

Asymptotics of stochastic learning in structured networks

Citation for published version (APA):
Senén Cerdà, A. (2023). Asymptotics of stochastic learning in structured networks. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Mathematics and Computer Science]. Eindhoven University of Technology.

Document status and date:
Published: 15/05/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/a7e5f40c-28d8-4334-8383-6359e70d95c7

Asymptotics of stochastic learning
in structured networks

© Albert Senén Cerdà, 2023
Asymptotics of stochastic learning in structured networks

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-5725-7

Cover design by: © Roman Bas Cerdà, 2023
Printed by: ProefschriftMaken || www.proefschriftmaken.nl

Printed in the Netherlands

www.proefschriftmaken.nl

Asymptotics of stochastic learning in
structured networks

PROEFSCHRIFT

ter verkijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de rector magnificus

prof.dr. S. K. Lenaerts, voor een commissie aangewezen
door het College voor Promoties, in het openbaar te verdedigen

op maandag 15 mei 2023 om 16:00 uur

door

Albert Senén Cerdà

geboren te Benicarló, Spanje

Dit proefschrift is goedgekeurd door de promotoren. De samenstelling van de promotiecom-
missie is als volgt:

Voorzitter: prof.dr. E. R. van den Heuvel
Promotor: prof.dr.ir. S. C. Borst
Co-promotor: dr.ir. J. Sanders
Leden: dr.habil. C. de Campos

prof.dr. N. V. Litvak
prof.dr.ir. P. F. A. Van Mieghem (Technische Universiteit Delft)
dr. V. Gupta (University of Chicago, USA)
prof.dr. A. J. Schmidt–Hieber (Universiteit Twente)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de Technische Universiteit Eindhoven Gedragscode Wetenschaps-
beoefening.

Acknowledgments

This dissertation that you now have in your hands or that you are reading on your screen
is the result of a journey of discovery—perhaps also of self-discovery—that started some
years ago. And like any eventful journey, at the end there are people involved that have
helped with its progression and without whom this dissertation would not be possible.
Now, at the end and looking back, I would like to acknowledge them.

First, I would like to thank my supervisor Jaron for his invaluable advice and guid-
ance throughout my time as a doctoral student. He has helped me grow as a researcher,
enabling me to finish this dissertation. I especially appreciate when he invited me to join
TU/e together with him, and I am grateful for his support and flexibility, particularly
during the pandemic. Besides his technical expertise, I have come to admire his ability
to methodically drive projects to success while also being open to new ideas; both in the
role of supervisor and co-author. I sincerely hope that we can collaborate in promising
research in the future.

The research projects could not have been finished also without other brilliant co-
authors: Mark Peletier, Jim Portegies, Oxana Manita, Alexander Van Werde, Gianluca
Kosmella, Céline Comte and Matthieu Jonckheere. It has been a great pleasure and an
enriching experience to work with all of you, and I hope the occasion to work together
arises again. I particularly would like to thank Matthieu for hosting me in the Laboratoire
d’analyse et architecture des Systèmes in Toulouse for three months that were very exciting,
despite my initial personal circumstances.

I would also like to thank my promotor Sem for his excellent support, availability and
expert advice in matters related to research, career and beyond; he has helped me at many
critical moments. His sharp and useful comments and suggestions have always been of
great value throughout my time at TU/e. From my time at TU Delft, I also thank Piet
Van Mieghem for his support and direct but honest style.

I am fortunate of having been part of the SPOR group at TU/e which would not
exist without great staff members, including Maria, Rui, Bert, Onno, Jacques, Pim, Stella,
Marko and Remco among others. They have always been approachable and willing to share
their experience and insight with younger people. I particularly found the conversations
at lunchtime a source for the know-how of the applied math researcher.

My current and former colleagues have also been very helpful in creating a great
environment to conduct research. Among them, I can thank Qiang, Bastian, Richard,
Ellen, Marta, Kay, Youri, Mayank, Joost, Rik, Martijn, Rens, Tom, Mark, Alexander,
Gianluca, Tim, Thomas, Sanne, Neeladri, Purva, Elene, Noela, Benoît, Wessel as well
as others that I hope can forgive me for not including them here. Special thanks go to
my office colleagues Dennis, Rowel, Ivo and Diego for the many coffees, insights, jokes,

i

ii

and nuances that we have had together and shared. I am also grateful to Chantal, Ellen,
Patty and Marianne for helping me with the planning of the defense and making event
organization go smoothly, both as organizer and participant. I also would like to thank
Miguel del Álamo for the many interesting discussions that we have had throughout the
years and for his useful suggestions during the drafting of this thesis.

I am very grateful to the defense committee members, Johannes Schmidt–Hieber,
Varun Gupta, Nelly Litvak, Piet Van Mieghem, and Cassio de Campos for taking the
time to read my thesis and for participating in the defense ceremony.

Finally, I would like to thank my family, and especially my parents, Patri and Rosa,
and brother, Víctor, for supporting me unconditionally and for helping me pursue my
interests despite the uncertainty and my own doubts. I also thank Roman for helping me
with the cover of the thesis. My grandparents would have enjoyed seeing me with this
finished dissertation, and so I partly dedicate it to them. És per a vosaltres.

My last acknowledgment is for Olatz, my dear love, who these last years has made
me realize that sometimes life can be quite like solving problems in mathematics. Life
imitates art, or so they say.

Albert Senén Cerdà,
April 2023.

Contents
Acknowledgments i

1 Introduction 1
1.1 Background of Part I . 4
1.2 Neural networks . 7
1.3 Stochastic gradient descent and learning . 8
1.4 Dropout and summary of results of Part I 10
1.5 Background of Part II . 12
1.6 Spectral clustering . 16
1.7 Summary of results of Part II . 18
1.8 Related literature and positioning . 20

I Dropout 25

2 Almost sure convergence of dropout algorithms for neural networks 27
2.1 Introduction . 27
2.2 Model . 31
2.3 Convergence of projected dropout algorithms 34
2.4 Convergence rate of gradient descent for arborescences with linear activations 37
2.5 Effect of dropout on the convergence rate in wider networks 42
2.6 Conclusion . 47
Appendix . 48

3 Asymptotic convergence rate of dropout for shallow linear neural net-
works 71
3.1 Introduction . 71
3.2 Preliminaries . 74
3.3 Results . 77
3.4 Proofs . 80
3.5 Numerical experiments . 85
3.6 Conclusion . 89
Appendix . 91

4 Universal approximation of dropout neural networks 129
4.1 Introduction . 129
4.2 Specification of dropout neural networks . 134
4.3 Universal approximation for random-approximation dropout 135

iii

iv Contents

4.4 Universal approximation for expectation-replacement dropout 142
4.5 Discussion . 152
4.6 Conclusion . 153
Appendix . 154

II Block Markov Chains 169

5 The spectral norm of block Markov chains 171
5.1 Introduction . 171
5.2 Properties of block Markov chains . 175
5.3 Bounding the spectral norm of N̂Γ −N . 179
5.4 Proof of Corollary 7 . 188
5.5 Proof of Proposition 17 . 189
5.6 Numerical validation . 191
Appendix . 191

6 Experimental evaluation of the BMC model in sequential data 205
6.1 Introduction . 205
6.2 Spectral norm from detected clusters . 209
6.3 Robustness of the clustering procedure to model violations 211
6.4 Model selection for the order of detected clusters 215

Bibliography 223

Summary 233

About the author 235

Chapter 1

Introduction

Artificial intelligence (AI) technologies based on machine learning algorithms are viewed
to have the potential to solve major global challenges. Recent estimates suggest that AI
technologies can yield an increase of up to 14% of the global GDP, or around US $15
trillion, by 2030 [53, 45]. Applications in finance, medicine, education, industry as well as
in governmental organizations are becoming more common and private investment in AI
during 2022 alone totaled around US $90 billion [10]. The end-goal is to create systems
which are sufficiently sophisticated to automate general decision-making.

Networks play directly or indirectly a critical role in large-scale machine learning al-
gorithms. A network (or graph in this manuscript) consists of a set of vertices, and
connecting these vertices there are edges that model pairwise binary relations. Vertices
can represent, for example, different people in a social network, while edges can be friend-
ships or professional connections. A graph is the simplest model to encode information
about relationships between individual elements in a system, and there is a large field
studying graphs as static objects. In applications, however, there is often an underlying
process—usually stochastic—that is based on a network structure whose connections are
also reciprocally altered by the process. In the social network example, a user will inter-
act and share information with close contacts, and with this information, his/her contact
network will also change when meeting new people. From their use, we can distinguish
two essentially different types of networks in machine learning algorithms.

On the one hand, a network can be purposefully coupled to a stochastic process from
real-world phenomena to capture and encode its features. In Neural Networks (NNs),
for example, functions representable by layered graphs with weighted edges emulate the
brain with neurons and axons as vertices and edges respectively. During training, NNs
change their weights using samples in order to learn statistical relationships in the data.
After training with a large number of samples, they become capable of predicting new
datapoints. As it turns out, the predictive ability of such networks depends strongly on
the network characteristics and the training rule used. Such structuring of the network
to encode information about the process—data in this example—is usually referred to as
“training of the network”. This is usually the setting of supervised machine learning.

On the other hand, structured networks can simplify the learning process. A common
example occurs when we have data in a high-dimensional space that actually has a simple
lower-dimensional description. In community detection, for example, we aim to detect

1

2 Chapter 1. Introduction

sets of points in the data that form communities and share some property. Here, we
understand “property” as a feature that is mostly common among members of the same
community. For example, in a social network, communities can be defined by hubs of
people that form cliques or that share a similar number of contacts. A structured network
is used to learn these communities by finding sets of datapoints that match a prescribed
network structure. This is usually the setting of unsupervised machine learning.

The workhorse of machine learning is stochastic optimization. Its success relies upon
the fact that a learning problem in a random environment can be translated into an
optimization problem with stochastic elements. Learning algorithms based on stochastic
optimization have immediate application in settings where randomness of data generates
uncertainty. Perhaps the most famous example is translating the problem of learning a
distribution with a finite number of samples into the problem of minimizing a function with
random coefficients, which we will also explain in Section 1.3. Many learning problems can
be expressed in this manner and examples can be found in both supervised, unsupervised,
as well as reinforcement learning, where an agent acts upon an environment in order to
learn how to maximize a received reward.

In this thesis we will study two specific algorithms that are used in the supervised
and unsupervised settings, respectively. The first algorithm is dropout [117]. In the train-
ing of NNs, the network may learn just the samples provided for training without being
able to predict new examples well. This phenomenon is called overfitting. Dropout is
a technique to avoid overfitting during training of NNs. While training occurs, dropout
changes the structure of the NN stochastically and there is a parameter determining the
stochastic change of the network: the dropout probability. Dropout [117] was introduced
by Krizhevsky, Sutskever and Hinton to train the winning Convolutional Neural Network
(CNN)—a type of NN used to learn images—for the ImageNet–2012 (ILSVRC–2012) com-
petition [118], which kick-started the interest in deep learning. Despite its ample use
in data science, the understanding of the statistical and convergence properties of this
algorithm has remained limited and the choice of its parameters, such as the dropout
probability, is usually left to trial and error.

We will use stochastic optimization techniques to investigate the convergence and
approximation properties of dropout and its variants during the training of NNs. Our
contributions with respect to dropout in this thesis are as follows:

❖ We establish convergence guarantees (Chapter 2), and analyze how the convergence
rate depends on the choice of parameters, like depth and width of the NN, as well as
the dropout probability (Chapters 3 and 4). We provide explicit convergence rates
for some models that depend on the NN architecture and the dropout probability.
Moreover, we compare the theoretical results with simulations, and explain their
consequences.

❖ We investigate the approximation properties of NNs with the randomness of dropout,
and show that they can approximate functions arbitrarily well, even in the presence
of this additional randomness (Chapter 4).

The second model we analyze is inspired by community detection. We study Block
Markov Chains (BMCs), a class of relatively new models for clusters in sequential data.
Clusters in a BMC are modeled within a random trajectory of states. The random tran-
sitions from one state to another in a BMC depend only on the clusters that these states

3

belong to. Thus, in the random trajectory, there are dependencies between transitions
through time that are cluster-dependent. The goal is then to infer the underlying cluster
structure just from the random trajectory of states. This is possible by knowing that the
transition dynamics are of low rank and only depend on the clusters.

There is an algorithm with theoretical guarantees for exact recovery of the clusters
in BMCs [27]. For the provable guarantees of the algorithm, a precise description of the
estimation error of the dynamics is required in one of its steps. The observed trajectory
is recorded with a random matrix whose size is the number of different states, and which
encodes the transition dynamics. This matrix is then used to recover the clusters, and as
it turns out, the order of the spectrum of this matrix determines part of the estimation
error that the cluster algorithm makes. Our contributions with respect to BMCs in this
thesis are:

❖ We use random matrix theory to study the spectral error of BMCs (Chapter 5). This
involves spectral concentration of certain matrices with dependent entries coming
from a BMC. We obtain order-sharp bounds for the spectral error of BMCs when
the observed trajectory is long, and short (sparse regime). Our results improve the
estimates of [27] and characterize the order of the spectral error in BMCs.

❖ We test the BMC clustering algorithm in real-world sequential data from finance,
genetics, and geography (Chapter 6). Concretely, we evaluate the spectral error from
the clusters recovered from these datasets and numerically assess the robustness of
the BMC model by using a perturbative approach. Finally, we determine if the
model is appropriate to describe the observed transition dynamics in the data by
conducting model selection.

Dropout and clustering in BMCs pertain to fundamentally different problems. One is
related to stochastic optimization in NNs and the other to community detection. Nonethe-
less, both algorithms share the underlying idea of using structured networks to represent
and constrain the learning process.

This thesis has two parts. The first part contains the contributions to the research
on dropout and consists of Chapters 2, 3 and 4. The second part of the thesis covers the
research on the BMC model and consists of Chapters 5 and 6.

The remainder of this introduction has the following structure. We will first introduce
dropout within the context of stochastic learning algorithms for NNs in Sections 1.3 and 1.4.
In Sections 1.5 to 1.7 we will describe the BMC model together with its applications. The
results of this thesis for these two parts are summarized in Sections 1.4 and 1.7, respectively.
Finally, in Section 1.8 the reader can find additional literature and positioning of the results
of this thesis.

Part I: Dropout in NNs
In this first part we consider dropout from the stochastic optimization perspective and
aim to understand its convergence properties. We investigate models for NNs for which
precise theoretical results can be derived, which we later complement with simulations.
Furthermore, we analyze the approximation capability of random NNs that have dropout
as the source of randomness.

4 Chapter 1. Introduction

1.1 Background of Part I
NNs have found ample use in present-day big data applications. They are commonly
used for supervised learning, that is, they learn first from samples that contain input and
output pairs and are later tasked with predicting an output if a new input is provided.
For example, in classification tasks, the input space X can be the space of images and
the output space Y can be the space of labels. In this example, we are given samples
(x,y) ∈ X ×Y of the type1(

, orange

)
,

(
, dolphin

)
,

(
, keyboard

)
,(

, orange

)
,

(
, man

)
,

(
, shark

)
, · · · (1.1)

and the task of supervised learning is to find a map θ : X → Y using the previous labeled
images such that θ can also predict the labels of unseen images. You may think of these
as a list of pairs such as(

, ?

)
,

(
, ?

)
,

(
, ?

)
,

(
, ?

)
,

(
, ?

)
. (1.2)

When θ can correctly predict the labels of new unlabeled images, such as those in (1.2),
we say that θ has good generalization properties. On the contrary, if θ can only correctly
predict labels of the previous labeled images in (1.1), we say that θ overfits and does not
generalize well.

In deep learning with NNs, the map θ is usually encoded by a NN. A typical NN with
L layers has a structure as shown in Figure 1.1, where an output vector of layer i−1 is fed
into the next layer i. First, it is multiplied by a weight matrix Wi and added to a vector
or bias bi, and second, a componentwise nonlinear function σ : R → R is applied to the
resulting vector. While there are many variants of NNs, we will consider only feed-forward
NNs as depicted in Figure 1.1 for the sake of simplicity.

The problem in supervised learning consists of finding the right weights W = (Wi, bi)L
i=1

for the NN by using available training data so that the prediction error becomes small. In
our example with pictures from (1.1) and (1.2), we may consider e.g., the 0 − 1 loss for
labels, that is, for two labels a,b,

l(a,b) =

{
0 if a = b,

1 if a ̸= b.
(1.3)

If we denote a function that uses the NN in (1.1) with its weights W by θW , then the
empirical error with the first three images in (1.1) will be

f(W) = l

(
θW

()
,orange

)
+ l

(
θW

()
,dolphin

)
+ l

(
θW

()
,keyboard

)
.

1These images belong to the Canadian Institute For Advanced Research (CIFAR)-100 dataset
[128], which we will also use in Chapters 2 and 3.

1.1 Background of Part I 5

a0 = x ∈ X ,

· · ·
ai = σ(Wiai−1 + bi),
· · ·
aL = y ∈ Y.

x1

x2

x3

x4

y1

y2

y3

Figure 1.1: A NN-graph on the right and its computational analog on the left. Each edge
(i, j) in this graph represents a weight Wi,j which multiplies the output of a
node or neuron. After each node sums the incoming contributions, a nonlinear
function σ is applied. In this example, the input is a vector x ∈ R4, and
the output a vector y ∈ R3. After each layer i, the weight multiplication is
equivalent to a multiplication by a weight matrix Wi as shown on the left. A
vector of biases bi can also be added after weight multiplication. The number
of layers in this case is L = 3.

The common way to determine the weights of a NN is by using gradient descent or
its stochastic version, Stochastic Gradient Descent (SGD), to minimize this empirical
error. In gradient descent, minimization of a function is accomplished by initializing the
parameters—the weights W of a network in our case—and updating them iteratively in the
direction that the function decreases locally, namely in the (negative) gradient direction
if f is differentiable. Thus, at step t, we update recursively a vector w[t] containing the
weights with the gradient of f at w[t], denoted by ∇f(w[t]), with some step size α{t} > 0
controlling the update speed, that is

w[t+1] = w[t] −α{t}∇f(w[t]). (1.4)

In our previous example on a classification task with images and labels from (1.1), the
hope is that gradient descent will converge to weights w∗ that also make the prediction
or test error of the labels in (1.2) small.

One of the early suggested issues when training NNs was that weights of individual
neurons could be very correlated with other neurons nearby. Predictions using these
neurons would thus become sensitive to out-of-sample data and make a NN overfit. A
proposed solution was to ‘drop’ neurons at random during training. In this way, the
training would spread correlations across the NN. This motivation to avoid overfitting
by dropping nodes of NNs was the origin of dropout [117]. It was successfully used for
classification of images in Alex–Net, the NN of the winning submission in the ImageNet–
2012 competition [118], which encouraged the use of deep NNs for label prediction and
sparked the interest in deep learning. An empirical example of the effect of dropout
training can be seen in Figure 1.2.

The original dropout algorithm works by dropping nodes of the NN independently at
random. At each step of SGD, nodes are selected randomly with probability 1 − p and
temporarily dropped from the network (meaning that their associated weights are set to
zero for that step). Here, we denote by p ∈ [0,1] the probability of a node to remain. Then,
a gradient update is computed using the remaining subnetwork in the usual manner. The

6 Chapter 1. Introduction

0 100 200 300 400 500
0

20

40

60

80

Epochs

Tr
ai

ni
ng

cl
as

sifi
ca

tio
n

er
ro

r
%

with dropout
without dropout

0 100 200 300 400 500
40

60

80

Epochs

Te
st

cl
as

sifi
ca

tio
n

er
ro

r
% with dropout

without dropout

Figure 1.2: Example of the effect of dropout in the classification error of images depending
on the number of epochs of training with SGD. Note that with dropout, while
the error in the training set is larger and more time to converge is needed, in
the test set the error is actually smaller.

update direction is the same then as if the network structure had none of the dropped
nodes. Figure 1.3 shows a schematic depiction of the procedure.

(xt+1)1

(xt+1)2

(xt+1)3

(xt+1)4

(zt+1)1

(zt+1)2

(zt+1)3

· · ·
zt+1(W̃t,xt+1) = Networkt+1(Wt,xt+1)
Wt+1 = Wt − αt∇W (zt+1)(W̃t,xt+1)

(xt+2)1

(xt+2)2

(xt+2)3

(xt+2)4

(zt+2)1

(zt+2)2

(zt+2)3

zt+2(W̃t+1,xt+2) = Networkt+2(Wt+1,xt+2)
Wt+2 = Wt+1 − αt+1∇W (zt+2)(W̃t+1,xt+2)

· · ·

Figure 1.3: Example of using dropout SGD on a NN. For each step t, the gradient is
computed assuming that only the weights present in the network—denoted by
W̃t—are variables at that step t. Note that only the weights W̃t are also
updated since the gradient for the dropped edges is zero.

Intuitively, by training a different network at each step, dropout adds redundancy in
the weights of the NN. One can expect in this case that the network learns only the general

1.2 Neural networks 7

features of the training data instead of specific images. Thus, it may be able to generalize
better. One can also anticipate, however, that the additional stochasticity introduced by
dropout during training, namely the fact that we choose a different subnetwork to update
every step, will come at the cost of a lower convergence rate.

From a practical point of view, we would like to know what the cost of training NNs
with dropout is, how it depends on the parameters of the network like width and depth,
and most importantly how it depends on the dropout probability. We remark that the
dropout probability should also tune the penalization on overfitting. We can therefore ask
the following fundamental questions:

(1) Is training of NNs with dropout or its variants guaranteed to converge?

(2) What do the weights converge to when training with dropout?

(3) At what rate does a training algorithm using dropout converge?

Regarding the study of dropout as a stochastic optimization algorithm, there are sur-
prisingly few results in the literature that tackle questions (1)–(2) and especially (3). For
this latter question in particular, apart from the results presented in this thesis, we can
only mention [25], which we review in Section 1.8 at the end of this chapter.

Looking at dropout in a more abstract setting, we can similarly consider a class of
random networks that use dropout as a source of randomness. The study of random NNs
is motivated by the need to make training less complex. In particular, in NNs with two
layers, if only one layer needs to be trained while the other is random and fixed, the
optimization problem can become convex [130]. In this case, more efficient optimization
methods for training than SGD exist. Hence, random networks may yield an alternative
pathway to training NNs in a cost-efficient manner. Determining if random NNs can still
approximate functions is a first step in this direction. If we consider networks with dropout
as a class of random NNs, we may ask if they still can approximate the same functions as
a NN, despite the randomness in the network structure.

(4) Do NNs with dropout still have a universal approximation property?

The focus in the first part of the thesis is on questions (1)–(4) which are partially
answered in Chapters 2, 3, and 4 respectively.

We will briefly introduce basic concepts from NNs and learning in Sections 1.2 and 1.3
respectively before giving an overview of the results in Section 1.4.

1.2 Neural networks
NNs as well as an efficient implementation for computing gradients of their functions
with backpropagation have been known since the 1980s. The large-scale data availability
and computational capacity have allowed NNs with up to billions of parameters to be
trained and used in the last decade. They are useful in tasks ranging from computer
vision [8, 48], scheduling [24], natural language processing, and generative models for text
and images [19, 6] to reinforcement learning [94]. With enough parameters and the right
architecture, NNs can approximate arbitrary functions and are therefore said to satisfy
a universal approximation property [69, 156]. Many different activation functions have

8 Chapter 1. Introduction

been used in NNs; to name a few, ReLU, Leaky ReLU, sigmoid, soft-max, GeLU, etc.
Similarly, many tailor-made NN architectures have appeared that try to use the network
architecture to better encode data for the target task. An example of a well-known CNN,
which is commonly used for image classification, is depicted in Figure 1.4. We refer to
Section 1.8 at the end of this chapter for futher references on other types of NNs.

Dropout, which we will study in the first part, exploits the stochastic properties of
the training algorithm for NNs with SGD, which we describe in the next section in the
context of learning.

8

Convolution

Subsampling

Convolution
Subsampling Full connections

Normalization

Figure 1.4: LeNet-5 architecture of a CNN used for image classification of digits [145].
This NN architecture has several convolutional layers as well as fully-connected
ones and can be trained to classify text as well as images. This network is the
base architecture used for simulations in Chapters 2 and 3 that examine the
convergence rate of SGD with dropout in deep and shallow networks.

1.3 Stochastic gradient descent and learning
We now formalize the learning problem that we have introduced in Section 1.1. Suppose
that we have a distribution µ with values on X ×Y =Rd ×R for d > 1 and suppose that we
have n i.i.d. samples (x1,y1), . . . ,(xn,yn) of µ, which we will also refer to as datapoints. In
function approximation, we would like to find a map θ : X → Y such that θ(x) approximates
the value of y ∈ Y for a given x ∈ X sampled from µ.

In order to define what constitutes a good approximation, we define first a loss function
l : Y ×Y → R, for example, l(a,b) = (a−b)2 or the 0–1 loss for labels that we have defined
in (1.3). Then the loss for a datapoint (xi,yi) is defined by l(θ(xi),yi) and we define the
empirical risk of θ as

R̂n(θ) = 1
n

n∑
i=1

l(θ(xi),yi). (1.5)

In learning we want to find a map θ that approximately captures the general features of
the data (µ in this case). To do so we minimize (1.5) with n datapoints available. However,
we actually would like to find a minimizer of the true or test risk

R(θ) = E(x,y)∼µ(l(θ(x),y)). (1.6)

A common way to approach the learning problem is to choose a function class F for θ

where maps are expressive enough to approximate the pairs (xi,yi)n
i=1 and simple enough

to not be able to exactly fit the data and thus overfit. In most cases, the function class is

1.3 Stochastic gradient descent and learning 9

parametrized by some vector w ∈ Θ ⊆ RN and so F = {θw : w ∈ Θ ⊆ RN }. In particular,
the minimization problem in (1.5) becomes a problem of minimizing the function f(w) =
R̂n(θw).

A way to minimize a function f(w), or in general to minimize other differentiable
functions, is to use a descent scheme as described in (1.4). In common applications,
however, the amount of available datapoints n or the dimension d of the input space
X are large. Thus, computing ∇f(w[t]) exactly for each iteration is computationally
costly. Finding a sufficiently good update at low computational cost is then beneficial
in the trade-off between accuracy and complexity. SGD addresses this issue by using
an unbiased estimator gt(w{t}) of ∇f(w{t}), which is enough to decrease the objective
function in expectation. In particular, the update rule becomes

w[t+1] = w[t] −α{t}gt+1(w[t])

∇f(w[t]) = E[gt+1(w[t])|Gt], (1.7)

where the expectation is taken conditional on all previous samples gi for i = 1, . . . , t and
w[0]. The most common choice for gt+1 is to take uniformly at random a datapoint or a
batch nb of them, where nb ≪ n. In the case of a single datapoint,

gt+1(w[t]) = ∇wl(θw[t](x[t]),y[t]), (1.8)

where the pairs (x[t],y[t]) are sampled uniformly at random from the training dataset at
each step t.

Under mild assumptions on the step sizes α{t} and the variance and regularity of the
gradient estimators (gt)t, the iterates (w[t])t converge to a stationary point of the target
function f [171, 140, 127, 50, 132].

Abusing notation by denoting R̂n(θw) = R̂n(w), SGD is not guaranteed to converge
to a neighborhood of a global minimum w∗

n ∈ argminw(R̂n(w)). This occurs, for example,
in nonconvex functions that possess many local minima. If wSGD is the output of SGD,
there can be a positive gap of the empirical risk minimizer compared to the optimum:

R̂n(wSGD)−argminwR̂n(w) ≥ 0. (1.9)

Even in the case that the global optimum w∗
n of R̂n is found, there is still a so-called

generalization gap
R̂n(w∗

n)−R(w∗
n), (1.10)

which will depend on the class F , the distribution µ of data and the number of samples
n. There is extensive work on studying the properties of the generalization gap in (1.10)
from the statistical point of view for many function approximators, including NNs [28].

When the dimension of the parameter space dim(Θ) = N is much larger than that of
the number of available samples n ≪ N , such as with NNs, overfitting of data can occur
since the problem is usually highly underdetermined. A common way to avoid this issue
and improve generalization is to try to penalize the complexity of the functions θw in
the optimization problem. Adding a penalization is commonly referred to as regularizing.
Dropout is an indirect technique that uses stochasticity in the NNs to regularize the type
of weights that SGD finds. For more information about other regularization techniques,
we refer to Section 1.8 at the end of this chapter.

10 Chapter 1. Introduction

1.4 Dropout and summary of results of Part I

The class of dropout algorithms that we will study consists in practice of multiplying weight
matrices of the NN in each iteration componentwise by independently drawn random
matrices with {0,1}-valued entries. The elements of these random matrices indicate during
a training step whether each individual edge or node is filtered (0) or is not filtered (1). The
resulting weight matrices are then used in the backpropagation algorithm for computing
the gradient of a NN. While in the original Dropout algorithm in [117] only nodes from
the network were dropped, several stochastic training algorithms that avoid overfitting in
NNs have appeared since then (for example, Dropconnect [115], Cutout [64]). Figure 1.5
depicts a NN where we use Dropconnect and drop individual edges instead of nodes.

Mathematically, dropout turns the backpropagation algorithm into a step of an SGD
algorithm in which the primary source of randomness is the NN’s configuration. Under
mild independence assumptions, dropout actually optimizes a risk function averaged over
all possible NN configurations [110].

x1

x2

x3

x4

y1

y2

y3

(a) Case p = 0.7.

x1

x2

x3

x4

y1

y2

y3

(b) Case p = 0.25.

Figure 1.5: (a,b) Training step of dropconnect [115] on a NN with L = 3 layers. In this
algorithm, every iteration, a random NN is first generated by removing each
edge independently of all other edges with probability 1−p ∈ (0,1]. The output
of this random NN is then used to update all weights using backpropagation.

Most theoretical focus has been on the regularization effects of dropout algorithms
[117, 110, 114, 105, 100, 51, 60, 42, 26, 31]. For example, it is known that in NNs with
linear activations—also equivalent to a matrix factorization problem—dropout induces
a regularization on the nuclear norm of the weight matrices [63]. Thus, using dropout
reduces the complexity of the class of estimators in matrix completion problems [12].

In this thesis we look instead at dropout from the stochastic optimization point of view
and investigate the convergence properties of SGD with dropout. Dropout will yield an
approximate minimizer wSGD for a different empirical risk R̃n than R̂n for which a similar
gap to (1.9) can be expected. In this case, we expect that convergence guarantees and the
convergence rate will depend on the characteristics of the NN and the dropout algorithm
used. On a related note, we will also study the approximation properties of dropout
and explore if there is still a universal approximation property for random NNs with the
randomness of dropout. We present in the following three subsections the summary of
results of this part.

1.4.1 Convergence guarantee 11

1.4.1 Convergence guarantee
In Chapter 2, we will consider dropout from the stochastic approximation point of view
and prove that dropout converges. In particular, we use a set of activation functions that
can be bounded by polynomials and consider feed-forward NNs. We will prove—under
some assumptions on the loss, moments of the data, and step sizes—that if we project
the iterates of SGD with dropout onto a compact set, then the iterates converge to a
stationary point of the Ordinary Differential Equation (ODE)

dW

dt
= −∇D(W), (1.11)

where D is an expectation of the original risk over the dropout filters. The results hold
not just for dropout, but for dropout-like filters that are not necessarily independent and
can also depend on the data. This convergence guarantee shows that dropout converges
and to which points it implicitly converges. Our first result in Chapter 2 will thus answer
questions (1) and (2) listed before.

1.4.2 Convergence rate
The convergence guarantee result in Section 1.4.1 is a first result to understand dropout.
In Chapters 2 and 3, we go further and study the convergence rate of dropout and its
dependence on the distribution of the filter variables.

In Chapter 2, we examine first the convergence rate to reach ϵ-stationarity on a generic
nonconvex function with SGD when we use dropout filters in the stochastic update. Specif-
ically, we obtain a decreasing bound for mint∈[T]E[∥∇D(W [t])∥2

2] in the number of itera-
tions T of SGD, which also depends on the dropout probability 1 − p. With this result,
we discuss how dropout changes the difficulty of finding stationary points.

In Chapter 2 we go one step further and study the convergence rate in arborescences—
a toy model for deep NNs; see Figure 2.1c in Chapter 2—with linear activations, where
the effects of dropout can already be observed. In particular, we will determine that
in these networks, the convergence rate can decrease up to an exponential factor of pL,
where L is the number of layers where dropout is used and 1−p is the dropout probability.
Hence, dropout affects very strongly the convergence rate in this model. In Chapter 2
we also conduct experiments with realistic NNs and real datasets. In contrast, we do not
experimentally observe an exponential decrease in wide NNs with two or three layers of
dropout. We will also explain heuristically why this is the case.

The results in Chapter 2 refer to the convergence rate of dropout depending on the
depth of the dropout layers of the NN. A related question concerns what the dependence
on the width of the NN is. In Chapter 3, we will consider a simplified model of a NN: a
shallow linear NN. We will use the ODE method from stochastic approximation to relate
the iterates of SGD with dropout with the gradient flow of an ODE as in (1.11). We
will prove that the expected convergence rate exponent ω of this gradient flow close to
convergence to a minimum behaves as

ω ≈ p(1−p)
fp+(1−p) , (1.12)

where f is the width of the network. This result will also shed light onto the difficulty of
finding a minimum with dropout.

12 Chapter 1. Introduction

Numerical simulation will show, moreover, that the rate in (1.12) qualitatively agrees
with simulations. Interestingly, the inverse dependence on the width f in (1.12) occurs
only close to convergence. Far away the opposite occurs: overparametrization with large f

seems to favor convergence to a minimum in the first stages of Gradient Descent (GD) but
not up-close. Together with the simulations these results may be translated to heuristics
of what to expect when training with dropout. Combined, the results from Chapters 2
and 3 address question (3) with two different approaches.

1.4.3 Approximation properties
In Chapter 4, we will analyze dropout in NNs more abstractly and investigate the approx-
imation properties of random NNs where the randomness comes from dropout.

Denote a feed-forward NN, h : Rd → R, with random dropout filters m by h(w ⊙m) for
any w ∈Rd, where ⊙ is the componentwise product. With m as a random filter, h will be a
random function which we will call for now a dropout NN. In Chapter 4 we will prove that
a class of dropout NNs, denoted by DDNN, satisfies a universal approximation theorem.
In particular, for any g ∈ C([0,1]) and any ϵ > 0, we have that there exists h ∈ DDNN such
that

Em[∥g(w)−h(w ⊙m)∥∞] < ϵ. (1.13)

In Chapter 4 we will prove (1.13) under a variety of assumptions, like the choice of normed
space, the filter distributions, and if we consider dropout also on the input layer, which
requires special attention. In practice, the weights of the NN after training with dropout
are usually scaled by the expectation of m for prediction. We go one step further and
prove furthermore that DDNN satisfies a universal approximation theorem also in this
sense. Namely, in the notation of the previous example, there also exists h ∈ DDNN such
that

Em[∥g(w)−h(w ⊙m)∥∞] < ϵ and ∥g(w)−h(w ⊙E[m])∥∞ < ϵ. (1.14)

The proof of such results is constructive and we provide concrete examples in the case
of dropout.

Part II: BMCs
In the second part of this thesis, we discuss Block Markov Chains (BMCs), a class of
models for sequential data with clusters. Firstly, we investigate the spectral properties
of BMCs, and secondly, we use real-world examples of sequential data to evaluate the
clustering algorithm for BMCs.

1.5 Background of Part II
Discovering low-dimensional structures in data can improve the understanding of how the
underlying data-generating process behaves. This is especially interesting for sequential
data, which are ubiquitous. We introduce this topic with a concrete example from natural
language processing used in machine learning.

Example: We have several texts extracted from newspapers and our task is to classify
the texts by topic. By looking at keywords, one may be able to classify the texts well,

1.5 Background of Part II 13

but with many topics this may not be possible since there are too many words. We can
try instead to find a lower-dimensional representation of a text by checking if it contains
sets of words with similar meanings and by how they follow each other as strings of words.
These sets of words—which we refer also as clusters or communities2—can have similar
contexts as depicted in Figure 1.6. Once we have identified them, texts can be more easily
classified using this low-dimensional latent structure [143]. The problem now is apparent:
Can we find these clusters of words by just observing a sufficiently long text?

The black car was right in front of the white house.

‘the’

‘black’

‘car’
‘white’

‘house’

Xt−1

X1 = Xt

X2

X3

X1 = ‘the’
X2 = ‘black’
X3 = ‘car’

Xt = ‘the’
Xt+1 = ‘white’
Xt+2 = ‘house’

...

Figure 1.6: Text can be modeled as a sequence of words or states (circles in the picture)
in a chain X1, . . . ,Xt, Each state Xt belongs to a cluster, like the green
cluster which contains ‘colors’, but which we do not know a priori.

As hinted by the example in Figure 1.6, there are many potential applications of com-
munity detection in the sequential setting. For example, in streaming services of movies
or music, future recommendations for a user are generated by looking at his/her past se-
quence of consumed media genres or categories. Especially interesting is its potential use
in model-based reinforcement learning, where an agent tries to learn the state transition
dynamics of its environment with sequences of states and rewards [4, 30]. In Chapter 6
we will see other examples. These previous applications rely on the same idea: Can we
detect and recover communities from a trajectory in sequential data?

To proceed, we introduce modeling assumptions in order to formally describe commu-
nities and make the problem tractable. In our setting, there are n states or nodes with
labels in [n] = {1, . . . ,n} and we observe a trajectory of length Tn of connected nodes
X1, · · · ,Xt, · · · ,XTn . We will first assume that the probability of seeing a node Xt+1 at
time t+1 depends only on the immediate previous node Xt in the trajectory, that is, the
process {Xt}t≥0 satisfies the Markov property

P[Xt+1 = j | Xt = i,Xt−1 = it−1, . . .X0 = i0] = P[Xt+1 = j | Xt = i], (1.15)

for all nodes j, i, it−1, . . . , i0 ∈ [n].
To define the communities, we will first assume that there are K ≪ n communities

and each node j ∈ [n] has a label in [K] which determines the community it belongs to.
Hence, we assume that there exists a true cluster assignment map νn : [n] → [K] which

2In this thesis we will make no difference between communities and clusters.

14 Chapter 1. Introduction

encodes the clusters. All we observe is a trajectory of the process {Xt}t≥0, which is driven
by dynamics that are based on the community structure. The first dynamical assumption
about the process is that if Xt is a state in a cluster k ∈ [K], then the process transitions
to a cluster l ∈ [K] with some probability qk,l. The probabilities qk,l ∈ [0,1], which we call
cluster transition probabilities, thus satisfy

∑K
l=1 qk,l = 1 for k ∈ [K]. In the example with

music streaming recommendations, if a user has listened to rock, then this assumption is
equivalent to assuming that there are certain probabilities of choosing a song in a different
genre, like pop or classical music, without specifying the song in that genre first. The
second dynamical assumption is that if at time t+1 a transition to cluster l ∈ [K] occurs,
the trajectory will transition to a state Xt+1 chosen uniformly at random in this cluster l.

Figure 1.7: A visualization of a BMC with K = 3 clusters and q =
[[0.9,0.1,0], [0,0.1,0.9], [0.3,0.7,0]]. The thick arrows visualize the cluster
transition probabilities qk,l, while the thin arrows visualize the transitions of
a sample path {Xt}t≥0. Figure courtesy of [2].

These two dynamical assumptions are the basis of the BMC model for communities
in sequential data. An example of a BMC with K = 3 is depicted in Figure 1.7. The two
dynamical assumptions imply that the transition from a node i ∈ [n] to a node j ∈ [n]
occurs with the following state transition probability

Pi,j := P[Xt+1 = j | Xt = i] =
qνn(i),νn(j)

Size of cluster νn(j) . (1.16)

We consider disjoint clusters in the model, which we denote by Vl for l ∈ [K]. Thus, we
will partition the state space [n] of a Markov chain. The process {νn(Xt)}t≥0 given by
the sequence of clusters of each state together with the size of the clusters fully capture
the dynamics of the trajectory {Xt}t≥0.

Spectral error in BMCs
It was shown by Sanders, Proutière and Yun in [27] that community detection in BMCs
and recovery of clusters is possible under some assumptions on the cluster transition
probabilities, the size of the clusters |Vl|l∈[K] and the length Tn of the observed trajectory.
The clustering algorithm consists of two steps. The first one yields a guess ν̂n for the

1.5 Background of Part II 15

true cluster assignment map νn. The second step exploits the structure of the BMC to
iteratively improve the cluster assignment based on the observed trajectory.

The guess ν̂n for the true assignment map νn in the first step is based on spectral
clustering, where a matrix encoding the transitions is expected to have low rank. In the
case of a BMC we can define an empirical counting matrix

N̂i,j =
Tn∑
t=1

1[Xt+1 = j,Xt = i], (1.17)

which will encode the number of transitions seen in a trajectory of length Tn.
The idea of using spectral clustering is that under the BMC assumption N = E[N̂] has

rank K due to the K-cluster structure. Since we do not have access to N , we can use the
empirical approximation N̂ and examine the rank of the matrix N̂ which we expect to
be approximately K. This notion of approximation is characterized by the spectrum of
N̂ having a certain size and more importantly the spectrum of the difference N̂ − N . A
measure of this difference is the spectral norm or spectral error ∥N̂ −N∥, defined as

∥N̂ −N∥ = sup
∥x∥2=1

∥(N̂ −N)x∥2. (1.18)

The spectral error thus characterizes part of the approximation error that we make when
using N̂ to estimate the clusters that are encoded in N .

In [27] it is proven that if Tn = ω(n), then there exist c > 0 and N̂Γ, a regularized
matrix of N̂ such that asymptotically in n, with high probability,

∥N̂Γ −N∥ < c

√
Tn

n
log
(Tn

n

)
. (1.19)

The bound in (1.19) is sufficient to prove that detection and recovery are possible in
BMCs asymptotically. However, when comparing to other models from graph theory, this
bound was suspected not to be sharp in terms of the ratio Tn/n.

Knowing the correct order of the spectral norm in BMCs will determine the limits of
the spectral clustering and shed light on the effect of dependencies in the BMC model.
Hence we ask the following questions:

(5) Is the upper bound for the spectral error of BMCs in (1.19) sharp?

(6) Is there a matching lower bound to the spectral error in BMCs?

From the technical perspective, questions (5)–(6) can also be asked from the study
of random matrices (namely, the random matrix N̂) with dependencies coming from a
Markov chain. In particular, methods that may work for matrices with independent
entries are not readily applicable in the setting of BMCs.

Experimental evaluation of BMCs
While BMCs provide an appealing model for communities in sequential data, as shown
with the example of Figure 1.6, it is also interesting to examine whether they can be used
to capture hidden structures in real-life data sets. This question had not yet received
attention in the literature.

16 Chapter 1. Introduction

One may think that, perhaps due to the simple assumptions of the BMC model, finding
interesting clusters with the clustering algorithm for BMCs in real data is unlikely. As it
turns out, despite these assumptions, meaningful clusters can still be found. For example,
clusters like the ‘colors’ cluster in Figure 1.6 can be obtained with the clustering algorithm
for BMCs with texts [9]. For a given dataset, however, assessing the performance of the
clustering algorithm may not be so obvious as with the words example. One of the concerns
is that other simpler and more interpretable models than BMCs could still be suitable for
obtaining meaningful clusters. Thus, a clear motivation for understanding the scope of
the model is to evaluate if BMCs are appropriate for a particular dataset. A question we
may ask is the following:

(7) How well do the BMC model and the clusters obtained with its clustering algorithm
describe dynamics in real-world sequential data?

A parallel motivation to the suitability of the model is also to ascertain the limitations
of the model, which could provide bounds on its usefulness. On the one hand, a way to
approach the limitations is to compare previously known theoretical properties of BMCs
with those obtained from real data. Specifically, we can analyze for example if the asymp-
totic bounds for the spectral error of a BMC that we have seen in the previous paragraphs
match those inferred from examples. On the other hand, we may also probe the limita-
tions of the model in a more controlled environment. Specifically, we may consider the
performance of the algorithm under different models for clusters in sequential data that
are not exactly BMCs. A broad question encompassing these two examples is then:

(8) How robust is the clustering algorithm for BMCs?

In the second part of this thesis we will address questions (5)–(8). In Chapter 5, we
bound the spectral norm for generic BMCs. In Chapter 6 we focus on the applicability of
BMCs to real sequential data from a practical point of view. As for the remainder of this
part, we first introduce spectral clustering for BMCs in Section 1.6, which will provide
context for the summary of results later in this part of the thesis.

1.6 Spectral clustering
The clustering algorithm in [27] that reaches the detection and recovery thresholds for
BMCs consists of two steps. Firstly, an initial guess for the underlying cluster assignment
ν̂n is found by using the random matrix N̂ defined in (1.17) associated with the sample
path. If we assume that the number of clusters K is given, then the first K singular vectors
of N̂ are used to construct a low-rank approximation of the random matrix N̂ , after which
a distance-based clustering algorithm like k-means is applied to find the first guess ν̂n of
the cluster assignment. This method is also called spectral clustering, which is one of the
most popular algorithms for community detection due to its efficiency [93]. Secondly, the
initial guess for the cluster structure ν̂n is refined by means of an improvement algorithm
that reconsiders the sequence of observations and performs a greedy, local maximization
of a log-likelihood function of the BMC model. In order to provably obtain a first guess
ν̂n that is close to the true assignment νn, a sufficiently small bound on the spectral error
of (1.19) is required.

1.6 Spectral clustering 17

In BMCs, the spectral clustering is inspired from similar spectral clustering algorithms
found in random graphs. In a graph, the adjacency matrix An encodes the graph structure
by setting the entries of a matrix with dimension n to 1 or 0 depending on whether there
is an edge or not respectively. Formally, (An)i,j = 1[(i, j) ∈ E], where E is the edge set of
the graph. When the graph is random and contains clusters, we have a random adjacency
matrix Ân. Then Ân −E[Ân] is a centered random matrix with independent entries and
a certain block structure, namely, the one corresponding to the true cluster assignment
νn. A block structure contributes significantly to the spectrum of Ân, which usually
encodes global properties of the graph. For the recovery of clusters, this fact suggests that
examining the largest singular values of Ân may provide information about the clusters.
In our asymptotic setting, this translates to expecting that the largest K singular values
of Ân will be approximately those of E[Ân] and will be increasing in n. The difference
Ân −E[Ân] will thus have asymptotically lower order than the main singular values of
Ân and so the contributions of the block structure to the spectrum can be asymptotically
separated from the stochastic noise. This is the fundamental property that justifies the
use of spectral methods for clustering and will also be the case in BMCs with N̂ .

A term that appears in the theoretical analysis of spectral clustering and in the recovery
thresholds for BMCs, and generally in random graphs, is the average degree, that is, the
average number of edges connected to a node in the network. An example from random
graphs is the Erdös–Rényi random graph (ERRG), where there is only one community of
(all) n vertices and an edge is present independently of others with probability pn ∈ (0,1).
Hence, the average degree in ERRGs is npn. In BMCs, we can similarly define the average
degree as the average number of transitions per state, that is, Tn/n.

Depending on the average degree, there are fundamentally different regimes for a graph,
where global properties can be different and can impact the performance of the spectral
clustering. These regimes are the dense and sparse regimes. We say that a graph of n

vertices is dense if the average degree is asymptotically larger than or equal in order to
log(n) and sparse if the average degree has asymptotically an order less than log(n). For
example, an ERRG becomes asymptotically disconnected with high probability only if
the graph is sparse [167, 166]. Similar thresholds appear also in the generalization of the
ERRG with more communities, which is the well-known Stochastic Block Model (SBM)
[169]. In the sparse regime, the spectrum for random graphs can be dominated by a
small amount of vertices with large connectivity compared to the remaining vertices [133,
139]. Global properties of the graph like communities can be consequently hidden in the
spectrum by the contribution of these large-degree vertices, which negatively impacts the
performance of the spectral clustering. We expect similar phenomena to occur in BMCs,
and indeed, in Chapter 5 we verify that a different treatment to N̂ is required in the sparse
regime.

From the previous analogies of the BMC model and random graphs, we can try to
compare the spectrum of a BMC to that of a random graph in a fair setting. In Table 1.1,
the spectral norm of BMCs is compared to the spectral norm ∥Ân −E[Ân]∥ of an ERRG
with a similar order of the average degree. In both dense and sparse regimes, the compar-
ison suggests that the spectral norm of BMCs is of order

√
Tn/n, which is not the order

of the bound in (1.19). Indeed, as we show in Chapter 5 this intuition is correct.

18 Chapter 1. Introduction

Model Average degree Spectral norm Reference

ERRG npn = Tn/n OP(
√

Tn/n) [133]
BMC Tn/n OP(

√
(Tn/n)log(Tn/n)) [27]

BMC Tn/n ΘP(
√

Tn/n) this thesis

Table 1.1: Comparison of previously known spectral bounds for an ERRG and a BMC,
together with the new bound in this thesis. We assume that the average degree
is Tn/n in all cases, which in the ERRG is equivalent to an edge probability of
pn = Tn/n2. We show in this thesis that the previous bound for BMCs can be
improved to match the expected order. The notation of OP and ΘP denotes that
O and Θ hold with high probability. See Chapter 5 for a formal definition.

1.7 Summary of results of Part II
The focus of the second part of the thesis is on questions (5)–(7). As mentioned in
Section 1.6, the spectral error plays an important role in the clustering algorithm for
BMCs, and knowing sharp bounds will determine the limits of the spectral clustering. This
question is investigated in Chapter 5. In Chapter 6 we evaluate the clustering algorithm
for BMCs in real datasets. The contributions of Chapters 5 and 6 are summarized in the
following two subsections respectively.

1.7.1 Spectral norm in BMCs
The previously known bound in (1.19) is sufficient to prove that detection and recovery
of clusters are possible in BMCs. However, if we compare the bounds in the BMC model
to similar bounds in random graphs fairly, the bound in Equation (1.19) is suspected not
to be sharp. In both dense and sparse regimes, we expect the spectral norm in BMCs to
have order

√
Tn/n.

In Chapter 5 we examine the spectral norm of N̂ − N and show first a sharp upper
bound in the dense regime. Namely, we establish that

∥N̂ −N∥ = OP(
√

Tn/n). (1.20)

Futhermore, we also establish the bound (1.20) in a sparse regime, for which a different
analysis is required. To avoid the effect of large-degree nodes in the spectrum, we have
to use a special regularization N̂Γ of the matrix N̂ . Namely, a proportion of the largest
entries of N̂ will be set to zero. This type of regularization is necessary in BMCs and
random graphs to avoid nodes with comparably large degree [133]. See Chapter 5 for
further details.

We show the bound in (1.20) with an approach used in [27, 133, 93] for bounding
the spectrum of random graphs, which we will adapt to the case of BMCs. For this
purpose, we will leverage concentration inequalities for Markov chains [98] to deal with
the characteristic dependencies in BMCs.

Finally, in Chapter 5, we show that the order in (1.20) is actually sharp. Namely,
asymptotically with high probability there is a lower bound ∥N̂ −N∥ > C

√
Tn/n for C > 0.

Thus, the order of the singular values of the spectral error will be fully characterized. These
two results answer questions (5)–(6) positively.

1.7.2 Experimentally testing the BMC model with sequential data 19

0

20

40

60

80

100

0

20

40

60

80

100

Figure 1.8: (Left) The frequency matrix N̂ of the DNA dataset where states have been
ordered with the clusters. (Right) The frequency matrix N̂ of a sampled BMC
model with the inferred parameters from the DNA dataset with states ordered
with the clusters, similarly to (Left). The BMC model captures some cluster
information, despite the inhomogeneity in the dataset.

1.7.2 Experimentally testing the BMC model with sequential data

From an application point of view, a BMC could be a useful model for dimensionality
reduction in a time series as hinted in Section 1.5. Examples of time series for which
Markov chains have historically been used include plant / human DNA (microbiology)
[162, 134], speech / text (natural language processing) [158], and GPS location data
(geography / ethology) [39, 47].

In Chapter 6 we consider BMCs from a practical point of view and use the cluster
recovery algorithm for BMCs in real-world sequential data. We consider three datasets:
stock market data, Deoxyribonucleic Acid (DNA) sequences and the Global Positioning
System (GPS) coordinates of bisons (see Chapter 6 for further details on the datasets and
their sources). We use the clusters and BMC parameters recovered for these three datasets
in order to evaluate different properties of the clustering algorithm. For comparison,
in Figure 1.8 the count matrix N̂ from a BMC-generated model versus one from DNA
is shown. Chapter 6 is based on [9], where additionally, a comprehensive analysis and
evaluation of the BMC model and the recovered clusters in the aforementioned datasets
are conducted.

First, we will examine the spectral gap for BMCs in the data in a qualitative manner
and compare the expected orders for the singular values. The analysis will show that the
spectral error, while enough to provide guarantees in a true BMC, appears not to be very
robust in real data and is sensitive to model violations. We will also provide a heuristic
argument for why this is the case.

In order to further assess the clustering algorithm, a robustness analysis is conducted.
To do so, BMC models with additional noise are considered. The cluster comparison in
these perturbed BMC models will show numerically that the algorithm is robust under
small to moderate perturbations of different noise models and that it can still approxi-

20 Chapter 1. Introduction

mately recover parameters of models that are not BMCs.
In the last part of Chapter 6, we will evaluate the merit of the BMC model. A particular

motivation is to decide if the clusters and the transition dynamics of the data could also
be explained by a simpler model instead of a Markov chain, namely, by a model without
time dependencies. For these datasets, we will use model selection tools and decide if the
BMC model is a good representation of the dynamics of the data compared to other less
and more complex models. In the full state space, conducting model selection will not be
possible due to the large number of free parameters. Thus, we will exploit the state space
reduction and perform model selection in the low-dimensional latent space of clusters. The
analysis will provide evidence that the cluster transitions of the different datasets seem to
follow a model with Markovian dependence, except for the stock market.

1.8 Related literature and positioning
In this last section of the introduction we provide references and position the results of
this thesis in the literature.

Part I: Dropout

NNs. In the last years, many NN architectures have appeared that are tailor-made for
the target task, e.g., image classification like those in (1.2) or for reinforcement learning,
where sequences of observations and rewards are the input that an agent receives when
acting upon the environment. We can mention among many others CNNs [54], Graph
NNs [131], VGG16 [104], Variational Autoencoders [40] and policy-value networks for
reinforcement learning and its variants [94, 43].

Despite its ample use and success, the understanding of NNs for tasks in supervised
learning is still incomplete. It is not yet fully understood, for example, why SGD succeeds
at finding good local minima of the nonconvex risk function in NNs [73], that is, the gap in
(1.9) is often found to be small. While there are convergence results for overparameterized
NNs [34]—the number of free parameters N is larger than the number of samples n—it is
not fully clear why NNs generalize well in spite of the potential for overfitting [66]. From
the statistical point of view, a major issue is the difficulty of estimating parameters in
a high-dimensional space from comparably small amounts of data, which is typically the
case in NNs. This is the so-called curse of dimensionality in statistics. Nonetheless, it is
found experimentally that NNs can have a small gap in (1.10), and there are results in
the literature [28] that provide some understanding of this dichotomy.

Variants and applications of dropout. The first version of a dropout algorithm was
introduced in [117] which was used for the ImageNet competition in [118]. Variants of
the algorithm have appeared ever since, including versions in which edges are dropped
[115]; groups of edges are dropped from the input layer [64]; the distribution of the filters
are Gaussian [92, 68]; the dropout probabilities change adaptively [109, 82]; and that are
suitable for recurrent NNs [108, 84], which are NNs that can be used to model evolution of
differential equations. The performance of the original algorithm has been investigated on
common datasets [117, 105], and dropout algorithms have found application in e.g. image

1.8 Related literature and positioning 21

classification [118], handwriting recognition [103], heart sound classification [79], and drug
discovery in cancer research [62].

Regularization and dropout. Theoretical studies of dropout algorithms have mainly
focused on their regularization effect. The effect was first noted in [117, 105], and subse-
quently investigated in-depth for both linear as well as nonlinear NNs by [110, 114, 100,
31]. Within the context of matrix factorization, it has been shown that Dropout’s reg-
ularization induces a shrinkage and a thresholding of the singular values of the optimal
matrices [51]. Characterizations of Dropout’s risk function and Dropout’s regularizer for
(usually linear) NNs can be found in [60, 42, 26]. In the context of matrix factorizaton,
we will see in Chapter 3 that the risk function of dropout, after rescaling by p, takes the
form

D(W) = ∥Y −W2W1∥2
F +R(W), (1.21)

where ∥ · ∥F is the Frobenius norm but R(W) is not a norm. The regularization term
R(W ∗) at a minimum W ∗ of D(W) plays a role in bounding the generalization gap [12]
in NNs.

Other regularization techiques for NNs exist besides dropout. For example, [90] con-
siders normalizing the output of the layers. This is also called batch normalization. Early
stopping of SGD is also a common regularization technique. Other more classical ap-
proaches include adding an explicit regularization term. For example, a L1 norm [122]
or L2 norm [160] of the weights may be added as an explicit penalization term in the
minimization problem.

Convergence of dropout. Detailed theoretical investigations into the convergence of
dropout algorithms are relatively scarce. Independently of the results presented in this
thesis, a parallel result by [25] appeared that gives insight into the convergence rate of
Dropout in ReLU shallow NNs for a classification task. There, a sample complexity bound
to reach ϵ-suboptimality for the test risk is provided. In particular, O(1/ϵ) iterations
of SGD are required to reach ϵ-suboptimality. The main result in [25] considers a ‘lazy
regime’ analysis for overparametrized NNs, for which weights do not change much with
the updates of SGD and can be controlled. The result relies on an assumption that the
data distribution is separable with a margin in a particular Reproducing Kernel Hilbert
Space (RKHS) that is coupled to the distribution of the filters. However, for dropout
the convergence rate derived there is independent of the dropout probability 1−p, which
as explained in [25] is because of the separability assumption. Compared to our generic
convergence result of Proposition 2 in Chapter 2, we do not assume structure of the
function or data and look instead at the iterations required to reach ϵ-stationarity of the
dropout risk in nonconvex smooth functions using dropout-like SGD. Despite this generic
assumption, an explicit dependence on the dropout probability is obtained.

We can also compare the result in [25] to the convergence of dropout in shallow linear
NNs of Theorem 10 in Chapter 3. While local in nature, the latter convergence result
gives also an explicit convergence rate for any width of the network. This comes, however,
at the cost of assuming that the stochasticity can be controlled by using the gradient flow
of an ODE. Moreover, we use completely different techniques than those in [25].

Finally, it must be noted that convergence properties have been thoroughly studied
within the context of NNs trained without dropout algorithms, see e.g. [35, 44, 33, 14]

22 Chapter 1. Introduction

and references therein.

Stochastic approximation. Dropout algorithms can, by construction, be understood
as forms of stochastic approximation algorithms. Stochastic approximation techniques in
optimization were introduced by [171, 170], and have been the subject to a wide literature
due to their ubiquity. For overviews and their application to NNs, we refer to books by
[140, 127, 149]. We use results from [140] to prove our first result in Chapter 2.

Universal approximation in NNs. The first universal approximation theorem for
NNs with a sigmoidal activation function can be found in [156], and this canonical work
led to much follow-up research. Several years later [154] showed that the universal approx-
imation property relies more on a NN’s architecture than on the specific use of sigmoid
activation functions. Moreover, [153] established that deep, feed-forward NNs require a
nonpolynomial activation function in order for a universal approximation theorem to hold.
With a different approach, [148, 146] used the so-called probabilistic method to prove
the existence of a deterministic function that suitably approximates a target function in
deterministic NNs.

Approximation by random NNs. Parallel to the study of the approximation prop-
erties of NNs, the study of random NNs started. [159] is one of the first works where
universal approximation is mentioned (but not proved) side by side with a NN algorithm
in which random hidden nodes are placed.

A class of networks with random weights and biases, called Random Vector Functional-
Link Nets, was introduced in 1994 by [152]. [150] proved a universal approximation prop-
erty of these networks, by showing that the span of the node functions is almost surely
asymptotically dense in the many-node limit. This result does not apply to dropout
schemes since in the dropout setup the randomness is applied after choosing coefficients.

[141, 142] introduced a class of NNs that relies on a fixed NN topology on top of which
neurons forward positive and negative signals (spikes) at random points in time based
on their own “potential”. Specifically, a constructive proof of the universal approximation
theorem for such stochastic NNs in steady state was given. This class of networks also does
not cover the usual dropout—when we drop nodes—or dropconnect due to the different
dynamics assumed; moreover a dropout NN is trained randomly, but typically operated
deterministically.

[129] investigated uniform approximation of functions with random bases. This is a
particular case of a so-called random feature method, in which parameters are split in two
groups: parameters in one group are taken randomly (and not tuned), and the other part
is trained to achieve the best approximation. Therefore these results also do not cover
dropout or dropconnect since for the latter algorithms all parameters are trained.

Another commonly used class of NNs is the mixture of experts model. The idea is that
for different input regions different, typically simpler, networks (learners) are used for
prediction. The choice is performed by the gating network; training of the model consists
then of training individual learners together with training the gating network. [83] proved
a universal approximation theorem for a mixture-of-experts model, and [69] subsequently
generalized their findings to allow for so-called Gaussian gating.

1.8 Related literature and positioning 23

[37] considered a network architecture that can handle probability measures as input
and output. A universal approximation in Wasserstein metric was proven for continuous
maps from the space of measures into itself. Our results that will be described in Chapter 4
are more specific, and not covered by this result, since we study a different (more restricted)
approximation scheme.

Finally, we refer to the following surveys on results regarding the approximation prop-
erties by random NNs. A survey of approximation-theoretic problems was written by [144];
a recent survey by [13] contains a comparison of approximation properties for finite-width
and finite-depth networks. Several uniform approximation results for random NNs can be
found in [126, Section 5.4]; see also [46].

Part II: BMCs
Community detection. Regardless of the model for communities, randomness adds
difficulties to detecting and recovering a hidden cluster structure. Detection can become
difficult if the clusters are too similar or if the clusters are too loosely defined and only
a low number of connections exist. This latter problem occurs, for example, with sparse
networks, where clusters, if statistically different, cannot be detected due to lack of data.
Similarly, with a detection, that is, a statistical guarantee that clusters exist, recovering
such clusters may not be possible even in the limit that the number of vertices grows large.
In particular, the recovery algorithm may be computationally intractable. As hinted by
these trade-offs, there is an information-theoretical limit to community detection and
recovery, which has been studied for certain models.

For example, investigation of community detection problems within the context of
SBMs—the generalization of an ERRG with clusters—has seen great progress. In the
sparse regime, necessary and sufficient conditions for extraction of clusters that are pos-
itively correlated with the true clusters have been obtained [121, 102, 96]. In the dense
regime, conditions have been established under which the proportion of misclassified ver-
tices can tend to zero as well as under which asymptotic exact recovery occurs [86, 87, 91,
95, 107, 106, 85, 75, 72]. We refer to [65] for an overview of clustering algorithms.

BMCs and Markov chains. Community detection problems for BMCs have thus far
received less attention. In the sparse regime, an information-theoretical lower bound on the
detection error rate satisfied under any clustering algorithm was derived in [27] together
with a two-stage clustering algorithm that can accurately recover the cluster structure.

In a BMC, there is an information quantity I(α,q) depending on the cluster transition
probabilities q and cluster ratios α such that exact recovery is possible if

Tn −n log(n)/I(α,q) = ω(1), (1.22)

that is, the true cluster assignment νn can be asymptotically recovered up to a finite set of
states of [n] with high probability if (1.22) holds. In particular, exact recovery is possible
if Tn = O(n log(n)). On the other hand it can be proven that detection of clusters can be
conducted when Tn = ω(n) [27]. As we will see, these scalings will also appear in Chapter 5
when estimating the spectral error in (1.18).

Besides BMCs, there are other models for Markov chains with low-dimensional latent
structures. In the dense regime, learning of low-rank structures in Markov chains from

24 Chapter 1. Introduction

trajectories is studied in [47], where spectral methods are used to recover a low-rank
approximation of the Markov chain’s transition matrix; [18], where a maximum likelihood
estimation method was used; and [39], where an algorithm is analyzed that relies on
a spectral decomposition followed by an approximation of the convex hull of singular
vectors. Noteworthy too is [38], which describes a method for recovering a latent transition
model from observations of a dynamical system switched by a Markov chain with low-rank
structure; and [32, §5], where the problem is related to estimating a low rank ‘tensor-train’
decomposition from noisy high-order tensor observations.

Spectrum of random matrices and Markov chains. As mentioned in Section 1.5,
random graphs can be analyzed by considering the spectrum of an associated random
matrix. Such spectral properties have been extensively studied. Most results hold for
random matrices with independent or weakly dependent entries, see e.g. [168, 119, 99, 76,
58, 57]. Results on the spectra of adjacency matrices of e.g. SBMs or ERRGs also make use
of independence assumptions [133, 88]. There are further intriguing results on the spectra
of random Markov chains [123, 120, 116]. Compared to these models, in Chapter 5 we
will examine instead singular values coming from the random frequency matrix in (1.17).
A single sample path of a (nonrandom) Markov chain with an underlying block structure
is used as the source of randomness and the sample path can also be short compared to
the size of the system. For the dense regime, a recent article characterizes the limiting
distribution of the singular values of BMCs when Tn = Ω(n2) [2].

In Chapter 5 we sharpen the spectral norm bounds of [27] and quantify an asymptotic
gap between the largest and smallest singular values. The proof method builds on the
techniques in [133, 124, 93] by incorporating concentration inequalities for Markov chains
[98] and relying on a perturbative argument using Weyl’s inequality [151].

Regularization in random graphs. As proposed in [27], our analysis in Chapter 5
also requires regularization of the random frequency matrix N̂ in the sparse regime. We
zero out the entries of the frequency matrix that correspond to a fixed-size subset of most-
visited states. There exist also other regularization techniques for random graphs. Namely,
for an average degree da, one may discard vertices with degree higher than a threshold
(1+ϵ)da [133] for some ϵ > 0 independent of n. Scaling down the weights of edges incident
to vertices of high degree is also possible [67, 59] and has some advantages in the sparse
regime compared to the previous methods that discard vertices.

Part I

Dropout

25

Chapter 2

Almost sure convergence of
dropout algorithms for neural
networks

Based on [29]:
“Almost sure convergence of dropout algorithms for neural networks”

by A. Senen–Cerda, and J. Sanders

In Chapter 1 we have motivated the analysis of dropout from the stochastic optimiza-
tion perspective. In this chapter, we introduce the first results concerning the convergence
guarantees of dropout as well as its convergence rate.

2.1 Introduction
While not explicitly mentioned in Chapter 1, an interesting aspect of dropout algorithms
is that they lie at the intersection of stochastic optimization and percolation theory, which
investigates properties related to connectedness of random graphs and deterministic (pos-
sibly infinite) graphs in which vertices and edges are deleted at random. In the case of
dropout, the output of the filtered Neural Network (NN) with temporarily deleted edges
is used to update the weights. If dropout filters too many weights we expect that little
information can pass through the network, which will consequently also yield a gradient
update for that step that contains little information. As an example, we may consider the
networks in Figures 2.1(a)–(b) when we use Dropconnect, that is, we filter each edge with
probability 1−p independently of all other edges. In an L-layer NN with no biases, a path
from the input layer to the output goes through L weights that have filters. Then, the
probability that a path from input to output stays unfiltered and contributes to a weight
update is pL. If we now fix one edge in the path, then the probability of updating its
corresponding weight through that path in particular is also pL. There are, however, many
other paths in a NN passing through a single edge. The probability that one of those paths

27

28 Chapter 2. Almost sure convergence of dropout algorithms for NNs

is not filtered will be large and may compensate the exponential factor pL. Considering
the connection to bond percolation, one may therefore expect at first glance that dropout
algorithms may perform worse than a routine implementation of the backpropagation al-
gorithm. However, dropout algorithms usually perform well due to their regularization
properties [117, 105]. From the point of view of bond percolation however, this should
still come at the cost of slower convergence of dropout algorithms, and conceivably by as
much as a factor pL.

x1

x2

x3

x4

y1

y2

y3

(a) Case p = 1.

x1

x2

x3

x4

y1

y2

y3

(b) Case p = 0.25.

x1

y1

y2

y3

y4

y5

y6

y7

(c) An arborescence.

Figure 2.1: (a,b) Examples of Dropconnect’s training step [115] in a NN with L = 3 layers.
We can easily observe that the number of paths χ in (b) that fully transverse
the network (χ = 5) is much smaller compared to those of (a) (χ = 240). (c)
An example arborescence of depth L = 3.

In this chapter we establish first a convergence guarantee for dropout algorithms. Fur-
thermore, we analyze the sample complexity of Stochastic Gradient Descent (SGD) with
dropout and the convergence rate of dropout depending on the depth of the NN with a
toy model. At the end of the chapter, we investigate numerically and with heuristics what
convergence rate to expect in realistic NNs.

Summary of results
When using dropout with SGD, we use a stochastic estimate ∆[t+1] of the gradient of
the empirical risk. Denote by F [t+1], X [t+1],Y [t+1] the dropout filters and the samples
provided to the SGD algorithm at time t respectively. We define BW (X,Y) to be the
gradient at W of the risk such as (1.5) if we have input and output pairs (X,Y) (denoted
by gt+1 in Section 1.3). Also depicted in Figure 1.3, dropout defines the estimate of the
gradient update as

∆[t+1] ≜ F [t+1] ⊙BF [t+1]⊙W [t](X [t+1],Y [t+1]), (2.1)

where ⊙ denotes the componentwise product.
Note that the filters appear twice in (2.1). Firstly, they filter the weights W [t] when

the gradient is computed depending only on the subnetwork provided by dropping some
edges or nodes. Secondly, they filter the updates in ∆[t+1] since only the remaining weights
will be updated. Moreover, other distributions for the filters than those for dropout and
dropconnect are allowed (see also 2.2.3).

2.1 Introduction 29

Our first result is a formal probability theoretical proof that for any (fully connected)
NN topology and with differentiable polynomially bounded activation functions (see Def-
inition 2 for a formal definition), the iterates of projected SGD with dropout-like filters
converge. In particular, a step of projected SGD with dropout is given by

W [t+1] = PH(W [t] −α{t+1}∆[t+1]) for t ∈ N0, (2.2)

where ∆[t+1] is the estimate of the gradient with dropout in (2.1) and PH is an operator
that projects the iterates onto a compact convex set H [61]. In order to state our first
result, we define dropout algorithm’s risk function as

D(W) ≜
∫

l(Ψf⊙W (x),y)dP[(F,X,Y) = (f,x,y)], (2.3)

and we will consider l(a,b) = |a− b|2 to be the ℓ2-loss.
The first result is stated informally in the next proposition (see Proposition 1 below

for the exact set of assumptions (N1)–(N6)).

Proposition (informal). Under sufficient regularity of the activation functions, bounded
moments and independence of random variables and some assumptions on the boundary
H, with update (2.2), the weights (W [t])t converge to a unique stationary set of a projected
system of Ordinary Differential Equations (ODEs)

dW

dt
= −∇W D|H(W)+π(W), (2.4)

where π(W) is a constraint term, which describes the minimum force required to keep the
gradient flow of ∇D in H.

This result gives us the formal guarantee that dropout algorithms are well-behaved for
a wide range of NNs and activation functions, and will at least asymptotically (meaning
after sufficiently many iterations) not suffer from problems that could have arisen from
the relation to bond percolation. Moreover, the function D(W) is the expectation of the
risk over the dropout’s filters distribution, which in our result is not restricted to dropping
nodes and can even be coupled to the data. This result also shows that SGD with dropout
converges to the stationary points of D(W). Note that while not explicit in the definition
of D(W) in (2.3), in practical scenarios where we have only a set of datapoints, D(W) will
be defined analogously to the empirical risk R̂n in (1.5) in Chapter 1. In online settings,
however, this may not be the case.

While a guarantee is necessary, a convergence rate would yield more insight into the
trade-offs of the algorithm. In our second result of this chapter, we compute a bound
for the sample complexity of the convergence of dropout to an ϵ-stationary point of a
generic smooth nonconvex function D(W). We say W ∈ W is an ϵ-stationary point of
D if ∥∇D(W)∥2 ≤ ϵ holds. Note that stationary points are not necessarily minima, but
the sample complexity, understood as the number of iterations T required to reach ϵ-
stationarity, is usually associated with the complexity of the function to be optimized.

For a generic smooth nonconvex function D(W), we consider dropout to be SGD
with the update in (2.1), where filters F are chosen independently at each step and are
{0,1}-valued for each parameter. In our result we assume boundedness and Lipschitzness
conditions on D(W). Moreover, under some additional assumptions on the loss function,

30 Chapter 2. Almost sure convergence of dropout algorithms for NNs

examples of NNs with sigmoid activation functions σ(t) = 1/(1+exp(−t)) are also covered
by our result. In this particular case, D(W) = D(W) holds with the definition in (2.3). For
the general case we prove the following (see Proposition 2 below for the full description of
the assumptions (Q1)–(Q5)):

Proposition (informal). Assume that D(W) has enough regularity and satisfies some
boundedness and Lipschitzness assumptions. Let W {t} be iterates of (2.2). For any T ∈ N
there exist c > 0 and c1, c2 > 0 and α{t} = η constant such that if p > c/T , then

min
t∈[T]

E
[
∥∇D(W {t})∥2

2

]
= O

(√
p(c1 +(1−p)c2)

T

)
. (2.5)

Hence, at least T iterations of dropout-like SGD algorithms are required to reach an
O((p(c1 +(1−p)c2)/T)1/4)-stationary point of nonconvex smooth functions in expectation.
Here, c1, c2 are constants depending on the data and function respectively. Compared to
the theoretical optimum rate of O(T −1/4) for SGD on nonconvex smooth functions [20],
this result shows that dropout changes the optimization landscape and approximate sta-
tionary points are easier to find depending on the dropout probability. To investigate the
convergence rate assuming a NN structure, we further examine theoretically and numeri-
cally the convergence rates in specific types of networks.

Our third result in this chapter is an explicit upper bound for the rate of convergence
of regular Gradient Descent (GD) on the limiting ODEs of dropout algorithms for arbores-
cences (a class of trees, see Figure 2.1c for an example), of arbitrary depth with linear
activation functions σ(t) = t. In particular, we will consider the update rule

W {t+1} = W {t} −α∇D(W {t}). (2.6)

Analyzing the convergence of training algorithms on simplified NNs structures with linear
activation functions is commonly used to gain insight into more complex models, see e.g.
[35, 44, 49]. Even without a dropout algorithm present, this task already provides a
substantial theoretical challenge as the optimization landscape is nonconvex. Our choice
to restrict the analysis to arborescences allows us to quantitatively tie our upper bound
for the convergence rate to the depth and the number of paths within the arborescence.
We prove the following (see Proposition 3 below for the full statement):

Proposition (informal). Assume that the base graph G of the NN is an arborescence of
depth L with |L(G)| leaves and the filters F follow the distribution prescribed by Drop-
connect or Dropout with dropout probability 1 − p. Then there exist α > 0 and 1 > η > 0
depending on the initialization such that the iterates of (2.6) satisfy

D(W {t})−min
W

D(W) ≤
(
D(W {0})−min

W
D(W)

)
exp(−ωt/2), (2.7)

with
ω = O

(pL

L|L(G)|2 η2L
)

. (2.8)

One important consequence of this result is that the convergence rate exponent indeed
deteriorates by a factor pL in these NNs. Finally, we complement this result with numerical
experiments. We target the dependency of the convergence on p for more realistic wider

2.2 Model 31

and nonlinear networks on commonly used datasets. Perhaps surprisingly, we do not
observe an exponential decrease of the convergence rate exponent due to dropout in these
simulations. We will offer some heuristic explanation for this result by looking at the
update rate of a generic weight. To our knowledge, the contents of this chapter present
the first experimental study of the convergence rate of SGD with dropout for deep NNs
with the dropout probability and depth as hyperparameters—parameters that are chosen
before training.

Our results lead to the following consequences. First, whenever the iterates of a
dropout algorithm with ℓ2-loss are bounded, they are guaranteed to converge to a sta-
tionary point of the risk function D(W) induced by the dropout algorithm. Secondly,
we prove rigorously that the convergence rate when training with e.g. Dropout or Drop-
connect can change the convergence rate on the empirical risk depending on p and in
arborescences can decrease by as much as a factor pL. For more realistic wider networks,
however, we conduct numerical experiments that suggest that the convergence rate is not
necessarily affected by depth as much across different dropout rates 1 − p in deep neural
networks. Our findings motivate the theoretical study of the convergence rate of dropout
for wide networks. We suspect that there is a transition regime of the convergence rate.
Such transition would affect the dependence on p and would be observed when going from
networks with many layers of dropout with small width, where dependence on the rate
may be exponential in p, to networks with a few layers of dropout but very wide, where
dependence is not exponential anymore.

Notation
In this chapter we index deterministic sequences with curly brackets: α{1},β{1}, etc.
This distinguishes them from sequences of random variables, which we index using square
brackets, e.g. X [1],Y [1], etc. This is the same notation used in Sections 1.1 to 1.4 of
Chapter 1.

Deterministic vectors are written in lower case like x ∈ Rd, but an exception is made
for random variables (which are always capitalized). Matrices are also always capitalized.
For a function σ : R → R and a matrix A ∈ Ra×b, a,b ≥ 1, we denote by σ(A) the matrix
with σ applied componentwise to A. Subscripts will be used to denote the entries of
any tensor, e.g. xi, Ai,j , or Ti,j,l. For any vector x ∈ Rd, the ℓ2-norm is defined as
∥x∥2 ≜ (

∑d
i=1 |xi|2)1/2. For any matrix A ∈Ra×b, the Frobenius norm is defined as ∥A∥F ≜

(
∑a

i=1
∑b

j=1 |Ai,j |2)1/2. For two matrices A,B, the Hadamard (componentwise) product
is denoted by A⊙B.

Let N+ be the strictly positive integers and N0 ≜ N+ ∪ {0}. For l ∈ N+, we denote
[l] = {1, . . . , l}. For a function f ∈ C2(Rn), we denote the gradient and Hessian of f with
respect to the Euclidean norm ∥·∥2 in Rn by ∇f and ∇2f , respectively.

2.2 Model
We now formally define NNs, which we had depicted in Figure 1.1 of Chapter 1, as well as
the class of activation functions that we will use for the convergence guarantee below. We
also formally define SGD with dropout in the context of NNs and the risk function that

32 Chapter 2. Almost sure convergence of dropout algorithms for NNs

dropout induces, which will be also used in the next chapter, albeit in different context

2.2.1 Neural networks and their structure
Let L denote the number of layers in the NN, and dl ∈ N+ the output dimension of layer
l = 1, . . . ,L. Let Wl+1 ∈Rdl+1×dl denote the matrix of weights in between layers l and l+1
for l = 0,1, . . . ,L − 1. Denote W = (WL, . . . ,W1) ∈ W with W ≜ RdL×dL−1 × ·· · ×Rd1×d0

the set of all possible weights. In this chapter, we consider NNs without biases. Later
in Chapter 3, we will consider again a more general definition of NNs with biases in the
context of random NNs.

Definition 1. Let σ be an activation function σ : R → R. A Neural Network (NN) with
L layers is given by the class of functions ΨW : Rd0 → RdL defined recursively by

A0 = x, Ai = σ(WiAi−1) ∀i ∈ {1, . . . ,L−2}, ΨW (x) = WLAL−1 = AL. (2.9)

Commonly used activation functions include the Rectified Linear Unit (ReLU) function
σ(t) = max{0, t}, the sigmoid function σ(t) = 1/(1 + exp(−t)), and the linear function
σ(t) = t. In Sections 2.2 and 2.3 we restrict to the case that σ belongs to a class of
polynomially bounded differentiable functions.

Definition 2. For σ : R → R differentiable, denote the lth derivative of σ by σ(l). The set
of polynomially bounded maps with continuous derivatives up to order r ∈ N0 is given by

Cr
PB(R) =

{
σ ∈ Cr(R)

∣∣∀l = 0, . . . , r ∃kl > 0 : sup
x∈R

|σ(l)(x)(1+x2)−kl | < ∞
}

.

Note that both the linear and the sigmoid activation function belong to Cr
PB(R) for

any r ∈ N0. Also, any polynomial activation function P (x) ∈ R[x] belongs to C
deg(P)
PB (R).

The ReLU activation function is not in Cr
PB(R) for any r ∈ N0. However, because the

class Cr
PB(R) contains polynomials of any degree, we can approximate cases such as ReLU

by using, e.g., the softplus activation function σt(x) = log(1 + exp(tx))/t, which satisfies
that limt→∞ σt(x) = ReLU(x) for every x ∈ R. Note that the softplus activation function
belongs to C2

PB(R).

2.2.2 Backpropagation and SGD
In the same setting as in Section 1.3, we let (X,Y) : Ω → Rd0 ×RdL be a random variable
on the probability space (Ω,F ,P) with distribution µ over input–output pairs. For a NN
ΨW : Rd0 → RdL , we can define a risk analogous to that of (1.5),

U(W) ≜
∫

l(ΨW (x),y)dP[(X,Y) = (x,y)]. (2.10)

Here, l : RdL → [0,∞) is a convex loss function of one’s choice. Throughout this chapter,
we will specify the Euclidean ℓ2-norm l(x,y) ≜ ∥x − y∥2

2 as our loss function of interest
without loss of generality.1 Furthermore, we make no distinction between an oracle risk

1The argument can be extended to other smooth loss functions l(x,y) whose partial derivatives
can be bounded by polynomials of finite degree.

