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Chapter 1

Introduction

1.1. Scope of the thesis

Queues are part of our everyday life. We need to wait behind each other in the supermarket,
on the highway, and at the airport. In our modern society, queues appear in less visible places
as well, such as data centers, telecommunication networks, and the Internet. Although these
situations are all different, queueing systems typically consist of two types of actors: the
customers and the servers. Queueing theory is the branch of applied mathematics that
studies the behavior of these systems. Often, we cannot fully predict how many people will
drive to their work or go to the supermarket, and we cannot fully predict how long we are
in service. Hence, in the study of queues, stochasticity plays a key role.

The most basic queueing system is the single-server queue: incoming customers go to
a single server to get service. If others are already there, the customer waits, and after
getting service the customer leaves. Obviously, many real-life queueing systems are much
more involved, such as the queueing system in a supermarket. When more than one checkout
is open, customers typically join the queue which (they think) minimizes their waiting time.
When personnel observes long queues, usually an extra checkout is opened. Hence, the
structure of the queueing network is important.

Apart from the structure, what determines the performance of a queueing system is the
behavior of the arriving customers and the service stations. A car driver spends more time
on the same highway during rush hour than during midnight. An experienced worker will
service customers faster than an inexperienced worker. The general behavior of arriving
customers is governed by the interarrival distribution, while the service times are governed
by the service-time distribution. Examples of other, more complicated types of behaviors or
policies are: customers arrive in groups; certain types of customers get priority; customers
abandon after having waited a certain amount of time, or queues are served in reverse order
of arrival. Two comprehensive books on queueing theory are [13] and [26]. In summary, many
real-life service systems can be modeled by a queueing network with a certain structure, and
with certain interarrival and service-time distributions.

In this thesis, we focus on a specific type of queueing network that has been studied in the
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2 Chapter 1. Introduction

past and is called the fork-join queue. The fork-join queue is a model of a parallel-processing
system, where incoming jobs consist of subtasks, which are forked among different service
stations. After completion of the subtasks, these are again joined and the job is finished.
This queueing system is a suitable modeling tool for supply chains and communication
networks. In the situation of the supply chain, the arriving jobs represent orders from a
manufacturer, the service stations represent suppliers, and joining the completed subtasks
represents assembling the components into a final product. In Figure 1.1, a schematic
representation of such a supply chain is given; we see an arriving stream of orders from
the manufacturer; each order is forked in N subtasks; each supplier operates as a single-
server queue, and each supplier has to produce a component.

...

N

2

1

Backlogs of suppliers

Arrival stream
of manufacturer

Assembly of
components

Figure 1.1 Fork-join queue with N servers

Obviously, when the demand exceeds the number of completed components, queues
start to form in front of the service stations and this results in supply chain delays. The
manufacturer in this simple model has a particular interest in the delay of the slowest
supplier, as the slowest supplier determines the delay for the manufacturer. Hence the
most important performance measures for the manufacturer are the length of the longest
queue and the longest waiting time among the N subtasks before getting service.

This fork-join queue has been broadly studied, and we give an overview of this research
in Section 1.3.2. However, the focus of this thesis lies on analyzing this type of queueing
system where the number of service stations N is large. Because a large finite system is
close to intractable, we aim to find convergence results for the maximum queue length and
the longest waiting time as the number of service stations N goes to infinity. As we are
interested in maximal quantities, we derive results that belong to the area of extreme-value
theory, on which we provide a partial literature overview in Section 1.4. In this thesis, we
give steady-state results in Chapters 2, 3, and 5, process convergence results in Chapters
2 and 5, we derive a large deviations principle in Chapter 4, and we apply these results to
inventory problems in assembly systems in Chapter 6.
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1.2. Motivation

Our inspiration to investigate large fork-join queues stems from supply chains in the high-
tech industry. High-tech companies, such as ASML, Philips, and Boeing, are types of original
equipment manufacturers (OEMs) that assemble thousands of components, each produced
using specialized equipment, into complicated systems. As a result, these supply chains have
typical characteristics.

The most important characteristic is that high-tech manufacturers outsource the
production of components to many suppliers worldwide. High-tech companies typically have
thousands of direct suppliers. For instance, the Dutch lithography equipment manufacturer
ASML had 4750 direct suppliers in 2020; see [12, p. 53].

These supply chains often also contain multiple tiers, as suppliers make products
involving parts delivered by other suppliers; see [12, p. 57]. Due to this structure, the
state supply chain is less observable [108]. These supply chains are vulnerable as supply
chains can be easily disrupted; see [12, p. 95].

Another important characteristic is that in the high-tech industry, many suppliers deliver
products that have a very large technological value. For instance, of the 4750 suppliers of
ASML, 188 are called critical suppliers. One example is the German company Carl Zeiss.
This company is the sole supplier of lenses, mirrors, illuminators, collectors, and optics for
ASML; see [12, p. 95]. For this reason, ASML has no back-up supplier available in case a
disruption occurs at Carl Zeiss.

A further characteristic of high-tech manufacturing is that revenue is derived from a
relatively small number of products. ASML sold 229 and 258 machines in 2019 and 2020,
respectively; see [12, p. 92]. At the same time, the price of each of these machines is very
high: one EUV lithography system costs around 150 million USD [144]. This underlines the
fact that delays in these types of supply chains are very costly.

This all means that the size of the supply chain and the nature of the high-tech suppliers
make the supply chains very exposed to adverse events, resulting in a significant loss of
revenue. If one component is missing, the final product cannot be assembled, giving rise to
costly delays. Hence, a straightforward measure for the performance of this high-tech supply
chain is the delay of the slowest supplier. We can conclude that the fork-join queue functions
as a stylized model for a high-tech supply chain, where the arrival stream of jobs represents
the orders from the manufacturer to the suppliers, and where each service station represents
a single supplier. Furthermore, the maximum queue length, and the longest waiting time,
are the two performance measures that are of particular interest to the manufacturer in the
high-tech supply chain.

Another area of application of the fork-join queue is parallel computing in data centers.
Companies such as Google, Microsoft, and Alibaba have data centers with thousands of
servers, that are available for cloud computing, where there is often a form of parallel
scheduling [5, 101]. Jobs in these systems have large sizes and are often heavy-tailed, see for
example [147], in which the Google Borg Scheduler is analyzed. However, most theoretical
literature on parallel queues assumes service times to be light-tailed; see [70, p. 20]. This
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motivates the analysis of parallel queueing networks with heavy-tailed job sizes.

1.3. Queueing theory

In this thesis, we study the fork-join queueing system with N service stations, in which
each service station processes one subtask. The queueing system restricted to one service
station in isolation can be seen as a single-server queue. Therefore, performance measures
of fork-join queues are related to performance measures of single-server queues. In Section
1.3.1, we give an overview of the literature on the analysis of single-server queues, which we
also use in this thesis. Although the dynamics of each service station in isolation are well
understood, the fact that each service station has the same arrival stream complicates the
analysis of the joint performance measures of the fork-join queue. Therefore, while a lot
of research has been done on the topic of fork-join queues, only a few analytic results are
known, e.g. [57, 58]. In Section 1.3.2, we give an outline of the results in the field of fork-join
queues.

1.3.1 Single-server queue

One of the fundamental contributions to the analysis of queueing systems is due to Lindley
[96]. In this study, it is shown that under the first-come-first-served (FCFS) policy, the
waiting time of an arbitrary customer in a GI/GI/1 queue can be written as a relation
with the waiting time of the previous customer, as W (n + 1) = max(0,W (n) + S(n) −
A(n)), where W (n) and S(n) are the waiting time and service time of the n-th customer,
respectively, and A(n) is the interarrival time between the n-th and (n + 1)-st customer.
This expression is known as Lindley’s recursion. One can inductively show that W (n) :=
sup1≤k≤n

∑n−1
j=k (S(j) − A(j)) solves this equation, when W (1) = 0. Furthermore, when

the queueing system is a stable GI/GI/1 queue, the steady-state waiting time satisfies
W

d= max(0,W + S −A)+, in which case it is easy to show that

W
d= sup
k≥0

k∑
j=1

(S(j)−A(j)).

As is intuitively clear, the average waiting time of a customer is connected to the average
queue length. In [97], this is formalized: Little’s law says that for a stable and non-preemptive
queueing system, λE[W ] = E[Q], where E[Q] is the expected steady-state queue length and
λ is the arrival rate. In [68], an extension is given to the distributions of W and Q. When
the arrival process is stationary, the queue discipline is FCFS, and the waiting time of a
customer is independent of the number of arrivals during any time interval after its arrival,
then the steady-state queue length has the same distribution as NA(W ), where W is the
steady-state waiting time and NA(t) is the number of arriving customers until time t.

In the analysis of queues, the behavior of queueing systems is also investigated through
the derivation of fluid limits. The idea is to scale the system in such a way that deterministic
limits are obtained. This is an extension of the law of large numbers to time-dependent
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processes. For instance, in [37, Thm. 6.5, p. 136], a standard fluid limit for the queue
length in the GI/GI/1 queue is given. By the law of large numbers for renewal processes,
it is known that for fixed t, (NA(tn) − NS(tn))/n P−→ (1/E[A] − 1/E[S])t as n → ∞,
with NA(t) the number of arrivals until time t, and NS(t) the number of services until
time t. Now, we consider a sequence of queue lengths (Q(n), n ≥ 1). Furthermore, the
number of items in queue at time 0 equals Q(n)(0) that satisfies Q(n)(0)/n P−→ Q̄(0) ≥ 0, as
n → ∞. Then the sequence of queue length processes satisfies (Q(n)(nt)/n, t ∈ [0, T ]) P−→
((Q̄(0) + (1/E[A] − 1/E[S])t)+, t ∈ [0, T ]) in C[0, T ] as n → ∞. The space C[0, T ] is the
space of continuous functions on [0, T ], which we equip with the supremum norm.

As we can extend the law of large numbers, we can also extend the central limit theorem;
this is called a diffusion approximation of a queue. By the functional central limit theorem
[37, Thm. 5.11, p. 110], we know that ((NA(tn) − nt/E[A])/

√
n, t ∈ [0, T ]) d−→ (BA(t), t ∈

[0, T ]) in C[0, T ] as n → ∞, with (BA(t), t ≥ 0) a Brownian motion with drift 0. There is
an analogous limit (BS(t), t ∈ [0, T ]) for the number of services. Then, following [37, Thm.
6.8, p. 139], when Q(0) = 0, the queue length process Q(t) satisfies ((Q(nt) − ((1/E[A] −
1/E[S])nt)+)/

√
n, t ∈ [0, T ]) d−→

• (0, t ∈ [0, T ]) in C[0, T ] as n→∞, if E[A] > E[S],

• (sups∈[0,t]((BA(t) − BS(t)) − (BA(s) − BS(s))), t ∈ [0, T ]) in C[0, T ] as n → ∞, if
E[A] = E[S],

• (BA(t)−BS(t), t ∈ [0, T ]) in C[0, T ] as n→∞, if E[A] < E[S].

Obviously, the second case is the most intriguing, the limiting process is called a reflected
Brownian motion [1, 71]. Simulation results of consecutive waiting times in the second and
third cases are given in Figure 1.2.

(a) S ∼ Exp(1/2), A ∼ Exp(1), and fluid limit (b) S ∼ Exp(1), A ∼ Exp(1)

Figure 1.2 Waiting time of n-th arriving customer in the unstable M/M/1 queue as a function
of n

Now, one might also be interested in what happens when E[A] − E[S] > 0, but is very
close to 0. In other words, the queueing system is in heavy traffic. A lot of general results
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can be derived. Early results on this topic are given in [78, 82, 83]. In [82], it is shown
that in a GI/GI/1 queue with an FCFS policy, when the traffic intensity ρ converges to 1,
(1− ρ)W converges in distribution to an exponentially distributed random variable. In [83],
this result is extended to G/GI/1 queues. Furthermore, it is shown that the queue length
and waiting time processes converge to a reflected Brownian motion [127].

This analysis is also extended to queues with more servers [74, 75]. In [69], the focus
lies on the performance in the G/M/s queue in heavy traffic, where s → ∞ and the traffic
intensity depends on s. Special attention is given to the case that (1− ρ)

√
s→ β as s→∞;

non-trivial limit convergence results are obtained when the queue length is normalized with√
s. This is called the Halfin-Whitt or the Quality-and-Efficiency-Driven regime; see also

[95].

1.3.2 Fork-join queue

Fork-join queues have been extensively studied. The first papers on this topic are focused
on two service stations. In [57, 58], the authors consider a Poisson arrival stream and two
independently working servers with exponential service times. The authors describe the
asymptotic behavior of the joint probability distribution where the number of tasks in one
queue goes to infinity [58, Thm. 7.2]. Furthermore, asymptotic expressions are given for the
expectation and distribution of the length of one queue conditioned on the number of tasks
in the other queue, where the number of tasks in this other queue goes to infinity [57, Thm.
1 & 2]. These results are later extended and generalized [17, 84, 138, 155]. The fact that
both service stations have the same arrival stream complicates the exact analysis of fork-join
queues; already for fork-join queues with two servers, there are no exact expressions for the
joint probability distribution of the number of tasks outside the asymptotic regime of one
of the two queues. Furthermore, there is no extension of the asymptotic results known to
fork-join queues with more than two servers.

For the fork-join queue with more than two servers, the main focus lies on finding bounds
for performance measures, using inequalities on the maximum of associated random variables
and stochastic orderings [18, 117, 118]. For instance, in [18, Cor. 3.4], the authors mention
that the fork-join queue with i.i.d. single servers and deterministic arrivals minimizes the
expected maximum response time among all possible interarrival distributions with fixed
mean. This is a computable lower bound, as the fork-join queue with deterministic arrivals
can be seen as a queueing system with N independent parallel queues. Thus, the cumulative
distribution function of the longest waiting time of a fork-join queue with deterministic
arrivals is known. When the service times are exponentially distributed, it is known that the
steady-state waiting time is exponentially distributed, and the expectation of the maximum
of N i.i.d. exponentials with parameter λ equals (

∑N

j=1 1/j)/λ. In Chapter 2, we see
that the maximum queue length of a fork-join queue with light-tailed services is relatively
stable in probability, and possesses the same first-order behavior as the fork-join queue with
deterministic arrivals. Thus, the first-order convergence result is the same as the first-order
convergence result of the lower bound in [18] as N →∞. In [87], this analysis is extended to
the fork-join queue with exponential interarrival times and service stations that all consist of
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s memoryless servers. In [80], an algorithm is described to obtain the average response time
when service times are Erlang distributed. Furthermore, in [152] the authors interpolate
between light-traffic and heavy-traffic results and obtain approximations for symmetric fork-
join queues. In [88], the authors present a closed-form approximation of the sojourn time of
a job in a G/M/1 fork-join queue. In [128], approximations of the response time distribution
are provided. In [153], the fork-join queue is studied under the assumption that the number
of subtasks is less than or equal to the number of service stations. It is proven that when
the number of subtasks kN is o(N1/4), the queues at any kN servers are asymptotically
independent as N → ∞ [128, Thm. 4.1]. The authors also prove that for each kN ≤ N

the longest steady-state waiting time is stochastically dominated by the longest steady-state
waiting time of an identical system, but with independent arrivals [128, Thm. 4.3].

Heavy-traffic approximations were discussed in [86, 98, 99, 100, 119, 120, 145, 151].
In [151], the author gives a heavy-traffic analysis for fork-join queues and shows weak
convergence of several processes, such as the joint queue lengths in front of each server.
Furthermore, in [119] it is proven that various emerging limiting processes are in fact multi-
dimensional reflected Brownian motions. In [120], Nguyen extends this result to a fork-join
queue with multiple job types. Lu and Pang study fork-join networks in [98, 99, 100]. In [98],
they investigate a fork-join network where each service station has multiple servers under
non-exchangeable synchronization and operates in the quality-driven regime. They derive
functional central limit theorems for the number of tasks waiting in the waiting buffers for
synchronization and for the number of synchronized jobs. In [99], they extend this analysis
to a fork-join network with a fixed number of service stations, each having many servers,
where the system operates in the Halfin-Whitt regime. In [100], the authors investigate
these heavy-traffic limits for a fixed number of infinite-server stations, where services are
dependent and could be disrupted.

Research has also been done on controlling performance measures in the fork-join queue,
see for instance, Atar, Mandelbaum, and Zviran [16], who investigate the control of a fork-
join queue in heavy traffic by using feedback procedures. Other studies are carried out in
[103, 104].

Specific results on the interplay between fork-join queues and heavy-tailed services can
be found in [129, 156, 157]. In [129, Thm. 2], asymptotic lower and upper bounds for the
tail probability of the longest waiting time in steady state are given, however, these bounds
are not sharp when N is large.

In [156] and [157] the authors investigate the fork-join queue with blocking. More work
on fork-join queues with blocking is presented in [42, 43]. In [50], the fork-join queue,
under different execution programs is studied. In [149], the mean-value approach is used
to approximate performance measures of the fork-join queue. In [150], several bounds for
performance measures of the fork-join queue with exponential interarrival and service times
are given under a variable number of subtasks. In [146], approximation techniques are derived
for the fork-join queue with exponential interarrival and general service times. In [105], a
fork-join queueing model is studied where the available computational resources are allocated
among the different servers, according to a certain algorithm, with the aim to minimize the
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maximum queue length.

1.4. Extreme-value theory

When we are given a sequence of numerical data (x1, x2, . . . , xn), the first characteristic that
we study is the average of the data. The most elementary results on sequences of random
variables (X1, X2, . . . , XN ), focus on the behavior of the average. For instance, when all
the random variables are independent, identically distributed, and have a finite expectation,
then the law of large numbers says that the average of the random variables converges to
their expectation as N →∞. The central limit theorem is the natural extension of this law
of large numbers and gives information on the fluctuation of the data around their average.
We can use the Berry-Esséen inequality [54] to bound the distance between the cumulative
distribution function of the scaled average and the cumulative distribution function of the
Gaussian limit. When the moment-generating function exists, Cramér-Lundberg’s large
deviation principle [13, Thm. 5.2, p. 365] gives the probability that an average of random
variables deviates a constant factor from the expectation.

Other than the average behavior, what is often of interest is the behavior of the extremes
of the data. As mentioned in Section 1.2, high-tech manufacturers want to predict the delay
of their slowest suppliers. Other examples of areas in which the extremes of samples emerge as
an important random variable are insurance and water management, as insurance companies
want to predict the size of the largest claim [53, Ch. 8.2 & 8.3], and the Dutch Deltawerken
are constructed to stop the highest waves [39, p. 54]. As the law of large numbers, the central
limit theorem, and the large deviation principle show, the easiest way to get insights on the
behavior of sample extremes is by investigating limiting behavior as N → ∞. The area
of research called extreme-value theory is about studying limiting behavior of extremes like
min(X1, X2, . . . , XN ) and max(X1, X2, . . . , XN ). Because a random variable is characterized
by its cumulative distribution function, we typically focus on the limiting behavior of these
extremes: P(maxi≤N Xi ≤ x), where we write maxi≤N Xi = max(X1, X2, . . . , XN ).

In this section, we give an overview of extreme-value results that we use in this thesis.
We focus on one type of extreme, namely the maximum of a sample. In this thesis, we
derive properties for the longest waiting time and the maximum queue length in a fork-join
queue as N grows large. As Figure 1.1 shows, all service stations observe exactly the same
orders. This means that when orders arrive in a deterministic fashion, queue lengths and
waiting times corresponding to independently working single servers are independent, but
when orders arrive in a stochastic fashion, queue lengths and waiting times corresponding to
independently working single servers are dependent. For this reason, we distinguish between
results on extremes of independent samples and extremes of dependent samples.

1.4.1 Basic extreme-value theory for independent random variables

When random variables are independent, we can simplify the cumulative distribution
function of the sample extreme: because the cumulative distribution function of a maximum
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of random variables is a joint probability, we easily see that

P
(

max
i≤N

Xi ≤ x
)

= P(X1 ≤ x,X2 ≤ x, . . . ,XN ≤ x) =
N∏
i=1

P(Xi ≤ x).

When random variables are also identically distributed, we can simplify this further and get

P
(

max
i≤N

Xi ≤ x
)

=
N∏
i=1

P(Xi ≤ x) = P(X1 ≤ x)N .

Due to this convenient relation, elaborate convergence results for the maximum of N
independent and identically distributed (i.i.d.) random variables have been found. For
instance, if there exists a sequence (aN , N ≥ 1) such that

max
i≤N

Xi − aN
P−→ 0,

as N →∞, then maxi≤N Xi is stable in probability. A somewhat weaker result is that if,

maxi≤N Xi
aN

P−→ 1,

as N → ∞, then maxi≤N Xi is relatively stable in probability. Necessary and sufficient
conditions for these two types of convergence have been given in [64] and in [23, 62] for their
almost sure equivalents. Furthermore, in [123], these necessary and sufficient conditions are
extended to the convergence of the m-th absolute mean.

In [56], the most fundamental result on the convergence of sample extremes of i.i.d.
random variables, often called the Extremal Types Theorem, was discussed for the first time,
and in [64] a complete proof was given. When we assume that for sequences (aN , N ≥
1) and (bN , N ≥ 1) the cumulative distribution function of (maxi≤N Xi − aN )/bN has a
nondegenerate limit, then, depending on the tail probability of X1, (maxi≤N Xi − aN )/bN
converges to a Fréchet random variable, a Weibull random variable, or a Gumbel random
variable; see [67, Thm. 1.2.1, p. 19].

These results have been applied in a variety of settings including the performance of
queueing systems. For instance, under some conditions, the tail probability of the steady-
state waiting time W of a GI/GI/1 queue satisfies P(W > u) ∼ C exp(−γu) as u → ∞,
with C > 0, where γ solves the Lundberg equation. This is known as the Cramér-Lundberg
approximation [13, Thm. 5.2, p. 365]. Now, when we consider N parallel and i.i.d. queues,
the longest steady-state waiting time among those N queues is relatively stable in probability
with aN = logN/γ, and is in the domain of attraction of the Gumbel random variable; see
[13, Cor. 5.10, p. 369].

1.4.2 Basic extreme-value theory for dependent random variables

The results presented so far heavily rely on the fact that the random variables involved are
independent. Obviously, when this is not the case, the cumulative distribution function of
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a sample extreme cannot be written in such a convenient way, and convergence results for
dependent extreme values are more specialized.

Several techniques can be used to analyze the limiting behavior of the maximum of
N dependent random variables as N → ∞. Though we can in general not express the
cumulative distribution function of the sample extreme as a product of the N cumulative
distribution functions, we can still find suitable lower and upper bounds. Since we can write
the tail probability of maxi≤N Xi as

P(max
i≤N

Xi ≥ x) = P(∪Ni=1Xi ≥ x),

we obtain by the union bound and by basic set theory that

N∑
i=1

P(Xi ≥ x)−
N∑
j=1

N∑
k=1,j 6=k

P(Xj ≥ x,Xk ≥ x) ≤ P(max
i≤N

Xi ≥ x) ≤
N∑
i=1

P(Xi ≥ x). (1.1)

Both these inequalities are known as Bonferroni’s inequalities [31]. Clearly, when∑N

j=1

∑N

k=1,j 6=k P(Xj ≥ x,Xk ≥ x) is small compared to
∑N

i=1 P(Xi ≥ x), these lower
and upper bounds are sharp. In [92], convergence results are derived for the maximum of
identically distributed random variables for which the tail probability equals the upper bound
whenever the upper bound is smaller than 1; thus P(maxi≤N Xi ≥ x) = min(1, N P(Xi ≥ x)).
Other techniques are available to analyze the limiting behavior of specific dependent sample
extremes; for instance, Slepian’s lemma [142] and Berman’s inequality [126, Thm. C.2, p.
6] give bounds for the cumulative distribution function of the sample extreme of dependent
Gaussian random variables.

Extensive contributions to the development of independent and dependent extreme-value
theory, applications, and statistics, are given in several books; see [24, 53, 67, 94]. We now
focus on several specific results that are relevant to this thesis.

