemented DSL and proposed log repair method can be used. Assuming that
a process model (e.g., directly-follows multigraph [73]) is provided in a standardized
format, the Process model and event log import module can read the model and log to
import them into a graph database, e.g., Neo4j2, to be represented as a model graph
and event graph respectively [143, 145, 178].

A graph database provides access to the model graph and allows various queries
against the event graph, including extracting traces for a particular entity (case no-
tion) [145]. The PSM can be extended to query a graph database directly to obtain
the model graph and an event log for a required process dimension. As a result, the
process model and the performance spectra for cases of any case notion, presented
in the event graph and described by the process model, can be computed, visualized,
and used for feature extraction if needed. Such an architecture will be a powerful
and flexible tool for facilitating further research in object-centric process mining and
related fields.

2https://neo4j.com/

https://neo4j.com/

384 Conclusion

Business
process

Performance
spectrum

Log extraction and
repair

Training/test
sets

Object-
centric event

log

Performance
Spectrum Miner

de
sc

rib
es

PQR-System
viewer

Event data

Process model

Process
model and

event graph

Process model and
event log import

queries queries

extracts

imports
ex

tr
ac

ts
co

m
pu

te
s

Data/information flows Analyst
Process model flows

shows shows

Figure 10.3: Further development of the PSM and PQR-system viewer based on representing
the graph of a process model, and an object-centric event log in the form of an
event graph in a graph database.

Bibliography

[1] Wil M. P. van der Aalst. Process Mining - Data Science in Action, Second Edition.
Springer, 2016. (Cited on pages 1, 16, 21, 43, 47, 53, 67, 152, 154, 155, 156,
197, 205, 211, 216, and 221.)

[2] Geoff Black and Valeriy Vyatkin. Intelligent component-based automation of
baggage handling systems with IEC 61499. IEEE Transactions on Automation
Science and Engineering, 7(2):337–351, 2010. (Cited on page 1.)

[3] Can Saygin and Balaji Natarajan. RFID-based baggage-handling system design.
Sensor Review, 2010. (Cited on page 1.)

[4] Stefanie Rinderle-Ma and Juergen Mangler. Process automation and process
mining in manufacturing. In International Conference on Business Process Man-
agement, pages 3–14. Springer, 2021. (Cited on pages 1, 381, and 382.)

[5] Onur Dogan, Antonio Martinez-Millana, Eric Rojas, Marcos Sepúlveda, Jorge
Munoz-Gama, Vicente Traver, and Carlos Fernandez-Llatas. Individual behav-
ior modeling with sensors using process mining. Electronics, 8(7):766, 2019.
(Cited on page 1.)

[6] Prasannjeet Singh, Mehdi Saman Azari, Francesco Vitale, Francesco Flammini,
Nicola Mazzocca, Mauro Caporuscio, and Johan Thornadtsson. Using log ana-
lytics and process mining to enable self-healing in the internet of things. Envi-
ronment Systems and Decisions, pages 1–17, 2022. (Cited on page 1.)

[7] Marlon Dumas, Fabiana Fournier, Lior Limonad, Andrea Marrella, Marco Mon-
tali, Jana-Rebecca Rehse, Rafael Accorsi, Diego Calvanese, Giuseppe De Gia-
como, Dirk Fahland, et al. AI-augmented business process management sys-
tems: A research manifesto. ACM Transactions on Management Information
Systems, 2022. (Cited on page 2.)

386 BIBLIOGRAPHY

[8] Wil M. P. van der Aalst, Oliver Hinz, and Christof Weinhardt. Resilient digital
twins: organizations need to prepare for the unexpected, 2021. (Cited on
page 2.)

[9] Wil M.P. van der Aalst. Concurrency and objects matter! Disentangling the
fabric of real operational processes to create digital twins. In Theoretical As-
pects of Computing–ICTAC 2021: 18th International Colloquium, Virtual Event,
Nur-Sultan, Kazakhstan, September 8–10, 2021, Proceedings 18, pages 3–17.
Springer, 2021. (Cited on page 2.)

[10] Iris Beerepoot, Claudio Di Ciccio, Hajo A Reijers, Stefanie Rinderle-Ma, Wasana
Bandara, Andrea Burattin, Diego Calvanese, Tianwa Chen, Izack Cohen, Benoît
Depaire, et al. The biggest business process management problems to solve
before we die. Computers in Industry, 146:103837, 2023. (Cited on page 2.)

[11] Florian Stertz, Juergen Mangler, and Stefanie Rinderle-Ma. The role of time
and data: Online conformance checking in the manufacturing domain. arXiv
preprint arXiv:2105.01454, 2021. (Cited on page 2.)

[12] Vanderlande on the Wikipedia. https://en.wikipedia.org/wiki/
Vanderlande. Accessed: 2023-01-21. (Cited on page 3.)

[13] Vanderlande’s profile. https://www.vanderlande.com/about-vanderlande/
company-profile/. Accessed: 2023-01-21. (Cited on page 3.)

[14] Vanderlande’s facts and figures. https://www.vanderlande.com/
about-vanderlande/facts-and-figures/. Accessed: 2023-01-21. (Cited
on page 7.)

[15] Work at Albert Heijn Zaandam. https://careers.vanderlande.com/
albertheijn-zaandam/. Accessed: 2023-01-21. (Cited on page 7.)

[16] Hong Chen and David D. Yao. Fundamentals of queueing networks: Perfor-
mance, asymptotics, and optimization, volume 46. Springer Science & Business
Media, 2013. (Cited on pages 15 and 145.)

[17] S. Balsamo, V. de Nitto Persone, and R. Onvural. Analysis of Queueing Net-
works with Blocking. International Series in Operations Research & Manage-
ment Science. Springer US, 2001. (Cited on pages 15, 19, 131, 133, 134, 150,
and 153.)

[18] James MacGregor Smith. Robustness of state-dependent queues and material
handling systems. International Journal of Production Research, 48(16):4631–
4663, 2010. (Cited on pages 15, 19, 29, 41, 121, 122, 129, 130, 131, 133,
138, 140, 141, 143, 146, and 151.)

https://en.wikipedia.org/wiki/Vanderlande
https://en.wikipedia.org/wiki/Vanderlande
https://www.vanderlande.com/about-vanderlande/company-profile/
https://www.vanderlande.com/about-vanderlande/company-profile/
https://www.vanderlande.com/about-vanderlande/facts-and-figures/
https://www.vanderlande.com/about-vanderlande/facts-and-figures/
https://careers.vanderlande.com/albertheijn-zaandam/
https://careers.vanderlande.com/albertheijn-zaandam/

BIBLIOGRAPHY 387

[19] Prince Bedell and James MacGregor Smith. Topological arrangements of
M/G/c/K, M/G/c/c queues in transportation and material handling sys-
tems. Computers & operations research, 39(11):2800–2819, 2012. (Cited on
pages 15, 19, 122, 141, 143, and 151.)

[20] James MacGregor Smith and Laoucine Kerbache. State-dependent models of
material handling systems in closed queueing networks. International Journal
of Production Research, 50(2):461–484, 2012. (Cited on pages 15, 19, 29, 41,
122, 141, 143, and 151.)

[21] Rajat Jain and James MacGregor Smith. Modeling vehicular traffic flow
using M/G/c/c state dependent queueing models. Transportation Science,
31(4):324–336, 1997. (Cited on pages 15, 19, 122, 129, 130, and 151.)

[22] Caterina Malandri, Marco Briccoli, Luca Mantecchini, and Filippo Paganelli. A
discrete event simulation model for inbound baggage handling. Transportation
Research Procedia, 35:295 – 304, 2018. INAIR 2018. (Cited on pages 16
and 158.)

[23] Saeid Nahavandi, Bruce Gunn, Michael Johnstone, and Douglas Creighton.
Modelling and simulation of large and complex systems for airport baggage
handling security. In Kohei Arai, Supriya Kapoor, and Rahul Bhatia, editors,
Intelligent Computing, pages 1055–1067, Cham, 2019. Springer International
Publishing. (Cited on pages 16 and 158.)

[24] Josep Carmona, Boudewijn F. van Dongen, Andreas Solti, and Matthias Wei-
dlich. Conformance Checking - Relating Processes and Models. Springer, 2018.
(Cited on pages 16, 17, 32, 154, 155, 177, 206, 216, and 228.)

[25] Wil M.P. van der Aalst, Martin Bichler, and Armin Heinzl. Robotic process
automation. Business and Information Systems Engineering, 60, 05 2018. (Cited
on page 16.)

[26] Maikel L. van Eck, Xixi Lu, Sander J.J. Leemans, and Wil M.P. van der Aalst.
PM2: a process mining project methodology. In International conference on ad-
vanced information systems engineering, pages 297–313. Springer, 2015. (Cited
on page 17.)