2.2.3 Dropout algorithms and their risk functions 33

function or empirical risk function. Both situations are namely covered by (2.10), which
can be seen by choosing the distribution µ appropriately. What we assume is that one
has the ability to repeatedly draw independent and identically distributed samples from
µ. Thus, the results cover the empirical risk case (where µ has finite support) as well as
the online learning case.

As explained in Section 1.3, we want to find weights W that are close to or exactly in
the set argminW U(W). In an attempt to find a critical point in the set argminW U(W),
SGD is commonly used in NNs training in order to approximate a gradient descent step
with low-iteration complexity. Let {(Y [t],X [t])}t∈N+ be a sequence of independent copies
of (X,Y), let W [0] ∈ W be an arbitrary nonrandom initialization of the weights. For
i = 1, . . . ,L, r = 1, . . . ,di+1, l = 1, . . . ,di, the weights are iteratively updated according to

W
[t+1]
i,r,l = W

[t]
i,r,l −α{t+1}(BW [t](X [t+1],Y [t+1])

)
i,r,l

(2.11)

for t = 0,1,2, Here {α{t}}t∈N+ denotes a positive, deterministic step size sequence,
and the estimate of the gradient BW (·, ·) = ∇W l(ΨW (·), ·) in NNs is computed using the
backpropagation algorithm, which is given in Definition 4 in Appendix 2.A. The stochastic
gradient is an unbiased estimate of the gradient of U(W). In particular, we have

E[
(
BW (X,Y)

)
i,r,l

] = E
[∂l(ΨW (x),y)

∂Wi,r,l

]
= ∂U(W)

∂Wi,r,l
= (∇U)i,r,l. (2.12)

2.2.3 Dropout algorithms and their risk functions
We examine a class of dropout algorithms that work by applying {0,1}-valued random
matrices as filters of the weights during the backpropagation step. Let (F,X,Y) : Ω →
{0,1}dL×dL−1 × . . .×{0,1}d1×d0 ×Rd0 ×RdL be a random variable on the probability space
(Ω,F ,P). Here, we write F = (FL, . . . ,F1) and Fi+1 ∈ {0,1}di+1×di for i = 0, . . . ,L − 1,
similar to how we denote weight matrices. Let {(F [t],X [t],Y [t])}t∈N+ be a sequence of
independent copies of (F,X,Y). In tensor notation, the weights are updated iteratively
by setting

W [t+1] = W [t] −α{t+1}∆[t+1] (2.13)

where ∆[t+1] is given by (2.1) for t = 0,1,2, Note that in (2.1), if F
[t+1]
i,r,l = 0 for some

i,r, l, then ∆[t]
i,r,l = 0. In other words, filtered variables are not updated in these dropout

algorithms.
The update rule (2.13) together with (2.1) describes different dropout algorithms. In

canonical Dropout [117], Fi,r,l′ = Fi,r,l ∼ Bernoulli(p) for any l, l′ ∈ [di] with p = 1/2. In
Dropconnect [115], Fi,r,l ∼ Bernoulli(p) for all i,r, l with p = 1/2. In Cutout [64], F1,r,l = 0
whenever |r −S1| < c, c ∈ N+ and |l −S2| < c with (S1,S2) ∼ Uniform([d1]× [d0]). In fact,
the class of dropout algorithms we consider is quite large. For example, F [t] can depend
on (X [t],Y [t]), and F

[t]
i does not need to have the same distribution as F

[t]
j for i ̸= j.

If F [t] is independent of (X [t],Y [t]) for each t ∈ N0 and Ω countable, then the dropout
algorithm’s risk function of (2.3) simplifies to

D(W) =
∑

f

P[F = f]
∑
x,y

l(Ψf⊙W (x),y)P[(X,Y) = (x,y)]. (2.14)

Here the sums are over all possible outcomes of the random variables F and (X,Y),
respectively.

34 Chapter 2. Almost sure convergence of dropout algorithms for NNs

2.3 Convergence of projected dropout algorithms
Our first result pertains to the convergence of dropout algorithms for a wide range of acti-
vation functions and dropout filters. While convergence is expected in practice, we prove
such convergence rigorously. In order to control the iterates of the stochastic algorithm, we
project the iterates into a compact set. The projection assumption is common when inves-
tigating the convergence of stochastic algorithms [140, 127, 149, 61]; it essentially bounds
the weights. For example, for V [t] ∈ R and an update function f : R → R, f(V [t]) is pro-
jected onto an interval [a,b] is by clipping and setting V [t+1] = min{max{f(V [t]),a}, b}.
There are also results involving bounds on the generalization gap defined in (1.10) for NNs
where bounded weights play a role in avoiding overfitting [97].

2.3.1 Almost sure convergence
We first consider the notation and assumptions regarding the projection step of SGD. Let
H ⊆ W be a convex compact nonempty set and let PH : W → H be the projection onto
H. By compactness and convexity of H, the projection is unique. In a projected dropout
algorithm, the weight update in (2.13) is replaced by (2.2). Because of the projection, our
analysis will tie the limiting behavior of (2.2) to a projected ODE. To state such type of
ODE, we need to define a constraint term π(W), which is defined as the minimum vector
required to keep the solution of the gradient flow

dW

dt
= −∇W D|H(W)+π(W) (2.15)

in H. Appendix 2.C defines the projection term carefully for the case that H’s boundary
is piecewise smooth. Finally, define the set of stationary points

SH ≜ {W ∈ H : −∇W D|H(W)+π(W) = 0}. (2.16)

The set SH can be divided into a countable number of disjoint compact and connected
subsets S1,S2, · · · , say. We choose the following set of assumptions:

(N1) σ ∈ C2
PB(R).

(N2) E[∥Y ∥m
2 ∥X∥n

2] < ∞∀m ∈ {0,1,2},n ∈ N0.
(N3) The random variables (F [t];X [t];Y [t])t∈N are independent copies of (F,X,Y).
(N4) The step sizes α{t} satisfy

∞∑
t=1

α{t} = ∞,

∞∑
t=1

(α{t})2 < ∞. (2.17)

(N5) σ ∈ Cr
PB(R), with dim(W) ≤ r.

(N6) −∇W D|H(W)+π(W) ̸= 0 whenever ∇W D|H(W) ̸= 0.

We are now in position to state our first result:

Proposition 1. Let {W [t]}t∈N0 be the sequence of random variables generated by (2.2)
with (2.1) on a probability space (Ω,F ,P). Under assumptions (N1)–(N4) , there is a
set N ⊂ Ω of probability zero such that for ω ̸∈ N , {W [t](ω)} converges to a limit set
of the projected ODE in (2.15). If moreover (N5)–(N6) hold, then for almost all ω ∈ Ω,
{W [t](ω)}t∈N converges to a unique point in {W ∈ H|∇D|H(W) = 0}.

2.3.2 Generic sample complexity for dropout SGD 35

Theoretically, Proposition 1 guarantees that projected dropout algorithms converge
for regression with the ℓ2-norm almost surely. Proposition 1 implies that if one is using
a regular nonprojected dropout algorithm and one sees that the iterates {W [t]}t>0 are
bounded, then these iterates are in fact converging to a stationary point of (2.3). Assump-
tions (N5)–(N6) are technical but are expected to hold in many cases. In particular, (N5)
holds for the uniformly convergent approximation to a ReLU activation function given by
softplus σt(x) = log(1+exp(tx))/t, and holds for many smooth activation functions. Also
(N6) is expected to hold when H is generic polytope for which the gradient ∇D is not
exactly orthogonal to the normal to the surface.

Observe also that Proposition 1 holds remarkably generally. For example, the depen-
dence structure of (F,X,Y) as random variables is not restricted; it covers commonly
used dropout algorithms such as Dropout, Dropconnect, and Cutout; and it holds for dif-
ferentiable activation functions. Proposition 1 includes also online and offline learning,
depending on the distribution µ from which we sample.

Our proof of Proposition 1 is in Appendix 2.D and relies on the framework of stochastic
approximation in [140, Theorem 2.1, p. 127]. In the background the stochastic process
{W [t]}t>0 is being scaled in both parameter space and time so that the resulting sample
paths provably converge to the gradient flow in (2.15). Examining the proof, we expect
that Proposition 1 can be extended to cases where the filters as random variables have
finite moments, for example, when they are Gaussian distributed [68]. Concretely, the
proofs of Lemmas 4 and 5 in Appendix 2.D rely only on the assumption that F has finite
moments, and may therefore be extended.

2.3.2 Generic sample complexity for dropout SGD
Examining Proposition 1, we note that it does not give insight into the convergence rate
or the precise stationary point of D(W) to which the iterates {W [t]} converge. A related
goal in stochastic optimization is to ask for the number of iterations of (2.13) required to
achieve a point close to stationarity in expectation, also referred to the sample complexity
of the algorithm. We say W ∈ W is an ϵ-stationary point of a differentiable function D
if ∥∇D(W)∥2 ≤ ϵ holds. For nonconvex functions D with a Lipschitz continuous gradient
∇D, SGD convergence to an ϵ-stationary point in expectation can be achieved in O(ϵ−4)
iterations; see [50, 20].

We will look at nonconvex functions with a Lipschitz continuous gradient and assume
that the filters F and the data Z = (X,Y) are independent. We will also assume that
the distribution of Z is well-behaved so as to guarantee that we also have the following
relations for the functions D,U and r:

D(W) = EF [U(F ⊙W)] = EF,Z [r(F ⊙W,Z)], and
∇D(W) = EF [F ⊙∇U(F ⊙W)] = EF,Z [F ⊙∇r(F ⊙W,Z)]. (2.18)

Note that the function r in this setting includes the loss function formulation from (2.10)
with

r(W,Z) = l(ΨW (X),Y), and Z = (X,Y). (2.19)

In the case of dropout, for example, we expect that the sample complexity of finding an
ϵ-stationary point for the empirical risk will change depending on the dropout probability
1 − p. In particular, if p is very small and ∥∇U(W)∥∞ < C holds for any W ∈ W, then

36 Chapter 2. Almost sure convergence of dropout algorithms for NNs

∇D(W) = EF (F ⊙ ∇U(F ⊙ W)) = O(pC) as p → 0. On the other hand if p ≃ 1, then the
variance of F ⊙ ∇U(F ⊙ W), will also be small. We make these intuitions rigorous in the
next proposition. We denote W = RN for some N ∈ N to be the parameter space and
z ∈ Z ⊆ Rd a Lebesgue measurable set. We assume the following:

(Q1) r ∈ C1(W,Z) and supW ∈W,Z∈Z |r(W,Z)| < M .
(Q2) supW ∈W,Z∈Z ∥∇r(W,Z)∥2 < S.
(Q3) ∇U(W) is Lipschitz with Lipschitz constant ℓ (also referred to as U being ℓ-smooth).
(Q4) The random variable F : Ω → {0,1}N satisfies E[F] = p(1, . . . ,1) ∈ W for p ∈ (0,1].
(Q5) The iterates (W [t])t of (2.13) are bounded, that is, supt ∥W [t]∥2 < R almost surely.

Except for (Q4) and (Q5), all other assumptions are routinely used in sample complexity
analysis. While the assumptions of Proposition 2 below hold for general nonconvex smooth
functions D, in the case of NNs and the setting in (2.19) we remark that there are examples
that satisfy these assumptions such as the following one:

Example 3. In a binary classification setting, we assume that the set Z is compact,
that is, the data pairs (x,y) ∈ Z take values in a compact set where y ∈ {0,1} are labels
for the two classes. A NN, denoted by Ψ̃W (·), uses sigmoid activation functions σ(t) =
1/1 + exp(−t) with output in R. The output of Ψ̃W is then used for binary classification
with a logistic map, that is, the predicted probability of belonging to one of the classes is
given by ΨW (x) = 1/(1+exp(−Ψ̃W (x)). In this setting, assumptions (Q1)–(Q3) will hold
if the loss l is also smooth (such as the ℓ2-loss). In this case, in the notation of Section 2.2,
we have D(W) = D(W).

Regarding (Q4), note that it allows for dependencies between filters. We also assume
(Q5) for the sake of simplicity: we could instead use projected SGD with updates from (2.2)
instead of (Q5), but using projected SGD would leave the scalings in p and T invariant.2
Recall that D(W) = EF [U(F ⊙W)].

Proposition 2. Let (F [t])t∈N be a sequence of independent random variables with distri-
bution F . Let W [t] be iterates of (2.13). Assume (Q1)–(Q5). Define J = S2 + 3

2 N2(ℓ2R2 +
2ℓR).
(a) Let T ∈ N+. If p > 2Mℓ/(NS2T), then there exists a constant stepsize α{t} = η > 0
such that for all t ∈ [T],

min
t∈[T]

E
[
∥∇D(W [t])∥2

2

]
≤ 4
√

p(S2 +(1−p)J)
√

MℓN

T
. (2.20)

(b) Let T ≥ 4. There exists a sequence of decreasing stepsizes satisfying α{t} = 1/(ℓ
√

t)
for all t ∈ [T] such that

min
t∈[T]

E
[
∥∇D(W [t])∥2

2

]
≤ 4Mℓ2 +4Np(S2 +(1−p)J) log(T)√

T
. (2.21)

2With projected SGD, we would moreover have to use the expression ∇Up(w) = (w − PH(W [t] −
α{t+1}∆[t+1]))/α{t+1}, which makes the analysis more tedious. Note that ∇Up(w) = ∇U(w) when-
ever w ∈ int(H). See [89] for an example of such analysis.

2.4 Convergence rate of gradient descent for arborescences with linear activations 37

In Proposition 2, we observe that finding approximate stationary points with dropout
is easier with a larger dropout probability 1−p for a wide range of filter distributions like
dropout and dropconnect, as guaranteed by (Q4). In Proposition 2(a) we see a dependence
of the convergence rate on

√
p(S2 +(1−p)J . The term pS2 corresponds to the variance

of the gradient due the distribution of data in Z and decreases with p; while the term
p(1−p)J stems from the variance due to dropout. Note that the sum achieves a maximum
for p ∈ (0,1). We note that Proposition 2 does not suggest that the convergence to minima,
a subset of the stationary points, is faster for smaller p. Indeed, as seen in the numerical
experiments in Section 2.5.1, the next chapter, or in similar work in [25], the NN structure
and data distribution changes the convergence rate dependence on the dropout probability
considerably. In particular, we will see in the next chapter that for shallow linear NNs
the local convergence rate of dropout close to a minimum seems to decrease as p ↑ 1.
Similarly, smaller p does not necessarily improve generalization. In particular, if the
dropout probability 1 − p is large, the optimization landscape will be flat with many
approximate stationary points. In this case, SGD with dropout with a limited sample
complexity of T iterations will not explore the landscape as much as when using a smaller
dropout probability. With a flatter landscape in mind, it may be better in the complexity
trade-off to use a larger p for finding an approximate minimum and generalize better
instead of finding a stationary point.

In Section 2.3 we discussed a generic convergence rate for the empirical risk of dropout.
In Section 2.4 we will next compute the convergence rate explicitly for NNs that are shaped
like arborescences.

2.4 Convergence rate of gradient descent for arbores-
cences with linear activations

In the previous section we have obtained a convergence guarantee as well as a bound
for the sample complexity of dropout. In this section, we focus on the convergence rate
of dropout in functions that have the structure of NNs. In particular, we will derive an
explicit convergence rate for dropout algorithms in the case that we have linear activations
σ(z) = z and that the NN is structured as an arborescence: see Figure 2.1c. Specifically,
we will study the following regular GD algorithm on dropout’s risk function:

W {t+1} = W {t} −α∇D(W {t}) for t ∈ N0. (2.22)

Here, we keep the step size α > 0 fixed. Note that this algorithm generates a determin-
istic sequence {W {t}}t∈N0 as opposed to a sequence of random variables {W [t]}t∈N0 as
generated by (2.13),or (2.1). We will use a linear activation function σ(t) = t, which com-
bined with the arborescence structure will allow us to obtain an explicit convergence rate.
While the iterates of (2.22) are not stochastic, analogous to Proposition 1, the stochastic
iterates will converge to a gradient flow of an ODE, whose discretization is given in (2.22).
Analyzing ODEs related to NNs is common in literature [17, 56]. For more discussion on
the relationship between the iterates of (2.22) and dropout we refer to Appendix 2.B.

Our main convergence result in Proposition 4 below holds for general distribution
functions. However we show here the cases of Dropout and Dropconnect, which are most
insightful. We use the following notation adapted from graph theory. Consider a fixed,

38 Chapter 2. Almost sure convergence of dropout algorithms for NNs

directed base graph G = (E ,V) without cycles in which all paths have length L, which
describes a NN’s structure as follows. Each vertex v ∈ V represents a neuron of the NN,
and each directed edge e = (u,v) ∈ E indicates that neuron u’s output is input to neuron v.
Note that with each edge e ∈ E in the NN, a weight We ∈R and a filter variable Fe ∈ {0,1}
are associated. We will write W = R|E| for simplicity. For an arborescence G, we denote
by L(G) the edge set of leaves. Let M > 2δ > 0 be real numbers and suppose that we
initialize the weights {We}e∈E as follows:

M > W
{0}
e >

√
2δ for e ∈ E\L(G)

|Wl| ≤ δ/
√

|L(G)| for l ∈ L(G). (2.23)

The proof of Proposition 3 below is deferred to Appendix 2.I, which is a consequence
of our more general result in Proposition 4.

Proposition 3. Assume that the base graph G is an arborescence of depth L with |L(G)|
leaves, the activation function σ(t) = t is linear, F is independent of (X,Y), and {W

{0}
e }e∈E

is initialized according to (2.23). If the {Fe}e∈E follow the distribution prescribed by Drop-
connect or Dropout, then there exists α > 0 such that the iterates of (2.22) satisfy

D(W {t})−D(W opt) ≤
(
D(W {0})−D(W opt)

)
exp(−ωt/2). (2.24)

with

ω = O
(pL

L|L(G)|2
(2δ2

M2

)2L)
. (2.25)

2.4.1 Discussion
In Proposition 3 we consider the cases of Dropout and Dropconnect, in which nodes or
edges are dropped with probability 1−p, respectively. Observe that the convergence rate
exponent depends on pL and (2δ2/M2)2L where 2δ2/M2 < 1; see (2.23). The first term in
particular indicates that as the NN becomes deeper, the convergence rate exponent of GD
with Dropout or Dropconnect will decrease by a factor pL. The second term (2δ2/M2)2L

shows the increased difficulty of training deeper NNs and has been observed e.g., by [44,
35]. The exponential dependence in L is moreover tight when using GD and is intrinsic to
the method [44]. Hence, dropout adds another exponential dependence to the convergence
rate in arborescences, which is due to the stochastic nature of the algorithm. In Figure 2.2
an experiment confirming this intuition on the convergence rate of dropout on a single
path for different depths can be seen.

Finally, our proofs of Proposition 3 and the related more general result in Proposi-
tion 4 below can be found in Appendix 2.H. The proof strategy is to show that a Polyak–
Łojasiewicz (PL) inequality holds, which allows one to obtain convergence rates for GD
on nonconvex functions [77]. The new part of the argument is that we use conserved quan-
tities and a double induction to identify a compact set in which the iterates remain and
simultaneously a PL inequality holds. The method that we develop depends intricately
on the arborescence structure and cannot be readily applied to other cases. We provide a
sketch of the proof in the next section.

2.4.1 Discussion 39

0 500 1,000 1,500 2,000 2,500

0.2

0.3

0.4

0.5

0.6

Batch

L
o
ss

(a)

0 500 1,000 1,500 2,000 2,500

0.54

0.55

0.56

0.57

Batch
L
os
s

(b)

0 500 1,000 1,500 2,000 2,500

0.52

0.52

0.52

0.52

0.52

0.52

Batch

L
o
ss

p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5
p = 0.6
p = 0.7
p = 0.8
p = 0.9
p = 1.0

(c)

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

p

β

L = 1
L = 2
L = 3
L = 4
L = 5

(d)

Figure 2.2: The average loss depending on the number of steps of SGD with dropout of the
function f(w) = (y −

∏L
i=1 wix)2 and its average convergence slope. (a) The

average loss for L = 1. (b) The average loss for L = 3. (c) The average loss for
L = 5. (d) The slope β of the fit of y = −βx+γ for the curves in (a), (b) and
(c). The slopes β for a given l have been normalized at p = 1 for comparison
across depths L. Note that for larger L, the effect of p becomes also more
pronounced. This is in agreement with the conclusion in Section 2.4, where
we expect a convergence rate depending on pL. In this case, other effects of
depth are also observed, such as a dependence on the initialization.

40 Chapter 2. Almost sure convergence of dropout algorithms for NNs

2.4.2 Sketch of the proof

Besides the previous notation, we need to introduce the notation corresponding to sub-
graphs and paths. Let G be the set of all subgraphs of the base layered directed graph
G with d vertices, and let E(g) be the set of edges of a subgraph g ∈ G. Let Γj

i (g;e) be
defined as the set of all paths in the directed graph g that start at vertex i, traverse edge
e, and end at vertex j. If the origin or end vertices are in the input or output layer,
the subscript or superscript is dropped from the notation, respectively. For every path
γ ≜ (γ1, . . . ,γL) ∈ Γ(g), we write Pγ ≜

∏
e∈γ We and Fγ ≜

∏
e∈γ Fe for notational conve-

nience. Finally, let GF ≜ (EF ,V) be the random subgraph of base graph G that has edge
set EF ≜ {e ∈ E|Fe = 1}. We denote µg ≜ P[GF = g], and ηγ ≜

∑
{g∈G|γ∈Γ(g)} µg. We first

provide an explicit characterization of dropout’s risk function in (2.3) in terms of paths in
the graph that describes the structure of the NN. This is possible since we assume linear
activation functions. The following lemma now holds, and is proved in Appendix 2.F.

Lemma 1. Assume that the base graph G is a fixed, directed graph without cycles in which
all paths have length L and there are dL output nodes (N6’), that σ(t) = t (N7), and that
F is independent of (X,Y) (N8). Then

D(W) =
∑
g∈G

µgE
[dL∑

s=1

(
Ys −

∑
γ∈Γs(g)

PγXγ0

)2
]
. (2.26)

Moreover D(W) = J (W)+R(W), where

J (W) =
∑

γ∈Γ(G)

ηγE[(YγL
−PγXγ0)2], (2.27)

R(W) = −
∑
g∈G

µgE
[dL∑

s=1

∑
γ∈Γs(g)

((
1− 1

|Γs(g)|

)
Y 2

s −PγXγ0

∑
δ∈Γs(g)\{γ}

PδXδ0

)]
. (2.28)

Here, the constants ηγ ,µγ depend explicitly on F ’s distribution and the NN’s architecture.

Note that Lemma 1 essentially changes variables to rewrite the dropout risk function
as a sum over paths instead of a sum over graphs. This representation allows us to clearly
identify the regularization term R(W). For example in the case of Dropconnect [115],
where the filter variables {Fe}e∈E are independent random variables with distribution
Bernoulli(p), Lemma 1 holds with µg = p|E(g)|(1−p)|E(G)|−|E(g)|. Also note that if for all
subgraphs g ∈ G and vertices i ∈ [d] the number of paths that end at i satisfies |Γi(g)| = 1 ,
such as when G is an arborescence, then for all subgraphs g ∈ G and paths γ ∈ Γ(g) there
is only one path ending at a leave node γL, that is, ΓγL(g) = {γ}.

We now focus on a base graph that is an arborescence of arbitrary depth; see Fig-
ure 2.1c. Hence we now replace (N6’) in Lemma 1 that assumes a generic graph by
assumption (N6), where G is specifically an arborescence. The following specification of
Lemma 1 is also proven in Appendix 2.F.

Corollary 1. Assume that the base graph G is an arborescence of depth L (N6), and

2.4.2 Sketch of the proof 41

(N7)–(N8) from Lemma 1. Then D(W) = I(W)+D(W opt), where

I(W) ≜
∑

γ∈Γ(G)

νγ(zγ −Pγ)2,

D(W opt) =
∑

γ∈Γ(G)

ηγ(E[Y 2
γL

]−E[YγL
Xγ0]2/E[X2

γ0]), (2.29)

and νγ ≜ ηγE[X2
γ0], zγ ≜ E[YγL

Xγ0]/E[X2
γ0] for γ ∈ Γ(G). Consequently, R(W) = 0 for

an arborescence.

The convergence result we are about to show uses the fact that for the system of ODEs
dW/dt = −∇W D(W) there are conserved quantities. Within the proof, these conserved
quantities have the crucial role of guaranteeing compactness for the iterates. Specifically,
let L(g;f) denote the leaves of the subtree of g ∈ G rooted at a vertex f ∈ E(g), and define
the set of leaves of G as L(G) ≜ ∪f∈EL(G;f). We remark that in the previous notation
dL = |L(G)|. For W ∈ W and each leaf f ∈ E\L(G), define the quantity

Cf = Cf (W) ≜ W 2
f −

∑
l∈L(G;f)

W 2
l . (2.30)

Define Cmin ≜ mine∈E\L(G) Ce and C
{t}
e = Ce(W {t}) for t ∈ N+ also, both of which we

require later. Lemma 2 now proves that the function Cf in (2.30) is a conserved quantity;
the proof is in Appendix 2.G.

Lemma 2. Assume (N2) from Proposition 1, (N6) from Corollary 1 , (N7), (N8) from
Lemma 1. Then under the negative gradient flow dW/dt = −∇D(W),

dCf

dt
= 0 (2.31)

for all f ∈ E\L(G).

We are almost in position to state our second result, but need to introduce still some
notation. We define the following constants

∥ν∥1 ≜
∑

γ∈Γ(G)

νγ , νmin ≜ min
γ∈Γ(G)

νγ , νmax ≜ max
γ∈Γ(G)

νγ (2.32)

for notational convenience. Also, for 0 < δ < M , we define

S ≜ {W ∈ W : M >
∣∣Wf

∣∣> δ > 0 ∀f ∈ E(G)\L(G);M >
∣∣Wf

∣∣ ∀f ∈ L(G)}, (2.33)

a bounded set of parameters where if the weight is associated with a leaf, they are further-
more bounded away from zero. Let finally

B(ϵ,I) ≜
{

W ∈ W : I(W) ≤ ϵ,W 2
f −

∑
l∈L(G;f)

W 2
l ∈ If for f ∈ E\L(G)

}
(2.34)

denote the set of all weight parameters that are ε-close to a critical point and for which the
conserved quantities in (2.30) deviate by no more than O(C{0}

f) from their initial value
C

{0}
f . These deviations are made explicit by the intervals

If ≜ [C{0}
f /2,3C

{0}
f /2] for f ∈ E\L(G), and the set I ≜ ×f∈E\L(G)If ⊆ R|E|−|L(G)|.

(2.35)

42 Chapter 2. Almost sure convergence of dropout algorithms for NNs

Our proof shows that the iterates {W {t}}t≥0 stay in the intersection S ∩B(ε,I), and this
implies that the weights (including those associated with the leaves) remain bounded. The
following now holds, and its proof can be found in Appendix 2.H.

Proposition 4. Assume (N2) from Proposition 1, (N6) from Corollary 1, (N7)–(N8)
from Lemma 1, that W {0} ∈ S ∩ B(ϵ,I) and ML ≥ |zγ | for all γ ∈ Γ(G) (N9), that
1
2 Cmin(W {0}) > δ2 (N10). If

α ≤ min
(

νmin
e1/2(C{0}

min)L

16∥ν∥1 LM2(L−1)I(W {0})
,

1
12νmax |E| |Γ(G)|M2(L−1) ,

1
2νmin(C{0}

min)L−1

)
,

(2.36)

then the iterates of (2.22) satisfy

D(W {t})−D(W opt) ≤
(
D(W {0})−D(W opt)

)
exp(− ατ

2 t). (2.37)

where τ = 4νmin exp(−1/2)(C{0}
min)L−1.

Proposition 4 identifies explicitly how the convergence rate of GD on a dropout’s
risk function depends on the dropout algorithm and the structure of the arborescence:
parameters such as p, |L(G)|,L are implicitly present in the constants νmin and ∥ν∥1 in
α,τ .

Note that Assumptions (N9)–(N10) are relatively benign. These assumptions are for
example satisfied when initializing M > W

{0}
e >

√
2δ for e ∈ E\L(G) and setting |Wl| ≤

δ/
√

|L(G)| for all l ∈ L(G) and ϵ = I(W {0}), which we assume in Proposition 3. In other
words, this initialization sets the weights that are associated with leaves small compared
to all other weights.

2.5 Effect of dropout on the convergence rate in wider
networks

In Proposition 4, we have proven that the convergence rate depends on pL for NNs shaped
like arborescences. Let Gtree be a tree and e ∈ E(Gtree) be an edge. Denote by Γ[t](e) the
set of paths passing through e that are not filtered by dropout at time t. We observe that
at any given time t of dropout SGD,

P[w[t]
e is updated] = P[Γ[t](e) ̸= ∅] = pL. (2.38)

If we denote by tupdate(Gtree) = 1/pL the average update time for a weight in Gtree,
then we need 1/pL more time on average for a given edge to be updated than when we do
not use dropout. For wider networks G, however, edges can be updated simultaneously
and repeatedly via different available paths. By the previous intuition we might still
expect that, if the updates are sufficiently independent, the convergence rate depends
approximately on 1/tupdate. In order to verify this intuition we will determine tupdate for
NNs that are much wider than deep, and later simulate their convergence rates also in
realistic settings.

Suppose now that G is a graph of a fully-connected NN with L dropout layers each of
which has width D. For each of the vertices u ∈ G in a dropout layer, there is an associated

2.5 Effect of dropout on the convergence rate in wider networks 43

dropout filter variable Fu ∼i.i.d. Ber(p) where p > 0 is fixed. That is, we use dropout. Note
that any other additional input or output layer without filters only changes the number of
paths by a multiplicative factor. Hence, we will restrict to the case that all nodes in the
layers have filter variables. In this case, we may consider a path γ = (u1, . . . ,uL) as a set
of L vertices—one for each dropout layer—instead of edges. For two paths γ and δ, we
consider their intersection γ ∩ δ as the subset of vertices belonging to both paths. Hence,
|γ ∩ δ| = l implies that the intersection has l vertices, not necessarily forming a path.

We remark that we can restrict to the case L > 2. In the case of one dropout layer
L = 1, an edge e = (u,v) conected to a dropout node u is updated if and only if the filter
Fu = 1, where u ∈ G is the adjacent vertex to e with a dropout filter, so that in this
case P[w[t]

e is updated] = 1 − p. For L = 2, an edge e = (u,v) is updated if and only if
Fu = Fv = 1, so that P[w[t]

e is updated] = 1−p2. Recall that we denote by Γ(e) the set of
paths γ of G passing through e. For a path γ ∈ Γ(e), in the following, we let Fγ =

∏
u∈γ Fu

be the indicator of a path being filtered. Thus, Fγ is 1 is γ is not filtered and 0 otherwise.
We will use Greek letters for paths and Latin letters for vertices when referring to filters
Fγ and Fu respectively.

Lemma 3. Let G be a graph of a fully-connected NN with L > 2 dropout layers, each
with the same width D and with dropout filters Fu for u ∈ G. For an edge e ∈ E(G),
let FΓ(e) =

∑
γ∈Γ(e) Fγ denote the random variable that counts the number of nonfiltered

traversing paths through e. If L,p are fixed, then as D → ∞,

P[FΓ(e) = 0] = 1−p2 +O
(pL

D

)
. (2.39)

Proof. We will use the Paley–Zygmund inequality. For a nonnegative random variable Z

with finite second moment, for any θ ∈ (0,1),

P[Z > θE[Z]] ≥ (1−θ)2 E[Z]2

E[Z2] . (2.40)

We will use (2.40) with the random variable FΓ(e). The idea is that if D is much
larger than L, the average number of paths passing through e is also large. We are using
dropout, so the filter variable corresponding to an edge e = (u,v) will depend on only the
vertex u, that is, Fe = Fu. For counting paths we also need to take into account that the
filter Fv will occurring in all paths passing through e. Since only the two vertices u and
v of e are fixed we can compute

E[FΓ(e)] =
∑

γ∈Γ(e)

E[Fγ] = pL|Γ(e)| = pLDL−2. (2.41)

We define the set of broken paths in Γ(e) as

Γb(e) = {γ = (ui1 , . . . ,uik
) ∈ Gk : ∃η,δ ∈ Γ(e),γ = η ∩ δ}, (2.42)

that is, γ ∈ Γb(e) if and only if there exist η,δ ∈ Γ(e) such that γ = η ∩ δ. In particular,

44 Chapter 2. Almost sure convergence of dropout algorithms for NNs

Γb(e) contains paths and unions of vertices of paths that pass through e. Then we have:

E[F 2
Γ,e] =

∑
γ∈Γ(e)

∑
δ∈Γ(e)

E[FγFδ] (i)=
∑

γ∈Γ(e)

L∑
l=2

∑
δ∈Γ(e)
|γ∩δ|=l

P[Fγ = 1,Fδ = 1] (2.43)

(ii)=
∑

γ∈Γ(e)

L∑
l=2

∑
δ∈Γ(e)
|γ∩δ|=l

plp2L−2l (iii)=
L∑

l=2

∑
η∈Γb(e)

|η|=l

∑
γ,δ∈Γ(e)

η⊆δ,γ
γ∩δ=η

plp2L−2l (2.44)

(iv)=
L∑

l=2

∑
η∈Γb(e)

|η|=l

(D(D −1))L−lplp2L−2l (2.45)

(v)=
L∑

l=2

(
L−2
l −2

)
Dl−2(D(D −1))L−lplp2L−2l (2.46)

= p2L−2D2L−4 +O(Lp2L−3D2L−5), (2.47)

where (i) we have first used that Fγ are indicators for occurring γ ∈ Γ(e) and that at
least l ≥ 2 since vertices u and v are shared among all paths in Γ(e); secondly, that we
have separated the sum over paths into a path γ and all other paths δ that coincide in l

vertices. In (ii) we have computed the probability by noting that for γ and δ such that
|γ ∩ δ| = l ≥ 2, E[FγFδ] = plp2L−2l, where the term pl accounts for the l shared filters
corresponding to l shared vertices and p2L−2l for the remaining products of filters. Note
that we have used the independence assumption for filters here. (iii) We have used here
that η = δ ∩ γ ∈ Γb(e), so that we can separate the previous sum into first, fixing the l

vertices where two paths intersect—including e—with η ∈ Γb(e) such that |η| = l, and then
looking for all possible δ,γ ∈ Γ(e) such that γ ∩ δ = η. For (iv) we fix l vertices where γ

and δ coincide, then there are still (D(D −1))L−l possible ordered vertex pairs to choose
from all the other vertices where γ and δ do not coincide. (v) For the remaining sum,
for each l fixed locations—including the vertices of e, which are fixed—we can still choose
Dl−2 remaining possible vertices. Additionally, there are for each l,

(
L−2
l−2
)

distinct l − 2
locations for these vertices. Hence, plugging (2.47) and (2.41) into (2.40) yields

P[FΓ(e) > θpLDL−2] ≥ (1−θ)2 p2LD2L−4

p2L−2D2L−4 +O(Lp2L−3D2L−5))
(2.48)

= (1−θ)2 p2

1+O(L/(Dp)) (2.49)

= (1−θ)2(p2 +O(pL/D)). (2.50)

In particular, setting θ−1 = 2pLDL−2 and computing the higher order noting that
L > 2, we obtain that

P[FΓ(e) > 1/2] ≥ p2 +O(pL/D), (2.51)

or alternatively noting that {FΓ(e) ≤ 1/2} = {FΓ(e) = 0}, since FΓ(e) ∈ N we obtain

P[FΓ(e) = 0] ≤ 1−p2 +O(pL/D). (2.52)

2.5.1 Numerical Experiments 45

Finally note that 1 − p2 ≤ P[FΓ(e) = 0] since the edge e can be present in a path only if
the filters at both vertices of e have value 1, which occurs with probability p2, so that
P[FΓ(e) > 0] < p2. 2

Note that in the proof of Lemma 3 we can recover the scaling pL that we have seen
in Proposition 4 by setting D = 1 in (2.47) and in (2.45).

From Lemma 3 we expect that for a wide network with L layers where D ≫ L and an
edge e ∈ E(G), we have that

P[w[t]
e is updated] = p2 +O(pL/D). (2.53)

If the convergence rate is related to the update rule, then we would expect that for
a wide network the rate would be independent of L which is different from the path
network considered in Proposition 4. In the next section we will verify this intuition on
real datasets. Note, however, that we do not expect to see the dependence on p as shown
in (2.53): this heuristic argument provides only the rate at which a weight is updated, and
stochastic averaging is not solely driving the convergence rate. In particular, in the next
chapter, we show that close to a critical point on a dropout ODE for wide shallow linear
networks, the dependence scales with a factor p(1−p) instead of p. This is due to the fact
that for larger p, there are regions of the landscape close to minima that become flat, as
also hinted by Proposition 2. Indeed, when p ↑ 1 the term (1−p)J ↓ 0 in the convergence
rate of Proposition 2 lowers the complexity of finding an ϵ-stationary point. Hence, there
are landscape regimes and initialization issues that also account for the convergence rate
in NNs.

2.5.1 Numerical Experiments
In this section we conduct the dropout stochastic gradient descent algorithm numerically,3
for different datasets and network architectures. We measure the convergence rate for
different widths D, depths L, and dropout probabilities 1 − p. We then compare these
measurements to the bounds on the convergence rates obtained in Section 2.4. We use
Tensorflow4 for the implementation.

Setup

Datasets. We will consider three commonly used data sets of images: the MNIST5 [125],
CIFAR-100-fine6, and CIFAR-100-coarse datasets [128].
NN Architecture. We use as a base architecture a LeNet with 11 layers where the two
dense layers have been substituted with L fully-connected ReLU layers of width D. Each
of these layers have dropout with dropout probability 1 − p. While larger networks are
commonly used in practice, a LeNet architecture is sufficient to test the effect of dropout
on the convergence rate as we verify with the simulations.

3The source code of our implementation is available at https://gitlab.tue.nl/20194488/
almost-sure-convegence-of-dropout-algorithms-for-neural-networks.

4https://www.tensorflow.org/
5Modified National Institute of Standards and Technology (MNIST)
6Canadian Institute For Advanced Research (CIFAR)

https://gitlab.tue.nl/20194488/almost-sure-convegence-of-dropout-algorithms-for-neural-networks
https://gitlab.tue.nl/20194488/almost-sure-convegence-of-dropout-algorithms-for-neural-networks
https://www.tensorflow.org/

46 Chapter 2. Almost sure convergence of dropout algorithms for NNs

Loss. We use the cross-entropy loss, which is commonly used for classification. For two
distributions p and q with support on [n] labels, the cross-entropy loss is defined as

l(p,q) = −
n∑

i=1
qi log(pi). (2.54)

Stopping criteria. In all experiments, we stop after 40 epochs.
Initialization. In order to see the convergence rate close to a minimum. We use first
a Gaussian initialization, that is, we set every weight on the dense layers to Wijk ∼
Normal(0,1/

√
D) in an independent manner, where D is the width of the layer. While this

initialization is standard, we note that we cannot expect to compare convergence rates for
different numbers of layers L ∈ {1,2,3} and for different dropout probabilities 1−p, since
the loss functions are also different. In the course of our experiments, we found that there
are also many saddle points where SGD remains stuck, which complicated the estimation
of the convergence rate. In order to start approximately at the same neighborhood where
the iterates stay and continuously track minima across different choices of p, for each
L ∈ {1,2,3} we have used a two-step approach in order to avoid areas of the landscape
with saddle points. We first run ADAM7 for 2 epochs with p = 0.1 and store the weights.
Secondly, for each p ∈ P we then perform dropout SGD with initialization given by the
stored weights. In this manner, we expect that we are approximately “tracking” the same
local region across the optimization landscape when we change p. Optimization with
ADAM is less prone to remain in flat areas of the landscape since it uses a dynamic step
size. Hence, if after the dynamic step the iterates remain in a part of the landscape with
no saddle points that smoothly changes with p, we also expect in this case to obtain
comparable convergence rates for SGD for each fixed L.
Step size and batch size. In each experiment, the step size is given by η = 10−5 and the
batch size is b = 1024.
Fitting procedure. We fix a set of probabilities P ⊂ [0,1] and depths L = {1,2,3} and for
each pair (p, l) ∈ P ×L we run the algorithm above. From the value of the loss from all T

iterations of SGD L = (lt)T
t=0 in one run, we compute a moving average a(L)T

t=0, where we
average the loss across a window with size given by the number of batches nb required to
complete one epoch. In this manner we obtain an average convergence rate and diminish
the stochasticity from the dataset. We then fit the averaged loss of the iterates a(L)T

t=0
for each p and l to the function

f(αp,l,βp,l,γp,l) = αp,l exp(−βp,lt)+γp,l. (2.55)

We run the experiment R = 10 times for each (p, l) and obtain an average convergence
exponent (β̃p,l)(p,l)∈P ×L.

Results

In Figure 2.3 we can see the plots of β̃p,l. As suspected from the heuristic argument, we
do not see an increasingly large dependence on p for L = 1,2 or 3 when D ∈ {50,100}.
For the MNIST dataset some dependence on the depth is appreciated, but this may
be due to other factors that affect the convergence rate, like initialization issues. For

7Adaptative Moment Estimation (See [101]).

2.6 Conclusion 47

0.2 0.4 0.6 0.8 1

0

2

4

·10−2

p

β
L = 3
L = 3
L = 3

(a)

0.2 0.4 0.6 0.8 1

−1

0

1

2

3

4

·10−2

p

β

L = 3
L = 3
L = 3

(b)

0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

·10−2

p

β

L = 3
L = 3
L = 3

(c)

0.2 0.4 0.6 0.8 1

0

2

4

·10−2

p

β

L = 3
L = 3
L = 3

(a′)

0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

2

·10−2

p

β
L = 3
L = 3
L = 3

(b′)

0.2 0.4 0.6 0.8 1

−2

0

2

4

6
·10−2

p

β

L = 3
L = 3
L = 3

(c′)

Figure 2.3: The fit β̃p,l for p ∈ {i×10−1 : i ∈ [10]} and l ∈ {1,2,3} for LeNet with different
widths D and different datasets. Here (a) MNIST with D = 50; (a′) MNIST
with D = 100; (b) CIFAR-100-fine labels with D = 50; (b′) CIFAR-100-fine
labels with D = 100; (c) CIFAR-100-coarse labels with D = 50; (c′) CIFAR-
100-coarse labels with D = 100. While for the MNIST dataset there seems to
be an increasing dependence of dropout on the convergence rate with the depth
L, for CIFAR no such dependence is observed. We remark, however, that in
the CIFAR datasets encountering saddle points was more common. For those
areas the loss profile is flat and so we expect the fits to be biased towards the
origin in some cases.

the CIFAR datasets, convergence is greatly affected by saddlepoints despite the use of
dropout. This is, however, common when using SGD with small constant stepsizes. In
particular, in practical scenarios other schemes that adjust the stepsize, like e.g. ADAM,
may be more appropiate when dealing with deep networks with dropout in different layers.
From the experiments it is concluded that despite the stochasticity provided by dropout,
the convergence rate is not affected much by a varying dropout probability 1 − p in wide
networks with a few dropout layers.

2.6 Conclusion
In this chapter we have seen a probability theoretical proof that a large class of dropout
algorithms for neural networks, converge almost surely to a unique stationary set of a
projected system of ODEs. The result gives a formal guarantee that these dropout al-
gorithms are well-behaved for a wide range of NNs and activation functions, and will
at least asymptotically not suffer from issues because of the connection to bond perco-

48 Chapter 2. Almost sure convergence of dropout algorithms for NNs

lation. We leave the extension of this result for nonsmooth activation functions such as
ReLU for future work. Additionally, we established a bound for the rate of convergence
of dropout to a stationary point of a generic nonconvex function. An upper bound the
rate of convergence of GD on the limiting ODE of dropout algorithms was established as
well for arborescences of arbitrary depth with linear activation functions. While GD on
the limiting ODE is not strictly a dropout algorithm, the result is a necessary step to-
wards analyzing the convergence rate of the actual stochastic implementations of dropout
algorithms. Finally, Proposition 3 specifically implies that Dropout and Dropconnect can
impair the convergence rate by as much as an exponential factor in the number of layers
of very thin but deep networks. We have theoretically and experimentally verified this
claim in experiments with a path network. This fact is in contrast to wide networks with
a few dropout layers where a strong dependence on the dropout probability p is not ex-
perimentally observed. These two observations together imply that there is a change of
regime in the convergence rate from networks that are wide with a few dropout layers to
thin networks with many dropout layers.

Appendix

2.A Backpropagation Algorithm
We define the backpropagation algorithm used in Section 2.2 to compute the estimate of
the gradient.

Definition 4. Assume σ ∈ C1(R). Given weights W ∈ W and input–output pair (x,y) ∈
Rd0 ×RdL , the tensor BW (x,y) ∈ RdL×dL−1 ×·· ·×Rd1×d0 is calculated iteratively by:

1. Computing A1, . . . ,AL using Definition 1.
2. Calculating for i = L−1, . . . ,1,

RL = AL = (y −WLAL−1) ∈ RdL ,

Ri = (W T
i+1Ri+1)⊙ (σ′(WiAi−1)) ∈ Rdi . (2.56)

3. Setting for i ∈ [L],
(
BW (x,y)

)
i

= −2RiA
T
i−1.

Definition 4 is essentially a computationally efficient manner of calculating the gradient
∇l(ΨW (x),y) in (2.10) by leveraging the NN’s layered structure together with the chain
rule of differentation in order to come to a recursive computation of the partial derivatives.

2.B ODE method
Regarding our second result in Proposition 4, observe that GD on a limiting ODE is not
exactly a dropout algorithm. Analyzing GD’s convergence rate however is an important
stepping stone towards analyzing the convergence rate of dropout algorithms. To see the
mathematical relation, consider that any dropout algorithm updates the weights

W [n+1] = W [n] +α{n}∆[n+1] (2.57)

randomly for n = 0,1,2, · · · . Here, the α{n} denote the step sizes of the algorithm, and the
∆[n+1] represent the random directions that result from the act of dropping weights. As

2.C Projection operator 49

we will show in this chapter under assumptions of independence, these random directions
satisfy

E[∆[n+1] | W [0], . . . ,W [n]] = −∇D(W [n]) (2.58)

for some continuous, differentiable function D(W). Observe that the algorithm in (2.57)
satisfies W [n+1] = W [n] + α{n}(−∇D(W [n]) + M [n+1]) where M [n+1] here is M [n+1] =
E[∆[n+1] | W [0], . . . ,W [n]] − ∆[n+1] and describes a martingale difference sequence. This
martingale difference sequence’s expectation with respect to the past W [0], . . . ,W [n] is
zero.

For diminishing step sizes α{n}, we can consequently view dropout algorithms as in
(2.57) as being noisy discretizations of the ordinary differential equation

dW

dt
= −∇D(W (t)). (2.59)

In fact, we employ the so-called ordinary differential equation method [140, 127], which
formally establishes that the random iterates in (2.57) follow the trajectories of the gradient
flow in (3.2). Hence, after sufficiently many iterations n and for a sufficiently small step
size α, the convergence rate of the deterministic GD algorithm

W {n+1} = W {n} −α∇D(W {n}) (2.60)

gives insight into the convergence rate of the stochastic dropout algorithm in (2.57).

2.C Projection operator
We define here the projection operator π used in Section 2.3. Say that H is defined
by l smooth constraints qi : W → R, i = 1, . . . , l satisfying q1(W) ≤ 0, . . . , ql(W) ≤ 0, i.e.,
H = {W ∈ W : qi(W) ≤ 0 ∀i ∈ [l]}. Denote by ∇D|H(W) the gradient of D(W) restricted
to H and let TWW be the tangent space of W at W . Suppose that ∇qi(W) ̸= 0 whenever
qi(W) = 0, and that these are linearly independent. At any point W ∈ ∂H, we define the
outer normal cone

C(W) ≜ {v ∈ TWW : ∇qi(W)vT ≥ 0 for i ∈ [l] s.t. qi(W) = 0}. (2.61)

We also assume that C(W) is upper semicontinuous, i.e., if W̃ ∈ BH(W,δ), where BH(W,δ)
is the ball of radius δ > 0 centered at W and intersected with H, then C(W) = ∩δ>0(
∪W̃ ∈BH(W,δ)C(W̃)

)
. Let π(W) ≜ −t1[W ∈ ∂H] with t ∈ C(W) minimal to resolve the

violated constraints of D|H(W) at W ∈ ∂H so that D|H(W) + π(W) points inside H. In
particular, we have

π(W) = −
l∑

i=1
λi(W)∇qi(W) ∈ −C(W) (2.62)

where {λi(W) ≥ 0}l
i=1 are functions such that λi(W) = 0 if qi(W) < 0.

2.D Proof of Proposition 1
The proof of Proposition 1 relies on the framework of stochastic approximation in [140].
Specifically, Proposition 1 follows from Theorem 2.1 on p. 127 if we can show that its

50 Chapter 2. Almost sure convergence of dropout algorithms for NNs

conditions (A2.1)–(A2.6) on p. 126 are satisfied. In the notation of Sections 2.2, 2.3, these
conditions read:

(A2.1) suptE[∥∆[t+1]∥F] < ∞;

(A2.2) there is a measurable function ḡ(·) of W and there are random variables β[t+1] such
that

E[∆[t+1] | Ft] = ḡ(W [t])+β[t+1], (2.63)

where Ft denotes the smallest σ-algebra generated by ∪s≤t{W [0],(F [s],X [s],Y [s])};

(A2.3) ḡ(·) is continuous;

(A2.4) the step sizes satisfy
∞∑

t=1
α{t} = ∞,α{n} ≥ 0,α{n} → 0 for n ≥ 0 and α{n} = 0 for n < 0; (2.64)

∞∑
t=1

(α{t})2 < ∞; (2.65)

(A2.5)
∑

t α{t}∥β[t]∥F < ∞ w.p. one;

(A2.6) ḡ(·) = −∇D(·) for a continuously differentiable real-valued D(·) and D(·) is constant
on each stationary set Si.

We next also state for convenience Theorem 2.1 from [140] in the notation of this
chapter. Their result does require some notation, as it characterizes the limiting behavior
of the iterates of

W [n+1] = PH
(
W [n] −α∆[n+1])≜ W [n] −α∆[n+1] +Z[n+1]. (2.66)

For any sequence of step sizes α{n} satisfying (A2.4), define t0 = 0 and tn =
∑n−1

i=0 α{i}.
Define the continuous-time interpolation

W0(t) =

{
W [n] for tn ≤ t < tn+1,

W [0] for t ≤ 0,
(2.67)

as well as for m ∈ N0, the shifted processes Wm(t) = W0(tm + t) for t ∈ (−∞,∞). Let
furthermore o(t) = inf{n ∈ N0 : tn ≤ t < tn+1} for t ∈ [0,∞), and o(t) = 0 for t ∈ (−∞,∞),
and define

Z0(t) =

{∑o(t)−1
i=0 α{i}Zi for t ∈ [0,∞),

0 for t ∈ (−∞,∞),
(2.68)

as well as for m ∈N0, the shifted processes Zm(t) =
∑o(tm+t)−1

i=m for t ∈ [0,∞) and Zm(t) =
−
∑m−1

i=o(tm+t) α{i}Zi for t ∈ (−∞,0). The following now holds:

Theorem 5 (A part of Theorem 2.1 from [140]). Let conditions (A2.1)–(A2.5) hold
for algorithm (2.66), with the projection onto H being as described in Appendix 2.C. Let
(Ω,F ,P) be the probability space of the processes. Then there is a set N of probability zero
such that for ω ̸∈ N , the set of functions {Wm(ω, ·),Zm(ω, ·),m < ∞} is equicontinuous.

2.D.1 Verification of conditions (A2.1)–(A2.6) 51

Let (W (ω, ·),Z(ω, ·)) denote the limit of some convergent subsequence. Then this pair
satisfies the projected ODE (2.15), and {W [n](ω)} converges to some limit set of the ODE
in H. Suppose that (A2.6) holds. Then, for almost all ω, {W [n](ω)} converges to a unique
Si.

In order to apply Theorem 5 and arrive at Proposition 1, we verify conditions (A2.1)–
(A2.6) through Lemmas 4–6 shown next in Appendix 2.D.1.

2.D.1 Verification of conditions (A2.1)–(A2.6)
First we assume conditions (N1)–(N3) and we prove that the variance of the random
update direction in (2.1) is finite. This verifies condition (A2.1). The proof can be found
below.

Lemma 4. Assume (N1)–(N3) from Proposition 1. Then supt∈NE[∥∆[t+1]
i ∥2

F] < ∞ for
i = 0,1, . . . ,L.

We prove next that if σ ∈ Cr
P B(R) , then the random update direction in (2.1), con-

ditional on all prior updates, has conditional expectation ∇D(W [t]). Lemma 5 verifies
conditions (A2.2), (A2.3), and (A2.5) (in particular, here β[t] = 0). The proof can be
found also below.

Lemma 5. Assume (N2)–(N4) from Proposition 1. Then E[∆[t+1]|Ft] = ∇D(W [t]). Fur-
thermore, ∇D : W → W is r −1 times continuously differentiable.

From these conditions the first part of Proposition 1 follows. To prove the second part
of Proposition 1, we have to prove that the set of stationary points SH is well-behaved in
the sense that D|Si

(W) is constant. If an objective function is sufficiently differentiable,
this is guaranteed by the Morse–Sard Theorem [173, 172]. In the present case however
we must take into account the possibility of an intersection of the set of stationary points
with the boundary ∂H. Assuming (N4) and (N5) provides sufficient conditions. The proof
of Lemma 6 can be found in Appendix 2.D.1:

Lemma 6. If (N2)–(N5) hold, then D(W) is constant on each Si.

Since Conditions (A2.1)–(A2.6) of Theorem 2.1 on p. 127 in [140] are proven satisfied,
the proof of Proposition 1 is now completed. □

Boundedness of ∆[t+1] in expectation – Proof of Lemma 4

We need to carefully track all sequences of random variables created by a dropout algorithm
throughout this proof, which we state here first explicitly.

Definition 6 (Dropout iterates). During its (t + 1)-st feedforward step, the algorithm
iteratively calculates

A
[t+1]
0 = X [t+1], A

[t+1]
i = σ((W [t]

i ⊙F
[t+1]
i)A[t+1]

i−1) (2.69)

for i = 1,2, . . . ,L−1, to output

Ψ
F [t+1]⊙W [t](X [t+1]) = (W [t]

L ⊙F
[t+1]
L)A[t+1]

L−1 = A
[t+1]
L . (2.70)

52 Chapter 2. Almost sure convergence of dropout algorithms for NNs

Subsequently for its (t+1)-st backpropagation step the algorithm calculates

R
[t+1]
L = (Y [t+1] − (W [t]

L ⊙F
[t+1]
L)A[t+1]

L−1) ∈ RdL ,

R
[t+1]
j = ((W [t]

j+1 ⊙F
[t+1]
j+1)T R

[t+1]
j+1)⊙ (σ′((W [t]

j ⊙F
[t+1]
j)A[t+1]

j−1)) ∈ Rdi , (2.71)

iteratively for j = L−1, . . . ,1. The algorithm then calculates

∆[t+1]
i = −2F

[t+1]
i ⊙ (R[t+1]

i (A[t+1]
i−1)T) (2.72)

for i = 1, . . . ,L, and finally updates all weights according to (2.11).

The idea of the proof of Lemma 4 is to expand the terms in ∆[t+1]
i defined in Defini-

tion 6 recursively, and identify a polynomial in variables {∥Y ∥n
2 ∥X∥m

2 }m∈N0 and n = 0,1,2.
We will use several bounds that pertain to the Frobenius norm, described in Lemma 14
in Appendix 2.J. We use these below repeatedly.

First, we will prove two bounds on the activation function applied to an arbitrary
matrix A. Recall that σ ∈ C2

P B(R) by assumption (N1). There thus (i) exist some C0,k0 >

0 such that |σ(z)| ≤ C0(1 + z2)k0 for all z ∈ R, and there exist some C1,k1 > 0 such that
|σ′(z)| ≤ C1(1+z2)k1 for all z ∈ R. Let k = max{1,k0,k1}. Then

∥σ(A)∥2
F =

∑
i,j

|σ(Aij)|2
(i)
≤ C0

∑
i,j

(1+A2
ij)k

(Lemma 14)
≤ C2(1+∥A∥F)2k (2.73)

for some constant C2 > 0. Similarly there exists some C3 > 0 such that ∥σ′(A)∥F ≤
C3(1 + ∥A∥F)k. Note furthermore that (ii) for all l ≥ 0, by submultiplicativity of the
Frobenius norm,

(1+∥Aσ(B)∥F)l
(ii)
≤ (1+∥A∥F∥σ(B)∥F)l

(2.73)
≤

(
1+C

1/2
2 ∥A∥F(1+∥B∥F)k

)l ≤ C4(1+∥A∥F)l(1+∥B∥F)kl (2.74)

for C4 = max{1,C
l/2
2 } > 0. Again, a similar bound holds for σ′.

Next, note that we have by (i) submultiplicativity and Lemma 14 that

∥∆[t+1]
i ∥F = ∥F

[t+1]
i ⊙ (R[t+1]

i (A[t+1]
i−1)T)∥F

(i)
≤ ∥F

[t+1]
i ∥F∥R

[t+1]
i ∥F∥A

[t+1]
i−1 ∥F. (2.75)

The first term is bounded with probability one: F
[t]
i,r,l ∈ {0,1} for all i,r, l, t. For the second

term, consider the following bound:

∥R
[t+1]
i ∥F

(2.71)= ∥(W [t]
i+1 ⊙F

[t+1]
i+1)TR

[t+1]
i+1 ⊙σ′((W [t]

i ⊙F
[t+1]
i)A[t+1]

i−1
)
∥F

(Lemma 14)
≤ ∥W

[t]
i+1 ⊙F

[t+1]
i+1 ∥F∥σ′((W [t]

i ⊙F
[t+1]
i)A[t+1]

i−1
)
∥F∥R

[t+1]
i+1 ∥F (2.76)

for 1 ≤ i ≤ L, where we have also used the submultiplicative property. For the third term,
consider the next bound: (i) recursing (2.74) with A = I and B = (W [t]

j ⊙ F
[t+1]
j)A[t+1]

j−1

2.D.1 Verification of conditions (A2.1)–(A2.6) 53

etc, we obtain that there exists some C5 > 0, say, so that

∥A
[t+1]
j ∥F

(2.69)= ∥σ((W [t]
j ⊙F

[t+1]
j)A[t+1]

j−1)∥F
(2.73)

≤ C2(1+∥(W [t]
j ⊙F

[t+1]
j)A[t+1]

j−1 ∥F)k

(2.77)
(Lemma 14)

≤ C2(1+∥W
[t]
j ⊙F

[t+1]
j ∥F)k(1+∥A

[t+1]
j−1 ∥F)k

(i)
≤ C5

(
1+∥X [t+1]∥2

)kj
j−1∏
l=1

(
1+∥W

[t]
l ⊙F

[t+1]
l ∥F

)kj−l

for j = 1,2, . . . ,L − 1. Similar by the derivation in (2.77), we obtain instead with σ′ that
there exists some C6 > 0 such that

∥σ′((W [t]
j ⊙F

[t+1]
j)A[t+1]

j−1)∥F ≤ C6
(
1+∥X [t+1]∥2

)kj
j−1∏
l=1

(
1+∥W

[t]
l ⊙F

[t+1]
l ∥F

)kj−l

. (2.78)

Recall that ∥∆[t+1]
i ∥F ≤ ∥F

[t+1]
i ∥F∥R

[t+1]
i ∥F∥A

[t+1]
i−1 ∥F. This, together with using (2.76)

repeatedly for j = i, . . . ,L−1, and (2.77), (2.78), yields the following inequality

∥∆[t+1]
i ∥F

(2.76)
≤ ∥F

[t+1]
i ∥F∥R

[t+1]
L ∥F∥A

[t+1]
i ∥F×

L−1∏
j=i

∥W
[t]
j+1 ⊙F

[t+1]
j+1 ∥F∥σ′((W [t]

j ⊙F
[t+1]
j)A[t+1]

j−1
)
∥F

(2.77)
≤ C5∥F

[t+1]
i ∥F

(
1+∥X [t+1]∥2

)ki
i−1∏
l=1

(
1+∥W

[t]
l ⊙F

[t+1]
l ∥F

)ki−l

×∥R
[t+1]
L ∥F

L−1∏
j=i

∥W
[t]
j+1 ⊙F

[t+1]
j+1 ∥F∥σ′((W [t]

j ⊙F
[t+1]
j)A[t+1]

j−1
)
∥F

(2.78)
≤ C7∥F

[t+1]
i ∥F

(
1+∥X [t+1]∥2

)ki
i−1∏
l=1

(
1+∥W

[t]
l ⊙F

[t+1]
l ∥F

)ki−l

×∥R
[t+1]
L ∥F

L−1∏
j=i

∥W
[t]
j+1 ⊙F

[t+1]
j+1 ∥F

(
1+∥X [t+1]∥2

)kj
j∏

l=1

(
1+∥W

[t]
l ⊙F

[t+1]
l ∥F

)kj−l

≤ C7∥F
[t+1]
i ∥F∥R

[t+1]
L ∥F

(L−1∏
j=i

∥W
[t]
i+1 ⊙F

[t+1]
i+1 ∥F

)

×
(L−1∏

j=i

(
1+∥X [t+1]∥2

)2kj
j∏

l=1

(
1+∥W

[t]
l ⊙F

[t+1]
l ∥F

)2kj−l)

= C7∥F
[t+1]
i ∥F∥R

[t+1]
L ∥F

(L−1∏
j=i

∥W
[t]
i+1 ⊙F

[t+1]
i+1 ∥F

)

×
(
1+∥X [t+1]∥2

)∑L−1
j=i

2kj(L−1∏
j=i

j∏
l=1

(
1+∥W

[t]
l ⊙F

[t+1]
l ∥F

)2kj−l)
. (2.79)

54 Chapter 2. Almost sure convergence of dropout algorithms for NNs

Lastly, we bound ∥R
[t+1]
L ∥F. By applying (i) subadditivity of the norm ∥A+B∥F ≤

∥A∥F + ∥B∥F and then using the elementary bound (a + b)2 ≤ 2(a2 + b2) as well as sub-
multiplicativity, we obtain

∥R
[t+1]
L ∥F

(2.71)= ∥Y [t+1] − (W [t]
L ⊙F

[t+1]
L)A[t+1]

L−1 ∥F (2.80)
(i)
≤ ∥Y [t+1]∥2

2 +∥W
[t]
L ⊙F

[t+1]
L ∥F∥A

[t+1]
L−1 ∥F

(2.77)
≤ ∥Y [t+1]∥2 +∥W

[t]
L ⊙F

[t+1]
L ∥F

(
1+∥X [t+1]∥2

)kL−1 L−1∏
l=1

(
1+2∥W

[t]
l ⊙F

[t+1]
l ∥F

)kL−l

.

By combining inequalities (2.79), (2.80), and upper bounding the exponent kL−1 of the
term 1+∥X [t+1]∥F in (2.80) by 2

∑L−1
j=1 kj , we conclude that

∥∆[t+1]
i ∥F

≤ C8∥Y [t+1]∥2
(
1+∥X [t+1]∥2

)2
∑L−1

j=1 kj

× (2.81)

∥F
[t+1]
i ∥FP1

(
∥W

[t]
1 ⊙F

[t+1]
1 ∥F, . . . ,∥W

[t]
L ⊙F

[t+1]
L ∥F

)
+C9

(
1+∥X [t+1]∥2

)2
∑L

j=1 kj

∥F
[t+1]
i ∥FP2(∥W

[t]
1 ⊙F

[t+1]
1 ∥F, . . . ,∥W

[t]
L ⊙F

[t+1]
L ∥F)

for i = 1, . . . ,L and some constants C8,C9 and polynomials P1(z1, . . . ,zL),P2(z1, . . . ,zL),
say, the latter both in L variables. Because of the projection and by definition of H, there
exists a constant M such that ∥W

[t]
i ∥F ≤ M with probability one for all i = 1, . . . ,L, t ∈N+.

Furthermore, ∥F
[t]
i ∥F ≤ maxi=0,...,L−1

√
didi+1 with probability one for all i = 1, . . . ,L,

t ∈ N+. These two bounds, together with (2.81) and the fact that P1,P2 are polynomials,
as well as the hypothesis that E[∥Y ∥m

2 ∥X∥n
2] < ∞∀m ∈ {0,1,2},n ∈ N0, implies the result.

□

Conditional expectation of ∆[t+1] – Proof of Lemma 5

Let i ∈ {1, . . . ,L}, r ∈ {1, . . . ,di+1} and l ∈ {1, . . . ,di}. Recall that Ft is the smallest σ-
algebra generated by {W [0],(F [s],X [s],Y [s])}s≤t, and note that W [t] is Ft-measurable.
The (i) Ft-measurability of W [t] together with the (ii) hypothesis that the sequence of
random variables {(F [s],X [s],Y [s])}s∈N+ is i.i.d. , implies that

E[∆[t]
i,r,l|Ft]

(2.1)= E
[(

F
[t+1]
i,r,l BF [t+1]⊙W [t](X [t+1],Y [t+1])

)
i,r,l

∣∣∣Ft

]
(i,ii)=

∫
Fi,r,lBF ⊙W [t](X,Y)i,r,l dP[F [t+1] = F,X [t+1] = X,Y [t+1] = Y]

(2.12)=
∫ (

Fi,r,l

∂l(ΨF ⊙V [t](X),Y)
∂(Fi,r,lVi,r,l)

)
(W [t])dP[F [t+1] = F,X [t+1] = X,Y [t+1] = Y]

=
∫

∂l(ΨF ⊙V [t](X),Y)
∂Vi,r,l

(W [t])dP[F [t+1] = F,X [t+1] = X,Y [t+1] = Y]. (2.82)

Next, we need to check that we can exchange the derivative and expectation. Note that
we have the same assumptions E[∥Y ∥m

2 ∥X∥n
2] < ∞∀m ∈ {0,1,2},n ∈ N+ as for Lemma 4.

as well as that σ ∈ Cr
PB(R). Therefore, by (2.81) in Lemma 4 we have that |∆[t+1]

i,r,l | is

2.E Proof of Proposition 2 55

upper bounded and moreover E[∆[t+1]
i,r,l] ≤ CH for some CH ≤ ∞ only dependent on H. The

interchange is then warranted by the dominated convergence theorem. Hence continuing
from (2.82), we obtain

E[∆[t]
i,r,l|Ft] = ∂

∂Wi,r,l

∫
l(ΨF ⊙W [t](X),Y)dP[F [t+1] = F,X [t+1] = X,Y [t+1] = Y]

(2.3)= ∂D(W [t])
∂Wi,r,l

.

If σ ∈ Cr
PB(R), then for any multi-index s on the set of weights, a bound similar to (2.81)

holds by the chain rule:

|∂sl(Y,ΨW ⊙F (X))| ≤ ∥Y ∥FP1,s(∥W1∥F , . . . ,∥WL∥F ,{∥X∥j
2}ns,1

j=1)

+P2,s(∥W1∥F , . . . ,∥WL∥F ,{∥X∥j
2}ns,2

j=1) (2.83)

where P1,s,P2,s are polynomials and ns,1,ns,2 are the top exponents in the expansion
in ∥X∥F. Hence, using the assumption E[∥Y ∥m

2 ∥X∥n
2] < ∞ for all m ∈ {0,1,2},n ∈ N+,

we can find a compact set K ⊂ W and a constant CK > 0 such that for any W ∈ K we
have E[|∂sl(Y,ΨW ⊙F (X))|] ≤ CK . In particular we can apply the dominated convergence
theorem and conclude D(W) ∈ Cr−1(W) with ∂sD(W) = E[∂sl(Y,ΨW ⊙F (X))]. □

Constant D(W) on a critical set – Proof of Lemma 6

We use Sard’s theorem [172] to prove Lemma 6, which gives sufficient conditions for
condition (A2.6):

Proposition 5. [172] Let f : M → N be a f ∈ Cr map between manifolds with dim(M) =
m, dim(N) = n. Let Crit(f) = {x ∈ M : ∇f(x) = 0} be the set of critical points of f . If
r > m/n−1, then f(Crit(f)) has measure zero.

Proof of Lemma 6. By Lemma 5, we have D(W) ∈ Cr(W). By assumption (N5) we have
that if W ∈ ∂H and D(W) + π(W) = 0, then D(W) = 0. Furthermore W ∈ Sj for some
j, i.e., the critical points of D(W) + π(W) are {W ∈ W | ∇D(W) = 0} ∩ H. We apply
Sard’s theorem (Proposition 5) to D(W). We have that if r ≥ dim(W), then D(Si) ⊆ R
has measure zero. Since Si is connected there is a continuous path za,b : [0,1] → Si joining
any two points a,b ∈ Si. By continuity of D(W) we must have then D(a) = D(b), since
otherwise we would have [D(a),D(b)] ⊆ D(Si) which has positive measure in R. Therefore
D(Si) must be a constant. □

Remark that in Lemma 6 the condition r ≥ dim(W) cannot immediately be elimi-
nated. When r < dim(W), there are examples of functions which are not constant on
their connected critical sets, see e.g. [138].

2.E Proof of Proposition 2
We use standard tools for proving convergence to an ϵ-stationary point (for a reference,
see [50]). We require first the following bounds on the variance induced by dropout.

Lemma 7. Assume that F is a random variable satisfying (Q4). If f is a vector of
random variables with distribution F , then

56 Chapter 2. Almost sure convergence of dropout algorithms for NNs

(i) E
[
∥f −E[f]∥1

]
= 2Np(1−p).

(ii) E
[
∥f −E[f]∥2

1

]
= 2N2p(1−p).

Proof. We prove first (i). If we denote by fi the ith entry of f , then note that from (Q4)
P[fi = 1] = p and so E[|fi −E[fi]|] = E[|fi −p|] = 2p(1−p). From linearity (i) follows. For
(ii), we have

E
[
∥f −E[f]∥2

1

]
=
∑

i

E
[
|fi −p|2

]
+
∑
i ̸=j

E
[
|fi −p||fj −p|

]
≤ 2Np(1−p)+2N(N −1)p(1−p) = 2N2p(1−p), (2.84)

where in the last inequality we have used the Cauchy–Schwartz inequality. 2

Lemma 8. Assume (Q3) and (Q4), that is, ∇U is ℓ-Lipschitz and the distribution of the
filters is {0,1}-valued. Then, ∇D is also ℓ-Lipschitz.

Proof. Using (i) Jensen’s inequality with the norm, we have for a fixed w,s ∈ W that

∥∇D(w)−∇D(s)∥2 = ∥Ef [f ⊙∇U(w ⊙f)−f ⊙∇U(s⊙f)]∥2

(i)
≤ Ef

[
∥f ⊙∇U(w ⊙f)−f ⊙∇U(s⊙f)∥2

]
(ii)
≤ Ef

[
∥∇U(w ⊙f)−∇U(s⊙f)∥2

]
(iii)
≤ ℓEf

[
∥w ⊙f −s⊙f∥2

]
(ii)
≤ ℓEf

[
∥w −s∥2

]
= ℓ∥w −s∥2 (2.85)

where we have also used (ii) the fact that for a vector u and {0,1}-valued vector f we
have ∥f ⊙u∥2 ≤ ∥u∥2, (iii) ∇U is ℓ-Lipschitz. 2

The proof of the following lemma can be found in Appendix 2.E.1.

Lemma 9. Assume (Q1)–(Q4), then for any w ∈ W with ∥w∥2 < R, we have

E
[
∥∇D(w)−f ⊙∇U(w ⊙f)∥2

2

]
≤ Np(1−p)

(
4S2 +6N2(ℓ2R2 +2ℓR)

)
. (2.86)

We obtain in the next lemma a simple bound for the variance of the gradient that
depends on the data.

Lemma 10. Assume (Q1)–(Q4), then for any w ∈ W, we have

Ez,f

[
∥f ⊙∇U(w ⊙f)−f ⊙∇r(w ⊙f,z)∥2

2

]
≤ 4pNS2. (2.87)

2.E Proof of Proposition 2 57

Proof. We use first the definition of U as an expectation. We have

Ez,f

[
∥f ⊙∇U(w ⊙f)−f ⊙∇r(w ⊙f,z)∥2

2

]
= Ez,f

[
∥Ez1 [f ⊙∇r(w ⊙f,z1)]−f ⊙∇r(w ⊙f,z)∥2

2

]
≤ Ez,f

[
Ez1

[
∥f ⊙ (∇r(w ⊙f,z1)−∇r(w ⊙f,z))∥2

]2]
(i)
≤ Ez,f

[
Ez1

[
2S∥f∥2

]2]
(ii)
≤ Ez,f

[
4S2∥f∥2

2

]
= 4pNS2, (2.88)

where in (i) we have used the upper bound for ∥∇r(w ⊙f,z)∥2 from (Q2) and in (ii) that
since fi ∈ {0,1} for all i ∈ [N], we have ∥f∥2

2 = ∥f∥1 so using linearity with (Q4) the bound
follows. 2

By (Q3)–(Q4) and Lemma 8, ∇D is ℓ-Lipschitz. In this case, we can then use the
following common argument: if ∇D is ℓ-Lipschitz then we have the inequality

D(W [t+1]) ≤ D(W [t])+ ⟨∇D(W [t]),W [t+1] −W [t]⟩+ ℓ

2∥W [t+1] −W [t]∥2
2. (2.89)

We can then use the definition of W [t+1] to write

D(W [t+1]) ≤ D(W [t])−α{t}⟨∇D(W [t]),F [t+1] ⊙∇r(W [t] ⊙F [t+1],Z[t+1])⟩

+ ℓ(α{t})2

2 ∥F [t+1] ⊙∇r(W [t] ⊙F [t+1],Z[t+1])∥2
2. (2.90)

Let Ft be the σ-algebra of (W [0],F [1],Z[1], . . . ,W [t],F [t],Z[t]). Conditional on Ft, F [t+1] ⊙
∇r(W [t] ⊙F [t+1],Z[t+1]) is an unbiased estimator of ∇D(W [t]) so that by linearity

E
[〈

∇D(W [t]),F [t+1] ⊙∇r(W [t] ⊙F [t+1],Z[t+1])
〉

|Ft

]
= ∥∇D(W [t])∥2

2. (2.91)

Similarly to (2.91), we can decompose

E
[
∥F [t+1] ⊙∇r(W [t] ⊙F [t+1],Z[t+1])∥2

2

∣∣∣Ft

]
=E
[
∥F [t+1] ⊙∇r(W [t] ⊙F [t+1],Z[t+1])−F [t+1] ⊙∇U(W [t] ⊙F [t+1])

+F [t+1] ⊙∇U(W [t] ⊙F [t+1])∥2
2

∣∣∣Ft

]
= E

[
∥F [t+1] ⊙∇U(W [t] ⊙F [t+1])∥2

2

∣∣∣Ft

]
+E
[
∥F [t+1] ⊙∇U(W [t] ⊙F [t+1])−F [t+1] ⊙∇r(W [t] ⊙F [t+1],Z[t+1])∥2

2

∣∣∣Ft

]
+2E

[〈
F [t+1] ⊙∇U(W [t] ⊙F [t+1])−F [t+1] ⊙∇r(W [t] ⊙F [t+1],Z[t+1]),

F [t+1] ⊙∇U(W [t] ⊙F [t+1])
〉∣∣∣Ft

]
= E

[
∥F [t+1] ⊙∇U(W [t] ⊙F [t+1])∥2

2

∣∣∣Ft

]
+E
[
∥F [t+1] ⊙∇U(W [t] ⊙F [t+1])−F [t+1] ⊙∇r(W [t] ⊙F [t+1],Z[t+1])∥2

2

∣∣∣Ft

]
, (2.92)

58 Chapter 2. Almost sure convergence of dropout algorithms for NNs

where in the last step the cross-term vanishes since, by using the independence assumption
of Z[t+1] and F [t], if we take the expectation first with respect to Z[t+1] we have

EZ[t+1] [F [t+1] ⊙∇r(W [t] ⊙F [t+1],Z[t+1])|Ft] = F [t+1] ⊙∇U(W [t] ⊙F [t+1]). (2.93)

Similarly, we can add and substract ∇D(W [t]) in the first term and repeat the argument
with the definitions of ∇U and ∇D where we take the expectation of (2.92) with respect
to F [t+1] instead. A similar cross-term vanishes. We then obtain

E
[
∥F [t+1] ⊙∇r(W [t] ⊙F [t+1],Z[t+1])∥2

2

∣∣∣Ft

]
≤ ∥∇D(W [t])∥2

2

+E
[
∥∇D(W [t])−F [t+1] ⊙∇U(W [t] ⊙F [t+1])∥2

2

∣∣∣Ft

]
(2.94)

+E
[
∥F [t+1] ⊙∇U(W [t] ⊙F [t+1])−F [t+1] ⊙∇r(W [t] ⊙F [t+1],Z[t+1])∥2

2

∣∣∣Ft

]
.

Define the constant J = S2 + 3
2 N2(ℓ2R2 + 2ℓR). Using the bounds of Lemma 9 together

with assumption (Q5) and Lemma 10 in (2.94) we obtain

E
[
∥F [t+1] ⊙∇r(W [t] ⊙F [t+1],Z[t+1])∥2

2

∣∣∣Ft

]
≤ ∥∇D(W [t])∥2

2 +4pNS2 +4Np(1−p)J.

(2.95)
Substitute now (2.91) and (2.95) in (2.90). After taking the expectation, we can use

a telescopic sum in (2.90) with the previous bounds, which yields

T∑
t=1

α{t}
(

1− ℓα{t}

2

)
E
[
∥∇D(W [t])∥2

2

]
≤ E[D(W [0])]−E[D(W [T])]

+2ℓNp(S2 +(1−p)J)
T∑

t=1
(α{t})2.

(2.96)

By (Q1) we have E[D(W [0])] −E[D(W [T])] ≤ 2M . Assuming that α{t} < 1
ℓ for all t ∈ [T],

we then have

min
t∈[T]

E
[
∥∇D(W [t])∥2

2

]
≤

4M +4ℓNp(S2 +(1−p)J)
∑T

t=1(α{t})2∑T
t=1 α{t}

. (2.97)

Proof of (a): Setting α{t} = η a constant we find

min
t∈[T]

E
[
∥∇D(W [t])∥2

2

]
≤ 4M +4η2ℓNp(S2 +(1−p)J)

Tη
. (2.98)

Minimizing the bound over η yields that the minimum occurs at η2 = M/(ℓNp(S2 +(1−
p)J)T). For this η, the bound reads

min
t∈[T]

E
[
∥∇D(W [t])∥2

2

]
≤ 4
√

p(S2 +(1−p)J)
√

MℓN

T
. (2.99)

Finally note that the condition η < 1/ℓ is satisfied if p > 2Mℓ/(NS2T).