1.4.3 Extremes of multidimensional sets

In [20, 44, 55], the focus is broadened from univariate extreme values to multivariate extreme
values. In these studies, the convergence of the convex hull of{(

X
(1)
1 /aN , X

(2)
1 /aN , . . . , X

(d)
1 /aN

)
, . . . ,

(
X

(1)
N /aN , X

(2)
N /aN , . . . , X

(d)
N /aN

)}
to a limit as N → ∞ is proven, under several assumptions. In Figure 1.3, we show two
examples together with their convex hull; first, the rescaled sample extremes of two i.i.d.
exponentially distributed random variables with as limit the triangle between coordinates
(0, 0), (1, 0), and (0, 1), and second, the rescaled sample extremes of two i.i.d. normally
distributed random variables with as limit the circle with radius 1 and center (0, 0).
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(a) aN = logN,X(1,2) ∼ Exp(1) (b) aN =
√

2 logN,X(1,2) ∼ N (0, 1)

Figure 1.3 Two-dimensional sample extremes of i.i.d. random variables in first quadrant, N =
104 and the convex hull. The dots indicate the two-dimensional samples, the dashed lines
indicate the convex hulls, and the straight line and curve indicate the limits of these convex
hulls.

In Chapter 2, we show that we can use these results to prove the convergence of sample
extremes of finite sums of random variables.

1.4.4 Tail probabilities of growing sums

In [10], the analysis of univariate extreme-value theory is expanded in another direction.
While in standard extreme-value theory the objective is the limiting behavior of maxi≤N Xi,
one might also be interested in what happens when the distribution of the random variables
(Xi, i ≤ N) changes with N . Thus, the target is to analyze the sample extremes of sequences
(X(N)

i , i ≤ N,N ≥ 1), which are also known as triangular arrays. In this setting, the focus is
particularly on triangular arrays of the form X

(N)
i =

∑kN
j=1 Ui,j , with kN

N→∞−→ ∞, where Ui,j
is i.i.d. for all i and j, is centered, andX(N)

i has unit variance. The authors investigate, among
others, the case when Ui,j has a moment-generating function, and logN = o(k(r+1)/(r+3)

N )
for some integer r ≥ 0. It turns out that the Extremal Types Theorem applies [10, Prop. 2].
Furthermore, the accompanying sequences (aN , N ≥ 1) and (bN , N ≥ 1) are very similar to
the sequences belonging to the sample extremes of N i.i.d. Gaussians. This means that the
sequence (kN , N ≥ 1) grows fast enough that due to the central limit theorem, the sequence
(X(N)

i , N ≥ 1) can be replaced with a sequence of standard normally distributed random
variables.

Obviously, when this sequence (kN , N ≥ 1) does not grow fast enough, one can-
not draw these conclusions. However, for general i.i.d. triangular arrays, the relation
P(maxi≤N X(N)

i ≤ x) = P(X(N)
i ≤ x)N = (1 − P(X(N)

i > x))N still holds. Therefore,
the limiting behavior of the sample extremes of i.i.d. triangular arrays is determined by the
tail probability of a single random variable X(N)

i . A lot of research has been done on the tail
probabilities of growing sums of i.i.d. random variables, which we discuss in the remaining
part of this section.
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One of the fundamental results says that if Cramér’s condition is satisfied, i.e., the
moment-generating function of Ui,j is finite on an interval around the origin, then if
xN/
√
kN

N→∞−→ 0,

P

 1√
kNVar(Ui,j)

kN∑
j=1

(Ui,j − E[Ui,j ]) > xN


= (1− Φ(xN )) exp

(
x3
N√
kN

λ(xN/
√
kN )
)

(1 +O(xN/
√
kN )),

with the Cramér series λ(t) =
∑∞

k=0 ckt
k, and (ck, k ≥ 1) depending on the moments of

Ui,j [40] and [122, p. 218]. In [59, 113, 114], bounds on the tail probability of sums of
independent random variables are given, where those random variables satisfy Cramér’s
condition, which are applicable when xN/

√
kN converges to ∞ as N → ∞. For the case

where xN/
√
kN

N→∞−→ c with c > 0, Cramér’s theorem [40] states that

− log(P(
∑kN

j=1(Ui,j − E[Ui,j ] > ckN ))
kN

N→∞−→ sup
s>0

(cs− logE[exp(s(Ui,j − E[Ui,j ])]).

Another line of research focuses on the tail behavior of sums of random variables for which
Cramér’s condition is violated. In [35, 111, 112], logarithmic and exact asymptotics of tail
probabilities P(X(N)

i ≥ xN ) of sums of independent Weibull-like distributed random variables
are analyzed, with kN , xN

N→∞−→ ∞ for particular choices of the sequences (kN , N ≥ 1) and
(xN , N ≥ 1). Typical results are of the form: when the sequence (kN , N ≥ 1) grows
fast enough compared to (xN , N ≥ 1), then, as in [10, Prop. 2], the asymptotics are the
same as the asymptotics of the Gaussian tail probability [35, Thm. 1]. When the sequence
(kN , N ≥ 1) grows at a slower pace compared to (xN , N ≥ 1), the asymptotics are the same
as the asymptotics of the largest of the Weibull-like distributed random variables [35, Thm.
2] with some non-trivial behavior at the transition between these two regimes [35, Thm.
3]. In [110, Prop. 3.1], these results are extended to lognormal-type and regularly varying
random variables.

These insights can be used for the analysis of the tail probabilities of steady-state waiting
times of GI/GI/1 queues. As mentioned in Section 1.3.1, we know that the steady-state
waiting time of a GI/GI/1 queue can be written as W d= supk≥0

∑k

j=1(S(j) − A(j)), with
(S(j), j ≥ 1) the service times and (A(j), j ≥ 1) the interarrival times. As mentioned earlier,
when the moment-generating function exists and γ solves the Lundberg equation, then, if the
system is stable, the Cramér-Lundberg approximation states that P(W > u) ∼ C exp(−γu)
as u → ∞, with C > 0. This is connected to the analysis of tail probabilities of growing
sums through the notion that the tail probability of the all-time supremum of a random walk
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can be approximated by the tail probability of a growing sum;

P

sup
k≥0

k∑
j=1

(S(j)−A(j)) > xN

 ≈ sup
c≥0

P

cxN∑
j=1

(S(j)−A(j)) > xN

,
when (S(j), j ≥ 1) is light-tailed, and after applying Cramér’s theorem the latter probability
can be maximized over c.

In the case that service times are not light-tailed, Cramér’s theorem cannot be applied.
However, in [38, Thm. 1], it is shown that in the asymptotic regime, the survival probability
of the steady-state waiting time can be expressed as a function of the survival probability of
the service times in a GI/GI/1 queue, where the service times are regularly varying. In [89,
Thm. 1], a similar result is given for the GI/GI/1 queue with subexponential service times.
An overview of results on heavy-tailed phenomena can be found in [116].

1.4.5 Suprema of continuous-time stochastic processes

The analysis of suprema of stochastic processes is both connected with the extreme-value
theory of sequences of random variables, and with the analysis of performance measures of
queueing systems. As mentioned in Section 1.3.1, it is shown [1, 71] that when the GI/GI/1
queue is in heavy traffic, the waiting time and queue length can be approximated by a
reflected Brownian motion. The reflected Brownian motion can be written as a supremum
of a Brownian motion; sups∈[0,t]((B(t)−µt)− (B(s)−µs)). As an extension of the reflected
Brownian motion, which appears as the process limit of queue lengths and waiting times in
heavy traffic, other continuous-time Gaussian processes and their suprema are studied in the
literature. In [126], several methods are described which can be used in the analysis of these
suprema. For instance, assume that for k ∈ N, t0 = 0, tk = t, and for i ∈ {0, 1, . . . , k − 1},
ti+1 > ti, then, by using Bonferroni’s inequality given in (1.1), we obtain that

k∑
i=1

P

(
sup

s∈[ti−1,ti]
X(s) > x

)
−
∑
i 6=j

P

(
sup

s∈[ti−1,ti]
X(s) > x, sup

s∈[tj−1,tj ]
X(s) > x

)

≤ P

(
sup
s∈[0,t]

X(s) > x

)
≤

k∑
i=1

P

(
sup

s∈[ti−1,ti]
X(s) > x

)
.

Now, when the term
∑

i 6=j P(sups∈[ti−1,ti] X(s) > x, sups∈[tj−1,tj ] X(s) > x) is small com-
pared to

∑k

i=1 P(sups∈[ti−1,ti] X(s) > x), we obtain a sharp estimate of P(sups∈[0,t] X(s) >
x). Usually, this method is applied to find convergence results when x→∞. This method is
called the Double Sum Method [126, p. 97–135]. Another result [4, Thm. 2.1.1, p. 50] gives
an upper bound on the tail probability of a centered Gaussian process that is a.s. bounded
on [0, T ]:

P

 sup
s∈[0,t]

X(s)− E

[
sup
s∈[0,t]

X(s)

]
> u

 ≤ exp
(
−u2/(2σ2

T )
)
,
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with σ2
T = E[sups∈[0,t] X(s)2]; this result is called the Borell-TIS inequality. Exact

asymptotics are known as well: in [124, 125] it is shown that for centered stationary Gaussian
processes with covariance R(s) = 1− |s|α + o(|s|α) as s→ 0, α ∈ (0, 2] and R(s) < 1 for all
s > 0, it holds that

P

(
sup
s∈[0,t]

X(s) > u

)
∼ Htu2/α(1− Φ(u)),

as u → ∞, with H the Pickands constant. In [4, 94, 126], a general overview of results on
suprema of continuous-time processes is given. A specific result that is relevant to this thesis
is found in [47]. The authors investigate the joint tail probability of the all-time suprema
of two dependent Brownian motions. In the case that (Bi(t), t ≥ 0), (Bj(t), t ≥ 0), and
(BA(t), t ≥ 0) are independent Brownian motions with standard deviations σ, σ, and σA

respectively, the result in [47, Thm. 2.3] simplifies to

P
(

sup
s>0

(Bi(s) +BA(s)− βs) > u, sup
s>0

(Bj(s) +BA(s)− βs) > u

)
∼ H̃

2
√
πβσ2/(σ2 + σ2

A)
u−1/2 exp

(
− 2β
σ2/2 + σ2

A

u

)
,

as u→∞, with H̃ a constant similar to the Pickands constant. Together with Bonferroni’s
inequality, these asymptotics can be used to prove convergence of the sample extremes of N
dependent Brownian motions as N →∞. We use this technique in Chapter 4.

1.5. Main contributions and outline

In this thesis, we study the fork-join queueing system. We focus on the fork-join queue with
the following properties; first, we consider the fork-join queue withN service stations; second,
each service station operates as a single server; third, we consider incoming jobs that are
forked in N subtasks. Thus, the number of subtasks equals the number of servers. Finally,
we do not consider blocking mechanisms, preemption, abandonment, etc. Now, we focus on
the performance of the slowest server in the fork-join queue, as the slowest server represents
the bottleneck in complex systems such as high-tech supply chains and parallel computing.
Furthermore, we investigate this performance as the number of servers N becomes large.

In the literature, attention is given to performance measures for fork-join queueing
systems with more than two servers, by developing bounds, approximations, and other
techniques, which we discussed in Section 1.3.2. However, the existing literature lacks exact
asymptotic results for the performance of the slowest server as N → ∞. Below we give an
overview of the contribution of this thesis to the existing literature.

1.5.1 Extreme-value results

As shown in Section 1.3.1, we can express the waiting time of a customer in a GI/GI/1 queue
with the FCFS policy as the supremum of a random walk. Our main contribution is that
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we obtain convergence results for the maximum queue length and the longest waiting time
under the FCFS policy in the fork-join queue with N service stations, where each service
station is an independently working single server. We therefore mainly investigate random
variables that are of the form:

max
i≤N

sup
k≥0

k∑
j=1

(Si(j)−A(j)).

This random variable has the same distribution as the longest steady-state waiting time in
a fork-join queue with N service stations, where each service station works as a single-server
queue and the sequences (Si(j), i ≥ 1, j ≥ 1) and (A(j), j ≥ 1) indicate the service times
of subtask j at service station i and the interarrival times, respectively. Expressions for the
maximum queue length and transient performance measures look similar.

In Chapter 2, we obtain relative stability or first-order convergence results for the
maximum queue length asN →∞. Thus we show that maxi≤N Qi/aN has a non-trivial limit
as N →∞ with (aN , N ≥ 1) appropriately chosen. In this chapter, we look at a particular
setting in discrete time: arrivals and services are nearly deterministic, and the initial number
of jobs in the queue satisfies the relative stability requirement; see Theorem 2.1. Because the
system operates in heavy traffic, we see that we can approximate the separate queue lengths
with reflected Brownian motions; see Section 2.2.2 for more details. One major observation
that we make is that the first-order convergence result for the fork-join queue is the same as
when we would replace the interarrival times with deterministic interarrival times equal to
the first moment. Thus, we can conclude that the lower bound for the performance measures
of the fork-join queue proven in [18, Cor. 3.4] is asymptotically sharp as N → ∞, when we
normalize the maximum queue lengths.

In Chapter 3, we prove a second-order convergence result for the longest waiting time
and the maximum queue length. We find non-trivial limits for (maxi≤N Wi−a(w)

N )/b(w)
N and

(maxi≤N Qi − a(q)
N )/b(q)N as N → ∞. Thus, a(w)

N and a
(q)
N indicate the typical size of the

longest waiting time and maximum queue length, respectively, and b
(w)
N and b

(q)
N indicate

the second-order terms. We obtain that these sequences of random variables converge in
distribution to a normally distributed random variable; see Theorems 3.1 and 3.2. The
standard deviation of the limiting distribution depends on the standard deviation of the
arrival process and the most likely hitting time of a random walk to its supremum, which
depends on the cumulant-generating function of the service process, and the solution of the
Lundberg equation, which we explain in more detail in Section 3.3. We can conclude that
in order to obtain a second-order convergence result of the longest waiting time and the
maximum queue length, only the first and second moments of the arrival distribution need
to be known. We subsequently show in Corollary 3.1 that the second-order convergence
result of these quantities can be extended to fork-join queues where service times are not
identically distributed but there is still some regulation among the different servers.

As we see in Chapters 2 and 3, in order to obtain first- and second-order convergence
results, it suffices to know the first and second moments of the arrival process. In Chapter
4, we investigate the large deviations of the maximum queue length in the N -server fork-join
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queue. Thus, having focused in Chapters 2 and 3 on the case maxi≤N Qi/aN
P−→ c > 0 as

N → ∞, we now look at P(maxi≤N Qi > (c + x)aN ) with x > 0 as N → ∞. It becomes
clear that the distribution of the arrival process has a significant influence on these large
deviations; see Theorem 4.1. In Chapter 4, we restrict ourselves to reflected Brownian
motions. Our analysis relies heavily on the convergence of asymptotics of joint suprema of
Brownian motions in [47]. We believe, however, that these results can be extended to the
analysis of maximum queue lengths and longest waiting times as defined in Chapter 3.

For the results in Chapters 2–4, we need to use that the service times have light tails so
that we can use the Cramér-Lundberg approximation. In Chapter 5, we drop this assumption
and focus on heavy-tailed service times. We use results from extreme-value theory as well as
results from the analysis of heavy tails, e.g. [35] and [67]. We analyze the random variable
maxi≤N Wi/aN as N → ∞. However, in contrast with Chapter 2, we now obtain a non-
deterministic limit; see Theorems 5.2 and 5.3. Its distribution can be written as a supremum
of a stochastic process with Fréchet-distributed marginals.

1.5.2 Process convergence

Besides looking at steady-state convergence of the maximum queue length and the longest
waiting time, we also obtain process convergence results. In Chapter 2, we use techniques
from diffusion approximations and induce a temporal and a spatial scaling; see Section
2.2.2. We then obtain convergence results for the process (maxi≤N Qi(tcN )/aN , t ∈ [0, T ])
to a limiting process (q(t), t ∈ [0, T ]) in Proposition 2.1 and Theorem 2.1. We prove
convergence of the finite-dimensional distributions in Theorem 2.3 and we prove tightness of
(maxi≤N Qi(tcN )/aN , t ∈ [0, T ]) in order to prove convergence in C[0, T ]. To achieve this,
we use results from [28, Ch. 2] on convergence of stochastic processes in C[0, T ].

We also extend this result to queueing systems with non-empty queues at time 0. In
order to achieve this, we prove in Lemma 2.13 a result of independent interest, which is the
convergence of maxi≤N (X(1)

i /a
(1)
N +X

(2)
i /a

(2)
N ), where X(1) is relatively stable with sequence

(a(1)
N , N ≥ 1) and X(2) is relatively stable with sequence (a(2)

N , N ≥ 1). Because deriving
the cumulative distribution function of the sum of two random variables is usually difficult,
deriving extreme-value results of N of these sums by using properties of the resulting tail
probability, is also difficult. However, in Lemma 2.13, we prove that we only need to know
the cumulative distribution functions of the two random variables to obtain an extreme-value
limit.

The limiting process (q(t), t ∈ [0, T ]) of the transient maximum queue length is
deterministic. In Chapter 5, we prove process convergence of the longest waiting time, but
now the service times are heavy-tailed. The resulting limiting process is still stochastic, is
an extremal process minus a drift term [133], and is a function in D[0, T ]. We use techniques
described in [28, Ch. 3] to prove this result.
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1.5.3 Applications to assembly systems

In Chapter 6, we use the obtained convergence results to analyze large-scale assembly
systems. We focus on an assemble-to-order system, where incoming orders from a
manufacturer are sent to each of the N suppliers at the same time. Finished components are
stored in a warehouse, and are assembled when all suppliers have finished their components.
This is visualized in Figure 1.4.

...

N

2

1

Backlogs of suppliers

Arrival stream
of manufacturer I2

IN

I1

Warehouse

Assembly of
components

Figure 1.4 Fork-join queue with inventories

There are three types of costs made in this system: backlog costs; inventory costs, and
capacity costs. The backlog costs in this system depend on the maximum delay among the
N suppliers. The suppliers set up a base stock of components and choose a capacity. The
aim is to minimize the resulting costs in the system over these base stocks and capacities.
We do so by solving a newsvendor problem over 2N variables. We use the first- and second-
order convergence results derived in Chapters 2 and 3 to derive an approximation of the cost
function and give solutions that are asymptotically optimal as N →∞.

1.5.4 Summary

In this thesis, we focus on the maximum queue length and the longest waiting time in the
N -server fork-join queue. All service stations operate as independent single servers but with
coupled arrivals. We prove first- and second-order convergence results, steady-state results,
and results for the system in a transient setting. We explore different interarrival and service
distributions: we study a nearly deterministic setting, the general light-tailed setting, and
a heavy-tailed setting. We derive tail asymptotics for the Brownian steady-state maximum
queue length. Finally, we use the first- and second-order convergence result to provide a
decision rule for a newsvendor problem in a large-scale assembly system, which is close to
optimal and easy to compute.





Chapter 2

Nearly deterministic arrivals and service times

2.1. Introduction

In this chapter, we explore a discrete-time fork-join queue in which the arrival and service
times are nearly deterministic. We consider a heavily loaded system. That is, we assume
that the arrival rate to a queue times the expected service time of that queue, i.e., the traffic
intensity per queue ρN , depends on the number of servers N and satisfies (1−ρN )N2 N→∞−→ β,
with β > 0. Our main result is a fluid limit of the maximum queue length process as N goes
to infinity, which holds under very mild conditions on the distribution of the number of jobs
at time 0.

Our work adds to the literature on queueing systems with nearly deterministic arrivals
and services. The only research line on queueing systems with nearly deterministic service
times that we are aware of is Sigman and Whitt [139, 140], who investigate the G/G/1
and G/D/N queues and establish heavy-traffic results for waiting times, queue lengths and
other performance measures in stationarity as well as functional central limit theorems for
the waiting time and for other performance measures. In these papers, they distinguish two
cases, one in which (1− ρN )

√
N

N→∞−→ β and one in which (1− ρN )N N→∞−→ β, with ρN the
traffic intensity and β some constant.

Our work also contributes to the literature on the process-level analysis of fork-join
networks surveyed in Section 1.3.2 of this thesis. In particular, we derive a fluid limit of the
stochastic process that keeps track of the largest queue length. This study seems to be the
first explicit process-level approximation of a large fork-join queue.

We now turn to an overview of the techniques that we use in this chapter. Because we
aim to obtain a fluid limit of a maximum of N queue lengths, we mainly use techniques from
extreme-value theory in our proofs. This is, however, quite a challenge: while the queue
lengths of the servers are mutually dependent, most results on extreme values hinge heavily
on the assumption of mutual independence. Furthermore, we consider a fork-join queue in

This chapter is based on [134].
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which the arrival and service probabilities depend on N , which makes the queue lengths
triangular arrays with respect to N . This makes the analysis also rather uncommon as
studies on triangular arrays are rare. One paper on this subject, relevant to us, is Anderson
et al. [10], in which they study the maximum of a sum of i.i.d. triangular arrays; see also the
discussion on [10] in Section 1.4.4.

In addition, in order to get fluid limits for the maximum queue lengths, we actually need
to study diffusion limits for the individual queue lengths. We, thus, combine ideas from
the literature on extreme-value theory with literature on diffusion approximations, which we
show in detail in Section 2.2.2. Because we impose a heavy-traffic assumption, we obtain
for each separate queue length a reflected Brownian motion as diffusion approximation. By
using the well-known formula for the cumulative distribution function of a reflected Brownian
motion (see Harrison [71, p. 49]), we investigate the maximum of N independent reflected
Brownian motions to get an idea of the scaling of the maximum queue length.

Now, we give a brief sketch of how we apply these ideas to prove the fluid limit of this
quantity. We start by considering the slightly simpler scenario that each queue is empty at
time 0. Because we want to prove a fluid limit that holds uniformly on compact intervals
(u.o.c.), we need to prove pointwise convergence and tightness of the collection of processes.
Our first step in proving this is by showing that each queue length is in distribution the same
as a supremum of an arrival process minus a service process. We then show in Section 2.2.2
that, under the temporal scaling of tN3 logN and the spatial scaling of N logN , the arrival
process minus a drift term converges to −βt as N → ∞. Furthermore, we derive, under
that same temporal scaling but under a spatial scaling of N

√
logN , that the centralized

service process satisfies the central limit theorem. This scaled centralized service process
is given in Equation (2.3.4). We use the non-uniform Berry-Esséen inequality, which is
described by Michel [109], to deduce the convergence rate of the cumulative distribution
function of this scaled centralized service process to the cumulative distribution function of
a normally distributed random variable, which is given in Equation (2.3.9). It turns out
that this convergence rate is fast enough so that we can replace the scaled centralized service
process with a normally distributed random variable in the expression for the maximum
queue length in order to get the same limit. By Pickands’ result [123] on the convergence of
moments of the maximum of N scaled random variables, we know that the expectation of the
maximum of standard normally distributed random variables divided by

√
logN converges

to
√

2 as N → ∞. This gives the convergence of the maximum of N scaled centralized
service processes. After we have obtained these limiting results for the scaled arrival and
service process, we use these, together with Doob’s maximal submartingale inequality, to
prove convergence in probability of the maximum queue length; we show this in Section
2.3.3. Finally, in Section 2.3.4, we use Doob’s maximal submartingale inequality to bound
the probability that the process makes large jumps and prove that this probability is small
so that the maximum queue length is a tight process.

After we have considered the maximum queue length for the process with empty queues
at time 0, we then turn to the scenario that the length of each queue at time 0 is identically
distributed. In this case, we can use Lindley’s recursion to express the maximum queue
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length as the pairwise maximum of the maximum queue length with empty queues at time
0, which we now call term 1, and a part depending on the number of jobs at time 0, which
we now call term 2; this formula is given in Equation (2.2.3) below. How to prove the
fluid limit for term 1 is already sketched. In order to derive a fluid limit for term 2, we
first observe that term 2 equals the maximum of N times the sum of the number of jobs
at time 0 at each server plus the number of arrivals minus the number of services at each
server. Following a similar path as for term 1, we can prove that the scaled centralized
service process at a server behaves like a normally distributed random variable. Thus, we
have to analyze a maximum of N pairwise sums of normally distributed random variables
and random variables describing the number of jobs at time 0, which is stated in more detail
in Lemma 2.9.

In Lemma 2.4, we prove a convergence result of this maximum. This is quite a challenge
because we need to apply extreme-value theory to pairwise sums. In order to do this, we
further develop the results from Davis, Mulrow, and Resnick [44] and Fisher [55] on the
convergence of samples of random variables to limiting sets. The authors prove convergence
results of the convex hull of {(Z(1)

i /bN , . . . , Z
(k)
i /bN )i≤N} to a limiting set as N → ∞,

with (Z(j)
i , i ≤ N) i.i.d., Z(j)

i and Z
(l)
m independent and (bN , N ≥ 1) a proper scaling

sequence. We show in the proof of Lemma 2.13 that these results can be extended by
establishing convergence of extreme values of maxi≤N

∑k

j=1 Z
(j)
i /a

(j)
N , where a(l)

N and a(m)
N

are not necessarily the same, which is a stand-alone result of independent interest. We did
not find this extension in other literature. The result in Lemma 2.4 follows from Lemma
2.13.