[27] Jen Yeng Cheah and James MacGregor Smith. Generalized M/G/c/c state
dependent queueing models and pedestrian traffic flows. Queueing Systems,
15(1-4):365–386, 1994. (Cited on pages 19, 122, 129, 130, and 151.)

[28] K. Mani Chandy, Ulrich Herzog, and Lin Woo. Parametric analysis of queu-
ing networks. IBM Journal of Research and Development, 19(1):36–42, 1975.
(Cited on page 19.)

388 BIBLIOGRAPHY

[29] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sev-
cik. Quantitative system performance: computer system analysis using queueing
network models. Prentice-Hall, Inc., 1984. (Cited on page 19.)

[30] Søren Asmussen, Soren Asmussen, and Sren Asmussen. Applied probability and
queues, volume 2. Springer, 2003. (Cited on page 19.)

[31] Douglas R. Miller. Computation of steady-state probabilities for M/M/1 prior-
ity queues. Operations Research, 29(5):945–958, 1981. (Cited on page 19.)

[32] Alfonso E. Márquez-Chamorro, Manuel Resinas, and Antonio Ruiz-Cortés. Pre-
dictive monitoring of business processes: A survey. IEEE Transactions on Ser-
vices Computing, 11(6):962–977, Nov 2018. (Cited on pages 20, 155, 228,
319, and 328.)

[33] Claudio Di Ciccio, Giovanni Meroni, and Pierluigi Plebani. On the adoption of
blockchain for business process monitoring. Software and Systems Modeling,
21(3):915–937, 2022. (Cited on page 20.)

[34] Arik Senderovich, Matthias Weidlich, Avigdor Gal, and Avishai Mandelbaum.
Queue mining for delay prediction in multi-class service processes. Information
Systems, 53:278–295, 2015. (Cited on pages 20, 144, and 151.)

[35] Aric Senderovich, Chiara Di Francescomarino, and Fabrizio Maggi. From
knowledge-driven to data-driven inter-case feature encoding in predictive pro-
cess monitoring. Information Systems, 2019. (Cited on pages 20, 44, 158, 331,
334, 335, 363, 364, 366, and 368.)

[36] Mirko Polato, Alessandro Sperduti, Andrea Burattin, and Massimiliano
de Leoni. Time and activity sequence prediction of business process instances.
Computing, pages 1–27, 2018. (Cited on pages 20, 68, 156, and 158.)

[37] Mahsa Pourbafrani and Wil M. P. van der Aalst. Extracting process features
from event logs to learn coarse-grained simulation models. In Advanced In-
formation Systems Engineering: 33rd International Conference, CAiSE 2021,
Melbourne, VIC, Australia, June 28–July 2, 2021, Proceedings, pages 125–140.
Springer, 2021. (Cited on page 20.)

[38] Björn Rafn Gunnarsson, Jochen De Weerdt, and Seppe vanden Broucke. A
framework for encoding the multi-location load state of a business process.
2022. (Cited on page 20.)

[39] Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Dumas. Predictive busi-
ness process monitoring with LSTM neural networks. In CAiSE 2017, volume
10253 of LNCS, pages 477–492. Springer, 2017. (Cited on pages 21, 158,
and 319.)

BIBLIOGRAPHY 389

[40] Eva L. Klijn and Dirk Fahland. Identifying and reducing errors in remaining
time prediction due to inter-case dynamics. In 2020 2nd International Confer-
ence on Process Mining (ICPM), pages 25–32. IEEE, 2020. (Cited on page 21.)

[41] Eva L. Klijn and Dirk Fahland. Performance mining for batch processing us-
ing the performance spectrum. In International Conference on Business Process
Management, pages 172–185. Springer, 2019. (Cited on pages 21 and 95.)

[42] Wolfgang Reisig. Understanding Petri Nets - Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, 2013. (Cited on pages 21, 47, and 50.)

[43] Wil M.P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen. Re-
playing history on process models for conformance checking and performance
analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
2(2):182–192, 2012. (Cited on pages 21, 32, 154, 156, 177, 206, 209, 211,
216, 217, 223, 228, and 246.)

[44] Andreas Rogge-Solti, Arik Senderovich, Matthias Weidlich, Jan Mendling, and
Avigdor Gal. In log and model we trust? A generalized conformance checking
framework. In International Conference on Business Process Management, pages
179–196. Springer, 2016. (Cited on pages 25, 32, 41, 154, 156, 205, 208, 209,
and 254.)

[45] Vadim Denisov, Dirk Fahland, and Wil M. P. van der Aalst. Unbiased, fine-
grained description of processes performance from event data. In Mathias
Weske, Marco Montali, Ingo Weber, and Jan vom Brocke, editors, Business
Process Management - 16th International Conference, BPM 2018, Sydney, NSW,
Australia, September 9-14, 2018, Proceedings, volume 11080 of Lecture Notes
in Computer Science, pages 139–157. Springer, 2018. (Cited on pages 28, 39,
40, 93, 94, 95, 157, 228, 230, 259, and 262.)

[46] Vadim Denisov, Elena Belkina, Dirk Fahland, and Wil M. P. van der Aalst. The
performance spectrum miner: Visual analytics for fine-grained performance
analysis of processes. In Wil M. P. van der Aalst, Fabio Casati, Raffaele Conforti,
Massimiliano de Leoni, Marlon Dumas, Akhil Kumar, Jan Mendling, Surya
Nepal, Brian T. Pentland, and Barbara Weber, editors, Proceedings of the Disser-
tation Award, Demonstration, and Industrial Track at BPM 2018 co-located with
16th International Conference on Business Process Management (BPM 2018),
Sydney, Australia, September 9-14, 2018, volume 2196 of CEUR Workshop Pro-
ceedings, pages 96–100. CEUR-WS.org, 2018. (Cited on pages 28, 39, 69, 85,
93, 95, 157, 313, 320, and 363.)

[47] Vadim Denisov, Dirk Fahland, and Wil M. P. van der Aalst. Predictive perfor-
mance monitoring of material handling systems using the performance spec-

390 BIBLIOGRAPHY

trum. In International Conference on Process Mining, ICPM 2019, Aachen, Ger-
many, June 24-26, 2019, pages 137–144. IEEE, 2019. (Cited on pages 28, 36,
38, and 230.)

[48] Dirk Fahland. Describing behavior of processes with many-to-many interac-
tions. In Susanna Donatelli and Stefan Haar, editors, Application and Theory of
Petri Nets and Concurrency - 40th International Conference, PETRI NETS 2019,
Aachen, Germany, June 23-28, 2019, Proceedings, volume 11522 of Lecture
Notes in Computer Science, pages 3–24. Springer, 2019. (Cited on pages 30,
41, 62, 152, 153, 156, 159, 162, 166, 174, 196, and 202.)

[49] Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets - Modelling and
Validation of Concurrent Systems. Springer, 2009. (Cited on pages 30, 55, 60,
and 153.)

[50] Vadim Denisov, Dirk Fahland, and Wil M. P. van der Aalst. Repairing event logs
with missing events to support performance analysis of systems with shared
resources. In Ryszard Janicki, Natalia Sidorova, and Thomas Chatain, edi-
tors, Application and Theory of Petri Nets and Concurrency, pages 239–259,
Cham, 2020. Springer International Publishing. (Cited on pages 31, 33, 220,
and 221.)

[51] Dirk Fahland, Vadim Denisov, and Wil M.P. van der Aalst. Inferring unobserved
events in systems with shared resources and queues. Fundamenta Informaticae,
183(3-4):203–242, 2021. (Cited on pages 31 and 33.)

[52] Massimiliano De Leoni and Wil M.P. van der Aalst. Aligning event logs and pro-
cess models for multi-perspective conformance checking: An approach based
on integer linear programming. In Business Process Management, pages 113–
129. Springer, 2013. (Cited on pages 32, 154, 155, and 221.)

[53] Elham Ramezani Taghiabadi, Dirk Fahland, Boudewijn F. van Dongen, and
Wil M.P. van der Aalst. Diagnostic information for compliance checking of
temporal compliance requirements. In International Conference on Advanced
Information Systems Engineering, pages 304–320. Springer, 2013. (Cited on
pages 32, 154, 221, 222, 223, and 224.)

[54] Vadim Denisov, Dirk Fahland, and Wil M. P. van der Aalst. Multi-dimensional
performance analysis and monitoring using integrated performance spectra. In
2020 ICPM Doctoral Consortium and Tool Demonstration Track, ICPM-D 2020,
pages 27–30. CEUR-WS. org, 2020. (Cited on pages 36, 43, 313, and 322.)