2.E.1 Proof of Lemma 9 59

Proof of (b): We can set α{t} = 1/(ℓ
√

t). It is easily verified that for T ≥ 4:

T∑
t=1

α{t} >

√
T

ℓ

T∑
t=1

(α{t})2 <
log(T)

ℓ2 (2.100)

Substituting these bounds in (2.97) yields the result. □

2.E.1 Proof of Lemma 9
Noting that ∇D(w) = E[f ⊙∇U(w ⊙f)] we can write

E
[
∥∇D(w)−f ⊙∇U(w ⊙f)∥2

2

]
= Ef1

[
∥Ef2 [f2 ⊙∇U(w ⊙f2)−f1 ⊙∇U(w ⊙f1)]∥2

2

]
= Ef1

[
∥Ef2 [f2 ⊙∇U(w ⊙f2)−f2 ⊙∇U(w ⊙f1)+ (2.101)

+f2 ⊙∇U(w ⊙f1)−f1 ⊙∇U(w ⊙f1)]∥2
2

]
(i)
≤ Ef1

[
Ef2

[
∥f2 ⊙ (∇U(w ⊙f2)−∇U(w ⊙f1))+(f2 −f1)⊙∇U(w ⊙f1)∥2

]2]
(ii)
≤ Ef1

[
Ef2

[
∥f2 ⊙ (∇U(w ⊙f2)−∇U(w ⊙f1))∥2 +∥(f2 −f1)⊙∇U(w ⊙f1)∥2

]2]
,

where (i) we have used Jensen’s inequality for a vector-valued random variable v, namely
∥E[v]∥2 ≤ E[∥v∥2], and (ii) the subadditivity of the norm ∥a + b∥2 ≤ ∥a∥2 + ∥b∥2 for any
a,b ∈ RN . We now note that

∥f2 ⊙ (∇U(w ⊙f2)−∇U(w ⊙f1))∥2
2 =

∑
i

f i
2|∇iU(w ⊙f2)−∇iU(w ⊙f1)|2

(i)
≤
∑

i

f i
2ℓ2∥w ⊙f2 −w ⊙f1∥2

2

≤
∑

i

f i
2ℓ2∥f2 −f1∥2

2∥w∥2
2

(ii)
≤ ∥f2∥1∥f2 −f1∥1ℓ2R2, (2.102)

where (i) we have used the Lipschitzness assumption from (Q3) and (ii) used that ∥w∥2
2 <

R2 and the fact that ∥f2∥2
2 = ∥f2∥1 since for any vector f with entries {−1,0,1} we have

∥f∥2
2 = ∥f∥1. We can reason similarly with f1 −f2.
Using (Q2) we can also bound

∥(f2 −f1)⊙∇U(w ⊙f1)∥2
2 ≤ ∥f2 −f1∥1S2. (2.103)

Hence we have in (2.101) that

Ef1

[
Ef2

[
∥f2 ⊙ (∇U(w ⊙f2)−∇U(w ⊙f1))∥2 +∥(f2 −f1)⊙∇U(w ⊙f1)∥2

]2]

60 Chapter 2. Almost sure convergence of dropout algorithms for NNs

≤ Ef1

[
Ef2

[
∥f2∥1/2

1 ∥f2 −f1∥1/2
1 ℓR +∥f2 −f1∥1/2

1 S
]2]

(i)
≤ Ef1

[
Ef2

[
∥f2 −f1∥1(∥f2∥1/2

1 ℓR +S)2
]]

≤ Ef1,f2

[
∥f2 −f1∥1(∥f2∥1ℓ2R2 +∥f2∥1/2

1 2SℓR +S2)
]

(ii)
≤ Ef1,f2

[
∥f2 −f1∥1(∥f2∥1(ℓ2R2 +2ℓR)+S2)

]
, (2.104)

where (i) for a random variable v we have E[v]2 ≤ E[v2] and (ii) ∥f2∥1/2
1 ≤ ∥f2∥1 since

either ∥f2∥1 = 0 or ∥f2∥1 ≥ 1. We can now add an expectation term in the norm ∥f2 −
f1∥1 ≤ ∥f2 −E[f2]∥1 +∥f1 −E[f1]∥1 and ∥f2∥1 ≤ ∥f2 −E[f2]∥1 +∥E[f2]∥1. Here, ∥E[f2]∥1 =
∥E[f1]∥1 = pN by (Q4). Hence, from (2.104) onward we can write

Ef1,f2

[
∥f2 −f1∥1(∥f2∥1(ℓ2R2 +2ℓR)+S2)

]
≤ Ef1,f2

[(
∥f2 −E[f2]∥1 +∥f1 −E[f1]∥1

)(
∥f2 −E[f2]∥1(ℓ2R2 +2ℓR)(1+pN)+S2

)]
= Ef1,f2

[(
∥f2 −E[f2]∥2

1 +∥f1 −E[f1]∥1∥f2 −E[f2]∥1

)
(ℓ2R2 +2ℓR)(1+pN)

]
+2S2Ef2

[
∥f2 −E[f2]∥1

]
(i)
≤ Ef1,f2

[(
∥f2 −E[f2]∥2

1 +∥f1 −E[f1]∥1∥f2 −E[f2]∥1

)
(ℓ2R2 +2ℓR)(1+pN)

]
+4S2Np(1−p)

(ii)
≤ Ef1,f2

[(
∥f2 −E[f2]∥2

1 +4N2p2(1−p)2
)

(ℓ2R2 +2ℓR)(1+pN))
]

+4S2Np(1−p)

(iii)
≤
(

2N2p(1−p)+4N2p2(1−p)2
)(

ℓ2R2 +2ℓR
)(

1+pN
)
+4S2Np(1−p)

= Np(1−p)
((

2N +4Np(1−p)
)
(1+pN)(ℓ2R2 +2ℓR)+4S2

)
(iv)
≤ Np(1−p)(4S2 +6N2(ℓ2R2 +2ℓR)), (2.105)

where (i) we have used Lemma 7(i), (ii) we have used independence of f1 from f2 and
Lemma 7(i) again, (iii) we have used Lemma 7(ii), and (iv) we have bounded 1+pN < 2N

and p(1−p) ≤ 1/4. □

2.F Path representation of D(W) – Proofs of Lemma 1
and Corollary 1

Proof of (2.26). Recall that GF = (EF ,V) is a random subgraph of G = (E ,V) with edge
set EF = {e ∈ E :Fe = 1}. By (i) the law of total expectation, and by (ii) independence of
F and (X,Y),

D(W) = E
[dL∑

i=1

(
Yf −

∑
γ∈Γi(G)

PγFγXγ0

)2
]

2.G Conserved quantities – Proof of Lemma 2 61

(i)=
∑
g∈G

E
[dL∑

f=1

(
Yf −

∑
γ∈Γf (GF)

PγXγ0

)2
∣∣∣{GF = g}

]
P[GF = g]

(ii)=
∑
g∈G

µgE
[dL∑

f=1

(
Yf −

∑
γ∈Γf (g)

PγXγ0

)2
]
. (2.106)

Proof of (2.27). Expand (2.106) to find

D(W) =
∑
g∈G

µgE
[dL∑

f=1

(
Y 2

f −2Yf

∑
γ∈Γf (g)

PγXγ0 +
∑

γ∈Γf (g)

∑
δ∈Γf (g)

PγXγ0PδXδ0

)]
. (2.107)

Setting ηγ =
∑

{g∈G|γ∈Γ(g)} µg, we obtain

D(W) =
∑
g∈G

µgE
[(dL∑

f=1

∑
γ∈Γf (g)

(Y 2
f

|Γf (g)|
−2Yf PγXγ0

)
+
∑

γ∈Γ(g)

∑
δ∈ΓγL (g)

PγXγ0PδXδ0

)]
(2.108)

=
∑

γ∈Γ(G)

ηγE
[(

YγL
−PγXγ0

)2
]

−
∑
g∈G

µgE
[dL∑

f=1

∑
γ∈Γf (g)

((
1− 1

|Γf (g)|

)
Y 2

f −PγXγ0

∑
δ∈Γf (g)\{γ}

PδXδ0

)]
after rearranging terms. This completes the proof of Lemma 1 after identifying J (W)
and R(W) here as the left and right sum, respectively.

To prove Corollary 1, consider that since for an arborescence R(W) = 0, we can write∑
γ∈Γ(G)

ηγE
[(

YγL
−PγXγ0

)2
]

(2.109)

=
∑

γ∈Γ(G)

ηγE[X2
γ0]
(E[YγL

Xγ0]
E[X2

γ0] −Pγ

)2
+
∑

γ∈Γ(G)

ηγ

(
E[Y 2

γL
]−

E[YγL
Xγ0]2

E[X2
γ0]

)
(iii)= I(W)+D(W opt).

Here, (iii) follows because since I(W) ≥ 0 and I(W) = 0 at zγ = Pγ , what remains must
be the optimum. This completes the proofs of Lemma 1 and Corollary 1. □

2.G Conserved quantities – Proof of Lemma 2
For any edge f ∈ E ,

Wf
∂D

∂Wf

(2.26)=
∑
g∈G

µgE
[d∑

e=1
2
(
Ye −

∑
γ∈Γe(g)

PγXγ0

)(∑
δ∈Γe(g;f)

PδXδ0

)]
=
∑
g∈G

µgE
[∑

δ∈Γ(g;f)

2
(
YδL

−
∑

γ∈ΓδL (g)

PγXγ0

)
PδXδ0

]
. (2.110)

62 Chapter 2. Almost sure convergence of dropout algorithms for NNs

Note that Γ(g; l) = Γl(g) for any leaf l ∈ L(G) and g ∈ G, and therefore in particular

Wl
∂D
∂Wl

=
∑
g∈G

µg

∑
δ∈Γl(g)

E
[
2
(
YδL

−
∑

γ∈ΓδL (g)

PγXγ0

)
PδXδL

]
. (2.111)

Recall that L(G;f) is the set of leaves of the subtree of the base graph G rooted at
f ∈ E . By the fact that {Γl(g;f)}l∈L(G;f) partitions Γ(g;f) for any g ∈ G, viz.,

Γ(g;f) = ∪l∈L(G;f)Γl(g;f), Γl1(g;f)∩Γl2(g;f) = ∅ for all l1 ̸= l2, g ∈ G, (2.112)

it follows that ∑
l∈L(G;f)

Wl
∂D
∂Wl

= Wf
∂D

∂Wf
. (2.113)

Note in fact that this proof works for any base graph G that has no cycles and only
length-L paths, so not just an arborescence. This is why we make Assumption (N6’) as
opposed to the stronger Assumption (N6) in Corollary 1. □

2.H Proof of Proposition 4
The proof of Proposition 4 is by double induction on the statements A(t) ≡ {I(W {s}) ≤
I(W {s−1})exp(−2νminκα),∀s ∈ [t]} and B(t) ≡ {W {s} ∈ K,∀s ∈ [t]} where κ > 0 is a free
parameter and K is a compact set which we will define. Specifically, we prove that there
exist α and κ such that A(t)∩B(t) ⇒ B(t+1) and A(t)∩B(t+1) ⇒ A(t+1). Section 2.H.4
describes in detail how the upcoming Lemmas 11–13 provide sufficient conditions for the
induction step. There we also maximize the upper bound for the convergence rate over κ,
which gives the rate in (2.36).

We start by giving Lemmas 11–13. Recall first the definition of the set B(ϵ,I) in (2.34).
Here, with a minor abuse of notation, we define also

B(ϵ,{Cf }f∈E\L(G)) ≜
{

W ∈ W
∣∣I(W) ≤ ϵ,W 2

f −
∑

l∈L(G;f)

W 2
γl = Cf

}
(2.114)

where {γl} ≜ Γl(G) for l ∈ L(G) if G is an arborescence.

Lemma 11. Assume (N2) from Proposition 1 and (N6) from Corollary 1. Then:
(i) If ϵ > 0 and

∣∣Cf

∣∣< ∞ for f ∈ E\L(G), then the set B(ϵ,{Cf }f∈E\L) is compact.
(ii) If maxγ∈Γ(G) |zγ | ≤ ML, then the function I(W) is β-smooth in S with β = 6νmax ·

|E(G)| |Γ(G)|M2(L−1).

Lemma 11 implies that B(ϵ,I) is compact and that D(W) is β-smooth on the compact
set K = S ∩B(ϵ,I), i.e.,

D(W ′)−D(W) ≤ ∇D(W)T(W ′ −W)+β∥W ′ −W∥2
2 (2.115)

for W,W ′ ∈ K. Its proof is deferred to Section 2.H.1.
Next, Lemma 12 gives a lower bound for the curvature of D(W) on K in the direction

of ∇D(W), in the form of a PL-inequality [77]. Its proof is in Section 2.H.2.

2.H.1 Compactness, and smoothness – Proof of Lemma 11 63

Lemma 12. Assume (N2) from Proposition 1 and (N6) from Corollary 1. If W {t} ∈
S ∩B(ϵ,I), then

∥∇D(W {t})∥2
2 ≥ 4νmin(C{t}

min)(L−1)(D(W {t})−D(W opt)
)
. (2.116)

Lemma 13 proves that the conserved quantities of the gradient flow remain bounded
under the GD algorithm in (2.22). This lemma allows us to keep track of the iterates in
the compact set K = S ∩ B(ϵ,I) by relating them to conserved quantities and exploiting
the fact that under GD |C{t+1}

f −C
{t}
f | has order O(α2). Section 2.H.2 contains its proof.

Lemma 13. Assume (N2) from Proposition 1 and (N6) from Corollary 1. If W {t} ∈
S, and C

{t}
f > 0 for all f ∈ E\L(G), then 4α2 ∥ν∥1 M2(L−1)(D(W {t}) − D(W opt)

)
≥

|C{t+1}
f −C

{t}
f |.

A note on the exchange of derivative and expectation in this section. Whenever we make
both Assumption (N2) in Proposition 1 and (N7) in Lemma 1, the exchange of derivative
and expectation is warranted. This occurs several times throughout this section. We refer
to the proof of Lemma 5 for the details.

2.H.1 Compactness, and smoothness – Proof of Lemma 11
In the proof of Lemma 11, we will upper bound the operator norm of the Hessian. Recall
that for a symmetric bilinear matrix A, ∥A∥op ≜ sup∥v∥2=1 |vT Av|.

Proof of (i). By continuity of the conditions in (2.34), the set B(ϵ,{Cf }f∈E\L) is closed.
We need to prove boundedness. Let W ∈ B(ϵ,{Cf }f∈E\L), and suppose w.l.o.g. that for
some f∗ ∈ E\L we have

∣∣Wf∗
∣∣> Q, where Q > maxj∈E\L,γ∈Γ(G){|Cj | , |zγ |}. We want to

find a path γ ∈ Γ(G) such that Pγ is large for a contradiction with the assumption that
I(W) ≤ ϵ. By (2.30), we have the inequality

∑
l∈L(G;f∗) W 2

l > Q2 −
∣∣Cf∗

∣∣ so that for
some l∗ ∈ L(G;f∗) we must have W 2

l∗ > (Q−
∣∣Cf∗

∣∣)/ |L(G;f∗)|. Consequently, we have by
(2.30) that |We|2 > (Q2 −

∣∣Cf∗
∣∣)/|L(G;f∗)|−|Ce| for any edge e ∈ γ in any path γ ∈ Γl∗(G)

except for the edge f∗ where we have
∣∣Wf∗

∣∣ > Q by assumption. In particular, we have
the bound |We| > O(Q) for any edge e ∈ γ for any path γ ∈ Γ(G;f∗). Therefore if we pick
γ ∈ Γ(G;f∗) we have

ϵ
(2.34)

≥ I(W) ≥ νγ(zγ −Pγ)2 ≥ νγ(|Pγ |− |zγ |)2 > O(Q2L) (2.117)

for sufficiently large Q, which is a contradiction. We must thus have |Wf∗ | ≤ Q for some
Q < ∞. If on the other hand |Wl| > Q for some l ∈ L(G;f∗), by (2.30) we must also have
(Wf∗)2 > Q2 +Cf∗ > O(Q2) for sufficiently large Q. This case is, thus, the same as before.
Proof of (ii). Using a regular upper bound for the entries of ∇2I(W) when W ∈ S will
suffice. Element-wise, we have

(∇2I(W))i,j (2.118)

=


2
∑

δ∈Γ(G;i)∩Γ(G;j) νδ

(
Pδ
Wi

Pδ
Wj

− Pδ
WiWj

(zγ −Pγ)
)

, if i ̸= j,Γ(G; i)∩Γ(G;j) ̸= ∅,

2
∑

γ∈Γ(G;i) νγ(Pγ

Wi
)2 if i = j,

0 otherwise.

64 Chapter 2. Almost sure convergence of dropout algorithms for NNs

Hence, noting that since we have
∣∣Wf

∣∣≤ M for all f ∈ E on S, we can bound
∣∣Pγ/Wf

∣∣≤
ML−1, |zγ | ≤ ML and the other terms similarly. We upper bound the number of terms in
the sum over Γ(G; i) and Γ(G; i)∩Γ(G;j) by |Γ(G)| and νγ ≤ νmax. Adding all terms, we
obtain that 6νmax |Γ(G)|M2(L−1) is an upper bound for each of the entries of ∇2I(W).
This gives an upper bound ∥∇2I(W)∥op ≤ 6|E|νmax |Γ(G)|M2(L−1) in S. □

2.H.2 PL-inequality on a compact set – Proof of Lemma 12
Recall the definition of a PL-inequality:

Definition 7. Let u ∈ C2(K,R) where K ⊂Rn is compact and K\∂K ̸= ∅. Denote by u∗ =
minx∈K u(x) and suppose that u∗ ∈ K\∂K. We say that u satisfies a Polyak–Łojasiewicz
(PL) inequality if there exist a τK > 0 depending only on K such that

∥∇u(x)∥2
2 ≥ τK(u(x)−u∗) for all x ∈ K. (2.119)

A PL-inequality together with β-smoothness on a compact set will imply that D(W {t})−
D(W opt) decreases. To see this, note that by (i) β-smoothness, and (ii) the update rule

D(W {t+1})−D(W {t})
(i)
≤ ∇D(W {t})T(W {t+1} −W {t})+β∥W {t+1} −W {t}∥2

2
(ii)= α

(
βα −1

)
∥∇D(W {t})∥2

2 (2.120)

If furthermore α ≤ 1/(2β), then also βα − 1 ≤ −1/2. Together with (2.119), and after
rearranging terms, one finds that

D(W {t+1})−D(W {t}) ≤ ατK

2 (D(W {t})−D(W opt)) for all W ∈ K. (2.121)

By (iii) 1 + x ≤ exp(x) for all x ∈ R, we obtain (2.37). The strategy will now be to prove
that there is a PL-inequality in some compact set, that the iterates remain in that compact
set, and that the function is β-smooth.
Proof of Lemma 12. First note that if l ∈ L(G) and γ ∈ Γ(G; l), the indexes of the weights
in the product |P {t}

γ /W
{t}
l | belong to the index set E\L(G). The proof follows (i) by

restricting the sum, and (ii) from the fact that for every path γ ∈ Γ(G) in an arborescence
G, there is exactly one leaf l ∈ L(G) such that γl = γ. Thus∑

e∈E

∣∣∣ ∂

∂We
I(W {t})

∣∣∣2 = 4
∑
e∈E

∣∣∣ ∑
γ∈Γ(G;e)

νγ
P

{t}
γ

W
{t}
e

(zγ −P
{t}
γ)

∣∣∣2
(i)
≥ 4

∑
l∈L(G)

∣∣∣νγl

P
{t}
γl

W
{t}
l

(zγl −P
{t}
γl)

∣∣∣2 (2.122)

(ii)= 4
∑

γ∈Γ(G)

ν2
γ

∣∣∣ P
{t}
γ

W
{t}
γL

(zγ −P
{t}
γ)

∣∣∣2
(iii)
≥ 4νmin

(
min

f∈E\L(G)
|W {t}

f |2
)L−1I(W {t}),

where in (iii) we have used the bound |W {t}
i | ≥ mine∈E\L(G) |W {t}

e | for all i ∈ E\L(G) and
similarly with νγ ≥ νmin for γ ∈ Γ(G). Finally, by (2.30), we have mine∈E\L(G) |W {t}

e |2 ≥
C

{t}
min. This completes the proof. □

2.H.3 Conserved quantities remain bounded throughout GD – Proof of Lemma 13 65

2.H.3 Conserved quantities remain bounded throughout GD –
Proof of Lemma 13

Proof. Pick f ∈ E\L(G). By (i) Corollary 1, and (ii) Lemma 2, we have

C
{t+1}
f = (W {t+1}

f)2 −
∑

l∈L(G;i)

(W {t+1}
l)2

(2.22)=
(

W
{t}
f −α

∂

∂Wf
D(W {t})

)2
−

∑
l∈L(G;f)

(
W

{t}
l −α

∂

∂Wl
D(W {t})

)2

(i)=
(

W
{t}
f −α

∂

∂Wf
I(W {t})

)2
−

∑
l∈L(G;f)

(
W

{t}
l −α

∂

∂Wl
I(W {t})

)2

(ii)= C
{t}
f +α2

((∂

∂Wf
I(W {t})

)2
−

∑
l∈L(G;f)

(∂

∂Wl
I(W {t})

)2)

= C
{t}
i +4α2

((∑
γ∈Γ(G;f)

νγ
P

{t}
γ

W
{t}
f

(zγ −P
{t}
γ)

)2
−

∑
l∈L(G;f)

ν2
γl

(P
{t}
γl

W
{t}
l

)2
(zγl −P

{t}
γl)2

)
(2.123)

≥ C
{t}
f −4α2

(∑
l∈L(G;f)

ν2
γl

(P
{t}
γl

W
{t}
l

)2
(zγl −P

{t}
γl)2

)
. (2.124)

By Cauchy–Schwartz we also have(∑
γ∈Γ(G;f)

νγ
P

{t}
γ

W
{t}
f

(zγ −P
{t}
γ)

)2
≤
(∑

γ∈Γ(G;f)

νγ

) ∑
γ∈Γ(G;f)

νγ

(P
{t}
γ

W
{t}
l

)2
(zγ −P

{t}
γ)2.

(2.125)
If we have C

{t}
f > 0, then (W {t}

f)2 > (W {t}
γL)2 for any γ ∈ Γ(G;f). Thus, combining

the estimate (2.123) with (2.125) we obtain

C
{t+1}
f ≤ C

{t}
f +4

(∑
γ∈Γ(G;f)

νγ

)
α2
(∑

l∈L(G;f)

νγl

(P
{t}
γl

W
{t}
l

)2
(zγl −P

{t}
γl)2

)
. (2.126)

Extending the sums in (2.126) from Γ(G;f) to Γ(G) and from L(G;f) to L(G), respectively,
yields

C
{t+1}
f −C

{t}
f ≤ 4∥ν∥1 α2(max

e∈E\L(G)
|W {t}

e |2
)L−1I(W {t}), (2.127)

where we have used the bound
∣∣Wf

∣∣ ≤ maxe∈E\L(G) |We| for all f ∈ E\L(G). Similarly,
using (2.124) and the trivial bound νγ ≤ ∥ν∥1 for any γ ∈ Γ, and by absorbing one νγ-term
into I(W)’s expression, we obtain

C
{t+1}
f ≥ C

{t}
f −4∥ν∥1 α2(max

e∈E\L(G)
|W {t}

e |2
)L−1I(W {t}) (2.128)

for the lower bound. Because W {t} ∈ S by assumption, maxe∈E\L(G) |W {t}
e |2 ≤ M2. This

completes the proof. 2

66 Chapter 2. Almost sure convergence of dropout algorithms for NNs

2.H.4 Double induction
We now use Lemmas 11–13 together in a double induction to finally prove Proposition 4.
Let κ > 0 and denote the statements:

A(t) ≡ {I(W {s}) ≤ I(W {s−1})exp(−2νminκα),∀s ∈ [t]}, (2.129)

B(t) ≡ {W {s} ∈ B(ϵ,I)∩S ∀s ∈ [t]}. (2.130)

We will prove that there exists a κ > 0 such that when choosing α appropriately, firstly

A(t)∩B(t) ⇒ B(t+1), (2.131)

and secondly,
A(t)∩B(t+1) ⇒ A(t+1). (2.132)

Step 1: A(t) ∩ B(t) ⇒ B(t + 1). We need to prove that W {t+1} ∈ B(ϵ,I) ∩ S assuming
(2.129) and (2.130). Using (2.127) from the proof of Lemma 13 repeatedly with the bound
maxe∈E |W {t}

e | ≤ M , we obtain

C
{t+1}
f ≤ C

{0}
f +4∥ν∥1 M2(L−1)α2

t∑
s=0

I(W {s}). (2.133)

By (2.129), we can upper bound

t∑
s=0

I(W {s})
(2.129)

≤
t∑

s=0
I(W {0})exp(−2νminκαs) ≤ I(W {0}) 1

1− exp(−2νminκα) . (2.134)

If furthermore (C1) 0 < 2νminκα < 1, then (i) the inequality 1/(1 − exp(−2νminκα)) <

1/(νminκα) holds, so that

C
{t+1}
min

(2.133)
≤ C

{0}
min +4∥ν∥1 M2(L−1)α2

t∑
s=0

I(W {s})
(i)
≤ C

{0}
min +4

∥ν∥1
νmin

ML−1ακ−1I(W {0}).

(2.135)
In the same manner, we can also prove (2.135) for C

{0}
f instead of C

{0}
min. This yields

C
{t+1}
f ≤ C

{0}
f +4

∥ν∥1
νminκ

M2(L−1)αI(W {0}), (2.136)

for any f ∈ E\L(G). Similarly, for a lower bound, we can use (2.128) repeatedly together
with the bound (2.134) and condition (C1) yielding

C
{t+1}
f ≥ C

{0}
f −4

∥ν∥1
νminκ

M2(L−1)αI(W {0}). (2.137)

for any f ∈ E\L(G). Now, suppose (D1) C
{0}
min − κ1/(L−1) > 0 and let (C2) the step size

satisfy

α ≤ νminκ
C

{0}
min −κ1/(L−1)

8∥ν∥1 M2(L−1)I(W {0})
. (2.138)

2.H.4 Double induction 67

We have (i) by (2.136) and (2.137) that

C
{t+1}
f

(i)
∈ [C{0}

f −4
∥ν∥1
νmin

M2(L−1)ακ−1I(W {0}),C{0}
f +4

∥ν∥1
νmin

M2(L−1)ακ−1I(W {0})]

(2.138)
⊆ [C{0}

f − 1
2(C{0}

min −κ1/(L−1)),C{0}
f + 1

2(C{0}
min −κ1/(L−1))]

(D1)
⊆ [C{0}

f −C
{0}
f /2,C

{0}
f +C

{0}
f /2] ⊆ [C{0}

f /2,3C
{0}
f /2] = If . (2.139)

Then W {t+1} ∈ B(ϵ,I) by (2.34). Hence, M > W
{t+1}
f

(2.30)
> (C{0}

f /2)1/2 ≥ (C{0}
min/2)1/2 >

δ for any f ∈ E\L(G). Since moreover C
{t+1}
e > 0 for all e ∈ E\L(G), we have that

if f ∈ L(G), then M2 > (W {t+1}
j)2 > (W {t+1}

f)2 for some j ∈ E\L(G). Consequently
M ≥ |W {t+1}

f | and W {t+1} ∈ S.
Step 2: A(t) ∩ B(t + 1) ⇒ A(t + 1). Suppose that W {s} ∈ B(ϵ,I) ∩ S for s = 0,1, . . . , t + 1.
Using the bound in (2.136) which requires the induction hypothesis A(t) and (C1) for
C

{t}
min, we obtain

C
{t}
min ≥ C

{0}
min −4

∥ν∥1
νminκ

M2(L−1)αI(W {0}). (2.140)

Suppose now for a moment that (C2) the right-hand side of (2.140) is positive for some
sufficiently small α. We could then use the PL inequality from Lemma 12 together with
mine∈E\L(G) |W {t}

e |2(L−1) ≥ (C{t}
min)L−1, that is,

∥∇I(W {t})∥2
2 ≥ 4νmin(C{t}

min)L−1I(W {t}). (2.141)

To see how, note that the argumentation around (2.121) together with (2.141) and (i) the
induction hypothesis B(t+1) we have W {t},W {t+1} ∈ B(ϵ,I)∩S and (ii) the clause (L1)
α ≤ 1/(2β), implies

I(W {t+1})
(i,ii, 2.141)

≤ I(W {t})exp
(
−2νminα(C{t}

min)L−1)
(2.140)

≤ I(W {t})exp
(

−2νminα
(
C

{0}
min −4

∥ν∥1
νminκ

M2(L−1)αI(W {0})
)

(2.142)

(iii)
≤ I(W {0})exp

(
−2νminα

(
C

{0}
min −4

∥ν∥1
νminκ

M2(L−1)αI(W {0})
)L−1 −2νminακt

)
,

where we have also used (iii) the induction hypothesis A(t), i.e., that I(W {t}) ≤ I(W {0}) ·
exp(−2νminκαt).

We now investigate the exponent in (2.142) for a moment. Assuming (C2) and if (C3)
the right-hand side of (2.142) is furthermore smaller than I(W {0})exp(−2νminκα(t+1)),
then the induction step would be complete. Note finally that both conditions (C2) and
(C3) are satisfied when choosing

κ ≤
(
C

{0}
min −4

∥ν∥1
νmin

M2(L−1)ακ−1I(W {0})
)L−1

, (2.143)

or equivalently

α ≤ νminκ
C

{0}
min −κ1/(L−1)

4∥ν∥1 M2(L−1)I(W {0})
. (2.144)

68 Chapter 2. Almost sure convergence of dropout algorithms for NNs

To also satisfy condition (C1), we thus require that

α ≤ min
(1

2νminκ
,νminκ

C
{0}
min −κ1/(L−1)

4∥ν∥1 M2(L−1)I(W {0})

)
. (2.145)

Step 3. Let us summarize. Convergence occurs at rate at most 2νminκα if conditions (L1),
(D1), (C1)–(C3) hold. Hence we have to choose κ > 0 such that C

{0}
min −κL−1 > 0 and

α ≤ min
(

νminκ
C

{0}
min −κ1/(L−1)

8∥ν∥1 M2(L−1)I(W {0})
,

1
2β

,
1

2νminκ

)
. (2.146)

Note that we can maximize the convergence rate 2νminακ by maximizing κ2(C{0}
min −

κ1/(L−1)), which occurs whenever

κ = (C{0}
min)L−1(1+1/(2(L−1)))−(L−1) ≥ exp(−1/2)(C{0}

min)L−1. (2.147)

Substituting this in (2.146) we require a step size

α ≤ min
(

νmin
exp(1/2)(C{0}

min)L

8∥ν∥1 (2L−1)M2(L−1)I(W {0})
,

1
2β

,
1

2νmin(C{0}
min)L−1

)
. (2.148)

Finally, we have the bound β ≤ 6νmax |E(G)| |Γ(G)|M2(L−1) from Lemma 11 in S, so that

α ≤ min
(

νmin
exp(1/2)(C{0}

min)L

16∥ν∥1 LM2(L−1)I(W {0})
, (2.149)

1
12νmax |E(G)| |Γ(G)|M2(L−1) ,

1
2νmin(C{0}

min)L−1

)
.

This completes the proof of Proposition 4. □

2.I Convergence rate in the case of Dropout and Drop-
connect – Proof of Corollary 3

We consider first the case of Dropconnect. We have that {Fe}e∈E are independent Bernoulli(p)
random variables. Suppose that the base graph G has no cycles and every path is of length
L. Then by definition in Lemma 1, we have

ηγ =
∑

{g∈G|γ∈Γ(g)}

P[GF = g] =
∑
g∈G

1[γ ∈ Γ(g)]P[GF = g]

=
∑
g∈G

P[γ ∈ Γ(g)|GF = g]P[GF = g] = P[γ ∈ Γ(GF)] (i)= pL, (2.150)

where (i) we have used Dropconnect’s distribution on F .
Now suppose that additionally we make the stronger assumption that G is an arbores-

cence. Then by definition in Corollary 1 νγ = E[X2]ηγ , and subsequently we can calculate
∥ν∥1 = E[X2]

∑
γ∈Γ(G) νγ = E[X2] |Γ(G)|pL = E[X2]dLpL = E[X2]|L(G)|pL.

2.J Inequalities pertaining to the Frobenius norm 69

Now, since by assumption maxγ |zγ | ≤ ML and
∣∣Wf

∣∣≤ M for all f ∈ E , then I(W {0}) ≤
O(|Γ(G)|M2L) so that substitution of in the definition of α in Proposition 4 yields

α = O
((C{0}

min)L

LM4L

)
, (2.151)

where we have used that Cmin ≤ M2. Finally multiplying by τ gives the rate

ατ = O
(pL(C{0}

min)2L

L|L(G)|2M4L

)
. (2.152)

Substituting these results in the rate τα in Proposition 4 yields the result for Dropconnect.
Finally we note that for the case of Dropout, filtering all nodes independently in an

arborescence is equivalent to filtering all edges independently except the edge at the root.
In particular, in (2.150), we have P[γ ∈ Γ(GF)] = pL−1. The remaining steps of the proof
are then the same as for Dropconnect and comparing pL with pL−1 we can absorb the
missing p factor into the O notation, which does not change the order in L. □

2.J Inequalities pertaining to the Frobenius norm
Lemma 14. For any matrix A ∈ Rm×n and 1 ≤ k < ∞, it holds that

∑
i,j(1 + A2

ij)k ≤
nm(1 + ∥A∥F)2k. For any two matrices A ∈ Rm×n, B ∈ Rn×p and 0 ≤ k < ∞, it holds
that (1+∥AB∥F)k ≤ (1+∥A∥F)k(1+∥B∥F)k. For any two matrices A,B ∈Rn×m, it holds
that ∥A⊙B∥F ≤ ∥A∥F ∥B∥F.

Proof. Recall Minkowski’s inequality for sequences which states that for 1 ≤ k < ∞, the
inequality

(∑
i |xi +yi|k

)1/k ≤
(∑

i |xi|k
)1/k +

(∑
i |yi|k

)1/k holds. It (i) implies that for
any matrix A ∈ Rn×m and 1 ≤ k < ∞, that∑

i,j

(1+A2
ij)k

(i)
≤
(

(nm)1/k +
(∑

i,j

|A2
i,j |k

)1/k
)k (ii)

≤ nm
(

1+
(∑

i,j

|A2
i,j |k

)1/k
)k

(2.153)

where (ii) we have used that the function zk is nondecreasing in z ≥ 0 whenever k ≥ 0.
Because (iii) for the ℓk-norm for sequences it holds that ∥x∥2

2k ≤ ∥x∥2
2 whenever 1 ≤ k < ∞,

we obtain ∑
i,j

(1+A2
ij)k

(iii)
≤ nm(1+∥A∥2

F)k
(iv)
≤ nm(1+∥A∥F)2k (2.154)

where (iv) we have used that the function (1+z2)k ≤ (1+z)2k for all z ≥ 0 whenever k ≥ 0.
This proves the first inequality.

The second inequality is an immediate consequence of the submultiplicativity property
of the Frobenius norm and its positivity, i.e.,

1+∥AB∥F ≤ 1+∥A∥F∥B∥F ≤ 1+∥A∥F +∥B∥F +∥A∥F∥B∥F. (2.155)

Raising to the k-th power left and right finishes its proof.
The third inequality follows from strict positivity of the summands:

∥A⊙B∥2
F =

∑
i,j

A2
ijB2

ij ≤
(∑

i,j

A2
ij

)(∑
i,j

B2
ij

)
= ∥A∥2

F∥B∥2
F. (2.156)

Each of the inequalities has now been shown. 2

Chapter 3

Asymptotic convergence rate of
dropout for shallow linear
neural networks

Based on [7]:
“Asymptotic convergence rate of dropout in shallow linear neural networks”

by A. Senen–Cerda, and J. Sanders

3.1 Introduction
The results in Chapter 2 yield theoretical insight into the convergence guarantees of
dropout and how the convergence rate depends on the depth of the Neural Network (NN).
However, the explicit dependencies of the convergence rate on properties of the data or
width of the NN were not investigated. In this chapter we tackle this problem and shed
light on the explicit dependence of the convergence rate of Dropout and Dropconnect on
properties of the data, the dropout probability 1−p, and the structure of the NN. To do
so, we investigate in detail the convergence rate of the gradient flow on an objective func-
tion induced by Dropout and Dropconnect on shallow linear NNs. To our knowledge, this
problem had not received attention in the dropout literature before. The fact that there
are relatively few convergence results regarding NNs with dropout algorithms to build on
[29, 25], combined with the additional challenges of a stochastic algorithm, means that at
least for now, linear NNs give the right balance of complexity and feasibility in order to
obtain sharp rates of convergence. Our results in this chapter show that these NNs are in
fact sufficiently rich for a precise description of the dependencies of the convergence rate
on the data, the dropout probability, and the structure of the NN, while still presenting a
technical challenge in their analysis.

In this chapter we investigate the convergence rate of dropout in shallow linear NNs.
We will assume that we have n input–output data points (x1, . . . ,xn) ∈Re×n and (y1, . . . ,yn)

71

72 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

x1

x2

x3

x4

y1

y2

y3

(a) Full NN.

x1

x2

x3

x4

y1

y2

y3

(b) Dropout (p = 0.5).

x1

x2

x3

x4

y1

y2

y3

(c) Dropconnect (p = 0.5).

Figure 3.1.1: (a) The base graph of a shallow NN with h = 4,f = 5,e = 3 input, hidden,
and output nodes, respectively. (b) A random subgraph being trained by
Dropout. When applying canonical Dropout, one drops every hidden node
of the graph with probability 1−p in an independent fashion. (c) A random
subgraph being trained by Dropconnect. When applying Dropconnect, one
drops edges with probability 1−p in an independent fashion.

∈Rh×n. By using linearity, we can encode the information of these datapoints in a matrix
Y ∈ Re×h—this process is also called data whitening. We will study the gradient flow
of an ordinary differential equation that approximates the behavior of training a shallow
linear NNs with Dropout and Dropconnect. In a shallow NN, we have weight matrices
W = (W2,W1) ∈ Re×f ×Rf×h, where f denotes the width of the network. With whitened
data, the update direction ∆[n+1] of gradient descent at time n+1 in shallow linear NNs
with dropout satisfies [60, 29]

E[∆[n+1] | W [0], . . . ,W [n]] = ∇J (W [n]), where

J (W) = ∥Y −aW2W1∥2
F + bTr[Diag(W1W T

1)Diag(W2W T
2)]. (3.1)

Here, the Frobenius norm for a matrix A is defined as ∥A∥2
F = Tr[AT A] and the expectation

is conditional on the previous iterates W [0], . . . ,W [n]. The constants a,b have a closed-form
expression in terms of the probability 1 − p of dropping nodes when using Dropout, and
another closed-form expression in terms of the probability 1 − p of dropping edges when
using Dropconnect (see Section 3.2.3 for their expressions).

For diminishing step sizes α{n}, we can view both Dropout and Dropconnect schemes
as being noisy discretizations1 of the ordinary differential equation

dW

dt
= −∇J (W (t)). (3.2)

To formally establish that the random iterates {W [n]} indeed follow the trajectories of the
gradient flow in (3.2), one may employ the so-called ordinary differential equation method

1Observe that a step of Stochastic Gradient Descent (SGD) satisfies W [n+1] = W [n] +
α{n}(−∇J (W [n]) + M [n+1]) where M [n+1] = E[∆[n+1] | W [0], . . . ,W [n]] − ∆[n+1] describes a mar-
tingale difference sequence. This martingale difference sequence’s expectation with respect to the
past W [0], . . . ,W [n] is zero.

3.1 Introduction 73

[147, 140, 127, 29]. In this chapter, however, we take the relation for granted and the
problem is about estimating the convergence rate of the gradient flow in (3.2).

For shallow linear NNs, the main result of this chapter in Theorem 10 gives a lower
bound ω to the exponent ω of the convergence rate for the gradient flow of J (W) when
starting close to a minimizer. Let M denote the closed set of global minimizers of J (W),
and d(x,M) = infy∈M {|x−y|} denote the Euclidean distance between the point x and the
set M . Informally stated, we prove the following

Proposition (informal). Let W ∈ P = Re×f ×Rf×h. If Y ∈ Re×h has distinct positive
singular values, for almost all W ∈ M , there exists neighborhood V ⊂ U of W such that
for any gradient flow θ : [0,∞) → P satisfying

dθt

dt
= −∇J (θt) and θ0 ∈ V, (3.3)

there exists an explicitely computable constant ω(p,f,Y,W) > 0 such that for any ω ≥ ω

we have
d(θt,U ∩M) ≤ exp(−ωt)d(θ0,U ∩M) for all t ∈ (0,∞). (3.4)

This result guarantees local convergence and shows that dropout converges in shallow
linear NNs. While it may look similar to the convergence guarantee of Proposition 1
in Chapter 2, this is actually not the case. In comparison, Theorem 10 gives an implicit
characterization of ω: if W (t) converges to a so-called balanced minimizer (see Section 3.2.5
for the exact definition), the dependencies of ω can be analytically computed. These
depend namely on the probability of dropping nodes or edges 1−p, the width f , and the
nonzero singular values σ1, . . . ,σr of the data matrix Y ∈ Re×h, where here, r ≤ min(e,h).

We give a bound for ω that holds whenever W (0) is close enough to M for arbitrary
input–output dimensions, and that is computable and partially explicit. For the case of
a one-dimensional output (e = 1) a closed-form expression for ω is obtained. Informally
stated (see Proposition 6 in Section 3.3), we establish the following:

Corollary (informal). If the output is one-dimensional (e = 1), then the lower bound ω

for ω satisfies

ω ≥ ω ≈ 2p2(1−p2)
p2f +1−p2 σ1 for Dropconnect, and ω ≥ ω ≈ 2p(1−p)

pf +1−p
σ1 for Dropout.

(3.5)

Some consequences from this corollary can be readily derived. For example, in an
overparametrized regime (f ≫ e = 1), the bound for the convergence rate ω in (3.5) for p

fixed decays as 2σ1/f . Furthermore, for every f , there is a choice of p∗ that maximizes
ω. This maximizer satisfies p∗ = 1/(1 + f1/2)1/2 for Dropconnect and p∗ = 1/(1 + f1/2)
for Dropout. Lastly, it must be remarked that these results and insights also pertain to
certain matrix factorization problems. Indeed, the minimization of (3.1) is in fact a matrix
factorization problem with a regularization term induced by dropout. This was originally
observed in [51, 60, 42].

In order to prove the results of this chapter we use a result in [21] on the local conver-
gence of gradient flow for nonconvex objective functions. A condition in this convergence
analysis is that a nondegeneracy condition of the set of minima needs to be satisfied. We
combine this approach with a careful analysis of the set of minimizers of the dropout loss

74 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

function, and of its Hessian. As a set, the set of minimizers M has been characterized
in [51, 60, 42] for Dropout and Dropconnect and we build on their result. A related but
different loss landscape analysis within the context of NNs can be found in [70].

Formally, our lower bounds ω for ω in (3.4) and (3.5) hold only close to M . Nonetheless,
we expect that the iterates of a gradient descent counterpart should exhibit a similar decay
with an exponent similar to our lower bound with enough iterations. To substantiate
this claim, we show simulation results in Section 3.5 that compare numerically measured
convergence rates to the rate in (3.5). We compare convergence rates across datasets with
different characteristics. For example, each has different input and output dimensions.
We also look at the convergence rate far away from minima, which goes beyond the scope
of the local convergence statements of the results. These latter simulations yield insight
in the objective function of dropout in the overparametrized regime.

The simulations show for different initializations that, indeed, the convergence rate of
the gradient descent counterpart exhibits similar qualitative dependencies as the bound
in (3.5). Moreover, when starting sufficiently close to a minimizer, the dependency of the
numerically measured convergence rates on the width f matches the decay in f provided
by the bound ω. This indicates that the bound in (3.5) is sharp in its dependence of
f , i.e., ω(f) ≈ Θ(ω(f)). Also, this observation is found to be distinct from when the
iterands are far away from minima, in which case overparametrization—large width f—is
seen to improve the convergence rate instead. This finding can be understood with the
following intuition: dropout regularization makes the objective function less symmetric
in the sense that as the dropout probability 1 − p changes, the symmetry in the types of
minima in the matrix factorization problem when p = 1 is lost. Therefore, deep valleys
in the optimization landscape exist in which it will take a long time to converge to the
minimum as p ↑ 1, while the value of the objective function at these points will already be
close to its minimum. Note that this is in agreement with the convergence to ϵ-stationarity
of (2) in Chapter 2 where as p ↑ 1, up to the term c1 which depends only on the variance
of the data, the other term scales as (1−p).

Finally, we discuss a few simulations that extend beyond the model assumptions by
considering stochastic Dropout, and also investigate the qualitative limitations of our re-
sults.

Our results shed light on the dependency of the convergence rate on properties of
the data, the dropout probability, and the structure of the NN. These results add to
the relatively scarce literature on the convergence properties of dropout algorithms and
imply that the convergence rate of the stochastic Dropout and Dropconnect algorithms
will intricately depend on the data, the dropout probability, and the structure of the NN.
By extension, we expect that this conclusion must also hold for nonlinear shallow NNs,
though quantitatively establishing such fact requires more research.

3.2 Preliminaries

In this chapter, we specialize the analysis to shallow NNs with linear activations, which
allow us to view the optimization problem as an optimization over products of matrices.

3.2.1 Shallow neural networks 75

3.2.1 Shallow neural networks
In shallow NNs we have three parameters that characterize their structure. Let e,f,h ∈N+
denote the dimensions of the input, hidden, and output layer, respectively; see Figure 3.1.1
for a depiction. A shallow NN with parameters W = (W2,W1) ∈Re×f ×Rf×h ≜P is given
by the function

ΨW (x) = W2ϑ(W1x), where ϑ : R → R is applied componentwise. (3.6)

Here, the weights of the first and second layer are collected in the matrices W1 and
W2, respectively. Common choices for ϑ include ReLU(t) = max{0, t} and the sigmoid
activation function ϑ(t) = 1/(1+exp(−t)).

As we have seen in Section 1.3 in Chapter 1, if we have n pairs of input–output data
points {(xi,yi)}n

i=1 ⊂ Rh ×Re, we aim to find weights W that minimize the empirical risk,
that is, weights in

argmin
W ∈P

R̂n(W) ≜
n∑

i=1
∥yi −ΨW (xi)∥2

2. (3.7)

We will assume that the n data points are fixed, and we will make no reference to their
underlying distribution.

In this chapter we focus on shallow linear NNs, that is, the family of functions param-
eterized by ΨW (x) = W2W1x so ϑ(t) = t. For these NNs, the optimization problem in
(3.7) is already quite challenging, as the empirical risk turns out to be nonconvex and has
multiple minima and saddle points. The analysis of linear NNs can be expected to also
give some insight into the optimization of nonlinear NNs, and is in fact common (see [35,
3, 49] for examples).

3.2.2 Data whitening
Data whitening is a preprocessing step that rescales the data points such that their
empirical covariance matrix equals the identity. Let X = (x1, . . . ,xn) ∈ Rh×n and Y =
(y1, . . . ,yn) ∈ Re×n be matrices containing the input and output data points, respectively.
In order to be able to whiten the data, one must assume X X T ∈ Rh×h to be nonsingular.

Under said assumption, define now the matrix Y = YX T (X X T)−1/2 ∈ Re×h, where
(X X T)−1/2 is the inverse of the unique positive definite square root of X X T . In Ap-
pendix 3.B.1, we derive that

R̂n(W) = ∥Y −W2W1X ∥2
F = ∥Y −W2W1(X X T)1/2∥2

F + c, (3.8)

for some constant c ∈ R independent of W . Consequently, after data whitening, which
applies a transformation (W2,W1) → (W2,W1(X X T)−1/2), we may focus on

minimizing R(W) ≜ ∥Y −W2W1∥2
F over W ∈ P, (3.9)

instead of minimizing the risk of (3.8). The reader can find the details in Appendix 3.B.1.2

2Note that if the input data points (xi)n
i=1 are sampled from an affine subspace, then we should

define Y using the pseudoinverse of X X T instead.

76 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

3.2.3 Dropout and Dropconnect on shallow, linear NNs with white-
ned data

If the data samples are whitened first and kept fixed, then we can view a dropout algorithm
on a shallow linear NN as a stochastic algorithm that finds a stationary point of the
objective function [29]

J (W) ≜ E[R(F ⊙W)] = E[∥Y − (W2 ⊙F2)(W1 ⊙F1)∥2
F]. (3.10)

Here, F ⊙ W denotes the componentwise product of each of the elements of the weight
matrices W = (W2,W1) by the elements of the two random matrices F = (F2,F1) ∈
{0,1}e×f × {0,1}f×h. The expectation here is with respect to the distribution of F .
Lemma 15 contains explicit expressions for (3.10) for the cases of Dropout and Drop-
connect. The proof of Lemma 15 can be found in Appendix 3.B.2.

Lemma 15. When using Dropout,

J (W) = ∥Y −pW2W1∥2
F +(p−p2)Tr[Diag(W1W T

1)Diag(W2W T
2)]. (3.11)

When using Dropconnect,

J (W) =
∥∥Y −p2W2W1

∥∥2
F +(p2 −p4)Tr[Diag(W1W T

1)Diag(W2W T
2)]. (3.12)

For convenience and without loss of generality, we now choose to scale both weight
matrices W2,W1 by 1/

√
p in the case of Dropout, and by a factor 1/p in the case of

Dropconnect. More generally, this means that we will study the scaled risk function

I(W) ≜ ∥Y −W2W1∥2
F +λTr[Diag(W T

2 W2)Diag(W1W T
1)], (3.13)

with λ = (1−p)/p in the case of Dropout, and λ = (1−p2)/p2 in the case of Dropconnect.
The parameter λ relates to the relative strength of the regularization term in either dropout
algorithm and becomes large whenever the dropout probability 1−p increases.

We remark now that (3.13) has saddle points, and this prevents us from obtaining a
convergence rate that holds globally and is sharp. We therefore conduct a local analysis,
with the aim of obtaining a sharp convergence rate. Finally, note that with a few extra
conditions the function in (3.13) will satisfy the strict saddle property [51, 60]. A randomly
initialized gradient descent algorithm would therefore converge to a local minima with
probability one [80].

3.2.4 Characterization of the set of global minimizers
The set of global minimizers of (3.13) have been characterized implicitly in [60, 42]. We
build on one of their results, which we repeat here for convenience. Concretely, let

M = {W ∈ P : I(W) = inf
s∈P

I(s)} (3.14)

be the set of global minimizers. Let the nonzero singular values of Y be denoted by
σ1 ≥ ·· · ≥ σr with r ≤ min(e,h); and let the compact Singular Value Decomposition (SVD)
of Y be UcΣY Vc where thus ΣY = Diag(σ1, . . . ,σr) and UT

c Uc = VcV T
c = Ir. Define

κj = 1
j

j∑
i=1

σi, ρ = max
{

j ∈ [f] : σj >
jλκj

f + jλ

}
, and α =

ρλκρ

f + jλ
. (3.15)

3.2.5 Balanced and diagonally balanced minimizers 77

The shrinkage thresholding operator with threshold α applied to Y is defined as

Sα(Y) = Uc(ΣY −αIr)+Vc,where ((ΣY −αIr)+)ii = max(0,σi −α). (3.16)

By [60, Theorem 3.4, Theorem 3.6]: if W ∗ = (W ∗
2 ,W ∗

1) ∈ M and ρ < f , then

W∗ = W ∗
2 W ∗

1 = Sα[Y] and Diag((W ∗
2)TW ∗

2)Diag(W ∗
1 (W ∗

1)T) =
∥W∗∥2

1
f2 If . (3.17)

If f = ρ, then in (3.17) the conclusion on W∗ must be replaced by the fact that W∗ equals
the rank-f approximation of Sα[Y].3

3.2.5 Balanced and diagonally balanced minimizers
The notion of (approximately) balanced weights has been found to be a sufficient condition
for gradient descent on the objective function of deep linear NNs to converge to their
minima [35, 3]. This has also been observed experimentally in Dropout for shallow linear
NNs [60]. We too will use the notion of balanced weights in our convergence proof.

Definition 8. Weights (W2,W1) ∈ P are balanced if W T
2 W2 = W1W T

1 . Weights (W2,W1)
∈ P are diagonally balanced if Diag(W T

2 W2) = Diag(W1W T
1). Let

Mb =
{

(W2,W1) ∈ M : W T
2 W2 = W1W T

1
}

, (3.18)

and

Mdb =
{

(W2,W1) ∈ M :Diag(W T
2 W2) = Diag(W1W T

1)
}

(3.19)

be the sets of balanced minimizers, and diagonally balanced minimizers, respectively.

We will characterize the sets Mdb ⊂ Mb explicitly as part of our proof. To that end,
Lemma 16 contains the key observation that both sets are actually equal. Lemma 16 is
proven in Appendix 3.B.3 and allows us, via Mdb, to relate singular values of the critical
points at a minimum through Mb to explicit constraints of the loss function and its Hessian.

Lemma 16. The set Mb = Mdb, and is an invariant set for the gradient flow of (3.13).

3.3 Results

3.3.1 Assumptions
We assume a generic degree of symmetry of the set of global minimizers to be able to char-
acterize Mb explicitly. Specifically, we rely on the following assumption on the multiplicity
of the positive singular values:

Assumption 9. Let r = rk(Y) ≤ min{e,h} and let the positive singular values {σi}r
i=1 of

Y satisfy σ1 > · · · > σr > 0.

Assumption 9 is mild and not unusual in the literature [78]. Assumption 9 is typically
satisfied when working with real data, since noise is typically breaks the possible exact
symmetries of the data. For further discussion on Assumption 9, we refer to Appendix 3.A.

3This is perhaps not immediately clear in [60, Theorem 3.6] for the case ρ = f ≤ r. The fact that
the rank-f approximation must be used instead follows from the second-to-last step in the proof of
[60, Theorem 3.6].

78 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

3.3.2 Convergence rate of the gradient flow of the risk functions
of Dropout and Dropconnect

We are now in a position to state our main result. Here, for W ∈ M and an open set UW

of W which we will specify later we define the set

VR/2,δ(W) = {x ∈ M ∩UW : d(x,M ∩UW) = d(x,B̄R/2(W)∩M ∩UW) < δ}, (3.20)

and B̄R/2(W) = {x ∈ P : ∥x−W∥ ≤ R}.

Theorem 10. Under Assumption 9, for a generic4 W ∈ M , there exist a neighborhood
UW ⊆ P of W , δ0 > 0, and R0 > 0 such that: for all δ ∈ (0, δ0], R ∈ (0,R0] and θ :
P × [0,∞) → P satisfying

dθt

dt
= −∇I(θt) and θ0 ∈ VR/2,δ(W), (3.21)

there exists a ωU > 0 such that

d(θt,UW ∩M) ≤ exp(−ωU t)d(θ0,UW ∩M) for all t ∈ (0,∞). (3.22)

If moreover W ∈ Mb, then there exists an ϵU ≥ 0 such that ωU ∈ [ωW − ϵU ,ωW + ϵU],
where

ωW =

{
min

{
2 λκρρ

f+λρ −2σρ+1, ζW

}
if ρ < f,

min
{

2(σρ −σρ+1), ζW

}
if ρ = f.

(3.23)

Here, σρ+1 = 0 if r = ρ, and ζW > 0 depends implicitly on W , p and σ1, . . . ,σr (see (3.210)
in Appendix 3.D.6).

Note that Theorem 10 gives an approximate lower bound for the exponent of the
convergence rate of the gradient flow of I(W) as long as we start close enough to the set
of minima. Moreover, near balanced minimizers (W ∗

2 ,W ∗
1) ∈ Mb an implicitely computable

bound is given in (3.23). Note that to obtain a lower bound of the rate for the gradient
flow on J (W) in (3.10), we need to multiply ωU by p for Dropout or p2 for Dropconnect.

The constant ζW is the solution to the constrained quadratic program (3.210) in Ap-
pendix 3.D.6. Because the objective function of this constrained quadratic program de-
pends on W (recall that the convergence analysis here is local), a bound for ζW that
is simultaneously sharp and independent of W cannot be given in general. However, if
the output has dimension one (e = 1), then we can prove the following special case of
Theorem 10:

Proposition 6. If the output dimension is one (e = 1), then we can replace (3.23) in
Theorem 10 by

ωU ∈ [ωW − ϵU ,ωW + ϵU] where ωW = 2 λ

f +λ
σ1. (3.24)

4Generic here refers to an ‘almost everywhere’ sense, whenever M has a Lebesgue measure. M

is an algebraic variety defined as the zero locus of a set of polynomials from (3.17). A point W ∈ M

is smooth in M whenever the rank of a Jacobian is maximal. Only at the points where the rank is
not maximal we do not have generic points. This occurs only in an algebraic set of strictly lower
dimension than that of M . Formally, a generic set of the algebraic variety M consists of all W ∈ M

up to a proper Zariski closed set in M . See [136] for reference.

3.3.3 Discussion 79

While Theorem 10 already hints at dependencies on the hyperparameters, Proposi-
tion 6 provides a lower bound for ω that explicitly depends on the singular value σ1 of the
data Y , the probability 1−p of dropping nodes (or edges) encoded in λ, and the number
of nodes in the hidden layer f . In particular, we obtain from Proposition 6 the rates

ωDC
W = 2(1−p2)

p2f +1−p2 σ1, ωDO
W = 2(1−p)

pf +1−p
σ1, (3.25)

also shown in (3.5), after multiplying by the scaling p and p2 for the cases of Dropconnect,
Dropout, respectively.

3.3.3 Discussion
Theorem 10 yields a convergence rate that depends on the singular values of the data
matrix Y , the dropout probability 1 − p, and the structure parameters e,f,h of the NN.
Observe that the rate ωW in (3.23) is the minimum of two terms. The first term ζW

depends on the point W as well as p and gives a local perspective on the dependence of
the convergence rate on the initialization and the dropout probability (see Appendix 3.D.6
for its exact dependency)—for our purposes, the fact that it is strictly positive suffices.
The second term is namely independent of W ∈ Mb and provides a more global perspective
on the convergence rate’s dependency on the data matrix, the dropout probability, and
the structure parameters. Notably, the dependency on ζW disappears in the case e = 1,
as evidenced from Proposition 6. The simulations in Section 3.5 will additionally suggest
that the term ζW in (3.23) does not appear to numerically dominate the convergence rate
when f > min{e,h}.

We obtain the rates in (3.5) from Proposition 6 through a multiplication using the
scalings discussed above in (3.13). We observe then that Dropout and Dropconnect have
an impaired convergence rate: the convergence rate in (3.5) is reduced by a factor p in
the case of Dropout, and p2 in case of Dropconnect. This is in agreement with the results
in [29]. Observe furthermore from (3.5) that as p ↑ 1, i.e., a regime without dropout,
ω ↓ 0. This tells us that for small dropout rates, convergence can be apparently slow for
some trajectories of the gradient flow problem. This is explained by the fact that for
p ≈ 1, points W satisfying Y = W2W1 are almost minimizers of J (W). Finding an exact
minimizer becomes then less important since there is almost no regularization.

Note also that the rates in (3.5) tell us that in the overparametrized regime f ≫ e = 1,
for every f there is a dropout probability 1 − p∗ that maximizes the rate ω. Solving
dω/dp = 0 shows that,

p∗ = 1√
1+

√
f

∼ 1
f1/4 for Dropconnect, and p∗ = 1

1+
√

f
∼ 1

f1/2 for Dropout.

(3.26)

Setting p∗ as in (3.26) still implies that the maximizing convergence rate is ω∗ ∼ 2σ/f .
Hence, the maximizing dropout probability 1 − p∗ will still have limited influence on the
convergence rate in this regime. To see this more explicitly, consider that for Dropout the
best rate ω∗ = ω(p∗) compared to the rate when choosing a generic dropout probability
1−p ∈ (δ,1− δ) satisfies ω(p)/ω∗ ≳ δ.

Lastly, let us also consider the matrix factorization problem in which f ≪ e,h. It follows
from Theorem 10 that when conducting matrix factorization with Dropout regularization,

80 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

degeneracies at the minimum are avoided when rk(Y) < min{e,h}, i.e., when the data is
of low rank. In the objective function (3.13), with λ > 0, the set of minima M around a
point W ∈ Mb, only becomes degenerate when p ↑ 1. Indeed, we have 2λκρρ/(f +λρ) ↓ 0
as p ↑ 1 (recall that ζW > 0 for any p ∈ (0,1)). For matrix factorization, we will usually
have f ≪ min{e,h} and ρ = f = r. In this case, up to the term ζW , there is no dependence
of the convergence rate in (3.23) on the dropout probability 1 − p. Dependence starts
appearing when the smallest positive singular value satisfies σf ≃ 2λκρρ/(f +λρ), which
can occur as we increase the dropout probability. As we will see in the simulations in
Section 3.5, the dependence of the convergence rate on f also seems to display a different
behavior when f ⩽ min{e,h}.

3.4 Proofs
The proofs of Theorem 10 and Proposition 6 are based on two ideas. The first idea is that
the trajectories of a gradient flow, when starting close to a minimizer W ∗ ∈ M , should
depend to leading order only on the Hessian ∇2I(W ∗). However, when M is a connected
set (or a manifold in this case), this may not be true. Additionally, we need the point W ∗

to be nondegenerate, in the sense that directions tangent to the manifold M are included
in the kernel of the Hessian and other directions must be orthogonal to M and not in the
kernel. A gradient flow ending in M can then be locally bounded using the eigenvalues of
∇2I. As it will turn out, ‘almost every’ point in M is nondegenerate. The second idea is
that we can give an explicit lower bound for the eigenvalues of the Hessian by restricting to
directions orthogonal to M . This requires careful computations and is the most involved
part of the proof.

3.4.1 Overview
Here is an overview of the steps that will prove Theorem 10 and Proposition 6:

Step 1. We formalize the first idea by relating a lower bound for the Hessian to the
convergence rate of gradient flow by using a recent result on nonconvex opti-
mization [21]. This result holds whenever the gradient flow is started close to
a minimizer in M , and requires the minimizer to be nondegenerate. Therefore,
to prove Theorem 10, we next need to explicitly compute a lower bound for the
Hessian on directions orthogonal to M and verify the nondegeneracy condition.

Steps 2, 3. We reduce the set of minimizers M to the set of balanced minimizers Mb using
a group action. The set of balanced minimizers is namely easier to handle: we
can prove that Mb is, up to a set of lower dimension than that of Mb, a manifold,
i.e., Mb is generic. We compute the tangent space TW Mb explicitly at a generic
point W .5 Using the group action again, we can then also obtain the tangent
space TW M by extending the results from the set of balanced minimizers to
the set of minimizers.

5By this, we mean ‘for any W ∈ Mb up to an algebraic set of lower dimension than M ’ (formally,
‘up to a proper closed Zariski set in the algebraic variety Mb’).

3.4.2 Key steps 81

Steps 4, 5. We compute the Hessian ∇2I and calculate a lower bound when W ∈ Mb ⊂
M . This also implies immediately that W is nondegenerate in M . Leveraging
the group action again, we can then show that all generic points in M are
nondegenerate.

Step 6. Finally, we combine the result of Step 1 with the bound and nondegeneracy
property in Steps 4, 5 to prove Theorem 10 and Proposition 6.

3.4.2 Key steps
We now prove Theorem 10 and Proposition 6 step by step as listed previously. The detailed
proofs of each proposition presented here can be found in the Appendix.

Step 1. We use a recent result on the convergence rate of gradient descent methods
for general objective functions [21], in which the local convergence in a neighborhood UW

of W ∈ M is guaranteed by the local nondegeneracy of the Hessian:

Definition 11. A set M ⊂ P of minimizers of I(W) is locally nondegenerate at W if
there exists a neighborhood U ⊆ P of W , such that:
(i) M ∩U is a submanifold of P, and
(ii) for any p ∈ M ∩U , dimTp(M ∩U)) = dimker∇2I(p).
We also say that the set M ∩ U is nondegenerate if it is locally nondegenerate at any
W ∈ M ∩U .

Our first step is to prove the following specification of the bound in [21, Proposition
3.1]. The details are relegated to Appendix 3.C.

Proposition 7 (Adaptation of Proposition 3.1 in [21]). Let U ⊆ Rd be an open subset
and let f : U → R be three times continuously differentiable. Let M = {w ∈ Rd : f(w) =
infθ∈Rd f(θ)} and suppose that U ∩ M is a nonempty differentiable submanifold of Rd of
dimension d < d. Suppose also that for all p ∈ M ∩U , d−d = rk(∇2f(p)) holds. Then, for
any x0 ∈ M ∩U there exists R0, δ0,λ ∈ (0,∞) such that: for all δ ∈ (0, δ0], R ∈ (0,R0] and
θ : (0,∞) → Rd satisfying dθt/dt = −∇f(θt) and θ0 ∈ VR/2,δ(x0), it holds that

d(θt,M ∩U) ≤ exp(−λt)d(θ0,M ∩U) for all t ∈ (0,∞), (3.27)

where specifically
λ = min

w∈V̄R0,δ0 (W)
min

∥v∥=1
v∈ker∇2f(w)⊥

∣∣vT ∇2f(w)v
∣∣ . (3.28)

Observe now that Theorem 10 almost follows from Proposition 7 by identifying the
function f with the loss function I—that is, up to the conditions of Theorem 10 and up
to (3.23). Eq. (3.23) is in fact a lower bound for (3.28), and the conditions are what allow
us to lower bound (3.28) in the first place.

To see where the conditions of Theorem 10 come from and how the bound in (3.23) is
obtained, consider the following approach. Suppose for a moment that we are given some
open subset U that meets the conditions of Proposition 7 and that M is nondegenerate.
If these hypotheses were true, then the convergence rate in (3.28) could be bounded by
providing for each W ∈ M ∩U a lower bound for the Hessian ∇2I restricted to T ⊥

W M . This

82 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

is because the nondegeneracy of M would imply that for any W ∈ M , ker∇2I(w) = TW M

and therefore ker∇2I(w)⊥ = T⊥
W M , and (3.20) would then imply that V R,δ(x0) ⊆ M ∩U .

The two hypotheses used in the approach above have however not been proven. Instead,
we will first prove that for a generic W ∈ M there exists a neighborhood U satisfying the
conditions of Proposition 7 (Steps 2, 3), and this turns out to be sufficient. After this,
we will establish that ∇2I(W)|T ⊥

W
M is positive definite (Step 4), and then we lower

bound its minimum eigenvalue (Step 5) which allows us to approximately characterize ω

in Theorem 10.
Step 2. We start by characterizing M using Mb and a Lie group action on M . Let

H ≃ (R∗)f be the Lie group of invertible diagonal matrices, where R∗ = R\{0} is the
multiplicative group of invertible elements in R. We embed H in Rf×f via the diagonal
inclusion (a1, . . . ,af) → Diag(a1, . . . ,af) ∈ Rf×f , and define the action π of C ∈ H on M

by
π(C)(W2,W1) = (W2C,C−1W1). (3.29)

The action π can be used to reduce M to Mb, as formalized in Proposition 8. We refer
to Appendix 3.D.1 for its proof.

Proposition 8. For every W ∈ M there exists a unique CW ∈ H such that π(CW)(W) ∈
Mb.

For a subgroup G of O(f), we abuse notation and let L ∈ O(f)/G be a representative
L ∈ O(f) of the equivalence class [L] ∈ O(f)/G of cosets. Via the group action in (3.29) we
can now characterize the set Mb: see Proposition 9, which is proven in Appendix 3.D.2.

Proposition 9. If Assumption 9 holds, then

Mb =
{

(UΣ2L,LT Σ1V) : L ∈ O(f)
Iρ ⊕O(f −ρ) ,Diag

(
LT
(

Σ2 0
0 0
)
L
)

=
∥∥Σ2

∥∥
1

f
If

}
̸= ∅. (3.30)

Here, the columns of U and V contain the left- and right-singular vectors of Y = UΣY V ,
respectively,

Σ2 =
(

Σ 0ρ×(f−ρ)
0(e−ρ)×ρ 0(e−ρ)×(f−ρ)

)
, Σ1 =

(
Σ 0ρ×(h−ρ)

0(f−ρ)×ρ 0(f−ρ)×(h−ρ)

)
, (3.31)

where 0n×m denotes the all zero matrix of size n×m, and

Σ2 = Diag
(

σ1 −ρ
λκρ

f +ρλ
, . . . ,σρ −ρ

λκρ

f +ρλ

)
∈ Rρ×ρ. (3.32)

Step 3. Next, we identify TW Mb, the tangent space of Mb, whenever it is well defined
for W ∈ Mb. To do so, we find a manifold M̄b ≃ O(f)/(Iρ ⊕O(f −ρ)) such that Mb ⊆ M̄b

and a map T : M̄b → Rf , whose preimage defines Mb and TW Mb implicitly up to a set of
singular points Sing(Mb). In particular, since for any W ∈ Mb we have

Diag(W T
2 W2) = Diag(W1W T

1) =
∥∥Σ2

∥∥
1

f
If , (3.33)

we will define the map T : M̄b → Rf by

T (W2,W1) = Diag(W T
2 W2) = Diag(W1W T

1). (3.34)

3.4.2 Key steps 83

This map is well defined for each equivalence class in O(f)/(Iρ ⊕O(f −ρ)) ≃ M̄b and has
at most rank f −1 instead of f , since the trace of (3.33) is fixed in M̄b. We can next use
the implicit function theorem [113, Theorem 5.5] to prove in Appendix 3.D.3 that:

Proposition 10. Let W ∈ Mb\Sing(Mb), where

Sing(Mb) = {W ∈ Mb : rk(DW T) < f −1}. (3.35)

If Assumption 9 holds, then there exists an open neighborhood UW ⊂ P of W ∈ UW such
that:
(a) UW ∩Mb is a submanifold of M̄b of codimension f −1, and
(b) TW Mb = kerDW T , where the differential map DW T : TW M̄b → TT (W)Rf at W =

(UΣ2S,ST Σ1V) given by

DW T (V2,V1) = DW T

(
UΣ2

(
X E

−ET 0

)
S,ST

(
XT −E

ET 0

)
Σ1V

)
= 2Diag

(
ST

(
Σ2X Σ2E

0 0

)
S

)
. (3.36)

The set Sing(Mb) contains the singular points of Mb, which are points where the usual
tangent space cannot be defined in local coordinates. Consequently, Mb cannot be a
manifold at these points. Finally, we prove that most points in Mb are regular, that is,
they are nonsingular. The proof is relegated to Appendix 3.D.4:

Proposition 11. If Assumption 9 holds, then:
(a) Sing(Mb) is a proper closed set in Mb.
(b) Mb is a manifold up to an algebraic set of lower dimension than that of Mb (i.e., any

generic point in Mb is regular).
(c) Mb has codimension f −1 in M̄b.

Step 4. Now that we have identified TW Mb in Proposition 10, we can use the fact
that M can be reduced to Mb via the group action π of Step 2. This allows us to compute
the tangent space TW M at a regular point W ∈ Mb\Sing(Mb) ⊂ M , and to also compute
the cotangent space T⊥

W M . The latter task is done in Lemma 26 in Appendix 3.D.6.
Having now characterized the cotangent space T⊥

W M , we continue by computing a
lower bound for the Hessian. We start by calculating the Hessian in Appendix 3.D.5, and
identify it as follows:

Proposition 12. For W = (W2,W1) ∈ P, (V1,V2) ∈ TW P, the Hessian ∇2I(W) satisfies(
vec(V1),vec(V2)

)T ∇2I(W)
(
vec(V1),vec(V2)

)
= 2∥W2V1 +V2W1∥2

F

+2λTr[V T
1 Diag(W T

2 W2)V1]+2λTr[V2Diag(W1W T
1)V T

2]−4Tr[V T
1 V T

2 (Y −Sα[Y])]

+2λ
(
∥Diag(V T

2 W2)+Diag(W T
1 V1)∥2

F −∥Diag(V T
2 W2)−Diag(W T

1 V1)∥2
F
)

(3.37)

as a bilinear form. Here, for any A ∈ Rm×n we consider vectorization notation, that is,

vec(A) = [a1,1, . . . ,am,1, . . . ,a1,n, . . . ,am,n]T ∈ Rmn. (3.38)

84 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

Finally, we lower bound the Hessian in the directions normal to the manifold of minima.
The proof of the following is relegated to Appendix 3.D.6:

Proposition 13. Suppose Assumption 9 holds. For any W ∈ Mb ∩ M\Sing(M) ⊆ M ,
∇2I(W) restricted to T⊥

W M is a positive definite bilinear form. Furthermore,

∇2I(W)|T⊥
W

M ≥ ω, (3.39)

where

ω =

min
{

ζW ,2 λκρρ
f+λρ −2σρ+1

}
if ρ < f

min
{

ζW ,2(σρ −σρ+1)
}

if ρ = f
. (3.40)

Here, ζW > 0 is a positive constant that depends on W , λ and Σ. If ρ = r (recall from
(3.32) that we have ρ ≤ r), then we set σρ+1 = σr+1 = 0.

In the case that ρ = 1, the result holds with (3.40) replaced by

ω =

{
2σ1

λ
f+λ if r = 1,

2σ1
λ

f+λ −2σ2 otherwise.
(3.41)

Step 5. Proposition 13 reveals that for W ∈ Mb ∩ M\Sing(M) ⊆ M , M is locally
nondegenerate at W—recall Definition 11. But in order to apply Proposition 7, we need
to also prove that M is nondegenerate in a large enough neighborhood around such regular
point. By continuity, we then obtain a lower bound of the Hessian in a neighborhood of ω:
that is, the bound in (3.28) will hold with λ ∈ [ω − ϵ,ω + ϵ] for some ϵ > 0. The following
is proved in Appendix 3.D.7.

Proposition 14. Suppose Assumption 9 holds. If W ∈ Mb ∩ M\Sing(M), then there
exists a neighborhood UW ⊆ P of W such that:
(a) for any W ′ ∈ UW ∩M , ker∇2I(W ′) = TW ′M ;
(b) UW ∩M is a locally nondegenerate manifold; and
(c) for any W ′ ∈ UW ∩M ,

min
∥v∥=1

v∈T⊥
W ′ M

vT ∇2I(W ′)v = ωW ′ > 0. (3.42)

Proposition 14 covers only regular points in Mb ∩ M . We will now extend the results
to M in the generic sense. By using the action π from (3.29) we can show that if a point
W ∈ Mb is regular, so is π(C)(W) ∈ M for any C ∈ H. The action on Mb generates M

and by Proposition 11 Mb is regular for generic points and moreover nondegenerate by
Proposition 14. We prove the following in Appendix 3.D.8.

Proposition 15. If Assumption 9 holds, then the set M is a nondegenerate manifold for
generic points.

Step 6. We are now in a position to prove Theorem 10 and Proposition 6 by applying
Proposition 7. Proposition 15 yields that M is a nondegenerate manifold for generic points.
Together with Proposition 14, this implies that up to an algebraic set of lower dimension
than the dimension of M , for each W ∈ M there exists a neighborhood UW ⊆ P such that

3.5 Numerical experiments 85

for any W ′ ∈ UW ∩ M there exists a constant ωW ′ so that (3.42) holds. Hence, setting
λ = minW ′∈UW ∩M ωW ′ , we obtain a lower bound for (3.28) and a proof of convergence
close to M . If moreover W ∈ Mb, then the lower bound (3.40) for (3.28) in Proposition 13
proves that if UW is small enough for W ∈ Mb, the bound (3.23) in Theorem 10 holds by
continuity.

In case ρ = 1, Proposition 13’s lower bound (3.41) to (3.28) proves (3.24) in Proposi-
tion 6.

This concludes the proof. 2

3.5 Numerical experiments
In this section we implement the gradient descent algorithm

W {t+1} = W {t} −η∇J (W {t}), (3.43)

numerically,6 and apply it to Dropout’s objective function in (3.11). We measure the
convergence rate of gradient descent for different widths f and dropout probabilities 1−p

and conduct a comparison of these measurements to our bound for the convergence rate
in (3.25).

Related experimental results for the convergence of Dropout can be found in [31]. The
number of iterations required for convergence, as well as the dependence of the performance
on the initialization, have been investigated experimentally both for the linear NN case
[35] as well as for Dropout [60].

3.5.1 Setup
Datasets. We use the following datasets obtained from the UCI Machine Learning Repos-
itory:7

(i) the Super Conductivity (SC) dataset [55], which describes the critical temperature
of superconductors, with input dimension h = 81 and output dimension e = 1;

(ii) the Modified National Institute of Standards and Technology (MNIST) digit dataset
[125], which contains images of handwritten digits, with h = 784 and e = 10; and

(iii) the Canadian Institute For Advanced Research (CIFAR)-100 image dataset [128],
which is a collection of images of items associated with 100 different classes. We
convert the RGB images to grayscale images yielding h = 1024 and e = 100.

After first whitening and then normalizing the data, we obtain for each dataset a matrix
Y ∈ Re×h that satisfies ∥Y ∥F = 1. This matrix is used in the risk function in (3.11). We
remark that Assumption 9 holds numerically for each dataset.
Stopping criteria. In all experiments, we stop the gradient descent algorithm in (3.43)
either when the Frobenius norm of the gradient ∥∇J (W {t})∥F drops below a threshold,
or when it reaches a maximum number of iterations. Specifically, we let T = inft{t :
∥∇J (W {t})∥F < 10−5} ∧ Tmax be the random termination time of any one run of the

6The source code of our implementation is available at https://gitlab.tue.nl/20061069/
asymptotic-convergence-rate-of-dropout-on-shallow-linear-neural-networks.

7The UCI Machine Learning Repository repository is located at https://archive.ics.uci.edu/.

https://gitlab.tue.nl/20061069/asymptotic-convergence-rate-of-dropout-on-shallow-linear-neural-networks
https://gitlab.tue.nl/20061069/asymptotic-convergence-rate-of-dropout-on-shallow-linear-neural-networks
https://archive.ics.uci.edu/

86 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

gradient descent algorithm with Tmax = 106/2 for SC and MNIST, and Tmax = 105 for
CIFAR.
Initialization. In each experiment we set the initial weights W {0} according to one of two
methods. The first method we will call Gaussian initialization: we set every weight Wijk ∼
Normal(0, ξ2) in an independent manner. The second method we will call ϵ-initialization:
when ρ = 1, we use Lemma 22 to sample a random balanced minimizer W ∗

ijk in Mb and
then set every weight Wijk ∼ Normal(W ∗

ijk, ϵ2) in an independent fashion; when ρ > 1, we
use [60, Algorithm 2] with random orthogonal initialization to sample a random balanced
minimizer W ∗

ijk in Mb.
Step size. In each experiment the step size is η = 10−2 and fixed.

3.5.2 Results
Figures 3.5.1 and 3.5.2 show convergence rate fit results for different parameters p,f and
the different datasets for one or two different initialization methods with different values
of ξ and ϵ. Our fitting procedure worked as follows:
Step 1. For various f ∈ F ⊂ N+, p ∈ P ⊂ [0,1], we ran gradient descent as explained in
Section 3.5.1. If the run terminated at a time T < Tmax, then we fitted the model

G(t;a,βf,p) = ae−βf,pt (3.44)

to the points {(t,∥∇J (W {t})∥F) : t = ⌊γT ⌋, . . . ,T}. Here, γ ∈ [0,1). In this way, we obtain
an estimate β̂f,p for the parameter βf,p with which the model in (3.44) best fits the mea-
sured convergence rate. Note that the estimate β̂f,p is random because of our initialization.
By conducting independent runs, we obtain a set of sample averages {⟨β̂f,p⟩}f∈F,p∈P .
Step 2. To obtain each Figure 3.5.1(a) we fixed f ∈ N+ and fitted

βf (p;b,α) = bp

f(p
1−p)α +1 (3.45)

to {(p,⟨β̂f,p⟩)}p∈P . If a fit did not result in a positive estimate β̂f,p > 0, then this estimate
was discarded. This eliminates runs that pass close to a saddle point. Estimates b̂, α̂ are
obtained for the parameters b,α for which the model in (3.45) best describes the sample
average convergence rate.
Step 3. To obtain each of the Figures 3.5.1(b) and 3.5.2, we fixed p ∈ [0,1] and then fitted
the model

βp(f ;b,c,α) = bp(1−p)
pfα +1−p

+ c (3.46)

to {(f,⟨β̂f,p⟩)}f∈F . If a fit did not result in a positive estimate β̂f,p > 0, then this estimate
was discarded. This eliminates runs that pass close to a saddle point. This similarly yields
estimates b̂, ĉ, α̂ for the best model parameters b,c,α in (3.46).
Step 4. To obtain each Figure 3.5.1(c), we fitted the model in (3.44) with p = 0.7 to the
points {(t,∥∇J (W {t})∥F) : t = 0, . . . ,103} for different f . After obtaining β̂f,p we then
depicted β̂f,p/p as a function of f .

Note after substituting (3.45) or (3.46) into (3.44), that both exponents have an extra
factor p when compared to our bound in Proposition 6. This is because we implemented
the objective function J (W) in (3.11) as opposed to I(W) in (3.13). Also, if our bound
in Proposition 6 turns out to be sufficiently sharp, then we can expect that α̂ ≈ 1 in either
model.

3.5.2 Results 87

0.2 0.4 0.6 0.8
p

0.0

0.5

1.0

1.5

β
/p

ξ =0.1, α =1.81

ξ =0.2, α =2.30

ξ =0.3, α =1.17

ε =0.05, α =1.74

ε =0.10, α =1.81

ε =0.15, α =1.78

(a) SC

10 20 30
f

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

β
/p

ε =0.01, α =1.05

ε =0.02, α =1.15

ε =0.03, α =1.33

ε =0.04, α =1.50

ε =0.05, α =1.62

ε =0.06, α =1.68

(b) SC

160 170 180 190
f

20

40

60

80

100

120

140

160

β
/p

ε =0.05

ε =0.10

ε =0.15

(c) SC

0.2 0.4 0.6 0.8
p

0.00

0.05

0.10

0.15

0.20

0.25

0.30

β
/p

ε =0.05, α =1.14

ε =0.10, α =1.13

ε =0.15, α =1.10

(a) MNIST

20 40 60
f

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007
β
/p

ε =0.001, α =2.81

ε =0.003, α =2.07

ε =0.005, α =1.59

ε =0.007, α =1.37

ε =0.009, α =0.95

ε =0.011, α =0.93

(b) MNIST

100 200 300
f

−0.02

−0.01

0.00

0.01

0.02

β
/p

ε = 0.001

ε = 0.003

ε = 0.005

ε = 0.007

ε = 0.009

ε = 0.011

(c) MNIST

0.2 0.4 0.6 0.8
p

0.005

0.010

0.015

0.020

0.025

0.030

β
/p

ε =0.05, α =0.27

ε =0.10, α =0.15

ε =0.15, α =0.29

(a) CIFAR

100 200 300
f

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

β
/p

ε =0.01, α =0.90

ε =0.02, α =0.99

ε =0.03, α =1.14

ε =0.04, α =1.36

ε =0.05, α =1.52

ε =0.06, α =1.62

(b) CIFAR

100 200 300 400 500
f

−0.0002

0.0000

0.0002

0.0004

0.0006
β
/p
ε = 0.001

ε = 0.003

ε = 0.005

ε = 0.007

ε = 0.009

ε = 0.011

(c) CIFAR
Figure 3.5.1: Column (a): Sample average convergence rate as a function of p for fixed widths

f when γ = 0.9. Here, f = 20 for the SC dataset, f = 40 for the MNIST dataset
and f = 400 for the CIFAR dataset. Our fits of (3.45) are also shown, and the
inset shows the chosen ξ or ϵ as well as the resulting fit parameters α̂. Observe
that the sample averages are mostly decreasing in p, in agreement with our bound
in (3.25). It is worth noting, however, that for CIFAR, the number of iterations
was Tmax = 105 instead of Tmax = 106/2. Hence, more iterations may have been
required to achieve plots similar to those for SC and MNIST. Column (b): Sample
average convergence rate as a function of f for fixed p = 0.7 for the SC, MNIST, and
CIFAR datasets. The fits of (3.46) are again shown and the inset gives the resulting
fit parameters. Recall that by (3.25), we may expect for sufficiently small ϵ that
β/p ∼ 1/f as f → ∞ and consequently α̂ ≈ 1. This is confirmed by the different values
of α̂ shown in Figure 3.5.2. Observe for the MNIST and CIFAR datasets that when
the output dimension f ≤ e = 10,100, respectively, the convergence rate does not yet
agree with a 1/f dependency. We expect that for small f in these cases the minimum
in (3.40) is dominated by the term ζW . Column (c): Sample average convergence
rate as a function of f for fixed p = 0.7 and each of the datasets. Differently from
columns (a,b), we fit here the initial iterations—iterations 0, . . . ,103. Observe that
overparametrization improves the convergence rate during the initial iterations of
gradient descent.