The rest of the chapter is organized as follows. In Section 2.2, we describe the fork-
join system in more detail; we give a definition of the arrival and service processes, and we
present a scaled version of the queueing model. In Section 2.2.1, we introduce the fluid limit
and explain it heuristically. We elaborate on the scaling and the shape of the fluid limit in
Sections 2.2.2 and 2.2.3. We give some examples and numerical results in Section 2.2.4. The
proof of the fluid limit is given in Section 2.3. In Section 2.4, we elaborate on the convergence
of the upper bound that was given in Lemma 2.7. In Section 2.5, we prove the lemmas stated
in Section 2.3.2. We prove general convergence results of maxi≤N

∑k

j=1 Z
(j)
i /a

(j)
N in Section

2.6, where we also give some numerical examples and provide a short discussion on the
sufficient conditions for which these convergence results hold. Finally, we briefly discuss the
nearly deterministic fork-join queue with a different parameter setting in Section 2.8.

2.2. Model description and main results

We now turn to a formal definition of the fork-join queue that we study. We consider a
fork-join queue with integer-valued arrivals and services. In this queueing system, there is
one arrival process. The arriving tasks are divided into N subtasks, which are completed
by N servers. We assume that both the number of arrivals and services per time step are
Bernoulli distributed. The parameters of the Bernoulli random variables depend on the
number of servers. This is formalized in Definitions 2.1 and 2.2.
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Definition 2.1 (Arrival process). The random variable N(N)
A (n) indicates the number of

arrivals up to time n and equals

N(N)
A (n) :=

bnc∑
j=1

X(N)(j)

with X(N)(j) indicating whether or not there is an arrival at time j. The random variable
X(N)(j) is Bernoulli distributed with parameter p(N). So,

X(N)(j) :=

{
1 w.p. p(N),

0 w.p. 1− p(N).

Definition 2.2 (Service process i-th server). The random variable N(N)
S,i (n) describes the

number of potentially completed tasks of the i-th server in the fork-join queue at time n with

N(N)
S,i (n) :=

bnc∑
j=1

Y
(N)
i (j) ,

where Y (N)
i (j) is a Bernoulli random variable with parameter q(N) indicating whether the

i-th server completed a service at time j.

Y
(N)
i (j) :=

{
1 w.p. q(N),

0 w.p. 1− q(N).

Both p(N) and q(N) are taken as functions of N , which we specify in Definition 2.3 below.

We assume that for all N ≥ 1 the random variables (X(N)(j), j ≥ 1) are mutually
independent for all j and (Y (N)

i (j) , i ≥ 1, j ≥ 1) are mutually independent for all j and i.
We also assume that an incoming task can be completed in the same time slot as in which the
task arrived. Finally, we assume that X(N)(j) and Y (N)

i (j) are independent; in other words,
Y

(N)
i (j) could still be 1 while there are no tasks to be served at server i at time j. Due to

this assumption, we have on the one hand the beneficial situation that (N(N)
A (n) , n ≥ 0) and

(N(N)
S,i (n) , n ≥ 0) are independent processes, but on the other hand, we should be careful

with defining the queue length. However, it is a well-known result that we can use Lindley’s
recursion [96], and write the queue length of the i-th server at time n as

sup
0≤k≤n

[(
N(N)
A (n)−N(N)

A (k)
)
−
(

N(N)
S,i (n)−N(N)

S,i (k)
)]

,

provided that the queue length is 0 at time 0. This is in distribution equal to

sup
0≤k≤n

(
N(N)
A (k)−N(N)

S,i (k)
)
.
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As can be seen in this expression, the queue lengths of different servers are mutually
dependent, since the arrival process is the same. When at time 0 there are already jobs
in the queue, then we can, after again applying Lindley’s recursion, write the queue length
of the i-th server at time n as

max
(

sup
0≤k≤n

[(
N(N)
A (n)−N(N)

A (k)
)
−
(

N(N)
S,i (n)−N(N)

S,i (k)
)]

,

Q
(N)
i (0) + N(N)

A (n)−N(N)
S,i (n)

)
,

with Q(N)
i (0) the number of jobs in front of the i-th server at time 0. Observe that the queue

length of the i-th server equals the maximum of the queue length when the number of jobs
at time 0 would be 0, and a random variable that depends on the initial number of jobs.

The aim of this work is to investigate the behavior of the fork-join queue when the number
of serversN is very large. The main objective is deriving the distribution of the largest queue,
as this represents the slowest server, which is thus the bottleneck of the system. Therefore,
we define in Definition 2.3 a random variable indicating the maximum queue length at time
n. Furthermore, we explore this model in the heavy-traffic regime. To this end, we let p(N)

and q(N) go to 1 at similar rates, so that the arrivals and services are nearly deterministic
processes.

Definition 2.3 (Maximum queue length at time n). Let p(N) = 1 − α/N − β/N2 and
q(N) = 1 − α/N , with α, β > 0. Let Q(N)

(α,β) (n) be the maximum queue length of N parallel
servers at time n, with Q(N)

(α,β) (0) = 0. Then

Q
(N)
(α,β) (n) := max

i≤N
sup

0≤k≤n

[(
N(N)
A (n)−N(N)

A (k)
)
−
(

N(N)
S,i (n)−N(N)

S,i (k)
)]

. (2.2.1)

So,

Q
(N)
(α,β) (n) d= max

i≤N
sup

0≤k≤n

(
N(N)
A (k)−N(N)

S,i (k)
)
, (2.2.2)

under the assumption that Q(N)
(α,β) (0) = 0. From these choices of p(N) and q(N), it follows that

the traffic intensity ρN of a single queue satisfies (1− ρN )N2 → β as N →∞. Furthermore,
if Q(N)

i (0) > 0, the maximum queue length at time n can be written as

Q
(N)
(α,β) (n) := max

i≤N
max

(
sup

0≤k≤n

[(
N(N)
A (n)−N(N)

A (k)
)
−
(

N(N)
S,i (n)−N(N)

S,i (k)
)]

,

Q
(N)
i (0) + N(N)

A (n)−N(N)
S,i (n)

)
. (2.2.3)

Observe that we can interchange the order of the maxi≤N term and the max term, and
rewrite the expression in (2.2.3) as the pairwise maximum of two random variables: one
random variable is the maximum of N queue lengths with initial condition 0, as given in
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Equation (2.2.1), and the other is the maximum of N sums of the queue length at time 0
plus the number of arrivals minus the number of services.

2.2.1 Fluid limit

As we just have formally defined the fork-join queue that we study, with the particular nearly
deterministic setting, we now state and explain the main result of this chapter. Our central
result is a fluid approximation for the rescaled maximum queue length process, which is given
in Theorem 2.1. We prove that under a certain spatial and temporal scaling the maximum
queue length converges to a continuous function, which depends on time t.

There is, however, no straightforward procedure for choosing the temporal and spatial
scaling. There are namely more possibilities that lead to a non-trivial limit. For instance,
when we choose a temporal scaling of N3 and a spatial scaling of N

√
logN , we get the fluid

limit that is given in Proposition 2.1. For the main result given in Theorem 2.1, we choose
a temporal scaling of N3 logN and a spatial scaling of N logN .

We now mention and discuss some assumptions under which the results hold. First, we
assume that we have nearly deterministic arrivals and services.

Assumption 2.1. p(N) = 1− α/N − β/N2 and q(N) = 1− α/N , with α, β > 0.

Second, we have a basic assumption on the initial condition.

Assumption 2.2. (Q(N)
i (0), i ≤ N) are i.i.d. and non-negative for all N .

Furthermore, we want to prove a fluid limit with a spatial scaling of N logN . Therefore,
we need to assume that the maximum number of jobs at time 0 also scales with N logN .
In order to do so, we allow (Q(N)

i (0), i ≤ N,N ≥ 1) to be a triangular array, i.e., a doubly
indexed sequence with i ≤ N . This is a necessity because otherwise we would be limited to
distributions in which the maximum scales like N logN , which would lead us to the family
of the heavy-tailed distributions for which we do not have convergence in probability of
its maximum. Thus in our setting, Q(N)

i (0) and Q
(N+1)
i (0) do not need to be the same.

Consequently, we need to have some regularity on Q
(N)
i (0) as N increases to be able to

prove a limit theorem. Therefore, we introduce a sequence of random variables (Ui, i ≤ N),
such that Q(N)

i (0) = brNUic, with (rN , N ≥ 1). For Theorem 2.1 to hold, the sequence of
random variables (Ui, i ≤ N) needs to satisfy Assumption 2.3 and either Assumption 2.4 or
2.5.

Assumption 2.3. Q
(N)
(α,β) (0) /(N logN) P−→ q(0), with q(0) ≥ 0, as N → ∞, with

Q
(N)
i (0) = brNUic, where (rN , N ≥ 1) is a scaling sequence.

Assumption 2.4. Ui has a finite right endpoint.

Assumption 2.5. Ui is a continuous random variable and for all v ∈ [0, 1],

lim
t→∞

− log
(
P(Ui > vt)

)
− log

(
P(Ui > t)

) = h(v).
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Before stating the results, we would like to give two remarks on Assumption 2.5. First,
the function h has the property that for all u, v ∈ [0, 1], h(uv) = h(u)h(v). Thus, if h is
continuous, h(v) = va, with a > 0. When h is discontinuous, there are two possibilities:
h(v) = 1(v > 0) or h(v) = 1(v = 1); this corresponds to h(v) = va with a = 0 and a = ∞,
respectively. Second, the assumption of continuity of Ui may be removed, which would lead
to more cumbersome proofs.

In order to allow dependence between the initial number of jobs at different servers, we
can also replace Assumptions 2.2 and 2.3 with the following assumption.

Assumption 2.6. Let Q(N)
i (0) = U

(N)
i + V

(N)
i , with U

(N)
i = brNUic, where (Ui, i ≤

N) are i.i.d. and non-negative, and satisfy either Assumption 2.4 or 2.5. Furthermore,
the triangular array of random variables (V (N)

i , i ≤ N,N ≥ 1) is non-negative, and
maxi≤N V (N)

i /(N logN) P−→ 0 as N →∞.

When Assumption 2.6 is satisfied, there may be mutual dependence between Q
(N)
i (0)

and Q(N)
j (0), because V (N)

i and V (N)
j may be mutually dependent.

Now, we state three results on the convergence of the maximum queue length as N grows
large. First, we give a fluid limit for the maximum queue length with a temporal scaling
of N3 and a spatial scaling of N

√
logN in Proposition 2.1. The system is empty at time

0. Second, we give a steady-state result with a temporal scaling of N logN in Proposition
2.2. Finally, we give a fluid limit for the maximum queue length with a temporal scaling of
N3 logN and a spatial scaling of N logN in Theorem 2.1. This system is non-empty at time
0 and satisfies the Assumptions as described above.

Proposition 2.1 (Temporal scaling of N3 and spatial scaling of N
√

logN). Given
Assumption 2.1 and Q(N)

(α,β) (0) = 0, we have for all T > 0, that

P

 sup
t∈[0,T ]

∣∣∣∣∣Q
(N)
(α,β)

(
tN3)

N
√

logN
−
√

2αt

∣∣∣∣∣ > ε

 N→∞−→ 0 ∀ ε > 0.

The steady-state limit is given in Proposition 2.2.

Proposition 2.2 (Steady-state convergence). Given Assumption 2.1, we have

Q
(N)
(α,β) (∞)
N logN

P−→ α

2β ,

as N →∞.

As we can see in Proposition 2.2, to obtain a non-trivial steady-state limit, we need a
spatial scaling of N logN . Since this is the only choice that leads to a non-trivial limit, it is
a natural choice to look for a fluid limit that also has this spatial scaling. Our main result,
stated in Theorem 2.1, is such a fluid limit, and it turns out that for establishing this limit,
we need a temporal scaling of N3 logN . In Section 2.2.2, we explain why these scalings are
natural. We give the proof of Proposition 2.1 in Section 2.7, and we explain how Proposition
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2.1 is connected to Theorem 2.1 at the end of this section. Furthermore, we give a proof of
Proposition 2.2 in Section 2.3.

Theorem 2.1 (Fluid limit with a non-zero initial condition). Given Assumptions 2.1–2.3,
and either Assumption 2.4 or Assumption 2.5, then we have for all T > 0, that

P

 sup
t∈[0,T ]

∣∣∣∣∣Q
(N)
(α,β)

(
tN3 logN

)
N logN − q(t)

∣∣∣∣∣ > ε

 N→∞−→ 0 ∀ ε > 0, (2.2.4)

with

q(t) = max
((√

2αt− βt
)
1

(
t <

α

2β2

)
+ α

2β 1
(
t ≥ α

2β2

)
, g(t, q(0))− βt

)
. (2.2.5)

The function g(t, q(0)) has the following properties:

1. If Assumption 2.4 holds, then

g(t, q(0)) = q(0) +
√

2αt. (2.2.6)

2. If Assumption 2.5 holds, then

g(t, q(0)) = sup
(u,v)
{
√

2αtu+ q(0)v : u2 + h(v) ≤ 1, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. (2.2.7)

As can be seen in Theorem 2.1, the fluid limit has an unusual form, q(t) is namely a
maximum of two functions. The first part of this maximum is the fluid limit when the initial
number of jobs equals 0 and the second part is caused by the initial number of jobs. We
elaborate on this more in Section 2.2.3. The logN term in the spatial and temporal scaling
of the process is also unusual. We show in Section 2.2.2 that this is due to the fact that we
take a maximum of N random variables, with N large. Scaling terms like (logN)c are in
this context very natural.

We mentioned earlier that different choices for temporal and spatial scalings lead to
a non-trivial fluid limit. We gave Proposition 2.1 as an example. Since we analyze one
and only one system, the two fluid limits that we presented should be connected to each
other. An easy way to see this is by observing that from Theorem 2.1 it follows that when
Q

(N)
(α,β) (0) = 0,

Q
(N)
(α,β)

(
tN3 logN

)
N logN

P−→
√

2αt− βt,

as N → ∞, for t < α/(2β2). Thus, for all t > 0 and for N large, we expect that
Q

(N)
(α,β)

(
tN3) /(N√logN) ≈

√
2αt − βt/

√
logN N→∞−→

√
2αt. This shows heuristically how

Proposition 2.1 is connected with Theorem 2.1. The proof of Proposition 2.1 is given in
Section 2.7.



2.2 Model description and main results 27

2.2.2 Scaling

In Section 2.2.1, we presented the fluid limit under the rather unusual temporal scaling of
N3 logN and spatial scaling of N logN . A heuristic justification for these scalings can be
given by using extreme-value theory and ideas from literature on diffusion approximations.
In particular, for the spatial scaling, we argue as follows: as we are interested in the
convergence of the maximum queue length, we can use a central limit result to replace
each separate queue length with a reflected Brownian motion and use extreme-value theory
to get a heuristic idea of the convergence of the scaled maximum queue length. To
argue this, first observe that the arrival and service processes are binomially distributed
random variables, and we can compute the expectation and variance of the random walk(

N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

))/
(N
√

logN) given in (2.2.2) as

E
[

1
N
√

logN

(
N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

))]
= −βt

√
logN + o(1), (2.2.8)

and

Var
(

1
N
√

logN

(
N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)))
= 1
N2 logN btN

3 logNc

((
α

N
+ β

N2

)(
1− α

N
− β

N2

)
+ α

N

(
1− α

N

))
= 2αt+ o(1).

(2.2.9)

From this, a non-trivial scaling limit can be easily deduced: observe that N(N)
A

(
tN3 logN

)
−

N(N)
S,i

(
tN3 logN

)
is a sum of independent and identically distributed random variables, so

this implies that

1
N
√

logN

(
N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)) d
≈ Zi,

as N is large, with Zi ∼ N
(
−βt
√

logN, 2αt
)
. Furthermore, because

N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)
is, in fact, the difference of two random walks, we also

have

sup
0≤n≤tN3 logN

1
N
√

logN

(
N(N)
A (n)−N(N)

S,i (n)
)

d
≈ Ri(t),

as N is large, with Ri(t) a reflected Brownian motion for t fixed. We can apply extreme-
value theory to show that maxi≤N Ri(t) scales with

√
logN . This can be deduced from

the cumulative distribution function of the reflected Brownian motion which is given in [71,
p. 49]. Concluding, the proper spatial scaling of the fluid limit in Theorem 2.1 is N logN .
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2.2.3 Shape of the fluid limit

In Section 2.2.2, we gave a heuristic explanation of the temporal and spatial scaling of the
process. Here, we do the same for the shape of the fluid limit. First, we rewrite the expression
in (2.2.3) and get that the scaled maximum queue length satisfies

Q
(N)
(α,β)

(
tN3 logN

)
N logN =

max

max
i≤N

sup
s∈[0,t]


(

N(N)
A

(
tN3 logN

)
−N(N)

A

(
sN3 logN

))
N logN

−

(
N(N)
S,i

(
tN3 logN

)
−N(N)

S,i

(
sN3 logN

))
N logN

,

max
i≤N

N(N)
A

(
tN3 logN

)
+ N(N)

S,i

(
tN3 logN

)
+Q

(N)
i (0)

N logN

.

(2.2.10)

Now, observe that when Q(N)
i (0) = 0 for all i, the pairwise maximum in (2.2.10) simplifies

to the first part of the maximum. It turns out that the first and the second part of this
maximum converge to the first and second part of the maximum in (2.2.5), respectively. To
see the first limit heuristically, observe that due to the central limit theorem,

1
N
√

logN

(
N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)) d
≈ ϑi + ζ,

with ϑi ∼ N (0, αt), independently for all i, and ζ ∼ N (−βt
√

logN,αt). We can write
maxi≤N (ϑi+ζ) = maxi≤N (ϑi)+ζ. Then, by the basic convergence result that the maximum
of N i.i.d. standard normal random variables scales like

√
2 logN , it is easy to see that

maxi≤N (ϑi + ζ)/
√

logN P−→
√

2αt− βt as N →∞. Because of the fact that a queue length
which is 0 at time 0, can be written as the supremum of the arrival process minus the service
process up to time t, the fluid limit yields sups∈[0,t](

√
2αs− βs), which equals the first part

of the maximum in (2.2.5).
Similarly, for the second part of (2.2.10), we observe that

max
i≤N

N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)
+Q

(N)
i (0)

N logN

=
N(N)
A

(
tN3 logN

)
−
(
1− α/N

)
tN3 logN

N logN

+ max
i≤N

(
1− α/N

)
tN3 logN −N(N)

S,i

(
tN3 logN

)
+Q

(N)
i (0)

N logN .

(2.2.11)
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It is easy to see that the first term on the right-hand side of Equation (2.2.11) converges to
−βt as N → ∞, and we prove later on that the second term converges to g(t, q(0)). This
explains the second part of the fluid limit in (2.2.5).

Specific properties of the function g can be deduced. First, Assumption 2.4 considers the
case where Ui has a finite right endpoint. In this scenario, we have that Q(N)

i (0)/(N logN) =
brNUic/(N logN) = bN logNUic/(N logN) ≈ Ui. Now, the theorem says that g(t, q(0)) =
q(0) +

√
2αt. This actually means that for large N ,

max
i≤N

(
Ui +

(
1− α/N

)
tN3 logN −N(N)

S,i

(
tN3 logN

)
N logN

)

≈ max
i≤N

Ui + max
i≤N

(
1− α/N

)
tN3 logN −N(N)

S,i

(
tN3 logN

)
N logN .

This behavior can be very well explained, because due to the assumption that Ui has a finite
right endpoint, there will be many observations of Ui that are close to the right endpoint, as
N becomes large, and thus it will be more and more likely that there is a large observation((

1− α/N
)

(tN3 logN) −N(N)
S,i?

(
tN3 logN

))/(
N logN

)
, for which the observation Ui?

will also be large.
Furthermore, when Assumption 2.5 holds, g(t, q(0)) can be written as a supremum over

a set. To give an idea of why this is the case, we first observe that we can write the last
term in (2.2.11) as

max
i≤N

((
1− α/N

)
(tN3 logN)−N(N)

S,i

(
tN3 logN

)
N logN + Q

(N)
i (0)

N logN

)
. (2.2.12)

Thus, this maximum can be viewed as a maximum of N pairwise sums of random variables.
For any N > 0, we can write down all the N pairs of random variables as

(
1√
2αt

(
1− α/N

)
(tN3 logN)−N(N)

S,i

(
tN3 logN

)
N logN ,

1
q(0)

Q
(N)
i (0)

N logN

)
i≤N

 . (2.2.13)

Now, the expression in Equation (2.2.12) can be written as
√

2αtu+ q(0)v with (u, v) in the
set in (2.2.13), such that

√
2αtu+ q(0)v is maximized. Due to the central limit theorem, the

first term in (2.2.13) can be approximated by ϑi/
√

2αt with ϑi ∼ N (0, αt) when N is large.
Therefore, the convex hull of the set in (2.2.13) looks like the convex hull of the set

(
1√
2αt

ϑi√
logN

,
1
q(0)

Q
(N)
i (0)

N logN

)
i≤N

 .

The convex hull of this set can be seen as a random variable in the space of non-empty
compact subsets of R2, and converges in probability, under an appropriate metric, to the
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convex hull of the limiting set

{(u, v) : u2 + h(v) ≤ 1,−1 ≤ u ≤ 1, 0 ≤ v ≤ 1}, (2.2.14)

in R2, as N → ∞; see [44] and [55] for details on this. Our intuition says that the limit of
the expression in (2.2.12) is attained at the coordinate (u, v) in the closure of the limiting
set given in (2.2.14), such that

√
2αtu + q(0)v is maximized. We show that this is indeed

correct. In fact, we prove this in Lemma 2.4 in a more general context than in [44] and [55].
In [44] and [55], the authors make the assumption that the scaling sequences are the same,
so the analysis is restricted to samples of the type {(Xi/aN , Yi/aN )i≤N}. However, we show
that for proving convergence of the maximum of the pairwise sum, the scaling sequences do
not need to be the same.

2.2.4 Examples and numerics

In Section 2.2.3, we showed that the shape of the fluid limit depends on the distribution of
the number of jobs at time 0. Here, we give some basic examples of how the fluid limit is
influenced by the distribution of the number of jobs at time 0. We also present and discuss
some numerical results.

As a first example, we consider Ui = X+
i , with Xi ∼ N (0, 1). We can write for v > 0,

P(Ui > v) = exp(−v2`(v)), such that ` is slowly varying. A function ` being slowly varying
means that for all x > 0, we have that limt→∞ `(tx)/`(x) = 1; see [132, Def. 2.1, p. 20].
Thus for v ∈ [0, 1],

h(v) = lim
t→∞

− log
(
P(Ui > vt)

)
− log

(
P(Ui > t)

) = lim
t→∞

(vt)2`(vt)
t2`(t) = v2.

Thus, the function g given in (2.2.7) equals

g(t, q(0)) = sup
(u,v)
{
√

2αtu+ q(0)v : u2 + v2 ≤ 1,−1 ≤ u ≤ 1, 0 ≤ v ≤ 1} =
√
q(0)2 + 2αt.

Concluding, the limit of the second term of the pairwise maximum in (2.2.10) satisfies

max
i≤N

(
1− α/N

)
(tN3 logN)−N(N)

S,i

(
tN3 logN

)
+Q

(N)
i (0)

N logN

= max
i≤N

(
1− α/N

)
(tN3 logN)−N(N)

S,i

(
tN3 logN

)
+ bq(0)N logNUi/

√
2 logNc

N logN
P−→
√
q(0)2 + 2αt− βt,

as N → ∞, where rN = q(0)N logN/
√

2 logN , such that Q(N)
(α,β) (0) /(N logN) P−→ q(0), as

N → ∞. Thus, we now have an expression for the second part of the pairwise maximum
in (2.2.5). We see immediately that when t = 0, this function reduces to q(0), as should be
the case, since the rescaled number of jobs at time 0 converges to q(0). We also see that



2.2 Model description and main results 31

limt→∞
√
q(0)2 + 2αt−βt = −∞. The fluid limit in (2.2.5) is a pairwise maximum, of which

the second part eventually converges to −∞. This means that over time, the influence of the
initial number of jobs on the fluid limit vanishes, and the system reaches the steady state.