[55] Thomas G. Dietterich. Machine learning for sequential data: A review. In Terry
Caelli, Adnan Amin, Robert P. W. Duin, Dick de Ridder, and Mohamed Kamel,

BIBLIOGRAPHY 391

editors, Structural, Syntactic, and Statistical Pattern Recognition, pages 15–30,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. (Cited on pages 37, 344,
345, and 360.)

[56] Dirk Fahland, R.A.J.J. van Delft, S. Esser, S. Habets, M. Heinrich, M. Hrytsenia,
E.L. Klijn, O. Koroglu, A. Turu Pi, L. Vugs, A. Karetnikov, J. Leander, J.W.H.
Nooyen, I. Vagionitis, S.J. Ruiz Sainz, F. Shafiee, and R. Uku. Reproduction
of Experimental Evaluations in Process Mining, September 2019. (Cited on
pages 39, 93, 94, and 95.)

[57] Walter Vogler. Modular Construction and Partial Order Semantics of Petri Nets,
volume 625 of Lecture Notes in Computer Science. Springer, 1992. (Cited on
page 50.)

[58] José Meseguer, Ugo Montanari, and Vladimiro Sassone. On the semantics of
Petri nets. In International Conference on Concurrency Theory, pages 286–301.
Springer, 1992. (Cited on page 50.)

[59] Luca Castellano, Giorgio De Michelis, and Lucia Pomello. Concurrency versus
interleaving: an instructuve example. Bulletin of the EATCS, 31:12–14, 1987.
(Cited on page 50.)

[60] CPN Tools. A tool for editing, simulating, and analyzing Colored Petri nets.
http://cpntools.org/. Accessed: 2020-04-24. (Cited on page 56.)

[61] CPN Tools IDE. https://github.com/cpn-io. Accessed: 2020-04-24. (Cited
on page 56.)

[62] Standard ML of New Jersey. https://www.smlnj.org/. Accessed: 2020-04-
24. (Cited on page 56.)

[63] Kurt Jensen and Lars M. Kristensen. Colored Petri nets: a graphical language
for formal modeling and validation of concurrent systems. Communications of
the ACM, 58(6):61–70, 2015. (Cited on pages 61 and 152.)

[64] Anahita Farhang Ghahfarokhi, Gyunam Park, Alessandro Berti, and Wil M. P.
van der Aalst. OCEL: A standard for object-centric event logs. In European
Conference on Advances in Databases and Information Systems, pages 169–175.
Springer, 2021. (Cited on pages 63, 96, 374, and 383.)

[65] IEEE standard for eXtensible Event Stream (XES) for achieving interoperability
in event logs and event streams. IEEE Std 1849-2016, pages 1–50, 2016. (Cited
on page 63.)

http://cpntools.org/
https://github.com/cpn-io
https://www.smlnj.org/

392 BIBLIOGRAPHY

[66] Laura Maruster and Nick R. T. P. van Beest. Redesigning business processes: a
methodology based on simulation and process mining techniques. Knowl. Inf.
Syst., 21(3):267–297, 2009. (Cited on pages 67, 228, and 257.)

[67] Wil M. P. van der Aalst, Maja Pesic, and Minseok Song. Beyond process mining:
From the past to present and future. In CAiSE, 2010. (Cited on pages 67
and 156.)

[68] Moe Thandar Wynn, Erik Poppe, J. Xu, Arthur H. M. ter Hofstede, Ross Brown,
Azzurra Pini, and Wil M. P. van der Aalst. Processprofiler3d: A visualisation
framework for log-based process performance comparison. Decision Support
Systems, 100:93–108, 2017. (Cited on pages 67 and 156.)

[69] Wil M. P. van der Aalst, Helen Schonenberg, and Minseok Song. Time predic-
tion based on process mining. Inf. Syst., 36:450–475, 2011. (Cited on pages 68
and 158.)

[70] Boudewijn F. van Dongen, Ronald A. Crooy, and Wil M. P. van der Aalst. Cycle
time prediction: When will this case finally be finished? In OTM Conferences,
2008. (Cited on pages 68 and 158.)

[71] Andreas Rogge-Solti and Mathias Weske. Prediction of business process du-
rations using non-Markovian stochastic Petri nets. Inf. Syst., 54:1–14, 2015.
(Cited on pages 68 and 158.)

[72] Daniel A. Keim, Gennady L. Andrienko, Jean-Daniel Fekete, Carsten Görg, Jörn
Kohlhammer, and Guy Melançon. Visual analytics: Definition, process, and
challenges. In Information Visualization, volume 4950 of LNCS, pages 154–
175. Springer, 2008. (Cited on pages 68 and 157.)

[73] Wil M. P. van der Aalst. Object-centric process mining: Dealing with divergence
and convergence in event data. In International Conference on Software Engi-
neering and Formal Methods, pages 3–25. Springer, 2019. (Cited on pages 96,
155, and 383.)

[74] Koen Verhaegh. Process mining for systems with automated batching: an ex-
ploratory study on new process mining grounds. Master’s thesis, Eindhoven
University of Technology, 2018. (Cited on pages 116 and 117.)

[75] Sanjay Bose. An Introduction to Queuing Systems. 01 2002. (Cited on
pages 121, 131, and 144.)

[76] James MacGregor Smith and Barı̧s Tan. Handbook of stochastic models and
analysis of manufacturing system operations, volume 20013. Springer, 2013.
(Cited on pages 130 and 141.)

BIBLIOGRAPHY 393

[77] Zahra Toosinezhad, Dirk Fahland, Ozge Koroglu, and Wil M.P. van der Aalst.
Detecting system-level behavior leading to dynamic bottlenecks. In ICPM2020,
2020. (Cited on pages 133, 157, 258, 259, 260, 261, 262, and 323.)

[78] Bianka Bakullari and Wil M. P. van der Aalst. High-level event mining: A frame-
work. In 2022 4th International Conference on Process Mining (ICPM), pages
136–143. IEEE, 2022. (Cited on pages 133, 157, 258, 260, 262, and 323.)

[79] Arik Senderovich. Queue mining: Service perspectives in process mining. In
BPM (Demos), 2017. (Cited on pages 143, 151, and 153.)

[80] Peter Whittle. Systems in stochastic equilibrium. John Wiley & Sons, Inc., 1986.
(Cited on page 143.)

[81] Gerardo Rubino. Transient analysis of Markovian queueing systems: a survey
with focus on closed-forms and uniformization, 2020. (Cited on page 143.)

[82] A.H. Manggala Putri, Retno Subekti, and Nikenasih Binatari. The completion
of non-steady-state queue model on the queue system in Dr. Yap Eye Hospital
Yogyakarta. In Journal of Physics.: Conference Series, volume 855, 2017. (Cited
on page 143.)

[83] Ward Whitt. The queueing network analyzer. The bell system technical journal,
62(9):2779–2815, 1983. (Cited on page 144.)

[84] Hema Tahilramani, D Manjunath, and Sanjay K Bose. Approximate analysis of
open network of ge/ge/m/n queues with transfer blocking. In MASCOTS’99.
Proceedings of the Seventh International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, pages 164–171. IEEE,
1999. (Cited on page 144.)

[85] Arik Senderovich, Matthias Weidlich, Avigdor Gal, and Avishai Mandelbaum.
Queue mining - predicting delays in service processes. In CAiSE, 2014. (Cited
on pages 144 and 155.)

[86] Arik Senderovich, Sander J.J. Leemans, Shahar Harel, Avigdor Gal, Avishai
Mandelbaum, and Wil M.P. van der Aalst. Discovering queues from event logs
with varying levels of information. In International Conference on Business
Process Management, pages 154–166. Springer, 2016. (Cited on page 144.)

[87] Arik Senderovich, J. Christopher Beck, Avigdor Gal, and Matthias Weidlich.
Congestion graphs for automated time predictions. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 4854–4861, 2019. (Cited
on pages 144, 145, 146, 151, 153, and 155.)

394 BIBLIOGRAPHY

[88] Avigdor Gal, Arik Senderovich, and Matthias Weidlich. Challenge paper: data
quality issues in queue mining. Journal of Data and Information Quality (JDIQ),
9(4):1–5, 2018. (Cited on page 144.)

[89] David Gamarnik, Assaf Zeevi, et al. Validity of heavy traffic steady-state ap-
proximations in generalized Jackson networks. The Annals of Applied Probabil-
ity, 16(1):56–90, 2006. (Cited on page 145.)

[90] T.T. Kwo. A theory of conveyors. Management science, 5(1):51–71, 1958.
(Cited on page 150.)

[91] Eginhard J. Muth. A model of a closed-loop conveyor with random material
flow. AIIE Transactions, 9(4):345–351, 1977. (Cited on page 150.)

[92] Eginhard J. Muth. Analysis of closed-loop conveyor systems, the discrete flow
case. AIIE Transactions, 6(1):73–83, 1974. (Cited on page 150.)