88 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

−7 −6 −5 −4 −3
log(ε)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
α

γ = 0.5

γ = 0.6

γ = 0.7

γ = 0.8

γ = 0.9

(a) SC

−7.5 −7.0 −6.5 −6.0 −5.5 −5.0
log(ε)

0.8

0.9

1.0

1.1

1.2

α

γ = 0.7

γ = 0.75

γ = 0.8

γ = 0.85

γ = 0.9

(b) MNIST

−7.0 −6.5 −6.0 −5.5 −5.0 −4.5
log(ε)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

α

γ = 0.5

γ = 0.6

γ = 0.7

γ = 0.8

γ = 0.9

(c) CIFAR
Figure 3.5.2: All resulting fit parameters α̂ as a function of log ϵ for fixed p = 0.7 and

various γ in the regime f ≥ e for each of the three datasets. Observe that
indeed α̂ ≃ 1 as ϵ ↓ 0, as predicted analytically by our bound in (3.25) for the
SC dataset. This shows that the bound is sharp in this regime. The other
datasets show similar behavior, though the uncertainty is relatively high for
the MNIST dataset. This is due to saddle points we encountered during our
simulations, whose effect becomes less pronounced as ϵ ↓ 0 and in the tail of
the convergence rate (γ ↑ 1).

3.5.3 Discussion

Figures 3.5.1(a,b) and 3.5.2 show that the local bound in (3.25) characterizes the conver-
gence rate of gradient descent close to convergence qualitatively:
– The characteristic decay of the convergence rate as f and p/(1−p) increase, as predicted
by (3.25), is confirmed experimentally with the fits in columns (a) and (b), respectively. We
see that the expected dependence of the decay of β̂ on f occurs whenever f ⩾ e. Observe
that β̂ and α̂ depend strongly on the initialization, which is determined here by ξ and ϵ.
This may be explained as follows. For larger ξ,ϵ, we initialize farther away from minima.
Trajectories of gradient descent that follow valleys of the objective function J (W)—regions
where the loss is close to the minima and where slower convergence rates are expected—are
then favored, explaining why we see a smaller sample average convergence rate. When
f ⩽ min{e,h}, thus in the matrix factorization regime, the convergence rate appears to
behave differently as seen in column (b) with the MNIST and CIFAR datasets.
– These various decay rates that were measured were used to calculate fit parameters
α̂. These tend approximately to one as ϵ becomes smaller as shown in Figure 3.5.2,
in accordance with Theorem 10. Note that while the values of α̂ tend close to 1 as ϵ ↓ 0
independently of γ with various degrees, there is a shift to larger values of α̂ as we increase
ϵ. This is because we are seeing an average convergence rate of the trajectories instead of
the lowest convergence rate in (3.25).

In Figure 3.5.1(c) we observe that for the first iterations of gradient descent, the
convergence rate improves with f in all three datasets. In particular, if we initialize far
away from minima, then gradient descent converges faster to what are most likely flat areas
of the objective function. Even when the step size is too large and the rate is negative (we
increase the loss function), the rate still increases with f . This is in contrast to close to
convergence in column (b) where the flatness close to minima also increases with f which

3.5.4 Beyond the current model 89

translates to lower convergence rates.
Finally, Figure 3.5.1 indicates that independently of the regularization properties of

Dropout and the inherent scaling of 1/p in the number of iterations [29], for p ↑ 1 or f → ∞,
the landscape of Dropout close to the minimum becomes less rough. The objective function
seems to consist of deep valleys with flat bottoms. Early on, gradient descent descends
the steep valleys quickly, and once at the bottom the convergence rate becomes worse in
a manner described by Theorem 1. The steepness and flatness both depend on f , and the
numerical results in Figures (b) and (d) suggest that both become more pronounced as
f → ∞.

3.5.4 Beyond the current model
In the previous three subsections we have discussed numerical experiments that used a
gradient descent algorithm to train shallow linear NNs. While not exactly the same,
this is quite similar to the model behind Theorem 10 (recall that Theorem 10 is about
trajectories of a gradient flow). We will therefore now briefly investigate the behavior of
the convergence rate in stochastic Dropout, which comes closer to practice. This gives
insight into the descriptive limitations of our results also.

Specifically, for the SC dataset we have implemented stochastic Dropout for different
values of p on: (a) a linear, 500 unit wide, shallow NN with quadratic loss; (b) a linear,
500 unit wide, shallow NN with softmax at the output with quadratic loss; (c) a modified
LeNet [145] containing two convolutional layers, two pooling layers and two dense layers,
of which the first dense layer is a 500 wide linear layer and the second is an output linear
layer with quadratic loss; and (d) the same modified LeNet but with softmax activation
at the output and with quadratic loss. Note that setups (a)–(d) all extend beyond our
modeling assumptions, and each does so to an increasingly degree.

Figure 3.5.3 shows that the scaled convergence rate β/p decreases in setups (a) and (b),
and increases in setups (c) and (d). A decrease in convergence rate is shared qualitatively
by our results; an increase in convergence rate is not. By next plotting β versus p for
setups (a) and (b), we can examine the convergence rate’s asymptotic behavior with more
precision. Observe from (a′) and (b′) that a maximizer is observed for setup (a), which
is in qualitative agreement with our results; whereas for setup (b) such maximizer is not
observed. The different activation function may be the cause for such different behavior.

3.6 Conclusion
In this chapter we have analyzed the convergence rate of the gradient flow on the objective
functions induced by Dropout and Dropconnect for shallow linear NNs. Theorem 10 gives
a lower bound for the convergence rate that depends implicitly on the data matrix, the
probability of dropping nodes or edges, and the structure parameters of the NN. We
provide in Proposition 6 a closed-form expression for our lower bound for the convergence
rate in the case of a one-dimensional output. This gives insight into the dependencies
of the convergence rate. The simulations show that indeed, the convergence rate of the
gradient descent counterpart exhibits similar qualitative dependencies as our bound.

After the results of this chapter, one may guess if the results of this chapter could
be extended to NNs with nonlinear activation functions. To do so, an analysis of the

90 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

0.2 0.4 0.6 0.8
p

1.2

1.4

1.6

1.8

2.0

2.2

2.4

β
/p

×10−7

(a)

0.2 0.4 0.6 0.8
p

2.5

3.0

3.5

4.0

4.5

β
/p

×10−6

(b)

0.2 0.4 0.6 0.8
p

0.2

0.4

0.6

0.8

1.0

1.2

1.4

β

×10−7

(a′)

0.2 0.4 0.6 0.8
p

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

β
/p

×10−6

(c)

0.2 0.4 0.6 0.8
p

7.50

7.75

8.00

8.25

8.50

8.75

9.00

9.25

β
/p

×10−6

(d)

0.2 0.4 0.6 0.8
p

0.5

1.0

1.5

2.0

β

×10−6

(b′)

Figure 3.5.3: Exponents β/p of the model in (3.44) for different NNs trained with stochas-
tic Dropout depending on the remain probability p (or dropout probability
1−p) for setups (a)–(d). For setups (a) and (b), we also plot β versus p in
(a′) and (b′) respectively. The error bars indicate 98% confidence intervals
of the simulations’ outcomes.

3.A On assumption 9 91

minima of the objective in the nonlinear case should be first conducted. While certainly
challenging, a recent paper in this direction is [15], where Rectified Linear Unit (ReLU)
neural networks are considered. This extension is, however, outside the scope of this thesis.

Appendix

Notation for the appendix
For any vector a = (a1, · · · ,af), we denote by Diag(a1, · · · ,af) the matrix in Rf×f with the
vector a in the diagonal and zeroes everywhere else. For a matrix A ∈ Rf×f , we denote
Diag(A) = Diag(A11, . . . ,Aff). For a matrix A with singular values λ1, . . . ,λr we denote
the 1-norm as ∥A∥1 =

∑r
i=1 λi.

3.A On assumption 9
We used Assumption 9 to establish Theorem 10 and Proposition 6 and for these results
to be applicable in a range of scenarios.

Assumption 9 is sufficient for our proofs and reduces the complexity of the analysis
without loss of the key features. The case that some of the singular values are equal can
conceivably be tackled with techniques similar to those in this chapter. This would add
more degeneracy to the minima and would change the subgroup representation in (3.30)
by adding several additional orthogonal subgroups of lower dimensions in the stabilizer
subgroup in (3.97).

Assumption 9 also allows for fairly generic data matrices Y . To see this, consider first
that the subset of matrices of fixed rank that do not satisfy Assumption 9 has measure
zero. If the data is, for example, drawn randomly from a data distribution with continuous
support—even from a continuous distribution in an affine subspace—then the assumption
will hold with high probability.

3.B Proofs of Section 3.2

3.B.1 Proof of (3.8) – Data whitening
For simplicity, let W = W2W1. Recall also that Y = YX T(X X T)−1/2. We now apply the
identity

∥A−B∥2
F = ∥A∥2

F −2⟨A,B⟩F +∥B∥2
F = Tr[AAT]−2Tr[ATB]+Tr[BBT] (3.47)

twice, to obtain

R̂n(W) = ∥Y −WX ∥2
F

(3.47)= Tr[YYT]−2Tr[YX TW]+Tr[WX X TWT]

= Tr[YYT]−2Tr[YX T(X X T)−1/2(W(X X T)1/2)T]+Tr[(W(X X T)1/2)(W(X X T)1/2)T]

= Tr[Y Y T]−2Tr[Y (W(X X T)1/2)T]

+Tr[(W(X X T)1/2)(W(X X T)1/2)T]+Tr[YYT]−Tr[Y Y T]
(3.47)= ∥Y −W(X X T)1/2∥F +Tr[YYT]−Tr[Y Y T]. (3.48)

92 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

3.B.2 Proof of Lemma 15
Proof of (3.11). Note that (3.11) is a known expression for Dropout in the literature. In
particular, see [51, Eq. (10)], [60, Eq. (10)] and [42, Lemma A.1].
Proof of (3.12). When using Dropconnect, we have for i ∈ {1,2} that each matrix element
Fijk ∼ Ber(p) is independent and identically distributed as indicated. We find that

J (W) = E[∥Y − (W2 ⊙F2)(W1 ⊙F1)∥2
F]

= E
[
∥Y −p2W2W1 +p2W2W1 − (W2 ⊙F2)(W1 ⊙F1)∥2

F

]
= E

[
∥Y −p2W2W1∥2

F +∥p2W2W1 − (W2 ⊙F2)(W1 ⊙F1)∥2
F

+2
∑
ij

(
(Y −p2W2W1)T(p2W2W1 − (W2 ⊙F2)(W1 ⊙F1)

)
ij

]
. (3.49)

Note that E[(W2 ⊙F2)(W1 ⊙F1)] = p2W2W1, so the right-most term equals zero. Further-
more, we can expand

E
[
∥p2W2W1 − (W2 ⊙F2)(W1 ⊙F1)∥2

F

]
= ∥p2W2W1∥2

F +E[∥(W2 ⊙F2)(W1 ⊙F1)∥2
F]

−2E
[∑

ij

((p2W2W1)T(W2 ⊙F2W1 ⊙F1))ij

]
.

(3.50)

After now (i) substituting (3.50) into (3.49) and rearranging terms, and then (ii) writing
out the Frobenius norm, it follows that

J (W)−∥Y −p2W2W1∥2
F

(i)= E[∥(W2 ⊙F2)(W1 ⊙F1)∥2
F]

= E
[
E
[
∥(W2 ⊙F2)(W1 ⊙F1)∥2

F

∣∣∣F1

]] (ii)= E
[
E
[∑

a,b

(∑
i

W2aiF2aiW1ibF1ib

)2∣∣∣F1

]]
.

(3.51)

Use (iii) the fact that (
∑

aibi)2 =
∑

i a2
i b2

i +
∑

i̸=j aibiajbj now twice, to conclude that

J (W)−∥Y −p2W2W1∥2
F

(iii)= E
[∑

a,b

(
(p−p2)

∑
i

W 2
2aiW

2
1ibF 2

1ib +p2(∑
i

W2aiW1ibF1ib

)2
)]

=
∑
a,b

(
p(p−p2)

∑
i

W 2
2aiW

2
1ib +p2

(
(p−p2)

∑
i

W 2
2aiW

2
1ib +p2(∑

i

W2aiW1ib

)2
))

= (p2 −p4)Tr
[
Diag(W1W T

1)Diag(W2W T
2)
]

+p4∥W2W1∥2
F. (3.52)

Substituting (3.52) into (3.49) results in (3.12). This completes the proof.

3.B.3 Proof of Lemma 16
Let W (t) = (W2(t),W1(t)) denote a solution to (3.21). We will now prove the following
facts:

3.B.3 Proof of Lemma 16 93

(i) If Diag(W1(0)W T
1 (0)) = Diag(W T

2 (0)W2(0)), then Diag(W1(t)W T
1 (t)) = Diag(W T

2 (t)
W2(t)) for any t ≥ 0.

(ii) If W1(0)W T
1 (0) = W T

2 (0)W2(0), then W1(t)W T
1 (t) = W T

2 (t)W2(t) for any t ≥ 0.
(iii) If Diag(W1(0)W T

1 (0)) = Diag(W T
2 (0)W2(0)) and W (t) converges as t → ∞, then

also limt→∞ W1(t)W T
1 (t) = limt→∞ W T

2 (t)W2(t).
Note that (i), (ii) show that Mdb,Mb are invariant sets for the differential equation

(3.21), respectively. In the argumentation that follows, let ∇i denote the gradient op-
erator in matrix form for i ∈ {1,2}. For example, ∇2I(W) ∈ Re×f and (∇2I(W))ij =
∂I(W)/∂(W2)ij . The negative gradients of (3.13) are computed e.g. in [60] and are given
by:

−∇1I(W) = 2W T
2 (Y −W2W1)−2λDiag(W T

2 W2)W1,

−∇2I(W) = 2(Y −W2W1)W T
1 −2λW2Diag(W1W T

1). (3.53)

Proof of (i). We take time derivatives of W1(t)W T
1 (t), W T

2 (t)W2(t) and substitute (3.21),
i.e., dWi/dt = −∇iI(W (t)) for i = 1,2. This results in

d
dt

(
W1(t)W T

1 (t)
)

= −W1(t)∇1I(W (t))T −∇1I(W (t))W1(t)T, (3.54)

d
dt

(
W T

2 (t)W2(t)
)

= −∇2I(W (t))TW2(t)−W2(t)T∇2I(W (t)), (3.55)

respectively. We subtract (3.55) from (3.54) and then substitute (3.53), to find that

d
dt

(
W1(t)W T

1 (t)−W T
2 (t)W2(t)

)
= −2λ

(
Diag(W T

2 (t)W2(t))W1(t)W T
1 (t)+W1(t)W T

1 (t)Diag(W T
2 (t)W2(t))

−W T
2 (t)W2(t)Diag(W1(t)W T

1 (t))−Diag(W1(t)W T
1 (t))W T

2 (t)W2(t)
)

. (3.56)

Conclude in particular that

d
dt

(
Diag(W1(t)W T

1 (t))−Diag(W T
2 (t)W2(t))

)
= 0, (3.57)

by taking diagonals. Its solution is given by

Diag(W1(t)W T
1 (t))−Diag(W T

2 (t)W2(t)) = Diag(W1(0)W T
1 (0))−Diag(W T

2 (0)W2(0)),
(3.58)

i.e., a constant. This proves (i).
Proof of (ii). The implied and weaker assumption Diag(W1(0)W T

1 (0)) = Diag(W T
2 (0)W2(0))

combined with (3.58) reveals that

Diag(W1(t)W T
1 (t)) = Diag(W T

2 (t)W2(t)) = A(t) (3.59)

say, for any t ≥ 0. Combining W1(t)W T
1 (t) − W T

2 (t)W2(t) = S(t), say, with (3.59) lets us
reduce (3.56) to

dS(t)
dt

= −2λ
(
A(t)S(t)+S(t)A(t)

)
. (3.60)

94 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

The solution of (3.60) in a neighborhood V of 0 is given by

S(t) = e−2λ
∫ t

0
A(s)ds

S(0)e−2λ
∫ t

0
A(s)ds

. (3.61)

Since S(0) = 0 by assumption, we have that S(t) = 0 for all t ≥ 0. This proves (ii).
Proof of (iii). We distinguish several cases.
Case 1: Suppose that there exists an l such that both the row W1l·(t) and the column
W2·l(t) converge to 0. Then(

W1(t)W T
1 (t)

)
ij

=
∑

k

W1ik(t)W1jk(t) → 0 whenever i = l or j = l (3.62)

and similarly(
W T

2 (t)W2(t)
)

ij
=
∑

k

W2ki(t)W2kj(t) → 0 whenever i = l or j = l. (3.63)

In particular, we have that

lim
t→∞

(
W T

2 (t)W2(t)
)

ij
= lim

t→∞

(
W1(t)W T

1 (t)
)

ij
whenever i = l or j = l. (3.64)

Case 2: Consider now any l for which either the row W1l·(t) or the column W2·l(t) does
not converge to zero. In particular, there must then exist a sufficiently large tl ≥ 0 and
ϵl > 0 such that

All(t) =
∑

k

W 2
1lk(t) (i)=

∑
k

W 2
2kl(t) ≥ ϵl (3.65)

for all t ≥ tl. We therefore also have by (3.61) that

Slj(t) = e
−2λ

∫ t

tl
All(s)ds

Sl,j(tl)e
−2λ

∫ t

tl
Ajj(s)ds

≤ |Slj(tl)|e−2λεl(t−tl) → 0 for j = 1, . . . ,f. (3.66)

Hence, we obtain limt→∞ Slj(t) = 0 for any j and so (iii) is proven.
Proof that Mb = Mdb. Fact (i) implies that Mdb is an invariant set for (3.21). Fact (iii)
tells us that if W (0) ∈ Mdb and W (t) converges, then limt→∞ W (t) ∈ Mb. Combining facts
(i) and (iii), it must be that Mdb ⊆ Mb.

The inclusion Mb ⊆ Mdb follows immediately from Definition 8. This concludes the
proof.

3.C Proof of Proposition 7
Proposition 7 is a specification of [21, Proposition 3.1]. To arrive at Proposition 7, all
we need to do is prove that [21, Proposition 3.1] holds with the implicit convergence rate
there (λ) replaced by the convergence rate

min
w∈V̄R0,δ0 (x0)

min
∥v∥=1

v∈ker∇2f(w)⊥

∣∣vT∇2f(w)v
∣∣ , (3.67)

3.C Proof of Proposition 7 95

where VR,δ(x0) is defined in (3.20). The convergence rate appears implicitly in the proof
of [21, Proposition 3.1] after the application of [21, Lemma 2.9] at [21, (3.11)]. Hence, we
need to make appropriate modifications to these steps in the proof of [21, Lemma 2.9].
Modifications to the proof of [21, Lemma 2.9]. Let x0 ∈ M ∩U . Since M ∩U is a nonempty
d-dimensional submanifold of Rd, we have by [21, Proposition 2.1] that there exists a
neighborhood V∗(x0) of x0 such that:
(a) For every x ∈ V∗(x0), there exists a unique projection x∗ ∈ M ∩ U say such that

∥x−x∗∥ = d(x,M ∩U).
(b) This projection map x → x∗ is locally C1-smooth.
Fix R0, δ0 > 0 such that for any δ ∈ (0, δ0],R ∈ (0,R0], it holds that V̄R,δ(x0) ⊂ V∗(x0).
There exists an r ∈ (0,∞) such that

max
y∈B̄R0 (x0)∩M∩U

∥∥∇2f(y∗)
∥∥≤ 1

r
. (3.68)

Our modified proof will be complete when we find a λ that satisfies the following
conditions:
(i) 0 < λ ≤ maxy∈B̄R0 (x0)∩M∩U ∥∇2f(y∗)∥;

(ii) for any x ∈ VR,δ(x0), ∥(x−x∗)− r∇2f(x∗) · (x−x∗)∥ ≤ (1− rλ)∥x−x∗∥; and
(iii) for any x ∈ VR,δ(x0),

(
∇2f(x∗) · (x−x∗)

)
· (x−x∗) ≥ λ∥x−x∗∥2.

Condition (iii) is essentially our addendum to the proof of [21, Lemma 2.9].
Note that by assumption, M ∩ U is a nondegenerate submanifold of P (see Defini-

tion 11), so there is an embedding M ∩U → P inducing an orthogonal decomposition

Tw∗Rd = Tw∗(M ∩U)⊕Nw∗ = Pw∗ ⊕Nw∗ (3.69)

for which ∇2f(w∗)|Pw∗ > 0 and ∇2f(w∗)|Nw∗ = 0 for any w∗. It holds moreover that for
any w′ ∈ B̄R0(x0)∩M ∩U that dim(ker∇2f(w′)) = s.

Taking inspiration from the decomposition in (3.69), we will now prove that the can-
didate

λ̃ = min
w∈V̄R0,δ0 (x0)

min
∥v∥=1

v∈ker∇2f(w∗)⊥=Pw∗

∣∣vT∇2f(w∗)v
∣∣ (3.70)

satisfies Conditions (i)–(iii).
Condition (i): The orthogonal decomposition in (3.69) together with the compactness of
V̄R0,δ0 guarantees the strict positivity of (3.70). That is, λ̃ > 0.

For any w ∈ V̄R0,δ0(x0), it holds that w∗ ∈ B̄R(x0)∩M ∩U . This implies that

λ̃ ≤ max
w∈V̄R0,δ0 (x0)

∥∇2f(w∗)∥ ≤ max
w∈B̄R0 (x0)∩M∩U

∥∇2f(w∗)∥. (3.71)

Condition (ii): Let x ∈ VR,δ(x0). Since x−x∗ ∈ Px∗ , it follows that

∥(x−x∗)− r∇2f(x∗) · (x−x∗)∥2 = ∥(1− r∇2f(x∗)) · (x−x∗)∥2. (3.72)

Recall now that we have the positive bilinear form ∇2f(x∗))|Px∗ on Px∗ . Let the minimal
eigenvalue of ∇2f(x∗))|Px∗ be λmin(∇2f(x∗)|Px∗) > 0. By (3.68),

0 < (1− r∇2f(x∗))|Px∗ ≤ 1− rλmin(∇2f(x∗)|Px∗) (3.73)

96 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

as a positive bilinear form, so that

∥(1− r∇2f(x∗)) · (x−x∗)∥2 ≤
(
1− rλmin(∇2f(x∗)|Px∗)

)
∥x−x∗∥2. (3.74)

We have by nondegeneracy that Px∗ = ker∇2f(x∗)⊥. Therefore λmin(∇2f(x∗)|Px∗) ≥ λ̃

for any x ∈ VR,δ(x0).
Condition (iii). Let x ∈ VR,δ(x0). Similar to (ii), from λmin(∇2f(x∗)|Px∗) ≥ λ̃ we conclude
also (

∇2f(x∗) · (x−x∗)
)

· (x−x∗) ≥ λ̃∥x−x∗∥2. (3.75)

This completes the proof.

3.D Proofs of Section 3.4

3.D.1 Proof of Proposition 8 – Reduction from M to Mb

Let W = (W2,W1) ∈ M and let π be the action from (3.29). Note that π(C)(W2,W1) ∈ M ,
since π preserves the conditions in (3.17) for W to be a minimum. Hence, π is well defined.
Note now also that the same conditions imply that for i = 1, . . . ,f ,(

Diag(W T
2 W T

2)
)

ii
> 0,

(
Diag(W1W T

1)
)

ii
> 0. (3.76)

This enables us to define

CW = Diag(W1W T
1)1/4Diag(W2W T

2)−1/4 (3.77)

and then consider the point π(CW)(W) = (W̃2,W̃1) say. For this particular point,

Diag(W̃ T
2 W̃2) (3.29)= CT

W Diag(W T
2 W2)CW

(3.77)= Diag(W T
2 W2)1/2Diag(W1W T

1)1/2 (3.17)=
∥W∗∥1

f
If (3.78)

= Diag(W̃1W̃ T
1). (3.79)

Here, (3.79) follows using the same (but appropriately modified) argumentation as for
(3.78). Consequently, π(CW)(W) ∈ Mdb. Recalling that Mb = Mdb by Lemma 16 concludes
the proof. 2

3.D.2 Proof of Proposition 9 – Characterization of Mb.
Recall Mb, Mdb’s definitions in (3.18), (3.19), respectively. We now introduce the following
two extended sets:

M̄b = {W = (W2,W1) ∈ P : W T
2 W2 = W1W T

1 ,W2W1 = Sα[Y]}, and (3.80)

M̄db = {W = (W2,W1) ∈ P : Diag(W T
2 W2) = Diag(W1W T

1),W2W1 = Sα[Y]}. (3.81)

The sets M̄db,M̄b also contain diagonally balanced and balanced points respectively, but
these points are not necessarily minima. They are extensions because

Mdb = M̄db ∩M, and Mb = M̄b ∩M. (3.82)

Recall the definitions of ρ in (3.15), Σ2,Σ1 in (3.31), and Σ in (3.32).

3.D.2 Proof of Proposition 9 – Characterization of Mb. 97

Lemma 17. If Assumption 9 holds, then there exist a full SVD of W = (W2,W1) ∈ M̄b

of the form (UΣ2S,STΣ1V) where S ∈ O(f).

Proof. Let W = (W2,W1) ∈ M̄b. Consider a compact SVD of the following form W =
(U2Σ̃2S2,ST

1 Σ̃1V1). Note that for this compact SVD in particular

S2ST
2 = IddimΣ̃2

and S1ST
1 = IddimΣ̃1

. (3.83)

We also suppose (without loss of generality) that the singular values of Σ̃2 and Σ̃1 are
both ordered in the diagonal from largest to smallest.

Observe that
ST

2 Σ̃2
2S2 = W T

2 W2
(3.80)= W1W T

1 = ST
1 Σ̃2

1S1. (3.84)

Uniqueness of the singular values combined with (3.84) implies that there exists a permu-
tation matrix P such that Σ̃2 = P Σ̃1. Moreover, because the singular values of Σ̃2 Σ̃1 are
ordered by construction, we must have that (i) Σ̃2 = Σ̃1 = Σ̃ say. From (3.84), it follows
in particular that

ST
2 Σ̃2S2 = ST

1 Σ̃2S1. (3.85)

Suppose now that Σ̃ ∈ Rl×l, that the singular values are given by λ1, . . . ,λs (each
distinct), and that their multiplicities are given by r1, . . . , rs. Recall that

∑s
i=1 ri = l

necessarily. After left-, right-multiplying (3.85) by S2, ST
1 , respectively, it follows that the

matrix L = S2ST
1 commutes with Σ̃2: Σ̃2L = LΣ̃2. Combining this fact with the fact that

Σ̃2 =


λ2

1Ir1×r1
λ2

2Ir2×r2
. . .

λ2
sIrs×rs

, (3.86)

in which all off-diagonal elements are equal to zero, leads to the conclusion that the matrix
L must be a conformally partitioned block-diagonal matrix of the form

L =

L1
L2

. . .
Ls

. (3.87)

Furthermore, L must have strictly positive entries and L1 ∈ O(r1), . . . ,Ls ∈ O(rs) because
of the uniqueness of the eigenspaces for each eigenvalue and therefore L ∈ O(l). Conse-
quently, L also commutes with Σ̃:

Σ̃L = LΣ̃. (3.88)

Let UcΣ2Vc now be a compact SVD of Sα[Y]. Recall (3.15) and (3.16), and conclude
that Σ2 is given by (3.32). Observe that

UcΣ2Vc = Sα[Y] (3.80)= W2W1
(SVD)= U2Σ̃2S2ST

1 Σ̃1V1
(i)= U2Σ̃LΣ̃V1

(3.88)= U2LΣ̃2V1. (3.89)

Remark now that (U2L)T(U2L) = Idl. Consequently, the left-hand side as well as the
right-hand side of (3.89) are compact SVDs. By uniqueness of the singular values we
must again have that there exists a permutation matrix P ′ such that Σ̃2 = P ′Σ2. By
construction, the singular values of both diagonal matrices Σ̃2 and Σ2 were put in the

98 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

same order. This implies that we must have Σ̃2 = Σ2. By positivity of the entries, we
must consequently also have (ii) Σ̃ = Σ. The singular values in Σ2 have no multiplicity by
Assumption 9, so equating multiplicities yields r1 = . . . = rs = 1, l = ρ. Moreover, L ∈ O(r)
is a diagonal matrix with {−1,+1}-valued entries.

The uniqueness of the left and right eigenvectors in the left-hand side as well as the
right-hand side of (3.89) together with the fact that all eigenvalues of Σ have multiplicity
one, implies that there exists a diagonal matrix D with entries in {−1,+1} such that UcD =
U2L and (iii) DVc = V1. In particular, (iv) U2 = UcDLT = UcDL. Also, from the facts that
L is a diagonal matrix with {−1,+1}-valued entries and both S1, S2 have orthonormal
rows, we obtain from L = S2ST

1 that (v) LS1 = S2. Utilizing (i–v), together with (vi) the
fact that D,L,Σ are diagonal matrices which are thus symmetric and commute, we can
rewrite the compact SVD of W as(

U2Σ̃2S2,ST
1 Σ̃1V1

) (i,ii)=
(
U2ΣS2,ST

1 ΣV1
) (iii,iv)=

(
UcDLΣS2,ST

1 ΣDVc
)

(v)=
(
UcDLΣS2,ST

2 LΣDVc
) (vi)=

(
UcΣ(DLS2),(S2LD)TΣVc

)
. (3.90)

We can extend the compact SVD in (3.90) to a full SVD by noting that S will be the
extension of DLS2 to an orthogonal matrix in O(f), and U and V will be the extensions
of Uc and Vc to O(e) and O(h), respectively. Similarly, Σ2 and Σ1 will be the extension
to a full SVD. 2

We next characterize M̄b from (3.80) as a homogeneous manifold. Let us summarize
the method first. Suppose that G is a finite-dimensional Lie group, that is, a group with
a smooth manifold structure (for example, GL(n) or SL(n)). Suppose for a moment that
M̄b is a set, and that there is a transitive Lie group action π : G×M̄b → M̄b. A transitive
action means that for any a,b ∈ M̄b, there exists a g ∈ G such that π(g)(a) = b. We define
the stabilizer subgroup (also called isotropy subgroup) of π at a ∈ M̄b as StabG(a) = {g ∈ G :
π(g)(a) = a}. We will use that if for a point a ∈ M̄b, StabG(a) ⊆ G is a closed smooth Lie
subgroup (closed in the topology of G), then there exists a smooth manifold structure on
M̄b which is that of the homogeneous manifold G/StabG(a) [113, Thm. 21.20]. Once we
have a diffeomorphism M̄b ≃ G/StabG(a) (a differentiable isomorphism with differentiable
inverse) we can consider the projection map Π : G → G/StabG(a) ≃ M̄b and look at the
differential DΠ : g→ T0(G/StabG(a)) at Π(Id) = [StabG(a)] = 0, where g is the Lie algebra
of G. The linear map DΠ is surjective and the kernel is the Lie algebra of StabG(a),
denoted by Lie(StabG(a)). Hence as vector spaces

g

Lie(StabG(a)) ≃ TaM̄b. (3.91)

We refer the reader to [137, Ch. 4] for more details on homogeneous spaces.

Lemma 18. If Assumption 9 holds, then there is a diffeomorphism of manifolds M̄b ≃
O(f)/(Iρ ⊕O(f −ρ)), i.e., the manifold M̄b is a homogeneous space.

Proof. Consider the smooth Lie group action π : O(f)×M̄b → M̄b given by

π(L)(W2,W1) = (W2L,LTW1). (3.92)

3.D.2 Proof of Proposition 9 – Characterization of Mb. 99

For W = (W2,W1) ∈ M̄b, we are first going to determine the stabilizer subgroup

StabO(f)(W) = {S′ ∈ O(f) : π(S′)(W) = W}. (3.93)

Let to that end (UΣ2S,STΣ1V) be an SVD of W , which exists by Lemma 17. Note then
that for any orthogonal matrix S′ ∈ O(f) of the form

S′ = ST(A B
C D

)
S where A ∈ Rρ×ρ, (3.94)

we have that

π(S′)(W) (3.92)=
(
W2S′,(S′)TW1

) (SVD)=
(
UΣ2SS′,(S′)TSTΣ1V

)
(3.94)=

(
UΣ2

(
A B
C D

)
S,ST(A B

C D

)TΣ1V
) (3.31)=

(
U
(

ΣA ΣB
0 0

)
S,ST

(
ATΣ 0
BTΣ 0

)
V
)

= W

(3.95)

if and only if (
ΣA ΣB
0 0

)
= Σ2 and

(
ATΣ 0
BTΣ 0

)
= Σ1. (3.96)

Because of our Assumption 9 on the multiplicity of the eigenvalues, (3.96) holds if and
only if B = 0 and A = Idρ. We must then furthermore have that C = 0 and D ∈ O(f −ρ)
because S′ ∈ O(f). We have shown that

StabO(f)(W) ≃ ST(Iρ ⊕O(f −ρ))S, (3.97)

the right-hand side of which is a closed, smooth Lie subgroup of O(f).
Next, we prove the diffeomorphism. Lemma 17 ensures that π is transitive. Transi-

tiveness ensures that the choice of L in (3.92) only changes the stabilizer subgroup by
conjugation, i.e.,

StabO(f)(π(L)W) = L−1StabO(f)(W)L. (3.98)

The set M̄b admits therefore a smooth manifold structure, and we have the following
diffeomorphism of smooth manifolds [113, Thm. 21.20]:

M̄b ≃ O(f)
Iρ ⊕O(f −ρ) . (3.99)

This completes the proof. 2

Lemma 17 guarantees that each point W ∈ M̄b has an SVD of the form (UΣ2S,STΣ1V)
where [S] ∈ O(f)/(Iρ ⊕O(f −ρ)). Here, S denotes any representative of the equivalence
class [S]. Conclude using (3.17), (3.18) and (3.80) that if W ∈ M̄b, then W ∈ Mb also
if and only if moreover Diag(W T

2 W2) = Diag(W1W T
1) = ∥Σ2∥1If /f . Combined with the

isomorphism in Lemma 18, this provides us with the alternative representation in (3.30).
All that remains is to prove that Mb ̸= ∅. This fact was also proven in [60], but for

completeness we will prove it here using the theory of majorization instead. For any vector
a ∈ Rf , denote by a↓ ∈ Rf the vector with the same components but sorted in descending
order. Given two vectors a,b ∈ Rf , we say that a is majorized by b, written as a ≺ b, if

l∑
i=1

a↓
i ≤

l∑
i=1

b↓
i for l = 1, . . . ,f and furthermore

f∑
i=1

ai =
f∑

i=1
bi. (3.100)

100 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

Lemma 19. It holds that Mb ̸= ∅.

Proof. We temporarily abuse our notation and let Diag denote the map that: (a) maps
vectors y ∈ Rf to an R-valued diagonal f × f matrices with y1, . . . ,yf for its diagonal
entries, and (b) maps matrices A ∈ Rf×f to R-valued vectors with entries A11, . . . ,Aff .

If a ∈ [0,∞)f and L ∈ O(f), then as a linear map Diag(LDiag(y)LT) = Py for some
orthostochastic matrix P ; specifically, the doubly stochastic matrix that is formed by
taking the square of the entries of L ∈ O(f) [163, Definition B.5, p.34]. Because P is doubly
stochastic, we have that Pa ≺ a. Note now that Horn’s theorem states that the converse is
also true [163, Theorem B.6, p.35]: if a ≺ b, then there exists a orthostochastic matrix Q

such that Qb = a. In particular, there exists some L ∈ O(f) satisfying Diag(LDiag(b)LT) =
a whenever a ≺ b.

Consider now the two f -dimensional vectors

a =
(∥Σ2∥

f
, . . . ,

∥Σ2∥
f

)
, (3.101)

b =
(

σ1 −
ρλκρ

f +ρλ
, . . . ,σρ −

ρλκρ

f +ρλ
,0, . . . ,0

)
(3.102)

specifically, and note in particular that a ≺ b. Applying Horn’s theorem proves that there
exists an orthogonal matrix L ∈ O(f) such that

Diag
(
L
(

Σ2 0
0 0
)
LT)= ∥Σ2∥

f
If . (3.103)

In particular, we have shown that the condition in (3.30) holds. Consequently, Mb ̸= ∅. 2

3.D.3 Proof of Proposition 10 – Characterization of TW Mb.
We start by describing the tangent space of M̄b. Using the diffeomorpishm in Lemma 18
together with (3.91), we find that for any W ∈ M̄b,

TW M̄b ≃ T0

(O(f)
Iρ ⊕O(f −ρ)

)
≃ o(f))

0ρ ⊕o(f −ρ) . (3.104)

Here, o(s) denotes the Lie algebra of the orthogonal group O(s), and

o(f)
0ρ ⊕o(f −ρ) =

{(
X E

−ET 0

)
: X ∈ Skew(Rρ×ρ),E ∈ Rρ×(f−ρ)

}
. (3.105)

Note also that the isomorphism in (3.104) is given by the differential DIdπ of the action
π in (3.29) at the identity of O(f); that is, TW (M̄b) = DIdπ(o(f)/0ρ ⊕o(f −ρ))(W).

Recall now that W has a SVD decomposition of the form (UΣ2S,STΣ1V) by Lemma 17.
We therefore have that for any (X,E;−ET,0) ∈ o(f)/0ρ ⊕o(f −ρ),

DIdπ
(

ST
(

X E
−ET 0

)
S
)

(W) (3.92)=
(

W2ST
(

X E
−ET 0

)
S,ST

(
XT −E

ET 0

)
SW1

)
=
(

UΣ2

(
X E

−ET 0

)
S,ST

(
XT −E

ET 0

)
Σ1V

)
. (3.106)

3.D.4 Proof of Proposition 11 – The set Sing(Mb) 101

Consequently,

TW (M̄b) = DIdπ(o(f)/0ρ ⊕o(f −ρ))(W)

=
{(

UΣ2

(
X E

−ET 0

)
S,ST

(
XT −E

ET 0

)
Σ1V

)
: X ∈ Skew(Rρ×ρ),E ∈ Rρ×(f−ρ)

}
. (3.107)

Next, recall that DW T : TW M̄b → TT (W)Rf . Concretely, for any

(V2,V1) =
(

UΣ2

(
X E

−ET 0

)
S,ST

(
XT −E

ET 0

)
Σ1V

)
∈ TW M̄b (3.108)

say, we have that

DW T (V2,V1)
(3.34)= Diag

((
DIdπ

(
ST
(

X E
−ET 0

)
S
)

(W)
)

1
W T

1 +W1

(
DIdπ

(
ST
(

X E
−ET 0

)
S
)

(W)
)T

1

)
(3.106)= Diag

(
ST
(

XT −E

ET 0

)
Σ1V W T

1 +W1V TΣT
1

(
X E

−ET 0

)
S
)

(SVD)= Diag
(

ST
(

XT −E

ET 0

)
Σ1V V TΣT

1 S +STΣ1V V TΣT
1

(
X E

−ET 0

)
S
)

(3.31,3.32)= Diag
(

ST
(

XT −E

ET 0

)(
Σ2 0
0 0
)
S +ST(Σ2 0

0 0
)(X E

−ET 0

)
S
)

= Diag
(

ST
(

XTΣ2 0
ETΣ2 0

)
S +ST(Σ2X Σ2E

0 0
)
S
)

= 2Diag
(

ST(Σ2X Σ2E
0 0

)
S
)

. (3.109)

Let now W ∈ Mb\Sing(Mb). By (3.35), DW T has maximal rank f −1. By continuity,
the full rank property holds in an open set. There thus exists an open neighborhood
NW ⊆ M̄b say of W such that for any W ′ ∈ NW the rank of DW ′T is constant and equal
to f −1. Note now that T : NW → Rf is a smooth function and we have T (W) = ∥Σ2∥1/f

by (3.17) and (3.18). In particular for any W ∈ NW ∩Mb we have DW ′T is maximal and
T (W ′) = ∥Σ2∥1/f . The constant rank theorem [113, Theorem 5.22] therefore applies, and
there exists an open neighborhood UW ⊆ NW of W such that

T −1
(∥Σ2∥1

f

)
∩UW = Mb ∩UW (3.110)

is a smooth embedded manifold in M̄b of codimension f −1.
Note now furthermore that for any W ∈ M̄b, Tr[T (W)] = ∥Σ2∥ by the diffeomorphism

in Lemma 18. The map DW T can therefore have rank f − 1 at most in particular. That
is, any f −1 components of T are regular at W and we can therefore consider Mb as being
an embedded manifold in M̄b [113, Proposition 5.28]. Hence, by [113, Lemma 5.29] we
also have that for any Q ∈ T −1(∥Σ2∥1/f)∩UW = Mb ∩UW we have the representation

kerDQT = TQMb, (3.111)

where we understand TQMb as a subspace of TQM̄b.
This concludes the proof. 2

3.D.4 Proof of Proposition 11 – The set Sing(Mb)
We start by proving that if there exists a point W ∈ Mb such that rk(DW T) = f − 1,
or in other words Mb\Sing(Mb) ̸= ∅, then Proposition 11 holds. The proof relies on an
established fact for the singular loci in affine algebraic varieties, of which Mb is one.

102 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

Lemma 20. If there exists a point W ∈ Mb such that rk(DW T) = f − 1, then Proposi-
tion 11 holds.

Proof. Fix any point W = (W2,W1) ∈ M̄b. Let π be the action defined in (3.29), and recall
the representation of Mb in (3.30) as well as the definition of M̄b in (3.80). Observe that
the set Mb can be defined as the set of solutions to the algebraic equations

L ∈ [L] ∈ O(f)
Iρ ⊕O(f −ρ) ≃ M̄b∥∥Σ2

∥∥
1

f
If×f = Diag(LTW T

2 W2L) = Diag(LTW1W T
1 L) (3.34)= T (π(L)(W)). (3.112)

We may therefore consider Mb as a real algebraic variety of P; that is, the zero loci (the
set of real solutions) of a set of real polynomials of finite degree with variables in P.
Let P1, . . . ,Ps with s = dimP − dim(M̄b) be the polynomials defining M̄b at zero, that is,
M̄b = P −1

1 (0)∩ . . .∩P −1
s (0). If we denote the gradient with respect to the coordinates in P

by ∇, then the matrix composed by (∇Pi)s
i=1 has rank dimP −dim(M̄b) at W whenever

P1(W) = . . . = Ps(W) = 0. Eq. (3.112) also shows that T defines Mb and its differential
DW T via f −1 polynomials Q1, . . . ,Qf−1 say (one less than f , since the trace of T is fixed)
plus the polynomials {Pi}s

i=1 needed to define M̄b. Recall that M̄b is a smooth manifold
and has no singular points. In particular, we have a matrix

S =
(
∇P1, . . . ,∇Ps,∇Q1, . . . ,∇Qf−1

)
(3.113)

that satisfies the following: if W ∈ P is such that Pi(W) = Qj(W) = 0 for all i, j, then S
has rank at most dimP − dim(M̄b) + f − 1. The set of singular points Sing(Mb) can be
then understood as the set of points W ∈ P ∩Mb that are not regular points; that is, the
set of points W ∈ Mb where S does not have maximal rank. This is a closed Zariski set
in the algebraic variety Mb.

Recall now that there exists W ∗ ∈ Mb such that rk(DW ∗T) = f − 1 is maximal by
assumption. This implies that for W ′ in a neighborhood of W ∗, DW ′T has also con-
stant rank f − 1. Noting that the polynomials Qi for i = 1, . . . ,f − 1 are defined as f − 1
components of T (π(L)(W)) up to a constant, we then have that S has exactly rank
dimP −dim(M̄b)+f −1 at W ∗. By [111, Prop. 3.3.10, (iii) → (ii)], there is an irreducible
component of Mb of codimension f − 1 in M̄b (or of dimension dim(M̄b) − (f − 1) in P),
and there is a unique component containing W ∗. By [111, Prop. 3.3.14], Sing(Mb) is
then an algebraic set of codimension strictly larger than f −1 in M̄b (see also [136, §6.2]).
Alternatively we can say that Sing(Mb) is a proper closed Zariski set in Mb. Hence, Mb

is generically smooth or up to a closed algebraic set of dimension smaller than Mb. From
the previous computation moreover, Mb is then a smooth manifold of codimension f − 1
in M̄b up to the closed lower-dimensional algebraic set Sing(Mb). 2

We will next prove that the condition of Lemma 20 holds under Assumption 9, i.e., that
there exists a point W ∈ Mb such that rk(DW T) = f −1. The proof consists of two steps.
First, we prove that a sufficient condition is the existence of a particular orthogonal matrix
(Lemma 21). Second, we prove that such orthogonal matrix indeed exists by iteratively
constructing said matrix (Lemma 23).

3.D.4 Proof of Proposition 11 – The set Sing(Mb) 103

Lemma 21. Suppose Assumption 9 holds. Let W ∈ M̄b ∩ T −1(
∥∥Σ2

∥∥
1 /f) have an SVD

of the type (UΣ2S,STΣ1V). If one of the first ρ rows of S ∈ O(f) has no zeros, then there
exists a point W ∈ Mb such that rk(DW T) = f −1.

Proof. The SVD exists by Lemma 17. Let

X =

 0 X12 ··· X1ρ

−X12 0 ··· 0
...

...
...

−X1ρ 0 ··· 0

 ∈ Skew(Rρ×ρ), B =

B11 B12 ··· B1ρ
0 0 ··· 0
...

...
...

0 0 ··· 0

 ∈ Rρ×(f−ρ). (3.114)

Hence, the first row of X is the vector X1,· = (0,X1,2:ρ) where X1,2:ρ = (X12, . . . ,X1ρ) ∈
Rρ−1 say, and the first row of B is a vector B1· ∈ R(f−ρ) say. Let Σ2 = Diag(θ1, . . . ,θρ) ∈
Rρ×ρ be as in (3.32), and define θ2:ρ = (θ2, . . . ,θρ) ∈ Rρ−1.

Consider now the map

Diag
(

ST
(

Σ2X Σ2B
0(f−ρ)×ρ 0(f−ρ)×(f−ρ)

)
S
)

= Diag
(
ST
(

Σ2X 0ρ×(f−ρ)
0(f−ρ)×ρ 0(f−ρ)×(f−ρ)

)
S
)

+Diag
(
ST
(

0ρ×ρ Σ2B
0(f−ρ)×ρ 0(f−ρ)×(f−ρ)

)
S
)

= Diag
(

ST

(
01×1 θ1X1,2:ρ 01×(f−ρ)

−(θ2:ρ⊙X1,2:ρ)T 0(ρ−1)×(ρ−1) 0(ρ−1)×(f−ρ)
0(f−ρ)×1 0(f−ρ)×(ρ−1) 0(f−ρ)×(f−ρ)

)
S
)

+Diag
(

ST

(
01×1 01×(ρ−1) θ1B1,:

0(ρ−1)×1 0(ρ−1)×(ρ−1) 0(ρ−1)×(f−ρ)
0(f−ρ)×1 0(f−ρ)×(ρ−1) 0(f−ρ)×(f−ρ)

)
S
)

. (3.115)

Observe now that because Diag(A) = Diag(AT) for any square matrix A ∈ Rf×f , we have

Diag
(

ST

(
01×1 θ1X1,2:ρ 01×(f−ρ)

−(θ2:ρ⊙X1,2:ρ)T 0(ρ−1)×(ρ−1) 0(ρ−1)×(f−ρ)
0(f−ρ)×1 0(f−ρ)×(ρ−1) 0(f−ρ)×(f−ρ)

)
S
)

= Diag
(

ST
(01×1 θ1X1,2:ρ−θ2:ρ⊙X1,2:ρ 01×(f−ρ)

0(f−1)×1 0(f−1)×(ρ−1) 0(f−1)×(f−ρ)

)
S
)

. (3.116)

Define now x = ((θ1 −θ2)X12, . . . ,(θ1 −θρ)X1ρ), b = θ1B1,:. We have shown that

Diag
(

ST
(

Σ2X Σ2B
0(f−ρ)×ρ 0(f−ρ)×(f−ρ)

)
S
)

= Diag
(

ST
(

01×1 x b
0(f−1)×1 0(f−1)×(ρ−1) 0(f−1)×(f−ρ)

)
S
)

.

(3.117)
Let S·,1, . . . ,S·,f be the columns of S, and denote the j-th component of the column

S·,i by Sij . We have now

Diag
(

ST
(

Σ2X Σ2B
0(f−ρ)×ρ 0(f−ρ)×(f−ρ)

)
S
)

= Diag
(

ST
(

(0,x,b)
0(f−1)×f

)
S
)

= Diag
((S11(0,x,b)

···
S1f (0,x,b)

)
S
)

= Diag
(

S11⟨S·,1,(0,x,b)⟩, . . . ,S1f ⟨S·,f ,(0,x,b)⟩
)

. (3.118)

Recall that θi ̸= θj for i ̸= j, and note that x ∈ Rρ−1, b ∈ Rf−ρ are free variables. To
prove Lemma 21, we need to find x, b such that the map in (3.118) has rank f − 1. Note
that the vector(

S11⟨S·,1,(0,x,b)⟩, . . . ,S1f ⟨S·,f ,(0,x,b)⟩
)T = (0,x,b)SDiag(S11, . . . ,S1f). (3.119)

104 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

The subspace spanned by vectors of the form (0,x,b) ∈ Rf has dimension f − 1. There-
fore, since S is an orthogonal matrix (note that taking any representative of S from the
homogeneous space M̄b in (3.80) also works), we have that the linear map in (3.119) has
rank f −1 if Diag(S11, . . . ,S1f) has maximal rank. This happens whenever S1i ̸= 0 for all
i = 1, . . . ,f .

The argument above also works if s ≤ ρ: consider then instead

X =



0 ··· 0 −Xs1 0 ··· 0
...

...
...

...
...

0 ··· 0 −Xs(s−1)) 0 ··· 0
Xs1 ··· Xs(s−1) 0 Xs(s+1)) ··· Xsρ

0 ··· 0 −Xs(s+1)) 0 ··· 0
...

...
...

...
0 ··· 0 −Xsρ 0 ··· 0

, B =


0 0 ··· 0
...

...
...

0 0 ··· 0
Bs1 Bs2 ··· Bsρ

0 0 ··· 0
...

...
...

0 0 ··· 0

 ∈ Rρ×(f−ρ).

(3.120)
The diagonal matrix in (3.119) will then turn out to be Diag(Ss1, . . . ,Ssf) instead. Hence,
in case one of the first ρ rows of S has no zeros then the map has rank f −1. This concludes
the proof. 2

In the case that ρ = 1, we can verify the requirement of Lemma 21 in (3.33) on the
rows of S by computing Mb exactly. This is implied by the following lemma, which will
be useful later also in the computations for Proposition 6.

Lemma 22. Suppose Assumption 9 holds and ρ = 1. For any W = (UΣ2S,STΣ1V) ∈ Mb

that satisfies (3.33), it holds that |S1j |2 = 1/f for j ∈ {1, . . . ,f}. Furthermore, Mb is a
union of finitely many points.

Proof. We first calculate S’s entries. Recall Σ2’s and Σ1’s expressions in (3.31). If ρ = 1,
then Σ2 = ΣW∗ = η ∈ R. Consequently,

Diag(W T
2 W2) (SVD)= Diag

(
ST(η 0

0 0
)
S
)

= Diag
(
|S11|2η, · · · , |S1f |2η

)
. (3.121)

By Assumption 9 and (3.33), (3.121) must equal (η/f)If . Consequently,

|S11|2 = . . . = |S1f |2 = 1
f

. (3.122)

We next show that Mb is a union of finitely many points. Whatever choice for S1,·
is made (as long as it satisfies (3.122)), we can then complete the system {S1,·} to an
orthonormal basis {S1,·, . . . ,Sf,·} say. In other words, this procedure constructs a matrix
S that is moreover in O(f). The resulting S also gives an element of M̄b and under the
quotient O(f) → O(f)/(1⊕O(f −1)) all the basis completions of S are equivalent modulo
1 ⊕ O(f − 1). Note that we can a priori choose the signs of the one dimensional ‘seed’
subspace corresponding to the singular value Σ in U and V . Moreover, for each choice of
signs in the vector S1,·, we can select a unique disjoint element in Mb. Hence, there are
only finitely many points in Mb when ρ = 1. 2

In the general case when ρ > 0, we can verify the requirement of Lemma 21 on the
rows of S by showing that Mb will always have a point W = (UΣ2S,STΣ1V) ∈ Mb such
that the first row of S has no zeros. This is implied in by following lemma:

3.D.4 Proof of Proposition 11 – The set Sing(Mb) 105

Lemma 23. Let ρ > 0. There exists W = (UΣ2S,STΣ1V) ∈ Mb that satisfies (3.33).
Moreover, S ∈ O(f) can be chosen so that the first ρ rows of S have no zeros.

Proof. If (UΣ2S,STΣ1V) ∈ Mb, then necessarily

Diag
(

ST
(

Σ2 0
0 0

)
S
)

=
∥∥Σ2

∥∥
1

f
If (3.123)

by the definition of Mb in (3.30). Recall furthermore that here, Σ2 is a diagonal matrix.
We will prove the following result that is stronger than required: Let b = (b1, . . . , bf) ∈

Rf be such that b1 ≥ . . . ≥ bf ≥ 0, and consider b̄ = ((
∑

i bi)/f, . . . ,(
∑

i bi)/f) ∈ Rf . Then
there exists S ∈ O(f) satisfying

Diag
(
STDiag(b)S

)
= b̄ (3.124)

such that S1i ̸= 0 for i = 1, . . . ,f . We can construct such orthogonal matrix iteratively by
extending the proof idea from [155, Theorem 1.4].

Let us begin the iterative construction. For vectors a,b ∈ Rf recall the definition of
a ≺ b in (3.100). Let b̄′ = ((

∑f
i=2 βi)/(f − 1), . . . ,(

∑f
i=2 βi)/(f − 1)) ∈ Rf−1 and consider

b′ = (b2, . . . , bf) ∈Rf−1. Observe that b̄′ ≺ b′, and so by the proof of Lemma 19(see (3.100)–
(3.103) specifically), there exists a W ∈ O(f −1) such that b̄′ = Diag(W TDiag(b′)W). Con-
sider now the matrix A1 defined by

A1 =
(

1 0
0 W

)T
Diag(b)

(
1 0
0 W

)
=
(

b1 0
0 W TDiag(b′)W

)
. (3.125)

Observe that Diag(A1) = (b1, b̄′) is not yet the precise vector we need. But, by using
rotations one coordinate at a time, we can move ‘mass’ of b1 towards the other coordinates
to ultimately arrive at the vector b̄.

Specifically, the iterative construction proceeds as follows. Consider first the matrix
T2(t) ∈ O(f) for t ∈ [0,1] defined by

T2(t) =

 √
t

√
1− t 01×f−2

−
√

1− t
√

t 01×f−2
0T

1×f−2 0T
1×f−2 If−2

 . (3.126)

Since b1 ≥ (
∑f

i=1 bi)/f ≥ (
∑f

i=2 bi)/(f −1), there exists t2 ∈ (0,1) such that (
∑f

i=1 bi)/f =
(1− t2)b1 + t2(

∑f
i=2 bi)/(f −1). We can then compute

(
1 0
0 W

)
T2(t2) =

 √
t2

√
1− t2 01×(f−2)

∗ ∗ 01×(f−2)
∗T

1×(f−2) ∗T
1×(f−2) (Wi,j)i,j>2

 , (3.127)

where ∗ denote entries which may be different from zero (their precise values are unimpor-

106 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

tant). In particular, it holds that

A2 = T2(t2)TA1T2(t2)

= T2(t2)T

 √
t2b1

√
1− t2b1 01×(f−2)

−
√

1− t2(
∑f

i=2 bi)/(f −1)
√

t2(
∑f

i=2 bi)/(f −1) ∗1×(f−2)
∗T

1×(f−2) ∗T
1×(f−2) (W TDiag(b′)W)i,j>2



=

t2b1 +(1− t2)(
∑f

i=2 bi)/(f −1) ∗ 01×(f−2)
∗ (

∑f
i=1 bi)/f ∗1×f−2

0T
1×(f−2) ∗T

1×(f−2) (W TDiag(b′)W)i,j>2

 . (3.128)

Observe furthermore from the definition of t2 and the fact that Tr(A2) =
∑f

i=1 bi, that

t2b1 +(1− t2)
∑f

i=2 bi

f −1 =
f∑

i=1
bi − (f −2)

∑f
i=2 bi

f −1 −
∑f

i=1 bi

f

= b1 +
∑f

i=2 bi

f −1 −
∑f

i=1 bi

f
= f −2

f −1b1 + 1
(f −1)f (

n∑
i=1

bi) ≥ 1
f

(
n∑

i=1
bi). (3.129)

To arrive at the last inequality, we used here that b1 ≥ (
∑n

i=1 bi)/f .
Now consider T3(t), . . . ,Tf (t) ∈ O(f) where

Ti(t)11 = Ti(t)ii =
√

t, Ti(t)1i = −Ti(t)i1 =
√

1− t, (3.130)

and Tjk(t) = δjk for j,k /∈ {1, i} elsewhere. We define recursively

Ai = Ti(ti)TAi−1Ti(ti). (3.131)

An argument analogous to (3.129) shows that (Ai−1)11 ≥ (
∑f

i=1 bi)/f ≥ (
∑f

i=2 bi)/(f −1)
for i = 3, . . . ,f . Hence, we can find ti ∈ (0,1) such that (1− ti)(Ai−1)11 + ti(

∑f
i=2 bi)/(f −

1) = (
∑f

i=1 bi)/f . In particular, the first row of

S =
(

1 0
0 W

) f∏
i=2

Ti(ti) ∈ O(f) (3.132)

will satisfy S1j > 0 for j = 1, . . . ,f . Moreover, we will have for Af that

Diag(Af) = Diag(STDiag(b)S) = b̄. (3.133)

To complete the proof, identify Diag(Σ2,0) = Diag(b). In summary, we have thus found
a matrix S ∈ O(f) satisfying (3.33). 2

3.D.5 Proof of Proposition 12 – Computing ∇2I(W)
We first recall several properties of vectorization in (3.38):
– If A,B ∈ Ra×b, then Tr[ATB] = vec(A)Tvec(B).
– If A ∈ Re×f ,B ∈ Rf×h, then vec(AB) = BT ⊗ Ie×evec(A) = Ih×h ⊗ Avec(B). Here,

⊗ is understood as the Kronecker tensor product compatible with the vectorization
vec.

3.D.5 Proof of Proposition 12 – Computing ∇2I(W) 107

– If A ∈ Re×f ,B ∈ Rf×h,C ∈ Rh×g, then vec(ABC) = (CT ⊗A)vec(B).
– Let K : Rab → Rba be the linear map such that vec(AT) = Kvec(A) holds for any

A ∈ Ra×b.
We also rewrite (3.53) using the vectorization notation. Specifically, we have that

vec(∇1I(W)) = vec(−2W T
2 Y +2W T

2 W2W1)+vec(2λDiag(W T
2 W2)W1)

= −2vec(W T
2 Y)+2Ih×h ⊗W T

2 W2vec(W1)+2λIh×h ⊗Diag(W T
2 W2)vec(W1), (3.134)

and

vec(∇2I(W)) = vec(−2Y W T
1 +2W2W1W T

1)+vec(2λW2Diag(W1W T
1))

= −2vec(Y W T
1)+2W1W T

1 ⊗ Ie×evec(W2)+2λDiag(W1W T
1)⊗ Ie×evec(W2). (3.135)

As a final preparatory step, let us denote for i, j ∈ {1,2} the partial derivatives with respect
to matrices i and j by ∂i,j . For example,

∂1,1I ∈ R(f×h)×(f×h) and (∂1,1I)kl,mn = ∂2I(W)
∂W1kl∂W1mn

. (3.136)

Step 1: Calculating the partial derivatives ∂ijI(W). We start by computing the partial
derivatives ∂11I,∂22I directly from (3.134), (3.135). For any vector v ∈ Rn and matrix
A ∈ Rn×n, it holds that ∂(Av)/∂v = A. Therefore

∂1,1I(W) = 2Ih×h ⊗W T
2 W2 +2λIh×h ⊗Diag(W T

2 W2),

∂2,2I(W) = 2W1W T
1 ⊗ Ie×e +2λDiag(W1W T

1)⊗ Ie×e. (3.137)

Next we are going to calculate ∂1,2I. We first rewrite terms of ∇1I(W) and ∇2I(W)
in (3.53). Specifically, note that

vec
(
−2W T

2 (Y −W2W1)
) (i)= −2vec(W T

2 Y)+2W T
1 ⊗W T

2 vec(W2),
(ii)= −2((Y −W2W1)T ⊗ If×f)Kvec(W2). (3.138)

Here, we have isolated (i) W2 by using the identity vec(ABC) = CT ⊗ Avec(B); and (ii)
W T

2 using the tensor K that satisfies vec(W T
2) = Kvec(W2). Similarly, note that

vec(2λDiag(W T
2 W2)W1) (iii)= vec(2λ

∑
i

PiW
T
2 W2PiW1) (3.139)

(iv)= 2λ
∑

i

(PiW1)T ⊗PiW
T
2 vec(W2)

(v)= 2λ
∑

i

((W2PiW1)T ⊗Pi)Kvec(W2). (3.140)

Here, we (iii) utilized the fact that that Diag(A) =
∑d

i PiAPi for some set of symmetric
matrices {Pi}i, and then isolated (iv) W2 as a vector from (3.139) as well as (v) W T

2 and
using the tensor K.

Recall (3.134). We take the derivative of vec(∇1I(W)) with respect to W2 in vec-
torization notation. While some terms are linear in W2, we use Leibniz’s rule on terms

108 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

including W T
2 W2. Leibniz’s rule yields the expressions in (3.138), (3.140) resulting in the

tensor

∂2,1I(W) = −2
(
(Y −W2W1)T ⊗ If×f

)
K +2W T

1 ⊗W T
2

+2λ
∑

i

((
(W2PiW1)T ⊗Pi

)
K +(PiW1)T ⊗PiW

T
2

)
. (3.141)

Step 2: Evaluation at a vector. Now that we have the partial derivatives of the Hessian,
we want to apply it to vectors of the form (V2,V1) ∈ TWRe×f ×Rf×h. Concretely, we will
consider the vectorization of (V2,V1) and then compute the elements of the left-hand side
of (3.37) one by one.

First,

vec(V1)T∂1,1I(W)vec(V1)
(3.137)= vec(V1)T(2Ih×h ⊗W T

2 W2 +2λIh×h ⊗Diag(W T
2 W2)

)
vec(V1)

= vec(V1)T(2Ih×h ⊗W T
2 W2vec(V1)+2λIh×h ⊗Diag(W T

2 W2)vec(V1)
)

= vec(V1)T(2vec(W T
2 W2V1)+2λvec(Diag(W T

2 W2)V1)
)

= 2Tr[V T
1 W T

2 W2V1]+2λTr[V T
1 Diag(W T

2 W2)V1], (3.142)

where we have used that vec(B)Tvec(A) = Tr[BTA]. Similarly

vec(V2)T∂2,2I(W)vec(V2) (3.137)= 2Tr[V2W1W T
1 V T

2]+2λTr[V2Diag(W1W T
1)V T

2], (3.143)

and

vec(V1)T∂1,2I(W)vec(V2) (3.141)= −2Tr[V T
1 V T

2 (Y −W2W1)]+2Tr[V T
1 W T

2 V2W1] (3.144)

+2λ
(
Tr[V T

1 Diag(V T
2 W2)W1]+Tr[V T

1 Diag(W T
2 V2)W1]

)
.

We also have that ∂2,1I(W) = ∂1,2I(W)T because I is a smooth function. Therefore

vec(V2)T∂2,1I(W)vec(V1) = vec(V1)T∂1,2I(W)vec(V2). (3.145)

Adding (3.141)–(3.145) yields:(
vec(V1),vec(V2)

)T∇2I(W)
(
vec(V1),vec(V2)

)
= 2Tr[V T

1 W T
2 W2V1]+2λTr[V T

1 Diag(W T
2 W2)V1]

+2Tr[V2W1W T
1 V T

2]+2λTr[V2Diag(W1W T
1)V T

2]

−4Tr[V T
1 V T

2 (Y −W2W1)]+4Tr[V T
1 W T

2 V2W1]

+4λ
(
Tr[V T

1 Diag(V T
2 W2)W1]+Tr[V T

1 Diag(W T
2 V2)W1]

)
. (3.146)

Finally, note that

2∥W2V1 +V2W1∥2
F = 2Tr[(W2V1 +V2W1)T(W2V1 +V2W1)]

= 2Tr[V T
1 W T

2 W2V1]+2Tr[W T
1 V T

2 V2W1]

+2Tr[V T
1 W T

2 V2W1]+2Tr[W T
1 V T

2 W2V1]

= 2Tr[V T
1 W T

2 W2V1]+2Tr[V2W1W T
1 V T

2]+4Tr[V T
1 W T

2 V2W1], (3.147)

3.D.6 Proof of Proposition 13 109

where in the last equality we have used the cyclic property of the trace. Now, for any
A,B ∈ Rn, ∥A+B∥2

F −∥A−B∥2
F = 4⟨A,B⟩, so that

2
(
∥Diag(V T

2 W2)+Diag(W1V T
1)∥2

F −∥Diag(V T
2 W2)−Diag(W1V T

1)∥2
F
)

= 8
〈
Diag(W1V T

1),Diag(V T
2 W2)

〉
= 8Tr[Diag(W1V T

1)Diag(V T
2 W2)]

(vi)= 8Tr[W1V T
1 Diag(V T

2 W2)] (vii)= 8Tr[V T
1 Diag(V T

2 W2)W1]. (3.148)

Here, we have used (vi) that Tr[ADiag(B)] = Tr[Diag(A)Diag(B)] for any A,B square
matrices of the same dimension, and (vii) the cyclic property of the trace. Substituting
(3.147) and (3.148) into (3.146) completes the proof. 2

3.D.6 Proof of Proposition 13
Obtaining TW M

We compute first TW Mb in Lemma 24, which we will use to compute TW M later:

Lemma 24. If Assumption 9 holds, then for any W ∈ Mb\Sing(Mb)

TW Mb =
{(

U
(

ΣX ΣE
0(e−ρ)×ρ 0(e−ρ)×(f−ρ)

)
S,ST

(
XTΣ 0ρ×(h−ρ)

ETΣ 0(f−ρ)×(h−ρ)

)
V
)

: X ∈ Skew(Rρ×ρ),E ∈ Rρ×(f−ρ),(X,E) ∈ kerDW T
}

. (3.149)

Proof. Let W = (UΣ2S,STΣ1V) ∈ Mb\Sing(Mb); such SVD exists by Lemma 17. By
Proposition 10, TW Mb = kerDW T where DW T : TW M̄b → TT (W)Rf . Next, write

kerDW T = {(V2,V1) ∈ TW M̄b : DW T (V2,V1) = 0}
(3.36,3.107)=

{(
UΣ2

(
X E

−ET 0

)
S,ST

(
XT −E

ET 0

)
Σ1V

)
:

X ∈ Skew(Rρ×ρ),E ∈ Rρ×(f−ρ),2Diag
(
S
(

Σ2X Σ2E
0 0

)
S
)

= 0
}

. (3.150)

Hence, from the bilinear form DW T defined in (3.36) in Proposition 10(b), we take the
pairs (X,E) ∈ Skew(Rρ×ρ)×Rρ×(f−ρ) that also belong to kerDW T . The last step required
to arrive at (3.149) is to substitute the definitions of Σ2 and Σ1, recall (3.31), into (3.150).

2

Observe from (3.18) and (3.29) that, under the action of H = (R∗)f , we always have
π(H)(Mb) ⊆ M . Proposition 8 implies that M ⊆ π(H)(Mb), and hence π(H)(Mb) = M .
Proposition 8 also yields that the group action is free and so the map π : H ×Mb → M is
bijective. We have moreover that on the open set π(H × Mb), π has a continuous inverse
given by

π−1(W) = (CW ,π(CW)(W)). (3.151)

Here, CW = Diag(W1W T
1)1/4Diag(W2W T

2)−1/4, which is discussed in the proof of Propo-
sition 8. If π is smooth, this allows us to obtain the tangent space of TW M at every point
W = π(C)(W ′) ∈ M such that W ′ ∈ Mb\Sing(Mb).

110 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

For every point W ∈ Mb\Sing(Mb), the action π restricted to a smooth neighborhood
RId ×UW ⊂ H ×Mb is a map D(Id,W)π : H×TW P → TW P with H = TIdH = Lie((R∗)f)
the Lie algebra of H. Furthermore, for every point W ∈ Mb, the differential D(Id,W)π(D,V)
at D ∈ H,V ∈ TW Mb is given by

D(Id,W)π(0,V) (3.29)= V,

D(Id,W)π(D,0) (3.29)= (W2D,−DW1) (3.30)=
(
U
(

Σ 0
0 0
)
SD,−DST(Σ 0

0 0
)
Σ1V

)
(3.152)

say. For every point W ∈ Mb, we will define the vector space

DW π(H) = {D(Id,W)π(D,0) : D ∈ H}. (3.153)

Recall now finally that for V = (V2,V1) and R = (R2,R1) ∈ TW P we have the Euclidean
inner product ⟨·, ·⟩ : TW P ×TW P → R defined as ⟨V,R⟩ = ⟨V2,R2⟩F + ⟨V1,R1⟩F.

We are now in a position to prove the following:

Lemma 25. Suppose Assumption 9 holds. Let π be the Lie group action of H on M

defined in (3.29) and H = Lie((R∗)f). If W = (UΣ2S,STΣ1V) ∈ Mb\Sing(Mb), then

TW M (3.154)
= TW Mb ⊕DW π(H)

=
{(

U
(

ΣX ΣB
0(e−ρ)×ρ 0(e−ρ)×(f−ρ)

)
S,ST

(
XTΣ 0ρ×(h−ρ)

BTΣ 0(f−ρ)×(h−ρ)

)
Σ1V

)
: X ∈ Skew(Rρ×ρ),B ∈ Rρ×(f−ρ),(X,B) ∈ kerDW T

}
⊕
{(

U
(Σ 0ρ×(f−ρ)

0(e−ρ)×ρ 0(e−ρ)×(f−ρ)

)
SD,−DST

(Σ 0ρ×(h−ρ)
0(f−ρ)×ρ 0(f−ρ)×(h−ρ)

)
V
)

: D ∈ Diag(Rf×f)
}

.

Proof. Let W = (UΣ2S,STΣ1V) ∈ Mb\Sing(Mb). Start by noting that Proposition 10
implies that TW Mb = kerDW T . Here, we understand that kerDW T ⊆ TW M̄b. In order
to expand this result to TW M , we will use the smooth action of H = (R∗)f on Mb.

Let RId ×UW ⊂ H ×Mb be a neighborhood such that we can compute the differential of
π in (3.152). Note by combining (3.149), (3.152) and (3.153) that for any K = (K2,K1) ∈
TW Mb and Q = (Q2,Q1) ∈ DW π(H) we have that ⟨K,Q⟩ = 0. In other words, TW Mb is
orthogonal to DW π(H). Hence, the sum of the subspaces TW Mb and Dπ(H) is orthogonal.
We also know that RId ×UW is a smooth submanifold of H ×Mb and π is smooth, bijective
and with continuous inverse. Therefore, by dimension counting, we must have that π is a
local diffeomorphism and so TW M = TW Mb ⊕DW π(H).

To arrive at the expression in (3.154), we simply use the expressions for TW Mb from
Lemma 24 together with (3.152). 2

Obtaining T⊥
W M

We now compute the cotangent space T⊥
W M by embedding T⊥

W M ⊂ TW P and obtaining
the orthogonal complement of TW M .

3.D.6 Proof of Proposition 13 111

Lemma 26. Suppose Assumption 9 holds. For W = (UΣ2S,STΣ1V) ∈ M ∩Mb\Sing(M),

T⊥
W M =

{
(K2,K1) =

(
U
(

A2 B2
C2 D2

)
S,ST

(
A1 B1
C1 D1

)
V
)

∈ TW P :

X ∈ Skew(Rρ×ρ),B ∈ Rρ×(f−ρ), (3.155)

⟨Σ(A2 +AT
1),X⟩+ ⟨Σ(B2 +CT

1),B⟩ = 0,

Diag(KT
2 W2) = Diag(K1W T

1),2Diag
(
S
(

Σ2X Σ2B
0(f−ρ)×ρ 0(f−ρ)×(f−ρ)

)
S
)

= 0
}

.

Proof. Let W = (UΣ2S,STΣ1V) ∈ M ∩Mb\Sing(M). Taking the orthogonal complement
in (3.154), we obtain that

T⊥
W M = T⊥

W Mb ∩ (Dπ(H))⊥. (3.156)

We will now determine both subspaces in the right-hand side of (3.156). Taking the
intersection of these two sets will then immediately result in (3.155).
Determining T⊥

W Mb. Recall first the definition of a cotangent space, that is

T⊥
W Mb =

{
K ∈ TW P = TW2R

e×f ×TW1R
f×h : ∀R ∈ TW Mb,⟨K,R⟩ = 0

}
. (3.157)

Furthermore, note that for any K = (K2,K1) ∈ TW P, there exist matrices A1,A2 ∈ Rρ×ρ

and matrices B2,B1,C2,C1,D2,D1 of appropriate dimensions such that

K =
(

U
(

A2 B2
C2 D2

)
S,ST

(
A1 B1
C1 D1

)
V
)

. (3.158)

This is because U , S, and V are orthogonal matrices and thus

(a,b) ∈ TW P ⇒ (UaS,STbV) ∈ TW P. (3.159)

We now investigate the inner product condition in (3.157). Lemma 24 implies that if
R ∈ TW Mb, then there exist (X,E) ∈ Skew(Rρ×ρ)×Rρ×(f−ρ) such that

R = (R2,R1) =
(

U
(

ΣX ΣE
0 0

)
S,ST

(
XTΣ 0
ETΣ 0

)
V
)

and 2Diag
(
S
(

Σ2X Σ2E
0 0

)
S
)

= 0.

(3.160)
For any K ∈ TW P, the inner product condition in (3.157) reduces to

0 = ⟨K,R⟩ = ⟨K2,R2⟩+ ⟨K1,R1⟩
(i)= ⟨A2,ΣX⟩+ ⟨B2,ΣE⟩+ ⟨A1,XTΣ⟩+ ⟨C1,ETΣ⟩
(ii)= ⟨ΣA2,X⟩+ ⟨A1Σ,XT⟩+ ⟨ΣB2,E⟩+ ⟨C1Σ,ET⟩
(iii)= ⟨Σ(A2 +AT

1),X⟩+ ⟨Σ(B2 +CT
1),E⟩. (3.161)

Here, we used (i) the representations in (3.158) and (3.160), (ii) that ⟨M,ΣN⟩ = ⟨ΣM,N⟩
for any matrices M,N of appropriate size because Σ is diagonal, and (iii) that ⟨M,N⟩ =
⟨MT,NT⟩ for any matrices M,N of the same size.

112 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

Summarizing, we have that

T ⊥
W Mb =

{
(K2,K1) =

(
U
(

A2 B2
C2 D2

)
S,ST

(
A1 B1
C1 D1

)
V
)

∈ TW P :

⟨Σ(A2 +AT
1),X⟩+ ⟨Σ(B2 +CT

1),E⟩ = 0,

X ∈ Skew(Rρ×ρ),E ∈ Rρ×(f−ρ),2Diag
(
S
(

Σ2X Σ2E
0 0

)
S
)

= 0
}

. (3.162)

Determining (Dπ(H))⊥. Recall the definition of an orthogonal complement, that is

(DW π(H))⊥ =
{

K ∈ TW P : ⟨K,DW π(D)(W)⟩ = 0∀D ∈ Diag(Rf)
}

. (3.163)

We now investigate the inner product condition in (3.163). For any K ∈ TW P,D ∈
H = Diag(Rf), recalling (3.152), this condition reduces to

0 = ⟨K,DW π(D)(W)⟩ = ⟨K2,W2D⟩+ ⟨K1,−DW1⟩
(i)= ⟨W T

2 K2,D⟩−⟨K1W T
1 ,D⟩ = ⟨W T

2 K2 −K1W T
1 ,D⟩. (3.164)

Here, we used (i) that ⟨M,NO⟩ = ⟨NTM,O⟩ = ⟨MOT,N⟩ for any matrices M,N,O with
compatible dimensions. Now, because (3.164) holds for any D ∈ Diag(Rf), we must have
that

Diag(W T
2 K2 −K1W T

1) = 0. (3.165)
Summarizing, we have that

(Dπ(H))⊥ = {(K2,K1) ∈ TW P : Diag(K1W T
1) = Diag(W T

2 K2)}. (3.166)

Concluding. As mentioned before, taking the intersection of (3.162) and (3.166) results in
(3.155). This completes the proof. 2

Lower bound of ∇2I(W) restricted to T⊥
W M

We require the following lemma. This will be used in an optimization problem we encounter
when looking for a lower bound for ∇2I(W)|T ⊥

W
M .

Lemma 27. Suppose Assumption 9 holds. Let

K =
{(

U
(

A2 B2
0(e−ρ)×ρ 0(e−ρ)×(f−ρ)

)
S,ST

(
A1 0ρ×(h−ρ)
C1 0(f−ρ)×(h−ρ)

)
V
)

∈ T⊥
W M

: A1,A2 ∈ Rρ×ρ,B2,CT
1 ∈ Rρ×(f−ρ)

}
. (3.167)

For any W = (UΣ2S,STΣ1V) ∈ Mb\Sing(Mb), the following holds: if

K =
(
U
(

A2 B2
0(e−ρ)×ρ 0(e−ρ)×(f−ρ)

)
S,ST

(
A1 0ρ×(h−ρ)
C1 0(f−ρ)×(h−ρ)

)
V
)

∈ K (3.168)

say and
∥A2Σ+ΣA1∥F = 0, A1 = AT

2 and B2 = CT
1 , (3.169)

then
A2 = AT

1 = ΣX ′ and B2 = CT
1 = ΣE′ (3.170)

for some X ′ ∈ Skew(Rρ×ρ) and E′ ∈ Rρ×(f−ρ). If additionally

Diag
(

ST
(

Σ(A2+AT
1) Σ(B2+CT

1)
0(f−ρ)×ρ 0(f−ρ)×(f−ρ)

)
S
)

= 0, (3.171)

then K = 0.

3.D.6 Proof of Proposition 13 113

Proof. We first prove (3.170). It follows from (3.169) that if ∥A2Σ+ΣA1∥F = 0, then
A2Σ + ΣA1 = A2Σ + ΣAT

2 = 0 by property of the Frobenius norm. If now A2 = ΣX ′ say,
then ΣX ′Σ + Σ(X ′)TΣ = 0. Since Σ is invertible, left and right multiplication with its
inverse shows that X ′ ∈ Skew(Rρ×ρ). The identity B2 = ΣB′ = CT

1 follows similarly.
We next prove that if (3.171) holds besides (3.169), then in fact K = 0. We will do so

by showing that K ∈ TW M , because then

K ∈ K ∩TW M
(3.167)

⊆ T⊥
W M ∩TW M = {0}. (3.172)

Verification that K ∈ TW M . Recall that

kerDW T =
{

(V2,V1) ∈ TW M̄b : DW T (V2,V1) = 0
}

(3.173)
(3.36)=

{(
UΣ2

(
X E

−ET 0

)
S,ST

(
XT −E

ET 0

)
Σ1V

)
∈ TW M̄b : 2Diag

(
ST(Σ2X Σ2E

0 0
)
S
)

= 0
}

.

Thus since

2Diag
(
ST(Σ2X′ Σ2E′

0 0
)
S
) (3.170)= Diag

(
ST
(

Σ(A2+AT
1) Σ(B2+CT

1)
0 0

)
S
)

= 0 (3.174)

by assumption (3.171), clearly also(
UΣ2

(
X′ E′

−(E′)T 0

)
S,ST

(
XT −E′

(E′)T 0

)
Σ1V

) (3.173)
∈ kerDW T. (3.175)

Note now lastly that

K
(3.170)=

(
U
(

ΣX′ ΣE′
0 0

)
S,ST

(
(ΣX′)T 0
(ΣE′)T 0

)
V
)
. (3.176)

Utilizing (3.175) and (3.176) together with (3.149) of Lemma 24, we conclude that K ∈
TW Mb ⊆ TW M . This finishes the proof. 2

We now define a bilinear form that will appear in the computation of the lower bound
of the Hessian ∇2I(W).

Definition 12. Let W = (UΣ2S,STΣ1V) ∈ M̄b where S ∈ O(f) and let Σ ∈ Diag(Rρ×ρ)
be defined as in (3.32). Define the map T̄W : Rρ×ρ ×Rρ×(f−ρ) → Rf by

T̄W (A,B) = Diag
(
ST(ΣA ΣB

0 0
)
S
)
, (3.177)

and the bilinear form T : (Rρ×ρ ×Rρ×(f−ρ))× (Rρ×ρ ×Rρ×(f−ρ)) → R by

TW

(
(A,B),(A′,B′)

)
=
〈
T̄W (A,B), T̄W (A′,B′)

〉
= Tr

[
Diag

(
ST(ΣA ΣB

0 0
)
S
)
Diag

(
ST(ΣA′ ΣB′

0 0
)
S
)]

. (3.178)

Observe that, when using notation as in (3.36), we have DW T (V2,V1) = T̄W (ΣX,ΣB).
We also introduce some extra notation. For a positive definite symmetric bilinear form

A : E × E → R on a real vector space E with norm ∥ · ∥, we denote A > l for l ∈ R+ to
indicate that vTAv > l∥v∥2 for all v ∈ E. We are now in position to prove a lower bound
for the Hessian using T⊥

W M .