Another example is when we assume that Ui is lognormally distributed. In this case, we
know that P(Ui > v) = P(Xi > log v), with Xi ∼ N (0, 1). Thus, P(Ui > v) = exp(−1(v >
0) log(v)2`(log v)) for a slowly varying function `. Then, for v ∈ [0, 1],

h(v) = lim
t→∞

1(v > 0) log(vt)2`(log(vt))
log(t)2`(log(t)) = 1(v > 0).

In this case, we have for the function g given in (2.2.7) that

g(t, q(0))
= sup

(u,v)
{
√

2αtu+ q(0)v : u2 + 1(v > 0) ≤ 1,−1 ≤ u ≤ 1, 0 ≤ v ≤ 1}

= max(q(0),
√

2αt).

We also consider the case P(Ui > v) = exp(1− exp(v)), hence; then for v ∈ [0, 1],

lim
t→∞

− log
(
P(Ui > vt)

)
− log

(
P(Ui > t)

) = lim
t→∞

exp(vt)− 1
exp(t)− 1 = 1(v = 1).

Then, the function g given in (2.2.7) satisfies

g(t, q(0))
= sup

(u,v)
{
√

2αtu+ q(0)v : u2 + 1(v = 1) ≤ 1,−1 ≤ u ≤ 1, 0 ≤ v ≤ 1} = q(0) +
√

2αt.

As a last example, we study the case where P(Ui > v) = exp(−v`(v)), with ` a slowly
varying function; thus the function h, which is described in Assumption 2.5 and further,
equals h(v) = v. Then,

g(t, q(0)) = sup
(u,v)
{
√

2αtu+ q(0)v : u2 + v ≤ 1, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}

=
(
q(0) + αt

2q(0)

)
1

(
t <

2q(0)2

α

)
+
√

2αt1
(
t ≥ 2q(0)2

α

)
.

We now give some extra attention to the case where q(0) = α/(2β). Then, it is not difficult
to see that q(t) ≡ α/(2β). Thus, for these choices of h(v) and q(0), the system starts and
stays in steady state. One can show that this limit is only obtained for h(v) = v, so this
gives us some information on the joint steady-state distribution of all the queue lengths in
the fork-join system.

Now, we turn to some numerical examples. In Figure 2.1, the simulated maximum queue
length is plotted together with the scaled fluid limit N logNq(t/(N3 logN)), with q given
in Theorem 2.1 and N = 1000. The queue lengths at time 0 in Figures 2.1a, 2.1b, and 2.1c
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are exponentially distributed. These figures show that for N = 1000, the maximum queue
length is not close to its fluid limit.

(a) α = 1, β = 1, q(0) = 0.6 (b) α = 1, β = 1, q(0) = 0.75 (c) α = 1, β = 1, q(0) = 1

(d) α = 1, β = 1, q(0) = 0 (e) α = 1, β = 10, q(0) = 0 (f) α = 1, β = 100, q(0) = 0

Figure 2.1 Maximum queue length and fluid limit approximation (Thm. 2.1) for N = 1000

As these figures show, for N = 1000, the variance of the maximum queue length is
still high. We give some heuristic arguments why these results are not very accurate. As
mentioned before, we have that

N(N)
A

(
tN3 logN

)
−
(
1− α/N

)
(tN3 logN)

N logN
P−→ −βt,

as N →∞, which is one building block of the fluid limit.
For (N(N)

A

(
tN3 logN

)
−
(
1− α/N

)
tN3 logN)/(N logN), we can compute the standard

deviation. We have for α = β = t = 1 and N = 1000 that√
Var

(
N(N)
A (tN3 logN)−

(
1− α

N

)
(tN3 logN)

)

=

√(
1− α

N
− β

N2

)(
α

N
+ β

N2

)
btN3 logNc

= 2628.26.

This is of the order of magnitude of the errors that we see in the figures.
Another way of seeing that there is a significant deviation is by looking at

max
i≤N

((
1− α

N

)
tN3 logN −N(N)

S,i

(
tN3 logN

))
.
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As mentioned in Section 2.2.3, we have that(
1− α/N

)
tN3 logN −N(N)

S,i

(
tN3 logN

)
N
√

logN
d
≈ ϑi,

with ϑi ∼ N (0, αt). Thus, this means that

max
i≤N

((
1− α

N

)
tN3 logN −N(N)

S,i

(
tN3 logN

)) d
≈ max

i≤N
ϑiN

√
logN.

When we choose N = 1000, α = t = 1, and simulate enough samples of maxi≤N ϑiN
√

logN ,
we observe a standard deviation which is higher than 900.

In Figures 2.1a, 2.1b, and 2.1c, the high standard deviation is also caused by the
distribution of the number of jobs at time 0. For example, for Ei ∼ Exp(1/N), i.i.d. for
all i, and N = 1000, we have that

√
Var

(
maxi≤N Ei

)
= 1, 282.16, so this is also of the order

of magnitude of the errors that we see.
As mentioned, one can prove fluid limits under several temporal and spatial scalings.

In Figure 2.2, the maximum queue length is plotted against the rescaled fluid limit given
in Proposition 2.1, which is the curved dashed line, and the rescaled steady-state limit,
which is the straight dashed line. In these plots, N = 1000. The rescaled fluid limit is√

2αt/N3N
√

logN , and the rescaled steady-state limit satisfies α/(2β)N logN .

(a) α = 1, β = 1 (b) α = 1, β = 10 (c) α = 1, β = 100

Figure 2.2 Maximum queue length, fluid limit approximation (Prop. 2.1) and steady-state
approximation for N = 1000

When we observe Figure 2.2, we see that for small time instances, the maximum queue
length follows the fluid limit described in Proposition 2.1 with a negligible deviation, and
we also see that, from the point that the fluid limit and steady state have intersected, the
maximum queue length follows the steady state, though with a significant deviation. The
latter behavior can be very well explained when we plot the same maximum queue lengths
together with the fluid limit in Theorem 2.1. This is shown in Figure 2.3.
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(a) α = 1, β = 1 (b) α = 1, β = 10 (c) α = 1, β = 100

Figure 2.3 Maximum queue length and fluid limit approximation (Thm. 2.1) for N = 1000

In Figure 2.4, we zoom in on the graphs given in Figures 2.2a and 2.2b. As these
figures show, for small time instances, the maximum queue length follows the fluid limit
described in Proposition 2.1 quite well. Again, we can heuristically explain the deviations
by approximating the maximum queue length with

√
1/N3N maxi≤N ϑi, with ϑi ∼ N (0, αt),

i.i.d. For α = 1, and t = 7 · 107, simulations show that this approximation has a standard
deviation around 95, and for t = 7 · 106, we get a standard deviation around 30. This is of
the order of magnitude of the errors in Figures 2.4a and 2.4b, respectively.

(a) α = 1, β = 1 (b) α = 1, β = 10

Figure 2.4 Maximum queue length, fluid limit approximation (Prop. 2.1) and steady-state
approximation for N = 1000

2.3. Proofs

In this section, we prove Theorem 2.1 and Proposition 2.2. Since each server has the same
arrival process, the queue lengths are dependent. The general idea of proving Theorem 2.1
is to approximate the scaled centralized service process in (2.3.4) by a normally distributed
random variable. We can use extreme-value theory to prove the convergence of the maximum
of these normally distributed random variables in probability. By using the non-uniform
version of the Berry-Esséen theorem [109], we show that the convergence result of the original
process is the same as the convergence result with normally distributed random variables.
Furthermore, we prove the convergence of the part involving non-zero starting points. This
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gives us the pointwise convergence of the process, which we prove in Section 2.3.3. In this
section, we also prove the convergence of the finite-dimensional distributions. Finally, we
prove in Section 2.3.4 that the process

(
Q

(N)
(α,β)(tN

3 logN)
/(
N logN

)
, t ∈ [0, T ]

)
is tight.

These three results together prove the theorem. First, we define some auxiliary random
variables in Section 2.3.1 and we state some lemmas in Section 2.3.2.

2.3.1 Definitions

We use the expressions given in Definition 2.4 to prove tightness.

Definition 2.4. We define the random walk R̃(N)
i (n) as

R̃
(N)
i (n) :=

Ñ(N)
A (n) + Ñ(N)

S,i (n)
logN , (2.3.1)

where

Ñ(N)
A (n) :=

N(N)
A (n)
N

−
(

1− α

N

) bnc
N

, (2.3.2)

and

Ñ(N)
S,i (n) := −

N(N)
S,i (n)
N

+
(

1− α

N

) bnc
N

. (2.3.3)

Furthermore,

M
(N)
i,1 (t) :=

Ñ(N)
S,i

(
tN3 logN

)√
αt(1− α/N) logN

√
tN3 logN√
btN3 logNc

, (2.3.4)

and

M
(N)
i,2 (t) :=

Ñ(N)
S,i

(
tN3)√

αt(1− α/N)

√
tN3√
btN3c

, (2.3.5)

with N(N)
A (n) and N(N)

S,i (n) given in Definitions 2.1 and Definition 2.2 respectively.

As mentioned in Section 2.2.3, when Q(N)
(α,β) (0) = 0, the quantity in (2.2.10) simplifies to

Q
(N)
(α,β)

(
tN3 logN

)
N logN

= max
i≤N

sup
s∈[0,t]


(

N(N)
A

(
tN3 logN

)
−N(N)

A

(
sN3 logN

))
N logN

+

(
N(N)
S,i

(
tN3 logN

)
−N(N)

S,i

(
sN3 logN

))
N logN

.
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Consequently, we can rewrite

Q
(N)
(α,β)

(
tN3 logN

)
N logN = max

i≤N
sup
r∈[0,t]

(
R̃

(N)
i (tN3 logN)− R̃(N)

i (rN3 logN)
)
. (2.3.6)

2.3.2 Useful lemmas

In order to prove Theorem 2.1, a few preliminary results are needed. Observe that Ñ(N)
A (n)

appearing in Definition 2.4 does not depend on i, while Ñ(N)
S,i (n) does. Hence, it is intuitively

clear that Ñ(N)
A (n) pays no contribution to the maximum queue length. Therefore, in

order to prove the pointwise convergence of the maximum queue length, we need to analyze
Ñ(N)
S,i (n) / logN . Specifically, we use the fact that

M
(N)
i,1 (t) d−→ Z,

as N →∞, with Z a standard normal random variable, which can be shown by the central
limit theorem. We can use this result to approximate the maximum queue length because we
know that the scaled maximum of N independent and normally distributed random variables
converges to a Gumbel-distributed random variable. To prove the tightness of the maximum
queue length, we have to prove that

lim
δ↓0

lim sup
N→∞

1
δ
P

 sup
s∈[t,t+δ]

∣∣∣∣∣Q
(N)
(α,β)

(
sN3 logN

)
N logN −

Q
(N)
(α,β)

(
tN3 logN

)
N logN

∣∣∣∣∣ > ε

 = 0. (2.3.7)

In Lemma 2.1, a useful upper bound for the absolute value in (2.3.7) is obtained, which we
use to prove the tightness of the process

(
Q

(N)
(α,β)(tN

3 logN)
/(
N logN

)
, t ∈ [0, T ]

)
.

Lemma 2.1. For fixed t > 0, δ > 0 and Q(N)
(α,β) (0) = 0, we have that

sup
s∈[t,t+δ]

∣∣∣∣∣Q
(N)
(α,β)

(
sN3 logN

)
N logN −

Q
(N)
(α,β)

(
tN3 logN

)
N logN

∣∣∣∣∣
≤ sup
s∈[t,t+δ]

max
i≤N

(
R̃

(N)
i (sN3 logN)− R̃(N)

i (tN3 logN)
)

+ 2 sup
s∈[t,t+δ]

max
i≤N

(
R̃

(N)
i (tN3 logN)− R̃(N)

i (sN3 logN)
)
.

(2.3.8)

In our proofs, we use the fact that the function M
(N)
i,1 (t), which is given in (2.3.4),

converges in distribution to a normally distributed random variable. To be able to use this
convergence result, we prove an upper bound of the convergence rate in Lemma 2.2.

Lemma 2.2. For fixed t > 0, we have that an upper bound of the rate of convergence
of ±Ñ(N)

S,i

(
tN3 logN

)√
tN3 logN

/√
αt(1− α/N) logNbtN3 logNc to a standard normal
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random variable is given by∣∣∣∣P(M (N)
i,1 (t) < y

)
− Φ(y)

∣∣∣∣ ≤ ct

N
√

logN
1

1 + |y|3 , (2.3.9)

with ct > 0. We have a similar result for the random variable
±Ñ(N)

S,i

(
tN3)√tN3

/√
αt(1− α/N)btN3c:∣∣∣∣P(M (N)

i,2 (t) < y
)
− Φ(y)

∣∣∣∣ ≤ ct
N

1
1 + |y|3 , (2.3.10)

Lemma 2.2 follows from the main result in [109], in which the author proves the non-
uniform Berry-Esséen inequality. To prove tightness, we need the following lemma:

Lemma 2.3. For fixed t > 0, we have that

lim sup
N→∞

E

max

(
max
i≤N

±Ñ(N)
S,i

(
tN3 logN

)
logN , 0

)5/2
 ≤ (2αt)5/4 , (2.3.11)

and

lim sup
N→∞

E

max

(
max
i≤N

±Ñ(N)
S,i

(
tN3)

√
logN

, 0

)5/2
 ≤ (2αt)5/4 . (2.3.12)

In order to prove pointwise convergence of the starting position, we show in Lemma 2.9
that

max
i≤N

(
Ñ(N)
S,i

(
tN3 logN

)
logN + Q

(N)
i (0)

N logN

)
≈ max

i≤N

(√
αtXi√
logN

+ Q
(N)
i (0)

N logN

)
,

with Xi ∼ N (0, 1), as N is large. In Lemma 2.4, we prove the convergence of
maxi≤N

(√
αtXi/

√
logN +Q

(N)
i (0)/(N logN)

)
.

Lemma 2.4 (Pointwise convergence approximation starting position).

max
i≤N

(√
αtXi√
logN

+ Q
(N)
i (0)

N logN

)
P−→ g(t, q(0)),

as N →∞, with Xi ∼ N (0, 1) i.i.d. and the function g as given in Theorem 2.1.

The proofs of Lemmas 2.1, 2.2, 2.3, and 2.4 can be found in Section 2.5. Lemma 2.4 fol-
lows from Lemma 2.13, in which a more general result is proven for maxi≤N

∑k

j=1 Z
(j)
i /a

(j)
N .

2.3.3 Pointwise convergence

In this section, we prove pointwise convergence of the scaled maximum queue length
appearing in Theorem 2.1.
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Theorem 2.2 (Pointwise convergence). For fixed t > 0,

Q
(N)
(α,β)

(
tN3 logN

)
N logN

P−→ q(t), (2.3.13)

as N →∞, with q(t) given in Equation (2.2.5).

As Equation (2.2.10) shows, we can write the scaled maximum queue length as a
maximum of two random variables, namely, one pertaining to a system starting empty
and one pertaining to a system starting non-empty. We prove the pointwise convergence
of the first part of this maximum in Lemma 2.5. In Lemma 2.9, we prove the pointwise
convergence of the second part. In order to do so, we need some extra results, which are
stated in Lemmas 2.4, 2.6, 2.7, and 2.8.

Lemma 2.5. For fixed t > 0 and Q(N)
(α,β) (0) = 0,

Q
(N)
(α,β)

(
tN3 logN

)
N logN

P−→
(√

2αt− βt
)
1

(
t <

α

2β2

)
+ α

2β 1
(
t ≥ α

2β2

)
,

as N →∞.

To prove the convergence of sequences of real-valued random variables to a constant, it
suffices to show convergence in distribution. Therefore, we use Lemmas 2.6, 2.7 and 2.8 below
to prove that the upper and lower bound of the cumulative distribution function converge
to the same function.

Lemma 2.6. For δ > 0, t < α/(2β2) and Q(N)
(α,β) (0) = 0,

lim sup
N→∞

P

(
Q

(N)
(α,β)

(
tN3 logN

)
N logN >

√
2αt− βt+ δ

)
= 0. (2.3.14)

Proof. Let δ > 0 be given. Let us assume that t < α/(2β2). We then have that

P

(
Q

(N)
(α,β)

(
tN3 logN

)
N logN >

√
2αt− βt+ δ

)

= P

max
i≤N

sup
s∈[0,t]

(
Ñ(N)
A

(
sN3 logN

)
+ Ñ(N)

S,i

(
sN3 logN

)
logN

)
−
√

2αt+ βt > δ

.
For t < α/(2β2),

√
2αt− βt is an increasing function. Therefore,

P

max
i≤N

sup
s∈[0,t]

(
Ñ(N)
A

(
sN3 logN

)
+ Ñ(N)

S,i

(
sN3 logN

)
logN

)
−
√

2αt+ βt > δ
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≤ P

max
i≤N

sup
s∈[0,t]

(
Ñ(N)
A

(
sN3 logN

)
+ Ñ(N)

S,i

(
sN3 logN

)
logN −

√
2αs+ βs

)
> δ


= P

 sup
s∈[0,t]

(
max
i≤N

Ñ(N)
A

(
sN3 logN

)
+ Ñ(N)

S,i

(
sN3 logN

)
logN −

√
2αs+ βs

)
> δ

.
Observe that

P

 sup
s∈[0,t]

(
max
i≤N

Ñ(N)
A

(
sN3 logN

)
+ Ñ(N)

S,i

(
sN3 logN

)
logN −

√
2αs+ βs

)
> δ


≤ P

 sup
s∈[0,t]

∣∣∣∣∣max
i≤N

Ñ(N)
A

(
sN3 logN

)
+ Ñ(N)

S,i

(
sN3 logN

)
logN −

√
2αs+ βs

∣∣∣∣∣ > δ


≤ P

 sup
s∈[0,t]

∣∣∣∣∣Ñ
(N)
A

(
sN3 logN

)
logN + βs

∣∣∣∣∣ > δ

2


+ P

 sup
s∈[0,t]

∣∣∣∣∣maxi≤N Ñ(N)
S,i

(
sN3 logN

)
logN −

√
2αs

∣∣∣∣∣ > δ

2

.
Moreover, Ñ(N)

A (n) / logN + βn/(N3 logN) is a martingale with mean 0. Therefore, by
Doob’s maximal submartingale inequality

P

 sup
s∈[0,t]

∣∣∣∣∣Ñ
(N)
A

(
sN3 logN

)
logN + βs

∣∣∣∣∣ > δ

2


≤ P

 sup
s∈[0,t]

∣∣∣∣∣Ñ
(N)
A

(
sN3 logN

)
logN + β

bsN3 logNc
N3 logN

∣∣∣∣∣ > δ

4

 (2.3.15)

+ P

(
sup
s∈[0,t]

∣∣∣∣β bsN3 logNc
N3 logN − βs

∣∣∣∣ > δ

4

)

≤ 16
δ2 Var

(
Ñ(N)
A

(
tN3 logN

)
logN

)
+ o(1)

= 16
δ2

(
1− α

N
− β

N2

)(
α

N
+ β

N2

)
btN3 logNc
N2(logN)2 + o(1) N→∞−→ 0. (2.3.16)
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Furthermore, in order to have

P

 sup
s∈[0,t]

∣∣∣∣∣maxi≤N Ñ(N)
S,i

(
sN3 logN

)
logN −

√
2αs

∣∣∣∣∣ > δ

2

 N→∞−→ 0, (2.3.17)

we need to have that
(

maxi≤N Ñ(N)
S,i

(
sN3 logN

)
/ logN, s ∈ [0, t]

)
converges to (

√
2αs, s ∈

[0, t]) u.o.c. Thus,

lim
N→∞

P

∣∣∣∣∣maxi≤N Ñ(N)
S,i

(
sN3 logN

)
logN −

√
2αs

∣∣∣∣∣ > ε

 = 0, (2.3.18)

and for all r ∈ [0, t],

lim
η↓0

lim sup
N→∞

1
η
P

 sup
s∈[r,r+η]

∣∣∣∣∣maxi≤N Ñ(N)
S,i

(
sN3 logN

)
logN −

maxi≤N Ñ(N)
S,i

(
rN3 logN

)
logN

∣∣∣∣∣ > ε

 = 0.

(2.3.19)

To prove the limit in (2.3.18), we use the result of Lemma 2.2 and observe that for all δ > 0,

P

(
maxi≤N Ñ(N)

S,i

(
sN3 logN

)
logN >

√
2αs+ δ

)

= 1− P

(
Ñ(N)
S,i

(
sN3 logN

)
logN <

√
2αs+ δ

)N

= 1− P

(
M

(N)
i,1 (s) <

√
2αs+ δ√

αs(1− α/N)

√
logN

√
sN3 logN√
bsN3 logNc

)N

≤ 1−

Φ

( √
2αs+ δ√

αs(1− α/N)

√
logN

√
sN3 logN√
bsN3 logNc

)
− cs

N
√

logN

N

≤ 1− Φ

( √
2αs+ δ√

αs(1− α/N)

√
logN

√
sN3 logN√
bsN3 logNc

)N
+
(

1 + cs

N
√

logN

)N
− 1

N→∞−→ 0. (2.3.20)

The proof that

P

(
maxi≤N Ñ(N)

S,i

(
sN3 logN

)
logN <

√
2αs− δ

)
N→∞−→ 0,
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goes analogously. To prove the limit in (2.3.19), we observe that due to the facts that
Ñ(N)
S,i (n) is a random walk that satisfies the duality principle, that maxi≤N xi−maxi≤N yi ≤

maxi≤N (xi − yi), and that P
(
|X| > ε

)
≤ P(X > ε) + P(−X > ε), we have the upper bound

1
η
P

 sup
s∈[r,r+η]

∣∣∣∣∣maxi≤N Ñ(N)
S,i

(
sN3 logN

)
logN −

maxi≤N Ñ(N)
S,i

(
rN3 logN

)
logN

∣∣∣∣∣ > ε


≤ 1
η
P

(
sup
s∈[0,η]

max
i≤N

Ñ(N)
S,i

(
sN3 logN

)
logN > ε

)

+ 1
η
P

(
sup
s∈[0,η]

max
i≤N

−Ñ(N)
S,i

(
sN3 logN

)
logN > ε

)
+ o(1).

The o(1) term is due to the fact that

b(r + η)N3 logNc − brN3 logNc ∈ {bηN3 logNc, bηN3 logNc+ 1}.

Now, we have that ±Ñ(N)
S,i (n) is a martingale with mean 0. The maximum of independent

martingales is a submartingale; therefore,

max

(
0,max

i≤N

±Ñ(N)
S,i

(
ηN3 logN

)
logN

)5/2

is a non-negative submartingale. Hence, by using Doob’s maximal submartingale inequality,
we can conclude that

1
η
P

(
sup
s∈[0,η]

max
i≤N

Ñ(N)
S,i

(
sN3 logN

)
logN > ε

)

+ 1
η
P

(
sup
s∈[0,η]

max
i≤N

−Ñ(N)
S,i

(
sN3 logN

)
logN > ε

)

≤ 1
ηε5/2

E

max

(
max
i≤N

Ñ(N)
S,i

(
ηN3 logN

)
logN , 0

)5/2


+ 1
ηε5/2

E

max

(
max
i≤N

−Ñ(N)
S,i

(
ηN3 logN

)
logN , 0

)5/2
.

By taking the lim supN→∞ in this expression and applying Lemma 2.3, we see that this
is upper bounded by 2η1/4(2α)5/4/ε5/2. This can be made as small as possible when η is
chosen small enough. We also know that maxi≤N Ñ(N)

S,i (0) / logN = 0, and that the finite-

dimensional distributions of
(

maxi≤N Ñ(N)
S,i

(
sN3 logN

)
/ logN, s ∈ [0, t]

)
converge to the

finite-dimensional distributions of
(√

2αs, s ∈ [0, t]
)
, which follows from Theorem 2.3. The
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lemma follows.

Having examined t ∈ [0, α/(2β2)), we now turn to t ∈ [α/(2β2),∞].

Lemma 2.7. For δ > 0, α/(2β2) ≤ t ≤ ∞ and Q(N)
(α,β) (0) = 0,

lim sup
N→∞

P

(
Q

(N)
(α,β)

(
tN3 logN

)
N logN >

α

2β + δ

)
= 0.