[93] Eginhard J. Muth and John A. White. Conveyor theory: a survey. Aiie Transac-
tions, 11(4):270–277, 1979. (Cited on page 150.)

[94] F Benson and G Gregory. Closed queueing systems: a generalization of the
machine interference model. Journal of the Royal Statistical Society: Series B
(Methodological), 23(2):385–393, 1961. (Cited on page 150.)

[95] M. Posner and B. Bernholtz. Two-stage closed queueing systems with time
lags. Journal of the Canadian Operational Research Society, 5:82–91967, 1967.
(Cited on page 150.)

[96] M. Posner and B. Bernholtz. Closed finite queuing networks with time lags.
Operations Research, 16(5):962–976, 1968. (Cited on page 150.)

[97] M. Posner and B. Bernholtz. Closed finite queuing networks with time lags
and with several classes of units. Operations Research, 16(5):977–985, 1968.
(Cited on page 150.)

[98] H. Mayer. Introduction to conveyor theory. Western Electric Engineer, 4(1):43–
47, 1960. (Cited on page 150.)

[99] William T. Morris. Analysis for materials handling management. Homewood,
Illinois: Richard D. Irwin. 1962. (Cited on page 150.)

[100] Ralph L. Disney. Some multichannel queueing problems with ordered entry.
Journal of Industrial Engineering, 13(1):46–48, 1962. (Cited on page 150.)

[101] G. Gregory and C.D. Litton. A Markovian analysis of a single conveyor system.
Management Science, 22(3):371–375, 1975. (Cited on page 150.)

BIBLIOGRAPHY 395

[102] Linda C Schmidt and John Jackman. Modeling recirculating conveyors with
blocking. European Journal of Operational Research, 124(2):422–436, 2000.
(Cited on page 150.)

[103] David Sonderman. An analytical model for recirculating conveyors with
stochastic inputs and outputs. The International Journal Of Production Re-
search, 20(5):591–605, 1982. (Cited on page 150.)

[104] Ivo Jean-Baptiste François Adan, Onno J. Boxma, and Jacobus Adrianus Cor-
nelis Resing. Queueing models with multiple waiting lines. Queueing Systems,
37(1):65–98, 2001. (Cited on page 150.)

[105] Ruben Bossier, Maria Vlasiou, and Ivo Adan. Analytic properties of two-
carousel systems. Probability in the Engineering and Informational Sciences,
27(1):57–84, 2013. (Cited on page 150.)

[106] Jelmer P van der Gaast, MBM De Koster, and Ivo J.B.F. Adan. Conveyor merges
in zone picking systems: a tractable and accurate approximate model. Trans-
portation Science, 52(6):1428–1443, 2018. (Cited on page 150.)

[107] Jelmer P. van der Gaast, Rene M.B.M. De Koster, Ivo J.B.F. Adan, and J.A.C.
Resing. Modeling and performance analysis of sequential zone picking sys-
tems. Eurandom Preprint Series, 2012. (Cited on page 150.)

[108] Remco Dijkman, Ivo Adan, and Sander Peters. Advanced queueing models for
quantitative business process analysis. In 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), pages 260–267. IEEE,
2018. (Cited on page 151.)

[109] Sander Peters, Yoav Kerner, Remco Dijkman, Ivo Adan, and Paul Grefen.
Fast and accurate quantitative business process analysis using feature com-
plete queueing models. Information Systems, 104:101892, 2022. (Cited on
page 151.)

[110] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The refined process structure
tree. In International Conference on Business Process Management, pages 100–
115. Springer, 2008. (Cited on page 151.)

[111] Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. Simplified computation
and generalization of the refined process structure tree. In International Work-
shop on Web Services and Formal Methods, pages 25–41. Springer, 2010. (Cited
on page 151.)

[112] Bernardo D’Auria, Ivo J.B.F. Adan, René Bekker, and Vidyadhar Kulkarni. An
M/M/c queue with queueing-time dependent service rates. European Journal
of Operational Research, 299(2):566–579, 2022. (Cited on page 151.)

396 BIBLIOGRAPHY

[113] Erjie Ang, Sara Kwasnick, Mohsen Bayati, Erica L. Plambeck, and Michael Ara-
tow. Accurate emergency department wait time prediction. Manufacturing &
Service Operations Management, 18(1):141–156, 2016. (Cited on page 151.)

[114] Fernando Rosa-Velardo and David de Frutos-Escrig. Name creation vs. replica-
tion in Petri net systems. Fundam. Inform., 88(3):329–356, 2008. (Cited on
pages 152, 159, 162, and 163.)

[115] Marco Montali and Andrey Rivkin. DB-nets: On the marriage of Colored Petri
nets and relational databases. In Transactions on Petri Nets and Other Models of
Concurrency XII, pages 91–118. Springer, 2017. (Cited on pages 152 and 153.)

[116] Marco Montali and Andrey Rivkin. From DB-nets to Coloured Petri nets with
priorities (extended version). arXiv preprint arXiv:1904.00058, 2019. (Cited
on pages 152 and 153.)

[117] Silvio Ghilardi, Alessandro Gianola, Marco Montali, and Andrey Rivkin. Petri
nets with parameterised data: modelling and verification (extended version).
arXiv preprint arXiv:2006.06630, 2020. (Cited on page 152.)

[118] Sebastian Steinau, Kevin Andrews, and Manfred Reichert. Coordinating large
distributed process structures. In Enterprise, Business-Process and Information
Systems Modeling, pages 19–34. Springer, 2019. (Cited on page 152.)

[119] Wil M. P. van der Aalst, Paulo Barthelmess, Clarence A. Ellis, and Jacques
Wainer. Proclets: A framework for lightweight interacting workflow pro-
cesses. International Journal of Cooperative Information Systems, 10(04):443–
481, 2001. (Cited on pages 152, 153, and 159.)

[120] Wil M. P. van der Aalst and Alessandro Berti. Discovering object-centric Petri
nets. Fundamenta informaticae, 175(1-4):1–40, 2020. (Cited on pages 152
and 197.)

[121] Karolin Winter, Florian Stertz, and Stefanie Rinderle-Ma. Discovering instance
and process spanning constraints from process execution logs. Information
Systems, 89:101484, 2020. (Cited on pages 152 and 153.)

[122] Karolin Winter and Stefanie Rinderle-Ma. Defining instance spanning con-
straint patterns for business processes based on proclets. In Conceptual Mod-
eling: 39th International Conference, ER 2020, Vienna, Austria, November 3–6,
2020, Proceedings 39, pages 149–163. Springer, 2020. (Cited on page 153.)

[123] Florian Stertz, Karolin Winter, and Stefanie Rinderle-Ma. Discovering instance
spanning exceptions from process execution logs. In 2022 IEEE 24th Conference
on Business Informatics (CBI), volume 2, pages 49–56. IEEE, 2022. (Cited on
page 153.)

BIBLIOGRAPHY 397

[124] RP Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Process diagnos-
tics using trace alignment: opportunities, issues, and challenges. Information
Systems, 37(2):117–141, 2012. (Cited on page 154.)

[125] Paolo Felli, Alessandro Gianola, Marco Montali, Andrey Rivkin, and Sarah Win-
kler. Conformance checking with uncertainty via SMT (extended version).
arXiv preprint arXiv:2206.07461, 2022. (Cited on pages 154 and 380.)

[126] Marco Pegoraro and Wil M.P. van der Aalst. Mining uncertain event data in
process mining. In 2019 International Conference on Process Mining (ICPM),
pages 89–96. IEEE, 2019. (Cited on page 154.)

[127] Marco Pegoraro, Merih Seran Uysal, and Wil M. P. van der Aalst. Discov-
ering process models from uncertain event data. In International Conference
on Business Process Management, pages 238–249. Springer, 2019. (Cited on
page 154.)

[128] Marco Pegoraro, Merih Seran Uysal, and Wil M. P. van der Aalst. Conformance
checking over uncertain event data. Information Systems, 102:101810, 2021.
(Cited on page 154.)

[129] Linh Thao Ly, Stefanie Rinderle-Ma, David Knuplesch, and Peter Dadam. Mon-
itoring business process compliance using compliance rule graphs. In OTM
Confederated International Conferences" On the Move to Meaningful Internet Sys-
tems", pages 82–99. Springer, 2011. (Cited on page 154.)

[130] Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. Verification of gsm-
based artifact-centric systems through finite abstraction. In International Con-
ference on Service-Oriented Computing, pages 17–31. Springer, 2012. (Cited on
page 154.)

[131] Felix Mannhardt, Massimiliano De Leoni, Hajo A Reijers, and Wil M.P. van der
Aalst. Balanced multi-perspective checking of process conformance. Comput-
ing, 98(4):407–437, 2016. (Cited on pages 154 and 210.)