114 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

Lemma 28. Suppose Assumption 9 holds. Let W ∈ Mb ∩M\Sing(M) ⊆ M . We have that
∇2I(W) restricted to T⊥

W M is a positive definite bilinear form. Furthermore,

∇2I(W)|T⊥
W

M ≥ ω (3.179)

where

ω =

{
min{ζW ,2 λκρρ

f+λρ −2σρ+1} if ρ < f,

min{ζW ,2(σρ −σρ+1)} if ρ = f.
(3.180)

Here, ζW > 0 is strictly positive and depends on the point W , λ and Σ. If ρ = r (recall
from (3.32) that we have ρ ≤ r), then we set σρ+1 = σr+1 = 0.

Proof. To arrive at the result, we will give a lower bound for the solution

Hopt
W =


minimum of

(
vec(V1),vec(V2)

)T∇2I(W)
(
vec(V1),vec(V2)

)
obtained over (V2,V1) ∈ TW P
subject to ∥(V2,V1)∥F = 1,(V2,V1) ∈ T⊥

W M

(3.181)

say, that holds for any W ∈ Mb ∩M\Sing(M). We consider first the case that ρ < f .
Step 1: Simplifying the objective function. Let (V2,V1) ∈ TW P, W ∈ Mb ∩ M\Sing(M).
Since W ∈ Mb, we have by (3.33) that

Tr
[
V T

1 Diag(W T
2 W2)V1

]
= ∥Σ2∥1

f
∥V1∥2

F and similarly

Tr
[
V2Diag(W1W T

1)V T
2
]

= ∥Σ2∥1
f

∥V2∥2
F. (3.182)

Substituting (3.182) into (3.37), we find that(
vec(V1),vec(V2)

)T∇2I(W)
(
vec(V1),vec(V2)

)
= 2∥W2V1 +V2W1∥2

F +2λ
∥Σ2∥1

f

(
∥V1∥2

F +∥V2∥2
F
)

−4Tr
[
V T

1 V T
2 (Y −Sα[Y])

]
+2λ

(
∥Diag(V T

2 W2)+Diag(W T
1 V1)∥2

F −∥Diag(V T
2 W2)−Diag(W T

1 V1)∥2
F
)
. (3.183)

Substituting (3.183) into (3.181) and using the facts that:
– if ∥(V2,V1)∥F = 1, then ∥(V2,V1)∥2

F = ∥V1∥2
F +∥V2∥2

F = 1;
– if (V2,V1) ∈ T⊥

W M , then Diag(V T
2 W2)−Diag(W1V T

1) = 0 by Lemma 26;

– and ∥Σ2∥1 =
∑ρ

i=1(σi −λρκρ/(f +λρ)) = ρκρ −ρ
λρκρ

f+λρ = ρκρf/(f +λρ), which can
be seen from Σ2’s singular values shown in (3.32) and then recalling (3.15);

we find that

Hopt
W =


minimum of 2∥W2V1 +V2W1∥2

F +2λ
ρκρ

f+λρ

−4Tr[V T
1 V T

2 (Y −Sα[Y])]+8λ∥Diag(V T
2 W2)∥2

F
obtained over V2,V1 ∈ TW P
subject to ∥V2∥2

F +∥V1∥2
F = 1,(V2,V1) ∈ T ⊥

W M.

(3.184)

3.D.6 Proof of Proposition 13 115

Step 2: Change of variables. We now apply a change of variables to the minimization
problem in (3.184). Specifically, we utilize the orthogonal matrices U,S,V of the SVD
W = (UΣ2S,STΣ1V) by letting

UṼ2S = V2 and STṼ1V = V1 (3.185)

say. We examine next the consequences of this change of variables to the three relevant
terms in (3.184).

Under the change of variables in (3.185), the first term in (3.184) satisfies

2∥W2V1 +V2W1∥2
F

(SVD)= 2∥UΣ2SV1 +V2STΣ1V ∥2
F (3.186)

(3.185)= 2∥UΣ2SSTṼ1V +UṼ2SSTΣ1V ∥2
F

(i,ii)= 2∥Σ2Ṽ1 + Ṽ2Σ1∥2
F,

since (i) SST = Id and (ii) the Frobenius norm is unitarily invariant, i.e., ∥U(·)V ∥F = ∥·∥F.
Recall the definition of ΣY in Section 3.2.4. Introducing

Λ =
(ΣY 0r×(h−r)

0(e−r)×r 0(e−r)×(h−r)

)
, (3.187)

note that

UT(Y −Sα[Y]
)
V T (iii)= UT(U(ΣY 0

0 0
)
V −Sα[Y]

)
V T

(iv)= UT(UΛV −UΣ2Σ1V)V T (v)= Λ−Σ2Σ1 (3.188)

by (iii) lifting Y ’s compact SVD defined in Section 3.2.4 to a full SVD, and since (iv) W ∈
M and therefore Sα[Y] = W2W1 = UΣ2SST Σ1V = UΣ2Σ1V by (3.17), and (v) UTU =
Ide×e and V V T = Idh×h. Conclude then that under the change of variables in (3.185) the
third term in (3.184) satisfies

−4Tr[V T
1 V T

2 (Y −Sα[Y])] (3.185)= −4Tr[(STṼ1V)T(UṼ2S)T(Y −Sα[Y])]
(vi)= −4Tr[Ṽ T

1 Ṽ T
2 UT(Y −Sα[Y])V] (3.188)= −4Tr[Ṽ T

1 Ṽ T
2 (Λ−Σ2Σ1)], (3.189)

because (vi) of SST = Id and the cyclic property of the trace.
Under the change of variables in (3.185), the fourth term in (3.184) satisfies

8λ∥Diag(V T
2 W2)∥2

F
(3.185)= 8λ∥Diag((UṼ2S)TW2)∥2

F
(W’s SVD)= 8λ∥Diag((UṼ2S)TUΣ2S)∥2

F
(vi)= 8λ∥Diag(STṼ T

2 Σ2S)∥2
F, (3.190)

since (vi) UTU = Ide×e.
Applying the change of coordinates in (3.185) to (3.184)—by substituting (3.186),

(3.189), and (3.190) into (3.184)—thus yields

Hopt
W =


minimum of 2∥Σ2Ṽ1 + Ṽ2Σ1∥2

F +2 ρκρλ
f+λρ

−4Tr[Ṽ T
1 Ṽ T

2 (Λ−Σ2Σ1)]+8λ∥Diag(STṼ T
2 Σ2S)∥2

F
obtained over Ṽ2, Ṽ1

subject to ∥Ṽ2∥2
F +∥Ṽ1∥2

F = 1,(UṼ2S,STṼ1V) ∈ T ⊥
W M.

(3.191)

116 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

Step 3: Block matrix parametrization. We will now write Ṽ2 and Ṽ1 as block matrices in
a manner similar to the parametrization in Lemma 26. In particular, we let

Ṽ2 =
(

A2 B2
C2 D2

)
where A2 ∈ Rρ×ρ,B2 ∈ Rρ×(f−ρ),C2 ∈ R(e−ρ)×ρ,D2 ∈ R(e−ρ)×(f−ρ),

(3.192)
and

Ṽ1 =
(

A1 B1
C1 D1

)
where A1 ∈ Rρ×ρ,B1 ∈ Rρ×(h−ρ),C1 ∈ R(f−ρ)×ρ,D1 ∈ R(f−ρ)×(h−ρ).

(3.193)
We expand the first term of (3.191). Utilizing Σ2,Σ1’s definitions in (3.32), we find

that
∥Σ2Ṽ1 + Ṽ2Σ1∥2

F = ∥
(

Σ 0
0 0
)(

A1 B1
C1 D1

)
+
(

A2 B2
C2 D2

)(
Σ 0
0 0
)
∥2

F = ∥
(

ΣA1+A2Σ ΣB1
C2Σ 0

)
∥2

F

= ∥ΣA1 +A2Σ∥2
F +∥ΣB1∥2

F +∥C2Σ∥2
F. (3.194)

We now tackle the third term of (3.191). Recall the definitions of Σ2, Σ1, Λ in (3.32),
(3.187) respectively, and let Σmin ∈ R(e−ρ)×(h−ρ) be defined such that

Λ−Σ2Σ1 =
(

λκρρIdρ×ρ/(f+λρ) 0
0 Σmin

)
. (3.195)

Note that Σmin consists of values σρ+1, . . . ,σr in its upper left diagonal. Substituting
(3.195) into the third term of (3.191), we find that

Tr[Ṽ T
1 Ṽ T

2 (Λ−Σ2Σ1)] = Tr
[(

A1 B1
C1 D1

)T(
A2 B2
C2 D2

)T(
λκρρIdρ×ρ/(f+λρ) 0

0 Σmin

)]
= Tr

[(
A2A1+B2C1 A2B1+B2D1
C2A1+D2C1 C2B1+D2D1

)T(
λκρρIdρ×ρ/(f+λρ) 0

0 Σmin

)]
(i)=

λκρρ

f +λρ
Tr[A2A1 +B2C1]+Tr[ΣT

min(C2B1 +D2D1)], (3.196)

where (i) we used that Tr[ATB] = Tr[BTA] for any pair of matrices A,B of compatible
dimensions.

We finally simplify the fourth term of (3.191). Recall again W ’s SVD (UΣ2S,STΣ1V);
and that if (V2,V1) ∈ T⊥

W M , then Diag(V T
2 W2) = Diag(W1V T

1) by Lemma 26. If we use
the parametrization from (3.192) and (3.193), this latter relation on diagonals is equivalent
to equating

Diag(W T
2 V2) (W’s SVD, 3.185)= Diag(STΣT

2 UTUṼ2S) (3.32,3.192)= Diag
(
ST(ΣT 0

0 0
)(

A2 B2
C2 D2

)
S
)

= Diag
(
ST
(

ΣTA2 ΣTB2
0 0

)
S
)

(3.197)

to the expression

Diag(W1V T
1) = Diag

(
ST
(

ΣAT
1 ΣCT

1
0 0

)
S
)
, (3.198)

the latter of which can be shown in a similar fashion to (3.197). Recall (i) that for any
pair of matrices A,B, Diag(ATB) = Diag(BTA). Therefore,

2Diag(V T
2 W2) (i)= Diag(W1V T

1)+Diag(W T
2 V2)

(3.197,3.198)= Diag
(
ST
(

ΣTA2+ΣAT
1 ΣTB2+ΣCT

1
0 0

)
S
)

(ii)= Diag
(
ST
(

Σ(A2+AT
1) Σ(B2+CT

1)
0 0

)
S
)
, (3.199)

3.D.6 Proof of Proposition 13 117

where (ii) we have used that Σ is a diagonal matrix.
Applying the matrix parametrization in (3.192), (3.193) to (3.191)—by substituting

(3.194), (3.196) and (3.199) into (3.191)—yields

Hopt
W =



minimum of 2
(
∥ΣA1 +A2Σ∥2

F +∥ΣB1∥2
F +∥C2Σ∥2

F
)

+2 λρκρ

f+λρ

−4 λκρρ
f+λρ Tr[A2A1 +B2C1]

−4Tr[ΣT
min(C2B1 +D2D1)]

+2λTr
[
Diag

(
ST
(

Σ(A2+AT
1) Σ(B2+CT

1)
0 0

)
S
)2
]

obtained over A1,B1,C1,D1;A2,B2,C2,D2

subject to ∥A1∥2
F +∥B1∥2

F + · · ·+∥D2∥2
F = 1,(

U
(

A2 B2
C2 D2

)
S,ST

(
A1 B1
C1 D1

)
V
)

∈ T ⊥
W M.

(3.200)

Step 5: The first bounds. We now start with bounding the objective function in (3.200).
Here, we utilize an auxiliary lemma—Lemma 30—twice. Lemma 30 and its proof can be
found in Appendix 3.E .

First, we lower bound the second part of the first term in (3.200). Denote the singular
values of Σ by χ1, . . . ,χρ; these satisfy χi > χi+1 and χ2

i = σi − (λκρρ)/(f + λρ) for i =
1, . . . ,ρ − 1. From the fact that Σ is an invertible, positive and diagonal matrix with
minimal eigenvalue χρ, we conclude using (i) Lemma 30(c) that

∥ΣB1∥2
F +∥C2Σ∥2

F
(i)
≥ χ2

ρ

(
∥B1∥2

F +∥C2∥2
F
)

=
(

σρ −
λκρρ

f +λρ

)(
∥B1∥2

F +∥C2∥2
F
)
. (3.201)

Next, we upper bound the next-to-last term in (3.200). Recall that the largest singular
value of Σmin is σρ+1; all of its singular values are in the set {σρ+1,σρ+2, . . . ,σr,0}. Using
(ii) the cyclic property of the trace, and (iii) Lemma 30(b), we therefore have

Tr[ΣT
min(C2B1 +D2D1)] = Tr[ΣT

minC2B1]+Tr[ΣT
minD2D1]

(ii)= Tr[C2B1ΣT
min]+Tr[D2D1ΣT

min]
(iii)
≤

σρ+1
2
(
Tr[C2CT

2]+Tr[B1BT
1]+Tr[D2DT

2]+Tr[D1DT
1]
)

=
σρ+1

2
(
∥B1∥2

F +∥C2∥2
F +∥D1∥2

F +∥D2∥2
F
)
. (3.202)

Using (3.201) and (3.202) to bound their respective terms in (3.200), together with
the constraint ∥A1∥2

F +∥B1∥2
F + · · ·+∥D2∥2

F = 1, we obtain the following lower bound for
(3.200):

Hopt
W ≥



minimum of 2∥ΣA1 +A2Σ∥2
F +2

(
σρ − λκρρ

f+λρ

)(
∥B1∥2

F +∥C2∥2
F
)

+2 λρκρ

f+λρ

(
∥A1∥2

F +∥B1∥2
F + · · ·+∥D2∥2

F
)

−4 λκρρ
f+λρ Tr[A2A1 +B2C1]

−2σρ+1
(
∥B1∥2

F +∥C2∥2
F +∥D1∥2

F +∥D2∥2
F
)

+2λTr
[
Diag

(
ST
(

Σ(A2+AT
1) Σ(B2+CT

1)
0 0

)
S
)2]

obtained over A1,B1,C1,D1;A2,B2,C2,D2

subject to ∥A1∥2
F +∥B1∥2

F + · · ·+∥D2∥2
F = 1,(

U
(

A2 B2
C2 D2

)
S,ST

(
A1 B1
C1 D1

)
V
)

∈ T ⊥
W M.

(3.203)

118 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

Step 6: Splitting the minimization over two subspaces, with two quadratic forms. We
examine now (3.203) closely. We split the objective function into the sum of

B1(B1,C2,D1,D2) = 2(σρ −σρ+1)
(
∥B1∥2

F +∥C2∥2
F
)

+2
(λρκρ

f +λρ
−σρ+1

)(
∥D1∥2

F +∥D2∥2
F
)

(3.204)

and

B2(A1,A2,B2,C1) = 2∥ΣA1 +A2Σ∥2
F +2

λρκρ

f +λρ

(
∥A1∥2

F +∥A2∥2
F −2Tr[A2A1]

+∥B2∥2
F +∥C1∥2

F −2Tr[B2C1]
)

+2λTr
[
Diag

(
ST
(

Σ(A2+AT
1) Σ(B2+CT

1)
0 0

)
S
)2]

. (3.205)

Also observe in (3.204) that the coefficients in front of ∥B1∥2
F +∥C2∥2

F and ∥D1∥2
F +∥D2∥2

F
are both strictly positive; visit Section 3.2.4 and recall (3.15) specifically.

In the dimensions provided in (3.192) and (3.193), let

V1 = span
{(

U
(0 0

C2 0
)
S,ST(0 0

0 0)V
)
,
(
U
(0 0

0 D2

)
S,ST(0 0

0 0)V
)
, (3.206)(

U(0 0
0 0)S,ST(0 B1

0 0
)
V
)
,
(
U(0 0

0 0)S,ST(0 0
0 D1

)
V
)

: B1 ∈ Rρ×(h−ρ),C2 ∈ R(e−ρ)×ρ,D1 ∈ R(f−ρ)×(h−ρ),D2 ∈ R(e−ρ)×(f−ρ)
}

.

Note now that V1 ⊆ T⊥
W M . Indeed, when we examine the definition of T⊥

W M in Lemma 26,
we can see that nearly every condition pertains to A1,A2,B2,C1 only and not to B1,C2,D1,

D2—the only exception is possibly the condition Diag(V T
2 W2) = Diag(W1V T

1). But in fact
in (3.197) and (3.198), we can see that the matrices B1,C2,D1,D2 do not appear in this
constraint. Hence, any v ∈ V1 will satisfy the conditions in the definition of T⊥

W M in
Lemma 26. This observation yields therefore that V1 ⊆ T⊥

W M .
Consider now the orthogonal complement of V1 in T⊥

W M given by

V2 =
{(

U
(

A2 B2
C2 D2

)
S,ST

(
A1 B1
C1 D1

)
V
)

∈ T⊥
W M : B1,C2,D1,D2 = 0

}
∩T⊥

W M. (3.207)

From the definitions of V1 and V2 we have:
– V1 ⊆ T⊥

W M ,
– V1 ⊕V2 = T⊥

W M , and
– V1 ⊥ V2.
Using (3.204)–(3.207) we can then lower bound

Hopt
W ≥


minimum of ξ

(
∥B1∥2

F +∥C2∥2
F +∥D1∥2

F +∥D2∥2
F
)

+B2(A1,A2,B2,C1)
obtained over (0,0,B1,0,C2,0,D1,D2) ∈ V1,

(A1,A2,0,B2,0,C1,0,0) ∈ V2,

subject to ∥A1∥2
F +∥B1∥2

F + · · ·+∥D2∥2
F = 1.

Here,

ξ = 2min
{ λρκρ

f +λρ
−σρ+1,σρ −σρ+1

}
> 0. (3.208)

3.D.6 Proof of Proposition 13 119

Now critically, note that B1 and B2 are quadratic forms, i.e., for any η ∈ R, B1(η·) =
η2B1(·) and B2(η·) = η2B2(·). We can therefore apply Lemma 31, to find that

Hopt
W ≥ min

{
ξ, min

∥v2∥2
F=1

v2∈V2

B2(v))
}

. (3.209)

Step 7: Lower bounding the minimum of B2. We will now prove that

ζW = min
∥v2∥2

F=1
v2∈V2

B2(v) = min
∥v2∥2

F=1
v2∈V2

2∥ΣA1 +A2Σ∥2
F +2

λρκρ

f +λρ

(
∥A1∥2

F +∥A2∥2
F −2Tr[A2A1]

+∥B2∥2
F +∥C1∥2

F −2Tr[B2C1]
)

+2λTr
[
Diag

(
ST
(

Σ(A2+AT
1) Σ(B2+CT

1)
0 0

)
S
)2] (3.210)

has a strictly positive lower bound. Note that (3.210) can only equal zero if and only if
at every solution (A∗

1,A∗
2,B∗

2 ,C∗
1), the following conditions hold

C1. 2∥ΣA∗
1 +A∗

2Σ∥2
F = 0, and

C2. 2 λρκρ

f+λρ

(
∥A∗

1∥2
F +∥A∗

2∥2
F −2Tr[A∗

2A∗
1]+∥B∗

2∥2
F +∥C∗

1 ∥2
F −2Tr[B∗

2C∗
1]
)

= 0, and

C3. 2λTr
[
Diag

(
ST
(

Σ(A∗
2+(A∗

1)T) Σ(B∗
2 +(C∗

1)T)
0 0

)
S
)2]= 0.

This is because both

∥A1∥2
F +∥A2∥2

F −2Tr(A2A1) ≥ 0 and ∥B2∥2
F +∥C1∥2

F −2Tr(B2C1) ≥ 0 (3.211)

are nonnegative: see Lemma 30(a) in Appendix 3.E. We next prove that if conditions
C1–C3 hold, then necessarily (A∗

1,A∗
2,B∗

1 ,C∗
2) = 0. Consequently, we must have a positive

lower bound as there are no such solutions in the optimization domain of (3.210).
Condition C1 equals zero if and only if A∗

2Σ + ΣA∗
1 = 0. This is a standard property

of a norm. Condition C2 equals zero if and only if (A∗
1)T = A∗

2, B∗
2 = (C∗

1)T. This is an
additional consequence of Lemma 30(a). Equivalent to conditions C1, C2 are therefore
the statements that

A∗
2Σ+ΣA∗

1 = 0, (A∗
1)T = A∗

2 and B∗
2 = (C∗

1)T. (3.212)

Condition C3 is equivalent to

2λTr
[
Diag

(
ST
(

Σ(A∗
2+(A∗

1)T) Σ(B∗
2 +(C∗

1)T)
0 0

)
S
)2]

= 2λTW

(
A∗

2 +(A∗
1)T,B∗

2 +(C∗
1)T,A∗

2 +(A∗
1)T,B∗

2 +(C∗
1)T)= 0 (3.213)

by Definition 12. By T̄W ’s definition in (3.177) and TW ’s definition in (3.178), we must
then have that

T̄W

(
A∗

2 +(A∗
1)T,B∗

2 +(C∗
1)T)= Diag

(
ST
(

Σ(A∗
2+(A∗

1)T) Σ(B∗
2 +(C∗

1)T)
0 0

)
S
)

= 0 (3.214)

also. We have proven that if conditions C1–C3 are all met, then all prerequisites of
Lemma 27 are met; compare (3.212) to (3.169) and (3.214) to (3.171). Lemma 27 implies
that (A∗

1,A∗
2,B∗

2 ,C∗
1) = 0.

120 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

We finally form the lower bound. We have proven that there is no solution in the
optimization domain that satisfies conditions C1–C3 simultaneously. Consequently,

ζW = min
∥v2∥2

F=1
v2∈V2

B2(v) > 0. (3.215)

Substituting (3.215) into (3.209), we obtain that

Hopt
W ≥ min

{
ζW ,2

λκρρ

f +λρ
−2σρ+1,2(σρ −σρ+1)

}
. (3.216)

Because σρ ≥ λκρρ/(f +λρ), we also have that

Hopt
W ≥ min

{
ζW ,2

λκρρ

f +λρ
−2σρ+1

}
. (3.217)

This concludes the case that ρ < f .
Now consider the case ρ = f . The proof is mostly the same except for the fact that in

Lemmas 24–27, all coordinates indicated to ‘have dimension f −ρ = 0’ need to be removed
from the subsequent calculations. Furthermore, we then also use that W∗ equals the rank-
f approximation of Sα[Y] as f = ρ ≤ r—recall the discussion below (3.17). Concretely, the
matrices B2,C1,D1,D2 do not appear in the calculations and ultimately this will yield
functions B1, B2 different from (3.204), (3.205), respectively. Specifically, we find the
function

B1(B1,C2) = 2(σρ −σρ+1)
(
∥B1∥2

F +∥C2∥2
F
)

(3.218)

and similarly the function

B2(A1,A2) = 2∥ΣA1 +A2Σ∥2
F +2

λρκρ

f +λρ

(
∥A1∥2

F +∥A2∥2
F −2Tr[A2A1]

)
+2λTr

[
Diag

(
STΣ(A2 +AT

1)S
)2]

. (3.219)

Observe now that in (3.218) there is only one quadratic term involving B1 and C2, and
its coefficient results in a replacement for (3.208):

ξ = 2(σρ −σρ+1). (3.220)

These changes carry over to (3.217), and the minimum becomes

Hopt
W ≥ min

{
ζW ,2(σρ −σρ+1)

}
. (3.221)

This concludes the case that ρ = f .
Note finally that if ρ = r, then σρ+1 = 0 by (3.32). This concludes the proof. 2

We can improve the result in Lemma 28 in case ρ = 1. Note that whenever e = 1, then
necessarily ρ = 1 also by (3.17). In this case we can explicitly calculate the minima. Note
that this case occurs when p is either sufficiently small or when we have rank one data
(that is, when r = 1).

3.D.6 Proof of Proposition 13 121

Lemma 29. Suppose that Assumption 9 holds and that ρ = 1. If W ∈ Mb\Sing(Mb), then
Lemma 28 holds with

ω =

{
2λσ
f+λ if r = 1,
2λσ1
f+λ −2σ2 otherwise

(3.222)

instead.

Proof. Recall from (3.104) and (3.105) that we are able to characterize elements of TW M̄b

using pairs (X,E) where X ∈ Skew(Rρ×ρ) and E ∈Rρ×(f−ρ). For the particular case ρ = 1,
we have that o(1) = {0} and E ∈ Rf−1. Conclude therefore from (3.36) that if

Diag
(
ST
(

0 η2E
0 0

)
S
)

= 0, (3.223)

then (0,E) ∈ kerDW T . Here, η2 = Σ2 = fσ/(f + λ) ∈ R. Note now that in fact η ̸= 0
under Assumption 9: this allows us next to argue that in the present case ρ = 1 and η ̸= 0,
(3.223) holds if and only if E = 0. This critical observation for the case ρ = 1 allows us
to extend Lemma 28, since we will see that the term in (3.223) is proportional to ∥E∥2

F.
This allows us to explicitly compute ζW .
Proof that (3.223) holds if and only if E = 0. Let W = (UΣ2S,STΣ1V) ∈ Mb\Sing(Mb)—
by Lemma 21 Mb\Sing(Mb) ̸= ∅—and refer to the rows of S as S1·, . . . ,Sf ·. By Lemma 22,
these satisfy

|S1j | = 1√
f

for j = 1, . . . ,f. (3.224)

We therefore have for any s ̸= 0,

Tr
[
Diag

(
ST(0 sE

0 0
)
S
)2
] (3.224)= Tr

[
Diag

((0 sE/f
··· ···
0 sE/f

)
(S·1, . . . ,S·f)

)2]
=

f∑
i=1

s2

f

〈
(0,E),ST

·i
〉2 (i)= s2

f
∥E∥2

2 (3.225)

because (i) the columns of S form an orthonormal basis and we could therefore use Par-
seval’s identity. Consequently,

Diag
(
ST(0 sE

0 0
)
S
)

= 0 (3.226)

if and only if E = 0.
Modification of step 4: The equality of (3.197) and (3.198) implies that

Diag
(
ST(ηA2 ηB2

0 0
)
S
)

= Diag
(
ST
(

ηAT
1 ηCT

1
0 0

)
S
)
. (3.227)

By taking traces in (3.227), we find that ηA1 = ηA2. Because in the present case we have
A1,A2 ∈ R, we can restrict to the solutions of the form A1 = A2 = a say as η ̸= 0. Thus,
we can optimize over vectors of the type v = (a,a,B2,C1) in a similar way as explained in
Step 6 of the proof ofLemma 28. Next, we conduct the minimization (mimicking Step 7
of Lemma 28’s proof).
Modification of step 7: Lower bounding the minimum of B2. In the present setting,

∥A1∥2
F +∥A2∥2

F −2Tr[A2A1] = |a|2 + |a|2 −2a2 = 0. (3.228)

122 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

Furthermore, κρ = σ since ρ = 1. The optimization problem in (3.210) therefore reduces
to

min
∥v∥=1
v∈V

B2(v) = min
∥v∥=1
v∈V

8η2a2 +2 λσ

f +λ

(
∥B1∥2

F +∥C1∥2
F −2Tr(B2C1)

)
+2λTr

[
Diag

(
ST
(

2ηa η(B2+CT
1)

0 0

)
S
)2]

(3.229)

in the present setting. We next simplify (3.229) term by term.
Observe first that

∥B1∥2
F +∥C1∥2

F −2Tr[B2C1] = ∥B2 −CT
1 ∥2

F (3.230)

by property of the Frobenius norm.
Next, let us inspect the trace in (3.229). Its argument satisfies

Diag
(

S
(

2ηa η(B2+CT
1)

0 0

)
ST
)2

=
(

Diag
(

ST(2ηa 0
0 0

)
S
)

+Diag
(

ST
(

0 η(B2+CT
1)

0 0

)
S
))2

= Diag
(

ST(2ηa 0
0 0

)
S
)2

+Diag
(

ST
(

0 η(B2+CT
1)

0 0

)
S
)2

+2Diag
(

ST(2ηa 0
0 0

)
S
)

Diag
(

ST
(

0 η(B2+CT
1)

0 0

)
S
)

. (3.231)

We may thus split the analysis of the trace in (3.229) by giving attention to the three
terms in the right-hand side of (3.231). Since W ∈ Mb\Sing(Mb), the trace of the first
term in the right-hand side of (3.231) satisfies

Tr
[
Diag

(
ST(2ηa 0

0 0
)
S
)2
]

= 4η2a2

f
because Diag

(
ST(2ηa 0

0 0
)
S
)2 (3.30)= (2ηa)2

f2 If×f .

(3.232)
The trace of the second term in the right-hand side of (3.231) satisfies

Tr
[
Diag

(
ST
(

0 η(B2+CT
1)

0 0

)
S
)2](3.225)= η2

f
∥B2 +CT

1 ∥F. (3.233)

The trace of the third term in the right-hand side of (3.231) satisfies

Tr
[
2Diag

(
ST(2ηa 0

0 0
)
S
)

Diag
(

ST
(

0 η(B2+CT
1)

0 0

)
S
)]

= 0. (3.234)

Substituting (3.230)–(3.234) into (3.229) yields

min
∥v∥=1
v∈V

B2(v) = min
∥v∥=1
v∈V

8η2a2 + 2λσ

f +λ
∥B2 −CT

1 ∥2
F + 8λη2a2

f
+ 2λη2

f

∥∥B2 +CT
1
∥∥2

2 . (3.235)

Recall now that η2 = f/(f +λ)σ and observe that

8η2 + 8λη2

f
= 8fσ

λ+f
+ 8λσ

f +λ
= 8σ. (3.236)

Substituting (3.236) into (3.235), we find therefore that

min
∥v∥=1
v∈V

B2(v) = min
∥v∥=1
v∈V

8σa2 + 2λσ

f +λ
∥B2 −CT

1 ∥2
F + 2λσ

f +λ
∥B2 +CT

1 ∥2
2. (3.237)

3.D.7 Proof of Proposition 14 – Looking at a neighborhood of W ∈ M ∩U 123

Finally, note that solutions of the optimization problem in (3.237) are subject to the
constraint 2a2 + ∥B2∥2

2 + ∥C1∥2
2 = 1. By identifying s1 = 8σ, s2 = s3 = 2λσ/(f + λ) and

applying Lemma 32, see Appendix 3.E, we find that

ζW = min
∥v∥=1
v∈V

B2(v) = min
{

4σ,
4λσ

f +λ

}
. (3.238)

Replacing ζW in (3.217) by (3.238), we find that

Hopt
W ≥ min

{ 2σ1λ

f +λ
−2σ2,4σ1,

4σ1λ

f +λ

}
= 2σ1λ

f +λ
−2σ2. (3.239)

If r = 1, then σ2 = 0. This completes the proof. 2

Proof of Proposition 13: Finally, Proposition 13 follows directly by combining Lem-
mas 28, 29. 2

3.D.7 Proof of Proposition 14 – Looking at a neighborhood of
W ∈ M ∩U

A consequence of Proposition 13 is that the manifold M is nondegenerate at W ∈ Mb ∩
M\Sing(M):

Corollary 2. Suppose Assumption 9 holds. If W ∈ Mb ∩M\Sing(M), then ker∇2I(W) =
TW M . Furthermore, the manifold M is locally nondegenerate at W .

Proof. Recall that Proposition 13 implies that ∇2I(W) is a positive definite bilinear form
when restricted to T⊥

W M , and that Proposition 13 provides a lower bound ω for it. This im-
plies in particular that T⊥

W M ⊆ (ker∇2I(W))⊥. Because moreover TW M ⊆ ker∇2I(W),
we find that

TW M = ker∇2I(W). (3.240)

Now, because W is nonsingular by assumption and Sing(M) is a closed set (recall
Proposition 11(a)), there exists a neighborhood UW ⊂ P of W such that for any W ′ ∈
UW ∩ M , W ′ is also nonsingular in M . In particular UW ∩ M is a submanifold of P.
Hence,

dimTW ′M = dimTW M (3.241)

is constant for all W ′ ∈ UW ∩M .
By continuity of ∇2I, we have furthermore that for any W ′ ∈ UW ∩M ,

rk(∇2I(W ′)) ≥ rk(∇2I(W)) = dimTW M. (3.242)

Now, (i) the rank–nullity theorem together with (3.242) implies that

dimker∇2I(W ′)
(i)
≤ dimker∇2I(W) (3.240)= dimTW M

(3.241)= dimTW ′M. (3.243)

Since TW ′M ⊆ ker∇2I(W ′) also, (3.243) implies that ker∇2I(W ′) = TW ′M for any W ′ ∈
UW ∩M . Hence, M is locally nondegenerate at W according to Definition 11. 2

124 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

Proof of Proposition 14. Let W ∈ Mb ∩M\Sing(M) and let UW be the open neighborhood
from Corollary 2, where M is nondegenerate at W .

Proposition 14(a) follows from the definition of nondegeneracy of Definition 11 and
the existence of UW in Corollary 2. Proposition 14(b) follows because an immediate
consequence of Proposition 14(a) is that for any W ′ ∈ UW ∩ M , UW ∩ M is also locally
nondegenerate at W ′.

Corollary 2 yields that for any W ′ ∈ UW ∩ M , ker∇2I(W ′) = TW ′M . Hence, there
exists an ωW ′ such that

min
∥v∥=1

v∈T ⊥
W ′ M

vT∇2I(W ′)v = ωW ′ > 0. (3.244)

This is in fact Proposition 14(c), and this completes the proof of Proposition 14. 2

3.D.8 Proof of Proposition 15 – Extension in generic sense
Proposition 11 implies that Mb is nonsingular for generic points. Together with Proposi-
tion 14, this implies that up to a closed algebraic set with lower dimension than that of Mb,
for every W ∈ Mb ∩ M , there exists a neighborhood of UW ∈ P of W such that UW ∩ M

is a manifold that is locally nondegenerate at W . We will now extend these results to M

by using the group action in (3.92).
The result of Proposition 8 implies that the action of π extends Mb to M as defined

in (3.92). We look at the action on the Hessian. We need to prove that:
(a) a given point W ′ ∈ M is regular if the point in Mb corresponding to W ′ ∈ M under

the group action π in (3.29) is also regular; and
(b) W ′ ∈ M is nondegenerate.
Proof of (a). Recall that H = Diag((R∗)f) as a Lie group. Proposition 8 provides the
bijective map π−1 : M → Mb ×H given by

π−1(W) = (π(CW)(W),CW), (3.245)

where CW = Diag(W T
2 W2)−1/4Diag(W1W T

1)1/4. From (3.151), π−1 has a continuous in-
verse in the open set π(Mb ×H). Recall that by Proposition 14, for each Wb ∈ Mb\Sing(Mb)
there is a neighborhood QWb

of Wb such that every W ′
b ∈ QWb

∩ Mb is nonsingular in
Mb. In particular, for any C ∈ H, there is a neighborhood QC ⊂ H of C such that
π−1 : QWb

×QC → M is smooth. Hence, π−1 is a local diffeomorphism at (Wb,C) and so
M is smooth at W = π(C)(Wb). Hence, W is regular in M whenever Wb ∈ Mb is regular.

This implies that if W ∈ Mb ∩M is generic, then so is π(C)(W) ∈ M for any C ∈ H.
Proof of (b). We start by computing the effect of the action π : M × H → M on the
Hessian. For any fixed C ∈ H and W ∈ M regular, there is an induced smooth map
D(C,W)π : TW M → Tπ(C)(W)M for V = (V2,V1) ∈ TW M given by

D(C,W)π(V) = (V2C,C−1V1), (3.246)

In vectorization notation for V and denoting vec(A,B) = (vec(A),vec(B)) for any A,B,
the map DW π is given by

vec(DW π(V)) = vec((V2C,C−1V1)) = (vec(V2C),vec(C−1V1)))

=
(

C⊗Ie×e 0
0 C−1⊗Ih×h

)
vec(V2,V1) = Cvec(V2,V1) (3.247)

3.E Auxiliary statements 125

say.
We next consider the Hessian of the map I(π(C)(·)) : P → R and compare it to ∇2I.

We let ∇(g(W))(V) be the differential of a function g(W) depending on W in the direction
V ; note that we use only Euclidean coordinates in P and so we can understand the
differential as a gradient. First, use the chain rule to conclude that for V ∈ TW P we have

∇
(
I(π(C)(W))

)
(V) = ∇I(π(C)(W))

(
DW π(V)

)
. (3.248)

For the Hessian ∇2(I(π(C)(·))
)

: TW P ×TW P →R, we have that similarly that for V,R ∈
TW P and W ∈ M ,

∇2
(

I(π(C)(W))
)

(V,R) = ∇
(

∇
(
I(π(C)(W))

)
(V)
)

(R)

(3.248)= ∇
(

∇I(π(C)(W))
(
DW π(V)

))
(R)

(i)= ∇
(

∇I(π(C)(W))
)

(R)
(
DW π(V)

)
+∇I(π(C)(W))

(
∇(DW π(V))(R)

)
(ii)= ∇2I(π(C)(W))

(
DW π(V),DW π(R)

)
+∇I(π(C)(W))

(
∇(DW π(V))(R)

)
, (3.249)

where we have (i) used Leibniz’s rule in the one-to-last step and (ii) the chain rule. Since
∇I(π(C)(W)) = 0 at any minimizer π(C)(W), we have that (3.249) reduces to

∇2(I(π(C)(W))
)
(V,R) = ∇2I(π(C)(W))(DW π(V),DW π(R)). (3.250)

We abuse now the vectorization notation from (3.247) and consider the Hessian as a
bilinear form in terms of vec(V) and vec(R) in (3.250). This means specifically that
(3.250) can be written as

∇2(I(π(C)(W))
)

= CT(∇2I(π(C)(W))
)
C. (3.251)

Recall now that for any C ∈ H and W ∈ P, I(π(C)(W)) = I(W). Consequently, as bilinear
forms

∇2I(W) = CT∇2I(π(C)(W))C. (3.252)

Finally, note that C in (3.252) is invertible for any C ∈ H. Therefore, we the ranks are
equal:

rk(∇2I(W)) = rk
(
∇2I(π(C)(W))

)
(3.253)

for any C ∈ H. Now, if W ∈ Mb ∩ M is nondegenerate (so the rank is maximal), we can
repeat the arguments of Proposition 14 and in particular conclude that π(C)(W) is a
nondegenerate point in M .

Combining (a) and (b) implies that M is nondegenerate at generic points. 2

3.E Auxiliary statements

3.E.1 Inequalities pertaining to the Frobenius norm
Lemma 30. The following inequalities hold:

126 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

(a) For any C ∈ Ra×b, D ∈ Rb×a, it holds that

2Tr[CD] ≤ ∥C∥2
F +∥D∥2

F. (3.254)

with equality if and only if C = DT.
(b) For any A ∈ Rh×f , B ∈ Re×f , Λ ∈ Re×h, it holds that

Tr[ATBTΛ] ≤ σ1(Λ)
2
(
Tr[BTB]+Tr[AAT]

)
. (3.255)

(c) For any B ∈Re×f , and diagonal matrix Λ ∈Re×e with positive entries and minimal
eigenvalue s = mini=1,...,e Λii, it holds that

∥BTΛ∥2
F ≥ s2∥B∥2

F. (3.256)

We prove the inequalities in Lemma 30 one by one.
Proof of (a). Recall that the Frobenius norm satisfies ∥A+B∥2

F = ∥A∥2
F +∥B∥2

F −2⟨A,B⟩F,
where ⟨A,B⟩F = Tr[ATB] (for real matrices) denotes the Frobenius inner product. We have
in particular that

0 ≤ ∥C −DT∥2
F = ∥C∥2

F +∥D∥2
F −2Tr[CD], (3.257)

with equality if and only if C = DT (by property of a norm).
Proof of (b). Consider any square matrix R ∈ Rf×f and let σmax(R) be its spectral norm,
i.e., its largest singular value. Recall that

σmax(R) = sup
{

∥Rx∥2 : x ∈ Rf ,∥x∥2 = 1
}

= sup
{xTRTRx

xTx
: x ∈ Rf ,x ̸= 0

}1/2
. (3.258)

Note that

σmax
(0 R

RT 0

)2 = sup
{

∥
(0 R

RT 0

)
(a

b)∥2
2 : a,b ∈ Rf ,∥a∥2

2 +∥b∥2
2 = 1

}
= sup

{
∥
(

Rb
RTa

)
∥2

2 : a,b ∈ Rf ,∥a∥2
2 +∥b∥2

2 = 1
}

= sup
{

∥RTa∥2
2 +∥Rb∥2

2 : a,b ∈ Rf ,∥a∥2
2 +∥b∥2

2 = 1
}

≤ σmax(R)2, (3.259)

where the inequality follows because σmax(R) = σmax(RT) and by definition of σmax(R),
∥Rx∥2

2 ≤ σmax(R)2∥x∥2
2 for any x ∈ Rf .

Recall the properties of the vectorization notation in Appendix 3.D.5. We have then
in vectorization notation

Tr[ATBTΛ] = 1
2
(
Tr[AT(BTΛ)]+Tr[B(AΛT)]

)
= 1

2
(
vec(A)T ΛT ⊗ If×f vec(BT)+vec(BT)Λ⊗ If×f vec(A)

)
=
(
vec(A),vec(BT)

)T 1
2

(
0 ΛT⊗If×f

Λ⊗If×f 0

)(
vec(A),vec(BT)

)
≤ σmax(Λ)

2
(
Tr[AAT]+Tr[BTB]

)
, (3.260)

3.E.2 Subspace minimization 127

where we have used that σmax(Y ⊗ I) = σmax(Y).
Proof of (c). Suppose without loss of generality that the diagonal elements of Λ are
ordered, i.e., Λ11 ≥ . . . ≥ Λee > 0. Denote the columns of B by B·1, . . . ,B·e. Calculating
the Frobenius norm directly, we find that

∥BTΛ∥2
F =

e∑
j=1

Λ2
j ∥B·j∥2

2 ≥ Λ2
e

e∑
j=1

∥B·j∥2
2 = Λ2

e∥B∥2
F. (3.261)

This completes the proof of Lemma 30. 2

3.E.2 Subspace minimization
Lemma 31. Let V1, V2 be two orthogonal subspaces, and let {v1, . . . ,vd} be an orthonor-
mal basis of V1 ⊕V2 such that V1 = span{v1, . . . ,vs} and V2 = span{vs+1, . . . ,vd}. Assume
that l1, . . . , ls ∈ (0,∞), and let B2 : V2 → [0,∞) be a function that satisfies B2(ζu2) =
ζ2B2(u2) for ζ ∈ R. Then,

min
∥u1∥2

F+∥u2∥2
F=1

u1∈V1,u2∈V2

s∑
i=1

li|⟨vi,u1⟩|2 +B2(u2) ≥ min
{

l1, . . . , ls, min
∥u2∥2

F=1
u2∈V1

B2(u2)
}

. (3.262)

Proof. Note that

{(u1,u2) ∈ V1 ×V2 : ∥u1∥2
F +∥u2∥2

F = 1}
= ∪ζ∈[0,1]{(u1,u2) ∈ V1 ×V2 : ∥u1∥2

F = ζ2,∥u2∥2
F = 1− ζ2}

= ∪ζ∈[0,1]{(ζw1,
√

1− ζ2w2) : (w1,w2) ∈ V1 ×V2,∥w1∥2
F = 1,∥w2∥2

F = 1}. (3.263)

The left-hand side of (3.262) therefore equals

min
∥w1∥2

F=1,∥w2∥2
F=1,

w1∈V1,w2∈V2,ζ∈[0,1]

ζ2
s∑

i=1
li|⟨vi,w1⟩|2 +(1− ζ2)B2(w2). (3.264)

Observe in (3.264) a convex combination in terms of ζ2. The minimum of (3.264) therefore
occurs at either ζ = 0 or ζ = 1. Note additionally that if ∥w1∥F = 1, then

s∑
i=1

li|⟨vi,w1⟩|2
(i)
≥ min{l1, . . . , ls}

s∑
i=1

|⟨vi,w1⟩|2 (ii)= min{l1, . . . , ls} (3.265)

by (i) strict positivity of the summands and (ii) an application of Parseval’s identity—
which is warranted since {v1, . . . ,vs} is an orthonormal basis of V1. Together, this proves
the lower bound for the right-hand side in (3.262). 2

3.E.3 Minimization
Lemma 32. For a ∈ R, B,C ∈ Rf−1 and s1,s2,s3 > 0,

min
a,B,C

2a2+∥B∥2
2+∥C∥2

F=1

{
s1a2 +s2∥B −C∥2

F +s3 ∥B +C∥2
2

}
= min

{s1
2 ,2s2,2s3

}
. (3.266)

128 Chapter 3. Asymptotic convergence rate of dropout for shallow linear NNs

Proof. We can decouple the minimization over a and over (B,C) in (3.266), respectively.
To see this, suppose that (a0,B0,C0) is a minimizer of (3.266). If so, then (B0,C0) must
also be a minimizer of

min
B,C

∥B∥2
2+∥C∥2

2=1−2a2
0

s2∥B −C∥2
F +s3∥B +C∥2

F, (3.267)

for otherwise (a0,B0,C0) would not be a minimizer of (3.266) by linearity.
For fixed a0, the following holds:
– if s2 > s3, then the minimizer (B0,C0) of (3.267) satisfies B0 = C0 and the minimum
is 4s3∥B0∥2

F = 2s3(1−2a2
0);

– if s2 < s3, then the minimizer (B0,C0) of (3.267) satisfies B0 = −C0 and the
minimum is 4s2∥B0∥2

F = 2s2(1−2a2
0);

– if s2 = s3, then any point (B0,C0) that satisfies ∥B0∥2
2 + ∥C0∥2

2 = 1 − 2a2
0 is a

minimizer of (3.267) by the parallelogram law, and the minimum is in fact 2s2(1−
2a2

0).
Thus, we have that the left-hand side of (3.266) reduces to:

– if s2 > s3, then mina∈[−1/
√

2,1/
√

2]{s1a2 +2s3(1−2a2)} = min{s1/2,2s3};

– if s2 < s3, then mina∈[−1/
√

2,1/
√

2]{s1a2 +2s2(1−2a2)} = min{s1/2,2s2};

– if s2 = s3, then mina∈[−1/
√

2,1/
√

2]{s1a2 +2s2(1−2a2)} = min{s1/2,2s2}.
Combining cases, we observe that the left-hand side of (3.266) equals min{s1/2,2s2,2s3}.

2

Chapter 4

Universal approximation of
dropout neural networks

Based on [5]:
“Universal approximation of dropout neural networks”

by O.A. Manita, M.A. Peletier, J.W. Portegies, J. Sanders, and A. Senen–Cerda

In Chapters 2 and 3 we have analyzed dropout from the stochastic optimization per-
spective and examined convergence properties of the algorithm. In this chapter we consider
dropout and in particular the randomness created by dropout in a more abstract man-
ner. We will investigate if Neural Networks (NNs) with the additional randomness from
dropout can still approximate functions and if so, in which sense.

4.1 Introduction
The class of NNs satisfies a well-known universal approximation property: any given func-
tion can be approximated to arbitrary precision by a NN [156, 153]. This property partially
explains why NNs are effective as approximators of implicitly given functions.

We have seen in Chapters 3 and 4 that dropout converts a deterministic NN into a
random one while training by randomly ‘dropping’ nodes. In this chapter we address
the following question: Does this randomness interfere with the universal approximation
property? Or, to formulate it in the affirmative: does the class of dropout NNs still satisfy
a universal approximation property?

To provide a first quantification of this question, let us explain the expectation–
variance split, which in the context of dropout goes back to the theoretical analysis by
[114]. We will think of a dropout NN as a function Ψ : Rd ×Rn → R together with a
{0,1}n-valued random variable f .1 Here, we will think of Rd as the data space, and Rn

as the parameter space (the space of weights and biases of the NN). The parameters of

1Differently from Chapter 3 where f denotes the width of the NN, in this chapter we let f denote
a vector of filters.

129

130 Chapter 4. Universal approximation of dropout NNs

the NN are multiplied componentwise with the vector of filter variables f . That means
that when ζ : Rd → R is a function we want to approximate, we try to approximate it with
the stochastic function that maps x to Ψ(x,w ⊙ f). For fixed x and w, the expectation–
variance split reads

E
[(

Ψ(x,w ⊙f)− ζ(x)
)2
]

=
(
E[Ψ(x,w ⊙f)]− ζ(x)

)2 +Var[Ψ(x,w ⊙f)]. (4.1)

As both terms on the right-hand side of (4.1) are nonnegative, both terms have to be
small in order to have a good approximation.

In [22], Foong et al. showed that deep Rectified Linear Unit (ReLU) NNs with node-
dropout can still approximate functions arbitrarily well, by showing that both the expecta-
tion term and the variance term in the expectation–variance split can be made arbitrarily
small (see [22, Theorem 3]). In fact, the two terms are arbitrarily small uniformly over x

in the unit cube in Rd. With this statement, Foong et al. effectively showed a universal-
approximation result.

In this chapter we show two universal-approximation results for wider classes of dropout
NNs. Where Foong et al. made specific use of the ReLU activation, assume Bernoulli filter
variables (thus equidistributed, independent, and with finite variance), and restrict to one
hidden layer, we show that the property of universal approximation holds under more gen-
eral assumptions. Our distinguishing insight is that certain classes of random NNs satisfy
an algebraic property, which enables us to deal with arbitrary depth, generic activation
functions, and dependent filter variables not necessarily equidistributed and possibly with
infinite variance. Notably, our techniques allow for dropout of edges from the input layer.

For the theorems we prove below the structural assumptions on the NN reduce to
the assumption that the underlying deterministic NN has the universal-approximation
property; necessary and sufficient conditions for the latter to hold are well-known, for
example, see [153]. In addition, our main theorems allow for general classes of filters,
including the original node-based dropout [117], the edge-based dropconnect [115], and
many others, including sets of filters with strong dependence. We show that the class
of dropout NNs can exactly match a given deterministic NN, at least in expectation as
shown in Corollary 3 below. We also show that we can construct NNs that approximate
a given function arbitrarily well, both as a random NN and as a deterministic NN (see
Corollaries 4 and 5). Finally, we provide control over the error both in probability and
in Lq.

4.1.1 Approximation by random neural networks

In a deterministic context, a universal-approximation theorem for some class C is a density
statement, stating that any function ζ can be approximated to arbitrary precision by NNs
in C, where the approximation is measured in some seminormed function space (F ,∥ ·∥F).
Such approximation statements can be generalized in a stochastic context in multiple
ways. We will namely focus on two of these: approximation in probability, and in Lq for
q ∈ [1,∞).

Universal approximation in probability in a function space F is the property that for
every function ζ ∈ F , and every ϵ > 0, there exists a NN Ψ, a weight vector w and a
random vector f (all with certain extra properties to make the statement nontrivial), such

4.1.2 Random-approximation 131

that2

P [∥ζ(·)−Ψ(·,w ⊙f)∥F > ϵ] < ϵ.

A stronger approximation statement involves approximation in Lq for q ∈ [1,∞): for any
ϵ > 0, there exist Ψ, w and f such that

E
[
∥ζ(·)−Ψ(·,w ⊙f)∥q

F
] 1

q < ϵ.

We prove two main classes of approximation results, corresponding to the two main
ways that dropout NNs can be used in practice. In the first class of results, the NN is
a random object as described above, and is used in a random fashion during training as
well as for prediction; we call this random-approximation dropout.3 In the second class
of results, the training is conducted with random NNs of the form Ψ(·,w ⊙ f), but the
deterministic network Ψ(·,w ⊙E[f]) is used for prediction instead. In this latter case, the
filters are thus replaced by their expectations. We call this type of dropout expectation-
replacement.

4.1.2 Random-approximation
We start with uniform random-approximation dropout, that is the property that any
function ζ in an appropriate set F can be approximated by random NNs of the form
Ψ(·,w ⊙ f). The first result in this direction states that there exist real constants {aU }U

such that

E

 ∑
U∈2[n]

aU Ψ
(
·,(w ⊙1U)⊙fU

)= Ψ(·,w). (4.2)

See Theorem 13 in Chapter 4 for the full statement. (4.2) establishes the following fact:
for any collection of random filter variables fU , for any function Ψ, for any parameter
point w, the function Ψ(·,w) can be matched exactly by the expectation of a sum of
filtered versions of the same function. The important caveat is that one needs to take into
account all reduced versions of the functions Ψ, i.e., the whole hierarchy of deterministically
modified versions indexed by subsets U .

The equality in (4.2) suggests a special role for ‘classes of networks’, with the property
that given a ‘network’ Ψ(·,w) we can in some sense define a new (random) network Ψ̃(·, w̃⊙
f̃) by

Ψ̃(·, w̃ ⊙ f̃) :=
∑

U∈2[n]

aU Ψ(·,w ⊙1U ⊙fU). (4.3)

To formalize this, we assume that we have chosen a set DDNN (a ‘set of random NNs’),
which can be any collection of tuples (n,Ψ,f) that satisfy the following properties:

(i) n ∈ N is a natural number;

(ii) Ψ : Rd ×Rn → R is a function such that for every w ∈ Rn, Ψ(·,w) ∈ F ;
2For convenience, in this chapter we use ϵ for both the event {∥ζ(·) − Ψ(·,w ⊙ f)∥F > ϵ} and a

bound of its probability. An equivalent definition with, e.g. ϵ,η > 0 for each term may also be used.
3This has also been called Monte Carlo dropout because of the close connection with Monte Carlo

estimation of integrals [23].

132 Chapter 4. Universal approximation of dropout NNs

(iii) f is a {0,1}n-valued random variable such that

P[f = (1, . . . ,1)] > 0. (4.4)

Moreover, we assume that DDNN is closed under linear, independent combinations. By
this we mean that whenever a,b ∈ R and (m,Φ,f) and (n,Ψ,g) are in DDNN, then also
(n′,aΦ + bΨ,h) ∈ DDNN with n′ ≥ n + m, where h is an {0,1}n′ -valued random variable
that is the independent concatenation of f and g. In this case, aΦ+ bΨ : Rd ×Rn′ → R is
given by

(x,(w1,w2)) 7→ aΦ(x,w1)+ bΨ(x,w2).

This closure assumption implies that a definition of the form (4.3) is meaningful.
The range of possible subclasses in DDNN satisfying these requirements is vast. Typical

examples are NNs with dropout and dropconnect, but many other choices also are possible.
Note that the function Ψ may be extremely general, implying that there are no restrictions
on e.g. the form of the activation function or the structure of the NN. In fact, nothing in the
requirements on DDNN restricts to functions Ψ generated by NNs; other approximation
methodologies may also be used, for instance based on Fourier or wavelet expansions. See
Section 4.2 for a detailed description and examples in the class DDNN.

By combining a result of the type in (4.2) with the law of large numbers we find
Corollary 3 below, which expresses the following insight: if the class DDNN is rich enough
to approximate any function in F when all filter variables are set to 1, then any function
in F can also be approximated by a (random) dropout NN in DDNN.

Corollary 3. Let ζ ∈ F and ϵ > 0. Assume there exists a (m,Φ,g) ∈ DDNN and a v ∈ Rm

such that ∥Φ(·,v) − ζ∥F < ϵ/2. Then there exist a (n,Ψ,f) ∈ DDNN and a w ∈ Rn such
that

P [∥Ψ(·,w ⊙f)− ζ∥F > ϵ] < ϵ (4.5)

and
E
[
∥Ψ(·,w ⊙f)− ζ∥q

F
] 1

q < ϵ.

Section 4.4 is devoted to these results, but develops them in more generality. There we also
give some examples and calculate the coefficients aU explicitly for the case of independent
Bernoulli filters.

4.1.3 Expectation-replacement
In the previous subsection we considered a dropout NN to be a random object, which
is also used as such during prediction. By contrast, it is common practice to choose the
filter variables to be random during training and to be deterministic during prediction and
equal to their expectations; see e.g., Goodfellow, Bengio, and Courville [74, Sec. 7.12]. We
call this expectation-replacement dropout, and Corollary 3 above does not say anything
about this situation.

In fact, we show with an example that the construction at the heart of Corollary 3
may lead to NNs that are ‘bad approximators’ in this specific sense: given a function
ζ, the constructed NNs approximate ζ with high probability with random filters, but do
not approximate ζ at all when replacing the filters by their expectations (see Example 19
further in this chapter).

4.1.3 Expectation-replacement 133

At the same time, expectation-replacement dropout is both very widespread and very
successful; see [41]. How can these two observations be reconciled?

To address this, we describe in Section 4.4 the construction of dropout NNs that
approximate not only in probability and in Lq, but also in this expectation-replacement
sense. As in the case of Corollary 3, the construction builds on existing density results for
deterministic NNs: we start with a given deterministic NN Ψ(·,w) that is close to a given
function ζ. Differently from Corollary 3, however, the nonlinearity of Ψ forces us to apply
the law of large numbers to each edge (or weight in this context) separately, instead of
simultaneously for the whole NN.

The main result pertaining to expectation-replacement dropout allows for a wide range
of choices of activation functions and filter-variable distributions. For example, the follow-
ing are simple, specific corollaries for a ReLU activation function with dropconnect and
node-dropout respectively.

Corollary 4. Let F be the space of continuous functions Rd → R, and endow it with a
seminorm ∥·∥F equal to supremum of the function on the unit cube. Then for every ζ ∈ F
and every ϵ > 0 there exists a dropconnect ReLU NN (Ψ,f) and a parameter vector w such
that

P
[∥∥∥Ψ(·,w ⊙f)− ζ

∥∥∥
F

> ϵ
]

< ϵ (4.6)

and

E
[
∥Ψ(·,w ⊙f)− ζ∥q

F
] 1

q < ϵ,

while

∥Ψ(·,w ⊙E[f])− ζ∥F < ϵ.

Corollary 5. Corollary 4 also holds when using dropout instead of dropconnect.

Note that where the construction of the section on random-approximation dropout
is applied to a very wide class of functions Ψ—not only those generated by NNs, the
construction underlying Corollaries 4 and 5 depends in a detailed manner on the fact that
Ψ has the structure of a NN.

In this chapter we show that dropout NNs have sufficient representational capacity to
approximate well simultaneously in probability, in Lq, and in the expectation-replacement
sense. While this does not explain why any given training algorithm finds parameter
points that approximate well in the expectation-replacement sense, at least it shows that
the contrast between random training and deterministic prediction is not an obstacle to
good performance.

Structure of this chapter

The following section is devoted to the definition of of a dropout NN. In Section 4.3 we show
universal approximation results for random-approximation dropout, whereas Section 4.4
is devoted to universal approximation results for expectation-replacement dropout. We
discuss our results and their limitations in Section 4.5 and conclude in Section 4.6.

134 Chapter 4. Universal approximation of dropout NNs

4.2 Specification of dropout neural networks
We consider first general functions Ψ :Rd ×Rn →R together with a {0,1}n-valued random
variable f . Some of the results will hold in such general setting. Later on, we will specify
functions Ψ that arise from a NN. We specify now the NN structure that we will use and
introduce the corresponding notation.

4.2.1 Neural networks
We briefly recall that a (feedforward) NN is a function Ψ : Rd ×Rn → R, where

Ψ(·,w) = ΨL

(
·,w(L)

)
◦ΨL−1

(
·,w(L−1)

)
◦ · · · ◦Ψ1

(
·,w(1)

)
. (4.7)

Here, L is the depth, the parameter w is the concatenation of the individual parameter
vectors w(j) = (W (j), b(j)) for j = [L], which in turn consist of a dj × dj−1 weight matrix
W (j) and a bias vector b(j) ∈ Rdj . We set d0 = d and dL = 1.

In (4.7) every Ψj is a function from Rdj−1 to Rdj given by

Ψj(x,w(j)) := σj

(
W (j)x+ b(j)

)
, (4.8)

where the function σj : R → R is the activation function, which is applied componentwise.
This definition differs compared to Chapter 2 since we include biases and possibly different
activation functions. These, however, will become important in Section 4.4.

4.2.2 Dropout neural networks
A dropout NN consists of a NN Ψ : Rd ×Rn → R as above together with a random vector
f ∈ {0,1}n. The components of f are called filter variables. The NN Ψ, the filter variables
f , and a parameter vector w ∈ Rn together form a stochastic function from Rd to R given
by

x 7→ Ψ(x,w ⊙f).

The most well-known examples of dropout NNs are NNs with dropout and dropconnect,
which we have also defined in Chapters 2 and 3, albeit in different contexts. We briefly
recall their formal definitions.

The original version of dropout [117], which in this chapter we will call from this point
on node-dropout —to differentiate from more general versions of dropout—can be under-
stood in the notation of (4.8) as follows. For any j = 1, . . . ,L, choose dropout probabilities
1−pj , and let f j

1 , . . . ,f j
dj

be independent Bernoulli filters with remain probability pj . Let
Dj ∈ Rdj×dj be the diagonal matrix with entries f j

1 , . . . ,f j
dj

in the diagonal. If we arrange
all nodes per block, then node-dropout implements for j = 1, . . . ,L,

Ψj(·,w(j) ⊙f (j)) = σj

(
W (j)Dj(·)+ b(j)

)
. (4.9)

Note in this definition that if p1 < 1 then with positive probability an input is masked.
For this reason we call the case p1 < 1 node-dropout with dropout on the inputs. We call
the case p1 = 1 node-dropout without dropout on the inputs.

4.3 Universal approximation for random-approximation dropout 135

Similarly, in the notation of (4.8) we can understand dropconnect as follows. For j =
1, . . . ,L, let F (j) ∈ Rdj+1×dj be random matrices composed of entries (F j)ik, all of which
are mutually independent Bernoulli random variables with the same success probability
1−p. Dropconnect then implements for j = 1, . . . ,L,

Ψj(·,w(j) ⊙f (j)) = σj

(
(W (j) ⊙F (j))(·)+ b(j)

)
. (4.10)

4.3 Universal approximation for random-approximation
dropout

The aim of this section is to derive the abstract universal approximation statement for
random-approximation dropout already mentioned in the introduction (Corollary 3).

At the highest level the proof strategy is the same as in Foong et al. [22], and consists
of the following three steps. Given a function ζ ∈ F to be approximated:

1. Approximate ζ by a NN Ψ(·,w) using classical deterministic universal approximation
results (e.g., [153]);

2. Use Ψ(·,w) to construct a larger, random dropout NN Ψ̃(·, w̃ ⊙ f̃) that matches
Ψ(·,w) in expectation;

3. Construct an even larger random NN Ψ̂(·, ŵ ⊙ f̂) consisting of many independent
copies of the network Ψ̃(·, w̃ ⊙ f̃) to obtain an approximation of ζ that is close in
expectation and also has small variance.

We consider Step 1 as given by existing results, and Step 3 is a standard procedure. The
novelty of this chapter for random-approximation lies in Step 2, which we describe in the
rest of this section.

Step 2 is based on an algebraic property, which is illustrated by the following simpler
version of the central theorem. We write 2[n] for the collection of subsets of [n] = {1, . . . ,n},
and for any such a subset U , we write 1U ∈ {0,1}n for the vector with entries (1j∈U)j∈[n].

Theorem 13. Let Ψ : Rd ×Rn → R be any given function. Let (fU)U∈2[n] be a collection
of {0,1}n-valued random variables indexed by subsets U ∈ 2[n] such that for every U

P[fU = (1, . . . ,1)] > 0.

Then there exist constants (aU)U∈2[n] , independent of w, such that for all w,

E

 ∑
U∈2[n]

aU Ψ
(
·,(w ⊙1U)⊙fU

)= Ψ(·,w). (4.11)

This theorem should be read as follows. The right-hand side in (4.11) plays the role
of a deterministic function that we want to approximate. The left-hand side is the ex-
pectation of a linear combination of many copies of Ψ(·,w). Each copy has two ‘dropout’
modifications: the vector 1U implements a deterministic dropout, and the random filter
variables fU a stochastic one. With a view to generality, the random filter vector fU

is allowed to be a different random vector for each subset U of edges, but note that the
distribution of fU on {0,1}n can be completely unrelated to the subset U ⊂ [n]; the subset
U only serves as label.

136 Chapter 4. Universal approximation of dropout NNs

4.3.1 Key approximation result
Theorem 13 can be extended together with a convergence statement to yield the following
theorem.

Theorem 14. Let (F ,∥ · ∥F) be a seminormed vector space of functions from Rd to R.
Let Ψ : Rd ×Rn → R be a given function such that Ψ(·,w) ∈ F for every w ∈ Rn. Let
(fU)U∈2[n] be a collection of {0,1}n-valued random variables indexed by subsets U ∈ 2[n],
such that for every U

P[fU = (1, . . . ,1)] > 0. (4.12)

Then there exist constants (aU)U∈2[n] independent of w such that

E

 ∑
U∈2[n]

aU Ψ(·,(w ⊙1U)⊙fU)

= Ψ(·,w). (4.13)

In particular, by the weak law of large numbers, if f i,U are independent copies of fU , then
as M → ∞,

1
M

M∑
i=1

∑
U∈2[n]

aU Ψ(·,(w ⊙1U)⊙f i,U) → Ψ(·,w) (4.14)

in probability in (F ,∥ · ∥F) and in Lq for every q ∈ [1,∞).

A proof of Theorem 14 can be found in Appendix 4.A.1. The main observation in
Theorem 14 is the existence of the constants (aU)U∈2[n] . This purely algebraic statement
follows by induction, as explained by Lemma 37 in Appendix 4.A.1. From Theorem 14, it
follows that one can see a dropout NN as a linear combination of dropout NNs with weights
(w ⊙1U)U∈2[n] , such that the linear combination equals the original NN in expectation as
shown in (4.13).

To get a dropout NN that is close to the original network in probability, in (4.14) one
makes a large average of independent copies of the dropout network that approximates
the original network in expectation. The convergence in probability of (4.14) follows then
from the weak law of large numbers. The convergence in Lq finally follows because the
sum in (4.14) is also uniformly bounded in F for any realization of the filter variables
f i,U , so that the convergence in probability immediately implies the convergence in Lq by
dominated convergence.

Note that the number of parameters in this construction increases exponentially, which
limits the potential applicability of this theorem. On the other hand, for particular cases
the coefficients can be calculated explicitly, as will be shown in Section 4.3.4.

4.3.2 Examples
We further illustrate the construction of Theorem 14 with the following examples:

Example 15 (One-hidden-layer dropconnect NNs). Consider the function Ψ : Rd ×Rn →
R given by

Ψ(x,w) :=
N∑

j=1
cjσ(wjx+ bj), (4.15)

4.3.2 Examples 137

where the activation function σ : R → R is continuous with σ(x) → 0 as x → −∞ and
σ(x) → 1 as x → ∞. In (4.15) we have biases bj ∈ R and weights made up from the
constants cj ∈ R and the 1×d-matrices wj .

The well-known result by [156] implies that the class of all such functions is dense in
C([0,1]d) endowed with the supremum norm. An example of an approximation by functions
in (4.15) is depicted in Figure 4.3.1.

x

1

σ

σ

+ Ψ(x,w) =
n∑

j=1
cjσ(wjx+ bj)w1

w2

b1

b2

c1

c2

−10 0 10
−0.5

0

0.5

x

Truth ζ(x)
Cybenko NN Ψ(x,v)

Figure 4.3.1: A Cybenko NN as in (4.15), trained to approximate a function ζ; here, n =
2,d = 1, and ζ(x) = sin(x+3)exp |x−3|.

We suppose that the distribution of the filters follows the case of dropconnect, as de-
scribed in Section 4.2.2. Theorem 14 directly yields that by choosing appropriate weights
cj,U and weight matrices wj,U , the one-hidden-layer dropconnect NN given by

1
M

M∑
i=1

∑
U∈2[n]

N∑
j=1

aU cj,U gj,U σ
(
(wj,U ⊙f j,U)x+ bj

)
(4.16)

can be chosen to be close to Ψ in Lq for large M . Here gj,U are independent Bernouilli
random variables, and f j,U are random vectors with independent Bernoulli-distributed
components, all with success probability 1 − p. This result is illustrated by Figures 4.3.2
and 4.3.3, where for simplicity we have used filters only on the weights wj,U , while leaving
the biases bj and cj with constant filters 1. Figure 4.3.2 shows a single realization of
the NN in (4.13) with dropconnect while in Figure 4.3.3 a ‘blow up’—the average of M

independent copies of the network in (4.16)—of the previous construction is depicted.

In a similar way, we can also consider more general dropconnect networks.

Example 16 (Dropconnect networks). Consider a deep NN Ψ :Rd ×Rn →R as introduced
in (4.7) with dropconnect filters as described in Section 4.2.2. Here, the filter variables,
i.e., the components of f i,U in (4.7), are independent Bernoulli distributed with success
probability 1−p if they multiply elements of the weight matrices W (j), and are equal to 1
if they multiply biases b(j).

Let w ∈ Rn. We choose for F the vector space of continuous functions on Rd, endowed
with the supremum seminorm over the closed unit cube. Then the dropconnect random
network in (4.14) is close to the network Ψ(·,w) in Lq for large M .

138 Chapter 4. Universal approximation of dropout NNs

1

σ

σ

+

1

σ

σ

+×

1

σ

σ

+

1

σ

σ

+
×

x +
∑

U∈2[n]

aU Ψ(x,(w ⊙1U)⊙fU)

a00

a01

a10

a11

−10 0 10
−0.5

0

0.5

x

Truth ζ(x)∑
U∈2[n] aU Ψ(x,(w ⊙ 1U) ⊙ fU)

Ψ(x,w ⊙ 100 ⊙ f00)
Ψ(x,w ⊙ 101 ⊙ f01)
Ψ(x,w ⊙ 110 ⊙ f10)
Ψ(x,w ⊙ 111 ⊙ f11)

Figure 4.3.2: A single realization of the random NN in (4.13) using Dropconnect. Based on
the trained Cybenko NN in Figure 4.3.1, for simplicity, we only apply dropout
to the weights wj of (4.15), which we denote by w and which correspond to
the edges joining the nodes connected to the input x. With n = 2 and d = 1,
there are four different random NNs with their respective independent filters.
All of them use as base Ψ(·,w) in Figure 4.3.1. In this realization, some
of the edges are filtered, which are depicted with red crosses. The explicit
coefficients aU used for dropconnect are computed in Section 4.3.4.

4.3.2 Examples 139

1

σ

σ

+

1

σ

σ

+×

1

σ

σ

+

1

σ

σ

+×

+

a00

a01

a10

a11

1

σ

σ

+

1

σ

σ

+

1

σ

σ

+
×

1

σ

σ

+×
×

+

a00

a01

a10

a11

. . .

. . .

+

+

. . .

. . .

et cetera (M i.i.d. copies)x +
M∑

i=1

∑
U∈2[n]

aU

M
Ψ(x,(w ⊙1U)⊙fU,i)

1
M

1
M

1
M

1
M

−10 0 10
−1

−0.5

0

0.5

x

Truth ζ(x)∑M

i=1

∑
U∈2[n]

aU

M
Ψ(x, (w ⊙ 1U) ⊙ fU,i)∑

U∈2[n] aU Ψ(x, (w ⊙ 1U) ⊙ fU,1)∑
U∈2[n] aU Ψ(x, (w ⊙ 1U) ⊙ fU,128)∑
U∈2[n] aU Ψ(x, (w ⊙ 1U) ⊙ fU,256)

Figure 4.3.3: An approximation of ζ with a large NN using dropconnect, based on the base
Cybenko NN in (4.15) depicted in Figure 4.3.1. Adding many independent
copies of the network from Figure 4.3.2, we are leveraging the law of large
numbers as in (4.16). Different independent copies of the network may have
a different realization of the filters, which is here depicted by the red crosses
on the edges.

140 Chapter 4. Universal approximation of dropout NNs

Example 17 (Node-dropout networks). Consider again the deep NN in (4.7) with node-
dropout as described in Section 4.2.2. The random NN in (4.14) is then again a node-
dropout NN. In this way, we recover [22, Theorem 3] (with h ≡ 0), which for ReLU acti-
vation functions and a target function ζ bounds

sup
x∈[0,1]d

Var(ζ(x)−Ψ(x,w ⊙f)). (4.17)

When F is the space of continuous functions with supremum norm, (4.17) can be bounded
by a constant times the square of the L2-norm. Hence, Theorem 14 approximates in a
stronger sense, namely, in Lq for any q ∈ [1,∞). Moreover, Theorem 14 also allows for
activation functions other than ReLU.

Example 18 (Dropout networks with dropout on input). In contrast, if there is also
dropout on the input, then the NN in (4.14) is not again a dropout NN with dropout on
the inputs. Results by [22] imply that in general NNs with dropout on the input cannot
satisfy a universal approximation property.

We remark that this kind of stochastic network is not a dropout NN defined in Sec-
tion 4.2.2 as the following example shows: Suppose that Ψ1,Ψ2 : Rd ×Rn → R are two
different dropout NNs with weights w1,w2 and with respective filter random variables f,g

with values in {0,1}n. Then we can define the dropout NN Ψ with value

Ψ(x,(w1 ⊙f,w2 ⊙g)) = Ψ1(x,w1 ⊙f)+Ψ2(x,w1 ⊙g). (4.18)

Suppose that, additionally, we add independent filters h1 and h2 with values in {0,1}d to
Ψ1,Ψ2 for their respective inputs. Then, Ψ1(x⊙h1,w1)+Ψ2(x⊙h2,w2) is not necessarily
of the type Ψ(x⊙h,(w1,w2)) for some random variable h with values in {0,1}d.

As the above examples illustrate, a crucial aspect of whether a certain class of dropout
NNs (such as dropconnect or node-dropout) satisfy a universal approximation property, is
whether linear, independent combinations of such networks are again networks in the same
class. On the other hand, many details of the NNs, such as them being a composition of
simpler functions, are irrelevant for the proof of Theorem 14.

4.3.3 The classes DDNN
The classes DDNN of tuples (n,Ψ,f) are closed under linear, independent combinations
and they are the basic objects with which we want to approximate a given function ζ ∈ F .

The convergence statement (4.14) of Theorem 14 then immediately implies Corollary 3
in Section 4.1. It expresses that if the class DDNN is rich enough to approximate any
function in F when all filter variables are set to 1 (the event in (4.4)), then for every
function in F there exists a dropout NN such that with high probability with regard to
the filter variables, the dropout NN also approximates the function.

The proof of Corollary 3 can be found in Appendix 4.A.2. This corollary can be
combined with deterministic universal approximation properties of certain classes of NNs
to obtain concrete universal approximation properties of dropout NNs. For instance,
because both the class of node-dropout networks and the class of dropconnect networks
form examples of a set DDNN, we obtain the following universal approximation property
by combining Corollary 3 in the introduction with a known universal approximation result
in [153, Proposition 1].

4.3.4 Explicit computation of coefficients 141

Corollary 6. Assume µ is a nonnegative probability measure on Rn with compact support,
absolutely continuous with respect to the Lebesgue measure. Take F = Lr(µ) for some
r ∈ [1,∞). Assume that the activation function σ : R → R is not equal to a polynomial
almost everywhere. Then for every ϵ > 0 there exists a one-hidden-layer dropconnect NN
(n,Ψ,g) such that

P[∥Ψ(·,w ⊙g)− ζ∥Lr(µ) > ϵ] < ϵ, (4.19)

and
E
[
∥ζ(·)−Ψ(·,w ⊙h)∥q

Lr(µ)

] 1
q

< ϵ.

There also exists a one-hidden-layer node-dropout NN with the same properties.

To further illustrate Corollaries 3 and 6, in Figure 4.3.4 we look at the approximation
in probability of our construction from Theorem 14.

−10 −5 0 5 10
−0.5

−0.25

0

0.25

0.5

z

Truth ζ(x)
Cybenko NN Φ(x,v)

Cybenko NN Φ(x,v) ± ε

Constructions Ψ(x,w ⊙ f)

Figure 4.3.4: An illustration of function approximation in probability with our construc-
tion. Here, M = 256, and 20 independent runs of the construction are shown
in red. Here, ϵ = 0.1 was chosen for illustrative purposes. Most of the runs
lie within ϵ distance around the Cybenko NN from (4.15), which we approxi-
mate with our construction in (4.16). Altogether, we are approximating the
target function ζ.

4.3.4 Explicit computation of coefficients
To further illustrate Theorem 14, we will compute the coefficients aU in (4.13) explicitly for
a special case of dropout NNs for which the filter variables are partitioned into independent
blocks. All variables in one block i are all simultaneously off with probability 1 − pi and
simultaneously on with probability pi. Both node-dropout and dropconnect are special
cases.

142 Chapter 4. Universal approximation of dropout NNs

Proposition 16. Let f be a {0,1}n-valued random variable with a distribution specified
as follows. Let [n] = I1 ∪ . . .∪ Ir be a disjoint partition and suppose that fi = fj whenever
i, j ∈ Is for any i, j ∈ [n] and s ∈ [r]. Let f = (fI1 , . . . ,fIr) denote the random variables
ordered as blocks and suppose that P(fIs = 1) = ps > 0 for all s ∈ [r] and that {fIi

}i∈[r]
are mutually independent. Then

Ψ(·,w) =
∑

V ∈2[r]

∏
i∈V

(
1
pi

) ∏
i∈[r]\V

(
−1−pi

pi

)
E
[
Ψ(·,(w ⊙1ι(V))⊙fV)

]
where ι : 2[r] → 2[n] is the embedding characterized by j ∈ ι(V) if j ∈ Ii for some i ∈ V .

We prove Proposition 16 in Appendix 4.A.3. Note that as the remain probability
pi → 0 or equivalently the dropout probability 1−pi → 1, the coefficients aU become large.
From this fact, together with the observation that the sum is taken over the large set 2[r],
it is clear that the construction is computationally intensive. Still, small examples in the
case of dropconnect are shown in Figures 4.3.2, 4.3.3 and 4.3.4.

4.3.5 Limitation of the results to random-approximation dropout
In this section, we have shown a random-approximation universal approximation result,
i.e., a universal approximation result that is relevant when the dropout NN is also used at
prediction time by sampling from the random NN. In practice, as explained in Section 4.1.3,
the replacement of the filter random variables f by their expected values E[f] is common
practice after having trained a NN with dropout for prediction. The following example
shows that the previous construction in this section can lead to a bad approximation when
doing expectation-replacement.

Example 19. Let σ be the standard ReLU activation function. The approximation pro-
cedure in Corollary 3 would yield that the function ζ : R → R given by ζ(x) := σ(x−1) can
be approximated well by an average of many independent copies of the dropout NN

x 7→ 4f1σ(f2x−1),

where f1 and f2 are independent Bernoulli random variables with success probability 1/2.
However, replacing f1 and f2 by 1/2, we just obtain the function

x 7→ 2σ(x/2−1),

which is not a good approximation to the function ζ at all.

This example motivates us to look for a different approximation scheme that also has
the property that we can replace the random variables by their expectation. In the next
section we explain how this can be accomplished.

4.4 Universal approximation for expectation-replace-
ment dropout

We now get into the problem of approximating a NN by a dropout NN that is also close
to the original NN if the filter variables are replaced by their expected values. The main

4.4 Universal approximation for expectation-replacement dropout 143

result in this section is Theorem 28 below. Informally, it states that for any base NN
Ψ(·,w), there exists a larger NN, denoted by NNΓ,Ξ(·,v), and filter variables f such that

NNΓ,Ξ(x,v ⊙f) ≈ Ψ(x,w) ≈ NNΓ,Ξ(x,v ⊙E[f]). (4.20)

The basis for this approximation technique is by adding repeated weights. Namely, we
iteratively replace each edge in the deterministic NN Ψ by a set of parallel edges, with edge-
weights w taken from the original edge, and with independent filter variables on each of
them. In this way we can use the law of large numbers to obtain convergence estimates for
each edge separately, and then combine these estimates into a single convergence estimate
for the whole network.

The convergence estimate for a single edge arises from the following statement (which
is a simplified version of Lemma 35 below). It describes how the error encountered by
averaging N independently filtered edges can be controlled in probability. At the same time
it also allows for small perturbations of the inputs to this edge. This latter perturbation
freedom is needed in order to apply this lemma progressively, moving from edge to edge
through the network.

Lemma 33. Consider any continuous function σ : Rm → Rm and let W ∈ Rm×n, b ∈ Rm.
Let {F i}i∈[N] be a collection of independent copies of a random matrix F ∈ {0,1}m×n.
Then for every K > 0 there exists a δ > 0 such that

sup
x∈B(0,K)

sup
(x̃i)∈B(x,δ)N

∣∣∣∣σ(1
N

N∑
i=1

(W ⊙F i)x̃i + b

)
−σ
(

(W ⊙E[F i])x+ b
)∣∣∣∣ (4.21)

converges to zero in probability as N → ∞.

This construction is described in detail in the following sections. A separate part of
this description is how to connect the resulting dropout NN to the inputs of the now
random original layer; for this we introduce a single additional layer that implements this
connection.

Global variables
In order to improve the readability, we fix for the entire section a few (otherwise arbitrary)
variables. Throughout this section:

(i) The base NN Ψ is assumed to be a fixed (L − 1)-hidden layer NN as described in
Section 4.2.1. We assume that its activation functions σj are continuous. We also
keep the weights W (j) and biases b(j) fixed.

(ii) We fix a number R > 0, which will play the role of the radius of a ball in the input
space.

(iii) We fix a number β ∈ (0,1) and assume that for every random filter matrix F in this
section, each one entry is on with a probability that is larger than or equal to β, i.e.,
for all r,c,

P[Frc = 1] ≥ β > 0.