Proof. We write

N(u,N)
A (n) =

n∑
j=1

X(u,N)(j)

with

X(u,N)(j) =

{
α/N + β/N2 −m/N2 w.p. 1− α/N − β/N2,

−1 + α/N + β/N2 −m/N2 w.p. α/N + β/N2,

with 0 < m < β. Furthermore, we write

N(u,N)
S,i (n) =

n∑
j=1

Y
(u,N)
i (j) ,

with

Y
(u,N)
i (j) =

{
−α/N − β/N2 +m/N2 w.p. 1− α/N,
1− α/N − β/N2 +m/N2 w.p. α/N.

Thus,

N(N)
A (n)−N(N)

S,i (n) = N(u,N)
A (n) + N(u,N)

S,i (n) ,

and

sup
0≤k≤n

(
N(N)
A (k)−N(N)

S,i (k)
)
≤ sup

0≤k≤n
N(u,N)
A (k) + sup

0≤k≤n
N(u,N)
S,i (k) .

We obtain by using Doob’s maximal submartingale inequality that

P

(
sup

0≤k≤n
N(u,N)
A (k) ≥ x

)
≤ E

[
eθ

(u,N)
A

X(u,N)(j)
]
e−θ

(u,N)
A

x = e−θ
(u,N)
A

x,

with θ(u,N)
A the solution to the equation

E
[
eθ

(u,N)
A

X(u,N)(j)
]

=
(
α

N
+ β

N2

)
exp

(
θ

(u,N)
A

(
−1 + α

N
+ β

N2 −
m

N2

))
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+
(

1− α

N
− β

N2

)
exp

(
θ

(u,N)
A

(
α

N
+ β

N2 −
m

N2

))
= 1.

When we consider the second-order Taylor approximation of this expression with 1/N around
0, we obtain

θ
(u,N)
A = 2mN2

−α2N2 + αN3 − 2αβN − β2 +m2 + βN2 +O

(
1
N2

)
.

Consequently, we have for N large θ
(u,N)
A ≈ 2m/(αN). By the monotone convergence

theorem, we know that

P

(
sup
k≥0

N(u,N)
A (k) ≥ x

)
≤ e−θ

(u,N)
A

x ≈ e−2m/(αN)x.

In conclusion,

supk≥0 N(u,N)
A (k)

N logN
P−→ 0,

as N →∞. Similarly, by using Doob’s maximal submartingale inequality, we obtain that

P

(
sup
n≥0

N(u,N)
S,i (n) ≥ x

)
≤ e−θ

(u,N)
i

x,

with θ(u,N)
i the solution to the equation

E
[
eθ

(u,N)
i

Y
(u,N)
i

(j)
]

= α

N
exp

(
θ

(u,N)
i

(
1− α

N
− β

N2 + m

N2

))

+
(

1− α

N

)
exp

(
θ

(u,N)
i

(
− α
N
− β

N2 + m

N2

))
= 1.

The second-order Taylor approximation of E
[
eθ

(u,N)
i

Y
(u,N)
i

(j)
]
with 1/N around 0 gives

θ
(u,N)
i = 2N2 (β −m)

−α2N2 + αN3 + (β −m)2 +O

(
1
N2

)
.

Thus, for N large, θ(u,N)
i ≈ 2(β−m)/(αN). Concluding, supn≥0 N(u,N)

S,i (n) is stochastically
dominated by an exponentially distributed random variable E(u,N)

i with mean αN/(2(β −
m)). Because supn≥0 N(u,N)

S,i (n) ⊥ supn≥0 N(u,N)
S,j (n) for i 6= j, we can conclude that also
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E
(u,N)
i ⊥ E(u,N)

j for i 6= j. Therefore,

P

(
maxi≤N E(u,N)

i

N
≤ α

2(β −m) (x+ logN)

)
N→∞−→ e−e

−x
,

and

maxi≤N E(u,N)
i

N logN
P−→ α

2(β −m) ,

as N →∞. Because

Q
(N)
(α,β)

(
tN3 logN

)
N logN ≤st.

Q
(N)
(α,β) (∞)
N logN ≤

supk≥0 N(u,N)
A (k)

N logN +
maxi≤N supk≥0 N(N)

S,i (k)
N logN ,

with X ≤st. Y meaning P(X ≥ x) ≤ P(Y ≥ x) for all x, the lemma follows.

Lemma 2.8. For δ > 0 and Q(N)
(α,β) (0) = 0,

lim inf
N→∞

P

(
Q

(N)
(α,β)

(
tN3 logN

)
N logN ≥

(√
2αt−βt

)
1

(
t <

α

2β2

)
+ α

2β 1
(
t ≥ α

2β2

)
−δ

)
= 1.

(2.3.21)

Proof. Let us first assume that t ≤ α/(2β2). We have the lower bound

Q
(N)
(α,β)

(
tN3 logN

)
N logN ≥st. max

i≤N

N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)
N logN .

By Equations (2.3.15) and (2.3.17), we know that

max
i≤N

N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)
N logN

P−→
√

2αt− βt,

as N →∞. Let us now assume that t > α/(2β2). We have that

Q
(N)
(α,β)

(
tN3 logN

)
N logN ≥st. max

i≤N

N(N)
A

(
α

2β2N
3 logN

)
−N(N)

S,i

(
α

2β2N
3 logN

)
N logN

P−→ α

2β ,

as N →∞, by again using Lemma 2.6. This proves the lemma.

Proof of Lemma 2.5. By combining the results of Lemmas 2.6, 2.7 and 2.8, Lemma 2.5
follows.

In Lemma 2.9, we connect the convergence of

max
i≤N

N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)
+Q

(N)
i (0)

N logN
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to the convergence of

max
i≤N

(√
αtXi√
logN

+ Q
(N)
i (0)

N logN

)
.

Lemma 2.9 (Convergence starting position). Assume that for Xi i.i.d. standard normally
distributed,

max
i≤N

(√
αtXi√
logN

+ Q
(N)
i (0)

N logN

)
P−→ g(t, q(0)), (2.3.22)

as N →∞, for a certain function g. Then

max
i≤N

N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)
+Q

(N)
i (0)

N logN
P−→ g(t, q(0))− βt,

as N →∞.

Proof. We have

max
i≤N

N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)
+Q

(N)
i (0)

N logN

=
N(N)
A

(
tN3 logN

)
−
(
1− α/N

)
tN3 logN

N logN (2.3.23)

+ max
i≤N

(
1− α/N

)
tN3 logN −N(N)

S,i

(
tN3 logN

)
+Q

(N)
i (0)

N logN . (2.3.24)

We already proved in Equation (2.3.15) that the term in (2.3.23) converges to −βt.
Furthermore, we can rewrite the term in (2.3.24) as

max
i≤N

(
Ñ(N)
S,i

(
tN3 logN

)
logN + Q

(N)
i (0)

N logN +O

(
1

N logN

))
.

We can easily deduce from Lemma 2.2 that∣∣∣∣∣P
(

Ñ(N)
S,i

(
tN3 logN

)
logN < y

)
− P

(√
αt(1− α/N)
√

logN

√
btN3 logNc√
tN3 logN

Xi < y

)∣∣∣∣∣ ≤ ct

N
√

logN
,

with Xi ∼ N (0, 1), and ct given in Lemma 2.2. Then, it is easy to see that∣∣∣∣∣P
(

Ñ(N)
S,i

(
tN3 logN

)
logN

+
Q

(N)
i (0)

N logN
< y

)
− P

(√
αt(1− α/N)
√

logN

√
btN3 logNc√
tN3 logN

Xi +
Q

(N)
i (0)

N logN
< y

)∣∣∣∣∣
≤

ct

N
√

logN
.

(2.3.25)
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Now, because we assume the convergence result in (2.3.22), and√
αt(1− α/N)
√

logN

√
btN3 logNc√
tN3 logN

Xi =
√
αtXi√
logN

+ o

(
1√

logN

)
Xi,

it is easy to see that

max
i≤N

(√
αt(1− α/N)
√

logN

√
btN3 logNc√
tN3 logN

Xi + Q
(N)
i (0)

N logN

)
P−→ g(t, q(0)),

as N → ∞. Let ε > 0; then, because of the bound given in (2.3.25), and the convergence
result in (2.3.22),

P

max
i≤N

(
Ñ(N)
S,i

(
tN3 logN

)
logN + Q

(N)
i (0)

N logN

)
< g(t, q(0))− ε


= P

(
Ñ(N)
S,i

(
tN3 logN

)
logN + Q

(N)
i (0)

N logN < g(t, q(0))− ε

)N

≤ P

(√
αt(1− α/N)
√

logN

√
btN3 logNc√
tN3 logN

Xi + Q
(N)
i (0)

N logN < g(t, q(0))− ε

)N

+
(

ct

N
√

logN
+ 1
)N
− 1

N→∞−→ 0.

The proof that

P

max
i≤N

(
Ñ(N)
S,i

(
tN3 logN

)
logN + Q

(N)
i (0)

N logN

)
> g(t, q(0)) + ε

 N→∞−→ 0,

goes analogously. Hence, the lemma follows.

Proof of Theorem 2.2. In Lemmas 2.5 and 2.9, we have proven that both parts in the
maximum in (2.2.10) converge to a limit. The theorem follows.

We can easily extend this result to finite-dimensional distributions.

Theorem 2.3 (The finite-dimensional distributions converge). If

X(N)(t) P−→ f(t),

as N →∞, for all t > 0, then for (t1, t2, . . . , tk)(
X(N)(t1), X(N)(t2), . . . , X(N)(tk)

)
P−→
(
f(t1), f(t2), . . . , f(tk)

)
,
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as N →∞.

Proof.

P

(∥∥∥∥(X(N)(t1), X(N)(t2), . . . , X(N)(tk)
)
−
(
f(t1), f(t2), . . . , f(tk)

)∥∥∥∥ > ε

)

≤ P
(∣∣∣X(N)(t1)− f(t1)

∣∣∣+ · · ·+
∣∣∣X(N)(tk)− f(tk)

∣∣∣ > ε

)
≤ P
(∣∣∣X(N)(t1)− f(t1)

∣∣∣ > ε

k

)
+ · · ·+ P

(∣∣∣X(N)(tk)− f(tk)
∣∣∣ > ε

k

)
N→∞−→ 0,

with ‖·‖ the Euclidean distance in Rk.

2.3.4 Tightness

It is known that when a sequence of random processes is tight and its finite-dimensional
distributions converge to a continuous limit, then this sequence converges u.o.c.; see [28,
Thm. 7.1, p. 80]. From [28, Thm. 7.3, p. 82], we know that a process (X(N)(t), t ∈ [0, T ]) is
tight when for all positive η there exists an a and an integer N0 such that

P
(∣∣∣X(N)(0)

∣∣∣ > a

)
≤ η, N ≥ N0, (2.3.26)

and for all ε > 0 and η > 0, there exists a 0 < δ < 1 and an integer N0 such that

1
δ
P

(
sup

s∈[t,t+δ]

∣∣∣X(N)(s)−X(N)(t)
∣∣∣ > ε

)
≤ η, N ≥ N0. (2.3.27)

The conditions given in Equations (2.3.26) and (2.3.27) hold for stochastic processes in the
space of continuous functions. The process

(
Q

(N)
(α,β)(tN

3 logN)
/(
N logN

)
, t ∈ [0, T ]

)
does

not lie in this space, because Q(N)
(α,β) (n) = Q

(N)
(α,β)

(
bnc
)
. However, since the candidate limit

(q(t), t ∈ [0, T ]) is a continuous function, the conditions in (2.3.26) and (2.3.27) do also apply
on
(
Q

(N)
(α,β)(tN

3 logN)
/(
N logN

)
, t ∈ [0, T ]

)
; see [28, Cor. 13.4, p. 142].

In order to prove tightness for the process given in Theorem 2.1, we need to prove
tightness of the maximum of two processes, as Equation (2.2.10) shows. In Lemma 2.10, we
show that it suffices to prove tightness of the two processes separately. Then, in Lemmas
2.11 and 2.12, we prove the tightness of the two parts.

Lemma 2.10. Assume that (X(N)(s), s ∈ [0, t]) and (Y (N)(s), s ∈ [0, t]) converge to
functions (k(s), s ∈ [0, t]) and (l(s), s ∈ [0, t]) u.o.c., respectively. Then, the process
(max(X(N)(s), Y (N)(s)), s ∈ [0, t]) converges to (max(k(s), l(s)), s ∈ [0, t]) u.o.c.
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Proof. The lemma holds because of the fact that

P

(
sup
s∈[0,t]

∣∣∣max(X(N)(s), Y (N)(s))−max(k(s), l(s))
∣∣∣ > ε

)

≤ P

(
sup
s∈[0,t]

(max(X(N)(s), Y (N)(s))−max(k(s), l(s))) > ε

)

+ P

(
sup
s∈[0,t]

(max(k(s), l(s))−max(X(N)(s), Y (N)(s))) > ε

)

≤ P

(
sup
s∈[0,t]

max(X(N)(s)− k(s), Y (N)(s)− l(s)) > ε

)

+ P

(
sup
s∈[0,t]

max(k(s)−X(N)(s), l(s)− Y (N)(s)) > ε

)

≤ 2P

(
sup
s∈[0,t]

∣∣∣X(N)(s)− k(s)
∣∣∣ > ε

)
+ 2P

(
sup
s∈[0,t]

∣∣∣Y (N)(s)− l(s)
∣∣∣ > ε

)
N→∞−→ 0.

Lemma 2.11 (Tightness of the first part). For ε > 0, η > 0, T > 0 and Q(N)
(α,β) (0) = 0,

∃ 0 < δ < 1 and an integer N0 such that for all t ∈ [0, T ],

1
δ
P

 sup
s∈[t,t+δ]

∣∣∣∣∣Q
(N)
(α,β)

(
sN3 logN

)
N logN −

Q
(N)
(α,β)

(
tN3 logN

)
N logN

∣∣∣∣∣ ≥ ε
 ≤ η, N ≥ N0. (2.3.28)

Proof. We take t > 0. From Lemma 2.1, and the fact that (R̃(N)
i , i ≤ N) given in (2.3.1)

is a sequence of random walks that satisfy the duality principle, we know that for N large
enough,

1
δ
P

 sup
s∈[t,t+δ]

∣∣∣∣∣Q
(N)
(α,β)

(
sN3 logN

)
N logN −

Q
(N)
(α,β)

(
tN3 logN

)
N logN

∣∣∣∣∣ ≥ ε
 (2.3.29)

≤ 1
δ
P

(
sup

0≤s≤δ
max
i≤N

R̃
(N)
i (sN3 logN) + 2 sup

0≤s≤δ
max
i≤N
−R̃(N)

i (sN3 logN) ≥ ε

)
+ o(1)

(2.3.30)

≤ 1
δ
P

(
sup

0≤s≤δ
max
i≤N

R̃
(N)
i (sN3 logN) ≥ ε

2

)
(2.3.31)



2.3 Proofs 49

+ 1
δ
P

(
2 sup

0≤s≤δ
max
i≤N
−R̃(N)

i (sN3 logN) ≥ ε

2

)
+ o(1). (2.3.32)

Now we focus on the term in (2.3.31). The analysis of the main term in (2.3.32) goes
analogously:

1
δ
P

(
sup

0≤s≤δ
max
i≤N

R̃
(N)
i (sN3 logN) ≥ ε

2

)
(2.3.33)

= 1
δ
P

(
sup

0≤s≤δ
max
i≤N

Ñ(N)
A

(
sN3 logN

)
+ Ñ(N)

S,i

(
sN3 logN

)
logN ≥ ε

2

)
(2.3.34)

≤ 1
δ
P

(
sup

0≤s≤δ

Ñ(N)
A

(
sN3 logN

)
logN ≥ ε

4

)
+ 1
δ
P

(
sup

0≤s≤δ
max
i≤N

Ñ(N)
S,i

(
sN3 logN

)
logN ≥ ε

4

)
.

(2.3.35)

In the proof of Lemma 2.6, we already showed that the second term in (2.3.35) is small. With
a similar proof as in Lemma 2.6, one can also prove that the first term is small. Concluding,
the process

(
Q

(N)
(α,β)(tN

3 logN)
/(
N logN

)
, t ∈ [0, T ]

)
is tight, when Q(N)

(α,β) (0) = 0.

Lemma 2.12 (Tightness of the second part). For ε > 0, η > 0 and T > 0, ∃ 0 < δ < 1 and
an integer N0 such that for all t ∈ [0, T ]

1
δ
P
(

sup
s∈[t,t+δ]

∣∣∣∣max
i≤N

N(N)
A

(
sN3 logN

)
−N(N)

S,i

(
sN3 logN

)
+Q

(N)
i (0)

N logN

−max
i≤N

N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)
+Q

(N)
i (0)

N logN

∣∣∣∣ > ε

)
< η, N ≥ N0.

(2.3.36)

Furthermore, for all η there exists an a > 0 such that

P
(
Q

(N)
(α,β) (0)
N logN > a

)
< η. (2.3.37)

Proof. First, we observe that for a random variable X, P
(
|X| > ε

)
≤ P(X > ε)+P(−X > ε).

Thus, we can remove the absolute values in (2.3.36) and examine both cases. Since both
cases have similar proofs, we only write down the proof for the first case.

1
δ
P
(

sup
s∈[t,t+δ]

(
max
i≤N

N(N)
A

(
sN3 logN

)
−N(N)

S,i

(
sN3 logN

)
+Q

(N)
i (0)

N logN

−max
i≤N

N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)
+Q

(N)
i (0)

N logN

)
> ε

)
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≤ 1
δ
P

(
sup

s∈[t,t+δ]

(
max
i≤N

(
N(N)
A

(
sN3 logN

)
−N(N)

S,i

(
sN3 logN

)
N logN

−
N(N)
A

(
tN3 logN

)
−N(N)

S,i

(
tN3 logN

)
N logN

)
> ε

)

= 1
δ
P

 sup
0≤s≤δ

(
max
i≤N

N(N)
A

(
sN3 logN

)
−N(N)

S,i

(
sN3 logN

)
N logN

)
> ε

+ o(1).

This is the same expression as Equation (2.3.34). In Lemma 2.11, it is proven that this
expression will be small. At t = 0, we should choose a > 0 such that (2.3.37) holds for
N ≥ N0. This is the case because we know that Q(N)

(α,β) (0) /(N logN) P−→ q(0), as N →∞.
The lemma follows.

Corollary 2.1 (Tightness). The process
(
Q

(N)
(α,β)(tN

3 logN)
/(
N logN

)
, t ∈ [0, T ]

)
is tight.

Proof. The process
(
Q

(N)
(α,β)(tN

3 logN)
/(
N logN

)
, t ∈ [0, T ]

)
can be written as a maximum

of two processes. In Lemmas 2.11 and 2.12, it is proven that these processes are tight. Then
from Lemma 2.10, it follows that

(
Q

(N)
(α,β)(tN

3 logN)
/(
N logN

)
, t ∈ [0, T ]

)
is tight.

Proof of Theorem 2.1. In Theorem 2.2, we proved that for fixed t, the stochastic process
converges in probability to a constant, in Theorem 2.3, we proved that the finite-dimensional
distributions converge and in Corollary 2.1, we showed that the process is tight. Thus the
convergence holds u.o.c.

We now prove that the scaled process in steady state converges to the constant α/(2β).

Proof of Proposition 2.2. Since we look at the system in steady state, we can assume w.l.o.g.
that Q(N)

(α,β) (0) = 0. Then, we have

Q
(N)
(α,β) (∞)
N logN ≥st.

Q
(N)
(α,β)

(
α/(2β2)N3 logN

)
N logN ,

because Q(N)
(α,β) (n) d= maxi≤N sup0≤k≤n(N(N)

A (k)−N(N)
S,i (k)). We know by Lemma 2.5 that

Q
(N)
(α,β)

(
α/(2β2)N3 logN

)
N logN

P−→ α

2β ,

as N →∞. Furthermore, we know by Lemma 2.7 that for all δ > 0,

lim sup
N→∞

P

(
Q

(N)
(α,β) (∞)
N logN >

α

2β + δ

)
= 0.

The proposition follows.
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2.4. Taylor expansion of θ(u,N)
A

In Lemma 2.7, we used a second-order Taylor approximation to find an asymptotic solution
of a moment-generating function. In this section, we elaborate on the techniques how to find
this asymptotic solution.

The parameter θ(u,N)
A is the strictly positive solution to the equation

E
[
eθ

(u,N)
A

X(u,N)(j)
]

=
(
α

N
+ β

N2

)
exp

(
θ

(u,N)
A

(
−1 + α

N
+ β

N2 − ε(N)
))

+
(

1− α

N
− β

N2

)
exp

(
θ

(u,N)
A

(
α

N
+ β

N2 − ε(N)
))

= 1,

with ε(N) = m/N2. We found an approximation of θ(u,N)
A , of 2m/(αN). To investigate the

behavior of θ(u,N)
A more carefully, we look at the function θ(x) such that

f(x, θ(x)) =
(
αx+ βx2) exp(θ(x)

(
−1 + αx+ βx2 −mx2))

+
(
1− αx− βx2) exp(θ(x)

(
αx+ βx2 −mx2)) = 1.

When we set xN = 1/N , we get f(xN , θ(xN )) = E
[
eθ

(u,N)
A

X(u,N)(j)
]

= 1, thus θ(xN ) =

θ
(u,N)
A . We are interested in the case where N is large, therefore we have to investigate f
for x around 0. Since f(x, θ(x)) = 1, we know that f (n)(0, θ(0)) = 0 for all n ≥ 1. When we
solve these equations for θ iteratively, we can find θ(i)(0) for all i ≥ 0 and we get a Taylor
expansion of θ(x) around 0. Since f(x, θ(x)) = 1, we know that

d

dx
f(x, θ(x))

∣∣∣∣
x=0

= −α+ αe−θ(0) + αθ(0) = 0.

Hence, θ(0) = 0. When we look at the second and the third derivative of f(x, θ(x)) around
0, while using that θ(0) = 0, we see

d2

dx2 f(x, θ(x))
∣∣∣∣
x=0

= 0,

and

d3

dx3 f(x, θ(x))
∣∣∣∣
x=0

= 3θ′(0)
(
αθ′(0)− 2m

)
.

Because we know that f(x, θ(x)) = 1, we solve 3θ′(0)
(
αθ′(0)− 2m

)
= 0. This gives θ′(0) = 0

or θ′(0) = 2m/α. θ′(0) = 0 indicates the situation that θ ≡ 0. If we now use the information
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that θ′(0) = 2m/α and look at the fourth derivative of f , we see that

d4

dx4 f(x, θ(x))
∣∣∣∣
x=0

= 4m

(
3θ′′(0)−

4m
(
3α2 − 3β + 2m

)
α2

)
= 0.

This gives that θ′′(0) = 4m
(
3α2 − 3β + 2m

)
/3α2. In general, we can compute each

derivative of θ(0) iteratively. This gives

θ(x) = 2m
α
x+

4m
(
3α2 − 3β + 2m

)
3α2

x2

2 +O(x3).

Since the function f(x, θ) − 1 is analytic, we know by the implicit function theorem that
the solution θ(x) is also analytic. So for x = 1/N and N is large enough we know that
θ

(u,N)
A = 2m/(αN) +O

(
1/N2) .

2.5. Proofs of Lemmas 2.1, 2.2, 2.3, and 2.4

Proof of Lemma 2.1. We take s > t > 0. We write tN = tN3 logN , sN = sN3 logN , etc.
We first prove that for sN > tN , the following upper bound holds:

Q
(N)
(α,β) (sN )
N logN −

Q
(N)
(α,β) (tN )
N logN ≤max

i≤N

∣∣∣R̃(N)
i (sN )− R̃(N)

i (tN )
∣∣∣

+ max
i≤N

sup
r∈[tN ,sN ]

(
R̃

(N)
i (tN )− R̃(N)

i (r)
)
. (2.5.1)

Due to the defined auxiliary processes in Definition 2.4, we can write the maximum
queue length in terms of R̃

(N)
i as in Equation (2.3.6). Similarly, we can rewrite

Q
(N)
(α,β)(sN )/(N logN)−Q(N)

(α,β)(tN )/(N logN) as

max
i≤N

sup
r∈[0,sN ]

(
R̃

(N)
i (sN )− R̃(N)

i (r)
)
−max

i≤N
sup

u∈[0,tN ]

(
R̃

(N)
i (tN )− R̃(N)

i (u)
)

= max
i≤N

[
R̃

(N)
i (sN )− R̃(N)

i (tN ) + sup
r∈[0,sN ]

(
R̃

(N)
i (tN )− R̃(N)

i (r)
)]

−max
i≤N

sup
u∈[0,tN ]

(
R̃

(N)
i (tN )− R̃(N)

i (u)
)
.