[132] Khalil Mecheraoui, Julio C. Carrasquel, and I. Lomazova. Compositional con-
formance checking of nested Petri nets and event logs of multi-agent systems.
ArXiv, abs/2003.07291, 2020. (Cited on page 154.)

[133] Dirk Fahland, Massimiliano De Leoni, Boudewijn F. Van Dongen, and Wil M.P.
van der Aalst. Behavioral conformance of artifact-centric process models. In In-
ternational Conference on Business Information Systems, pages 37–49. Springer,
2011. (Cited on pages 154, 155, 212, and 213.)

398 BIBLIOGRAPHY

[134] Dirk Fahland, Massimiliano De Leoni, Boudewijn F. van Dongen, and Wil M. P.
van der Aalst. Conformance checking of interacting processes with overlapping
instances. In International Conference on Business Process Management, pages
345–361. Springer, 2011. (Cited on pages 154 and 155.)

[135] Noah Gans, Ger Koole, and Avishai Mandelbaum. Telephone call centers: Tuto-
rial, review, and research prospects. Manufacturing & Service Operations Man-
agement, 5:79–141, 03 2003. (Cited on page 155.)

[136] Lawrence Brown, Noah Gans, Avishai Mandelbaum, Anat Sakov, Haipeng
Shen, Sergey Zeltyn, and Linda Zhao. Statistical analysis of a telephone call
center. Journal of the American Statistical Association, 100(469):36–50, 2005.
(Cited on page 155.)

[137] Suriadi Suriadi, Robert Andrews, Arthur H.M. ter Hofstede, and Moe
Thandar Kyaw Wynn. Event log imperfection patterns for process mining:
Towards a systematic approach to cleaning event logs. Information Systems,
64:132 – 150, 2017. (Cited on pages 155 and 220.)

[138] Raffaele Conforti, Marcello La Rosa, and Arthur ter Hofstede. Timestamp
repair for business process event logs. Technical report, 2018/04/05 2018.
(Cited on pages 155 and 220.)

[139] Niels Martin, Benoît Depaire, An Caris, and Dimitri Schepers. Retrieving the
resource availability calendars of a process from an event log. Information
Systems, 88:101463, 2020. (Cited on page 155.)

[140] Viara Popova, Dirk Fahland, and Marlon Dumas. Artifact lifecycle discovery. In-
ternational Journal of Cooperative Information Systems, 24(01):1550001, 2015.
(Cited on page 155.)

[141] Xixi Lu, Marijn Nagelkerke, Dennis van de Wiel, and Dirk Fahland. Discovering
interacting artifacts from ERP systems. IEEE Transactions on Services Comput-
ing, 8(6):861–873, 2015. (Cited on page 155.)

[142] Michael Werner and Nick Gehrke. Multilevel process mining for financial au-
dits. IEEE Transactions on Services Computing, 8(6):820–832, 2015. (Cited on
page 156.)

[143] Stefan Esser and Dirk Fahland. Storing and querying multi-dimensional pro-
cess event logs using graph databases. In International Conference on Business
Process Management, pages 632–644. Springer, 2019. (Cited on pages 156
and 383.)

BIBLIOGRAPHY 399

[144] Alessandro Berti and Wil M.P. van der Aalst. Extracting multiple viewpoint
models from relational databases. In Data-Driven Process Discovery and Analy-
sis, pages 24–51. Springer, 2018. (Cited on page 156.)

[145] Stefan Esser and Dirk Fahland. Multi-dimensional event data in graph
databases. Journal on Data Semantics, pages 1–33, 2021. (Cited on pages 156
and 383.)

[146] John C. Nash. The (Dantzig) simplex method for linear programming. Comput-
ing in Science & Engineering, 2(1):29–31, 2000. (Cited on pages 156 and 251.)

[147] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Using life
cycle information in process discovery. In BPM Workshops 2015, volume 256
of LNBIP, pages 204–217. Springer, 2015. (Cited on page 156.)

[148] Arik Senderovich, Matthias Weidlich, and Avigdor Gal. Temporal network rep-
resentation of event logs for improved performance modelling in business pro-
cesses. In BPM 2017, volume 10445 of LNCS, pages 3–21. Springer, 2017.
(Cited on page 156.)

[149] Minseok Song and Wil M. P. van der Aalst. Supporting process mining by
showing events at a glance. In Proceedings of the 17th Annual Workshop on
Information Technologies and Systems (WITS), pages 139–145, 2007. (Cited on
page 157.)

[150] Ayush Shrestha, Ben Miller, Ying Zhu, and Yi Zhao. Storygraph: Extracting
patterns from spatio-temporal data. In ACM SIGKDD Workshop IDEA’13, pages
95–103. ACM, 2013. (Cited on page 157.)

[151] Vadim Denisov, Elena Belkina, and Dirk Fahland. BPIC’2018: Mining concept
drift in performance spectra of processes. In 8th International Business Process
Intelligence Challenge, 2018. (Cited on pages 157 and 376.)

[152] Francesco Folino, Massimo Guarascio, and Luigi Pontieri. Discovering high-
level performance models for ticket resolution processes. In Robert Meersman,
Hervé Panetto, Tharam Dillon, Johann Eder, Zohra Bellahsene, Norbert Ritter,
Pieter De Leenheer, and Deijing Dou, editors, On the Move to Meaningful Inter-
net Systems: OTM 2013 Conferences, pages 275–282, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. (Cited on page 158.)

[153] Geetika T. Lakshmanan, Davood Shamsi, Yurdaer N. Doganata, Merve Unuvar,
and Rania Khalaf. A Markov prediction model for data-driven semi-structured
business processes. Knowledge and Information Systems, 42(1):97–126, Jan
2015. (Cited on page 158.)

400 BIBLIOGRAPHY

[154] Andreas Rogge-Solti, Wil M.P. van der Aalst, and Mathias Weske. Discovering
stochastic Petri nets with arbitrary delay distributions from event logs. In BPM
Workshops 2013, volume 171 of LNBIP, pages 15–27. Springer, 2014. (Cited
on page 158.)

[155] Arik Senderovich, Andreas Rogge-Solti, Avigdor Gal, Jan Mendling, Avishai
Mandelbaum, Sarah Kadish, and Craig A. Bunnell. Data-driven performance
analysis of scheduled processes. In BPM 2015, volume 9253 of LNCS, pages
35–52. Springer, 2015. (Cited on page 158.)

[156] Arik Senderovich, Matthias Weidlich, Avigdor Gal, and Avishai Mandelbaum.
Queue mining for delay prediction in multi-class service processes. Inf. Syst.,
53:278–295, 2015. (Cited on page 158.)

[157] Alfredo Cuzzocrea, Francesco Folino, Massimo Guarascio, and Luigi Pon-
tieri. Predictive monitoring of temporally-aggregated performance indicators
of business processes against low-level streaming events. Information Systems,
81:236 – 266, 2019. (Cited on page 158.)

[158] Matthias Ehrendorfer, Juergen Mangler, and Stefanie Rinderle-Ma. Assessing
the impact of context data on process outcomes during runtime. In Interna-
tional Conference on Service-Oriented Computing, pages 3–18. Springer, 2021.
(Cited on page 158.)

[159] Abbas Khosravi, Saeid Nahavandi, and Doug Creighton. Estimating perfor-
mance indexes of a baggage handling system using metamodels. Proceedings
of the IEEE International Conference on Industrial Technology, pages 1 – 6, 03
2009. (Cited on page 158.)

[160] Tanvir Ahmed, Torben Bach Pedersen, Toon Calders, and Hua Lu. Online risk
prediction for indoor moving objects. In 2016 17th IEEE International Con-
ference on Mobile Data Management (MDM), volume 1, pages 102–111, June
2016. (Cited on pages 158 and 229.)

[161] Jacek Skorupski, Piotr Uchroński, and Adrian Łach. A method of hold bag-
gage security screening system throughput analysis with an application for a
medium-sized airport. Transportation Research Part C: Emerging Technologies,
88:52 – 73, 2018. (Cited on page 158.)

[162] Fernando Rosa-Velardo, Olga Marroquín Alonso, and David de Frutos-Escrig.
Mobile synchronizing Petri nets: A choreographic approach for coordination in
ubiquitous systems. Electr. Notes Theor. Comput. Sci., 150(1):103–126, 2006.
(Cited on pages 159, 162, and 163.)

BIBLIOGRAPHY 401

[163] Kees M. van Hee, Natalia Sidorova, Marc Voorhoeve, and Jan Martijn E. M.
van der Werf. Generation of database transactions with Petri nets. Fundam.
Inform., 93(1-3):171–184, 2009. (Cited on pages 159, 162, and 163.)