(iv) We assume there is a constant Q > 1, which will encode the differentiability of the
activation function of the input layer at the origin. We postpone its formal definition
for now.

144 Chapter 4. Universal approximation of dropout NNs

x

σ1

σ1

σ2

σ2

σ2

σ2

σ3

σ3

σ3

σ4 Ψ(x,w)

(W (1), b(1)) (W (2), b(2)) (W (3), b(3)) (W (4), b(4))

.x
.

... . Ψ(x,w)

Figure 4.4.1: An example base NN Ψ where L = 4. The top diagram indicates the in-
dividual activation functions and the dimensions of each layer of nodes:
d = d0 = 1, d1 = 2, d2 = 4, d3 = 3, and d4 = 1. The set of all arrows connect-
ing layer k −1 of nodes to layer k correspond to the parameters (W (k), b(k)).
The bottom diagram shows the same network, with the edges between layers
compressed to single arrows; this compressed notation is the basis for the
diagram in Figure 4.4.2 below.

4.4.1 Heuristic description of the construction
In this section we describe the construction of the larger dropout NN NNΓ,Ξ in heuristic
terms; the full details are given in the subsequent sections. The construction starts at the
last layer of the base NN Ψ, which is a function ΨL : RdL−1 → RdL given by

x 7→ σL

(
W (L)x+ b(L)). (4.22)

We construct the last layer of the larger dropout NN such that it remains close to (4.22)
as follows. Let N ∈ N and consider any collection {F (L),i}i∈[N] of i.i.d. random filter
matrices such that for each i, F (L),i has the same dimension as W (L). By the law of large
numbers, we can expect that the function

x 7→ σL

(
1
N

N∑
i=1

((
W (L) ÷E[F (L),i]

)
⊙F (L),i

)
x+ b(L)

)
(4.23)

will be close to the function ΨL for sufficiently large N . Here, we write ÷ for element-wise
division.

Viewed as a one-layer NN, the function (4.23) is a one-layer dropout NN with N times
as many edges as ΨL, and it can replace (4.22), i.e., ΨL, while staying close to ΨL.

A further adaptation is necessary, however, because in (4.23) each copy W (L) ÷
E[F (L),i] takes the same input x ∈ RdL−1 . To make (4.23) a bona fides dropout network,
different edges should take different inputs, and therefore we generalize (4.23) to

(RdL−1)N ∋ (xi)i∈[N] 7→ σL

(
1
N

N∑
i=1

((
W (L) ÷E[F (L),i]

)
⊙F (L),i

)
xi + b(L)

)
. (4.24)

4.4.2 Dropout–trees 145

By precomposing each of the inputs xi with Ψ(L−1), and performing the same construction
as above (copying the input to these copies of Ψ(L−1)), we can inductively create our larger
dropout NN NNΓ,Ξ that will be close to Ψ.

There are now three points of attention:

• The intuitive statement ‘repeating this construction’ needs a formalization by an
inductive construction. This requires a mathematical object that can record the
intermediate stages of the construction.

• We need to show inductively that the resulting intermediate NNs are close to (a
network closely related to) the original network. In particular, we need to introduce a
mathematical specification of ‘close’ that is compatible with an inductive argument.

• The input space to the NN in this construction grows with each step, whereas we
still aim to have a final NN with data space Rd. This requires us to deal with the
first layer of the network differently.

These points are the topics of the subsequent sections.

4.4.2 Dropout–trees
We will encode the intermediate stages of our inductive construction by a mathematical
object that we will refer to as a dropout–tree. The idea is that we start with a root, then
attach incoming edges labeled with random filter matrices to it (creating leaves), and then
recursively attach even more edges to the leaves. To be consistent with the numbering of
layers in Section 4.2.1, here, we will prefer to speak about the level j of a vertex or an
edge in a tree rather than its depth L − j (the latter is also an established term in graph
theory, and this aligns our notation with that of the NN). In this numbering, the root is
therefore at level L.

Definition 20. A vertex v of a rooted tree is at level j ∈ {0,1, . . . ,L} if the path from v to
the root v0 has length L− j. An edge e = (u,v) of a rooted tree is at level j ∈ {0,1, . . . ,L}
if its target vertex v is at level j.

From now on we will write σv for σlevel(v), W v for W (level(v)), bv for b(level(v)), et cetera.
This simplifies the notation at only a minor cost of abuse of notation.

Definition 21. A dropout–tree Γ of an (L−1)-hidden layer NN Ψ is a directed graph G
together with a labeling of the edges such that:

• the graph G is connected and acyclic;

• one of the vertices, say v0, is designated as the root;

• the depth of the tree is at most L−1;

• all directed edges point towards the root;

• every edge e is labeled with a random matrix F e; for each e

(a) F e has the same dimension as W target(e)

(b) F e’s entries are {0,1}-valued

146 Chapter 4. Universal approximation of dropout NNs

(c) for all entries (r,c) of F e, P[F e
rc = 1] ≥ β > 0;

• for every vertex v that is not a leaf, {F e}e∈into(v) is a collection of mutually inde-
pendent, identically distributed random matrices.

For convenience we recall some terminology. A directed edge points from a source to
a target, and for an edge e we identify them by source(e) and target(e); we write into(v)
for the set of all edges with target vertex v. In the trees throughout this article, all edges
point towards the root of the tree. A vertex v is a child of a vertex w if there is an edge
pointing from v to w; w then is the parent of v. A leaf is a vertex without children.

Dropout–trees can be constructed iteratively by starting from the trivial dropout–tree
consisting only of a root and then performing a so-called µ-input-copy construction. This
allows us to inductively create a larger dropout–tree from a smaller dropout–tree.

Definition 22. Let Γ be a dropout–tree and let ℓ be a leaf of Γ at level k. Let µ be a
distribution of a random matrix F ∈ {0,1}dk×dk−1 that satisfies for all r,c, P[Frc = 1] ≥
β > 0. A dropout–tree Γ′ is a µ-input-copy to the leaf ℓ of Γ if one can obtain Γ′ from Γ by:
(a) attaching child vertices to ℓ, and (b) labeling each edge going into ℓ by an independent
copy of F . The size of a µ-input-copy to ℓ at Γ refers to the number of children of ℓ in Γ′.

Let us describe the precise meaning of procedure (b) in Definition 22. For that, it may
be useful to recall that random matrices are nothing but measurable functions defined
on the probability space (Ω,FΩ,P). The procedure (b) precisely means that the sigma-
algebras generated by the filter variables F e with e ∈ into(ℓ) are independent, and that
for every e ∈ into(ℓ) the law of F e equals µ. In particular, this condition allows for some
correlation between filter variables labeling edges in the dropout–tree that do not go into ℓ.
Moreover, in general there can be many different dropout trees Γ′ that are µ-input-copies
of Γ.

We will now describe how a dropout–tree encodes a dropout NN.

Dropout NNs encoded by dropout–trees

Each dropout–tree Γ will induce a stochastic function Φv0
Γ —a dropout NN—as follows.

For any edge e = (u,v) of Γ, let

V e
Γ := W e ÷E[F e] (4.25)

be rescaled weights for the dropout NN. We define

Φv
Γ :=

{
σv

(
1

#into(v)
∑

e∈into(v)(V
e ⊙F e)Φsource(e)

Γ + bv
)

if v is not a leaf,

IdentityRdv if v is a leaf.

Figure 4.4.2 illustrates this construction, based on the network Ψ depicted in Figure 4.4.1.

4.4.3 Dropout NNs from dropout–trees are close to deterministic
NNs

We will give an inductive argument that Φv0
Γ is close to Φv0

Γdet
. Here, Γdet denotes the same

dropout–tree as Γ except for the fact that we have replaced each and every filter variable

4.4.3 Dropout NNs from dropout–trees are close to deterministic NNs 147

deterministically by its expectation. Loosely speaking, the inductive argument implies
that dropout NNs induced by dropout–trees are close to their deterministic counterparts.

As a technical preparation, we define a sequence of radii R0,R1, . . . ,RL. The idea is
that these provide bounds on the output after applying several layers, no matter the choice
of filter variables or weights in the upcoming construction. Denote the Hilbert–Schmidt
norm of a matrix A by ∥A∥HS =

√
Tr(AT A) and let I be an identity matrix of suitable

size. Given the radius R > 0, defined as a global variable at the start of this section, we
set

R0 := Q

β
R +1,

and then choose Rj inductively such that for all j ∈ [L], x ∈ B(0,β−1∥W (j)∥HSRj−1 + 1)
it holds that ∣∣∣Ψj

(
x,
(
I,b(j)))∣∣∣< Rj −1,s (4.26)

for all j = [L], where β ∈ (0,1) and Q > 1 were two of the global variables that we defined
at the beginning of the section.

We denote the input space of a network induced by a dropout–tree Γ by InpΓ. That
is, InpΓ is the vector space

(xℓ ∈ Rdlevel(ℓ) | ℓ ∈ leaves(Γ)).

We endow InpΓ with the norm

∥(xℓ)∥InpΓ := max
l∈leaves(Γ)

∥xℓ∥
Rdlevel(ℓ) .

We define InΓ : Rd → InpΓ to be the collection of functions, indexed by leaves ℓ of Γ, that
are generated by those layers in the base network Ψ that are not represented in Γ at leaf
ℓ:

Inℓ
Γ(x) :=

(
Ψlevel(ℓ)(·,(W (level(ℓ)), b(level(ℓ))))◦ · · · ◦Ψ1(·,(W (1), b(1)))

)
(x). (4.27)

Note that by the definitions (4.26) of the radii Rj we have

Inℓ
Γ
(

B(0,R)
)

⊂ B(0,Rlevel(ℓ) −1). (4.28)

We say that a dropout–tree Γ satisfies property ApPropΓ(δ,ϵ) if

P
[

sup
x∈B(0,R)

sup
x̃∈B(InΓ(x),δ)

∣∣Φv0
Γ (x̃)−Φv0

Γdet
(InΓ(x))

∣∣>
ϵ

2

]
<
(ϵ

4RL

)q

. (4.29)

Lemma 34 below shows that one can always construct a full dropout–tree that satisfies
ApPropΓ(δ,ϵ) for some δ > 0, by copying inputs at vertices.

Lemma 34. Let Γ be a dropout–tree and let ℓ be a leaf of Γ at level k > 1. Let µ be the
distribution of a random matrix F ∈ {0,1}dk×dk−1 that satisfies for all r,c, P[Frc = 1] ≥
β > 0. If Γ satisfies ApPropΓ(δ,ϵ) in (4.29) for some δ,ϵ > 0, then for every sufficiently
large µ-input-copy Γ′ of Γ at ℓ there exists a δ′ > 0 such that Γ′ satisfies ApProp(Γ′)(δ′, ϵ).

The proof of Lemma 34 is relegated to Appendix 4.B.1. There, we show that Lemma 34
follows from Lemma 35, which is presented next and proved in Appendix 4.B.2.

148 Chapter 4. Universal approximation of dropout NNs

Lemma 35. Consider any continuous function σ : Rm → Rm and let W ∈ Rm×n, b ∈ Rm.
Let {F i}i≥1 be a sequence of mutually independent copies of a random matrix F ∈ Rm×n

that satisfies: for r ∈ [m] and c ∈ [n], 0 < E[Frc] < ∞ and 0 ≤ Frc ≤ M < ∞ w.p. one. Let
V := W ÷E[F]. Then, for every 0 ≤ K < ∞ and ρ > 0 there exists a δ > 0 such that

P
[

sup
x∈B(0,K)

sup
(x̃i)∈B(x,δ)

N

∣∣∣σ(1
N

N∑
i=1

(V ⊙F i)x̃i + b
)

−σ(Wx+ b)
∣∣∣> ρ

]
→ 0 (4.30)

as N → ∞.

4.4.4 Replacing the first layer
We examine now the first layer of the NN and consider first the case that we do not use
dropout. Later, we will consider the case when we also have dropout in the first layer.

Copying the first layer many times, without dropout of input edges

We will now start from a full dropout–tree and connect copies of the first layer many
times to obtain a NN that approximates the original NN well, both in terms of random
approximation and in terms of expectation replacement. In this section, it is crucial that
there is no dropout of edges in this very first layer.

Assume therefore that we have constructed a full dropout tree, i.e., a dropout tree
of which all leaves are at level 1 (at depth L − 1). We denote by NNΓ,Ξ the NN that is
formed by precomposing every leaf ℓ of the NN Φv0

Γ induced by the dropout tree by the
first layer of the original network. To align with the next section, we denote this function
by Ξℓ := Φ(1)(·,(W (1), b(1))). We also let NNavg−filt

Γ,Ξ denote almost the same network, but
with the modification that every random filter variable is replaced by its expectation.

The next theorem expresses that this construction yields a dropout NN that approx-
imates the original NN well in terms of random approximation and expectation replace-
ment.

Theorem 23. Let 1 > ϵ > 0. Let Γ be a full dropout–tree satisfying ApPropΓ(δ,ϵ) for some
δ > 0. Let NNΓ,Ξ and NNavg−filt

Γ,Ξ be the networks described above, or more precisely defined
in Example 25. Then

P
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣> ϵ

]
< ϵ (4.31)

and
E
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣q]1/q

< ϵ, (4.32)

while
sup

x∈B(0,R)

∣∣∣NNavg−filt
Γ,Ξ (x)−Ψ(x,w)

∣∣∣< ϵ. (4.33)

Theorem 23 follows from Theorem 28 below, which pertains to the more general case
in which edges in the input layers can be dropped. Indeed, if in Theorem 28 one takes
σ0 : R → R to be the identity function and one sets all filter variables deterministically
equal to 1, then for every α and N , the networks constructed in Theorem 28 coincide
exactly with NNΓ,Ξ and NNavg−filt

Γ,Ξ introduced in Theorem 23.

4.4.4 Replacing the first layer 149

First layer, with dropout of input edges

The situation becomes more complicated if we allow for dropout of edges in every layer,
particularly the first. In this section we will show that we can also in that case find a
dropout NN that approximates the original NN well both in terms of random approxima-
tion and in terms of expectation replacement.

Assume again that we have constructed a full dropout–tree, that is, a dropout–tree of
which all leaves are at level 1 (i.e., at depth L−1). This means that we have constructed
suitable replacements for almost every layer of the NN, except for the first layer. This
layer contains the edges that have the global input as source. Replacing the first layer
requires a different construction: if we would outright drop edges in the first layer, then
we can not control the error with the current technique. We now describe how we replace
the first layer.

For every leaf ℓ in the full dropout–tree, we precompose every input at ℓ with a stochas-
tic function Ξℓ : Rd0 → Rd1 . We record this information in what we call a precomposition
for a dropout–tree. Figure 4.4.2 illustrates this precomposition.

Definition 24. A precomposition Ξ for a full dropout–tree Γ is a map Ξ : leaves(Γ) →
(Rd0 → Rd1) that sends every leaf ℓ ∈ leaves(Γ) to a stochastic function Ξℓ : Rd0 → Rd1 .

Let ∆ : Rd0 → (Rd0)leavesΓ be the diagonal map sending x to copies of x. The NN
induced by the full dropout–tree Γ and a precomposition Ξ that we consider is given by

NNΓ,Ξ := Φv0
Γ,Ξ ◦∆ (4.34)

where

Φv
Γ,Ξ =

{
σv

(
1

#into(v)
∑

e∈into(v)(V
e ⊙F e)Φsource(e)

Γ,Ξ + be
)

if v is not a leaf,

Ξv if v is a leaf.
(4.35)

We also define NNavg−filt
Γ,Ξ as being almost the same NN as NNΓ,Ξ, with the only difference

being that we replace each random filter variable F e in (4.35) with its expectation E[F e].
Recall for (4.34) that v0 designates the root of the dropout–tree, and note that (4.35)
constructs the NN recursively (layer by layer).

Example 25. In fact, we already examined one specific precomposition Ξ in Section 4.4.4:
the one that assigns the function Ψ1(·,(W (1), b(1))) to every leaf. This precomposition
yields a NN NNΓ,Ξ in which edges in the first layer, i.e., the input edges of the NN, are
never dropped. In this case, NNavg−filt

Γ,Ξ (w) actually coincides with the original NN Ψ(·,w).

We will now construct precompositions that allow for the possibility of dropping edges
in the first layer and applying e.g., the ReLU function to them immediately. Concretely, we
will add a zeroth layer with an activation function σ0 : R → R. We assume that σ0(0) = 0
and that σ0 has one-sided derivatives σ− and σ+ in the point 0 ∈ R:

σ− := lim
α↓0

σ0(−α)−σ0(0)
α

, σ+ := lim
α↓0

σ0(+α)−σ0(0)
α

. (4.36)

Define the sign function

S(x) =

{
− if x < 0,

+ if x ≥ 0
(4.37)

150 Chapter 4. Universal approximation of dropout NNs

. NNΓ,Ξ(x)

...

...

...

...

.

...

.

..

..

..

..

.

.

∆x

σ4σ3σ2σ1σ0︸ ︷︷ ︸
Ξ

rootlevel 3level 2leaves at
level 1level 0copying

Figure 4.4.2: An illustration of how we use the base NN Ψ from Figure 4.4.1 and a dropout–
tree (indicated with thicker arrows) to ultimately construct the larger NN
NNΓ,Ξ in which edges are being dropped stochastically. Here, L = 4.

4.4.4 Replacing the first layer 151

componentwise. If x ̸= 0, then σS(−x) +σS(x) = σ− +σ+ does not depend on x—a critical
fact that we will leverage in our construction.

Example 26. Consider a zeroth layer that is the identity function, i.e., σ0(y) = y. Then
σ± = 1. Choosing σ0 as the identity function is allowed here, and means that the layer is
not adapted.

Example 27. Consider a zeroth layer with ReLU activation function, σ0 := ReLU(z) :=
z1[z ≥ 0]. Then σ− = 0 and σ+ = 1.

The precompositions that we employ are as follows. We call Ξ an (α,N)-precomposi-
tion associated with a set of distributions {µℓ,νℓ}l∈leaves(Γ) if for each leaf ℓ,

Ξℓ(x) := σ1

(1
N

2N∑
i=1

(−1)i(V ℓ ⊙F ℓ,i)σ0
(
(−1)iα(I ⊙Gℓ,i)x

)
+ bℓ

)
(4.38)

where element-wise

V ℓ
rc = W

(1)
rc

α
(
σ− +σ+

)
E[F ℓ

rc]E[Gℓ
cc]

, (4.39)

and {F ℓ,i}i≥1, {Gℓ,i}i≥1 are sequences of mutually independent copies of random matrices
F ℓ,Gℓ that have distributions µℓ, νℓ, respectively. Furthermore, the F ℓ are presumed to
have the same size as W (1), and the Gℓ to have size d0 ×d0. Note that these assumptions
allow us to place unit mass on any particular outcome and thus to replace F ℓ,Gℓ by
deterministic counterparts.

The idea of (4.38) is that it represents two layers of a dropout NN that satisfies the
approximation properties we are after. The functions σ1, σ0 can be understood as their
activation functions, the matrices V ℓ, αI as their weights, bℓ as a bias, and the matrices F ℓ,
Gℓ as describing which edges and inputs are randomly removed. By scaling the weights
V ℓ by 1/(2N) and generating 2N independent copies of the first layer, we are preparing
for an application of the law of large numbers. Furthermore, by allowing for arbitrarily
small α, we are preparing for a linearization of σ0 around 0. Finally, the alternatingly
positive and negative multiplicative factors (−1)i allow us to cover directional derivatives
such as that of the ReLU activation function. All together, the construction allows us to
prove the following theorem.

Theorem 28. Fix 0 < ϵ < 1. Let Γ be a full dropout–tree satisfying ApPropΓ(δ,ϵ) for
some δ > 0. Let Ξ be an (α,N)-precomposition associated with a set of distributions
{µℓ,νℓ}ℓ∈leaves(Γ). For every ℓ, if F is a matrix of filter variables distributed according to
µℓ or νℓ, then for every r,c, we assume that

P[Frc = 1] ≥ β > 0.

Let σ0 : R → R be a continuous function with one-sided derivatives σ− and σ+ in 0, such
that σ− + σ+ ̸= 0 and such that σ0(0) = 0. Assume moreover that σ− and σ+ satisfy the
following inequality with respect to the global variable Q:

4 |σ−|+ |σ+|
|σ− +σ+|

< Q. (4.40)

152 Chapter 4. Universal approximation of dropout NNs

The following inequalities now hold for α > 0 small enough and N ∈ N large enough:

P
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣> ϵ

]
< ϵ (4.41)

and
E
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣q]1/q

< ϵ, (4.42)

while
sup

x∈B(0,R)

∣∣∣NNavg−filt
Γ,Ξ (x)−Ψ(x,w)

∣∣∣< ϵ. (4.43)

An important consequence of Theorem 28 is that we obtain for instance a universal
approximation result for node-dropout and dropconnect NNs with ReLU activation func-
tions that also guarantees a good approximation when filter variables are replaced by their
averages, as formalized by Corollaries 4 and 5 in the introduction. Theorem 28 is proven
in Appendix 4.B.3. There, we show that Theorem 28 follows from the following Lemma 36,
which in turn is proven in Appendix 4.B.4 using compactness arguments and the law of
large numbers.

Lemma 36. Let σ0 :R→R be a continuous function with σ(0) = 0 and with two one-sided
derivatives σ− and σ+ in 0 satisfying |σ− + σ+| > 0. Let Ξ be an (α,N)-precomposition
associated with a set of distributions {µℓ,νℓ}l∈leaves(Γ) such that for all ℓ,r,c, E[F ℓ

rc] >

0,E[Gℓ
rc] > 0, 0 ≤ F ℓ

rc ≤ M w.p. one, and 0 ≤ Gℓ
rc ≤ M < ∞ w.p. one. The following now

holds: for every leaf ℓ, 0 ≤ K < ∞, and ρ > 0, for α small enough and N large enough,

P
[

sup
x∈B(0,K)

∣∣Ξℓ(x)−Ψ1(x; (W (1), b(1)))
∣∣> ρ

]
< ρ (4.44)

and
sup

x∈B(0,K)

∣∣Ξℓ,avg−filt(x)−Ψ1(x; (W (1), b(1)))
∣∣< ρ (4.45)

where Ξℓ,avg−filt denotes the function Ξℓ in (4.38) but with each filter variable F ℓ,i replaced
by its expectation E[F ℓ] .

4.5 Discussion
In this chapter, we showed that dropout NNs are rich enough for a universal approximation
property to hold, both for random-approximation and expectation-replacement dropout.
It is further evidence that the representational capacity of NNs is so large that approxima-
tions are possible despite significant additional constraints. In the case of dropout, these
additional constraints are the implicit symmetry constraints enforced by the turning on
and off of the filter variables. For instance, in dropconnect for most realizations of the
filter variables the output of the dropconnect NN still approximates the original NN well
after the filter variables are randomly permuted. Despite the enforced invariance with
respect to this operation, there is enough room in the parameter space for the weights of
the network to have a good approximation for the overwhelming majority of realizations
of the filter variables.

4.6 Conclusion 153

Our proof of the universal approximation property for random-approximation dropout
explicitly works with this symmetry. By this, we mean the following. The universal
approximation property that we show even works when edges from the input nodes are
dropped at random. The output in the first hidden layer is then inherently random,
and in no way close to deterministic. This is in contrast with for instance the universal
approximation property in [22] in which the layers are all very close to deterministic. In
our case, the values in the nodes are random but we do have a good understanding of
the distribution of the values in the nodes, and two stochastic realizations are most likely
almost permutations of each other. By blowing up the first layer, i.e., repeating it many
times in parallel, we then know the output very well up to this permutation symmetry
and this turns out to be enough for us to show a universal approximation property.

Our results and methods have several limitations. Specifically, we only show the
existence of dropout NNs close to a given function. It is a completely separate question
whether an algorithm such as dropout stochastic gradient descent would actually be able
to find such an approximation. The main message of our result is that at least there is no
theoretical obstruction to approximating functions with dropout NNs.

In the proofs, we used very explicitly that filter variables only take on the values zero
or one, while other forms of dropout also exist (for instance with Gaussian filter variables).
Our algebraic proof does not readily generalize to this more general case, but it is possible
that parts of the proof could be reused.

In this chapter we made no efforts to reduce the number of parameters of the approxi-
mating networks, and indeed the number of parameters can rapidly grow with increasing
dimensions of the parameter w. This can for instance be recognized in the exponential
number of additional parameters aU in Theorem 14, the large (but algebraic) number M of
copies that is required to reduce variance in (4.14), and the exponential increase of leaves
in dropout–trees with increasing depth. Naturally, understanding optimal approximation
rates in terms of parameter dimensions is a key question, but we leave this to future work.

4.6 Conclusion

We showed two types of universal approximation results for dropout NNs, one for random-
approximation dropout, in which case the random filter variables are also used at predic-
tion time, and one for expectation-replacement dropout, in which case the filter variables
are replaced by their averages for prediction. Our results allow for dropout of edges from
the input layer, allow for a wide class of distributions on filter variables, including dropout
of edges from the input layer, and for a wide class of activation functions.

By making the distinction between random-approximation and expectation-replacement
dropout explicit, our results contrast with the success of using expectation-replacement
after training NNs with dropout. This fact suggests that the training procedure actually
constrains the class of dropout NNs that are found in practice by more than just ensuring
good random approximation properties.

154 Chapter 4. Universal approximation of dropout NNs

Appendix

4.A Proofs of Section 4.3
In this appendix we prove the results of Section 4.3. In particular, we prove Theorem 14,
Corollary 3 and Proposition 16.

4.A.1 Proof of Theorem 14
We require the following algebraic lemma, which lies at the heart of Theorem 14, as it
implies the existence of the constants (aU).

Lemma 37. Let Ψ :Rd ×Rn →R be a function. Let (fU) be a collection of {0,1}n-valued
random variables indexed by subsets U ⊂ [n], such that for every U

P[fU = (1, . . . ,1)] > 0.

Then for every subset V ⊂ [n], it holds that

Ψ(·, ·⊙1V) ∈ span
{
E
[
Ψ(·,(·⊙1U)⊙fU)

]
: U ∈ 2[n]

}
,

where for any subset S ∈ 2d, i.e., S ⊂ {1, . . . ,d}, we denote by 1S the characteristic function
of S.

In other words, there exist constants (aU,V)U∈2[n] independent of w and x such that
for all (x,w) ∈ Rd ×Rn

Ψ(x,w ⊙1V) = E

 ∑
U∈2[n]

aU,V Ψ(x,(w ⊙1U)⊙fU)

 ,

and in particular there exist constants αU such that

Ψ(x,w) = E

 ∑
U∈2[n]

aU Ψ(x,(w ⊙1U)⊙fU)

 .

Proof. The proof is by induction on the cardinality of V and follows from the equality(∑
S:V ⊂S

P[fV = 1S]
)

Ψ(·,w ⊙1V) = E
[
Ψ(·,(w ⊙1V)⊙fV)

]
−

∑
S:V \S ̸=∅

P[fV = 1S]Ψ(·,w ⊙1S∩V). (4.46)

In particular, for the base case in which V is empty, the last term vanishes. In the
induction step, the functions Ψ(·,w ⊙ 1S∩V) are by the induction hypothesis all in the
required span. 2

Proof. (of Theorem 14) By Lemma 37, we can find constants aU for U ∈ 2[n] such that
(4.13) holds. We look now at (4.14). By the law of large numbers, convergence in proba-
bility in the normed vector space (F ,∥ · ∥) follows. Moreover, for any V ∈ 2[n] we have

∥Ψ(·,(w ⊙1V)⊙fV)∥F ≤ max
U∈2[n]

∥Ψ(·,(w ⊙1U)⊙fU)∥F =: Cw, (4.47)

4.A.2 Proof of Corollary 3 155

so that for any q ∈ [1,∞) and M ,

E
[∥∥∥ 1

M

M∑
i=1

∑
U∈2[n]

aU Ψ(·,(w ⊙1U)⊙f i,U)
∥∥∥q

F

] 1
q ≤ max

U∈2[n]
|aU |Cw. (4.48)

With uniform boundedness for all M , we can use the dominated convergence theorem
which implies then convergence in Lq of the F-valued random variables as M → ∞. 2

4.A.2 Proof of Corollary 3
Proof. Let ζ ∈ F and let ϵ > 0. Assume there exist a (m,Φ,f) ∈ DDNN and a v ∈ Rm

such that ∥Φ(·,v)− ζ∥F < ϵ. Define η := ϵ−∥Φ(·,v)− ζ∥F > 0. Define the collection (fU)
of {0,1}m-valued filter variables, each being specifically an independent copy of f . By
Theorem 14, there exist constants (aU), a number M ∈ N and 2mM independent copies
(f i,U) of f such that

P
[∥∥∥ 1

M

M∑
i=1

∑
U∈2m

aU Φ(·,(v ⊙1U)⊙f i,U)−Φ(·,v)
∥∥∥

F
> η
]

< η

and

E
[∥∥∥ 1

M

M∑
i=1

∑
U∈2m

aU Φ(·,(v ⊙1U)⊙f i,U)−Φ(·,v)
∥∥∥q

F

]1/q

< η.

Hence by the triangle inequality, in fact

P
[∥∥∥ 1

M

M∑
i=1

∑
U∈2m

aU Φ(·,(v ⊙1U)⊙f i,U)− ζ
∥∥∥

F
> ϵ
]

< ϵ

and

E
[∥∥∥ 1

M

M∑
i=1

∑
U∈2m

aU Φ(·,(v ⊙1U)⊙f i,U)− ζ
∥∥∥q

F

]1/q

< ϵ.

We then define the tuple (n,Ψ,g) ∈ DDNN as an independent finite linear combination
of 2mM copies of (m,Φ,f), with coefficients aU /M . Setting ṽ ∈ R2mm to be the con-
catenation of the 2m modified vectors (v ⊙ 1U)U⊂[m], we then set w ∈ R2mMm to be
the subsequent concatenation of M copies of ṽ. Combining (n,Ψ,g) and w proves the
corollary. 2

4.A.3 Proof of Proposition 16
As we have seen in Lemma 37, we can find the map Ψ(·,w) in the span of E[Ψ(·,(w ⊙
1V) ⊙ fV] for V ∈ 2[n]. We examine now specific cases where we can explicitly compute
the linear combination. In particular, we consider the cases of dropout [117], that is, we
drop nodes independently with the same probability, and dropconnect [115], where we
drop individual weights independently with the same probability.

In both cases the filter variables fi take the same values for some disjoint subsets of
[n], where n is the number of weights where we apply filters. That is, if we have a disjoint

156 Chapter 4. Universal approximation of dropout NNs

set decomposition [n] = I1 ∪ . . . ∪ Ir with Ik ∩ Is = ∅ whenever k ̸= s, then fi = fj for all
i, j ∈ Ik and fi,fl are independent if they belong to disjoint sets, fi ∈ Ik and fl ∈ Is with
s ̸= k. In this section we drop the index U ∈ 2[n] of the random variable fU for notational
convenience as they are identically distributed. We will use this property to obtain an
explicit decomposition in (4.13) and in a more general setting where the probability of
the filters may differ depending on which disjoint set they belong to. For K,S ∈ 2[n], we
denote K ⊆ S to be the usual set inclusion, that is, i /∈ K whenever i /∈ S for all i ∈ [n]
holds.

We need the following lemmas:

Lemma 38. Let 1 ≥ p1, . . . ,pr > 0 and r ∈ N. For K ∈ 2[r],

µK :=
∑

S:K⊆S

∏
i∈S

pi

∏
i∈[r]\S

(1−pi)
∏
i∈K

(1
pi

) ∏
i∈S\K

(
1− 1

pi

)
(4.49)

satisfies

µK =

{
1 if K = [r]
0 otherwise.

(4.50)

Proof. Let x1, . . . ,xr be free variables. For S ∈ 2[r] we denote the monomial xS =
∏

i∈S xi.
We will prove the identity by comparing coefficients of two equal polynomials. We have

q(x1, . . . ,xr) =
r∏

i=1
(pixi +(1−pi)) =

∑
S∈2[r]

xS
∏
i∈S

pi

∏
i∈[r]\S

(1−pi), (4.51)

where we have expanded all |2[r]| monomials appearing in the decomposition of q. Now
we set xi = (1/pi)yi − (1−pi)/pi in (4.51). We have

q
(1

p1
y1 − 1−p1

p1
, . . . ,

1
pr

yr − 1−pr

pr

)
=

r∏
i=1

(
pi

(1
pi

yi − 1−pi

pi

)
+(1−pi)

)
=

r∏
i=1

yi = y[r]. (4.52)

On the other hand, if we substitute xi = (1/pi)yi − (1 − pi)/pi in the monomials xS in
(4.51) we have∑

S∈2[r]

xS
∏
i∈S

pi

∏
i∈[r]\S

(1−pi) =
∑

S∈2[r]

∏
i∈S

(1
pi

yi − 1−pi

pi

)
pi

∏
i∈[r]\S

(1−pi)

=
∑

S∈2[r]

∑
K∈2[r]:K⊆S

∏
i∈S

pi

∏
i∈[r]\S

(1−pi)
∏
i∈K

yi

(1
pi

) ∏
i∈S\K

(
−1−pi

pi

)
=
∑

K∈2[r]

yK
∑

S:K⊆S

∏
i∈S

pi

∏
i∈[r]\S

(1−pi)
∏
i∈K

(1
pi

) ∏
i∈S\K

(
1− 1

pi

)
=
∑

K∈2[r]

µKyK , (4.53)

so that we must have µK = 1 if K = [r] and zero otherwise. 2

4.A.3 Proof of Proposition 16 157

Let [n] = I1 ∪ . . . ,∪Ir be a partition of [n], i.e., Ij ∩Ii = ∅ if i ̸= j. We consider S ∈ 2[r]

also as an element of 2[n] via the inclusion ι : 2[r] → 2[n] given by j ∈ ι(S) if j ∈ Ii and i ∈ S,
i.e., we consider the index i as the set of all indices j ∈ Ii. Note then that ι([r]) = [n]. Recall
now that the filter random variables with values in {0,1}n are denoted by f = (f1, · · · ,fn)
. We suppose now that the filter random variables satisfy fi = fj whenever i, j ∈ Is for
some s ∈ [r]. We denote by Bs the {0,1}-valued random variable corresponding to the Is

part of [n]. We suppose that P(Bs = 1) = ps for all s ∈ [r], where ps is the probability of
success and 1 − ps the dropout probability. Moreover, we suppose that the (Bs)s∈[r] are
mutually independent. With this notation we have:

E
[
Ψ(·,w ⊙f)

]
=
∑

L∈2[r]

∏
i∈L

pi

∏
i∈[r]\L

(1−pi)Ψ(·,w ⊙1ι(L)). (4.54)

In the following lemma, we embed 2[r] into 2[n] as blocks according to a partition of
[n] using ι:

Lemma 39. For S ∈ 2[r],

E
[
Ψ(·,(w ⊙1ι(S))⊙f)

]
=

∑
K∈2[r]:K⊆S

∏
i∈K

pi

∏
i∈S\K

(1−pi)Ψ
(
·,w ⊙1ι(K)

)
. (4.55)

Proof. Let S ∈ 2[r]. Observe that f =
∑r

s=11[Bs = 1]1Is and note in particular that

g := 1ι(S) ⊙f =
(∑

s∈S

+
∑
s∈Sc

)
1[Bs = 1]1ι(S)∩Is

=
∑
s∈S

1[Bs = 1]1Is . (4.56)

Hence, g depends only on (Bs)s∈S and is thus moreover independent of (Bt)t∈Sc by as-
sumption. Consequently Ψ(·,w ⊙g) also depends only on (Bs)s∈S and is also independent
of (Bt)t∈Sc . The result then follows.

To see this in detail, suppose that S = {s1, . . . ,sm} and Sc = {t1, . . . , tr−m} say. By
expanding the expectation together with (i) independence to conclude that

E[Ψ(·,w ⊙g)] (4.56)=
1∑

b1=0

· · ·
1∑

br=0

Ψ(·,w ⊙
∑
s∈S

1[bs = 1]1Is)P[B1 = b1, . . . ,Br = br]

(i)=
1∑

bs1 =0

· · ·
1∑

bsm =0

Ψ(·,w ⊙
m∑

i=1
1[bsi = 1]1Isi

)P[∩m
i=1{Bsi = bsi}]

×
1∑

bt1 =0

· · ·
1∑

btr−m =0

P[∩r−m
j=1 {Btj = btj }]

︸ ︷︷ ︸
=1 as an axiom of the pdf

. (4.57)

Substitute

P[∩m
i=1{Bsi = bsi}] (i)=

m∏
i=1

P[Bsi = bsi] =
m∏

i=1
p

bsi
si (1−psi)

1−bsi (4.58)

and then apply the change of variables K(bs1 , . . . , bsm) = ∪m
i=1{si : bsi = 1} to identify the

right-hand side of (4.55). 2

158 Chapter 4. Universal approximation of dropout NNs

We can now prove Proposition 16:

Proof. (of Proposition 16) In the same notation as in Lemmas 38 and 39„ we use ps as
the success probability. Then, we can write∑
V ∈2[r]

∏
i∈V

(1
pi

) ∏
i∈[r]\V

(
1− 1

pi

)
E(Ψ(·,(w ⊙1ι(V))⊙f)

(Lemma 39)=
∑

V ∈2[r]

∏
i∈V

(1
pi

) ∏
i∈[r]\V

(
1− 1

pi

) ∑
K:K⊆V ∈2[r]

∏
i∈K

pi

∏
i∈V \K

(1−pi)Ψ(·,w ⊙1ι(K))

=
∑

V ∈2[r]

∑
K:K⊆V ∈2[r]

∏
i∈V

(1
pi

) ∏
i∈[r]\V

(
1− 1

pi

)∏
i∈K

pi

∏
i∈V \K

(1−pi)Ψ(·,w ⊙1ι(K))

=
∑

K∈2[r]

Ψ(·,w ⊙1ι(K))
∑

V :K⊆V ∈2[r]

(1
pi

) ∏
i∈[r]\V

(
1− 1

pi

)∏
i∈K

pi

∏
i∈V \K

(1−pi)

=
∑

K∈2[r]

Ψ(·,w ⊙1ι(K))µK

(Lemma 38)= Ψ(·,w ⊙1ι([r]))
= Ψ(·,w). (4.59)

With this last step we finally obtain Proposition 16. 2

4.B Proofs of Section 4.4
In this appendix we prove the results of Section 4.4. In particular we prove Lemmas 34,
35 and 36 as well as Theorem 28.

4.B.1 Proof of Lemma 34
Let Γ be a dropout tree. Let ℓ be a leaf of Γ at level k > 1. Let µ be the distribution of
a random matrix F ∈ {0,1}dk×dk−1 that satisfies for all r,c, P[Frc = 1] ≥ β > 0. Assume
that Γ satisfies ApPropΓ(δ,ϵ), i.e.,

P
[

sup
x∈B(0,R)

sup
x̃∈B(InΓ(x),δ)

∣∣Φv0
Γ ((x̃ℓ)ℓ)−Φv0

Γdet
(InΓ(x))

∣∣>
ϵ

2

]
<
(ϵ

4RL

)q

.

Define κ > 0 by

κ :=
(ϵ

4RL

)q

−P
[

sup
x∈B(0,R)

sup
x̃∈B(InΓ(x),δ)

∣∣Φv0
Γ (x)−Φv0

Γdet
(x̃)
∣∣>

ϵ

2

]
.

By Lemma 35, there exists an η > 0 and an N0 ∈ N such that for all N ≥ N0, if F i are
independent, identically distributed filter matrices distributed according to µ, and if V is
given by (4.25), then

P
[

sup
z∈B(0,Rk)

sup
(z̃)i∈B(x,η)N

∣∣∣σk

(1
N

N∑
i=1

(V ⊙F i)z̃i + b(k))−σk

(
W (k)z + b(k))∣∣∣> δ

]
< κ.

4.B.1 Proof of Lemma 34 159

Now let Γ′ be a µ-input-copy of Γ at ℓ of size N ≥ N0. Choose δ′ := min(δ,η).
Consider the event A that

sup
x∈B(0,R)

sup
x̃∈B(InΓ(x),δ)

∣∣Φv0
Γ ((x̃ℓ)ℓ)−Φv0

Γdet
(InΓ(x))

∣∣>
ϵ

2 ,

which (informally) means that the tree Γ provides a bad approximation. Consider also
the event B that

sup
z∈B(0,Rk−1)

sup
(z̃m)∈B(z,η)N

∣∣∣σk

(∑
e∈into(ℓ)

(V e ⊙F e)z̃m + be
)

−σk(W ez + be)
∣∣∣> δ.

Here, into(ℓ) refers to the dropout–tree Γ′. This event (informally) means that the added
part provides a bad approximation. Note that

P[A∪B] ≤ P[A]+P[B] < P[A]+κ =
(ϵ

4RL

)q

.

Next, let us show that on (A∪B)c one has

sup
x∈B(0,R)

sup
x̃∈B(InΓ′ (x),δ′)

∣∣Φv0
Γ′ ((x̃ℓ)ℓ)−Φv0

Γdet
(InΓ′(x))

∣∣≤ ϵ

2 . (4.60)

To do this, suppose that (A∪B)c holds and x ∈ B(0,R). For every leaf m ∈ children(ℓ)
in Γ′ define z := Inm

Γ′ (x) (recall the definition from (4.27)) and note that z ∈ B(0,Rk−1).
Let x̃ ∈ B(InΓ′(x), δ′). For every leaf m ∈ children(ℓ) define z̃m := x̃m ∈ B(z,η) by the
choice of δ′. Since Bc holds,∣∣∣σk

(∑
e∈into(ℓ)

(V e ⊙F e)z̃i + be
)

−σk(W ez + be)
∣∣∣≤ δ,

or, in other words,

σk

(∑
e∈into(ℓ)

(V e ⊙F e)z̃i + be
)

∈ B(Inℓ
Γ(x), δ).

Together with Ac this implies (4.60).
Finally, by the law of total probability, we estimate

P
[

sup
x∈B(0,R)

sup
x̃∈B(InΓ′ (x),δ′)

∣∣Φv0
Γ′ ((x̃ℓ)ℓ)−Φv0

Γdet
(InΓ′(x))

∣∣>
ϵ

2

]
= P
[

sup
x∈B(0,R)

sup
x̃∈B(InΓ′ (x),δ′)

∣∣Φv0
Γ′ ((x̃ℓ)ℓ)−Φv0

Γdet
(InΓ′(x))

∣∣>
ϵ

2

∣∣∣A∪B
]
P[A∪B]

+P
[

sup
x∈B(0,R)

sup
x̃∈B(InΓ′ (x),δ′)

∣∣Φv0
Γ′ ((x̃ℓ)ℓ)−Φv0

Γdet
(InΓ′(x))

∣∣>
ϵ

2

∣∣∣(A∪B)c
]
P[(A∪B)c]

<
(ϵ

4RL

)q

+0 =
(ϵ

4RL

)q

. (4.61)

This completes the proof of Lemma 34.
2

160 Chapter 4. Universal approximation of dropout NNs

4.B.2 Proof of Lemma 35
Let 0 ≤ K < ∞ and ρ > 0 be fixed. For every N < ∞, the suprema in (4.30) over x,(x̃i) are
in fact attained—say at X∗,(X̃i

∗)—because σ is continuous and the optimization domain is
closed and bounded. We need to now be careful because X∗,(X̃i

∗) depend on the collection
{F i}i∈[N].

Recall that the continuity of σ implies that σ is also uniformly continuous on each
compact set, i.e., for every ζ > 0 there exists an ηζ > 0 such that for all x,y from this
compact set

|x−y| < ηζ ⇒ |σ(y)−σ(x)| < ζ. (4.62)

Define X̄∗ := (1/N)
∑N

i=1 X̃i
∗. Then uniform continuity of σ implies that∣∣σ(WX̄∗ +b

)
−σ(Wx+b)

∣∣≤ sup
x∈B(0,K)

sup
y∈B(x,δ)

∣∣σ(Wy+b
)

−σ(Wx+b)
∣∣=: γδ < ∞. (4.63)

Moreover, γδ is independent of N . Remark also that

sup
f∈{0,1}m×n

sup
y∈B(0,δ)

1
E[F]

∣∣(W ⊙f −W ⊙E[F]
)
y
∣∣=: cδ < ∞, (4.64)

where f stands for all possible deterministic realizations of the filters F . Again, cδ is
independent of N . Finally, by construction there exists a compact set C ⊂ Rm such that
the points

1
N

N∑
i=1

(V ⊙F i)X̃i
∗ + b, WX̄∗ + b (4.65)

lie in C with probability one.
First, fix ζ = ρ/2. From uniform continuity of σ on the compact set C there exists

ηζ > 0 such that (4.62) holds for all x,y ∈ C. Second, observe that γδ → 0 and cδ → 0 as
δ → 0. Hence we can choose δ and fix it such that

0 < ζ < ρ−γδ and cδ < ηζ . (4.66)

Combining (4.63) with the triangle inequality and using (4.66), we arrive at

LHS (4.30) ≤ P
[∣∣∣σ(1

N

N∑
i=1

(V ⊙F i)X̃i
∗ + b

)
−σ
(
WX̄∗ + b

)∣∣∣︸ ︷︷ ︸
=:Z

> ρ−γδ

]
. (4.67)

Consider now the event

E =
{∣∣∣ 1

N

N∑
i=1

(V ⊙F i)X̃i
∗ −WX̄∗

∣∣∣< ηζ

}
. (4.68)

Then by the law of total probability and uniform continuity,

P[Z > ρ−γδ] = P[Z > ρ−γδ|E]P[E]+P[Z > ρ−γδ|Ec]P[Ec]

≤ 1[ζ > ρ−γδ]P[E]+P[Ec] (4.66)= P[Ec]. (4.69)

4.B.3 Proof of Theorem 28 161

We proceed by bounding P[Ec]. Use the triangle inequality twice to establish that for
any x ∈ B(0,K),∣∣∣ 1

N

N∑
i=1

(V ⊙F i)X̃i
∗ −WX̄∗

∣∣∣
=
∣∣∣ 1
NE[F]

N∑
i=1

(
(W ⊙F i)−W ⊙E[F]

)(
x+(X̃i

∗ −x)
)∣∣∣

≤
∣∣∣ 1
NE[F]

N∑
i=1

(
(W ⊙F i)−W ⊙E[F]

)
x
∣∣∣+ ∣∣∣ 1

NE[F]

N∑
i=1

(
(W ⊙F i)−W ⊙E[F]

)
(X̃i

∗ −x)
∣∣∣

(4.64)
≤

∣∣∣ 1
NE[F]

N∑
i=1

(
(W ⊙F i)−W ⊙E[F]

)
x
∣∣∣+ cδ. (4.70)

Note now additionally that by the matrix version of the weak law of large numbers,

1
N

N∑
i=1

W ⊙F i P→ W ⊙E[F] as N → ∞. (4.71)

Therefore, using (4.66), we get as N → ∞

P[Ec]
(4.70)

≤ P
[∣∣∣ 1

NE[F]

N∑
i=1

(
(W ⊙F i)−W ⊙E[F]

)
x
∣∣∣≥ ηζ − cδ

] (4.71)→ 0. (4.72)

Bounding (4.69) by (4.72) completes the proof. 2

4.B.3 Proof of Theorem 28
We start by showing that for α small enough and for N large enough,

P
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣>

ϵ

2

]
<
(ϵ

4RL

)q

. (4.73)

Afterwards, we deduce the three assertions (4.41)–(4.43) from (4.73).

Proof of (4.73). Recall that the assumption ApPropΓ(δ,ϵ) means that

P
[

sup
x∈B(0,R)

sup
x̃∈B(InΓ(x),δ)

∣∣Φv0
Γ,Ξ(x̃)−Φv0

Γdet,Ξ(InΓ(x))
∣∣>

ϵ

2

]
<
(ϵ

4RL

)q

.

Define therefore κ > 0 by

κ := 1
#leaves(Γ)

((ϵ

4RL

)q

−P
[

sup
x∈B(0,R)

sup
x̃∈B(InΓ(x),δ)

∣∣Φv0
Γ,Ξ(x̃)−Φv0

Γdet,Ξ(InΓ(x))
∣∣>

ϵ

2

])
.

(4.74)
Observe now that the function Ψ1 is continuous, and the function Φv0

Γdet
is continuous

on (Rd1)leaves(Γ). Since this implies uniform continuity on compact sets (see (4.62)), there
exists a ζ > 0 such that whenever a function g : B(0,R) → InpΓ satisfies

sup
x∈B(0,R)

sup
ℓ∈leaves(Γ)

∣∣gℓ(x)−Ψ1(x; (W (1), b(1)))
∣∣< ζ,

162 Chapter 4. Universal approximation of dropout NNs

then we also have
sup

x∈B(0,R)

∣∣∣Φv0
Γdet

(g(x))−Ψ(x,w)
∣∣∣< ϵ. (4.75)

Now choose
ρ := min(δ/2,κ,ζ) and K := R,

which we use as parameters for Lemma 36. This choice ensures that for α small enough
and N large enough, for all leaves ℓ of Γ, by inequality (4.44)

P
[

sup
x∈B(0,R)

∣∣Ξℓ(x)−Ψ1(x; (W (1), b(1)))
∣∣> δ/2

]
< κ, (4.76)

and by inequality (4.45)

sup
x∈B(0,R)

∣∣Ξℓ,avg−filt(x)−Ψ1(x; (W (1), b(1)))
∣∣< ζ. (4.77)

Consider now the event A that there exists a leaf ℓ of Γ such that

sup
x∈B(0,R)

|Ξℓ(x)−Ψ1(x; (W (1), b(1)))| > δ/2.

From the law of total probability, it follows that

P
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣>

ϵ

2

]
= P
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣>

ϵ

2

∣∣∣A]P[A]

+P
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣>

ϵ

2

∣∣∣Ac
]
P[Ac]. (4.78)

Observe that
P
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣>

ϵ

2

∣∣∣A]≤ 1, (4.79)

and by (i) Boole’s inequality

P[A] = P
[
∪ℓ∈leaves(Γ)

{
sup

x∈B(0,R)
|Ξℓ(x)−Ψ1(x; (W (1), b(1)))| > δ/2

}]
(i)
≤

∑
ℓ∈leaves(Γ)

P
[

sup
x∈B(0,R)

|Ξℓ(x)−Ψ1(x; (W (1), b(1)))| > δ/2
] (4.76)

≤ κ ·#leaves(Γ).

(4.80)

Furthermore,

P
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣>

ϵ

2

∣∣∣Ac
]

(4.75)
≤ P

[
sup

x∈B(0,R)
sup

x̃∈B(InΓ(x),δ)

∣∣Φv0
Γ,Ξ(x̃)−Φv0

Γdet,Ξ(InΓ(x))
∣∣>

ϵ

2

]
. (4.81)

4.B.3 Proof of Theorem 28 163

By bounding (4.78) using (4.79)–(4.81) and P[Ac] ≤ 1, we find that

P
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣>

ϵ

2

]
< κ ·#leaves(Γ)+P

[
sup

x∈B(0,R)
sup

x̃∈B(InΓ(x),δ)

∣∣Φv0
Γ,Ξ(x̃)−Φv0

Γdet,Ξ(InΓ(x))
∣∣>

ϵ

2

]
·1

(4.74)=
(ϵ

4RL

)q

. (4.82)

This shows (4.73).
Next, we prove that (4.41)–(4.43) follow from (4.73).

Proof of (4.41). This inequality follows from (4.73) since RL ≥ 1 by construction and q ≥ 1
by assumption.

Proof of (4.43). This inequality is a direct consequence of inequality (4.75) by choosing
gℓ := Ξℓ,avg−filt and using (4.77).

Proof of (4.42). We will prove that by the definition of Rj in (4.26), for all x ∈ B(0,R)∣∣NNΓ,Ξ(x)
∣∣q < Rq

L w.p. one, and
∣∣Ψ(x,w)

∣∣q < Rq
L. (4.83)

Namely, if (4.83) holds true, then (4.42) follows.
To see the implication, consider the event D for which

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣>

ϵ

2 , (4.84)

and apply the law of total expectation:

E
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣q] (4.85)

= E
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣q∣∣∣D]P[D]+E

[
sup

x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣q∣∣∣Dc

]
P[Dc].

By the triangle inequality,

E
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣q∣∣∣D] (4.83)

≤ (2RL)q. (4.86)

On the other hand,

E
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣q∣∣∣Dc

] (4.84)
≤

(ϵ

2

)q

. (4.87)

Bound now (4.85) using (4.73), (4.86), (4.87), and the elementary bound P[Dc] ≤ 1 to
obtain

E
[

sup
x∈B(0,R)

∣∣NNΓ,Ξ(x)−Ψ(x,w)
∣∣q]< (2RL)q

(ϵ

4RL

)q

+
(ϵ

2

)q

≤ ϵq.

That shows (4.42). What remains is to prove (4.83).

164 Chapter 4. Universal approximation of dropout NNs

Proof of (4.83). Observe immediately that the right inequality in (4.83) follows immedi-
ately as 0 < β < 1 and Q > 1 (recall the definition of Ψ in (4.7)). Next, we will prove
the left inequality in (4.83) by mathematical induction (recall the recursion in (4.34) and
(4.35) that defines NNΓ,Ξ).

Base case. Recall from (4.34) and (4.35) that the induction starts with the functions

Ξℓ(x) := σ1

(1
N

2N∑
i=1

(−1)i(V ℓ ⊙F ℓ,i)σ0
(
(−1)iα(I ⊙Gℓ,i)x

)
+ bℓ

)
, (4.88)

where element-wise

V ℓ
rc = W

(1)
rc

α
(
σ− +σ+

)
E[F ℓ

rc]E[Gℓ
cc]

. (4.89)

We prove that for every x ∈ B(0,R), the point

1
N

2N∑
i=1

(−1)i(V ℓ ⊙F ℓ,i)σ0
(
(−1)iα(I ⊙Gℓ,i)x

)
∈ B

(
0,β−1∥W (1)∥HSR0

)
w.p. one. (4.90)

In particular, by the definition of R1 in (4.26) (which implicitly deals with the bias bℓ),
this implies that for all x ∈ B(0,R), ∣∣Ξℓ(x)

∣∣≤ R1 −1.

Start by noting that there exists an α0 > 0 such that for all 0 < α ≤ α0 and all ξ ∈
[−R,R] ⊂ R we have

|σ0(αξ)| ≤ 2(|σ−|+ |σ+|)α|ξ|. (4.91)

It follows from the bound (4.91) that for all x ∈ B(0,R) and all i ∈ [2N],∣∣∣ 1
α(σ− +σ+)E[Gℓ

cc]
σ0
(
α(I ⊙Gℓ,i)x

)
c

∣∣∣< 2 |σ−|+ |σ+|
|σ− +σ+|

1
β

|xc| w.p. one.

Since we assumed in (4.40) that

4 |σ−|+ |σ+|
|σ− +σ+|

< Q,

it follows that for all x ∈ B(0,R) and all i ∈ [2N],∣∣∣2E[I ⊙Gℓ]−1

α(σ− +σ+) σ0
(
α(I ⊙Gℓ,i)x

)∣∣∣<
Q

β
R < R0 w.p. one.

Therefore, for every x ∈ B(0,R),∣∣∣ 1
N

2N∑
i=1

(−1)i(V ℓ ⊙F ℓ,i)σ0
(
(−1)iα(I ⊙Gℓ,i)x

)∣∣∣
=
∣∣∣ 1
2N

2N∑
i=1

(−1)i((W (1) ⊙F ℓ,i)÷E[F ℓ,i]) 2E[I ⊙Gℓ,i]−1

α(σ− +σ+) σ0
(
(−1)iα(I ⊙Gℓ,i)x

)∣∣∣
≤ 1

2N

2N∑
i=1

∥(W (1) ⊙F ℓ,i)÷E[F ℓ,i]∥HSR0 ≤ 1
β

∥W (1)∥HSR0 w.p. one.

4.B.4 Proof of Lemma 36 165

This proves (4.90).

Inductive step. In the definition of NNΓ,Ξ we defined for v not a leaf in Γ,

Φv
Γ,Ξ = σv

(1
#into(v)

∑
e∈into(v)

(V e ⊙F e)Φsource(e)
Γ,Ξ + be

)
.

By an inductive argument we find that for all x ∈ B(0,R), it holds that∣∣∣ 1
#into(v)

∑
e∈into(v)

(V e ⊙F e)Φsource(e)
Γ,Ξ (x)

∣∣∣≤ β−1∥W e∥HSRlevel(v)−1 w.p. one.

so that by definition of Rlevel(v) it holds that

|Φv
Γ,Ξ(x)| < Rlevel(v) w.p. one.

In particular, ∣∣NNΓ,Ξ(x)
∣∣q =

∣∣Φv0
Γ,Ξ(x)

∣∣q < Rq
L w.p. one.

This proves (4.83). With that, Theorem 28 is proven. 2

4.B.4 Proof of Lemma 36
Proof of (4.44). Let 0 ≤ K < ∞, ℓ be a leaf of Γ, and ρ > 0. Recall that

Ψ1(x; (W (1), b(1))) = σ1
(
W (1)x+ b(1)), (4.92)

and for x ∈ B(0,K), define

Zℓ
N (x) = 1

N

2N∑
i=1

(−1)i(V ℓ ⊙F ℓ,i)σ0
(
(−1)iα(I ⊙Gℓ,i)x+ b

)
+ bℓ (4.93)

so that Ξℓ(x) = σ1(Zℓ
N (x)). Note that the weights W are fixed and therefore uniformly

bounded.
Continuity of σ0 and σ1, boundedness of F and G, positivity of E[F ℓ

rc] and E[Gℓ
rc],

and compactness of the optimization domain imply that the supremum of the optimization
problem is attained—say at X∗ ∈ B(0,K). Just like in Appendix 4.B.2, note that X∗ is
random and depends on the collections {F ℓ,i}i∈[2N], {Gℓ,i}i∈[2N]. In summary, we have

P
[

sup
x∈B(0,K)

∣∣σ1(Zℓ
N (x))−σ1(W (1)x+ b(1))

∣∣> ρ
]

= P
[∣∣σ1(Zℓ

N (X∗))−σ1(W (1)X∗ + b(1))
∣∣> ρ

]
. (4.94)

Note that here we slightly abuse the notation by using | · | sign not only for absolute value
of numbers, but also, as in the last formula, for the Euclidean norm of the vector.

By construction, there exists a compact set C so that the points

Zℓ
N (X∗), W (1)X∗ + b(1) (4.95)

166 Chapter 4. Universal approximation of dropout NNs

lie in C with probability one. The uniform continuity of σ1 on C implies that for each ζ > 0
there exists ηζ > 0 such that (4.62) holds for σ1 and all x,y ∈ C. Fix ζ = ρ and introduce
the event

D(X∗) =
{

∥Zℓ
N (X∗)− (W (1)X∗ + b(1))∥2 < ηρ

}
. (4.96)

By the law of total probability

P
[
|σ1(Zℓ

N (X∗))−σ1(W (1)X∗ + b(1))| > ρ
]

= P
[
|σ1(Zℓ

N (X∗))−σ1(W (1)X∗ + b(1))| > ρ |D(X∗)
]
P
[
D(X∗)

]
+P
[
|σ1(Zℓ

N (X∗))−σ1(W (1)X∗ + b(1))| > ρ |Dc(X∗)
]
P
[
Dc(X∗)

]
≤ P
[
Dc(X∗)

]
. (4.97)

We will next prove that for all x ∈ B(0,K),

P
[
Dc(x)

]
→ 0 (4.98)

as α ↓ 0 and N → ∞. Together with (4.97), this implies the result.
Let x ∈ B(0,K). Componentwise,(

Zℓ
N (x)− (W (1)x+ b(1))

)
r

(4.99)

=
(2N∑

i=1

(−1)i

N
(V ℓ ⊙F ℓ,i)σ0

(
(−1)iα(I ⊙Gℓ,i)x

)
+ bℓ − (W (1)x+ b(1))

)
r

=
2N∑
i=1

d0∑
c=1

(−1)i

N
V ℓ

rcF ℓ,i
rc σ0

(
(−1)iα(I ⊙Gℓ,i)x

)
c

+ b
(1)
r −

∑
c

W
(1)
rc xc + b

(1)
r .

Substituting (4.39) into (4.99), using the triangle inequality, and rearranging terms, we
find that∣∣(Zℓ

N (x)− (W (1)x+ b(1))
)

r

∣∣
≤

d0∑
c=1

∣∣∣ W
(1)
rc

1
2 (σ− +σ+)E[Gℓ

cc]

(
1

2N

2N∑
i=1

F ℓi
rc

E[F ℓ
rc]

(−1)iσ0
(
(−1)iα(I ⊙Gℓ,i)x

)
c

)
−W

(1)
rc xc

∣∣∣.
(4.100)

Note that the assumptions of the lemma imply that∣∣∣ W
(1)
rc

1
2 (σ− +σ+)E[Gℓ

cc]

∣∣∣≤ Cw,G,σ < +∞.

We focus now on the term within brackets in (4.100). Let δ1 > 0 and consider the
event

EF,N (δ1) =
{∣∣∣ 1

2N

2N∑
i=1

F ℓi

E[F ℓ
rc]

−1
∣∣∣< δ1

}
. (4.101)

There exists C1 > 0 such that, conditional on EF,N (δ1),∣∣∣ 1
2N

2N∑
i=1

F ℓi

E[F ℓ
rc]

(−1)iσ0
(
(−1)iα(I ⊙Gℓ,i)x

)
c

− 1
2N

2N∑
i=1

(−1)iσ0
(
(−1)iα(I ⊙Gℓ,i)x

)
c

∣∣∣
≤
∣∣∣ 1

2N

2N∑
i=1

(F ℓi

E[F ℓ
rc]

−1
)

(−1)iσ0
(
(−1)iα(I ⊙Gℓ,i)x

)
c

∣∣∣≤ C1δ1, (4.102)

4.B.4 Proof of Lemma 36 167

since the argument of σ0 is uniformly bounded, and σ0 is continuous. Moreover, there
exists C2 > 0 such that conditional on EF,N (δ1),∣∣(Zℓ

N (x)− (W (1)x+ b(1))
)

r

∣∣ (4.103)

≤
d0∑

c=1

∣∣∣ W
(1)
rc

1
2 (σ− +σ+)E[Gℓ

cc]

(
1

2N

2N∑
i=1

1
α

(
(−1)iσ0

(
(−1)iα(I ⊙Gℓ,i)x

)
c

))
−W

(1)
rc xc

∣∣∣+C2δ1.

Note that C1,C2 are independent of N,δ1.
Recall now that by (4.36) and (4.37) we can find for each γ > 0 an α > 0 such that for

all y ∈ Rd0 , c, ∣∣∣ 1
α

(
σ0
(
αy
))

c
−σS(yr)yc

∣∣∣< γ. (4.104)

Recall furthermore that maxrc Gℓ
rc ≤ M < ∞ with probability one by assumption. To-

gether, this implies that we can find for each γ > 0 an α > 0 such that for all x ∈ B(0,K),
c,

P
[∣∣∣ 1

α

(
±σ0

(
±αI ⊙Gℓ,ix

))
c

−σS(±Gℓi
ccxc)G

ℓi
ccxc

∣∣∣< γ
]

= 1. (4.105)

Fix γ ∈ (0, δ1) and corresponding α > 0. Then there exists a constant C3 > 0, indepen-
dent of δ1,γ,N , such that conditional on EF,N (δ1),∣∣(Zℓ

N (x)− (W (1)x+ b(1))
)

r

∣∣ (4.106)

≤
d0∑

c=1

∣∣∣ W
(1)
rc

1
2 (σ− +σ+)E[Gℓ

cc]

(
1

2N

2N∑
i=1

σS((−1)iGℓi
ccxc)G

ℓi
ccxc

)
−W

(1)
rc xc

∣∣∣+C3δ1

(i)=
∑

c∈[d0]:xc>0

∣∣∣ W
(1)
rc

1
2 (σ− +σ+)E[Gℓ

cc]

(
1

2N

2N∑
i=1

σS((−1)iGℓi
ccxc)G

ℓi
ccxc

)
−W

(1)
rc xc

∣∣∣+C3δ1.

To conclude (i), we used the fact that σ± ·0 = 0. By assumption Gℓi
cc ≥ 0 with probability

one, so if moreover |xc| > 0, then S((−1)iGℓi
ccxc) = S((−1)ixc) with probability one—recall

its definition in (4.37). Thus there exists C4 independent of δ1,γ,N such that conditional
on the event EF,N (δ1)∩EG,N (δ1),∣∣Zℓ

N (x)− (W (1)x+ b(1))
∣∣
r

≤
∑

c∈[d0]:|xc|>0

∣∣∣ W
(1)
rc

1
2 (σ− +σ+)

1
2N

2N∑
i=1

σS((−1)ixc)xc −W
(1)
rc xc

∣∣∣+C4δ1 = C4δ1. (4.107)

The last equality holds because the sum is only of over c such that |xc| > 0.
All that remains is to prove that

P[EF,N (δ1)∩EG,N (δ1)] → 1 as N → ∞. (4.108)

This fact follows immediately from the independence of F,G, and a subsequent application
of the matrix version of the weak law of large numbers (which may be applied since F,G’s
expectations are bounded). Note that δ1 is an arbitrary parameter: choosing it such that
C4δ1 < ηζ , and then choosing N sufficiently large completes the proof of (4.44).

168 Chapter 4. Universal approximation of dropout NNs

Proof of (4.45). The assertion (4.42) is proven for any (α,N)-precomposition associated
with some distributions µℓ,νℓ with finite nonzero mean. In particular, the same argument
shows that (4.42) holds when F ℓ and Gℓ are taken deterministic and equal to the expec-
tations of the corresponding random variables (see also the discussion following (4.39)).
This proves (4.45). 2

Part II

Block Markov Chains

169

Chapter 5

The spectral norm of block
Markov chains

Based on [1]:
“Spectral norm bounds for block Markov chain random matrices”

by J. Sanders, and A. Senen–Cerda

In this chapter, we show the bounds for the spectral error of Block Markov Chains
(BMCs) in full generality. To do so we closely examine the technical issues of proving
spectral norm bounds when we have sparse matrices in which entries can weakly depend
on each other. For the motivation and an overview of the results we refer to Sections 1.5
to 1.7.

5.1 Introduction
In random graph theory, a graph can usually be encoded by an adjacency matrix Ân, in
which (Ân)ij = 1 if there is an edge between vertices i and j and (Ân)ij = 0 if there is
not. The study of the spectral properties of random graphs is thus intimately related to
random matrix theory.

We can already see this in the Erdös–Rényi random graph (ERRG) model [167], where
an edge is present independently of others with probability pn. If we denote this model
as Gn,pn , then a phase transition in the asymptotic properties of Ân for this model can
be readily observed depending on how fast the edge probabilities pn decrease as n → ∞.
Specifically, the connectivity of an ERRG Gn,pn depends on the asymptotics of the average
degree of the graph, which in an ERRG is npn. If pn = ω(logn/n), then the random graph
will be almost surely connected; and if pn = o(logn/n), then the random graph will be
almost surely disconnected [167]. In fact, there is a sharp threshold for the connectedness of
the random graph exactly at pn ≍ logn/n. We refer to these scenarios as the dense, sparse,
and critical regimes, respectively. In the ERRG, these regimes can be also characterized by
the order of the average degree as we described in Section 1.6 in Chapter 1. The existence

171

172 Chapter 5. The spectral norm of block Markov chains

of these regimes with fundamental different global characteristics means that in order to
study properties of the spectrum of Ân, different approaches are needed. This will also
be the case in BMCs.

For any matrix A ∈ Rn×n, we denote its singular values by σ1(A) ≥ . . . ≥ σn(A), where
∥A∥ = σ1(A). Feige and Ofek established in [133] that there is a gap between the largest
eigenvalue and second-largest absolute eigenvalue of the adjacency matrix Ân of ERRGs
in the dense regime. In ERRGs, we have that ∥Ân∥ = (Ân) ≥ npn with high probability
and their results imply that if ω(logn) = npn = O(n1/3/(logn)5/3), then

∥Ân −E[Ân]∥ = OP(√npn). (5.1)

Consequently, in this dense regime, σ1(Ân) = ωP(σ2(Ân)), where for now one can under-
stand the notation OP and ωP as referring to their usual counterparts asymptotically with
high probability. We refer to the end of this subsection for precise definitions.

The investigation in [133] also goes into the sparse regime. There, some of the de-
grees in the graph are much larger than the average nqn and it can be proved, for
example, that if pn = d/n for d > 0 a constant independent of n, then σ1(Ân) ≥ (1 +
o(1))

√
log(n)/ log log(n) [139]. Therefore, a bound of the type in (5.1) can not obviously

be expected in this sparse regime. However, if Ân is regularized by e.g. using only states
with degrees lower than a certain threshold, then (5.1) can still be obtained in the sparse
regime. Let Γc ⊆ [n] be the set of vertices in Gn,d/n of degree greater than (1 + ε)d for
some appropriately small ϵ. If AΓ

n denotes the adjacency matrix of the subgraph GΓ
n,d/n

induced by removing the vertices in Γc from Gn,d/n, then ∥ÂΓ
n −E[Ân]∥=OP(

√
d). We

refer to [133] for the exact statement. The order of the largest singular values of Ân

and Ân −E[An], established in (5.1), thus persists in the sparse regime when high-degree
vertices are removed.

Feige and Ofek’s techniques hint at how to tackle the sparse regime also in BMCs.
However, conducting such analysis will also become more complicated. Contrary to the
ERRG or the Stochastic Block Model (SBM)—the generalization of an ERRG with several
clusters— in BMCs there is additionally a time-dimension, and there are correlations
between edges.

In this chapter, we aim to establish a bound similar to (5.1) for the largest singular
value of a centered random matrix built from a sample path of a BMC in both dense and
sparse regimes. Taking inspiration from [27], we establish bounds for the order of the
largest singular value by firstly, combining the spectral techniques in [133] with concentra-
tion results for Markov chains [98], and secondly, obtaining a lower bound that matches
the order of the upper bound. Together, these bounds establish the right asymptotic order
of the singular values of BMCs which was, in fact, conjectured in [27]. The bounds depend
on the ratio Tn/n, which compares the length of a sample path Tn from the BMC to the
number of states n, and can be understood as an ‘average degree’. Unsurprisingly, the
spectrum also suffers from similar sparsity-related issues as those that occur within the
context of ERRGs, discussed above.

The result in this chapter characterizes the expected bound on the spectral error
and hence, determines the limits for the error of the spectral clustering in BMCs. Our
result also helps bring us a step closer to proving convergence of the entire spectrum
to a limiting distribution as n → ∞ [165] whenever Ω(n) = Tn = o(n2) or even ω(n) =
Tn = o(n logn). The latter corresponds to scenarios with particularly few transitions and

5.1.1 BMCs 173

is thus especially relevant when analyzing sparse real-world data. One such example in
Chapter 6 is the sequence of best performing stocks in a stock index. Finally, we will
mention that the convergence of the singular values to a limiting distribution whenever
there is an abundance of transitions, i.e., Tn = Ω(n2), was recently established as n → ∞
[2].

While for a BMC we can expect the order of the spectral error to be as predicted by
Theorem 30, in the next chapter, we will examine in real-world sequential data if we can
still see a spectral gap when we use the clustering algorithm for BMCs.

Notation (Asymptotics). For any two sequences of random variables X1,X2, . . . and
Y1,Y2, . . ., we denote Xn = OP(Yn) if and only if for any ϵ > 0 there exist Cϵ,nϵ > 0 such
that P[|Xn/Yn| > Cϵ] ≤ ϵ for any n > nϵ. We write Xn = ωP(Yn) if and only if for any ϵ > 0
and any C > 0, there exist nϵ,C > 0 such that P[|Xn/Yn| < C] ≤ ϵ for any n > nϵ,C . For any
two deterministic sequences a1,a2, . . . and b1, b2, . . ., we denote an = Θ(bn) if an = O(bn)
and bn = O(an); also an = ω(bn) if bn = o(an). We denote an ∼ bn if as n → ∞, we have
|an/bn| → 1.

5.1.1 Block Markov Chains (BMCs)
We have defined the BMC model in Section 1.5 but we briefly recall the definition here
for convenience.

A BMC has n labeled states, and K clusters. By this we mean that the set of states
[n] = {1, . . . ,n} is partitioned so that [n] = ∪K

k=1Vk with Vk ∩ Vl = ∅ for all k ̸= l. We
let α = (α1, . . . ,αK) with

∑K
k=1 αk = 1 be the cluster ratios and let q = (qkl)k,l∈[K] with∑K

l=1 qkl = 1 for k ∈ [K] be the cluster transition matrix. We will assume the following
for the derivation of our results:

Assumption 29. The cluster ratios α are strictly positive, i.e., mink∈[K] αk > 0. The
cluster transition matrix q is strictly positive and has full rank, i.e., mink,l∈[K] qkl > 0 and
rank(q) = K. The parameters α,q,K are all independent of n.

Given n and (α,q) we construct a BMC {Xt}t≥0 as follows. For k = 2, . . . ,K, assign
|Vk| = ⌊nαk⌋ states to cluster k. Place all remaining states in cluster 1 so that |V1| = n−∑K

k=2 |Vk|. Notice that |V1|−⌊nα1⌋ ≤ K − 1. The BMC {Xt}t≥0 is a time-homogeneous
Markov chain with transition matrix P ∈ (0,1)n×n that satisfies element-wise

Px,y = P[Xt+1 = y|Xt = x] =
qν(x),ν(y)

|Vν(y)|
for x,y ∈ [n]. (5.2)

Here, recall that ν : [n] → [K] denotes the function that assigns to each state x ∈ [n] its
cluster ν(x) ∈ [K], that is, ν is the cluster assignment. Assumption 29 guarantees that P is
of rank K. The assumption that q is strictly positive ensures that the BMC is irreducible
and aperiodic. We can therefore let Π ∈ (0,1)n denote the stationary distribution of the
BMC, which satisfies ΠT = ΠTP . It should be noted that a BMC is not necessarily
reversible. The assumptions that α,q,K are independent of n guarantee that the BMC
has a mixing time of Θ(1), as we will discuss in Section 5.2. Distinct from the definition
of a BMC in [27], we allow for self-jumps for a state. We anticipate that the results of this
chapter also hold for the case when self-jumps are not allowed if the proofs are modified
appropriately.

174 Chapter 5. The spectral norm of block Markov chains

Given a BMC and some Tn ∈ N+, a sample path X0,X1, . . . ,XTn of length Tn is
obtained from {Xt}t≥0. Let N̂ ∈Nn×n

0 denote the random matrix that records the number
of transitions that occurred between each pair of states within this sample path. Thus
element-wise

N̂xy =
Tn−1∑
t=0

1[Xt = x,Xt+1 = y] for x,y ∈ [n]. (5.3)

We let N denote N̂ ’s expectation conditional on X0
(d)= Unif(Π). The previous definitions

imply that N = TnDiag(Π)P .

5.1.2 Spectral norm in BMCs
Compared with the previous bound for the spectral norm in 1.19, it was also conjectured
in [27] that the order of the spectral norm in BMCs was ΘP(

√
Tn/n). This order was

also suggested in Chapter 1 with the comparison Table 1.5 between the spectral norms
of the ERRG and BMCs. Our first result is a new lower bound of the spectral norm in
BMCs which confirms that the order is at least as expected. The proof uses the fact that
if Tn = o(n2), then most transitions are seen only once or not at all. Hence, for any fixed
row of N̂ −N , the ℓ1-norm is approximately the square of the ℓ2-norm. In particular, we
can use a combinatorial argument that yields the correct bound (see Section 5.5).

Proposition 17. If ω(n) = Tn = o(n2), then there exist constants b,eb > 0 independent
of n and an integer n0 ∈ N+ such that for all n ≥ n0,

P
[
∥N̂ −N∥ > b

√
Tn

n

]
≥ 1− e−eb

Tn
n . (5.4)

In particular, ∥N̂ −N∥ = ΩP(
√

Tn/n).

Our second result is an order-wise matching upper bound for ∥N̂ −N∥, which, together
with the lower bound of Proposition 17, fully characterizes the order of the spectral norm
in BMCs. Before we proceed, note that the asymptotic growth of Tn determines the
sparsity of N̂ . This will dictate the type of analysis that needs to be conducted. We will
refer to the scenarios Tn = ω(n logn), Tn = o(n logn) and Tn = Θ(n logn) as the dense,
sparse, and critical regimes [27], similar to the terminology for ERRGs.

Our analysis in the sparse regime requires that we remove states that are visited
unusually often in the BMC, similarly to the technique in [133] used for the ERRG. We
therefore consider trimmed matrices. For any subset Γ ⊆ [n], possibly random, let N̂Γ be
the random matrix that remains after setting all entries on the rows and columns of N̂

corresponding to states not in Γ to zero. Thus element-wise

(N̂Γ)x,y ≜

{
N̂x,y if x,y ∈ Γ
0 otherwise.

(5.5)

In this chapter we improve firstly the bound in 1.19 in both the dense and sparse
regimes by obtaining an upper bound for the spectral norm of order

√
Tn/n. This matches

the lower bound asymptotically and proves that the order is asymptotically optimal. Sec-
ondly, we prove that this bound also holds in the dense regime Tn = Ω(n logn) without
trimming.

5.2 Properties of block Markov chains 175

Theorem 30. Under Assumption 29, the following holds:

(a) If Tn = Ω(n logn), then
∥N̂ −N∥ = OP(

√
Tn/n). (5.6)

(b) If Tn = ω(n) and Γc is a set of size ⌊ne−Tn/n⌋ containing the states with highest
number of visits, i.e., with the property that miny∈Γc N̂[n],y ≥ maxy∈Γ N̂[n],y, then

∥N̂Γ −N∥ = OP(
√

Tn/n). (5.7)

Proposition 17 together with Theorem 30 yields σ1(N̂ − N) = ΘP(
√

Tn/n). As a
corollary to Theorem 30 we also obtain asymptotic scalings and bounds on the singular
values of N̂Γ:

Corollary 7. Presume Assumption 29. If Tn = ω(n), then

σi(N̂Γ) =

{
ΘP(Tn/n) if i ∈ [K],
OP(
√

Tn/n) otherwise.
. (5.8)

The proof of Theorem 30 follows a similar strategy as the proof of [27, Prop. 7]. In
turn, the proof in [27] was based on [133] which itself took inspiration from [157]. The
idea is to upper bound spectral norms of random matrices using an ϵ-net argument and
then separate into contributions of so-called light and heavy pairs. While the application
of this technique to random graphs and SBMs has become common [93, 36, 67], the dis-
tinct difficulty with BMCs is that N̂ has dependent entries. Fortunately, the fast mixing
time of the BMC can be exploited: using techniques from [98] we can obtain concentra-
tion inequalities that are sufficiently strong to argue that the dependencies are negligible
asymptotically. Compared to [27], we simplify the estimate of the contributions of the
light pairs by proving that the bound holds without the need for regularization whenever
Tn = ΩP(n log(n)), and we improve upon the logarithmic term present in [27, Lemma 11]
by strengthening the bounds for the discrepancy property in BMCs (see Section 5.2.4).
We also briefly validate our results numerically in Section 5.6.

This chapter is structured as follows. In Section 5.2 we describe the main properties
of BMCs. In Section 5.3 we prove Theorem 30 and its main steps. In Section 5.4 we prove
Corollary 7 on the singular values of N̂ and N̂Γ and in Section 5.5 we prove the lower
bound given in Proposition 17. Finally, we simulate BMCs and numerically validate the
statement of Theorem 30 in Section 5.6.

5.2 Properties of block Markov chains
In this section we cover properties of BMCs that will be exploited to prove Theorem 30.
First, we introduce some notation that we will use throughout this chapter.

Notation. Let Bn
r (x) ⊆Rn be the n-dimensional ball of radius r centered around x ∈Rn.

Similarly, let Sn−1
r (x) ⊆ Rn be the (n − 1)-dimensional sphere with radius r centered

around x ∈ Rn. For any pair of subsets (A,B) ⊆ [n]2, we also introduce the short-hand
notation AA,B ≜

∑
x∈A

∑
y∈B Ax,y. For a,b ∈ R, we denote a∨ b = max{a,b}.

176 Chapter 5. The spectral norm of block Markov chains

5.2.1 Asymptotic properties of N

Let π = (π1, . . . ,πK) ∈ RK denote the unique stationary distribution of q, which thus
satisfies πT = qπT . By the Perron–Frobenius theorem, mink∈[K] πk = πmin > 0 due to
the positivity assumption for q under Assumption 29. We have, moreover, that σK(q) =
σmin(q) > 0 due to the assumption rank(q) = K. These properties of positivity have
immediate implications for the asymptotic scaling of the entries of N . In particular, we
prove the following in Appendix 5.A.1:

Lemma 40. There exist constants 0 < n1 < n2 < ∞, 0 < p1 < p2 < ∞ independent of n and
an integer m ∈ N+ such that for all n ≥ m and all x,y ∈ [n], n1Tn/n2 ≤ Nx,y ≤ n2Tn/n2

and p1/n ≤ Px,y ≤ p2/n.

Lemma 40 combined with the block structure of P has implications for the asymptotic
scalings of the singular values of N . Observe first that the block structure of P defined
in (5.2) and the assumption rank(q) = K imply that P has K non-zero and n − K zero
singular values respectively. In particular, for i ∈ [n],

σi(P) =

{
σi(q)+o(1) = Θ(1) if i ∈ [K]
0 otherwise.