Therefore, the following upper bounds hold:

Q
(N)
(α,β) (sN )
N logN −

Q
(N)
(α,β) (tN )
N logN

≤ max
i≤N

(
R̃

(N)
i (sN )− R̃(N)

i (tN )
)

+ max
i≤N

sup
r∈[0,sN ]

(
R̃

(N)
i (tN )− R̃(N)

i (r)
)

−max
i≤N

sup
u∈[0,tN ]

(
R̃

(N)
i (tN )− R̃(N)

i (u)
)
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≤ max
i≤N

(
R̃

(N)
i (sN )− R̃(N)

i (tN )
)

+ max
i≤N

[
sup

r∈[0,sN ]

(
R̃

(N)
i (tN )− R̃(N)

i (r)
)
− sup
u∈[0,tN ]

(
R̃

(N)
i (tN )− R̃(N)

i (u)
)]

.

Observe that both random variables supr∈[0,sN ]

(
R̃

(N)
i (tN )− R̃(N)

i (r)
)

and supu∈[0,tN ](
R̃

(N)
i (tN )− R̃(N)

i (u)
)
are non-negative. Furthermore,

sup
r∈[0,sN ]

(
R̃

(N)
i (tN )− R̃(N)

i (r)
)
− sup
u∈[0,tN ]

(
R̃

(N)
i (tN )− R̃(N)

i (u)
)

≤ sup
r∈[tN ,sN ]

(
R̃

(N)
i (tN )− R̃(N)

i (r)
)
.

Now, we can conclude that

Q
(N)
(α,β) (sN )
N logN −

Q
(N)
(α,β) (tN )
N logN

≤ max
i≤N

(
R̃

(N)
i (sN )− R̃(N)

i (tN )
)

+ max
i≤N

[
sup

r∈[0,sN ]

(
R̃

(N)
i (tN )− R̃(N)

i (r)
)
− sup
u∈[0,tN ]

(
R̃

(N)
i (tN )− R̃(N)

i (u)
)]

≤ max
i≤N

∣∣∣R̃(N)
i (sN )− R̃(N)

i (tN )
∣∣∣+ max

i≤N
sup

r∈[tN ,sN ]

(
R̃

(N)
i (tN )− R̃(N)

i (r)
)
,

and hence the inequality in Equation (2.5.1) is satisfied. We can similarly deduce the lower
bound

Q
(N)
(α,β) (sN )
N logN −

Q
(N)
(α,β) (tN )
N logN ≥ −max

i≤N

∣∣∣R̃(N)
i (tN )− R̃(N)

i (sN )
∣∣∣ . (2.5.2)

To show this, we write

Q
(N)
(α,β) (sN )
N logN −

Q
(N)
(α,β) (tN )
N logN

= max
i≤N

sup
r∈[0,sN ]

(
R̃

(N)
i (sN )− R̃(N)

i (r)
)

−max
i≤N

sup
u∈[0,tN ]

(
R̃

(N)
i (tN )− R̃(N)

i (u)
)

= max
i≤N

sup
r∈[0,sN ]

(
R̃

(N)
i (sN )− R̃(N)

i (r)
)

−max
i≤N

[
R̃

(N)
i (tN )− R̃(N)

i (sN ) + sup
u∈[0,tN ]

(
R̃

(N)
i (sN )− R̃(N)

i (u)
)]
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≥ max
i≤N

sup
r∈[0,sN ]

(
R̃

(N)
i (sN )− R̃(N)

i (r)
)

−max
i≤N

(
R̃

(N)
i (tN )− R̃(N)

i (sN )
)
−max

i≤N
sup

u∈[0,tN ]

(
R̃

(N)
i (sN )− R̃(N)

i (u)
)
.

Observe that

sup
r∈[0,sN ]

(
R̃

(N)
i (sN )− R̃(N)

i (r)
)
≥ sup
u∈[0,tN ]

(
R̃

(N)
i (sN )− R̃(N)

i (u)
)
,

because sN > tN , so on the left side of the inequality, the supremum is taken over a larger
interval than on the right side of the inequality. From this, we can conclude that

Q
(N)
(α,β) (sN )
N logN −

Q
(N)
(α,β) (tN )
N logN

≥ max
i≤N

sup
r∈[0,sN ]

(
R̃

(N)
i (sN )− R̃(N)

i (r)
)

−max
i≤N

(
R̃

(N)
i (tN )− R̃(N)

i (sN )
)
−max

i≤N
sup

u∈[0,tN ]

(
R̃

(N)
i (sN )− R̃(N)

i (u)
)

≥ −max
i≤N

(
R̃

(N)
i (tN )− R̃(N)

i (sN )
)
≥ −max

i≤N

∣∣∣R̃(N)
i (tN )− R̃(N)

i (sN )
∣∣∣ ,

and indeed (2.5.2) holds. Combining (2.5.1) and (2.5.2) gives∣∣∣∣∣Q
(N)
(α,β) (sN )
N logN −

Q
(N)
(α,β) (tN )
N logN

∣∣∣∣∣
≤ max

i≤N

∣∣∣R̃(N)
i (sN )− R̃(N)

i (tN )
∣∣∣+ max

i≤N
sup

r∈[tN ,sN ]

(
R̃

(N)
i (tN )− R̃(N)

i (r)
)
.

Thus,

sup
s∈[tN ,tN+δN ]

∣∣∣∣∣Q
(N)
(α,β) (s)
N logN −

Q
(N)
(α,β) (tN )
N logN

∣∣∣∣∣
≤ sup
s∈[tN ,tN+δN ]

max
i≤N

∣∣∣R̃(N)
i (s)− R̃(N)

i (tN )
∣∣∣+ sup

s∈[tN ,tN+δN ]
max
i≤N

(
R̃

(N)
i (tN )− R̃(N)

i (s)
)
.

(2.5.3)

Since both random variables sups∈[tN ,tN+δN ]

(
R̃

(N)
i (tN )− R̃(N)

i (s)
)

and sups∈[tN ,tN+δN ](
R̃

(N)
i (s)− R̃(N)

i (tN )
)
are non-negative, we have that

sup
s∈[tN ,tN+δN ]

max
i≤N

∣∣∣R̃(N)
i (s)− R̃(N)

i (tN )
∣∣∣
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≤ sup
s∈[tN ,tN+δN ]

max
i≤N

(
R̃

(N)
i (s)− R̃(N)

i (tN )
)

+ sup
s∈[tN ,tN+δN ]

max
i≤N

(
R̃

(N)
i (tN )− R̃(N)

i (s)
)
.

(2.5.4)

Combining the inequalities in (2.5.3) and (2.5.4) gives us the desired result.

Proof of Lemma 2.2. We first prove the bound in (2.3.9). The random variable Ñ(N)
S,i (n) is

a sum of independent and identically distributed random variables with E
[
±Ñ(N)

S,i (1)
]

= 0,

and Var
(
±Ñ(N)

S,i (1)
)

=
(
1− α/N

)
α/N3. So, the random variable

±M (N)
i,1 (t) =

±Ñ(N)
S,i

(
tN3 logN

)√
tN3 logN√

αt(1− α/N) logNbtN3 logNc

has mean 0 and variance 1, and satisfies the central limit theorem. From [109] it follows that
for all y,∣∣∣∣P(±M (N)

i,1 (t) < y
)
− Φ(y)

∣∣∣∣
≤ C 1√

btN3 logNc
E

∣∣∣∣∣ ±Ñ(N)
S,i (1)√

αt(1− α/N) logN

√
tN3 logN

∣∣∣∣∣
3
 1

1 + |y|3 .

Observe that for N large enough and 0 < ε < t,
⌊
tN3 logN

⌋
> (t − ε)N3 logN . We also

have that

E

∣∣∣∣∣ ±Ñ(N)
S,i (1)√

αt(1− α/N) logN

√
tN3 logN

∣∣∣∣∣
3


= N4√N
α(1− α/N)

√
α(1− α/N)N3

((
1− α

N

)3 α

N
+ α3

N3

(
1− α

N

))
≤ 2
√
N

(1 + α2)√
α

,

which holds for N > max(1, 2α). Thus, the bound in (2.3.9) follows for N large enough,
with ct = 2C(1 + α2)/

√
α(t− ε).

The proof of the bound given in (2.3.10) follows along the same lines. The random
variable Ñ(N)

S,i (n) is a sum of independent and identically distributed random variables

with E
[
±Ñ(N)

S,i (1)
]

= 0, and Var
(
±Ñ(N)

S,i (1)
)

=
(
1− α/N

)
α/N3. So, ±M (N)

i,2 (t) =

±Ñ(N)
S,i

(
tN3)√tN3/

√
αt(1− α/N)btN3c has mean 0 and variance 1, and satisfies the

central limit theorem. From [109] it follows that for all y,∣∣∣∣P(±M (N)
i,2 (t) < y

)
− Φ(y)

∣∣∣∣ ≤ C 1√
btN3c

E

∣∣∣∣∣ ±Ñ(N)
S,i (1)√

αt(1− α/N)

√
tN3

∣∣∣∣∣
3
 1

1 + |y|3 .
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Similar to before, we have

E

∣∣∣∣∣ ±Ñ(N)
S,i (1)√

αt(1− α/N)

√
tN3

∣∣∣∣∣
3
 ≤ 2

√
N

(1 + α2)√
α

,

for N large enough, thus the bound in (2.3.10) follows for N large enough.

Proof of Lemma 2.3. We first prove the limsup in (2.3.11). We write

K1(x) = 1−

Φ

 x2/5√N3 logN√
α
(
1− α/N

)
btN3 logNc



− ct

N
√

logN
1

1 +

(
x2/5

√
N3 logN√

α(1−α/N)btN3 logNc

)3


N

and

K2(x) = −Φ

 x2/5√N3 logN√
α
(
1− α/N

)
btN3 logNc


N

+

1 + ct

N
√

logN
1

1 +

(
x2/5

√
N3 logN√

α(1−α/N)btN3 logNc

)3


N

.

We argue that for all x > 0, K1(x) ≤ K2(x). This inequality has the form 1 − (u − v)N ≤
−uN + (1 + v)N for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, and N > 1. To see why this is true, we first
observe for v = 0, we get that 1− (u− v)N = −uN + (1 + v)N = 1−uN . Furthermore, when
we take the derivatives of 1− (u− v)N and −uN + (1 + v)N with respect to v, we get

∂

∂v
(1− (u− v)N ) = N(u− v)N−1,

and
∂

∂v
(−uN + (1 + v)N ) = N(1 + v)N−1.

Because both u and v are in [0, 1], we see that ∂
∂v

(1− (u−v)N ) = N(u−v)N−1 ≤ ∂
∂v

(−uN +
(1 + v)N ) = N(1 + v)N−1. Thus, the inequality follows.
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Now, we can write

E

max

(
0,

maxi≤N ±Ñ(N)
S,i

(
tN3 logN

)
logN

)5/2


=
∫ ∞

0
P

(
maxi≤N ±Ñ(N)

S,i

(
tN3 logN

)
logN > x2/5

)
dx

=
∫ ∞

0
P

max
i≤N
±M (N)

i,1 (t) > x2/5 logN√
αt
(
1− α/N

)
logN

√
tN3 logN√
btN3 logNc

dx

=
∫ ∞

0
1− P

±M (N)
i,1 (t) < x2/5√N3 logN√

α
(
1− α/N

)
btN3 logNc


N

dx

≤
∫ ∞

0
K1(x)dx ≤

∫ ∞
0

K2(x)dx

= E

max

(
0,
√
αt(1− α/N) maxi≤N Xi√

logN

√
btN3 logNc√
tN3 logN

)5/2
 (2.5.5)

+
∫ ∞

0
−1 +

1 + ct

N
√

logN
1

1 +

(
x2/5

√
N3 logN√

α(1−α/N)btN3 logNc

)3


N

dx, (2.5.6)

with Xi standard normally distributed. By Pickands’ theorem [123, Thm. 3.2, p. 888], we
know that the expectation in (2.5.5) converges to (2αt)5/4. Furthermore, the term in (2.5.6)
is upper bounded by

∫ ∞
0
−1 + exp

(
ct

/(√
logN

(
1 +

(
x2/5√N3 logN√

α
(
1− α/N

)
btN3 logNc

)3)))
dx. (2.5.7)

We let y = 1
/(

1 +
(

x2/5√N3 logN√
α(1−α/N)btN3 logNc

)3)
. Then the term in (2.5.7) can be rewritten

as

(
btN3 logNc
N3(logN)2

)5/4 ∫ 1

0

5
(√

α
(
1− α/N

))5/2

6(1− y)1/6y11/6

(
−1 + e

ct√
logN

y
)
dy

N→∞−→ 0. (2.5.8)

The limsup in (2.3.11) follows.
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The analysis to prove the limsup in (2.3.12) is similar. The term exp(ct/
√

logNy) on
the left-hand side in (2.5.8) should be replaced with exp(cty), which is due to the differences
between (2.3.9) and (2.3.10). Furthermore, as we have a different temporal and spatial
scaling, the term (

btN3 logNc
N3(logN)2

)5/4

should be replaced with (
btN3c

N3(logN)

)5/4

.

Still, we get that the resulting quantity

(
btN3c

N3(logN)

)5/4 ∫ 1

0

5
(√

α
(
1− α/N

))5/2

6(1− y)1/6y11/6

(
−1 + ecty

)
dy

converges to 0 as N →∞.

Proof of Lemma 2.4. In order to prove that

max
i≤N

(√
αtXi√
logN

+ Q
(N)
i (0)

N logN

)
P−→ g(t, q(0)),

as N → ∞, we first observe that, from the definition of Q(N)
i (0) in Theorem 2.1, it is easy

to see that∣∣∣∣∣∣max
i≤N

(√
αtXi√
logN

+ Q
(N)
i (0)

N logN

)
−max

i≤N

(√
αtXi√
logN

+ rNUi
N logN

)∣∣∣∣∣∣
≤ max

i≤N

V
(N)
i

N logN + 1
N logN

P−→ 0,

as N →∞. Thus, from this, it follows that

max
i≤N

(√
αtXi√
logN

+ Q
(N)
i (0)

N logN

)
P−→ g(t, q(0))

⇐⇒ max
i≤N

√αtXi + rNUi

N
√

logN√
logN

 P−→ g(t, q(0)),

as N → ∞. Let us first consider that Ui satisfies Assumption 2.4, thus Ui has a
finite right endpoint. Theorem 2.1 says that when Ui has a finite right endpoint, that
g(t, q(0)) =

√
2αt + q(0). To prove this, first observe that g(t, q(0)) ≤

√
2αt + q(0) because

maxi≤N
√
αtXi/

√
logN P−→

√
2αt and Q

(N)
(α,β) (0) /(N logN) P−→ q(0) as N → ∞. Hence,
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the only thing we need to establish is that for all γ <
√

2αt+ q(0),

N P
(√

αtXi + rNUi

N
√

logN
≥ γ
√

logN
)

N→∞−→ ∞.

When γ <
√

2αt, this is obvious, because Ui > 0, and maxi≤N
√
αtXi/

√
logN P−→

√
2αt as

N → ∞. So, let us assume that
√

2αt ≤ γ <
√

2αt + q(0). Because Ui has a finite right
endpoint, rN/(N

√
logN) =

√
logN . By convolution, we have that

N P
(√

αtXi +
√

logNUi ≥ γ
√

logN
)

= N P
(√

αtXi ≥ γ
√

logN
)

+N

∫ γ
√

logN

−∞
P
(√

logNUi > γ
√

logN − z
)
e−z

2/(2αt)
√

2αtπ
dz

≥ N
∫ γ

−∞
P(Ui > γ − v)N

−v2/(2αt)
√

2αtπ

√
logNdv

=
∫ γ

γ−q(0)
P(Ui > γ − v)N

1−v2/(2αt)
√

2αtπ

√
logNdv.

From this, it follows, that when 1 − v2/(2αt) > 0, this integral converges to ∞. We chose√
2αt ≤ γ <

√
2αt+ q(0); thus the lower bound γ− q(0) in the integral is smaller than

√
2αt

and hence this integral converges to ∞. Thus g(t, q(0)) =
√

2αt+ q(0).
Let us now consider the scenario described in Assumption 2.5. Then g(t, q(0)) satisfies

the limit given in (2.2.7). We have the straightforward limit result that for standard
normally distributed Xi, limt→∞− log(P(Xi ≥ ut))/ − log(P(Xi ≥ t)) = u2. Furthermore,
following the assumptions on Ui in Theorem 2.1, we know that limt→∞− log(P(Ui ≥ vt))/−
log(P(Ui ≥ t)) = h(v). Thus from Lemma 2.13, we know that for sequences (aN , N ≥
1), (bN , N ≥ 1) with P(Xi ≥ aN ) = P(Ui ≥ bN ) = 1/N , that

max
i≤N

(
Xi
aN

+ Ui
bN

)
P−→ sup

(u,v)
{u+ v : u2 + h(v) ≤ 1, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1},

as N →∞. Now, we can use this result to prove that
maxi≤N

(√
αtXi/

√
logN + rNUi/(N logN)

)
converges to the limit in (2.2.7). We first

observe that

max
i≤N

(√
αtXi√
logN

+ rNUi
N logN

)
= max

i≤N

(√
2αt Xi√

2 logN
+ q(0) rNUi

q(0)N logN

)
.

We have that aN/
√

2 logN N→∞−→ 1, because maxi≤N Xi/aN
P−→ 1,
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and maxi≤N Xi/
√

2 logN P−→ 1, as N →∞. Analogously, bNq(0)N logN/rN
N→∞−→ 1. Thus,∣∣∣∣∣max

i≤N

(√
2αtXi

aN
+ q(0) Ui

bN

)
−max

i≤N

(√
αtXi√
logN

+ rNUi
N logN

)∣∣∣∣∣ P−→ 0,

as N → ∞. With an analogous proof as before, maxi≤N
(√

2αtXi/aN + q(0)Ui/bN
)

converges to the limit in (2.2.7).

2.6. Extreme values of sums of random variables

In this section, we prove convergence results of the maximum of N sums of k random
variables. In order to do so, we use and extend results from [44] and [55].

Lemma 2.13. Consider sequences of continuous random variables (Y (1)
i , i ≥ 1), (Y (2)

i , i ≥
1), . . . , (Y (k)

i , i ≥ 1), where all random variables in the sequence (Y (j)
i , i ≥ 1) are identically

and independently distributed and have infinite right endpoints. Furthermore, Y (j)
i and Y (l)

m

are independent for all j, l ∈ {1, 2, . . . , k} and i,m ≥ 1, and Y (j)
i satisfies Assumption 2.5 with

function h(j)(u(j)). Finally, we have sequences (a(j)
N , N ≥ 1) such that P(Y (j)

i ≥ a(j)
N ) = 1/N .

We assume that the random variables Y (j)
i are relatively stable, thus maxi≤N Y (j)

i /a
(j)
N

P−→ 1,
as N →∞. Then

max
i≤N

 k∑
j=1

Y
(j)
i

a
(j)
N

 P−→ sup
(u(j),j≤k)


k∑
j=1

u(j) :
k∑
j=1

h(j)(u(j)) ≤ 1, u(j) ≤ 1 ∀ j ≤ k

 ,

as N →∞.

Proof. First, let us choose u(1), . . . , u(k) such that u(j) ≤ 1 for all j. It is a well-known result
[67, Eq. (5.4.5), p. 188] that

P
(
∪Ni=1 ∩kj=1

{
Y

(j)
i ≥ u(j)a

(j)
N

})
N→∞−→ 1

⇐⇒ N P
(
∩kj=1

{
Y

(j)
i ≥ u(j)a

(j)
N

})
N→∞−→ ∞.

From this, it follows that

logN +
k∑
j=1

log
(
P
(
Y

(j)
i ≥ u(j)a

(j)
N

))
N→∞−→ ∞.
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This is the case when

lim sup
N→∞


k∑
j=1

− log
(
P
(
Y

(j)
i ≥ u(j)a

(j)
N

))
logN

 < 1.

Similarly,

lim inf
N→∞


k∑
j=1

− log
(
P
(
Y

(j)
i ≥ u(j)a

(j)
N

))
logN

 > 1

⇒ P
(
∪Ni=1 ∩kj=1

{
Y

(j)
i ≥ u(j)a

(j)
N

})
N→∞−→ 0.

Because of the fact that we have P(Y (j)
i ≥ a(j)

N ) = 1/N , we can conclude that

lim
N→∞


k∑
j=1

− log
(
P
(
Y

(j)
i ≥ u(j)a

(j)
N

))
logN



= lim
N→∞


k∑
j=1

− log
(
P
(
Y

(j)
i ≥ u(j)a

(j)
N

))
− log

(
P
(
Y

(j)
i ≥ a(j)

N

))
 =

k∑
j=1

h(j)(u(j)).

Let us now call

c? = sup
(u(j),j≤k)


k∑
j=1

u(j) :
k∑
j=1

h(j)(u(j)) ≤ 1, u(j) ≤ 1 ∀ j ≤ k

 ,

and let ε > 0 be small. Then, we distinguish two scenarios. First, we consider the case where
#{j ≤ k : h(j)(u(j)) = 1(u(j) > 0)} ≤ k − 2. Then, there exists a sequence (u(1)

ε , . . . , u
(k)
ε )

such that
∑k

j=1 u
(j)
ε = c? − ε, and

∑k

j=1 h
(j)(u(j)

ε ) < 1. Therefore,

P

max
i≤N

 k∑
j=1

Y
(j)
i

a
(j)
N

 > c? − ε

 > P
(
∪Ni=1 ∩kj=1

{
Y

(j)
i ≥ u(j)

ε a
(j)
N

})
N→∞−→ 1.
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If #{j ≤ k : h(j)(u(j)) = 1(u(j) > 0)} ≥ k − 1, we know that c? = 1, because

sup
(u(j),j≤k)


k∑
j=1

u(j) :
k−1∑
j=1

1(u(j) > 0) + h(k)(u(k)) ≤ 1, u(j) ≤ 1 ∀ j ≤ k

 = 1,

and

sup
(u(j),j≤k)


k∑
j=1

u(j) :
k∑
j=1

1(u(j) > 0) ≤ 1, u(j) ≤ 1 ∀ j ≤ k

 = 1.

Furthermore, we know that

max
i≤N

 k∑
j=1

Y
(j)
i

a
(j)
N

 ≥st. max
i≤N

(
Y

(1)
i

a
(1)
N

)
+

k∑
j=2

Y
(j)
i

a
(j)
N

P−→ 1,

as N →∞, because we have for sequences (ai, i ≥ 1) and (bi, i ≥ 1), that maxi≤N (ai+ bi) ≥
maxi≤N (ai) + bi? , with i? satisfying ai? = maxi≤N (ai). Thus, at this moment we can
conclude that the limit cannot be smaller than c?. To prove that

P

max
i≤N

 k∑
j=1

Y
(j)
i

a
(j)
N

 > c? + ε

 N→∞−→ 0, (2.6.1)

we first observe that the boundary is given by {(u(j), j ≤ k) :
∑k

j=1 u
(j) = c? + ε}. We

already know that N P
(
Y

(j)
i > u(j)aN

)
N→∞−→ 0, for u(j) > 1. Hence,

lim sup
N→∞

P

max
i≤N

 k∑
j=1

Y
(j)
i

a
(j)
N

 > c? + ε

 > 0,

would mean that there are limiting points in the set {(u(j), j ≤ k) :
∑k

j=1 u
(j) ≥ c?+ε, u(j) ≤

1 ∀ j}. However, we know that for all (u(j), j ≤ k) with c? <
∑k

j=1 u
(j) < c? + ε that

N P(∩kj=1{Y
(j)
i ≥ u(j)a

(j)
N })

= exp

logN +
k∑
j=1

log(P(Y (j)
i ≥ u(j)a

(j)
N ))


= exp

(
logN

(
1−

k∑
j=1

h(j)(u(j))
)

(1 + o(1))
)

N→∞−→ 0.
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Thus, we know that there are no limiting points in the positive quadrants with starting
points (u(1), . . . , u(k)) with c? <

∑k

j=1 u
(j) < c? + ε. The union of a finite number of these

quadrants covers the set {(u(j), j ≤ k) :
∑k

j=1 u
(j) ≥ c? + ε, u(j) ≤ 1 ∀ j}, as the set

{(u(j), j ≤ k) :
∑k

j=1 u
(j) ≥ c? + ε, u(j) ≤ 1 ∀ j} is compact. For example, in the case where

k = 2,

{(u, v) : u+ v ≥ c? + ε, u ∈ [0, 1], v ∈ [0, 1]}

⊂ ∪d2/ε−1/2e+1
m=1

{
(u, v) : u ≥ c? − 1 + mε

2 , v ≥ 1 + ε

4 −
mε

2

}
. (2.6.2)

For k > 2, we can show in an inductive manner that this property also holds. For instance,
for k = 3, we have that

{(u, v, w) : u+ v + w ≥ c? + ε, u ∈ [0, 1], v ∈ [0, 1], w ∈ [0, 1]}

⊂ ∪d2/ε−1/2e+1
m=1

{
(u, v, w) : u+ v ≥ c? − 1 + mε

2 , w ≥ 1 + ε

4 −
mε

2 , u ∈ [0, 1], v ∈ [0, 1]
}
.