[164] Wil M. P. van der Aalst. The application of Petri nets to workflow manage-
ment. Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998. (Cited
on page 163.)

[165] Vladimir A Bashkin and Irina A Lomazova. Decidability of-soundness for work-
flow nets with an unbounded resource. In Transactions on Petri Nets and Other
Models of Concurrency IX, pages 1–18. Springer, 2014. (Cited on page 197.)

[166] Kees Van Hee, Alexander Serebrenik, Natalia Sidorova, and Marc Voorhoeve.
Soundness of resource-constrained workflow nets. In Applications and Theory
of Petri Nets 2005: 26th International Conference, ICATPN 2005, Miami, USA,
June 20-25, 2005. Proceedings 26, pages 250–267. Springer, 2005. (Cited on
page 197.)

[167] Natalia Sidorova and Christian Stahl. Soundness for resource-constrained
workflow nets is decidable. IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, 43(3):724–729, 2012. (Cited on page 197.)

[168] Guanjun Liu, Changjun Jiang, and Mengchu Zhou. Time-soundness of time
petri nets modeling time-critical systems. ACM Transactions on Cyber-Physical
Systems, 2(2):1–27, 2018. (Cited on pages 197 and 198.)

[169] Irina A Lomazova, Alexey A Mitsyuk, and Andrey Rivkin. Soundness in object-
centric workflow petri nets. arXiv preprint arXiv:2112.14994, 2021. (Cited on
pages 197 and 198.)

[170] Anne Rozinat and Wil M. P. van der Aalst. Decision mining in ProM. In Inter-
national Conference on Business Process Management, pages 420–425. Springer,
2006. (Cited on page 206.)

[171] George B. Dantzig. Origins of the simplex method. In A history of scientific
computing, pages 141–151. 1990. (Cited on page 251.)

[172] Ozge Köroglu. Outlier Detection in Event Logs of Material Handling System. PhD
thesis, Master’s thesis, Eindhoven University of Technology, 2019. (Cited on
page 260.)

[173] Arik Senderovich, Chiara Di Francescomarino, Chiara Ghidini, Kerwin Jorbina,
and Fabrizio Maria Maggi. Intra and inter-case features in predictive process
monitoring: A tale of two dimensions. In International Conference on Business
Process Management, pages 306–323. Springer, 2017. (Cited on pages 331
and 334.)

402 BIBLIOGRAPHY

[174] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997. (Cited on pages 369 and 382.)

[175] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. Advances in neural information processing systems, 27,
2014. (Cited on page 369.)

[176] Wil M. P. van der Aalst, Daniel Tacke Genannt Unterberg, Vadim Denisov, and
Dirk Fahland. Visualizing token flows using interactive performance spectra.
In Ryszard Janicki, Natalia Sidorova, and Thomas Chatain, editors, Applica-
tion and Theory of Petri Nets and Concurrency, pages 369–380, Cham, 2020.
Springer International Publishing. (Cited on page 379.)

[177] Eli Bogdanov, Izack Cohen, and Avigdor Gal. Conformance checking over
stochastically known logs. In Business Process Management Forum: BPM 2022
Forum, Münster, Germany, September 11–16, 2022, Proceedings, pages 105–
119. Springer, 2022. (Cited on page 380.)

[178] Wil M.P. van der Aalst and Josep Carmona. Process mining handbook. Springer
Nature, 2022. (Cited on page 383.)

Index

activity, 63
label, 13
name, 63

analysis
questions, 117

approximation technique, 144
arc, 56
attribute

name, 63
value, 63

bag, 3, 46, 160
baggage handling system, 1, 3
batching, 7, 11, 116, 381
binary relation, 45
binding, 180, 192
business process, 16

capacity, 138
case, 13, 66

identifier, 13
notion, 14, 63

color
set, 56

concept drift, 220
conformance checking, 205

generalized, 208
conveyor, 3, 112, 122, 160, 161

belt, 112

linear, 112
accumulating, 113

customer order, 7

Dantzig’s simplex algorithm, 251

enabling, 58
entity, 13, 163
event, 11

log, 11, 65
complete, 65

observed, 241
table, 11, 63

complete, 64
incomplete, 64

unobserved, 228
expression, 57

feature extraction, 348, 360, 379
flow, 122
function

partial, 46
restriction, 46
total, 46

graph, 46
connected, 46
directed, 46
undirected, 46

404 INDEX

graph database, 383
guard, 221

happy path, 6
high availability, 6

identifier, 63
incomplete logging, 216
inferring timestamps, 243
information loss, 231
isolation, 9

key performance indicators, 8

label, 47, 175
linear programming, 247
log repair, 206, 378
loop, 116

manual intervention, 215
manufacturing, 381
marking, 47, 56
material flow diagram, 4
material handling system, 1, 3

building block, 112
class, 111

model repair, 206
multiset, 46

neural network
feedforward, 369
recurrent, 369

occurrence, 58
occurrence net, 50
order

partial, 46, 238
labeled, 46

total, 246
outlier, 205

performance analysis
multi-dimensional, 279

performance pattern, 78
composite, 84
elementary, 78
performance class, 83
scope, 80
shape, 81
taxonomy, 79
workload, 82

performance spectrum, 73, 258
aggregate, 74
bin, 74
combined, 77
historic, 344
integrated, 379
layer, 73
miner, 85, 376
multi-channel, 74, 342
performance

classifier, 72
process, 266
queue, 273
resource, 270
segment, 70

occurrence, 70
series, 73

synchronization channel, 275
target, 344
with uncertainty, 242

Petri net, 21
colored, 55

timed, 60
data-aware, 221
labeled, 47

marked, 47
object-centric, 197
with token identities, 163

picking station, 7
place, 47, 56
PQR-system, 174, 186, 189, 379

semantics, 191
replay, 196

INDEX 405

predictive performance monitoring, 327
process, 176

depature, 141
instance, 13
model, 21

process mining, 16, 19
architecture, 17
descriptive, 3
predictive, 3
prescriptive, 3
type, 17

Process mining in logistics, 3
process step, 6, 11, 13, 63
proclet, 166

process, 186
queue, 189
resource, 189
synchronous, 166

system, 166
propagation, 288

blockage, 290
chain, 294
high load, 292
link, 289

protective space, 140

queue, 122, 178
mining, 144
state-dependent, 129, 140

queueing
network

closed, 136
open, 131
with blocking, 131

theory, 119

regression
linear, 369
non-linear, 369

resource, 11, 114, 119, 160, 177
routing, 140

run, 50, 238, 245

semantics
replay, 183

sequences, 46
set, 45
shared resources, 9
short-term storage, 7
simulation, 144, 378
simulation model, 199
soundness, 197
spatial configuration, 10
speed-density effect, 122
state condition

steady, 142
transient, 142

synchronous channel, 170

timestamp, 13
trace, 13, 66
transition, 47, 56

invisible, 47
occurrence

labeled, 192
silent, 47
unobservable, 47

transitive
closure, 45
reduction, 45
reflexive closure, 45

transport and storage units, 3
tray, 7

undesirable performance scenario, 9
unit

diverting, 115
merging, 115

Vanderlande, 2, 3, 7, 100, 144
variable, 57

warehouse system, 7
workflow net, 53, 197

Summary

Process Mining for Systems with Shared Resources and
Queues— Process Modeling, Conformance Checking, and

Performance Analysis

Organizations transform digitally to improve their processes, implement new busi-
ness models, and develop new capabilities. Information systems execute their pro-
cesses and store detailed data about the execution progress and outcome for various
needs. Recently, the vast amount of such data, being intensively collected due to
cheap storage solution availability, triggered extensive developments in data science,
including the emergence of process mining. Process mining is a field of data science
that exploits data about the execution of business processes, typically referred to as
event logs, for identifying process improvements and providing operational support.
It is achieved through such tasks as the data-driven discovery of process models, con-
formance and compliance checking, and performance analysis and monitoring.

Historically, most process mining techniques address the analysis of process in-
stances, or cases, in isolation, i.e., assuming that various cases do not affect each
other. However, this assumption does not hold for many business processes, for ex-
ample, when cases interact on limited shared resources. If this is the case, applying
many existing process mining techniques is infeasible as it would lead to poor or even
inaccurate results.

In this dissertation, we study material handling processes of Material Handling
Systems (MHSs) in logistics, such as Baggage Handling Systems (BHSs) of airports,
or warehouse solutions. In MHSs, cases are not isolated. For instance, passenger
bags in BHSs interact on conveyors of finite capacity while competing for shared
machines. The primary concern of MHS operators is to keep the MHS performance
at the desired level. It makes improving material handling processes and providing
operational support an actual problem. However, existing process mining techniques
fail to capture interactions between cases. This dissertation aims to bridge this gap
by adapting existing techniques and creating new ones, primarily targeting MHSs.