(5.9)

Furthermore, the unique stationary distribution Π of P is then given by

Π =
(π1

|V1|
u1, . . . ,

πK

|VK |
uK

)
∈ (0,1)n, (5.10)

where for k ∈ [K], uk = (1, . . . ,1) ∈ (0,1)|Vk| is the all-one vector of its respective dimension.
Observe now that Assumption 29, together with the fact that |Vi| ∼ nαi for i ∈ [n], implies
that Πi = Θ(1/n) for i ∈ [n]. Since N = TnDiag(Π)P , we can conclude that the singular
values of N satisfy

σi(N) =

{
Θ(Tn/n) if i ∈ [K],
0 otherwise.

(5.11)

The following is an example of the spectrum of N for a given q and α:

Example 31. Let 0 < a,b < 1 such that 0 < a+ b < 1 and a ̸= 1/3, b ̸= 1/3. Suppose that

q =

 a b 1−a− b

b 1−a− b a

1−a− b a b

 and α =

1/3
1/3
1/3

 . (5.12)

In this symmetric case q has full rank and

σ1(N) = Tn

3n
, and σ2(N) = σ3(N) = Tn

3n

√
1+3(a2 −a+ab− b+ b2). (5.13)

5.2.2 A mixing time of Θ(1)
For ε ∈ [0,1), the ε-mixing time of a Markov chain can be defined as

tmix(ε) = min{t ≥ 0 : d(t) ≥ ε}. (5.14)

5.2.3 Bounded degrees 177

Here

d(t) = sup
x∈[n]

dTV
(
P[Xt = ·|X0 = x],Π

)
and dTV(µ,ν) = 1

2

∑
x∈[n]

|µx −νx|. (5.15)

The mixing time of a BMC is relatively short and in fact Θ(1). This can be credited
to the facts that the block structure is independent of n, and that the graph of a BMC
is a complete graph [27, Prop. 2]: For any BMC with n ≥ 4/αmin let η > 0 be such that
1 < maxa,b,c{pb,a/pc,a,pa,b/pa,c} ≤ η. Then, we have tmix(ε) ≤ −cmix = −1/ log(1−1/2η).

Note that the assumption η > 1 in [27, Prop. 2] follows from Assumption 29(i). Indeed,
since rank(q) > 1 there exists at least one a ∈ [K] such that for some c ̸= b we have
qa,b/qa,c > 1. Finally, positivity of q allows us to find a finite η.

The relatively short mixing time of a Markov chain can be related to the pseudo spectral
gap. Let λ(A) be the second largest eigenvalue of a symmetric matrix A. Then define

γps = max
i≥1

1−λ((P ∗)iP i)
i

where P ∗
x,y =

Py,x

Πx
Πy. (5.16)

The pseudo spectral gap γps plays a role in bounding the mixing time, as shown in[98,
Prop. 3.4]: For ε ∈ [0,1), γps ≥ (1 − ε)/tmix(ε/2). For BMCs in particular, this implies
that γps ≥ 1/(2(1+4η)); see the paragraph preceding [27, SM1(26)] for a proof.

With the pseudo spectral gap, we can then prove sharp concentration inequalities for
different quantities pertaining to the BMC using the following result from [98, Thm. 3.4]:

Lemma 41 ([98, Thm. 3.4]). Let X0,X1, . . . ,XTn−1 be a stationary Markov chain with
pseudo spectral gap γps. Let f ∈ L2(Π), with |f(x) −EΠ(f)| ≤ C for every x ∈ Ω. Let
Vf = VarΠ(f). Then, for any z > 0,

P
[∣∣∣Tn−1∑

t=0
f(Xt)−EΠ

[
f(Xt)

]∣∣∣≥ z
]

≤ 2exp
(

−
z2γps

8(Tn +1/γps)Vf +20zC

)
. (5.17)

5.2.3 Bounded degrees

Using Lemma 41 we can prove for example that if we were to picture a sample path
X0,X1, . . . ,XTn as a directed graph, then the in- and outdegree of all states (vertex)
are OP(Tn/n). Recall the notation that N̂A,B =

∑
x∈A

∑
y∈B N̂x,y for any two subsets

A,B ⊆ [n]. The out- and indegree of a state y ∈ [n] are then given by N̂y,[n], N̂[n],y,
respectively. We prove the following in Appendix 5.A.2:

Lemma 42. The following holds for any BMC:

(a) If Tn = Ω(n logn), then there exists a constant b1 > 0 independent of n such that for
sufficient large n

max
y∈[n]

{
N̂[n],y ∨ N̂y,[n]

}
≤ b1

Tn

n
at least with probability 1− 2

n
. (5.18)

178 Chapter 5. The spectral norm of block Markov chains

(b) If Tn = ω(n) and Γc is a set of size ⌊ne−Tn/n⌋ containing the states with highest
number of visits, then there exists a constant b2 > 0 independent of n such that for
sufficiently large n

max
y∈Γ

{
N̂Γ,y ∨ N̂y,Γ

}
≤ b2

Tn

n
at least with probability 1−2e− Tn

n . (5.19)

With Lemma 42(b) we can see that, whenever T = ω(n), the trimming of a fixed
number of largest-degree states controls the degrees with high probability just as with the
usual trimming of states with degrees above a threshold in [133]. Whenever one of the
events in Lemma 42 hold, we say that the bounded degree property holds.

5.2.4 Discrepancy property
For A,B ⊆ V , let

e(A,B) =
∑
i∈A

∑
j∈B

N̂ij (5.20)

and µ(A,B) = E[e(A,B)]. A similar definition will be used when trimming: for A,B ⊆ V ,
let eΓ(A,B) =

∑
i∈A

∑
j∈B(N̂Γ)ij . Note that for any fixed A,B ⊂ [n], eΓ(A,B) ≤ e(A,B).

We define now the discrepancy property. For graphs, this property tells us that the graph
has no denser subgraph compared to itself. This will help us in the bounding of the
spectral norm later on.

Definition 32. Let d1,d2 > 0 be two constants independent of n. We say that N̂ is
(d1,d2)-discrepant if for every pair (A,B) ⊆ [n]2 one of the following holds:

(i) e(A,B)n2

|A||B|Tn
≤ d1,

(ii) e(A,B) log e(A,B)n2

|A||B|Tn
≤ d2(|A|∨ |B|) log n

|A|∨|B| .

Similarly, we say that N̂Γ is (d1,d2)-discrepant when the conditions hold with eΓ(A,B)
replacing e(A,B).

We prove that if the bounded degree property holds, then the discrepancy property
also holds with high probability. The constants d1 and d2 will be positive and dependent
on α and q. The proof follows the method in [93] and is relegated to Appendix 5.A.3. A
key step we prove is a uniform concentration inequality for the discrepancy in BMCs (see
Lemma 47 in Appendix 5.A.3), which may be of independent interest.

Proposition 18. For any BMC there exist sufficiently large constants b3,b4,d1,d2 > 0
independent of n such that the following holds:

(a) If Tn = Ω(n logn) and maxy∈[n]
{

N̂[n],y ∨N̂y,[n]
}

≤ b3Tn/n, then for sufficiently large
n, N̂ is (d1,d2)-discrepant at least with probability 1−1/n.

(b) If Tn = ω(n), Γc is a set of size ⌊ne−Tn/n⌋ containing the states with highest number
of visits, and moreover maxy∈Γ

{
N̂Γ,y ∨ N̂y,Γ

}
≤ b4Tn/n, then for sufficiently large

n, N̂Γ is (d1,d2)-discrepant at least with probability 1−1/n.

5.3 Bounding the spectral norm of N̂Γ −N 179

5.3 Bounding the spectral norm of N̂Γ −N

We will now prove Theorem 30 by bounding the spectral norm of N̂Γ −N , i.e., the operator
norm induced by the vector 2-norm:

∥N̂Γ −N∥ = sup
x∈Rn\{0}

∥(N̂Γ −N)x∥2
∥x∥2

. (5.21)

Recall that for any matrix A ∈Rn×n we have ∥A∥ = σ1(A). Instead of working with (5.21),
we will use a rectangular quotient relation for convenience [112, (3.10)]: note that

∥N̂Γ −N∥ = sup
x,y∈Sn−1

1 (0)
|xT(N̂Γ −N)y|. (5.22)

The proof strategy is as follows. We first use an ϵ-net argument to pass the supremum
over the set Sn−1

1 (0) in (5.22) to a maximization over a finite set Tϵ say. Next, for each
(x,y) ∈ Tϵ, we can bound the sum |xT (N̂Γ −N)y| ≤ L(x,y)+H(x,y) by the sum of L(x,y)
and H(x,y). L(x,y) is a sum over entries of x and y whose sizes are small, and H(x,y)
is a sum over entries whose sizes are large. These will be called the contributions of
the light pairs and heavy pairs, respectively. For the light pairs, concentration results
for sums of entries of N̂Γ and using the fact that Γ is of fixed size, although random in
content, we can prove the bound L(x,y) = OP(

√
Tn/n). For the heavy pairs, concentration

results for the entries of N̂Γ are not enough in the sparse regime. Instead, we use the
discrepancy property of N̂ and N̂Γ. This property of graphs says roughly that the number
of edges between two sets is not much larger than its average. We prove that N̂Γ satisfies
the discrepancy property with high probability and using this fact we can prove that
H(x,y) = OP(

√
Tn/n).

5.3.1 Passing to a finite ϵ-net
We start by defining ϵ-nets. Recall that Bn

r (x) ⊆ Rn is the n-dimensional ball of radius r

centered around x ∈ Rn:

Definition 33. Let ϵ ∈ (0,∞). An ϵ-net for (Bn
1 (0),∥ · ∥2) is a finite subset Nϵ ⊆ Bn

1 (0)
such that for any x ∈ Bn

1 (0) there exists y ∈ Nϵ such that ∥x−y∥2 ≤ ϵ.

An ϵ-net for (Bn
1 (0),∥ · ∥2) has several useful properties, which we will exploit. The

following properties are proven in Appendix 5.B.1. For any subset A ⊆ [n] and any vector
b ∈ Rn, we let bA ∈ R|A| denote the vector obtained by deleting the rows in the index set
A.

Lemma 43. The following holds:

(a) Let ϵ ∈ (0,1/3). If Nϵ is an ϵ-net for (Bn
1 (0),∥ · ∥2), then for any matrix A ∈ Rn×n

∥A∥ = sup
x,y∈Sn−1

1 (0)
|xTAy| ≤ 1

1−3ϵ
sup

x,y∈Nϵ

|xTAy|. (5.23)

(b) Let ϵ ∈ (0,∞). If Nϵ is an ϵ-net for (Bn
1 (0),∥ · ∥2), then for any subset A ⊆ [n], the

subset N A
ϵ = {xA : x ∈ Nϵ} is an ϵ-net for (B|A|

1 (0),∥ · ∥2).

180 Chapter 5. The spectral norm of block Markov chains

In order to control the size of the entries of x ∈ Nϵ, we will use the following specific
set, which is also used in [157, 133, 93]:

Tϵ =
{

x ∈ Rn : x ∈ ϵ√
n
Zn,∥x∥2 ≤ 1

}
. (5.24)

Observe that Tϵ is indeed an ϵ-net for (Bn
1 (0),∥ · ∥2). The properties in Lemma 43 thus

apply to Tϵ. Furthermore, the size of the set is bounded by |Tϵ| ≤ (9/ϵ)n [133, Claim 2.9].

5.3.2 The sets of light- and heavy pairs
The next course of action will be to derive for every x,y ∈ Tϵ an upper bound of the
kind |xT(N̂Γ − N)y| ≤ c

√
Tn/n, where c is a constant independent of n which holds with

probability 1−O(1/n). For x,y ∈ Bn
1 (0), define the set of light pairs by

L(x,y) =
{

(i, j) ∈ [n]2 : |xiyj | ≤ 1
n

√
Tn

n

}
. (5.25)

Similarly, we define the set of heavy pairs by

H(x,y) = Lc(x,y) =
{

(i, j) ∈ [n]2 : |xiyj | >
1
n

√
Tn

n

}
. (5.26)

Using the triangle inequality we can then split the bounding by writing

|xT(N̂Γ −N)y| ≤
∣∣∣ ∑
(i,j)∈L

xiyj

(
(N̂Γ)ij −Nij

)∣∣∣+ ∣∣∣ ∑
(i,j)∈Lc

xiyj

(
(N̂Γ)ij −Nij

)∣∣∣
= L(x,y)+H(x,y) (5.27)

say, almost surely. Here, L(x,y) and H(x,y) denote the contributions of the light and
heavy pairs, respectively. To simplify the exposition, we will omit the indication (x,y)
from the sets of light and heavy pairs whenever they appear in a subscript.

5.3.3 Bounding the contribution of the light pairs
We split the bounding of L(x,y) into two parts. Let Kc = (Γc × [n]) ∪ ([n] × Γc) denote
the set of transitions that are trimmed (recall that Γc denotes the set of states that are
trimmed). Using that (i) (N̂Γ)ij = 0 whenever i /∈ Γ or j /∈ Γ by its definition in (5.5) and
(ii) K = Γ2 as well as the triangle inequality, we obtain

L(x,y) (5.27)=
∣∣∣ ∑
(i,j)∈L

xiyj

(
(N̂Γ)ij −Nij

)∣∣∣
(i)=
∣∣∣ ∑
(i,j)∈L∩K

xiyj(N̂ij −Nij)−
∑

(i,j)∈L∩Kc

xiyjNij

∣∣∣
(ii)
≤
∣∣∣ ∑
(i,j)∈L∩Γ2

xiyj(N̂ij −Nij)
∣∣∣+ ∣∣∣ ∑

(i,j)∈L∩Kc

xiyiNij

∣∣∣
= L1(x,y)+L2(x,y), (5.28)

say, almost surely.

5.3.3 Bounding the contribution of the light pairs 181

Bound for L1(x,y)

For any subset A ⊆ [n] and matrix A ∈ Rn×n, let AA denote the submatrix obtained by
deleting the rows and columns in the index set A. Consequently A ∈ R|A|×|A|. Recall
that we have adopted similar notation for vectors. Define for any subset A ⊆ [n], not
necessarily random, and any x,y ∈ Bn

1 (0),

LA(x,y) = L(x,y)∩A2 =
{

(i, j) ∈ A2 : |xiyj | ≤ 1
n

√
Tn

n

}
(5.29)

as well as
LA(x,y) =

∣∣∣ ∑
(i,j)∈LA

xiyj(N̂A
ij −NA

ij)
∣∣∣. (5.30)

Note that for any x,y ∈ Bn
1 (0), L1(x,y) = LΓ(x,y) almost surely.

We proceed in a manner similar as in [133]. We must deal, however, with the added dif-
ficulty that there are dependencies between the entries of N̂ and that Γ is random. There-
fore, our first step will be to prove that for any deterministic minor, maxx,y∈Tϵ LA(x,y) =
OP(
√

Tn/n). Our second step is to use a union bound argument and lift this result to
maxA∈Mn,δ

maxx,y∈Tϵ LA(x,y) = OP(
√

Tn/n), where Mn,δ denotes the set of all subsets
of size at least (1 − δ)n. In particular, because |Γ| = n − ⌊ne−Tn/n⌋ is deterministic, this
implies the result.

Step 1: Minors induced by deterministic sets While we will ultimately use Tϵ, the
following arguments hold for any ϵ-net for (Bn

1 (0),∥ · ∥2) with a small enough number of
points.

Lemma 44. There exist a constant n2 > 0 independent of n and an integer m ∈ N+ such
that for all n ≥ m, any ϵ-net Nϵ for (Bn

1 (0),∥ ·∥2) with cardinality at most (9/ϵ)n, such as
Tϵ, any deterministic subset A ⊆ [n], and any f ≥ max{328(1+4η) log(9/ϵ),8n2(3+8η)},

P
[

max
x,y∈Nϵ

|LA(x,y)| > f

√
Tn

n

]
≤ 2exp

(
− fn

164(1+4η)

)
. (5.31)

Proof. Recall from Lemma 40 that there exists a constant n2 > 0 and integer m ∈N+ such
that for all n ≥ m and all i, j ∈ [n], Nij ≤ n2Tn/n2.

We are going to use Lemma 41 to prove Lemma 44. Observe that the two-dimensional
stochastic process {(Xt,Xt+1)}t≥0 induced by the transitions of the BMC is in fact also
a Markov chain. Moreover, the mixing time of {(Xt,Xt+1)}t≥0 requires just one more
transition than the mixing time of {Xt}t≥0. Consequently, for both of these Markov chains
γps ≥ 1/(2(4η +1)) [27, SM1(26)].

Let n ≥ m, A ⊆ [n] deterministic, and x,y ∈ Bn
1 (0). Define for t ∈ {0,1, . . . ,Tn −1}

fA
x,y((Xt,Xt+1)) =

∑
(i,j)∈LA

xiyj1[Xt = i,Xt+1 = j], (5.32)

so that
E[fA

x,y((Xt,Xt+1))] =
∑

(i,j)∈LA

xiyjΠiPi,j . (5.33)

182 Chapter 5. The spectral norm of block Markov chains

Observe that

LA(x,y) (5.30)=
∣∣∣ ∑
(i,j)∈LA

xiyj(N̂A
ij −NA

ij)
∣∣∣=
∣∣∣ ∑
(i,j)∈LA

xiyj

(
N̂ij −Nij

)∣∣∣
=
∣∣∣Tn−1∑

t=0

∑
(i,j)∈LA

xiyj

(
1[Xt = i,Xt+1 = j]−ΠiPi,j

)∣∣∣
=
∣∣∣Tn−1∑

t=0

(
fA

x,y((Xt,Xt+1))−E[fA
x,y((Xt,Xt+1))]

)∣∣∣. (5.34)

This positions us to apply Lemma 41. All that remains is to provide bounds for the
deviation of fA

x,y((Xt,Xt+1)) from its expectation. We claim that for all t ∈ {0,1, . . . ,Tn −
1}, we have

|fA
x,y((Xt,Xt+1))−E[fA

x,y((Xt,Xt+1))]| ≤ 2
n

√
Tn

n
, (5.35)

Var[fA
x,y((Xt,Xt+1))] ≤ n2

n2 . (5.36)

After having established these claims, the result will follow.
Proof of Lemma 44, assuming (5.35) and (5.36): Applying Lemma 41 with the function
f replaced by fA

x,y to the sample path (X0,X1), . . . ,(XTn−1 ,XTn) of the stationary two-
dimensional Markov chain {(Xt,Xt+1)}t≥0 together with (5.35) and (5.36) implies that
for any f > 0,

P
[∣∣∣Tn−1∑

t=0
fA

x,y((Xt,Xt+1))−E[fA
x,y((Xt,Xt+1))]

∣∣∣> f

√
Tn

n

]
≤ 2exp

(
−

f2γps
Tn
n

8(Tn +1/γps) n2
n2 +40fTn

n2

)
= 2exp

(
−

f2γpsn

8n2(1+1/(γpsTn))+40f

)
. (5.37)

Note that γps may depend on n. Recall therefore that Tn ≥ 1 and (i) γps ≥ 1/(2(1+4η)).
Consequently 1+1/(γpsTn) ≤ 1+1/γps ≤ 3+8η. The lower bound on the right-hand side
is independent of n. We find that (ii) for any f ≥ 8n2(3+8η),

P
[
LA(x,y) > f

√
Tn

n

]
≤ 2exp

(
−

f2γpsn

8n2(3+8η)+40f

) (ii)
≤ 2exp

(
−
fγpsn

41

) (i)
≤ 2exp

(
− fn

82(1+4η)

)
. (5.38)

Finally use (iii) Boole’s inequality together with (5.38), in combination with (iv)
Lemma 43(b) with the assumption |Nϵ| ≤ (9/ϵ)n to conclude that (v) for any f≥ max{328(1+
4η) log(9/ϵ),8n2(3+8η)},

P
[

max
x,y∈Nϵ

|LA(x,y)| > f

√
Tn

n

] (iii)
≤ |Nϵ|2 ·2exp

(
− fn

82(1+4η)

)
(iv)
≤ 2exp

((
2log 9

ϵ
− f

82(1+4η)

)
n
) (v)

≤ 2exp
(

− fn

164(1+4η)

)
. (5.39)

5.3.3 Bounding the contribution of the light pairs 183

This establishes Lemma 44 under the assumption of (5.35) and (5.36). All that remains
is to prove (5.35) and (5.36).
Proof of (5.35): Let t ∈ {0,1, . . . ,Tn −1}. We have that∣∣fA

x,y((Xt,Xt+1))−E[fA
x,y((Xt,Xt+1))]

∣∣ (5.32)=
∣∣∣ ∑
(i,j)∈LA

xiyj

(
1[Xt = i,Xt+1 = j]−ΠiPi,j

)∣∣∣
≤ sup

(i,j)∈LA

{
|xiyj |

}
·
(

1+
∑

(i,j)∈[n]2
ΠiPi,j

) (i)
≤ 2

n

√
Tn

n
(5.40)

almost surely. Here, we (i) used the facts that (i, j) ∈ LA and
∑

(i,j)∈[n]2 ΠiPi,j = 1. This
establishes (5.35).
Proof of (5.36): Let t ∈ {0,1, . . . ,Tn −1}. Observe that

Var[fA
x,y((Xt,Xt+1))] ≤ E

[(∑
(i,j)∈LA

xiyj1[Xt = i,Xt+1 = j]
)2]

= E
[∑

(i,j)∈LA

(k,l)∈LA

xiyjxkyl1[Xt = i,Xt+1 = j]1[Xt = k,Xt+1 = l]
]

= E
[∑

(i,j)∈LA

|xiyj |21[Xt = i,Xt+1 = j]
]

(5.41)

=
∑

(i,j)∈LA

|xiyj |2ΠiPij ≤ max
(i,j)∈[n]2

{
ΠiPij

} ∑
(i,j)∈[n]2

|xiyj |2.

Recall now that x,y ∈ Bn
1 (0). This implies that

∑
(i,j)∈[n]2 |xiyj |2 =

∑
(i,j)∈[n]2 x2

i y2
j =∑

i∈[n] x2
i ·
∑

j∈[n] y2
j ≤ 1. Furthermore, observe that Lemma 40 implies ΠiPij = Nij/Tn ≤

n2/n2. Use these two facts to bound (5.41). This proves (5.36).
This completes the proof of Lemma 44. 2

Step 2: Passing to a random minor We have proven in Lemma 44 that the contri-
bution of light pairs of a minor induced by a deterministic subset A contributes at most
OP(
√

Tn/n) with high probability. We will now prove that this is also the case for all
subsets of size |Γ| = n−⌊ne−Tn/n⌋ simultaneously:

Proposition 19. There exists a constant n2 > 0 independent of n and an integer m ∈ N+
such that for all n ≥ m, any ϵ-net Nϵ for (Bn

1 (0),∥ · ∥2) with cardinality at most (9/ϵ)n,
such as Tϵ, and all l1 ≥ max{656(1+4η) log2,328(1+4η) log(9/ϵ),8n2(3+8η)},

P
[

max
x,y∈Nϵ

|L1(x,y)| ≥ l1

√
Tn

n

]
≤ 2exp

(
− l1n

328(1+4η)

)
. (5.42)

Proof. Recall Lemma 44: there exist a constant n2 > 0 independent of n and an integer
m ∈ N+ such that its clauses hold.

Let n ≥ m. To prove Proposition 19, we proceed as in [133]. Define for δ ∈ (0,1),

Mn,δ =
{

A ∈ P([n])
∣∣ (1− δ)n ≤ |A| ≤ n

}
. (5.43)

184 Chapter 5. The spectral norm of block Markov chains

Here, P([n]) denotes the power set of [n]. Using (i) Boole’s inequality, (ii) Lemma 44, and
(iii) |Mn,δ| ≤ 2n independently of δ yields that (iv) for all l1 ≥ max{656(1+4η) log2,328(1+
4η) log(9/ϵ),8n2(3+8η)},

P
[

max
A∈Mn,δ

max
x,y∈N A

ϵ

|LA(x,y)| > l1

√
Tn

n

] (i)
≤

∑
A∈Mn,δ

P
[

max
x,y∈N A

ϵ

|LA(x,y)| > l1

√
Tn

n

]
(ii)
≤ |Mn,δ| ·2exp

(
− l1n

164(1+4η)

)
(5.44)

(iii)
≤ 2exp

((
log2− l1n

164(1+4η)

)
n
) (iv)

≤ 2exp
(

− l1n

328(1+4η)

)
.

Recalling (v) that L1(x,y) = LΓ(x,y) almost surely completes the proof, because (vi) there
exists a δ ∈ (0,1) such that the event{

max
x,y∈Nϵ

L1(x,y) > l1

√
Tn

n

} (v)=
{

max
x,y∈Nϵ

LΓ(x,y) > l1

√
Tn

n

}
(vi)
⊆
{

max
A∈Mn,δ

max
x,y∈Nϵ

|LA(x,y)| > l1

√
Tn

n

}
. (5.45)

This is because |Γ| = n−⌊ne−Tn/n⌋. This proves the proposition. 2

Bounding L2(x,y)

Proposition 20. There exist a constant l2 > 0 independent of n and an integer m ∈ N+
such that for all n ≥ m, and any ϵ-net Nϵ for (Bn

1 (0),∥·∥2) with cardinality at most (9/ϵ)n,
such as Tϵ, P[maxx,y∈Nϵ L2(x,y) ≥ l2

√
Tn/n] = 0.

Proof. Recall Lemma 40: there exists a constant n2 > 0 and integer m ∈ N+ such that for
all n ≥ m and all i, j ∈ [n], Nij ≤ n2Tn/n2.

Let n ≥ m and x,y ∈ Bn
1 (0). By (i) the triangle inequality, (ii) L’s definition in (5.25)

and the fact that L ∩ Kc ⊆ Kc, (iii) expanding the maximization range from Kc to [n]2,
(iv) the bound |Kc| ≤ 2n|Γc| and Lemma 40, (v) |Γc| = ⌊ne−Tn/n⌋ ≤ ne−Tn/n, and finally
(vi) for z ≥ 0, ze−z ≤ 1, we obtain that∣∣∣ ∑

(i,j)∈L∩Kc

xiyjNij

∣∣∣ (i)
≤

∑
(i,j)∈L∩Kc

|xiyj |Nij

(ii)
≤ 1

n

√
Tn

n
·
∑

(i,j)∈Kc

Nij

(iii)
≤ 1

n

√
Tn

n
· |Kc| max

(i,j)∈[n]
{Nij}

(iv)
≤ 1

n

√
Tn

n
·2n2|Γc|Tn

n

(v)
≤ 2n2

√
Tn

n
· Tn

n
e− Tn

n

(vi)
≤ 2n2

√
Tn

n
(5.46)

almost surely.
The proposition follows after an application of Boole’s inequality: for any l2 > 2n2

independent of n,

P
[

max
x,y∈Nϵ

L2(x,y) ≥ l2

√
Tn

n

]
≤
∑

x,y∈Nϵ

P
[
L2(x,y) ≥ l2

√
Tn

n

] (5.46)=
(4

ϵ

)n

·0 = 0. (5.47)

2

5.3.4 Bounding the contribution of the heavy pairs 185

5.3.4 Bounding the contribution of the heavy pairs
We split the bounding of H(x,y) into two parts too, using the triangle inequality: let

H(x,y) (5.27)=
∣∣∣ ∑
(i,j)∈Lc

xiyj

(
(N̂Γ)ij −Nij

)∣∣∣
≤
∣∣∣ ∑
(i,j)∈Lc

xiyj(N̂Γ)ij

∣∣∣+ ∣∣∣ ∑
(i,j)∈Lc

xiyjNij

∣∣∣
= H1(x,y)+H2(x,y). (5.48)

Bound for H1(x,y)

To bound the contribution of heavy pairs, we will follow the proof approaches in [133, 124]
and specifically adapt [124, Appendix C]. Our primary modifications consist of proving the
right asymptotic scalings for the discrepancy property and bounded degree property. In
this manner, the bounds can be applied to N̂Γ, which enumerates the visits of a Markov
chain in contrast to a random graphs which are the common setting when using these
bounds. The discrepancy property and bounded degree properties will ultimately be
guaranteed using a concentration inequality for Markov chains; recall also Lemma 42 and
Proposition 18. Because the proof of the following proposition follows similar arguments
as in [133, 124], we relegate the proof to Appendix 5.B.2.

Proposition 21. If maxy∈Γ
{

N̂Γ,y ∨ N̂y,Γ
}

≤ b2Tn/n and N̂Γ satisfies the discrepancy
property in Definition 32, then there exists a constant h1 > 0 independent of n and an
integer m ∈ N+ such that for all n ≥ m,

max
x,y∈Tϵ

H1(x,y) ≤ h1

√
Tn

n
. (5.49)

Bound for H2(x,y)

Proposition 22. There exists a constant h2 > 0 independent of n and an integer m ∈ N+
such that for all n ≥ m, and any ϵ-net Nϵ for (Bn

1 (0),∥·∥2) with cardinality at most (9/ϵ)n,
such as Tϵ, P[maxx,y∈Nϵ H2(x,y) ≥ h2

√
Tn/n] = 0.

Proof. Recall from Lemma 40 that there exists a constant n2 > 0 and integer m ∈N+ such
that for all n ≥ m and all i, j ∈ [n], Nij ≤ n2Tn/n2. Let n ≥ m and x,y ∈ Bn

1 (0). Observe
that

H2(x,y) =
∣∣∣ ∑
(i,j)∈Lc

xiyjNij

∣∣∣≤ max
(i,j)∈[n]2

{Nij}
∑

(i,j)∈Lc

|xiyj | ≤ n2
Tn

n2

∑
(i,j)∈Lc

|xiyj | (5.50)

almost surely. Because (i) x,y ∈ Bn
1 (0), and (ii) x,y ∈ Lc, the inequalities

1
(i)
≥

∑
(i,j)∈[n]2

x2
i y2

j =
(∑

(i,j)∈L

+
∑

(i,j)∈Lc

)
x2

i y2
j ≥

∑
(i,j)∈Lc

|xiyj ||xiyj |
(ii)
>

1
n

√
Tn

n

∑
(i,j)∈Lc

|xiyj |,

(5.51)

186 Chapter 5. The spectral norm of block Markov chains

are satisfied. This yields ∑
(i,j)∈Lc

|xiyj | < n

√
n

Tn
. (5.52)

Bound (5.50) using (5.52) to obtain that∣∣∣ ∑
(i,j)∈Lc

xiyjNij

∣∣∣≤ n2

√
Tn

n
(5.53)

almost surely.
The proposition follows after an application of a union bound. For any h2 > n2 inde-

pendent of n and any n ≥ m,

P
[

max
x,y∈Nϵ

H2(x,y) ≥ h2

√
Tn

n

]
≤
∑

x,y∈Nϵ

P[H2(x,y) ≥ h2

√
Tn

n
] (5.53)=

(4
ϵ

)n

·0 = 0. (5.54)

2

5.3.5 Proof of Theorem 30
We will now combine the results and prove Theorem 30. We will bound the spectral norm
of N̂Γ −N and obtain Theorem 30(b); the proof of Theorem 30(a) follows the same steps
and will therefore be skipped. The only difference is that the discrepancy property used in
the first step with Proposition 18 requires trimming to hold when ω(n) = Tn = o(n logn).
We will remark when this is the case during the proof.

In order to use Lemma 43, we will assume from now on that ϵ = 1/4 ∈ (0,1/3). We
thus consider the ϵ-net T1/4. Let d > 0 be a constant independent of n that we will choose
sufficiently large later. Using (i) Lemma 43(a), we can then bound for each d > 0:

P
[
∥N̂Γ −N∥ ≥ d

√
Tn

n

] (i)
≤ P

[
max

x,y∈T1/4
|xT(N̂Γ −N)y| ≥ d

4

√
Tn

n

]
(5.55)

(5.27)
≤ P

[
max

x,y∈T1/4
L(x,y) ≥ d

8

√
Tn

n

]
+P
[

max
x,y∈T1/4

H(x,y) ≥ d

8

√
Tn

n

]
(5.28, 5.48)

≤ P
[

max
x,y∈T1/4

L1(x,y) ≥ d

16

√
Tn

n

]
+P
[

max
x,y∈T1/4

L2(x,y) ≥ d

16

√
Tn

n

]
+P
[

max
x,y∈T1/4

H1(x,y) ≥ d

16

√
Tn

n

]
+P
[

max
x,y∈T1/4

H2(x,y) ≥ d

16

√
Tn

n

]
.

From Propositions 19–22 it follows that there exist constants l1, l2,h1,h2 > 0 indepen-
dent of n and integers m1, . . . ,m4 ∈ N+, such that for any d/16 > max{l1, l2,h1,h2} and
all n ≥ max{m1, . . . ,m4}:

P
[

max
x,y∈T1/4

L2(x,y) ≥ d

16

√
Tn

n

]
= 0, P

[
max

x,y∈T1/4
H2(x,y) ≥ d

16

√
Tn

n

]
= 0, (5.56)

and furthermore

P
[

max
x,y∈T1/4

L1(x,y) ≥ d

16

√
Tn

n

]
≤ 2e− dn

5248(1+4η) . (5.57)

5.3.5 Proof of Theorem 30 187

In order to bound the probability of the event {maxx,y∈T1/4 H1(x,y) ≥ (d/16)
√

Tn/n}
using Proposition 21, we must condition on the events

Dd1,d2 =
{

N̂Γ is (d1,d2)-discrepant
}

, Bb2 =
{

max
y∈Γ

{
N̂Γ,y ∨ N̂y,Γ

}
≤ b2

Tn

n

}
, (5.58)

with b2 > 0 a sufficiently large constant independent of n. By the law of total probability,

P
[

max
x,y∈T1/4

H1(x,y) ≥ d

16

√
Tn

n

]
= P
[

max
x,y∈T1/4

H1(x,y) ≥ d

16

√
Tn

n

∣∣∣ Bb2

]
P[Bb2]

+P
[

max
x,y∈T1/4

H1(x,y) ≥ d

16

√
Tn

n

∣∣∣ Bc
b2

]
P[Bc

b2]

≤ P
[

max
x,y∈T1/4

H1(x,y) ≥ d

16

√
Tn

n

∣∣∣ Bb2

]
+P[Bc

b2]. (5.59)

Lemma 42(b) implies that there exists a constant b2 > 0 independent of n (which we now
will specifically use) such that for sufficiently large n,

P[Bc
b2] ≤ 2e− Tn

n . (5.60)

To bound the remaining term in (5.59) we can again use the law of total probability:

P
[

max
x,y∈T1/4

H1(x,y) ≥ d

16

√
Tn

n

∣∣∣ Bb2

]
= P
[

max
x,y∈T1/4

H1(x,y) ≥ d

16

√
Tn

n

∣∣∣ Bb2 ∩Dd1,d2

]
P[Dd1,d2 |Bb2]

+P
[

max
x,y∈T1/4

H1(x,y) ≥ d

16

√
Tn

n

∣∣∣ Bb2 ∩Dc
d1,d2

]
P[Dc

d1,d2 |Bb2]

≤ P
[

max
x,y∈T1/4

H1(x,y) ≥ d

16

√
Tn

n

∣∣∣ Bb2 ∩Dd1,d2

]
+P[Dc

d1,d2 |Bb2]. (5.61)

By Proposition 18(a), we find that for sufficiently large n,

P[Dc
d1,d2 |Bb2] ≤ 1

n
. (5.62)

Finally, Proposition 21 tells us that for sufficiently large constants b2,d > 0 independent
of n, and sufficiently large n,

P
[

max
x,y∈T1/4

H1(x,y) ≥ d

16

√
Tn

n

∣∣∣ Bb2 ∩Dd1,d2

]
= 0. (5.63)

Combining (5.55)–(5.63) yields that there exist a constant d > 0 independent of n and
an integer m ∈ N+ such that for all n ≥ m,

P
[
∥N̂Γ −N∥ ≥ d

√
Tn

n

]
≤ 2e− dn

5248(1+4η) +2e− Tn
n + 1

n
. (5.64)

188 Chapter 5. The spectral norm of block Markov chains

We can conclude that if Tn = ω(n), then ∥N̂Γ −N∥ = OP(
√

Tn/n).
In case Tn = Ω(n logn), we could have avoided trimming by using Proposition 18(a)

and Lemma 42(a) instead. This requires a repetition of the arguments above but with
N̂ replacing N̂Γ. Ultimately, the right-hand side of (5.60) would be replaced by O(1/n).
This completes the proof.

5.4 Proof of Corollary 7
Now that we have established the tight bound σ1(N̂Γ −N) = OP(

√
Tn/n) in Theorem 30,

we can investigate the singular values of N̂Γ. Because we furthermore know the asymptotic
order of the singular values of N in (5.11), we can combine these two facts in a perturbative
argument using Weyl’s inequality:

Lemma 45 (Weyl’s inequality). Let A,B ∈ Rs×m with s ≥ m, and σ1(A) ≥ . . . ≥ σm(A)
and σ1(B) ≥ . . . ≥ σm(B) be the singular values of A and B, respectively. If ∥A − B∥ ≤ ϵ,
then for all i = 1, . . . ,m, |σi(A)−σi(B)| ≤ ϵ.

Proof. It follows from [151, Theorem 3.3.16] that for i = 1, . . . ,m, σi(A) ≤ σi(B)+σ1(A−
B) and σi(B) ≤ σi(A) + σ1(B − A). The claim follows by noting that ∥A − B∥ = σ1(A −
B) = σ1(B −A). 2

For any ϵ > 0, there exists then δε,mϵ > 0 such that,

P
[
σK+1(N̂Γ) ≥ δε

√
Tn

n

]
= P
[
σK+1(N̂Γ)−σK+1(N) ≥ δε

√
Tn

n

]
≤ P
[
σ1(N̂Γ −N) ≥ δε

√
Tn

n

]
≤ ϵ (5.65)

for any n ≥ mϵ. This implies that σK+1(N̂Γ) = OP(
√

Tn/n) and so σi(N̂Γ) = OP(
√

Tn/n)
for any i = K +1, . . . ,n. Similarly there exist κϵ, lϵ such that for any n ≥ lϵ we have

P
[
|σK(N̂Γ)−σK(N)| ≥ κε

√
Tn

n

]
≤ P
[
σ1(N̂Γ −N) ≥ κε

√
Tn

n

]
≤ ϵ (5.66)

and thus σK(N̂Γ) − σK(N) = OP(
√

Tn/n) also. Recall (5.11), which implies that there
exist constants a1,a2 > 0 independent of n such that for large n we have a1Tn/n ≤ σK(N) ≤
a2Tn/n. Since Tn = ω(n), we have

√
Tn/n → ∞ as n → ∞. Let now n0 be large enough

such that for any n ≥ n0 we have e1 ≥ a1 −κϵ(
√

Tn/n)−1 and e2 ≤ a2 +κϵ(
√

Tn/n)−1 for
some e1,e2 > 0. Then for any n ≥ max{mϵ, lϵ,n0},

P
[
e1Tn/n ≤ σK(N̂Γ) ≤ e2Tn/n

]
≥ P
[
a1T/n−κε

√
Tn

n
≤ σK(N̂Γ) ≤ a2T/n+κε

√
Tn

n

]
≥ P
[
{−κε

√
Tn

n
≤ σK(N̂Γ)−a1T/n}∩{σK(N̂Γ)−a2T/n ≤ κε

√
Tn

n
}
]

(5.67)

≥ P
[{

−κε

√
Tn

n
≤ σK(N̂Γ)−σK(N)

}
∩
{

σK(N̂Γ)−σK(N) ≤ κε

√
Tn

n

}]
≥ 1− ϵ.

The same argument holds for σi(N̂Γ) for i = 1, . . . ,K − 1. Hence, we obtain σi(N̂Γ) =
ΘP(T/n).

5.5 Proof of Proposition 17 189

5.5 Proof of Proposition 17
We now prove that if ω(n) = Tn = o(n2), then there exist constants b,eb > 0 independent
of n and an integer n0 ∈ N+ such that for any n ≥ n0,

P
[
∥N̂ −N∥ > b

√
Tn

n

]
≥ 1− e−eb

Tn
n . (5.68)

Note from the definition of the spectral norm in (5.21) that

∥N̂ −N∥2 ≥ ∥(1,0, . . . ,0)T(N̂ −N)∥2
2 =

n∑
j=1

|N̂1j −N1j |2 (5.69)

almost surely. Therefore

P
[
∥N̂ −N∥ > b

√
Tn

n

]
≥ P
[n∑

j=1
|N̂1j −N1j |2 > b2 Tn

n

]
= 1−P

[n∑
j=1

|N̂1j −N1j |2 ≤ b2 Tn

n

]
.

(5.70)
It is thus enough to prove that there exist constants b,eb > 0 independent of n and an
integer n0 ∈ N+ such that for all n ≥ n0

P
[n∑

j=1
|N̂1j −N1j |2 ≤ b2 Tn

n

]
≤ e−eb

Tn
n . (5.71)

To prove (5.71), we rely on the following lemma:

Lemma 46. Suppose that Tn = ω(n).

(a) For any constant b ∈ (0, 1
4 πν(1)/αν(1)) independent of n, there exist constants cb ∈

[1
2 πν(1)/αν(1),

1
2 πν(1)/αν(1) +b], db ∈ (πν(1)/αν(1),πν(1)/αν(1) +b] independent of n

and an integer n0 ∈ N+, such that for all n ≥ n0,

cb
Tn

n
≤ N1,[n] −b

Tn

n
and N1,[n] ≤ db

Tn

n
≤ N1,[n] +b

Tn

n
. (5.72)

In particular

cb
Tn

n
≤ N1,[n] −b

Tn

n
≤
(
db −b

)Tn

n
and cb

Tn

n
≤ N1,[n] +b

Tn

n
≤
(
db +b

)Tn

n
.

(5.73)

(b) For any constant b > 0 independent of n, there exists a constant eb > 0 independent
of n and an integer n1 ∈ N+, such that for all n ≥ n1,

P
[∣∣N̂1,[n] −N1,[n]

∣∣≥ b
Tn

n

]
≤ 2e−eb

Tn
n . (5.74)

Proof. The first claim follows because N1,[n] = Θ(Tn/n); cf. Lemma 40.
The second claim can be proven using the same strategy as for (5.86), see the argument

at (5.92)–(5.94) and equation (5.94) in particular. The only difference is that we need to
keep track of the different constants b,eb, and that we do not choose b to be large. 2

190 Chapter 5. The spectral norm of block Markov chains

Let b ∈ (0, 1
4 πν(1)/αν(1)). By Lemma 46(a) there exist constants cb ∈ [1

2 πν(1)/αν(1),
1
2 πν(1)/αν(1) +b], db ∈ (πν(1)/αν(1),πν(1)/αν(1) +b] and an integer n0 ∈ N+ such that for
all n ≥ n0, the event{

|N̂1,[n] −N1,[n]| ≤ b
Tn

n

} (5.73)
⊆

{
N̂1,[n] ∈

[
cb

Tn

n
,(db +b)Tn

n

]}
= Bb, (5.75)

say. Observe that its complement

Bc
b ⊆

{
|N̂1,[n] −N1,[n]| > b

Tn

n

}
. (5.76)

Furthermore, by the law of total probability,

P
[n∑

j=1
|N̂1,j −N1,j |2 ≤ b

Tn

n

]
= P
[n∑

j=1
|N̂1,j −N1,j |2 ≤ b

Tn

n

∣∣∣ Bb

]
P[Bb]+P

[n∑
j=1

|N̂1,j −N1,j |2 ≤ b
Tn

n

∣∣∣ Bc
b

]
P[Bc

b]

(5.76)
≤ P

[n∑
j=1

|N̂1,j −N1,j |2 ≤ b
Tn

n

∣∣∣ Bb

]
+P
[
|N̂1,[n] −N1,[n]| > b

Tn

n

]
(i)
≤ P

[n∑
j=1

|N̂1,j −N1,j |2 ≤ b
Tn

n

∣∣∣ Bb

]
+2e−eb

Tn
n . (5.77)

We (i) used Lemma 46(b) to establish the last step. What remains is to bound the second-
to-last term.

Recall that by assumption, ω(n) = Tn = o(n2). By Lemma 40 there exist constants n1 ∈
(0,mink,l∈[K] πkqk,l/(αkαl)), n2 ∈ (maxk∈[K] πk/(αkαl),∞) such that for all sufficiently
large n, n1Tn/n2 ≤ minj∈[n] N1,j ≤ n2Tn/n2. There thus also exists an integer n2 ∈ N+
such that for all n > n2, q1Tn/n2 ≤ minj∈[n] N1,j ≤ 1/4. Let n ≥ n2 so that if moreover
N̂1,j ≥ 1, then

|N̂1,j −N1,j |2 ≥ 1
2 N̂2

1,j +N2
1,j ; (5.78)

and if instead N̂1,j = 0, then (5.78) still holds. Thus for any n ≥ n2,
n∑

i=1
|N̂1,j −N1,j |2 ≥ 1

2

n∑
i=1

|N1,j |2 +n min
j∈[n]

N2
1,j ≥ 1

2

n∑
i=1

|N1,j |2 +n2
1

T 2
n

n3 . (5.79)

By assumption T 2
n/n3 = o(Tn/n). We can therefore write, for sufficiently large n,

P
[n∑

i=1
|N̂1,j −N1,j |2 ≤ b

Tn

n

∣∣∣ Bb

] (5.79)
≤ P

[n∑
i=1

|N̂1,j |2 ≤
(
2b−o(1)

)Tn

n

∣∣∣ Bb

]
. (5.80)

Observe now that if
∑n

j=1 |N̂1,j |2 ≤ 2bTn/n, then at most m ≤ ⌊2bTn/n⌋ elements of
the row vector N̂1,· can be strictly positive; N̂1,j1 > 0, . . . , N̂1,jm > 0 say. The reason is
that for j ∈ [n], N̂1,j ∈ N0. Using (i) the arithmetic–quadratic–mean inequality, we then
obtain

n∑
i=1

|N̂1,j |2 =
m∑

k=1

|N̂1,jk
|2

(i)
≥ 1

m

(m∑
k=1

N̂1,jk

)2
≥ n

2bTn
N̂2

1,[n]. (5.81)

5.6 Numerical validation 191

Now (i) bound (5.80) by (5.81), to find that (ii) for sufficiently large n,

P
[n∑

i=1
|N̂1,j −N1,j |2 ≤ b

Tn

n

∣∣∣ Bb

] (i)
≤ P

[n

2bTn
N̂2

1,[n] ≤
(
2b−o(1)

)Tn

n

∣∣∣ Bb

]
= P
[
N̂1,[n] ≤ 2

√
b(b−o(1))Tn

n

∣∣∣ Bb

] (ii)
≤ P

[
N̂1,[n] ≤ 2bTn

n

∣∣∣ Bb

] (iii)= 0 (5.82)

because of (iii) the definition of the event Bb in (5.75) combined with the fact that
2bTn/n < cbTn/n by construction. This completes the proof. 2

5.6 Numerical validation
We now briefly validate the asymptotics proven in Theorem 30 numerically.1 We consider
a regime that is as sparse as possible. This regime is the most interesting to examine
and the asymptotics become challenging to observe due to proximity to the detectability
threshold for BMCs.

Figure 5.6.1 shows the scaled spectral norm
√

n/Tn∥N̂ − N∥ as a function of n for
different asymptotic scalings of Tn. We can expect from Theorem 30 that whenever
Tn/n = ω(1), this scaled singular value gap should be ΘP(1). Observe that both in the
dense regime Tn = Ω(n logn) (bottom black curve) and in the sparse regime Θ(n) = Tn =
o(n log(logn)) (middle red, yellow curves) this holds true. For the even sparser regime
Tn = o(n) (top blue curve), it looks like the scaled spectral norm may grow. Such a sparse
regime is not covered by our analysis.

Appendix

5.A Proofs of Section 5.2

5.A.1 Proof of Lemma 40
Start by noting that mink,l∈[K] qk,l > 0 independently of n. Consequently, by the Perron–
Frobenious theorem, there exists an invariant distribution π = (π1, . . . ,πK) that also sat-
isfies mink∈[K] πk > 0 independently of n, since πTq = πT [27, Prop. 1].

Now let n1,n2 be independent of n and satisfy

0 < n1 < min
k,l∈[K]

πkqk,l

αkαl
≤ max

k,l∈[K]

πkqk,l

αkαl
< n2 < ∞. (5.83)

1The simulation utilizes the GNU Scientific Library (GSL) for random number generation; Eigen,
a high-level library for linear algebra, matrix, and vector operations; and the Sparse Eigenvalue Com-
putation Toolkit as a Redesigned ARPACK (SPECTRA), a library for large-scale eigenvalue problems
built on top of Eigen. The mathematical components of our BMC simulator were furthermore unit
tested to ensure validity. Finally, we instructed the Microsoft Visual C++ (MSVC) compiler to activate
the OpenMP extension to parallelize the simulation across CPUs and so that Eigen could parallelize
matrix multiplications (/openmp); to apply maximum optimization (/O2); to enable enhanced CPU
instruction sets (/arch:AVX2); and to explicitly target 64-bit x64 hardware. The code can be found at
https://gitlab.tue.nl/acss/public/spectral-norm-bounds-for-block-markov-chain-random-matrices.

https://gitlab.tue.nl/acss/public/spectral-norm-bounds-for-block-markov-chain-random-matrices

192 Chapter 5. The spectral norm of block Markov chains

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

2

2.5

3

3.5

4

4.5

5

n

Sc
al

ed
sp

ec
tr

al
no

rm

α = −0.5
α = 0

α = 0.5
α = 1.0

Figure 5.6.1: Plots of the scaled spectral norm
√

n/Tn∥N̂ − N∥ for different asymptotic
scalings of Tn and n = 500,1000, . . . ,10000. The choice of the BMC pa-
rameters is q = 1

10 ((2,3,5);(3,5,2);(5,2,3)) and α = 1
3 (1,1,1). Each 95%-

confidence interval was the result of approximately 48 independent replica-
tions. The trajectory length was set to Tn = [n(logn)α], and |Γc| = 0 states
were trimmed. The curves correspond to α = −0.5,0,0.5,1 from top to bot-
tom.

Let x,y ∈ [n]. Observe that

lim
n→∞

Nx,y

Tn/n2 = lim
n→∞

n2ΠxPx,y = lim
n→∞

n2 πν(x)qν(x),ν(y)
|Vν(x)||Vν(y)|

=
πν(x)qν(x),ν(y)

αν(x)αν(y)
. (5.84)

Consequently
n1 < lim

n→∞

Nx,y

Tn/n2 < n2. (5.85)

The conclusions pertaining to Px,y follow mutatis mutandis. This completes the proof.
2

5.A.2 Proof of Lemma 42
Proving this next claim is sufficient: if Tn = ω(n), then there exists a constant b3 > 0
independent of n such that for any x ∈ [n] and all sufficiently large n,

P
[∣∣N̂[n],x −N[n],x

∣∣≥ b3
Tn

n

]
≤ 2e−2 Tn

n . (5.86)

Lemma 42(a) would namely follow almost immediately. If Tn = Ω(n logn), then

P
[

max
y∈[n]

{
N̂y,[n] ∨ N̂[n],y

}
≥ b1

Tn

n

] (i)
≤ P

[
max
y∈[n]

N̂[n],y ≥ b1
Tn

n
−1
]

(5.87)

(ii)
≤ n max

x∈[n]
P
[
N̂[n],x ≥ b1

Tn

n
−1
]

5.A.2 Proof of Lemma 42 193

(iii)
≤ n max

x∈[n]
P
[
|N̂[n],x −N[n],x| ≥ b4

Tn

n

] (5.86)
≤ 2ne−2logn

for sufficiently large n and some b4 > 0 if b1 is large enough. Here, we used (i) that for
y ∈ [n]\{X0,XTn}, N̂y,[n] = N̂[n],y and for y ∈ {X0,XTn}, |N̂y,[n] −N̂[n],y| ≤ 1; (ii) Boole’s
inequality; and (iii) that for all x ∈ [n], N[n],x = Θ(Tn/n).

We prove now Lemma 42(b). We may assume without loss of generality that |Γc| =
⌊ne−Tn/n⌋ ≥ 1 since otherwise we would be in the previous case. Equivalently, Tn ≤ n logn.
Let

H =
{

y ∈ [n] : N̂[n],y ≥ b2
Tn

n
−1
}

(5.88)

be the set of states of at least the indicated degree. By (iv) construction of the trimming
procedure and the set H,

P
(
max
y∈Γ

{
N̂y,Γ ∨ N̂Γ,y

}
≥ b2

Tn

n

) (i)
≤ P

(
max
y∈Γ

N̂y,[n] ≥ b2
Tn

n
−1
) (iv)= P[|H| > |Γc|]. (5.89)

By (v) Markov’s inequality,

P[|H| > |Γc|] = P
[∑

y∈[n]

1
[
N̂[n],y ≥ b2

Tn

n
−1
]

≥ |Γc|+1
]

(v)
≤ 1

|Γc|+1
∑

x∈[n]

P
[
N̂[n],x ≥ b2

Tn

n
−1
]

≤ 1
|Γc|+1

∑
x∈[n]

P
[∣∣N̂[n],x −N[n],x

∣∣≥ b5
Tn

n

]
, (5.90)

for some b5 > 0 if b2 is large enough. Finally apply (5.86) and lower bound |Γc| ≥
ne−Tn/n −1 to find that

P
[
max
y∈Γ

{
N̂y,Γ ∨ N̂Γ,y

}
≥ b2

Tn

n

]
≤ 2e− Tn

n . (5.91)

The final inequality follows because Tn ≤ n logn. What remains is to prove (5.86).
Proof of (5.86). This is a tightening of [27, SM1(20)] by a logarithmic term, and the
argument is a straightforward modification. Let f(·) =1[· = x] be such that

∑Tn
t=1 f(Xt) =

N̂[n],x. Clearly for x ∈ [n], |f(Xt)−EΠ[f(Xt)]| = |1[Xt = x]−Πx| ≤ 1 = C say. Moreover,
for x ∈ [n],

Vf = Var[f(Xt)] = E[(1[Xt = x]−Πx)2] (5.92)

= E[1[Xt = x]]−Π2
x = Πx(1−Πx) ≤

πν(x)
|Vν(x)| ≤ max

k∈[K]

πk

αkn
+o
(1

n

)
.

By [98, Thm 3.4],

P
[
|N̂[n],x −N[n],x| ≥ z

]
≤ 2exp

(
−

z2γps
8(Tn +1/γps)Vf +20zC

)
. (5.93)

Let b5 > 0 and specify z = b5Tn/n. Recall that γps ≥ 1/(8η +2) [27, (26)]. Therefore

P
[
|N̂[n],x −N[n],x| ≥ b5

Tn

n

]
≤ 2exp

(
−Tn

n
· b2

5/(8η +2)
20b5 +8maxk∈[K] πk/αk +o(1)+O(1/Tn)

)
.

(5.94)
Choosing b5 sufficiently large completes the proof. 2

194 Chapter 5. The spectral norm of block Markov chains

5.A.3 Proof of Proposition 18
We will prove Proposition 18 by modifying the proof approach of [93, Lem. 4.2]. The key
difference is that in the present setting the entries of N̂ are not independent. A similar
argument can also be found in [27, Lem. 12] for a different definition of the discrepancy
property. The discrepancy property differs in the present chapter so as to provide a tighter
bound.

Observe that
E[e(A,B)] =

∑
x∈A

∑
y∈B

E[N̂x,y] =
∑
x∈A

∑
y∈B

Nx,y. (5.95)

We therefore have as an immediate corollary of Lemma 40:

Corollary 8. There exist constants 0 <m1 <m2 < ∞ independent of n and an integer m ∈
N+ such that for all n ≥ m and all A,B ⊆ [n], m1|A||B|Tn/n2 ≤ µ(A,B) ≤ m2|A||B|Tn/n2.

We will prove the following lemma:

Lemma 47. There exist a constant k0 > 0 independent of n and an integer m ∈ N+ such
that for all n ≥ m, all k ≥ k0, and all A,B ⊆ [n],

P[e(A,B) ≥ kµ(A,B)] ≤ 2exp
(

− 1
4 µ(A,B)k logk

)
. (5.96)

The fact that the discrepancy property holds with high probability for both N̂ and
N̂Γ follows from Corollary 8, Lemma 47, whenever Tn = Ω(n log(n)) and Tn = ω(n) respec-
tively:

Proof of Proposition 18 — Case N̂ , i.e., without trimming.

We consider first the case without trimming. For convenience, let ∆ = maxy∈[n]
{

N̂[n],y ∨
N̂y,[n]

}
. Also, we assume that |A| ≤ |B| without loss of generality.

Subcases |B| > n/e For this subcase, the discrepancy property is satisfied since Defini-
tion 32(i) holds. Observe first that for all A,B ⊆ [n],

e(A,B) (5.20)=
∑
i∈A

∑
j∈B

N̂ij ≤ ∆min{|A|, |B|} = ∆|A|. (5.97)

We therefore have in particular that for all A,B ⊆ [n] such that |B| > n/e,

e(A,B)n2

|A||B|Tn
≤ ee(A,B)n

|A|Tn
≤ e∆|A|n

|A|Tn
≤ b3e, (5.98)

since ∆ ≤ b3Tn/n by assumption.

Subcases 0 < |B| ≤ n/e Lemma 47 tells us that there exists a constant k0 > 0 indepen-
dent of n such that for all sufficiently large n, and all k ≥ k0, P[e(A,B) > kµ(A,B)] ≤
2exp(−k log(k)µ(A,B)/4). We may presume that k0 ≥ max(1,1/m2,m2), where we let
0 < m1 < m2 < ∞ be as in Corollary 8. The reason for this choice will become apparent
later on.

5.A.3 Proof of Proposition 18 195

Let n be sufficiently large, and let c1,c2 > 0 be constants independent of n that we will
choose later. Denote by t⋆(A,B) > 0 the unique solution to

t log t = m1c2|B| log(n/|B|)/(2m2µ(A,B)) > 0, (5.99)

which exists and is unique because the function t log t is monotonically increasing for t ≥ 1.
Define k⋆(A,B) = max{k0, t⋆(A,B)} and consider the event

E =
⋂

A,B⊆[n]:|A|≤|B|≤n/e

{
e(A,B) ≤ µ(A,B)k⋆(A,B)

}
. (5.100)

We claim that if E holds, then N̂ is discrepant. Specifically, for all pairs (A,B) such
that k⋆(A,B) = k0, Definition 32(i) holds. Indeed, for any such pair, on event E ,

e(A,B) ≤ k0µ(A,B) ≤ k0m2
Tn|A||B|

n2 ≤ c1
Tn|A||B|

n2 (5.101)

by Corollary 8 if c1 ≥ k0m2. Furthermore: for all pairs (A,B) such that k⋆(A,B) =
t⋆(A,B) > k0 ≥ max(1,1/m2), Definition 32(ii) holds. To see this, consider that for any
such pair e(A,B) ≤ µ(A,B)t⋆(A,B) by event E . Therefore, again by Corollary 8,

n2e(A,B)
Tn|A||B|

≤ m2t⋆(A,B) (5.102)

on event E . Remark now that for 1 ≤ t ≤ m2t⋆, t log t ≤ (m2t⋆) log(m2t⋆) by monotonicity.
Furthermore from the lower bound on t⋆, m2t⋆ ≥ m2 max(1,1/m2,m2) ≥ 1; hence, for
0 ≤ t < 1, t log t ≤ (m2t⋆) log(m2t⋆) also (observe that the left-hand side of the inequality
is nonpositive and the right-hand side nonnegative). Therefore, on the event E ,

n2e(A,B)
Tn|A||B|

log n2e(A,B)
Tn|A||B|

(5.102)
≤ (m2t⋆) log(m2t⋆)

(iii)
≤ 2m2t⋆ log t⋆ (iv)= m1c2|B|

µ(A,B) log n

|B|
(5.103)

because (iii) log(m2t⋆) ≤ 2log t⋆ since t⋆ ≥ max(1,1/m2,m2) ≥m2 and (iv) of the definition
of t⋆(A,B). After (v) multiplying (5.103) by (Tn/n2)|A||B| and (vi) utilizing Corollary 8
one final time, observe that

e(A,B) log n2e(A,B)
Tn|A||B|

(v)
≤ m1c2|B| (Tn/n2)|A||B|

µ(A,B) log n

|B|
(vi)
≤ c2|B| log n

|B|
. (5.104)

What remains is to prove that the event E holds at least with probability 1−1/n. We
can do so using the De Morgan identities, which imply that

P[E] = 1−P
[⋃

A,B⊆[n]:|A|≤|B|≤n/e

{
e(A,B) > µ(A,B)k⋆

}]
, (5.105)

and then upper bounding the right term by 1/n. By (i) Boole’s inequality, (ii) Lemma 47,

196 Chapter 5. The spectral norm of block Markov chains

and (iii) the definition of k⋆(A,B) and Corollary 8, for sufficiently large n,

P
[⋃

A,B⊆[n]:|A|≤|B|≤n/e

{
e(A,B) > µ(A,B)k⋆(A,B)

}]
(i)
≤

∑
A,B⊆[n]:|A|≤|B|≤n/e

P
[
e(A,B) > µ(A,B)k⋆(A,B)

]
(ii)
≤

∑
A,B⊆[n]:|A|≤|B|≤n/e

2exp
(

− 1
4 µ(A,B)k⋆(A,B) logk⋆(A,B)

)
(iii)
≤

∑
A,B⊆[n]:|A|≤|B|≤n/e

2exp
(

−m1c2
8m2

|B| log n

|B|

)
. (5.106)

Finally, by (iv) collecting terms and upper bounding their numbers, and utilizing (v)(
n
s

)
≤ (ne/s)s and (vi) for t ∈ [1,n/e], t ≤ t log(n/t), we find that for sufficiently large n,

(5.106)
(iv)
≤

∑
1≤a≤b≤n/e

2
(

n

a

)(
n

b

)
exp
(

−m1c2
8m2

b log n

b

)
(v)
≤

∑
1≤a≤b≤n/e

2
(ne

a

)a(ne
b

)b

exp
(

−m1c2
8m2

b log n

b

)
≤

∑
1≤a≤b≤n/e

2exp
(

a+a log n

a
+ b+ b log n

b
− m1c2

8m2
b log n

b

)
≤

∑
1≤a≤b≤n/e

2exp
(

2b+2b log n

b
− m1c2

8m2
b log n

b

)
(vi)
≤

∑
1≤a≤b≤n/e

2exp
(

4b log n

b
− m1c2

8m2
b log n

b

)
≤

∑
1≤a≤b≤n/e

2exp
(

−
(m1c2

8m2
−4
)

b log n

b

)
≤

∑
1≤a≤b≤n/e

2n
−m1c2

8m2
+4 ≤ n

−m1c2
8m2

+7
. (5.107)

The event E thus holds at least with probability 1−1/n for sufficiently large n if we choose
the constants in Definition 32 to be d2 = c2 ≥ 64m2/m1. Finally, from (5.98) and (5.101)
we also need to choose d1 = c1 ≥ max{b3e,k0m2}. This completes the proof. 2

Proof of Proposition 18 — Case N̂Γ, i.e., with trimming.

We consider second the case with trimming. For notational convenience, let now ∆Γ =
maxy∈[n]

{
N̂Γ,y ∨ N̂y,Γ

}
. Again, we assume that |A| ≤ |B| without loss of generality.

Subcases |B| > n/e Equations (5.97)–(5.98) hold mutatis mutandis after replacing e(A,B)
by eΓ(A,B), N̂ by N̂Γ, ∆ by ∆Γ and b3 by b4.

5.A.3 Proof of Proposition 18 197

Subcases B ≤ n/e Equations (5.100)–(5.107) hold mutatis mutandis after replacing
e(A,B) by eΓ(A,B). This is because eΓ(A,B) ≤ e(A,B). In particular, utilize the mono-
tonicity of t log t for proving counterparts to (5.101)–(5.104), and the inequality

P[eΓ(A,B) > µ(A,B)k⋆] ≤ P[e(A,B) > µ(A,B)k⋆] (5.108)

for showing replacements of (5.105)–(5.106). The constant d1 will now depend on b4.
This completes the first part. 2

What remains is to prove Lemma 47. This is done in Appendix 5.A.3.

Proof of Lemma 47

Let a ∈ R and n ∈ N+ for now be arbitrary. We will first bound

P[e(A,B)−µ(A,B) ≥ a]. (5.109)

To do so, we are going to split the sum e(A,B) into two parts. Let E(Tn) = {t ∈
{0,1, . . . ,Tn − 1} : t ≡ 0 mod 2} denote the even numbers up to Tn − 1, and O(Tn) =
{0,1, . . . ,Tn −1}\E(Tn) denote the odd numbers up to Tn −1. Write

e(A,B)−µ(A,B) =
∑
i∈A

∑
j∈B

(
N̂ij −Nij

)
=

Tn−1∑
t=0

∑
i∈A

∑
j∈B

(
1[Xt = i,Xt+1 = j]− 1

Tn
Nij

)
=

∑
t∈E(Tn)

∑
i∈A

∑
j∈B

(
1[Xt = i,Xt+1 = j]− 1

Tn
Nij

)
+

∑
t∈O(Tn)

∑
i∈A

∑
j∈B

(
1[Xt = i,Xt+1 = j]− 1

Tn
Nij

)
= e0(A,B)− 1

2 µ(A,B)+e1(A,B)− 1
2 µ(A,B), (5.110)

say. Using a union bound we obtain

P[e(A,B)−µ(A,B) ≥ a] ≤ P[2e0(A,B)−µ(A,B) ≥ a]+P[2e1(A,B)−µ(A,B) ≥ a]. (5.111)

It suffices to bound either of the right members by symmetry.
Suppose therefore that, without loss of generality, the probability pertaining to e0(A,B)

is larger. By Markov’s inequality,

P[2e0(A,B)−µ(A,B) ≥ a] ≤ inf
h>0

{
e−haE

[
eh(2e0(A,B)−µ(A,B))

]}
= inf

h>0

{
e−h(a+µ(A,B))E[e2he0(A,B)]

}
. (5.112)

For t ∈ {0,1, . . . ,Tn}, let Ft be the σ-algebra generated by {X0, . . . ,Xt}. By the law of
total expectation,

E[e2he0(A,B)] = E
[
E
[
e2he0(A,B)

∣∣∣ FTn−2

]]
(5.113)

= E
[
E
[
e2h
∑

t∈E(Tn)

∑
i∈A

∑
j∈B 1[Xt=i,Xt+1=j])

∣∣∣ FTn−2

]]
= E

[
e2h
∑

t∈E(Tn−2)

∑
i∈A,j∈B 1[Xt=i,Xt+1=j]E

[
e2h
∑

i∈A,j∈B 1[XTn−1=i,XTn =j]
∣∣∣ FTn−2

]]
.

198 Chapter 5. The spectral norm of block Markov chains

We can in principle calculate the inner conditional expectation. An upper bound suffices
however, which we will derive next.

Let h > 0. By Lemma 40, there exist a constant p2 > 0 and integer m ∈ N+ such that
for all n ≥ m,

E
[
e2h
∑

i∈A

∑
j∈B N̂ij(Tn)

∣∣∣ FTn−2

]
= E

[
1[(XTn−1,XTn) ∈ [n]2\(A×B)]+e2h1[(XTn−1,XTn) ∈ A×B]

∣∣∣ FTn−2

]
≤ E

[
1+e2h

∑
i∈A

∑
j∈B

1[(XTn−1,XTn) = (i, j)]
∣∣∣ FTn−2

]
≤ 1+

∑
i∈A

∑
j∈B

e2hPXTn−2,iPi,j ≤ 1+e2hp2
|A||B|

n2 . (5.114)

Bounding (5.113) by (5.114), iterating the argument Tn/2 times, and using the elementary
bound 1+z ≤ ez for z ≥ 0, we obtain

E[e2he0(A,B)] ≤
(

1+e2hp2
|A||B|

n2

)Tn/2
≤ exp

(Tn

2 e2hp2
|A||B|

n2

)
. (5.115)

Hence, for all n ≥ m,

P[2e0(A,B)−µ(A,B) ≥ a] ≤ inf
h>0

{
exp
(

−h(a+µ(A,B))+ Tn

2 e2hp2
|A||B|

n2

)}
. (5.116)

Finally, we specify a = (k − 1)µ(A,B). Observe that a is n-dependent. The infimum
in (5.116) then occurs at

hopt
n = 1

2 log kµ(A,B)n2

Tnp2|A||B|
. (5.117)

Substituting (5.117) into (5.116) we find that for all n ≥ m,

P[2e0(A,B)−µ(A,B) ≥ (k −1)µ(A,B)] ≤ exp
(

1
2 kµ(A,B)

(
1− log kµ(A,B)n2

Tnp2|A||B|

))
. (5.118)

By rearranging the left-hand side (5.118) and applying Corollary 8, we find that for
all n ≥ m and (i) all k ≥ exp(2−2log(m1/p2)) > 0,

P[2e0(A,B) ≥ kµ(A,B)] ≤ exp
(

1
2 kµ(A,B)

(
1− log m1k

p2

)) (i)
≤ exp

(
− 1

4 k logkµ(A,B)
)

.

(5.119)
We obtain the same bound for P[2e1(A,B) ≥ kµ(A,B)] in (5.111) mutatis mutandis. To-
gether with (5.111) this yields that for all n ≥ m, and all k ≥ k0,

P[e(A,B) ≥ kµ(A,B)] ≤ 2exp
(

− 1
4 µ(A,B)k logk

)
. (5.120)

This completes the proof. 2

5.B Proofs of Section 5.3 199

5.B Proofs of Section 5.3

5.B.1 Proof of Lemma 43
Proof. We prove Lemma 43(a) first. Let xopt,yopt ∈ Sn−1

1 (0) be such that ∥A∥ = |(xopt)TA

yopt|. Choose x∗,y∗ ∈ Nϵ such that ∥xopt −x∗∥2 < ϵ and ∥yopt −y∗∥2 < ϵ. This is possible
by construction of the ϵ-net, and because Sn−1

1 (0) ⊂ Bn
1 (0) thus implying that xopt,yopt ∈

Bn
1 (0) also. Using the triangle inequality, we find that

∥A∥ = |(xopt)TAyopt| ≤ |(xopt −x∗)TAyopt|+ |(xopt)TA(yopt −y∗)| (5.121)

+ |xT
∗ Ay∗|+ |(xopt −x∗)TA(yopt −y∗)| ≤ (2ϵ+ ϵ2)∥A∥ + |xT

∗ Ay∗|.

Rearranging terms, it follows that

∥A∥ ≤ 1
1−2ϵ− ϵ2 |xT

∗ Ay∗| ≤ 1
1−3ϵ

max
x,y∈Nϵ

|xTAy|. (5.122)

This proves Lemma 43(a).
Finally, we prove Lemma 43(b). Observe that for any a ∈ B|A|

0 (0), there exists a point
b ∈ Bn

1 (0) such that bA = a. Note furthermore that for any b ∈ Bn
1 (0), there exists a point

c ∈ Nϵ such that ∥b−c∥2 ≤ ϵ. Thus: for any a ∈ B|A|
0 (0) there exists a point cA ∈ N A

ϵ such
that ∥a − cA∥2

2 = ∥bA − cA∥2
2 ≤ ∥b − c∥2

2 ≤ ϵ2. Observe finally that N A
ϵ ⊆ B|A|

0 (0). This
proves that N A

ϵ is an ϵ-net for (B|A|
0 (0),∥ · ∥2). 2

5.B.2 Proof of Proposition 21
Observe that Tϵ is finite. It is therefore sufficient to prove that there exists a constant
h1 > 0 independent of n and x,y ∈ Tϵ such that for sufficiently large n

H1(x,y) ≤ h1

√
Tn

n
(5.123)

almost surely.
Consider any pair x,y ∈ Tϵ. For i, j ∈ {1,2, . . . ,⌈log(

√
n/ϵ)/ log2⌉}, define

Ai(x) =
{

v ∈ [n] : ϵ√
n

2i−1 ≤ |xv| <
ϵ√
n

2i
}

, (5.124)

Bj(y) =
{

w ∈ [n] : ϵ√
n

2j−1 ≤ |yw| <
ϵ√
n

2j
}

. (5.125)

Remark now firstly that by definition of the set of heavy pairs in (5.26): for all (v,w) ∈
Lc(x,y), |xvyw| > (1/n)

√
Tn/n. Thus if any component of either x or y is zero, for example

xv⋆ = 0 and/or yw⋆ say, then for any v,w ∈ [n], (v⋆,w) ̸∈ Lc(x,y) and/or (v,w⋆) ̸∈ Lc(x,y).
Secondly, take note of the definition of Tϵ in (5.24): if x,y are such that no component
at all equals zero, then it must be that for all (v,w) ∈ [n]2, |xv| ≥ ϵ/

√
n and |yw| ≥ ϵ/

√
n.

Consider these facts and now examine the definitions of Ai(x), Bj(y) in (5.124), (5.125):
by construction for any (v,w) ∈ Lc(x,y), there exist a unique index pair (i⋆, j⋆) such that
(v,w) ∈ Ai⋆(x) × Bj⋆(y). Furthermore, for any index pair (i, j), if (v,w) ∈ Ai(x) × Bj(y),
then |xvyw| > (1/n)

√
Tn/n if 2i+j ≥ 4

√
Tn/n/ϵ2. We therefore have the set equality

Lc(x,y) =
⋃

(i,j):2i+j>4
√

Tn/n/ϵ2

(
Ai(x)×Bj(y)

)
. (5.126)

200 Chapter 5. The spectral norm of block Markov chains

Next, we apply the triangle inequality:

H1(x,y) =
∣∣∣ ∑
(v,w)∈Lc

xv(N̂Γ)vwyw

∣∣∣≤
∑

(v,w)∈Lc

|N̂Γ|vw|xvyw|. (5.127)

Observe that

H1(x,y)
(5.127)

≤
∑

(v,w)∈Lc

|N̂Γ|vw|xvyw| (5.126)=
∑

(i,j):2i+j>4
√

Tn/n/ϵ2

∑
(v,w)∈Ai×Bj

|N̂Γ|vw|xvyw|

(5.124, 5.125)
<

∑
(i,j):2i+j>4

√
Tn/n/ϵ2

∑
(v,w)∈Ai×Bj

|N̂Γ|vwϵ2iϵ2j 1
n

(5.20)=
∑

(i,j):2i+j>4
√

Tn/n/ϵ2

ϵ2iϵ2j 1
n

eΓ(Ai,Bj). (5.128)

Substitute µij ≜ |Ai||Bj |T/n2 (not to be confused by the actual mean of eΓ(Ai,Bj)) into
(5.128) and collect terms as follows:

H1(x,y) ≤
√

Tn

n
ϵ2

∑
(i,j):2i+j>

4
√

Tn/n

ϵ2

|Ai|22i 1
n︸ ︷︷ ︸

αi

· |Bj |22j 1
n︸ ︷︷ ︸

βj

·
eΓ(Ai,Bj)

µij2i+j

√
Tn

n︸ ︷︷ ︸
σij

. (5.129)

We will separate the sum in (5.129) in two parts. Define

C1 =
{

(i, j) : 2i+j ≥
4
√

Tn
n

ϵ2 ,(Ai,Bj) satisfies (i) in Definition 32
}

, and (5.130)

C2 =
{

(i, j) : 2i+j ≥
4
√

Tn/n

ϵ2 ,(Ai,Bj) satisfies (ii) in Definition 32
}

\C1. (5.131)

Note that C1 ∩ C2 = ∅ by definition and moreover, C1 ∪ C2 = {(i, j) : 2i+j ≥ 4
√

Tn/n/ϵ2}
since by assumption the discrepancy property holds. With the definitions in (5.129)–
(5.131) it thus suffices to show that there exists a constant c > 0 independent of n such
that for sufficiently large n,∑

(i,j)∈C1∪C2

αiβjσij =
(∑

(i,j)∈C1

+
∑

(i,j)∈C2

)
αiβjσij ≤ c. (5.132)

Note first that by (5.124) and (5.125),

∑
i

αi =
∑

i

|Ai|
4
ϵ2

(
2i−1 ϵ√

n

)2 (5.124)
≤ 4

ϵ2

∑
v∈[n]

|xv|2 = 4∥x∥2
2

ϵ2 ≤ 4
ϵ2 ,

and similarly
∑

i

βi

(5.125)
≤ 4∥y∥2

2
ϵ2 . (5.133)

Also define eij ≜ eΓ(Ai,Bj) to declutter notation.

5.B.2 Proof of Proposition 21 201

Case (i, j) ∈ C1 For (i, j) ∈ C1, Property (i) in Definition 32 is satisfied. This implies
that

σij =
eij

µij2i+j

√
Tn

n
≤ d1

2i+j

√
Tn

n

(5.130)
≤ d1ϵ2

4 . (5.134)

Together with (5.133), (5.134) implies∑
(i,j)∈C1

αiβjσij

(5.134)
≤

∑
i,j

αiβj
d1ϵ2

4 =
(∑

i

αi

)(∑
j

βj

)d1ϵ2

4
(5.133)

≤ 4d1
ϵ2 . (5.135)

Case (i, j) ∈ C2 For (i, j) ∈ C2, bounding is more complicated. Presume that |Ai| ≤ |Bi|
without loss of generality. Property (ii) in Definition 32 then reduces to

eij log
eij

µij
≤ d2|Bj | log n

|Bj |
. (5.136)

Substituting µij = |Ai||Bj |T/n2 and |Bj | = βj2−2jn in (5.136), we find that Property (ii)
is equivalent to

eij |Ai|Tn

µijn2 log
eij

µij
≤ d2 log

(22j

βj

)
. (5.137)

Multiply the left- and right-hand sides by 2−(i+j) to identify σij = eijµ−1
ij 2−(i+j)

√
Tn/n

and write:

σij
|Ai|
n

√
Tn

n
log

eij

µij
≤ d22−(i+j) log

(22j

βj

)
. (5.138)

Recall that |Ai| = αi2−2in. Therefore,

αiσij

√
Tn

n
log

eij

µij
≤ d2

2i

2j

(
log22j − logβj

)
. (5.139)

Knowing that (5.139) holds, let us go back to C2 and separate this set into disjoint
subsets. Define

D1 =
{

(i, j) ∈ C2 : σij ≤ 1
}

,

D2 =
{

(i, j) ∈ C2\D1 : 2i > 2j
√

Tn/n
}

,

D3 =
{

(i, j) ∈ C2\(D1 ∪D2) : log(eij/µij) > 1
4 (log22j − logβj)

}
,

D4 =
{

(i, j) ∈ C2\(D1 ∪D2 ∪D3) : log22j ≥ − logβj

}
,

D5 = C2\(D1 ∪D2 ∪D3 ∪D4). (5.140)

Notice from (5.140) that Di ∩ Dj = ∅ for i ̸= j and moreover, D1 ∪ ·· · ∪ D5 = C2. We go
subcase by subcase and check that in each subcase we obtain the right bound of order
O(
√

Tn/n).

Subcase (i, j) ∈ D1 According to the subcase, (i) σij ≤ 1. By (ii) expanding the sum-
mation range, it follows that∑

(i,j)∈D1

αiβjσij

(i)
≤

∑
(i,j)∈D1

αiβj

(ii)
≤
∑
i,j

αiβj =
(∑

i

αi

)(∑
j

βj

) (5.133)
≤ 24

ϵ4 . (5.141)

Notice that this did not yet require the calculation in (5.139). We will use it from subcase
D3 onward.

202 Chapter 5. The spectral norm of block Markov chains

Subcase (i, j) ∈ D2 We have

eij = eΓ(Ai,Bj) (5.20)=
∑

x∈Ai

∑
y∈Bj

(N̂Γ)x,y. (5.142)

Eq. (5.19) holds by assumption, i.e., we have a bounded degree. That is, for some b2 > 0,

eij ≤ |Ai|b2
Tn

n
. (5.143)

Dividing by µij and using its definition before (5.129), this implies
eij

µij
≤ b2

n

|Bj |
. (5.144)

Fix i ∈ [n]. Recall that (i) the subcase implies that 2i > 2j
√

Tn/n. Therefore,∑
j

βjσij1[(i, j) ∈ D2] (5.129)=
∑

j

|Bj |2j−i 1
n

eij

µij

√
Tn

n
1[(i, j) ∈ D2]

(5.144)
≤

∑
j

2j−i

√
Tn

n
b21[(i, j) ∈ D2]

(i)
≤
∑

j

2j−i

√
Tn

n
b21
[
2j−i < 1/

√
Tn

n

] (ii)
≤
√

Tn

n

2b2√
Tn/n

≤ 2b2.

(5.145)

Here, we have (ii) used that for r > 1, a > 0,
∞∑

m=−∞
rm1[rm < a] = · · ·+ rm⋆−2 + rm⋆−1 + rm⋆

= rm⋆(
1+ r−1 + r−2 + · · ·

)
≤ a

1−1/r
,

(5.146)
where m⋆ = max{m ∈ Z : rm < a}.

Therefore, after also expanding the summation range, for certain constants c1,c2 > 0
independent of n and for sufficiently large n,∑

(i,j)∈D2

αiβjσij =
∑

i

αi

∑
j

βjσij1[(i, j) ∈ D2]
(5.145)

≤ c1
∑

i

αi

(5.133)
≤ c2. (5.147)

Subcase (i, j) ∈ D3 The subcase implies (i) that σij > 1, (ii) that 2i ≤ 2j
√

Tn/n, and
(iii) that log(eij/µij) > 1

4 (log22j − logβj). Bounding (5.139) directly with these facts, we
find that

αiσij

(5.139)
≤ d2

2i

2j

√
n

Tn

log22j − logβj

log(eij/µij)
(iii)
< 4d2

2i

2j

√
n

Tn
. (5.148)

Fix j. Then,∑
i

αiσij1[(i, j) ∈ D3]
(5.148)

≤
∑

i

4d2
2i

2j

√
n

Tn
1[(i, j) ∈ D3]

(ii)
≤
∑

i

4d22i−j

√
n

Tn
1

[
2i−j ≤

√
Tn

n

] (5.146)
≤ 8d2. (5.149)

5.B.2 Proof of Proposition 21 203

It follows immediately that for some constant c3 > 0 independent of n and for sufficiently
large n,∑

(i,j)∈D3

αiβjσij =
∑

j

βj

∑
i

αiσij1[(i, j) ∈ D3]
(5.149)

≤ 8d2
∑

j

βj

(5.133)
≤ c3. (5.150)

Subcase (i, j) ∈ D4 Recall that the subcase implies (i) that σij > 1, (ii) that 2i ≤
2j
√

Tn/n, (iii) that log(eij/µij) ≤ 1
4 (log22j − logβj), and (iv) that log22j ≥ − logβj .