(2.6.3)

Now, we can repeat the procedure in (2.6.2) for the union in (2.6.3), and we get that the union
of a finite number of three-dimensional quadrants with starting points c∗ < u+v+w < c∗+ε
covers the set {(u, v, w) : u+ v+w ≥ c? + ε, u ∈ [0, 1], v ∈ [0, 1], w ∈ [0, 1]}. Hence, the limit
in (2.6.1) and the lemma follows.

Remark 2.1. We believe that this result can be extended to extremes of sums of dependent
random variables, when the joint tail probability is given by a copula function, and satisfies
some conditions. First, we consider sequences of continuous random variables (Y (1)

i , i ≥ 1),
(Y (2)
i , i ≥ 1), . . . , (Y (k)

i , i ≥ 1), where all random variables in the sequence (Y (j)
i , i ≥ 1) are

i.i.d. and have infinite right endpoints, and we have a function C : Rk → R such that for all
(u(1), . . . , u(k)),

P
(
∩kj=1

{
Y

(j)
i ≥ u(j)

})
= C(P(Y (1)

i ≥ u(1)), . . . ,P(Y (k)
i ≥ u(k))).

Second, we have a function H : Rk → R such that for (u(1), . . . , u(k)) ∈ [0, 1]k,

lim
t→∞

− log
(
C(P(Y (1)

i ≥ u(1)t), . . . ,P(Y (k)
i ≥ u(k)t))

)
− log

(
C(P(Y (1)

i ≥ t), 1, . . . , 1)
) = H(u(1), . . . , u(k)).

Finally, we have a sequence (aN , N ≥ 1) such that for all j, P(Y (j)
i ≥ aN ) ∼ 1/N as

N →∞, with Y (j)
i relatively stable. Here, the function H(u(1), . . . , u(k)) plays the same role

as
∑k

j=1 h
(j)(u(j)) in Lemma 2.13. In the proof of Lemma 2.13, we exploit the property of

mutual independence and we distinguish between different cases of the function h(j)(u(j)).
Thus, this result does not follow trivially and requires another proof.
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In Figure 2.5, we plot the part of the realization of the set{(
X

(1)
1 /aN , X

(2)
1 /aN

)
, . . . ,

(
X

(1)
N /aN , X

(2)
N /aN

)}
,

for which both coordinates have a positive value, together with the boundaries of the limiting
sets {x1/2 + y1/2 ≤ 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and {x2 + y2 ≤ 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},
respectively. The dashed lines have slope −1, and the points where these lines touch the
boundaries indicate the supremum of x + y over the limiting sets. As we see in Figure
2.5a, the dashed line touches the curve in (0, 1) and in (1, 0). From this, it follows that
when P(X(1,2) ≥ x) = exp(−

√
x) for all x ≥ 0, thus X(1,2) ∼ Weibull(1/2), we have that

maxi≤N (X(1)
1 /aN + X

(2)
1 /aN ) P−→ 1, as N → ∞. In the second case, the dashed line

touches the limiting curve in the point (
√

2/2,
√

2/2), thus, when X(1,2) ∼ N (0, 1), we
have that maxi≤N (X(1)

1 /aN + X
(2)
1 /aN ) P−→

√
2/2 +

√
2/2 =

√
2, as N → ∞. In general,

we have that when the tail of X(1,2) is exponential or heavier, but still relatively stable,
maxi≤N (X(1)

1 /aN + X
(2)
1 /aN ) P−→ 1, as N → ∞. When the tail of X(1,2) is lighter than

exponential, a non-trivial limit emerges.

(a) aN = (logN)2, X(1,2) ∼Weibull(1/2) (b) aN =
√

2 logN,X(1,2) ∼ N (0, 1)

Figure 2.5 Two-dimensional sample extremes of i.i.d. random variables in first quadrant with
extreme of sum, N = 104. The blue dots indicate the two-dimensional samples, the curve
indicates the border of the set {h(1)(u(1))+h(2)(u(2)) ≤ 1, u(j) ≤ 1}. The supremum of the set
{
∑2

j=1 u
(j) : h(1)(u(1)) + h(2)(u(2)) ≤ 1, u(j) ≤ 1} is achieved at the points where the dashed

line touches the red curve.

In Figure 2.6, we show the realization of the two-dimensional samples of binormally
distributed random variables, with ρ 6= 0. When ρ = −1/2, the limiting extreme-value
result of the sum equals 1, while for ρ = 1/2, the limit equals

√
3.
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(a) aN =
√

2 logN,X(1,2) ∼ N (0, 1), ρ = −1/2 (b) aN =
√

2 logN,X(1,2) ∼ N (0, 1), ρ = 1/2

Figure 2.6 Two-dimensional sample extremes of binormally distributed random variables in first
quadrant with extreme of sum, N = 104. The blue dots indicate the two-dimensional samples,
the curve indicates the border of the set {H(u(1), u(2)) ≤ 1, u(j) ≤ 1}. The supremum of the
set {

∑2
j=1 u

(j) : H(u(1), u(2)) ≤ 1, u(j) ≤ 1} is achieved at the points where the dashed line
touches the red curve.

2.6.1 How restrictive is Assumption 2.5?

In order to be able to prove the relative stability of sums of random variables, we impose
Assumption 2.5 on each random variable: for v ∈ [0, 1],

lim
t→∞

− log P(Ui > vt)
− log P(Ui > t) = h(v).

We will now investigate whether this is the case for all random variables Ui in the domain
of attraction of the Gumbel random variable.

Because Ui in the domain of attraction of the Gumbel random variable, we know that
for t large enough

P(Ui > t) = c(t)exp
(
−
∫ t

t0

1
fU (s)ds

)
,

with c, fU positive, c converging to a positive constant, and f ′U (t) converging to 0 as t→∞;
see [67, Thm. 1.2.6, p. 22]. Thus, for t large enough,

− log P(Ui > vt)
− log P(Ui > t) =

− log c(vt) +
∫ vt
t0

1/fU (s)ds

− log c(t) +
∫ t
t0

1/fU (s)ds
.

Because c(t) converges to a constant as t→∞, we can look at∫ vt
t0

1/fU (s)ds∫ t
t0

1/fU (s)ds
.



66 Chapter 2. Nearly deterministic arrivals and service times

By l’Hôspital we get that

lim
t→∞

∫ vt
t0

1/fU (s)ds∫ t
t0

1/fU (s)ds
= lim
t→∞

v
fU (t)
fU (vt) .

Thus the somewhat restrictive assumption on fU , will be that for all v ∈ [0, 1],

lim
t→∞

fU (t)
fU (vt)

exists. A choice of fU where this is violated, is

fU (t) = 1
(log t)(2 + sin(log t)) .

We take Ui a random variable with support on [2,∞), then for t > 2,

P(Ui > t) = exp

(
−
∫ t

2
(log s)(2 + sin(log s))ds

)
.

We have∫ t

2
(log s)(2 + sin(log s))ds

= 1
2(−4t+ t log(t)(sin(log(t)) + 4)

+ t(log(t)− 1)(− cos(log(t))) + 8− log(4)(4 + sin(log(2))) + (log(4)− 2) cos(log(2))).

Then, for v ∈ (0, 1),

− log P(Ui > vt)
− log P(Ui > t)

does not converge as t→∞.

2.7. Proof of Proposition 2.1

The proof of Proposition 2.1 follows the same lines as the proof of Theorem 2.1: we need
to prove pointwise convergence, the convergence of the finite-dimensional distributions, and
tightness of the maximum queue length under the temporal scaling of N3 and the spatial
scaling of N

√
logN . The convergence of the finite-dimensional distributions follows directly

from Lemma 2.3. In Lemmas 2.14 and 2.15, we prove the pointwise convergence and tightness
of the maximum queue length, respectively.

Lemma 2.14 (Pointwise convergence). Given Assumption 2.1 and Q(N)
(α,β) (0) = 0, then we
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have for all T > 0, that

P

∣∣∣∣∣Q
(N)
(α,β)

(
tN3)

N
√

logN
−
√

2αt

∣∣∣∣∣ > ε

 N→∞−→ 0 ∀ ε > 0.

Proof. First, we observe that by using the union bound, we get that

P

∣∣∣∣∣Q
(N)
(α,β)

(
tN3)

N
√

logN
−
√

2αt

∣∣∣∣∣ > ε


≤ P

∣∣∣∣∣Q
(N)
(α,β)

(
tN3)

N
√

logN
−
(√

2αt− βt√
logN

)∣∣∣∣∣ > ε

2

+ P
(

βt√
logN

>
ε

2

)
.

The second term on the right-hand side equals 0 when N is large enough. Thus, we only
need to focus on the first term. Now, we need to prove that

lim sup
N→∞

P

(
Q

(N)
(α,β)

(
tN3)

N
√

logN
>
√

2αt− βt√
logN

+ ε

2

)
= 0, (2.7.1)

and

lim inf
N→∞

P

(
Q

(N)
(α,β)

(
tN3)

N
√

logN
>
√

2αt− βt√
logN

− ε

2

)
= 1. (2.7.2)

In order to prove the first limit, we follow the proof of Lemma 2.6, where the same result
is proven for the maximum queue length under the temporal scaling of N3 logN and the
spatial scaling of N logN . Following the proof of Lemma 2.6, we see that

P

(
Q

(N)
(α,β)

(
tN3)

N
√

logN
>
√

2αt− βt√
logN

+ ε

2

)

≤ P

 sup
s∈[0,t]

∣∣∣∣∣Ñ
(N)
A

(
sN3)

√
logN

+ β
s√

logN

∣∣∣∣∣ > ε

4


+ P

 sup
s∈[0,t]

∣∣∣∣∣maxi≤N Ñ(N)
S,i

(
sN3)

√
logN

−
√

2αs

∣∣∣∣∣ > ε

4

.
(2.7.3)

Then, for the first term on the right-hand side of (2.7.3), we use a similar bound as in (2.3.16)
and get
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P

 sup
s∈[0,t]

∣∣∣∣∣Ñ
(N)
A

(
sN3)

√
logN

+ β
s√

logN

∣∣∣∣∣ > ε

4


≤ 64
ε2

(
1− α

N
− β

N2

)(
α

N
+ β

N2

)
btN3c

N2(logN) + o(1) N→∞−→ 0. (2.7.4)

For the second term on the right-hand side of (2.7.3), we prove, along the same lines as in the
proof of Lemma 2.6, that

(
maxi≤N Ñ(N)

S,i

(
sN3) /√logN, s ∈ [0, t]

)
converges to (

√
2αs, s ∈

[0, t]) u.o.c. Similarly to the limit given in (2.3.20), we use (2.3.10) from Lemma 2.2 to
conclude that

P

(
maxi≤N Ñ(N)

S,i

(
sN3)

√
logN

>
√

2αs+ ε

4

)

≤ 1− Φ

( √
2αs+ ε/4√
αs(1− α/N)

√
logN

√
sN3√
bsN3c

)N

+

(
1 + cs

N

1
1 + (

√
2 + ε/(4

√
αs)
√

logN(1 + o(1)))3

)N
− 1

N→∞−→ 0.

(2.7.5)

The proof that

P

(
maxi≤N Ñ(N)

S,i

(
sN3)

√
logN

>
√

2αs− ε

4

)
N→∞−→ 1

is analogous. As in the proof of Lemma 2.6, we use Doob’s maximal submartingale inequality
together with the upper bound in (2.3.12) in Lemma 2.3 to prove that for all η > 0 and
ε > 0,

lim sup
N→∞

1
η
P

(
sup
s∈[0,η]

max
i≤N

Ñ(N)
S,i

(
sN3)

√
logN

> ε

)
+ lim sup

N→∞

1
η
P

(
sup
s∈[0,η]

max
i≤N

−Ñ(N)
S,i

(
sN3)

√
logN

> ε

)

≤ lim sup
N→∞

1
ηε5/2

E

max

(
max
i≤N

Ñ(N)
S,i

(
ηN3)

√
logN

, 0

)5/2


+ lim sup
N→∞

1
ηε5/2

E

max

(
max
i≤N

−Ñ(N)
S,i

(
ηN3)

√
logN

, 0

)5/2


≤ 2η1/4(2α)5/4

ε5/2
.

From this, it follows by the same arguments that
(

maxi≤N Ñ(N)
S,i

(
sN3) /√logN, s ∈ [0, t]

)
converges to (

√
2αs, s ∈ [0, t]) u.o.c. Thus, we can conclude that the limsup given in (2.7.1)
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holds.
Now, in order to prove that the liminf in (2.7.2) also holds, we follow the proof of Lemma

2.8. We have the lower bound

Q
(N)
(α,β)

(
tN3)

N
√

logN
≥st. max

i≤N

N(N)
A

(
tN3)−N(N)

S,i

(
tN3)

N
√

logN
.

From the limit in (2.7.4) and the fact that
(

maxi≤N Ñ(N)
S,i

(
sN3) /√logN, s ∈ [0, t]

)
converges to (

√
2αs, s ∈ [0, t]) u.o.c., we can conclude that

max
i≤N

N(N)
A

(
tN3)−N(N)

S,i

(
tN3)

N
√

logN
P−→
√

2αt,

as N →∞. The result in (2.7.2) follows.
Since we have a sharp upper and lower bound in (2.7.1) and (2.7.2), we have pointwise

convergence of the rescaled maximum queue length Q(N)
(α,β)(tN

3)/
(
N
√

logN
)
to the limiting

function
√

2αt.

Lemma 2.15 (Tightness). For Q(N)
(α,β) (0) = 0, ε > 0, η > 0, T > 0, ∃ 0 < δ < 1 and an

integer N0 such that for all t ∈ [0, T ]

1
δ
P

 sup
s∈[t,t+δ]

∣∣∣∣∣Q
(N)
(α,β)

(
sN3)

N
√

logN
−
Q

(N)
(α,β)

(
tN3)

N
√

logN

∣∣∣∣∣ ≥ ε
 ≤ η, N ≥ N0. (2.7.6)

Proof. We follow the proof of Lemma 2.11, which states the tightness of the process(
Q

(N)
(α,β)(tN

3 logN)
/(
N logN

)
, t ∈ [0, T ]

)
. As in the proof of Lemma 2.11, we have for N

large enough that

1
δ
P

 sup
s∈[t,t+δ]

∣∣∣∣∣Q
(N)
(α,β)

(
sN3)

N
√

logN
−
Q

(N)
(α,β)

(
tN3)

N
√

logN

∣∣∣∣∣ ≥ ε


≤ 1
δ
P

(
sup

0≤s≤δ
max
i≤N

R̃
(N)
i (sN3)

√
logN ≥ ε

2

)

+ 1
δ
P

(
2 sup

0≤s≤δ
max
i≤N
−R̃(N)

i (sN3)
√

logN ≥ ε

2

)
+ o(1).

Now we focus on the first term on the right-hand side. The analysis of the second term on
the right-hand side goes analogously:

1
δ
P

(
sup

0≤s≤δ
max
i≤N

R̃
(N)
i (sN3)

√
logN ≥ ε

2

)
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= 1
δ
P

(
sup

0≤s≤δ
max
i≤N

Ñ(N)
A

(
sN3)+ Ñ(N)

S,i

(
sN3)

√
logN

≥ ε

2

)

≤ 1
δ
P

(
sup

0≤s≤δ

Ñ(N)
A

(
sN3)

√
logN

≥ ε

4

)
+ 1
δ
P

(
sup

0≤s≤δ
max
i≤N

Ñ(N)
S,i

(
sN3)

√
logN

≥ ε

4

)
.

In the proof of Lemma 2.14, we already showed that the second term in the last display is
small. With a similar proof, one can also prove that the first term is small. Concluding, the
process

(
Q

(N)
(α,β)(tN

3)/
(
N
√

logN
)
, t ∈ [0, T ]

)
is tight.

Proposition 2.1 follows from Lemmas 2.14 and 2.15.

2.8. Other model parameters

In this section, we again look at the fork-join queueing system with nearly deterministic
arrivals and services, but we look at the setting in which the arrival and service probabilities
satisfy N(p(N) − q(N)) N→∞−→ c < 0. The emerging convergence result is fundamentally
different from what we saw before.

Proposition 2.3. Let p(N) = 1−a/N and q(N) = 1−b/N with 0 < b < a. Then we get that
the maximum queue length maxi≤N sup0≤k≤n[(N(N)

A (n)−N(N)
A (k))−(N(N)

S,i (n)−N(N)
S,i (k))]

satisfies for all t > 0,

log logN
logN max

i≤N
sup
s∈[0,t]

[(
N(N)
A (tN)−N(N)

A (sN)
)
−
(

N(N)
S,i (tN)−N(N)

S,i (sN)
)]

P−→ 1,

as N →∞.

Proof. First, we observe that

max
i≤N

sup
s∈[0,t]

[(
N(N)
A (tN)−N(N)

A (sN)
)
−
(

N(N)
S,i (tN)−N(N)

S,i (sN)
)]

d= max
i≤N

sup
s∈[0,t]

(
N(N)
A (sN)−N(N)

S,i (sN)
)
.

Then, we have by using subadditivity that

max
i≤N

sup
0≤s≤t

(
N(N)
A (sN)−N(N)

S,i (sN)
)
≤ sup

0≤s≤t

(
N(N)
A (sN)− E

[
N(N)
A (sN)

])
+ max

i≤N
sup

0≤s≤t

(
E
[
N(N)
A (sN)

]
−N(N)

S,i (sN)
)
.

Now, the process (N(N)
A (j)− E[N(N)

A (j)], j ≥ 1) is a martingale with mean 0. Furthermore,
Var(N(N)

A (tN)) = btNca/N
(
1− a/N

) N→∞−→ at. Then, by Doob’s maximal submartingale
inequality, we get that for all x > 0,
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P

(
sup

0≤s≤t

(
N(N)
A (sN)− E

[
N(N)
A (sN)

])
> x

logN
log logN

)

≤

√
Var(N(N)

A (tN)) log logN
x logN

N→∞−→ 0.

Thus,
log logN

logN sup
0≤s≤t

(
N(N)
A (sN)− E

[
N(N)
A (sN)

])
P−→ 0,

as N →∞. With an analogous technique we can treat a lower bound.
Now, we are left with proving the convergence of maxi≤N sup0≤s≤t(E[N(N)

A (sN)] −
N(N)
S,i (sN)). We have

E
[
N(N)
A (sN)

]
−N(N)

S,i (sN) =
(

1− a

N

)
bsNc −N(N)

S,i (sN) .

The random variable N(N)
S,i (sN) is Bin

(
bsNc, 1− b/N

)
distributed. Therefore, we can write(

E[N(N)
A (sN)]−N(N)

S,i (sN) , s ∈ [0, t]
)

=
(
− a

N
bsNc+B

(N)
i (sN), s ∈ [0, t]

)
.

with (B(N)
i (j), j ≥ 1) a random walk with B

(N)
i (j) ∼ Bin

(
j, b/N

)
, B(N)

i (j) and B
(N)
k (j)

independent, and we write B(N)
i (j) = B

(N)
i (bjc). Then,

− a

N
btNc+B

(N)
i (tN) ≤ sup

0≤s≤t

(
− a

N
bsNc+B

(N)
i (sN)

)
≤ B(N)

i (tN).

This means that maxi≤N sup0≤s≤t(−a/NbsNc + B
(N)
i (sN)) scales in the same way as

maxi≤N B(N)
i (tN). In order to analyze this latter random variable, we first note that it

is a standard result that

B
(N)
i (tN) d−→ Pi,

as N →∞, with Pi ∼ Poi (bt); see [141, Eq. (1)]. In [8, 9], it is shown that

P
(

max
i≤N

Pi ∈ {IN , IN + 1}
)

N→∞−→ 1,

for a sequence of integers (IN , N ≥ 1) satisfying IN ∼ logN/ log logN as N → ∞; see [81].
Hence

log logN
logN max

i≤N
Pi

P−→ 1,
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as N →∞. Le Cam’s theorem [93] states that

lim sup
N→∞

N

∞∑
x=0

∣∣∣P(Pi = x)− P(B(N)
i (tN) = x)

∣∣∣ ≤ 2b2t.

Now, for all sequences (yN , N ≥ 1) with yN < IN ,

P
(

max
i≤N

Pi ≤ yN
)

N→∞−→ 0.

Hence for N large enough,

P
(

max
i≤N

B
(N)
i (tN) ≤ yN

)
= P
(
B

(N)
i (tN) ≤ yN

)N
≤
(
P(Pi ≤ yN ) + 2b2t

N

)N
N→∞−→ 0.

Similarly, for all sequences (zN , N ≥ 1) with zN > IN + 1,

P
(

max
i≤N

Pi ≤ zN
)

N→∞−→ 1.

In [11, Cor. 2.1], it is stated that P(Pi ≤ zN ) ≤ P(B(N)
i (tN) ≤ zN ). Therefore,

P
(

max
i≤N

B
(N)
i (tN) ≤ zN

)
N→∞−→ 1.

In conclusion,
log logN

logN max
i≤N

B
(N)
i (tN) P−→ 1,

as N →∞. Our result follows.

A remarkable fact to notice is that log logN maxi≤N Pi/ logN P−→ 1, as N → ∞, with
Pi ∼ Poi(λ), for all λ > 0. Thus the parameter λ does not appear in the limit. A well-known
result is that the sum of independent Poisson-distributed random variables is again Poisson
distributed. Thus, this means that the behavior of N extremes of n independent sums of
Poisson-distributed random variables is the same as the behavior of the sample extremes of
N Poisson-distributed random variables. Hence this result gives us information on the tail
of the Poisson distribution. So, on the one hand, following Lemma 2.13, we know that the
limit of − log(P(Pi > ut))/− log(P(Pi > t)) should be such that this property is satisfied. On
the other hand, we know that the moment-generating function exists everywhere on the real
line. Thus the tail distribution is not heavier than the exponential distribution. Combining
these two facts, we get that

lim
t→∞

− log(P(Pi > ut))
− log(P(Pi > t)) = u.



Chapter 3

Limiting behavior of the invariant distribution

3.1. Introduction

In Chapter 2, we derived a first-order convergence result for the maximum queue length
process. This convergence result provides a prediction of the typical delay. The obtained
limit is deterministic and can be viewed as a law of large numbers. In this chapter,
we aim to derive a second-order convergence result, which resembles a central limit
theorem. Furthermore, we look at a different setting. In particular, we investigate the
longest steady-state waiting time among the N servers with a common arrival process;
i.e., maxi≤N Wi(∞) d= maxi≤N supk≥0

∑k

j=1(Si(j) − A(j)). This expression follows from
Lindley’s recursion. Furthermore, we have that both (Si(j), i ≥ 1, j ≥ 1) and (A(j), j ≥ 1)
are i.i.d. and the service times and interarrival times are mutually independent. Thus, Si(j)
indicates the service time of the j-th task in queue i, and A(j) indicates the interarrival
time between the (j − 1)-st and the j-th task. We see that the longest steady-state waiting
time is a maximum of N dependent random variables due to the common arrival process
(A(j), j ≥ 1).