408 Summary

We start with proposing the performance spectrum in Chapter 3. It is a generic
technique for process performance description, capable of revealing case interactions
and various performance phenomena, which we describe in a taxonomy of perfor-
mance patterns. Then, we investigate core aspects affecting the behavior of MHSs in
Chapter 4. For that, we explore state-of-the-art queueing theory models for MHS per-
formance analysis, consider their fundamental assumptions, and validate them using
the performance spectrum. We show why they do not hold for the MHSs we study
but also identify the key concepts for modeling MHSs: queues, resources, and rout-
ing functions. Further, we design a Process-Queue-Resource system (PQR-system) by
materializing these concepts in a modular process model in Chapter 6. This model is
a dedicated synchronous proclet system, whose modules (proclets) represent the pro-
cess, queues, and resources of an MHS, and whose synchronization channels describe
the proclets interactions.

Next, we build on the performance spectrum and PQR-system to extend existing
techniques and create new ones. Thus, we adopt the concept of generalized confor-
mance checking in Chapter 7. We consider how the problem of PQR-system-based
conformance checking can be decomposed into simpler tasks for which existing ap-
proaches can be used. Then, we propose a novel method for inferring missing events
with timestamps for the log repair task of generalized conformance checking to ad-
dress the common problem of the incompleteness of MHS event data.

Further, we propose a way to align performance spectra to PQR-systems in Chap-
ter 8. As a result, we obtain the performance description of the queue and resource
dimensions (besides the “classical” control flow dimension). Exploiting information
about performance patterns in performance spectra, and possible ways of their prop-
agation in the system along the PQR-system paths, we propose a method for root-
cause performance analysis. It detects problems in the performance spectrum of the
control-flow dimension and identifies their root causes in the spectra of the queue
and resource dimensions.

Finally, we address the problem of Predictive Performance Monitoring (PPM) in
Chapter 9. We exploit the ability of the performance spectrum to capture the system
dynamics to formulate a large class of PPM problems as a generic regression prob-
lem over the spectrum. Furthermore, we suggest a PQR-system-based method for
selecting features relevant to learning the corresponding regression models.

The proposed techniques have been evaluated in controlled experiments using
synthetic event logs, generated by a simulation model, and the real data of MHSs built
by Vanderlande, an MHS manufacturer. The evaluation of performance spectrum-
based analysis allowed us to identify the root causes of a severe performance incident
in a major European airport BHS significantly quicker than the existing techniques
used by the domain experts. As a result, the corresponding tool was implemented
internally by Vanderlande and successfully evaluated on other MHSs. Additionally,
an empirical exploration of performance spectra of event logs, recorded by processes

409

outside the MHS domain, showed that untrained analysts were able to identify the
performance patterns unambiguously.

Evaluation of our method for inferring missing events showed accurate results
with synthetic data for which the ground truth was available, and a small error in
the estimated load using the real data. Finally, the ML models for PPM, trained on
the feature sets extracted with our method, showed feasible results for predicting
load on critical areas of BHSs, and peaks of undesirable re-circulation on the sorting
loops. Open-source implementations for all the methods have been made available
as a ProM plugin and several stand-alone tools.

Curriculum Vitæ

Vadim Vladimirovich Denisov was born on 29-11-1977 in Leningrad, USSR. He stud-
ied Computer Science at Saint-Petersburg State Electrotechnical University in Saint-
Petersburg, Russia. In 2000 he graduated with an M.S. in Computer Science. From
2000 to 2016, he worked in the software development industry.

From 2016 on, he started a Ph.D. project in the Department of Mathematics and
Computer Science at Eindhoven University of Technology in Eindhoven, the Nether-
lands, under the supervision of dr. Dirk Fahland and prof.dr.ir. Wil M.P. van der Aalst,
of which the results are presented in this dissertation. Since 2020 he has been a pro-
cess scientist and software engineer with Process Optimization, Future Products at
ServiceNow, Amsterdam, the Netherlands.

List of Publications

Vadim Denisov has the following publications:

Proceedings and Workshop Contributions

• Vadim Denisov, Dirk Fahland, and Wil M. P. van der Aalst. Multi-dimensional
performance analysis and monitoring using integrated performance spectra. In
2020 ICPM Doctoral Consortium and Tool Demonstration Track, ICPM-D 2020,
pages 27–30. CEUR-WS. org, 2020

• Vadim Denisov, Dirk Fahland, and Wil M. P. van der Aalst. Repairing event logs
with missing events to support performance analysis of systems with shared
resources. In Ryszard Janicki, Natalia Sidorova, and Thomas Chatain, editors,
Application and Theory of Petri Nets and Concurrency, pages 239–259, Cham,
2020. Springer International Publishing

• Vadim Denisov, Dirk Fahland, and Wil M. P. van der Aalst. Predictive perfor-
mance monitoring of material handling systems using the performance spec-
trum. In International Conference on Process Mining, ICPM 2019, Aachen, Ger-
many, June 24-26, 2019, pages 137–144. IEEE, 2019

• Wil M. P. van der Aalst, Daniel Tacke Genannt Unterberg, Vadim Denisov, and
Dirk Fahland. Visualizing token flows using interactive performance spectra.
In Ryszard Janicki, Natalia Sidorova, and Thomas Chatain, editors, Application
and Theory of Petri Nets and Concurrency, pages 369–380, Cham, 2020. Springer
International Publishing

• Vadim Denisov, Dirk Fahland, and Wil M. P. van der Aalst. Unbiased, fine-
grained description of processes performance from event data. In Mathias
Weske, Marco Montali, Ingo Weber, and Jan vom Brocke, editors, Business Pro-
cess Management - 16th International Conference, BPM 2018, Sydney, NSW, Aus-
tralia, September 9-14, 2018, Proceedings, volume 11080 of Lecture Notes in
Computer Science, pages 139–157. Springer, 2018

• Vadim Denisov, Elena Belkina, Dirk Fahland, and Wil M. P. van der Aalst. The
performance spectrum miner: Visual analytics for fine-grained performance anal-
ysis of processes. In Wil M. P. van der Aalst, Fabio Casati, Raffaele Conforti, Mas-
similiano de Leoni, Marlon Dumas, Akhil Kumar, Jan Mendling, Surya Nepal,
Brian T. Pentland, and Barbara Weber, editors, Proceedings of the Dissertation
Award, Demonstration, and Industrial Track at BPM 2018 co-located with 16th
International Conference on Business Process Management (BPM 2018), Sydney,

Australia, September 9-14, 2018, volume 2196 of CEUR Workshop Proceedings,
pages 96–100. CEUR-WS.org, 2018

Journals

• Dirk Fahland, Vadim Denisov, and Wil M.P. van der Aalst. Inferring unobserved
events in systems with shared resources and queues. Fundamenta Informaticae,
183(3-4):203–242, 2021

Technical Reports (Non-Refereed)

• Vadim Denisov, Elena Belkina, and Dirk Fahland. BPIC’2018: Mining concept
drift in performance spectra of processes. In 8th International Business Process
Intelligence Challenge, 2018

	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgments
	1 Introduction
	1.1 Challenges and Opportunities of Material Handling System Analysis
	1.1.1 Process Mining in Logistics
	1.1.2 Material Handling Systems in Logistics
	1.1.3 Challenges for Analysis of Material Handling Processes
	1.1.4 Event Data Collected by Material Handling Processes

	1.2 Techniques for Analysis of Material Handling Processes
	1.2.1 Established Techniques
	1.2.2 Process Mining
	1.2.3 Knowledge Gaps in Techniques for Analysis of Processes with Non-Isolated Cases

	1.3 Research Questions and Solution Approaches
	1.4 Thesis Overview
	1.5 Contributions
	1.5.1 Performance Spectrum and Performance Patterns
	1.5.2 Modeling Systems with Shared Resources and Queues
	1.5.3 Generalized Conformance Checking
	1.5.4 Multi-Dimensional Performance Analysis
	1.5.5 Predictive Performance Monitoring

	2 Preliminaries
	2.1 Notations - Set, Multiset, Relation, Function, Sequence, Graph, and Partial Order
	2.2 Process Model and Process Runs
	2.2.1 Labeled Petri Nets
	2.2.2 The Semantics of Petri Nets
	2.2.3 Workflow Nets

	2.3 Colored Petri Nets
	2.3.1 Colored Petri Nets
	2.3.2 Timed Colored Petri Nets

	2.4 Events, Attributes, Event Logs, and Event Tables
	2.5 Chapter Summary

	3 Fine-Grained Description of Processes Performance from Event Data
	3.1 Motivation
	3.2 Performance Spectra
	3.2.1 Segments, Segment Occurrences, and Performance Classifiers
	3.2.2 Performance Spectra
	3.2.3 Aggregate Performance Spectra
	3.2.4 Combined Performance Spectra