Therefore, in this subcase,

log(eij/µij)
(iii)
≤ 1

4 (log22j − logβj)
(iv)
≤ 1

2 log22j = log2j . (5.151)

Furthermore,

0
(i)
< logσij

(5.129)= log(eij/µij)− log2i − log2j +log
√

Tn

n

(5.151)
≤ − log2i +log

√
Tn

n
. (5.152)

Consequently, because (5.152) is strictly positive, the subcase implies that

2i <

√
Tn

n
. (5.153)

If (i, j) ∈ C2 and thus (i, j) ̸∈ C1 from the definition in (5.130), we have that log(eij/µij) >

d2 by the discrepancy property. Thus

αiσijd2 < αiσij log
eij

µij

(5.139)
≤ c4

2i

2j

√
n

Tn

(
log22j − logβj

)
(iv)
≤ 4c42i

√
n

Tn
·2−j log2j

(v)
≤ 4c42i

√
n

Tn
. (5.154)

Here, (v) followed because z−1 logz ≤ 1 for z ≥ 0. It follows after also expanding the
summation range that∑

(i,j)∈D4

αiβjσij =
∑

j

βj

∑
i

αiσij1[(i, j) ∈ D4]
(5.154)

≤
√

n

Tn

∑
j

βj

∑
i

c52i1[(i, j) ∈ D4]

(5.153)
≤

√
n

Tn

∑
j

βj

∑
i

c52i1

[
2i <

√
Tn

n

] (5.146)
≤ c6

∑
j

βj ≤ c7. (5.155)

Subcase (i, j) ∈ D5 Recall that this subcase implies (i) that σij > 1, (ii) that 2i ≤
2j
√

Tn/n, (iii) that log(eij/µij) ≤ 1
4 (log22j − logβj), and that (iv) log22j < − logβj . Sim-

ilar to the previous subcase,

log
eij

µij

(iii)
≤ 1

4 (log22j − logβj)
(iv)
≤ 1

2 (− logβj)
(v)
≤ − logβj , (5.156)

where (v) since j ≥ 1 we have − log(βj) > log22j > 0. This implies that

eij

µij
≤ 1

βj
(5.157)

204 Chapter 5. The spectral norm of block Markov chains

or equivalently

βjσij

(5.129)
≤ βj

eij

µij2i+j

√
Tn

n
≤ 1

2i+j

√
Tn

n
. (5.158)

Recall (5.131): for all (i, j) ∈ C2, 2i+j ≥ 4
√

Tn/n/ϵ2. Therefore

∑
(i,j)∈D5

αiβjσij =
∑

i

αi

∑
j

βjσij1[(i, j) ∈ D5]
(5.158)

≤
∑

i

αi

∑
j

1
2i+j

√
Tn

n
1[(i, j) ∈ D5]

(5.131)
≤

∑
i

αi

∑
j

1
2i+j

√
Tn

n
1
[
2i+j ≥ 4

ϵ2

√
Tn

n

] (vi)
≤
∑

i

αi
ϵ2

4 ≤ c8. (5.159)

Here, we have (vi) used that for r > 1, a > 0,

∞∑
m=0

1
rm

1[rm ≥ a] = 1
rm⋆ + 1

rm⋆+1 + 1
rm⋆+2 + · · · = 1

rm⋆

(
1+ 1

r
+ 1

r2 + · · ·
)

≤ 1/a

1−1/r
,

(5.160)
where m∗ = min{m ∈ Z : rm ≥ a}. This completes the proof.

Chapter 6

Experimental evaluation of the
BMC model in sequential data

Based on [9]:
“Detection and evaluation of clusters within sequential data”

by A. Van Werde, A. Senen–Cerda, G. Kosmella, and J. Sanders

6.1 Introduction
In Chapter 5, we derived order-sharp spectral bounds for the Block Markov Chain (BMC)
model that characterize its empirical spectral error. Such bounds, while asymptotic in
nature, are required to guarantee consistency of a spectral clustering algorithm [93, 27].
We have verified in Corollary 7 of Chapter 5 that the count matrix N̂ has K singular
values of order Tn/n, while all other singular values are of order

√
Tn/n. Hence, for a

scaling of the length of the path Tn = ω(n), we would be able to see the difference, albeit
asymptotically, in the form of a spectral gap in the count matrix.

Real-world data, however, is not expected to strictly satisfy the theoretical properties
assumed in the model. In practice, networks are not homogeneous or dense. Examples
can be found in social networks, for example, where there are large hubs that are com-
monly centered around a few people with a high number of connections. Even with an
approximate block-uniform community structure present, a single vertex with a high de-
gree in such a dense network may still induce a large spectral error. Despite these issues,
meaningful clusters can still be discovered. We show a concrete example of clusters found
within animal movement data from [9].

A group of bisons have Global Positioning System (GPS) tags that record their position
across time as they roam in a landscape. After a sufficiently long time, we assign the GPS
coordinates to states on a grid and the movement trajectory of the animals is depicted in
Figure 6.1.1. The raw data is not very meaningful to a human if we only look at transitions.
However, after using the clustering algorithm for BMCs, the resulting clusters fit very

205

206 Chapter 6. Experimental evaluation of the BMC model in sequential data

Figure 6.1.1: (Above) A screenshot from movebank.org [71] displaying the raw GPS data
of bisons. (Below) Plot of the recovered clusters from [9]. The clusters
are obtained by using the clustering algorithm for BMCs superimposed with
geographical features. Note that rivers separate the found clusters well even
though no distance based information is used in the clustering algorithm.
Other concrete examples can be also found in [9].

well with geographical features like rivers and fields, and the inferred cluster transition
probabilities tell us about the dynamics of the movement of the herd.

In Figure 6.1.1 the clustering algorithm for BMCs seems to yield clusters that are tied
to an underlying structure of the data, namely the geographical features that drive the
sequential process. In other examples, however, it may not be so clear if the clustering
algorithm for BMCs can still yield useful clusters and recover part of the low-dimensional
structure of the data. Thus, a practical study is warranted.

In this chapter we will therefore take a more practical approach to clustering with
BMCs and use real-world sequential data to test the clustering algorithm. Firstly, we
compare the spectral gap in data to the one predicted in Chapter 5 and the robustness
of the clustering algorithm for BMCs to perturbations is examined. Secondly, we will test
if the model is suitable for describing the clusters and the transition dynamics of several

movebank.org

6.1 Introduction 207

datasets of sequential data compared to other models with less complexity. Specifically,
the following questions will be investigated:

Can we see a spectral gap of N̂ in real-world sequential data?

Is the clustering algorithm robust to violations of the BMC assumption?

How can it be decided whether a simpler model than a BMC would suffice for
explaining the dynamics of the transitions, or that a richer model is required?

This chapter is based on [9], where a broad study on the performance of the clustering
algorithm for BMCs in real-world sequential data is conducted with different tools. The
clustering algorithm is applied to recover clusters in selected datasets with different char-
acteristics coming from genetics, finance, texts, and animal movement. A variety of tools
are used to evaluate its performance, including spectral analysis, benchmarking as well as
statistical tools for model selection. We will restrict ourselves in this chapter, however,
only to a part of the evaluation of the clusters and the clustering algorithm. We assume,
therefore, that the inferred cluster assignment ν̂n and number of clusters K for these
datasets is provided. For the full practical study we refer to [9]. There, the preprocessing
of the datasets, the shortcomings and process for obtaining these clusters as well as the
choices for K are also discussed.

In this chapter, we will denote the length of a sample path by ℓ instead of Tn. The
latter term assumes an asymptotic relationship between n and the length of the path,
which is not the case in real data.
Datasets. The first dataset comes from sequences of codons of human Deoxyribonucleic
Acid (DNA) of a gene obtained from [16]. The dataset has been preprocessed and the state
space constitutes all possible 3-letter codon triplets. This yields a state space of n = 64
states. The length of the dataset is around ℓ ≃ 1.64 · 105. The second dataset consists
of the sequences of the daily best performing stocks from the Standard and Poor’s 500
(S&P500) index between the years 2001 and 2021 obtained from [11]. The state space
consists of n = 300 different stocks and the length is the number of suitable operation
days, namely ℓ ≃ 4900. Our third dataset consists of the GPS coordinates of bisons in
a landscape, which we have seen in Figure 6.1.1 and have been obtained from [71].1 In
this case, the state space has n = 3155 states and the length of the path is approximately
ℓ ≃ 1.93 · 105. All datasets have been preprocessed and cleaned in order to have a single
sequence of states to which the clustering algorithm can be applied. The frequency matrix
N̂ encodes the information of the clusters in all these datasets. For the case of the DNA
and S&P500 data, we represent the inferred clusters in Figure 6.1.2.

Summary of results
We conduct several experiments with the datasets. In Section 6.2 we first analyze the
spectral gap for the DNA and S&P500 datasets and qualitatively compare the gap with
the expected orders for BMCs obtained in Chapter 5. The comparison for both datasets

1We thank the Nature Conservancy and Dr. Stephen Blake of Saint Louis University for per-
mission to use the bison movement data. The Max Planck Institute for Animal Behavior and the
National Geographic Society Committee for Research and Exploration (Grant: 9385-13) funded the
bison GPS collars.

208 Chapter 6. Experimental evaluation of the BMC model in sequential data

0

20

40

60

80

100

Figure 6.1.2: (Left) The frequency matrix N̂ of the DNA dataset when the codons are
sorted by the five detected clusters. The maximum value has been capped for
better visualization. (Right) The frequency matrix N̂ of the Stock Market
dataset when the companies are sorted by the three clusters detected. The
maximum value has been capped for better visualization. Note that in this
case, the matrix is very sparse.

implies that the spectral norm of the counting matrix appears to be too sensitive to
violations of the BMC model. We justify this conclusion and motivate the use of other
spectral approaches to quantify the agreement between the BMC model and data.

The previous result on the spectral gap raises concerns about the robustness of the
clustering algorithm when data does not follow a BMC model. In Section 6.3 the ro-
bustness of the spectral clustering algorithm is evaluated by using generative models of
perturbed BMCs. In particular, models where the block transition matrix PBMC of a
BMC is perturbed by a Markov kernel ∆ are considered. As a measure of robustness the
number of misclassified states, and and the estimation error of the parameters compared
to those of the generative model are considered. The dependence of these two terms on
the perturbation strength is the target measure for different types of perturbations. The
results from [9] indicate that the BMC model is robust to small to moderate perturbations
and can be used to approximate perturbed BMCs for sample paths of reasonable length
ℓ.

Finally, in Section 6.4 we will perform model selection with the BMC model. We will
consider if the model is suitable for explaining the transition dynamics of the data or if less
or more complex models are better suited. Our focus will be on the Markovian assumption
of the model. In particular, we will consider different models where dependence can be
further in the past than the immediate previous state or where no dependence exists.
That is, we will consider models of the data that follow an rth-order Markov chain with
r ∈ {0,1,2,3,4}. The main difficulty here is that model selection with a full state space
with n states becomes unfeasible due to the large number of free parameters and the
comparably short sample path length ℓ. To avoid this issue, we use the sequence of clusters
induced by the cluster assignment ν̂n to exploit the dimensionality reduction and conduct
model selection. In the procedure, we use information criteria to select the best order

6.2 Spectral norm from detected clusters 209

that would explain the DNA, GPS and S&P500 datasets. The criteria point to nonzero
order Markovian dependence for the DNA and GPS datasets but for the S&P500 dataset,
there is not enough evidence to select an order with enough certainty. We support these
conclusion with additional simulations and with a robustness analysis of the information
criteria.

Analysis of real-world sequential data is challenging and even with a well-grounded
model like the BMC model at hand, the shortcomings of the model assumptions quickly
become apparent in the data analysis. Among the limitations, we can mention that data
can be highly inhomogeneous, clusters can consist of dissimilar states only loosely associ-
ated, and data can be just too sparse to analyze. However, by carefully considering these
limitations, the BMC model can still be used to obtain insight into the cluster transition
dynamics of real sequential data, as it seems to be the case in e.g., Figure 6.1.1.

6.2 Spectral norm from detected clusters
From the clusters obtained in [9], we can study the spectrum and spectral gap ∥N̂ − N∥
for the different datasets. Due to the large state space of the GPS dataset, we will restrict
to the DNA and S&P500 datasets instead. For both datasets, the N̂ matrices are depicted
in Figure 6.1.2 with labeled clusters.

For a cluster assignment νn : [n] → [K] and a frequency matrix N̂ , assuming that N̂

follows a BMC model, we can obtain an unbiased estimate of the cluster transition matrix
q ∈ [0,1]K×K as well as the cluster invariant distribution π ∈ [0,1]K . Since the distribution
of the data is unknown, the underlying model will be assumed to be a BMC with cluster
assignment νn : [n] → [K] and cluster transition probabilities q recovered from the dataset.
In this case, we denote by N the expected value of N̂ assuming that the trajectory is
sampled from a BMC with those inferred parameters and with the same length ℓ as the
dataset. An example of a sampling of this model using these assumptions is shown in
Chapter 1 with Figure 1.8. With N at hand we can compute the spectral norm for each
dataset. We denote the ith singular value of L by σi(L). The spectral norm of N̂ will
thus be σ1(N̂).

Figure 6.2.1 depicts the spectrum for the DNA and S&P500 datasets. The first clear
observation is that the order of the spectral gap σ1(N̂ −N) is comparable to that of σ1(N)
and σ1(N̂) for both datasets. From the depiction of the count matrix N̂ in Figure 6.1.2,
there seem to be large inhomogeneities in the transition count for some states compared to
those of a BMC model. These inhomogeneities, as a byproduct of the underlying unknown
distribution of the data, yield a large difference in terms of spectral norm between the
estimation of N assuming a BMC model and the sample N̂ . Specifically, the order of
the bulk of the singular values of N̂ , which should have order O(

√
ℓ/n) asymptotically,

is comparable to that of the nonzero singular values of the block matrix N , which should
have a larger order Θ(ℓ/n) asymptotically. While in the S&P500 data the sparsity may
explain the discrepancy of the orders of the singular values, in the DNA dataset it does
not.

We note that the setup of the experiment assumes that the number of states n is
large enough to already see discrepancies between a BMC model and the data-generating
process. To fully support these conclusions, statistical tests with guarantees for finite
number of states n and length of sample path ℓ would still be required.

210 Chapter 6. Experimental evaluation of the BMC model in sequential data

The previous observations show the shortcomings of using the spectral norm and spec-
tral error as a measure of comparison between a BMC model and real data. In particular,
the spectral error can capture features of the data which are beyond the BMC model and
so the spectral gap does not appear to be very robust when data does not exactly follow a
BMC. This occurs similarly when there is a large sampling noise with n and ℓ small. For
example, if one state is visited much more often than all others, say a positive fraction of
the total length of the path, then this state will contribute to the spectral error in a com-
mensurable manner. The fact that the spectral norm is so sensitive to model violations
could then be used for a statistical test to determine if data is generated from a BMC
model with a certain block structure. A similar result in this direction has already been
obtained for the Stochastic Block Model (SBM) [81].

A different approach to analyze the cluster structure of the data as shown in [9] is to
use the bulk of the distribution that contains the spectral noise, as it avoids the large signal
part of the spectrum. In Figure 6.2.1, for example, we can already see that the location
of the bulk of the spectrum is similar for N̂ and N̂ − N . Functions that characterize
this similarity could thus become useful. A theoretical study of the bulk of the spectrum
for BMC has been conducted in [2] and it is one of the tools used in [9] to study the
disagreement between data and the BMC model.

0 10 20 30 40 50 60
0

2

4

6

8

10

σ1(N)σ1(N̂ −N)

σ

ρ
(σ
)

N̂
N

N̂ −N

0 2 4 6 8
0

2

4

6

8

10

σ1(N) σ1(N̂Γ −N)

σ

ρ
(σ
)

N̂
N

N̂Γ −N

Figure 6.2.1: Normalized spectral density of N̂ ,N and either N̂ − N or N̂Γ − N in blue,
green and red for the DNA and Stock Market datasets respectively. The green
arrows mark the location of the spectrum of N in decreasing order and in red
the spectral norm of N̂Γ −N . (Left) DNA dataset normalized spectral density.
We see that while the spectral norm of N̂ and N are similar, the spectral error
is still large. This suggests that there are inhomogeneous structures in the
data that the BMC model cannot fully capture. (Right) Stock Market dataset
normalized spectral density. In this case, the spectral norm of N̂Γ −N is even
larger than that of N , likely due to sparsity and in-cluster inhomogeneity of
N̂ .

6.3 Robustness of the clustering procedure to model violations 211

6.3 Robustness of the clustering procedure to model
violations

In Section 6.2 we have seen that the spectral gap does not appear to be robust to model
violations. This was expected, however, and some other measure for comparison is thus
needed. A natural choice in community detection is the number of misclassified states,
that is, the number of states that have been incorrectly assigned to the different clusters.
In real data, however, we do not have access to this information. In order to still be able
to study the number of misclassified states, the robustness of the clustering procedure to
violations of the model assumption can be examined with synthetically generated data. In
this section, which follows [9], the performance of the clustering procedure is investigated
when the data-generating process is not actually a BMC, but it is known exactly what it
is.

Two main measures of performance using synthetic data are studied. Firstly, in Sec-
tion 6.3.1, the number of misclassified states is considered. Secondly, in Section 6.3.2, the
approximation error is examined in a parameter estimation problem where the objective
is to estimate the true transition matrix P of a Markovian data-generating process which
need not be a BMC.

The first measure of performance requires that the notion of misclassification is sen-
sible even though the data-generating process is not a BMC. To this end, models where
communities are well-defined can be especially useful for comparison. In this section, a
perturbed BMC model is considered. Let {Bt}t≥0 denote a sequence of independent, iden-
tically distributed Bernoulli random variables, each taking the value 1 with probability
ε and 0 with probability 1 − ε. Let ∆ be the transition matrix of a generic 1st-order
Markov Chain (MC) on [n] and PBMC be the transition matrix of a generic BMC. Then,
the perturbed BMC, denoted by {Xε

t }t≥0, has conditional transition probabilities given
by

P[Xε
t+1 = j | Xε

t = i,Bt = b] =

{
PBMC,ij if b = 0,

∆ij otherwise.
(6.1)

In other words, a sequence Xε
0 → ·· · → Xε

ℓ from the perturbed BMC is generated by
randomly selecting either the transition matrix PBMC of a BMC, or the transition matrix
∆ of some other 1st-order MC, for each transition. A perturbed BMC has then the
distribution of a MC with transition matrix

PPerturbed := (1−ε)PBMC +ε∆, (6.2)

where parameter ε ∈ [0,1] can be understood on average, as the proportion of transitions
that are affected by the non-BMC part ∆.

For the tests, ground-truth communities correspond to those of the BMC-part of the
perturbed model in (6.2). The definition of a perturbed BMC requires one to also specify
the nature of the perturbation kernel ∆. The following kernels are used for this purpose
to model different types of model violations:

(i) Uniform stochastic: The matrix ∆ is sampled uniformly at random in the set of
stochastic matrices. This is accomplished by sampling each row independently from
a Dirichlet(1/n, . . . ,1/n) distribution.

212 Chapter 6. Experimental evaluation of the BMC model in sequential data

(ii) Degree 0: First, πi for i ∈ [n] is constructed as follows: independent exponential
random variables e1, . . . ,en ∼ Exponential(1) are sampled and πi = ei/(

∑n
j=1 ej) > 0

is defined. Then, ∆ij = πj is defined for all i, j ∈ [n].

(iii) Heavy-tailed: Let X be a random matrix whose entries Xij are i.i.d. positive random
variables with a heavy-tailed distribution. The kernel ∆ is then found by normalizing
the rows in order to obtain a stochastic matrix ∆ := diag

(
(
∑

j Xij)−1)n

i=1X. The
heavy-tailed entries Xij are sampled from a Zipf distribution with exponent s = 3/2.

(iv) Sparse: Consider constants d > 0 and c > 0, and construct a random matrix X =
A+cJ where A is the adjacency matrix from a directed Erdös–Rényi random graph
with average outgoing degree d and J is a constant matrix Jij = 1/n. The kernel
∆ is then found by rescaling the rows in order to obtain a stochastic matrix ∆ =
diag

(
(
∑

j Xij)−1)n

i=1X. In this case, d = 5 and c = 0.1 are taken.

In the subsequent experiments, let n = 2m be an even integer. The BMC which is per-
turbed is chosen to have two equally-sized clusters (K = 2) and a cluster transition matrix
given by

q =
(

0.6 0.4
0.4 0.6

)
.

6.3.1 Misclassification ratio for perturbed BMCs
This section concerns the number of misclassified states when a perturbed BMC model is
clustered. Recall that the BMC model is chosen to have two equally-sized clusters which
means that the cluster assignment map may be picked to be given by νn(i) = 1+1[i > n/2].
Let ν̂n : [n] → {1,2} be an estimated cluster assignment which is output by the clustering
procedure. Then, the missclassification ratio E is defined as

E := 1
n

min
ρ∈S2

#{v ∈ [n] : νn(v) ̸= (ρ◦ ν̂n)(v)}. (6.3)

Here S2 denotes the set of permutations of {1,2}.
Recall from (6.1) that the parameter ε of the perturbed BMC measures the fraction

of transitions which are affected by the perturbation. In other words, ε measures the
strength of the perturbation. The estimated average misclassification ratio Ê for a nu-
merical experiment is displayed as a function of the perturbation level ε in Figure 6.3.1.
Up to ε ≈ 0.1 the algorithm succeeds in recovering the exact cluster assignment for all
four models. The exact number will naturally depend on the parameters of the BMC
which was perturbed and will consequently be different in different contexts. From this
experiment it is concluded that the algorithm appears to be robust with regard to small
to moderate model violations.

6.3.2 Bias–variance trade-off for parameter estimation in a per-
turbed BMC

It may occur in some cases that one is not interested in the clusters themselves but
rather views them as a means to an end. Consider the scenario where one wants to

6.3.2 Bias–variance trade-off for parameter estimation in a perturbed BMC 213

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Perturbation level ε

A
v
er
a
g
e
m
is
cl
a
ss
ifi
ca

ti
o
n
ra
ti
o
Ê

Stochastic Uniform
Degree 0
Heavy-Tailed
Sparse

Figure 6.3.1: The expected proportion of states which are misclassified in terms of the
perturbation level ε for four different perturbation models ∆ and a sample
path of length ℓn = ⌊30n log(n)⌋ with a state space of and of size n = 500.
Note that the values depend on the precise parameters of the BMC which
was perturbed.

estimate the transition kernel of a MC which need not be a BMC. It may be suspected,
however, that there could be some underlying clusters in the data but also that there
could be parts of the dynamics which do not respect the cluster structure. In such a
case a perturbed BMC would be a suitable model for the data. Notably, one is here not
intrinsically interested in the BMC-component PBMC, but rather in estimating the ground-
truth PTrue := (1 − ε)PBMC + ε∆, which is not a BMC. It can still be the case that one
can exploit the underlying clusters to improve the performance of estimation nonetheless.

Assume that the number of underlying clusters K is known and a sample path Xε
0 , . . . ,Xε

ℓ

of length ℓ of a perturbed BMC is provided. Let N̂ denote the associated empirical fre-
quency matrix. A natural general-purpose estimator for the transition matrix, which does
not rely on the existence of clusters, is given by the empirical transition matrix P̂ (ℓ). The
entries of the empirical transition matrix for a length ℓ > 0 are given by

P̂Empirical(ℓ)ij :=


N̂ij∑n

k=1 N̂ik
, if N̂ij ̸= 0

0, if N̂ij = 0.
(6.4)

Another estimator may be found by using the clusters V̂1, . . . , V̂K that the clustering
algorithm for BMCs outputs. One can then hope that, since PTrue ≈ PBMC for ε ≈ 0,
it would be sufficient to consider an estimator P̂BMC for PBMC whose entries for a given
length ℓ > 0 of the trajectory are given by

P̂BMC(ℓ)ij :=


1

#V̂ν̂n(j)

∑
x∈V̂ν̂n(i),y∈V̂ν̂n(j)

N̂x,y∑K

m=1

∑
x∈V̂ν̂n(i),y∈V̂m

N̂x,y

, if
∑

x∈V̂ν̂n(i),y∈V̂ν̂n(j)
N̂x,y ̸= 0

0, if
∑

x∈V̂ν̂n(i),y∈V̂ν̂n(j)
N̂x,y = 0.

(6.5)
Finally, the following trivial estimator which does not use any data is also considered:

P̂Uniform(ℓ)ij = 1
n

.

214 Chapter 6. Experimental evaluation of the BMC model in sequential data

104 105 106

10−1

100

Sample path length ℓ

E
x
p
ec
te
d
es
ti
m
a
ti
on

er
ro
r
R

∗(
ℓ)

Empirical
BMC
Uniform

Figure 6.3.2: Estimated expected estimation error R∗(ℓ) := E[∥P − P̂∗(ℓ)∥] for ∗ ∈
{Empirical,BMC,Uniform}. The ground-truth model in this experiment was
a perturbed BMC with a heavy-tailed perturbation of strength ε = 0.05 on a
state space of size n = 1000. In red: the empirical estimator P̂Empirical which
is the maximum likelihood estimator for a MC with no additional assump-
tions. In blue: the BMC estimator P̂BMC. In green: the trivial estimator
P̂Uniform,ij := 1/n which does not even use the data. Let us remark that
the values depicted depend on the precise parameters of the BMC which was
perturbed.

The performance of these estimators will be measured as a function of the length of the
sample path ℓ using the expected estimation error:

R∗(ℓ) := E[∥PTrue − P̂∗(ℓ)∥] where ∗ ∈ {Empirical,BMC,Uniform}. (6.6)

Here, ∥ · ∥ denotes the operator norm ∥M∥ = sup∥v∥2=1 ∥Mv∥2.
To ascertain the expected estimation error, a numerical experiments is conducted with

a state space of size n = 1000 and a heavy-tailed perturbation model of perturbation
strength ε = 0.05. Figure 6.3.2 displays estimated values of the expected estimation error
R∗(·) as a function of the length ℓ of the sample path. A number of different regimes
may be identified. First, the regime where the sample path is short, specifically ℓ ≈ 104.
Here the empirical estimator P̂Empirical and the BMC estimator P̂BMC are both unable
to outperform the trivial estimator P̂Uniform. The empirical estimator even performs
significantly worse than the trivial estimator in this regime. Second, a regime where the
sample path is of medium length ℓ ≈ 105. Here the clustering procedure succeeds and
P̂BMC becomes the best-performing. Finally, a regime where the sample path is long and
ℓ > 106. Here the empirical estimator becomes the best-performing estimator.

These different regimes can be understood in terms of a bias–variance tradeoff. Indeed,
for short- to medium-sized sample paths the BMC estimator P̂BMC has significantly less
variance than the empirical estimator P̂Empirical since it depends on fewer parameters.
This decreased variance is the dominant factor in the approximation error in this regime.
On the other hand, for long sample paths both estimators P̂BCM and P̂ have low variance
and the bias incurred by the approximation PTrue ≈ PBMC becomes dominant.

From Sections 6.3.1 and 6.3.2, it can be concluded that the clustering algorithm is

6.4 Model selection for the order of detected clusters 215

robust to small to moderate perturbations. Thus, the clusters obtained with the clustering
algorithm may still yield useful insights when the transition kernel has an approximate
block-structure.

6.4 Model selection for the order of detected clusters
In Section 6.3, the robustness of the clustering algorithm has been tested for BMCs in case
the data does not exactly follow a BMC model. Synthetic data coming from perturbed
BMCs was used for that purpose.

As we saw from Figure 6.1.2, we do not expect a BMC to be the true data generating
process in real-life data. In fact, a BMC with more clusters may fit the data better at
the cost of more parameters. Hence, asking which model fits the data is ill-posed. What
we can ask instead is if the model is appropriate to describe part of the dynamics of the
sequential data, given its complexity, where by complexity we mean the number of free
parameters used for the model. A way to resolve these issues is by using model selection.

6.4.1 Model selection with information criteria

In model selection, different candidate models for the process generating the data are con-
sidered and their ability to explain the observations is compared taking also into account
their complexity. A simple way of doing model selection is by using training and validation
sets, which is equivalent to obtaining an empirical risk minimizer and then validating the
model with data that was not in the training set—recall the setting of statistical learn-
ing in Section 1.3. Other similar schemes like cross-validation can also provide a good
scheme for assessing what models are most useful. In the context of BMCs, in [9], which
this chapter is based on, training and validation sets are used for model selection with
Kullback–Leibler (KL)-divergences as a metric of comparison.

Splitting the data can be sometimes undesirable however. Namely, if the data is sparse,
the estimated models will become even less accurate. Similarly, when data is inhomoge-
neous, it may not be clear how to split the data appropriately. Conducting cross-validation
may also become too expensive computationally. Information criteria, that we use in this
section, can constitute then a suitable alternative.

For a collection of models Q(·|θ) parametrized by θ ∈ Θ in some space, a natural metric
to compute the goodness-of-fit from given data samples y is to use the log-likelihood

logL(y|θ), (6.7)

where L(y|θ) is the likelihood of the model Q(·|θ) given samples y. Given the data y, we
could compute the best θ ∈ Θ that maximizes the log-likelihood, that is, we would obtain
the maximum log-likelihood estimator θ̂(y) ∈ Θ. The value of the log-likelihood at this
maximizer logL(y|θ̂(y)) may seem to provide an estimator for the goodness-of-fit of the
best model selected in (Q(·|θ))θ∈Θ that explains the data. This simultaneous estimation
and selection with y, however, adds bias to the estimator of the log-likelihood compared
to a case when independent data for estimation and selection are used.

216 Chapter 6. Experimental evaluation of the BMC model in sequential data

The bias of the estimator was characterized in [164] under some conditions, and an
unbiased estimator was given by the AIC (Akaike Information Criterion)

AIC(Q) = −2logL(y|θ̂(y))+2nQ, (6.8)

where nQ denotes the number of degrees of freedom in the collection (Q(·|θ))θ∈Θ. Many
other criteria with different properties have been proposed in the literature: Bayesian
Information Criterion (BIC), Corrected AIC (AICc), etc [161, 135, 52]. For comparing
models with sparse data, however, the penalization term in the AIC is insensitive. More-
over, if the true model is among the candidates, the criterion is not consistent. That is,
the probability of choosing the correct model as the sample size increases [161] does not
converge to one. For our setting we will instead use the Consistent Akaike Information
Criterion (CAIC) [161]:

CAIC(Q) = −2logL(y|θ̂(y))+nQ(log(ℓ)+1), (6.9)

where ℓ is the number of independent samples in y. The CAIC is consistent [161] and also
penalizes the criterion when the amount of data is sparse—when ℓ is small. We remark
that CAIC is similar to the BIC (the penalization is nQ log(ℓ) instead).

Information criteria are used in parametric models, where taking the number of degrees
of freedom into account is important for assessing the performance of different models.
However, they usually only provide asymptotic consistency, and for finite sample sizes
their performance is unknown. Furthermore, in our case, data is not expected to be fully
independent and so we should expect some unknown bias in the estimation procedure.

We will nonetheless use information criteria in Section 6.4.2 to look at a specific prob-
lem: selecting the order of a BMC.

We compare the BMC model to other similar models. Namely, generalized BMCs
models where the dependence of the cluster transitions is not just a 1st-order MC, but
can have lower- or higher-order Markovian dependence. The models that we will use are
defined as follows:

0th-order BMCs

Let K ∈ [n] and consider an arbitrary probability distribution η : [K] → [0,1]. A 0th-order
BMC is then a BMC with cluster transition matrix qk,l := ηl for all k, l ∈ [K]. The 0th-order
BMC will serve as a benchmark to assess whether the structures we find are actually due
to the sequential nature of the process and do not admit time-independent explanation.

In a 0th-order BMC, each next sample Xt+1 is independent of the previous sample Xt.
A 0th-order BMC therefore generates sequences of independent and identically distributed
random variables. This is contrary to a 1st-order BMC, which generates a sequence of
dependent random variables. Thus, the probability of a specific observation depends on
the cluster of the observation, and specifically is identical for every observation within
that cluster.

rth-order BMCs

Conversely, one can also consider models with higher-order dependencies than a 1st-order
BMC has. Consider a discrete-time stochastic process {Yt}ℓ

t=1 (not necessarily a MC) that

6.4.2 Model selection for the order of a BMC 217

satisfies Yt ∈ [n] for some n ∈ N+. We say that {Yt}t≥1 is an rth-order MC if and only if
for all t ∈ [ℓ− r], all multi-indices ir = (i1, . . . , ir) ∈ [n]r, states st−r, . . . ,s1, and j ∈ [n],

P[Yt+1 = j | Yt = ir,Yt−1 = ir−1, . . . ,Yt−r+1 = i1, (6.10)
Yt−r = st−r, , . . . ,Y1 = s1]

= P[Yt+1 =j | Yt = ir,Yt−1 = ir−1, . . . ,Yt−r+1 = i1] =: Qr
ir,j

for some transition matrix Qr ∈ [0,1]nr×n.
Then, we define the process {Xr

t }t≥1 to be an rth-order BMC if {Xr
t }t≥1 is an MC

with state transition probabilities given by

Qr
ir,j =

qr
ν(ir),ν(j)
|Vν(j)|

, (6.11)

where qr
ν(ir),ν(j) are now cluster transition probabilities of an rth-order MC and we have

the multi-indices of clusters ν(ir) = (ν(i1), . . . ,ν(ir)) ∈ [K]r. Hence an rth-order BMC Xr
t

is a BMC, where the clustered process Y r
t = ν(Xr

t) follows an rth-order MC.
We will use these models to conduct model selection in the next section.

6.4.2 Model selection for the order of a BMC
Suppose that a sequence X1:ℓ = {Xt}ℓ

t=1 was in fact generated by some rth-order BMC,
but that the order r ∈ {0,1, . . .} is unknown. We will use techniques for model selection
to try and determine r from the cluster sequence Y1:ℓ = νn(X1:ℓ).

There are two reasons for using Y1:ℓ instead of X1:ℓ. First, the parametric models
for higher-order MCs without clusters have a comparable number of free parameters as
the sequence length ℓ itself, so estimators for the order will behave poorly. If we look
at the cluster sequence instead, the number of degrees of freedom will depend on the
cluster number K instead of the number of states n, and fortunately K ≪ n. Secondly,
we can study the robustness of the model selection procedure depending on the clustering
algorithm, since instead of the chain of states we are only interested in the chain of clusters,
which may be more robust to errors.

Order selection by minimizing an information criterion

The parameter that determines the rth-order BMC model for Y1:ℓ is a transition matrix
Qr; recall (6.10). Note here that the chain Y r

1:ℓ−r will be constructed from the chain of
clusters Y1:ℓ = νn(X1:ℓ) for a fixed cluster assignment νn, which we are provided by the
clustering algorithm. We assume νn fixed for the time being.

To estimate Qr one can consider the log-likelihood

logL(Y1:ℓ | Qr) =
ℓ−r−1∑

t=r

log(Qr
Yt−r+1:t,Yt+1). (6.12)

The maximum-likelihood estimator associated with (6.12) is given by

(Q̂r,MLE)ir,j :=


∑ℓ−r−1

t=r
1[Yt−r+1:t=ir,Yt+1=j]∑ℓ−r−1

t=r
1[Yt−r+1:t=ir]

if
ℓ−r−1∑

t=r
1[Yt−r+1:t = ir] > 0,

0 otherwise.
(6.13)

Here ir, j run over all possible sequences in [K]r and [K] respectively. We denote

218 Chapter 6. Experimental evaluation of the BMC model in sequential data

Q̂r,MLE : The Maximum-Likelihood Estimator (MLE) of an rth-order MC estimated
from the observation sequence Y1:ℓ.

That is, Q̂r,MLE is the law of an rth-order MC with K states and transition matrix Q̂r,MLE.
To determine what order r is the true underlying order of the data we would like

to compare Q̂r,MLE and Q̂s,MLE for some s ̸= r. As remarked in Section 6.4, using the
log-likelihood for this purpose would give a biased estimator. Therefore, we use instead
the CAIC in (6.14): for the model Q̂r,MLE,

CAIC(Q̂r,MLE) := −2logL(Y1:ℓ | Q̂r,MLE)+DF(K,r)
(
1+ log(ℓ− r)

)
. (6.14)

Here, DF(K,r) is the number of degrees of freedom in an rth-order MC constrained to
have fixed parameters K and r. Specifically,

DF(K,r) = Kr(K −1), (6.15)

where the factor (K −1) is due to the fact that the rows of Qr sum to one.
We will utilize the CAIC to select the right order as follows. From the collection of

models Q̂0,MLE, Q̂1,MLE, Q̂2,MLE, . . ., we may determine the order rCAIC that minimizes
the CAIC:

rCAIC := argminr∈{0,1,2,...} CAIC(Q̂r,MLE). (6.16)

Note that lower-dimensional models are favored since the degrees of freedom DF(K,r),
and thus the penalty terms in (6.14), increase exponentially in K,r.

In order to evaluate the robustness of the CAIC criterion, we will furthermore estimate
the over- and underfit error probabilities with tailor-made error models.

6.4.3 Selected orders
We now examine the results of the selection of the order of the chain using an information
criterion as described in Section 6.4.2. To do so, we compute information criteria for all
datasets. In Section 6.4.4, we will furthermore ascertain the robustness of the criterion.
For simplicity, in this latter task we focus just on the DNA and the S&P500 datasets.

Results

We compute (6.14) for r = 0,1,2,3,4. The results are shown in Table 6.4.1. The magnitude
of the CAIC in Table 6.4.1 depends strongly on the observation sequence and the number
of clusters. In particular, for the GPS dataset the the criterion selects r = 2 and the differ-
ences between the criterion values are also notably large for most orders r ∈ {0,1,2,3,4}.
This is mostly due to the large number of clusters K = 15, for which higher orders become
highly penalized. For the DNA dataset, the criterion suggests that orders r ∈ {1,2} best
approximate the data. For the S&P500 dataset, on the other hand, orders r ∈ {0,1} are
selected as the best candidates. For the latter, a possible explanation for this result is
that the number of clusters K = 3 is small. In this case, the transitions between individual
states become aggregated in the clusters thereby making the chain closer to stationarity.
Note, however, that more clusters would also not guarantee different values for r, as the
number of transitions of a cluster for larger K would be even sparser. For model selection
with models with different number of clusters K, we refer to [9, Section 8.4].

6.4.4 Experimental evaluation of the CAIC criterion 219

r DNA incr. (%) GPS(×103) incr. (%) S&P500 incr. (%)

0 432650 n.a. 960.63 n.a. 9853 n.a.
1 431502 -0.27 626.54 -34.8 9860 +0.07
2 431263 -0.32 571.49 -40.5 9940 +0.81
3 435228 +0.69 1121.90 +16.8 10253 +3.1
4 458512 +5.3 9789.27 +1019 11162 +8.9

Table 6.4.1: The CAIC in (6.14) for the different datasets. Note that the relative difference
between the values pertaining to different orders is often small. For example,
the differences are less than 0.1% between orders 1, 2 for the DNA data, and
between orders 0, 1 for the S&P500 data. This is not the case, however, with
the GPS dataset.

In Table 6.4.1, we expect that there is a large variance in the CAIC values and some
over- or underfitting of the order is possible. The criterion indicates nonetheless that the
transitions of the found clusters, except maybe for the S&P500 dataset, can be better
approximated by a MC of order r ≥ 1. We will now support this conclusion empirically
with the error models for the DNA and S&P500 datasets.

6.4.4 Experimental evaluation of the CAIC criterion
In order to ascertain how significant the information criteria are, we will use the original
data X1:ℓ and use the parameters of the maximum-likelyhood estimator that best suit
an rth-order BMC. Let P̂r,MLE be the law of the best rth-order BMC that fits the data.
Then, for each r we will use the model consisting of P̂r,MLE together with a perturbation
coming from a MC of different order that r. We remark that all these models will use
the full state space [n]. The clustered process generated by these error models will be
analyzed. For r ∈ {0,1} we will consider two data-generating models together with errors
determined by a parameter ε ∈ [0,1). The models are:

W1
ε: A perturbed 1st-order BMC with probability distribution P̂1,MLE and a perturbation

given by a heavy-tailed 0th-order perturbation. This model is defined similarly to
the pertubation model in Section 6.3. In this case, however, the perturbation here
is assumed to be a 0th-order MC as defined in Section 6.4.1 instead of a 1st-order
MC.

W0
ε: A perturbed 0th-order BMC with probability distribution P̂0,MLE and a perturba-

tion given by a heavy-tailed 1st-order MC as defined in Section 6.3.

Denote Y r,ε
1:ℓ = νn(Xε

1:ℓ) the cluster process if Xε
1:ℓ ∼ Wr

ε. We will study the robustness
of the CAIC criterion by examining how often it over- and underfits when selecting s

for the models Q̂s,MLE with the clustered sequence Y r,ε
1:ℓ . To study this aspect, we will

consider two targets for the CAIC and restrict to the orders r ∈ {0,1}. The first target is
the overfit error probability

eover(ε) := PXε
1:ℓ∼W0

ε
(argminr∈{0,1}CAIC(Y r,ε

1:ℓ) = 1), (6.17)

that is, the probability that the criterion selects a 1st-order process for the chain of cluster
transitions when the underlying generating process is P̂0,MLE and the only higher order

220 Chapter 6. Experimental evaluation of the BMC model in sequential data

contributions come from perturbations. The second target is the underfit error probability
defined as

eunder(ε) := PXε
1:ℓ∼W1

ε
(argminr∈{0,1}CAIC(Y ε

1:ℓ) = 0), (6.18)

that is, the probability that the criterion selects a 0th-order process as the best-candidate
while P̂1,MLE is the actual underlying data-generating process.

0 5 · 10−2 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

ε

e u
n
d
e
r
(ε
)

Stocks Extended
Stocks
DNA

(a)

0 5 · 10−2 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

ε

e o
v
e
r
(ε
)

Stocks Extended
Stocks
DNA

(b)

Figure 6.4.1: (a) Underfit error probability eunder(ε) in (6.18) depending on the pertur-
bation ε for the DNA, S&P500 dataset, and extended S&P500 datasets as-
suming the data-generating process is W1

ε for their respective datasets. Note
the effect of reducing sparsity for the extended S&P500 dataset in reducing
the underfit error probability. The plot suggests that the probability of un-
derfitting for small ε, while nonzero, is less than the probability of selecting
the correct order. (b) Overfit error probability eover(ε) depending on the per-
turbation ε for the DNA, S&P500 dataset, and extended S&P500 datasets
assuming the data-generating process is W0

ε. Compared to the underfit error
probability, the CAIC is robust at selecting a model with lower order, pro-
vided there is enough information. In particular, for the DNA, the 1st-order
perturbation becomes dominant in the criterion fairly quickly after ε > 0.05.
In all tests the number of repetitions was R = 30.

We focus now on the DNA and S&P500 datasets. We will compute the CAIC and the
error probabilities obtained by using a BMCs model inferred from the data together with
an error model of a different order. Because the S&P500 dataset is the least clear dataset,
we also consider a synthetic observation sequence. The sequence is generated using the
same model Wr

ε as is obtained for the S&P500 dataset, but will be five times as long:
5ℓSM, where ℓSM is the length of the path of the dataset. We will refer to this synthetic
observation sequence as the “extended stock market model.” In this manner we can see
the effect of sparsity on the criterion robustness as if we had access to more data (albeit
from a BMC).

Figure 6.4.1 shows the error probabilities as well as centered CAIC values. We see
that both the underfit e1(ε) and overfit error e2(ε) are usually small for small ε. The
overfit error is, however, considerably larger for the DNA dataset than for the S&P500

6.4.4 Experimental evaluation of the CAIC criterion 221

dataset. This supports the claim that the CAIC chooses the model with fewest parameters
for the same amount of information, that is, the criterion is less prone to overfit when the
data is sparse. The underfit error is on the contrary small for the DNA dataset, also
for ε ∈ [0.1,0.2]. This suggests that order selection via information criteria is robust to
misclassification error.

The case of the S&P500 dataset is especially interesting. In Table 6.4.1, the criterion
is just slightly lower for r = 0 than r = 1 whereas in the W1

ε model in Figure 6.4.1(a), the
criterion selects r = 1 up to ε ∼ 0.1. Afterwards, deviating from the BMC model by just
1 out of 10 transitions will make the value of the criterion for r = 0 very close to that
of r = 1, similarly as in Table 6.4.1. This is also supported by Figure 6.4.2, where the
difference between the criterion for r = 0 and r = 1 in the S&P500 dataset takes values in
[0,10], which we coincidentally also see in Table 6.4.1. This suggests that there may be a
1st-order Markovian structure in the S&P500 dataset but also a strong 0th-order process.
Alternatively, the data may simply be too sparse for the CAIC to select a suitable order.
This hypothesis is also supported by the stock market extended dataset, where model
selection with five times more data has fewer such problems.

0 5 · 10−2 0.1 0.15 0.2

−50

0

50

ε

C
en
te
re
d
A
ve
ra
g
ed

C
A
IC

(ε
)

Stocks r = 0
Stocks r = 1
Stocks Extended r = 0
Stocks Extended r = 1

Figure 6.4.2: Centered average of CAIC for the S&P500 dataset and S&P500 dataset
extended datasets assuming the data-generating process is W1

ε. Note that
the criterion is not predictive of the true order of the data-generating pro-
cess after ε ∼ 0.08. However, by increasing the dataset size 5-fold, it can
very robustly select the correct order even for larger error ε. We remark
that considered individually, the empirical standard deviation of the CAIC
average—note, not centered—for each r is an order of magnitude too large
to be represented in the plot (Std(CAIC(Y1:ℓ(ε)) ≃ O(102)). Despite this
large standard deviation, after centering the criteria on the center of mass
of the CAIC averages of different orders r obtained from the same sample,
the relative difference is small and the selection process is robust for small
error ε.

We finally remark that looking at information criteria for the unclustered observation
sequences X1:ℓ provides no useful insights due to the large dimensionality of the models. In
particular, the CAIC criteria for the unclustered observation sequences for order r ∈ {0,1}
can be seen in Table 6.4.2. As the data shows, the CAIC criterion just picks the model

222 Chapter 6. Experimental evaluation of the BMC model in sequential data

with the smallest number of parameters. This is even more extreme in the GPS and
S&P500 datasets, where on top of a large model dimension we have sparse data.

r DNA GPS S&P500

0 1339.5 ×103 2943 ×103 54.27 ×103

1 1361.9 ×103 ≈ 1 ×108 882 ×103

Table 6.4.2: The CAIC in (6.14) for the sequence X1:ℓ for different datasets.

6.4.5 Conclusion
The main takeaways from the previous results address the last question posed in Sec-
tion 6.1:

Model selection is feasible if we use the clustered sequence Y1:ℓ = νn(X1:ℓ) obtained
after the clustering algorithm. This namely reduces the amount of free parameters
of the models considerably.
For the DNA and GPS datasets, the CAIC selects a nonzero-order MC for the cluster
dynamics.
For the S&P500 dataset the CAIC shows that the data is too sparse for selecting a
specific order with certainty. However, there are indications that the values obtained
in the CAIC for the S&P500 dataset are consistent with a 1st-order BMC model
with a strong 0th-order MC baseline.

Hence, while uncertainty is still high, there is evidence that the BMC is a better
suited model for describing the transition dynamics on sequential data than models with
less complexity which do not assume a Markovian structure of the dynamics.

Bibliography

[1] J. Sanders and A. Senen-Cerda. “Spectral norm bounds for block Markov chain
random matrices.” In: Stochastic Processes and their Applications 158 (2023).

[2] J. Sanders and A. Van Werde. “Singular value distribution of dense random matri-
ces with block Markovian dependence.” In: Stochastic Processes and their Applica-
tions 158 (2023).

[3] B. Bah, H. Rauhut, U. Terstiege, and M. Westdickenberg. “Learning deep linear
neural networks: Riemannian gradient flows and convergence to global minimizers.”
In: Information and Inference: A Journal of the IMA 11 (2022).

[4] Y. Jedra, J. Lee, A. Proutière, and S.-Y. Yun. “Nearly optimal latent state decoding
in block MDPs.” In: arXiv preprint arXiv:2208.08480 (2022).

[5] O. A. Manita, M. A. Peletier, J. W. Portegies, J. Sanders, and A. Senen–Cerda.
“Universal approximation in dropout neural networks.” In: Journal of Machine
Learning Research 23 (2022).

[6] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. “High-resolution
image synthesis with latent diffusion models.” In: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2022.

[7] A. Senen–Cerda and J. Sanders. “Asymptotic convergence rate of Dropout on shal-
low linear neural networks.” In: Proceedings of the ACM on Measurement and Anal-
ysis of Computing Systems 6 (2022).

[8] R. Szeliski. Computer vision: Algorithms and applications. Springer Nature, 2022.
[9] A. Van Werde, A. Senen–Cerda, G. Kosmella, and J. Sanders. “Detection and

evaluation of clusters within sequential data.” In: arXiv preprint arXiv:2210.01679
(2022).

[10] D. Zhang, N. Maslej, E. Brynjolfsson, J. Etchemendy, T. L. James, M. Helen Ngo,
J. C. Niebles, M. Sellitto, E. Sakhaee, Y. Shoham, J. Clarck, and R. Perrault. The
AI index 2022 annual report. Tech. rep. Stanford University, 2022.

[11] Alpha Vantage Co. Stock Data API. 2021. url: https://www.alphavantage.co/.
[12] R. Arora, P. Bartlett, P. Mianjy, and N. Srebro. “Dropout: Explicit forms and

capacity control.” In: International Conference on Machine Learning. 2021.
[13] D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei. “Deep neural network

approximation theory.” In: IEEE Transactions on Information Theory 67 (2021).

223

https://www.alphavantage.co/

224 Bibliography

[14] T. Gao, H. Liu, J. Liu, H. Rajan, and H. Gao. “A global convergence theory for deep
ReLU implicit networks via over-parameterization.” In: International Conference
on Learning Representations. 2021.

[15] A. Jentzen and A. Riekert. “On the existence of global minima and convergence
analyses for gradient descent methods in the training of deep neural networks.” In:
arXiv preprint arXiv:2112.09684 (2021).

[16] National Library of Medicine. OCA2 melanosomal transmembrane protein Homo
sapiens (human). https://www.ncbi.nlm.nih.gov/gene/4948. Accessed in October
2021, RefSeq Accession NC_000015.10. 2021.

[17] S. Tarmoun, G. Franca, B. D. Haeffele, and R. Vidal. “Understanding the Dy-
namics of Gradient Flow in Overparameterized Linear models.” In: International
Conference on Machine Learning. 2021.

[18] Z. Zhu, X. Li, M. Wang, and A. Zhang. “Learning Markov models via low-rank
optimization.” In: Operations Research 70 (2021).

[19] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, et al. “Language models are few-shot
learners.” In: Advances in Neural Information Processing Systems. 2020.

[20] Y. Drori and O. Shamir. “The complexity of finding stationary points with stochas-
tic gradient descent.” In: International Conference on Machine Learning. 2020.

[21] B. Fehrman, B. Gess, and A. Jentzen. “Convergence rates for the stochastic gra-
dient descent method for non-convex objective functions.” In: Journal of Machine
Learning Research 21 (2020).

[22] A. Foong, D. Burt, Y. Li, and R. Turner. “On the expressiveness of approximate
inference in Bayesian neural networks.” In: Advances in Neural Information Pro-
cessing Systems. 2020.

[23] C. Gallicchio and S. Scardapane. “Deep randomized neural networks.” In: Recent
Trends in Learning From Data. Springer, 2020.

[24] G. Garbi, E. Incerto, and M. Tribastone. “Learning queuing networks by recur-
rent neural networks.” In: ACM/SPEC International Conference on Performance
Engineering. 2020.

[25] P. Mianjy and R. Arora. “On convergence and generalization of Dropout training.”
In: Advances in Neural Information Processing Systems. 2020.

[26] A. Pal, C. Lane, R. Vidal, and B. D. Haeffele. “On the regularization properties of
structured dropout.” In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020.

[27] J. Sanders, A. Proutière, and S.-Y. Yun. “Clustering in block Markov chains.” In:
The Annals of Statistics 48 (2020).

[28] J. Schmidt–Hieber. “Nonparametric regression using deep neural networks with
ReLU activation function.” In: The Annals of Statistics 48 (2020).

[29] A. Senen–Cerda and J. Sanders. “Almost sure convergence of Dropout algorithms
for neural networks.” In: arXiv preprint arXiv:2002.02247 (2020).

https://www.ncbi.nlm.nih.gov/gene/4948

Bibliography 225

[30] Y. Tian, J. Qian, and S. Sra. “Towards minimax optimal reinforcement learning in
factored Markov decision processes.” In: Advances in Neural Information Processing
Systems. 2020.

[31] C. Wei, S. Kakade, and T. Ma. “The implicit and explicit regularization effects of
Dropout.” In: International Conference on Machine Learning. 2020.

[32] Y. Zhou, A. R. Zhang, L. Zheng, and Y. Wang. “Optimal high-order tensor SVD
via tensor-train orthogonal iteration.” In: arXiv preprint arXiv:2010.02482 (2020).

[33] D. Zou, Y. Cao, D. Zhou, and Q. Gu. “Gradient descent optimizes over-parameterized
deep ReLU networks.” In: Machine Learning 109 (2020).

[34] Z. Allen-Zhu, Y. Li, and Z. Song. “A convergence theory for deep learning via
over-parameterization.” In: International Conference on Machine Learning. 2019.

[35] S. Arora, N. Golowich, N. Cohen, and W. Hu. “A convergence analysis of gradient
descent for deep linear neural networks.” In: International Conference on Learning
Representations. 2019.

[36] F. Benaych-Georges, C. Bordenave, and A. Knowles. “Largest eigenvalues of sparse
inhomogeneous Erdös–Rényi graphs.” In: The Annals of Probability 47 (2019).

[37] G. De Bie, G. Peyré, and M. Cuturi. “Stochastic deep networks.” In: International
Conference on Machine Learning. 2019.

[38] Z. Du, N. Ozay, and L. Balzano. “Mode clustering for Markov jump systems.” In:
IEEE International Workshop on Computational Advances in Multi-Sensor Adap-
tive Processing. 2019.

[39] Y. Duan, T. Ke, and M. Wang. “State aggregation learning from Markov transition
data.” In: Advances in Neural Information Processing Systems. 2019.

[40] D. P. Kingma, M. Welling, et al. “An introduction to variational autoencoders.” In:
Foundations and Trends in Machine Learning 12 (2019).

[41] A. Labach, H. Salehinejad, and S. Valaee. “Survey of dropout methods for deep
neural networks.” In: arXiv preprint arXiv:1904.13310 (2019).

[42] P. Mianjy and R. Arora. “On Dropout and nuclear norm regularization.” In: Inter-
national Conference on Machine Learning. 2019.

[43] M. Sewak. “Deep Q network (DQN), double DQN, and dueling DQN.” In: Deep
Reinforcement Learning. Springer, 2019.

[44] O. Shamir. “Exponential convergence time of gradient descent for one-dimensional
deep linear neural networks.” In: Conference on Learning Theory. 2019.

[45] M. Szczepański. Economic impacts of artificial intelligence. Tech. rep. European
Parliamentary Research Service (EPRS), 2019.

[46] Y. Yin. “Random neural network methods and deep learning.” In: Probability in
the Engineering and Informational Sciences 35 (2019).

[47] A. Zhang and M. Wang. “Spectral state compression of Markov processes.” In:
IEEE Transactions on Information Theory 66 (2019).

[48] A. Al-Kaff, D. Martin, F. Garcia, A. de la Escalera, and J. M. Armingol. “Survey
of computer vision algorithms and applications for unmanned aerial vehicles.” In:
Expert Systems with Applications 92 (2018).

226 Bibliography

[49] P. L. Bartlett, D. P. Helmbold, and P. M. Long. “Gradient descent with identity ini-
tialization efficiently learns positive-definite linear transformations by deep residual
networks.” In: Neural Computation 31 (2018).

[50] L. Bottou, F. E. Curtis, and J. Nocedal. “Optimization methods for large-scale
machine learning.” In: Siam Review 60 (2018).

[51] J. Cavazza, P. Morerio, B. Haeffele, C. Lane, V. Murino, and R. Vidal. “Dropout
as a low-rank regularizer for matrix factorization.” In: International Conference on
Artificial Intelligence and Statistics. 2018.

[52] J. Ding, V. Tarokh, and Y. Yang. “Model selection techniques: An overview.” In:
IEEE Signal Processing Magazine 35 (2018).

[53] J. Gillham, L. Rimmington, H. Dance, G. Verweij, A. Rao, K. B. Roberts, and M.
Paich. The macroeconomic impact of artificial intelligence. Tech. rep. Pricewater-
houseCoopers (PwC), 2018.

[54] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G.
Wang, J. Cai, et al. “Recent advances in convolutional neural networks.” In: Pattern
Recognition 77 (2018).

[55] K. Hamidieh. “A data-driven statistical model for predicting the critical tempera-
ture of a superconductor.” In: Computational Materials Science 154 (2018).

[56] A. Jacot, F. Gabriel, and C. Hongler. “Neural tangent kernel: Convergence and
generalization in neural networks.” In: Advances in Neural Information Processing
Systems. 2018.

[57] W. Kirsch and T. Kriecherbauer. “Semicircle law for generalized Curie–Weiss ma-
trix ensembles at subcritical temperature.” In: Journal of Theoretical Probability
31 (2018).

[58] W. Kirsch and T. Kriecherbauer. “Sixty years of moments for random matrices.”
In: Non-linear partial differential equations, mathematical physics, and stochastic
analysis. European Mathematical Society, 2018.

[59] C. M. Le, E. Levina, and R. Vershynin. “Concentration of random graphs and
application to community detection.” In: International Congress of Mathematicians.
2018.

[60] P. Mianjy, R. Arora, and R. Vidal. “On the implicit bias of Dropout.” In: Interna-
tional Conference on Machine Learning. 2018.

[61] S. Oymak. “Learning compact neural networks with regularization.” In: Interna-
tional Conference on Machine Learning. 2018.

[62] G. Urban, K. Bache, D. T. Phan, A. Sobrino, A. K. Shmakov, S. J. Hachey, C. C.
Hughes, and P. Baldi. “Deep learning for drug discovery and cancer research: Auto-
mated analysis of vascularization images.” In: IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics 16 (2018).

[63] J. Cavazza, C. Lane, B. D. Haeffele, V. Murino, and R. Vidal. “An analysis of
Dropout for matrix factorization.” In: arXiv preprint arXiv:1710.03487 (2017).

[64] T. DeVries and G. W. Taylor. “Improved regularization of convolutional neural
networks with cutout.” In: arXiv preprint arXiv:1708.04552 (2017).

Bibliography 227

[65] C. Gao, Z. Ma, A. Y. Zhang, and H. H. Zhou. “Achieving optimal misclassifica-
tion proportion in stochastic block models.” In: The Journal of Machine Learning
Research 18 (2017).

[66] S. Gunasekar, B. E. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Srebro.
“Implicit regularization in matrix factorization.” In: Advances in Neural Informa-
tion Processing Systems. 2017.

[67] C. M. Le, E. Levina, and R. Vershynin. “Concentration and regularization of ran-
dom graphs.” In: Random Structures & Algorithms 51 (2017).

[68] D. Molchanov, A. Ashukha, and D. Vetrov. “Variational dropout sparsifies deep
neural networks.” In: International Conference on Machine Learning. 2017.

[69] H. Nguyen. “A universal approximation theorem for Gaussian-gated mixture of
experts models.” In: SSRN Electronic Journal (2017).

[70] Q. Nguyen and M. Hein. “The loss surface of deep and wide neural networks.” In:
International Conference on Machine Learning. 2017.

[71] D. L. Stephen Blake Randy Arndt. Movebank. https://www.movebank.org/cms/
webapp?gwt_fragment=page=studies,path=study8019591. Accessed: 2022-08-16.
2017.

[72] E. Abbe, A. S. Bandeira, and G. Hall. “Exact recovery in the Stochastic Block
Model.” In: IEEE Transactions on Information Theory 62 (2016).

[73] S. Bhojanapalli, B. Neyshabur, and N. Srebro. “Global optimality of local search for
low rank matrix recovery.” In: Advances in Neural Information Processing Systems.
2016.

[74] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.
[75] B. Hajek, Y. Wu, and J. Xu. “Achieving exact cluster recovery threshold via

semidefinite programming.” In: IEEE Transactions on Information Theory 62 (2016).
[76] W. Hochstättler, W. Kirsch, and S. Warzel. “Semicircle law for a matrix ensemble

with dependent entries.” In: Journal of Theoretical Probability 29 (2016).
[77] H. Karimi, J. Nutini, and M. Schmidt. “Linear convergence of gradient and proximal–

gradient methods under the Polyak-Łojasiewicz condition.” In: Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases. 2016.

[78] K. Kawaguchi. “Deep learning without poor local minima.” In: Advances in Neural
Information Processing Systems. 2016.

[79] E. Kay and A. Agarwal. “Dropconnected neural network trained with diverse fea-
tures for classifying heart sounds.” In: Computing in Cardiology Conference. 2016.

[80] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. “Gradient descent converges
to minimizers.” In: arXiv preprint arXiv:1602.04915 (2016).

[81] J. Lei. “A goodness-of-fit test for Stochastic Block Models.” In: The Annals of
Statistics 44 (2016).

[82] Z. Li, B. Gong, and T. Yang. “Improved Dropout for shallow and deep learning.”
In: Advances in Neural Information Processing Systems. 2016.

[83] H. D. Nguyen, L. R. Lloyd-Jones, and G. J. McLachlan. “A universal approximation
theorem for mixture-of-experts models.” In: Neural Computation 28 (2016).

https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study8019591
https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study8019591

228 Bibliography

[84] S. Semeniuta, A. Severyn, and E. Barth. “Recurrent Dropout without memory loss.”
In: International Conference on Computational Linguistics: Technical Papers. 2016.

[85] S.-Y. Yun and A. Proutière. “Optimal cluster recovery in the labeled Stochastic
Block Model.” In: Advances in Neural Information Processing Systems. 2016.

[86] E. Abbe and C. Sandon. “Community detection in general Stochastic Block Mod-
els: Fundamental limits and efficient algorithms for recovery.” In: IEEE Annual
Symposium on Foundations of Computer Science. 2015.

[87] E. Abbe and C. Sandon. “Recovering communities in the general Stochastic Block
Model without knowing the parameters.” In: Advances in Neural Information Pro-
cessing Systems. 2015.

[88] K. Avrachenkov, L. Cottatellucci, and A. Kadavankandy. “Spectral properties of
random matrices for Stochastic Block Model.” In: International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks. 2015.

[89] S. Bubeck et al. “Convex optimization: Algorithms and complexity.” In: Founda-
tions and Trends in Machine Learning 8 (2015).

[90] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift.” In: International Conference on Machine
Learning. 2015.

[91] V. Jog and P.-L. Loh. “Information-theoretic bounds for exact recovery in weighted
stochastic block models using the Rényi divergence.” In: arXiv preprint arXiv:1509.-
06418 (2015).

[92] D. P. Kingma, T. Salimans, and M. Welling. “Variational Dropout and the local
reparameterization trick.” In: Advances in Neural Information Processing Systems.
2015.

[93] J. Lei and A. Rinaldo. “Consistency of spectral clustering in Stochastic Block Mod-
els.” In: The Annals of Statistics 43 (2015).

[94] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. “Human-level control
through deep reinforcement learning.” In: Nature 518 (2015).

[95] E. Mossel, J. Neeman, and A. Sly. “Consistency thresholds for the planted bisection
model.” In: ACM Symposium on Theory of Computing. 2015.

[96] E. Mossel, J. Neeman, and A. Sly. “Reconstruction and estimation in the Planted
Partition Model.” In: Probability Theory and Related Fields 162 (2015).

[97] B. Neyshabur, R. Tomioka, and N. Srebro. “Norm-based capacity control in neural
networks.” In: Conference on Learning Theory. 2015.

[98] D. Paulin. “Concentration inequalities for Markov chains by Marton couplings and
spectral methods.” In: Electronic Journal of Probability 20 (2015).

[99] J. A. Tropp. “An introduction to matrix concentration inequalities.” In: Founda-
tions and Trends in Machine Learning 8 (2015).

[100] P. Baldi and P. Sadowski. “The Dropout learning algorithm.” In: Artificial intelli-
gence 210 (2014).

Bibliography 229

[101] D. P. Kingma and J. Ba. “ADAM: A method for stochastic optimization.” In: arXiv
preprint arXiv:1412.6980 (2014).

[102] L. Massoulié. “Community detection thresholds and the weak Ramanujan prop-
erty.” In: ACM Symposium on Theory of Computing. 2014.

[103] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour. “Dropout improves recur-
rent neural networks for handwriting recognition.” In: International Conference on
Frontiers in Handwriting Recognition. 2014.

[104] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale
image recognition.” In: arXiv preprint arXiv:1409.1556 (2014).

[105] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Drop-
out: a simple way to prevent neural networks from overfitting.” In: The Journal of
Machine Learning Research 15 (2014).

[106] S.-Y. Yun and A. Proutière. “Accurate community detection in the Stochastic Block
Model via spectral algorithms.” In: arXiv preprint arXiv:1412.7335 (2014).

[107] S.-Y. Yun and A. Proutière. “Community Detection via random and adaptive sam-
pling.” In: Conference on Learning Theory. 2014.

[108] W. Zaremba, I. Sutskever, and O. Vinyals. “Recurrent neural network regulariza-
tion.” In: arXiv preprint arXiv:1409.2329 (2014).

[109] J. Ba and B. Frey. “Adaptive Dropout for training deep neural networks.” In: Ad-
vances in Neural Information Processing Systems. 2013.

[110] P. Baldi and P. J. Sadowski. “Understanding Dropout.” In: Advances in Neural
Information Processing Systems. 2013.

[111] J. Bochnak, M. Coste, and M.-F. Roy. Real algebraic geometry. Springer Science
& Business Media, 2013.

[112] A. Dax. “From eigenvalues to singular values: a review.” In: Advances in Pure
Mathematics 3 (2013).

[113] J. M. Lee. “Smooth manifolds.” In: Introduction to Smooth Manifolds. Springer,
2013.

[114] S. Wager, S. Wang, and P. S. Liang. “Dropout training as adaptive regularization.”
In: Advances in Neural Information Processing Systems. 2013.

[115] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus. “Regularization of neural
networks using Dropconnect.” In: International Conference on Machine Learning.
2013.

[116] C. Bordenave, P. Caputo, and D. Chafaï. “Circular law theorem for random Markov
matrices.” In: Probability Theory and Related Fields 152 (2012).

[117] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.
“Improving neural networks by preventing co-adaptation of feature detectors.” In:
arXiv preprint arXiv:1207.0580 (2012).

[118] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep
convolutional neural networks.” In: Advances in Neural Information Processing Sys-
tems. 2012.

230 Bibliography

[119] T. Tao. Topics in random matrix theory. American Mathematical Society, 2012.
[120] C. Bordenave, P. Caputo, and D. Chafaï. “Spectrum of large random reversible

Markov chains: heavy-tailed weights on the complete graph.” In: The Annals of
Probability 39 (2011).

[121] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. “Inference and phase transi-
tions in the detection of modules in sparse networks.” In: Physical Review Letters
107 (2011).

[122] R. Tibshirani. “Regression shrinkage and selection via the lasso: a retrospective.”
In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73
(2011).

[123] C. Bordenave, P. Caputo, and D. Chafaï. “Spectrum of large random reversible
Markov chains: two examples.” In: ALEA: Latin American Journal of Probability
and Mathematical Statistics 7 (2010).

[124] R. H. Keshavan, A. Montanari, and S. Oh. “Matrix completion from a few entries.”
In: IEEE Transactions on Information Theory 56 (2010).

[125] Y. LeCun, C. Cortes, and C. Burges. “MNIST handwritten digit database.” In:
ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[126] S. Timotheou. “The random neural network: a survey.” In: The Computer Journal
53 (2010).

[127] V. S. Borkar. Stochastic approximation: a dynamical systems viewpoint. Springer,
2009.

[128] A. Krizhevsky. “Learning multiple layers of features from tiny images.” 2009.
[129] A. Rahimi and B. Recht. “Uniform approximation of functions with random bases.”

In: Allerton Conference on Communication, Control, and Computing. 2008.
[130] A. Rahimi and B. Recht. “Weighted sums of random kitchen sinks: Replacing

minimization with randomization in learning.” In: Advances in Neural Information
Processing Systems. 2008.

[131] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. “The graph
neural network model.” In: IEEE Transactions on Neural Networks 20 (2008).

[132] J. Bolte, A. Daniilidis, A. S. Lewis, and M. Shiota. “Clarke critical values of suban-
alytic Lipschitz continuous functions.” In: Annales Polonici Mathematici 87 (2005).

[133] U. Feige and E. Ofek. “Spectral techniques applied to sparse random graphs.” In:
Random Structures & Algorithms 27 (2005).

[134] S. Robin, F. Rodolphe, and S. Schbath. DNA, words and models: statistics of
exceptional words. Cambridge University Press, 2005.

[135] D. Anderson and K. Burnham. “Model selection and multi-model inference.” In:
Second. NY: Springer-Verlag (2004).

[136] K. Smith, L. Kahanpää, P. Kekäläinen, and W. Traves. An invitation to algebraic
geometry. Springer Science & Business Media, 2004.

[137] A. Arvanitogeōrgos. An introduction to Lie groups and the geometry of homoge-
neous spaces. American Mathematical Society, 2003.

Bibliography 231

[138] P. Hajłasz. “Whitney’s example by way of Assouad’s embedding.” In: Proceedings
of the American Mathematical Society 131 (2003).

[139] M. Krivelevich and B. Sudakov. “The largest eigenvalue of sparse random graphs.”
In: Combinatorics, Probability and Computing 12 (2003).

[140] H. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and
applications. Springer Science & Business Media, 2003.

[141] E. Gelenbe, Z.-H. Mao, and Y.-D. Li. “Function approximation with spiked random
networks.” In: IEEE Transactions on Neural Networks 10 (1999).

[142] E. Gelenbe, Z.-W. Mao, and Y.-D. Li. “Approximation by random networks with
bounded number of layers.” In: IEEE Signal Processing Society Workshop. IEEE.
1999.

[143] C. Manning and H. Schutze. Foundations of statistical natural language processing.
MIT Press, 1999.

[144] A. Pinkus. “Approximation theory of the MLP model in neural networks.” In: Acta
Numerica 8 (1999).

[145] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied
to document recognition.” In: Proceedings of the IEEE 86 (1998).

[146] Y. Makovoz. “Uniform approximation by neural networks.” In: Journal of Approx-
imation Theory 95 (1998).

[147] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming. Athena Scientific,
1996.

[148] Y. Makovoz. “Random approximants and neural networks.” In: Journal of Approx-
imation Theory 85 (1996).

[149] D. P. Bertsekas and J. N. Tsitsiklis. “Neuro-dynamic programming: an overview.”
In: IEEE Conference on Decision and Control. 1995.

[150] B. Igelnik and Y.-H. Pao. “Stochastic choice of basis functions in adaptive function
approximation and the Functional-Link Net.” In: IEEE Transactions on Neural
Networks 6 (1995).

[151] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge university
press, 1994.

[152] Y.-H. Pao, G.-H. Park, and D. J. Sobajic. “Learning and generalization character-
istics of the random vector functional-link net.” In: Neurocomputing 6 (1994).

[153] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. “Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function.” In:
Neural Networks 6 (1993).

[154] K. Hornik. “Approximation capabilities of multilayer feedforward networks.” In:
Neural Networks 4 (1991).

[155] T. Ando. “Majorization, doubly stochastic matrices, and comparison of eigenvalues.”
In: Linear Algebra and its Applications 118 (1989).

[156] G. Cybenko. “Approximation by superpositions of a sigmoidal function.” In: Math-
ematics of Control, Signals and Systems 2 (1989).

232 Bibliography

[157] J. Friedman, J. Kahn, and E. Szemeredi. “On the second eigenvalue of random
regular graphs.” In: ACM Symposium on Theory of Computing. 1989.

[158] L. Rabiner. “A tutorial on hidden Markov models and selected applications in
speech recognition.” In: Proceedings of the IEEE 77 (1989).

[159] H. White. “An additional hidden unit test for neglected nonlinearity in multilayer
feedforward networks.” In: International Joint Conference on Neural Networks.
1989.

[160] S. Hanson and L. Pratt. “Comparing biases for minimal network construction with
back-propagation.” In: Advances in Neural Information Processing Systems. 1988.

[161] H. Bozdogan. “Model selection and Akaike’s Information Criterion (AIC): The
general theory and its analytical extensions.” In: Psychometrika 52 (1987).

[162] H. Almagor. “A Markov analysis of DNA sequences.” In: Journal of Theoretical
Biology 104 (1983).

[163] A. W. Marshall, I. Olkin, and B. C. Arnold. Inequalities: Theory of majorization
and its applications. Springer, 1979.

[164] H. Akaike. “A new look at the statistical model identification.” In: IEEE Transac-
tions on Automatic Control 19 (1974).

[165] V. A. Marčenko and L. A. Pastur. “Distribution of eigenvalues for some sets of
random matrices.” In: Mathematics of the USSR-Sbornik 1 (1967).

[166] P. Erdos and A. Rényi. “On the evolution of random graphs.” In: Publ. Math. Inst.
Hung. Acad. Sci 5 (1960).

[167] P. Erdös and A. Rényi. “On random graphs. I.” In: Publ. Math. Debrecen 6 (1959).
[168] E. P. Wigner. “On the distribution of the roots of certain symmetric matrices.” In:

Annals of Mathematics (1958).
[169] T. W. Anderson and L. A. Goodman. “Statistical inference about Markov chains.”

In: The Annals of Mathematical Statistics 28 (1957).
[170] J. Kiefer and J. Wolfowitz. “Stochastic estimation of the maximum of a regression

function.” In: The Annals of Mathematical Statistics 23 (1952).
[171] H. Robbins and S. Monro. “A stochastic approximation method.” In: The Annals

of Mathematical Statistics (1951).
[172] A. Sard. “The measure of the critical values of differentiable maps.” In: Bulletin of

the American Mathematical Society 48 (1942).
[173] A. P. Morse. “The behavior of a function on its critical set.” In: Annals of Mathe-

matics 40 (1939).

Summary

In this thesis we investigate asymptotic properties of machine learning algorithms that are
based on the use of structured random networks. We investigate dropout, an algorithm
to avoid overfitting during the training of Neural Networks (NNs), and Block Markov
Chains (BMCs), a type of models used for cluster detection in sequential data. Our main
approach for studying both of these algorithms is theoretical, but an underlying aim of
our work is to also provide results that may prove useful in practice. The thesis is divided
into two parts.

The first part of this thesis focuses on dropout. Dropout is a well-known method for
avoiding overfitting during the training of NNs that temporarily ‘drops’ nodes of the net-
work during training with stochastic gradient descent. A dropout probability determines
the amount of stochastic change of the NN and penalizes overfitting. Despite its ample
use, precise statistical and convergence properties of dropout are not yet understood and
a good choice of parameters is usually unknown.

In this thesis, we use stochastic approximation techniques to study and understand
the convergence properties of dropout and its variants. We examine convergence guaran-
tees for dropout and how the convergence rate depends on the choice of parameters of
the NN, like depth, width, as well as the dropout probability. We obtain general con-
vergence guarantees when training NNs with dropout as well as estimates on its sample
complexity depending on the dropout probability. We investigate how the configuration
of the NN depends on the convergence rate of training with dropout; theoretically, and
with simulations. We obtain explicit descriptions of the convergence rate of dropout in
different simplified models for deep and shallow NNs by analyzing an associated Ordinary
Differential Equation (ODE) induced by dropout and by using different techniques from
nonconvex optimization. Furthermore, we also study random NNs that have dropout as
their source of randomness and show that they can approximate functions arbitrarily well,
despite the additional randomness.

The second part of this thesis focuses on clustering with BMCs. A BMC is a model for
clusters in sequential data where clusters are defined by states in a Markov chain that have
a block structure of its transition probabilities. In this model, a trajectory of the Markov
chain of a certain length is observed and the goal is to infer the underlying cluster structure.
The transition probabilities in a BMC depend only on the cluster of origin and the target
cluster of a transition, different to other well-known models in community detection where
edges between nodes are sampled independently. Hence, in the random trajectory of a
BMC, there are dependencies between consecutive transitions across different times. A
clustering algorithm with theoretical guarantees for exact recovery of the clusters has

233

234 Summary

recently been obtained by Sanders, Proutière, and Yun [27]. A key condition in the
recovery guarantee is to ensure that the spectral norm of a matrix describing the dynamics
of the trajectory is small enough.

In this thesis, we use tools from random matrix theory and sparse random graphs to
obtain order-sharp bounds of the spectral norm of BMCs. This involves using spectral
concentration for matrices with dependent entries coming from a Markov chain. Moreover,
we also tackle the case when the observed trajectory is short and the associated random
matrix is sparse.

While clustering is theoretically possible on data generated by a BMCs, no experimen-
tal study of the model existed in the literature. We therefore test the clustering algorithm
for BMCs in real-world sequential data and compare the bounds for the spectral norm
from datasets in finance, genetics and geography. Furthermore, we evaluate the robustness
of the clustering algorithm and the merit of BMCs compared to simpler models for each
dataset.

About the author

Albert Senén Cerdà was born in Benicarló in 1992. He obtained his high-school diploma
at I.E.S. Ramón Cid in Benicarló in 2010. Albert obtained both the Bachelor degree in
Mathematics as well as in Physics at Autonomous University of Barcelona in 2015. During
his bachelor studies he received the Pere Menal Fellowship, and he also spent time at Max
Planck Institute for Physics in Munich as an intern. After his bachelor studies, he went
on to pursue a Master degree in Mathematics at the University of Göttingen, Germany.
He graduated in 2018 with the thesis Topological aspects of Nahm’s equation.

In 2018, Albert started a PhD in applied mathematics in the department of math-
ematics, computer science and electrical engineering at Delft University of Technology
(TU Delft) in the Netherlands, under the supervision of dr.ir. Jaron Sanders. In 2019,
Albert joined his supervisor now at the Stochastic Operations Research (SOR) group in
the mathematics and computer science department at Eindhoven University of Technology
(TU/e). His PhD deals with stochastic optimization applied to problems in machine learn-
ing, operations research, and probability. During his PhD, Albert visited the Laboratoire
d’analyse et d’architecture des systèmes (LAAS-CNRS) in Toulouse, France to work with
Dr. Matthieu Jonckheere.

During his PhD, Albert has presented his work in several workshops and conferences
in the Netherlands and abroad; for example, in the YEQT workshop at EURANDOM and
the ACM SIGMETRICS conference. He has also been teaching assistant for courses in
Data Communications Networks, Calculus, and Statistical Learning Theory, for which he
was recipient of an excellent teaching evaluation award. Albert has also been supervisor
of Rens Hoogendorp, a BSc student, and has co-organized the 8th SOR PhD Colloquium
at TU/e.

Albert will defend his PhD thesis at TU/e on May 15, 2023.

235

	Acknowledgments
	Contents
	Introduction
	Background of Part I
	Neural networks
	Stochastic gradient descent and learning
	Dropout and summary of results of Part I
	Background of Part II
	Spectral clustering
	Summary of results of Part II
	Related literature and positioning

	I Dropout
	Almost sure convergence of dropout algorithms for neural networks
	Introduction
	Model
	Convergence of projected dropout algorithms
	Convergence rate of gradient descent for arborescences with linear activations
	Effect of dropout on the convergence rate in wider networks
	Conclusion
	Appendix
	Backpropagation Algorithm
	ODE method
	Projection operator
	Proof of Proposition 1
	Proof of Proposition 2
	Path representation of D(W) – Proofs of Lemma 1 and Corollary 1
	Conserved quantities – Proof of Lemma 2
	Proof of Proposition 4
	Convergence rate in the case of Dropout and Dropconnect – Proof of Corollary 3
	Inequalities pertaining to the Frobenius norm

	Asymptotic convergence rate of dropout for shallow linear neural networks
	Introduction
	Preliminaries
	Results
	Proofs
	Numerical experiments
	Conclusion
	Appendix
	On assumption 9
	Proofs
	Proof
	Proofs
	Auxiliary statements

	Universal approximation of dropout neural networks
	Introduction
	Specification of dropout neural networks
	Universal approximation for random-approximation dropout
	Universal approximation for expectation-replacement dropout
	Discussion
	Conclusion
	Appendix
	Proofs of Section 4.3
	Proofs of Section 4.4

	II Block Markov Chains
	The spectral norm of block Markov chains
	Introduction
	Properties of block Markov chains
	Bounding the spectral norm of Nhat - N
	Proof of Corollary 7
	Proof of Proposition 17
	Numerical validation
	Appendix
	Proofs of Section 5.2
	Proofs of Section 5.3

	Experimental evaluation of the BMC model in sequential data
	Introduction
	Spectral norm from detected clusters
	Robustness of the clustering procedure to model violations
	Model selection for the order of detected clusters

	Bibliography
	Summary
	About the author