	3.3 Performance Patterns
	3.3.1 Elementary Patterns
	3.3.2 Taxonomy of the Parameters of Elementary Patterns
	3.3.2.1 Scope Parameters
	3.3.2.2 Shape Parameters
	3.3.2.3 Workload
	3.3.2.4 Performance

	3.3.3 Composite Patterns
	3.3.4 Demonstration
	3.3.4.1 The Performance Spectrum Miner
	3.3.4.2 Baggage Handling System of a Major European Airport
	3.3.4.3 Road Traffic Fine Management Process
	3.3.4.4 Comparison of Event Logs

	3.3.5 Performance Spectrum Replication Study

	3.4 Practical Aspects of MHS Analysis Using Performance Spectra
	3.4.1 Object-Centric Event Logs of Material Handling Processes
	3.4.2 Causality in Performance Spectra of MHSs

	3.5 Evaluation
	3.5.1 Analysis
	3.5.2 Evaluation Results

	3.6 Chapter Summary

	4 The Nature of Material Handling Systems
	4.1 Classes of Material Handling Systems
	4.1.1 Building Blocks
	4.1.1.1 Conveyors
	4.1.1.2 Resources and Units

	4.1.2 Material Handling Systems with and without Batching

	4.2 Analysis Questions
	4.3 Modeling Building Blocks and Units with Queues
	4.3.1 Resource Model
	4.3.2 Conveyor Model
	4.3.2.1 Speed-Density Effect
	4.3.2.2 Modeling Conveyors as State-Dependent Queues

	4.4 Modeling Material Handling Systems with Queueing Networks
	4.4.1 Modeling with Open Queueing Networks
	4.4.2 Queueing Networks with Blocking
	4.4.3 Modeling MHSs Using Open Queueing Networks
	4.4.4 Modeling MHSs using Closed Queueing Networks

	4.5 Analysis Limitations
	4.5.1 Limitations of Analysis with Queueing Theory
	4.5.1.1 Variable Conveyor Capacity Due To TSU-to-TSU Distances
	4.5.1.2 State-Dependent Queues and Protective Space Policies
	4.5.1.3 Routing
	4.5.1.4 The Nature of Conveyor Departure Processes
	4.5.1.5 Analysis of Queueing Networks Under Transient and Steady State Conditions
	4.5.1.6 Limitations of Approximation Techniques and Simulation

	4.5.2 Limitations of Analysis with Queue Mining

	4.6 Chapter Summary

	5 Review of Literature
	5.1 Analytical and Behavior Models
	5.2 Conformance Checking and Log Repair
	5.3 Descriptive Performance Analysis
	5.4 Predictive Performance Analysis

	6 Modeling Systems with Shared Resources and Queues
	6.1 Challenges for Modeling Systems with Shared Resources and Queues
	6.1.1 Complicated Dynamics of BHSs
	6.1.2 BHS Modeling Challenges

	6.2 Concepts for Modeling Systems with Shared Resources and Queues
	6.2.1 Distinguishing Same-Type Entities by Token Identifiers
	6.2.2 Distinguishing Multiple Interacting Entities by Synchronous Proclets
	6.2.3 Behavior of BHSs through Synchronous Proclets

	6.3 Approaching Modeling: PQR-Systems
	6.3.1 Labels
	6.3.2 Syntax
	6.3.3 Semantics

	6.4 The Formal Model of PQR-systems
	6.4.1 P-Proclet
	6.4.2 Q-Proclet
	6.4.3 R-proclet
	6.4.4 PQR-system

	6.5 Semantics of PQR-Systems
	6.5.1 Replaying a Trace Over a CPN
	6.5.1.1 Labeled Transition Occurrences
	6.5.1.2 Replaying Traces Over CPNs

	6.5.2 Replaying an Event Table Over a PQR-System

	6.6 Properties of PQR-Systems
	6.7 Demonstration
	6.8 Chapter Summary

	7 Conformance Checking for Systems with Shared Resources and Queues
	7.1 Motivation for Generalized Conformance Checking
	7.2 Conformance Checking of PQR-Systems
	7.2.1 Problem Statement
	7.2.2 Trajectory Conformance for P-Proclets
	7.2.2.1 Problem
	7.2.2.2 Motivation
	7.2.2.3 Approach

	7.2.3 Trajectory Conformance for Q- and R-Proclets
	7.2.3.1 Problem
	7.2.3.2 Problem Instances
	7.2.3.3 Approach

	7.2.4 Synchronization Conformance Checking
	7.2.4.1 Problem
	7.2.4.2 Motivation
	7.2.4.3 Approach

	7.2.5 Limitations

	7.3 Inferring Unobserved Events
	7.3.1 Motivation
	7.3.2 Information Loss
	7.3.3 Sequential View on Event Tables
	7.3.4 Partially Ordered View on Event Tables
	7.3.5 Relation between Sequential and Partially-Ordered View
	7.3.6 Problem Statement
	7.3.7 Performance Spectra with Uncertainty
	7.3.8 Inferring Timestamps Along Entity Traces
	7.3.8.1 Infer Potential Complete Runs from a Partial Run
	7.3.8.2 Restoring Timestamps of Unobserved Events by Linear Programming

	7.3.9 Evaluation

	7.4 Chapter Summary

	8 Multi-Dimensional Performance Analysis
	8.1 Introduction
	8.1.1 State-of-the-Art Approaches
	8.1.2 Research Questions
	8.1.3 Method Outline

	8.2 Relating Performance Spectra to PQR-Systems
	8.2.1 Running Example
	8.2.2 Relating P-Proclets to Process Performance Spectra
	8.2.3 Relating R-Proclets to Resource Performance Spectra
	8.2.4 Relating Q-Proclets to Queue Performance Spectra
	8.2.5 Combining Resource and Queue Performance Spectra along Synchronization Channels

	8.3 Method for Multi-Dimensional Performance Analysis
	8.3.1 Running Example
	8.3.2 Method Overview
	8.3.3 Step 1. Detecting Undesirable Performance Patterns in the PS-P
	8.3.4 Understanding Propagation of Blockage and High Load Instances
	8.3.5 Step 2. Propagation Chain Discovery
	8.3.6 Step 3. Merging Propagation Chains Due To High Load Propagation to Alternative Routes
	8.3.7 Step 4. Merging Propagation Chains Due To High Load After Blockage Completion
	8.3.8 Step 5. Analysis of High Load Instances
	8.3.9 Step 6. Multi-Dimensional Analysis of Blockage Instances
	8.3.9.1 Sub-Step M1. Determining and Obtaining PS-Q and PS-R Segments for Analysis.
	8.3.9.2 Sub-Step M2. Detecting Performance Patterns in the PS-Q and PS-R.
	8.3.9.3 Sub-Step M3. Identifying Root Causes of the Given Pattern Instance

	8.3.10 Completing the Running Example Analysis.

	8.4 Evaluation
	8.4.1 Experimental Setup
	8.4.2 Implementation
	8.4.3 Analysis Using Synthetic Data
	8.4.4 Monitoring Using Synthetic Data
	8.4.5 Analysis Using Real Datasets
	8.4.6 Evaluation Results

	8.5 Chapter Summary

	9 Predictive Performance Monitoring
	9.1 Motivation
	9.1.1 Predictive Performance Monitoring
	9.1.2 Data-Driven Feature Identification
	9.1.3 Research Questions
	9.1.4 Method Outline and Evaluation Results

	9.2 Problem Formulation over Performance Spectra
	9.2.1 Intuition behind Using Performance Spectrum for Capturing System Dynamics
	9.2.2 Capturing MHS Dynamics Using Performance Spectra
	9.2.3 Formulation of the Problem over Multi-Channel Performance Spectrum
	9.2.4 Problem Instance Examples

	9.3 Method for Predictive Performance Monitoring
	9.3.1 Overview
	9.3.2 Step 1. Define Target Spectrum Parameters
	9.3.3 Origins of the Performance on Target Segments
	9.3.4 Step 2. Identify Historic Spectrum Parameters
	9.3.5 Step 3. Extract Feature and Dependent Variable Values
	9.3.6 Step 4. Train Predictive Model

	9.4 Evaluation
	9.4.1 Experimental Setup
	9.4.2 Experimental Results
	9.4.2.1 Evaluation Using Synthetic Data
	9.4.2.2 Evaluation Using Real Datasets

	9.5 Chapter Summary

	10 Conclusion
	10.1 Contribution
	10.2 Implemented Tools
	10.3 Limitations and Open Issues
	10.4 Future Work

	Bibliography
	Index
	Summary
	Curriculum Vitæ