Our main finding of this chapter is that the longest steady-state waiting time in this
queueing system scales around 1

γ
logN , where γ is determined by the cumulant-generating

function Λ of the service distribution and solves the Cramér-Lundberg equation with
stochastic service times and deterministic interarrival times. We exploit the properties of
the all-time suprema of random walks in order to derive this result. We show that, as N
becomes large,

max
i≤N

sup
k≥0

k∑
j=1

(Si(j)−A(j)) ≈ max
i≤N

τ(N)∑
j=1

(Si(j)−A(j)),

This chapter is based on [107] and [135].

73
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with τ (N) = 1
Λ′(γ)γ logN . Then we can further rewrite

max
i≤N

τ(N)∑
j=1

(Si(j)−A(j)) = max
i≤N

τ(N)∑
j=1

(
Si(j)−

1
λ

)
+
τ(N)∑
j=1

(
1
λ
−A(j)

)
.

The first term on the right-hand side reaches the value 1
γ

logN , and the second term satisfies
the central limit theorem, with standard deviation σA√

Λ′(γ)γ
. By using distributional Little’s

law [68], we can prove the second-order convergence for the maximum queue length as well.
In order to prove the convergence of the longest steady-state waiting time, we use

the results given in [13, Ch. XIII, Par. 5] on Cramér-Lundberg theory, as discussed in
Sections 1.4.1 and 1.4.4. Further results in this area are given in [59, 113, 114]. In these
studies, bounds on the tail probability of sums of independent random variables are given.
Another important result in this area is the Bahadur-Rao theorem [19], which provides
exact asymptotics for the large deviations of the sum of independent random variables. An
overview of results on large deviations in queueing theory can be found in [45, 60]. We add
to the existing literature by proving second-order convergence of the extremes of dependent
random variables, using the aforementioned large deviations results.

This chapter is organized as follows. In Section 3.2, we present our main results; in
Theorem 3.1 we state that the longest steady-state waiting time satisfies a central limit
result; in Theorem 3.2 we show that a similar result holds for the maximum queue length,
and in Corollary 3.1 we present a similar result when the service distributions can differ
among the different queues. Finally, we extend the convergence result of the longest waiting
time to the maximum of N all-time suprema of dependent Brownian motions in Corollary
3.2 and we prove L1-convergence for the maximum of N all-time suprema of dependent
Brownian motions in Lemma 3.3. In Section 3.3, we give an intuition of why the results hold
and how we prove these. Section 3.4 is devoted to proofs.

3.2. Model

We investigate a fork-join queue with N servers. Each of the N servers has the same arrival
stream of jobs and works independently from all other servers but with the same service
distribution. In this section, we state the main result for the longest steady-state waiting
time in Theorem 3.1. We also show that a similar result holds for the maximum queue
length in Lemma 3.2 and Theorem 3.2. Furthermore, we extend the result in Theorem 3.2
to a heterogeneous model in Corollary 3.1 and consider Brownian motions in Corollary 3.2.
Finally, we prove L1-convergence of the maximum of N suprema of dependent Brownian
motions in Lemma 3.3.

We now specify some properties of the service times and interarrival times in this fork-join
queueing system. First, the sequence of non-negative random variables (Si(j), i ≥ 1, j ≥ 1)
are i.i.d. with Si(j) ∼ S, and Si(j) indicating the service time of the j-th subtask in queue
i. Furthermore, the sequence of non-negative random variables (A(j), j ≥ 1) are i.i.d. with
A(j) ∼ A, E[A(j)] = 1/λ, Var(A(j)) = σ2

A, and A(j) indicating the interarrival time between
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the (j − 1)-st and the j-th task. Finally, we have that E[Si(j) − A(j)] = −µ, with µ > 0,
and (A(j), j ≥ 1) and (Si(j), i ≥ 1, j ≥ 1) are mutually independent.

We can now write the cumulative distribution function of the longest steady-state waiting
time as the cumulative distribution function of the maximum of N all-time suprema of
random walks involving the interarrival and service times.

Lemma 3.1. For the model given in Section 3.2 with Wi(1) = 0 for all i ≤ N , we have that
the longest waiting time in steady state satisfies

max
i≤N

Wi(∞) d= max
i≤N

sup
k≥0

k∑
j=1

(Si(j)−A(j)). (3.2.1)

Proof. Using Lindley’s recursion [96], we get a similar expression for the longest waiting time
as we got for the maximum queue length in Equation (2.2.1):

max
i≤N

Wi(n) = max
i≤N

sup
0≤k≤n

n∑
j=k+1

(Si(j)−A(j)).

We have that
P(max

i≤N
Wi(∞) ≥ x) = lim

n→∞
P(max

i≤N
Wi(n) ≥ x).

Because, as in (2.2.2),

max
i≤N

Wi(n) d= max
i≤N

sup
0≤k≤n

k∑
j=1

(Si(j)−A(j)), (3.2.2)

we obtain the lemma by using the monotone convergence theorem.

In order to be able to prove convergence of the longest steady-state waiting time, we
need some additional structure for the service-time distribution. We define

Λ(θ) := log(E[exp(θ(S − 1/λ)]). (3.2.3)

Moreover, we write D(Λ) := {θ : Λ(θ) <∞} and D◦(Λ) as the interior of D(Λ).

Assumption 3.1. We assume there exists a γ > 0 such that

1. Λ(γ) = 0,

2. γ ∈ D◦(Λ).

The first assumption indicates that the random variable S−1/λ has a tail that is bounded
by an exponential. The second assumption is needed for our proofs. In [45, Ex. 2.2.24], it is
namely stated that when γ ∈ D◦(Λ), Λ is infinitely differentiable at the point γ. For example,
when S−1/λ has density function fS−1/λ(x) = c1 exp(−x)/(1+x2) for x > 0, where c1, λ are
chosen such that P(S − 1/λ < x) is a cumulative distribution function and γ = 1, then the
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first assumption is satisfied but the second is not, since Λ(θ) is not differentiable at θ = γ.
Our main result is given in Theorem 3.1.

Theorem 3.1. For the model in Section 3.2 where the sequence of service times (Si(j), i ≥
1, j ≥ 1) satisfies Assumption 3.1, we have that

maxi≤N Wi(∞)− 1
γ

logN
√

logN
d−→ σA√

Λ′(γ)γ
X, (3.2.4)

with X ∼ N (0, 1), as N →∞.

Lemma 3.2 (Distributional Little’s Law). Let for t ≥ 0, NA(t) indicate the number of
arrivals up to time t, where the interarrival times are i.i.d. with A(j) ∼ A. Then

max
i≤N

Qi(∞) d= NA

(
max
i≤N

Wi(∞)
)
. (3.2.5)

Proof. In [68], a short proof is given that for the GI/GI/1 queue under the FCFS policy, Q d=
NA(W ). We follow the same steps to prove that maxi≤N Qi(∞) d= NA

(
maxi≤N Wi(∞)

)
.

First, let t > 0 be given such that the system is in steady state. Furthermore, let W̃i(j) be
the waiting time of the i-th subtask of the j-th task numbered backward in time, beginning
at time t. Thus, W̃i(1) is the waiting time of the i-th subtask of the last task arriving before
time t. Now, let the random variable T (j) be such that t − T (j) is the arrival time of the
j-th task numbered backward in time. Then, observe that the event {maxi≤N Qi(t) ≥ j}
is equivalent to the event that at least one subtask of the j-th task numbered backward in
time is still in the queue at time t. Thus,{

max
i≤N

Qi(t) ≥ j
}

=
{

max
i≤N

W̃i(j) ≥ T (j)
}
,

for j ≥ 1. The event {T (j) ≤ x} is equivalent to the event that the number of arrivals during
the period [t− x, t) is larger than or equal to j. The arrival process is a stationary process,
thus the event {T (j) ≤ x} is equivalent to the event {NA(x) ≥ j}. Additionally, the random
variables maxi≤N W̃i(j) and T (j) are independent. Therefore,{

max
i≤N

Qi(t) ≥ j
}

=
{

NA

(
max
i≤N

W̃i(j)
)
≥ j
}
.

As the system is in steady state, we get that{
max
i≤N

Qi(∞) ≥ j
}

=
{

NA

(
max
i≤N

W̃i(∞)
)
≥ j
}
.

Now, combining the result in Lemma 3.2 with the main result in Theorem 3.1, we can
find a similar convergence result for the maximum queue length in steady state.
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Theorem 3.2. For the model in Section 3.2 where the sequence of service times (Si(j), i ≥
1, j ≥ 1) satisfies Assumption 3.1, we have that

maxi≤N Qi(∞)− λ
γ

logN
√

logN
d−→
√

λ2σ2
A

Λ′(γ)γ +
λ3σ2

A

γ
X, (3.2.6)

with X ∼ N (0, 1), as N →∞.

Proof. Let Â(j) ∼ A, let (Â(j), j ≥ 1) be mutually independent, and Â(j) and
maxi≤N Wi(∞) be mutually independent for all j ≥ 1. Then, using Lemma 3.2 and Theorem
3.1, we get that

P
(

max
i≤N

Qi(∞) ≤ λ

γ
logN + x

√
logN

)
= P

(
NA

(
max
i≤N

Wi(∞)
)
≤
⌊λ
γ

logN + x
√

logN
⌋)

= P

max
i≤N

Wi(∞) ≤

⌊
λ
γ

logN+x
√

logN
⌋∑

j=1

Â(j)


= P

maxi≤N Wi(∞)− 1
γ

logN
√

logN
≤
∑⌊λ

γ
logN+x

√
logN

⌋
j=1 Â(j)− 1

γ
logN

√
logN


N→∞−→ P

(
σA√

Λ′(γ)γ
X1 ≤

σA
√
λ

√
γ

X2 + x

λ

)
,

with X1, X2 independent and standard normally distributed, this convergence holds, as
(Â(j), j ≥ 1) and maxi≤N Wi(∞) are independent. Thus, the theorem follows.

Until now, we considered the fork-join queueing system where each server has the same
service distribution. In Corollary 3.1, we show that we can extend the convergence of the
longest steady-state waiting time to a more heterogeneous setting. We examine a fork-join
queueing system with N servers, where each of these N servers belongs to one of K classes.
Additionally, we assume that the size of class k with k ∈ {1, . . . ,K} grows as αkN , as N
becomes large, with 0 < αk < 1.

Corollary 3.1. Let K ∈ N, let k = 1, . . . ,K, furthermore, take an increasing sequence
of integers given by M

(N)
0 ,M

(N)
1 ,M

(N)
2 , . . . ,M

(N)
K > 0 with M

(N)
0 = 1, M (N)

K = N , and
M

(N)
k − M

(N)
k−1 ∈ N. Moreover, (M (N)

k − M
(N)
k−1)/N N→∞−→ αk ∈ (0, 1] with

∑K

k=1 αk = 1.
Let (Si(j), j ≥ 1,M (N)

k−1 < i ≤ M
(N)
k ) be i.i.d. with Si(j) ∼ Sk, (A(j), j ≥ 1) be i.i.d.

with A(j) ∼ A, E[A(j)] = 1/λ, Var(A(j)) = σ2
A, E[Si(j) − A(j)] = −µk with µk > 0,

Λk(θ) = log(E[exp(θ(Sk − 1/λ)]), Λk satisfies Assumption 3.1. Furthermore, Si1(j1) and
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Si2(j2) are mutually independent for all i1, i2, j1, j2. Let K∗ = arg min{γk, k = 1, . . . ,K}.
We assume that |K∗| = 1 and k∗ ∈ K∗. Then,

maxi≤N Wi(∞)− 1
γk∗

logN
√

logN
d−→ σA√

Λ′k∗(γk∗)γk∗
X, (3.2.7)

with X ∼ N (0, 1), as N →∞.

Proof. We prove this corollary by giving an asymptotically sharp lower and upper bound.
First, observe that

max
i≤N

Wi(∞) ≥st. max
M

(N)
k∗−1<i≤M

(N)
k∗

sup
k≥0

k∑
j=1

(Si(j)−A(j)),

with X ≥st. Y meaning that P(X ≥ x) ≥ P(Y ≥ x) for all x. Applying the result from
Theorem 3.1 on the lower bound results in (3.2.7). By using the union bound we get the
following upper bound:

P
(

max
i≤N

Wi(∞) ≥ 1
γk∗

logN + x
√

logN
)

=
K∑
l=1

P

 max
M

(N)
l−1<i≤M

(N)
l

sup
k≥0

k∑
j=1

(Si(j)−A(j)) ≥ 1
γk∗

logN + x
√

logN

.
When l 6= k∗, we get after applying the results from Theorem 3.1 that

P

 max
M

(N)
l−1<i≤M

(N)
l

sup
k≥0

k∑
j=1

(Si(j)−A(j)) ≥ 1
γl

logN + x
√

logN


N→∞−→ 1− Φ

(√
Λ′l(γl)γl
σA

x

)
,

with Φ the cumulative distribution function of a standard normal random variable. Because
γk∗ < γl we get that

P

 max
M

(N)
l−1<i≤M

(N)
l

sup
k≥0

k∑
j=1

(Si(j)−A(j)) ≥ 1
γK∗

logN + x
√

logN

 N→∞−→ 0.

The corollary follows.

Remark 3.1. In Corollary 3.1 we assume that |K∗| = 1. The situation that |K∗| > 1
follows analogously. Assume for instance that |K∗| = 2, then we can introduce a new random
variable S̃ such that S̃i(j) ∼ S1 with probability α and S̃i(j) ∼ S2 with probability 1−α, such
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that γ1 = γ2 = γK∗ . As N is large enough this fork-join queueing system behaves analogous
to the original fork-join queue, and for this system |K∗| = 1.

We can extend the results from Theorems 3.1 and 3.2 to the extremes of the all-time
suprema of N dependent Brownian motions. We will use this convergence result in Chapter
6.

Corollary 3.2. Let (Bi(t), t ≥ 0) and (BA(t), t ≥ 0) be Brownian motions with mean 0 and
standard deviations σ and σA, respectively, and (Bi(t), t ≥ 0) and (Bj(t), t ≥ 0) independent
for i 6= j, then we get that

maxi≤N sups>0
(
Bi(s) +BA(s)− βs

)
− σ2

2β logN
√

logN
d−→ σσA√

2β
X, (3.2.8)

with X ∼ N (0, 1), as N →∞.

Remark 3.2. In the proof of Corollary 3.2, we use the same ideas as in the proof of Theorem
3.1. However, we also exploit specific properties of Brownian motions, as Corollary 3.2 does
not trivially follow from Theorem 3.1. The extension of this result to general Lévy processes
requires another proof. A possible direction to a proof is by giving lower and upper bounds of
the Lévy processes in terms of random walks; see for instance [48].

We prove an even stronger statement, which we will also use in Chapter 6.

Lemma 3.3. Let (Bi(t), t ≥ 0) and (BA(t), t ≥ 0) be Brownian motions with mean 0 and
standard deviations σ and σA, respectively, and (Bi(t), t ≥ 0) and (Bj(t), t ≥ 0) independent

for i 6= j. We define XN :=
√

2β
σσA

BA

(
σ2
2β2 logN

)
√

logN
. Then,

E

∣∣∣∣∣maxi≤N sups>0
(
Bi(s) +BA(s)− βs

)
− σ2

2β logN
√

logN
− σσA√

2β
XN

∣∣∣∣∣
 N→∞−→ 0.

We give the proofs of the convergence of the longest steady-state waiting time in Section
3.4. In this section, we also prove Corollary 3.2 and Lemma 3.3. First, we give a heuristic
explanation of why the convergence result in Theorem 3.1 is true, and we illustrate the
structure of the proof.

3.3. Heuristic analysis

To prove Theorem 3.1, we analyze lower and upper bounds of the tail probability of the
longest steady-state waiting time among the N servers P(maxi≤N Wi(∞) > 1

γ
logN +

x
√

logN) and we show that these lower and upper bounds converge to the same limit
as N → ∞. The longest steady-state waiting time has the form maxi≤N Wi(∞) d=
supk≥0 maxi≤N

∑k

j=1(Si(j) − A(j)). Thus the longest steady-state waiting time is the all-
time supremum of the maximum of N random walks. For all processes (X(t), t ≥ 0), we
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have for all t > 0

P
(

sup
s>0

X(s) > x

)
≥ P
(
X(t) > x

)
. (3.3.1)

Furthermore, due to the union bound, we have for all 0 < t1 < t2 that

P
(

sup
s>0

X(s) > x

)
≤ P

(
sup

0<s<t1
X(s) > x

)
+ P

(
sup

t1≤s<t2
X(s) > x

)
+ P

(
sup
s≥t2

X(s) > x

)
. (3.3.2)

We use these types of lower and upper bounds to prove Theorem 3.1. Obviously, not
all choices of t, t1, and t2 give sharp bounds. We can however make an educated guess
about which choices will give the sharpest bounds. Let us first replace the sequence of
random variables (A(j), j ≥ 1) with their expectation 1/λ. Thus, we look at a simplified
fork-join queue with deterministic arrivals. Because the arrivals are deterministic, the
waiting times are mutually independent, and we are able to use standard extreme-value
theory. We know from the Cramér-Lundberg approximation [13, Ch. XIII, Thm. 5.2] that
P(supk≥0

∑k

j=1(Si(j) − 1/λ) > x) ∼ C exp(−γx), as x → ∞, with 0 < C < 1. Thus,
P(supk≥0

∑k

j=1(Si(j)− 1/λ) > 1
γ

logN) ∼ C/N , as N →∞. Now we can conclude by using
basic extreme-value results; see [67, Thm. 5.4.1, p. 188], that

maxi≤N supk≥0
∑k

j=1

(
Si(j)− 1

λ

)
logN

P−→ 1
γ
,

as N → ∞. The analysis is similar to the nearly deterministic case in Chapter 2. Thus,
we know that maxi≤N supk≥0

∑k

j=1(Si(j) − 1/λ) centers around 1
γ

logN . In order to find
suitable lower and upper bounds of the form as given in (3.3.1) and (3.3.2), we need to
estimate the hitting time

τ (N) := inf

k ≥ 0 : max
i≤N

k∑
j=1

(
Si(j)−

1
λ

)
≥ 1
γ

logN

 .

As mentioned before, we have that P(supk≥0
∑k

j=1

(
Si(j)− 1

λ

)
> 1

γ
logN) ∼ C/N as N →

∞. Thus, a good estimate τ̂ (N) for τ (N) should also satisfy the property that

lim inf
N→∞

N P

τ̂(N)∑
j=1

(
Si(j)−

1
λ

)
>

1
γ

logN

 > 0 (3.3.3)
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and

lim sup
N→∞

N P

τ̂(N)∑
j=1

(
Si(j)−

1
λ

)
>

1
γ

logN

 <∞. (3.3.4)

Now, by using Cramér’s theorem and by using the fact that Λ is at least twice differentiable
at γ, we know that

lim
n→∞

1
n

log

P

 n∑
j=1

(
Si(j)−

1
λ

)
≥ nx


 = −Λ∗(x), (3.3.5)

for all x > E[Si(j)−1/λ] with Λ∗(x) = supt∈R(tx−Λ(t)); see [13, Ch. XIII, Thm. 2.1 (2.3)].
We write τ̂ (N) = ĉ logN . Then we can conclude from Equation (3.3.5) that

lim
N→∞

1
logN log

P

bĉ logNc∑
j=1

(
Si(j)−

1
λ

)
≥ xĉ logN


 = −Λ∗(x)ĉ. (3.3.6)

Thus, in order to find a good estimate τ̂ (N) for the hitting time τ (N) we need to solve two
equations. First, xĉ = 1/γ, because we know that the longest steady-state waiting time
under deterministic arrivals is approximately equal to 1

γ
logN . Therefore the expression

xĉ logN in (3.3.6) should be the same as 1
γ

logN . Second, −Λ∗(x)ĉ = −1, because we know
from (3.3.3), (3.3.4), and (3.3.6) that for large N

P

bĉ logNc∑
j=1

(
Si(j)−

1
λ

)
≥ xĉ logN

 ≈ 1
N

= exp(−Λ∗(x)ĉ logN).

Combining these two equations gives ĉ = 1
Λ′(γ)γ and x = Λ′(γ). Clearly, xĉ = 1/γ, and

Λ∗(x)ĉ = Λ∗(Λ′(γ))
γΛ′(γ) .

From [45, Lem. 2.2.5(c)], we know that Λ∗(Λ′(γ)) = γΛ′(γ), thus indeed, Λ∗(x)ĉ = 1.
Finally, we can conclude that τ̂ (N) = ĉ logN = 1

γΛ′(γ) logN . Obviously, in order to be a
good estimation for a hitting time we need to have that Λ′(γ) > 0. This is the case because
Λ(θ) is convex; see [13, Ch. XIII, Thm. 5.1].

Until this point, we know the first-order scaling of the largest of N steady-state waiting
times with deterministic arrivals, and we can give an estimation of the hitting time of this
value. Now, we can use these results to obtain a second-order convergence result for the
longest steady-state waiting time with stochastic arrivals. Following the analysis above
together with the lower bound in (3.3.1), we see that
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P

(
maxi≤N Wi(∞)− 1

γ
logN

√
logN

≥ x

)

≥ P

maxi≤N sup( 1
Λ′(γ)γ−ε

)
logN<k< 1

Λ′(γ)γ logN

∑k

j=1(Si(j)−A(j))− 1
γ

logN
√

logN
≥ x

,
(3.3.7)

with ε > 0 and small. In Lemma 3.4, we prove that the right-hand side in (3.3.7)
converges to a function that is close to the tail probability of a normally distributed
random variable. Furthermore, we show in Lemmas 3.5, 3.6, and 3.7, that this lower
bound is sharp. To achieve this, we first divide the supremum over all positive numbers
in the random variable maxi≤N Wi(∞) in three parts. After that, we take the supremum

over the intervals
[

0,
(

1
Λ′(γ)γ − ε

)
logN

]
,
((

1
Λ′(γ)γ − ε

)
logN,

(
1

Λ′(γ)γ + ε
)

logN
]
, and((

1
Λ′(γ)γ + ε

)
logN,∞

)
, with ε > 0 and small. Consequently, we show that the

tail probabilities of the first and third suprema of the maximum of N random walks
asymptotically vanish, while

P

max
i≤N

sup(
1

Λ′(γ)γ−ε
)

logN<k<
(

1
Λ′(γ)γ+ε

)
logN

k∑
j=1

(Si(j)−A(j)) > 1
γ

logN + x
√

logN


converges to a limit close to the lower bound as N →∞.

Remark 3.3. The lower bound presented in Equation (3.3.1) gives us information about
the convergence rate of the result in Theorem 3.1. From the Berry-Esséen theorem [109], we
know that when 1√

n

∑n

i=1 Xi
d−→ X ∼ N (0, 1), the convergence rate is of order 1/

√
n. Thus,

the lower bound in (3.3.1) shows that the convergence rate is of order 1/
√

logN .

3.4. Proofs

Lemma 3.4. Given the model in Section 3.2 where the sequence of service times (Si(j), i ≥
1, j ≥ 1) satisfies Assumption 3.1, 0 < ε < 1

Λ′(γ)γ , t
(N)
1 =

(
1

Λ′(γ)γ − ε
)

logN , and t(N)
2 =

1
Λ′(γ)γ logN , then for all x ∈ R, we have that

lim inf
N→∞

P

max
i≤N

sup
t
(N)
1 <k<t

(N)
2

k∑
j=1

(Si(j)−A(j)) > 1
γ

logN + x
√

logN


≥ P

(
σA

√
1

Λ′(γ)γ − εX1 − σA
√
ε |X2| > x

)
, (3.4.1)
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with X1, X2 ∼ N (0, 1) and independent.

Proof. In order to prove this convergence result, we first bound

max
i≤N

sup
t
(N)
1 <k<t

(N)
2

k∑
j=1

(Si(j)−A(j))

≥ max
i≤N

sup
t
(N)
1 <k<t

(N)
2

k∑
j=1

(
Si(j)−

1
λ

)
+ inf
t
(N)
1 <k<t

(N)
2

k∑
j=1

(
1
λ
−A(j)

)
.

We treat the terms on the right-hand side separately. We first prove that

inf
t
(N)
1 <k<t

(N)
2

∑k

j=1

(
1
λ
−A(j)

)
√

logN
d−→ σA

√
1

Λ′(γ)γ − εX1 − σA
√
ε |X2| , (3.4.2)

as N →∞. Afterwards, we prove that

maxi≤N sup
t
(N)
1 <k<t

(N)
2

∑k

j=1

(
Si(j)− 1

λ

)
− 1

γ
logN

√
logN

P−→ 0, (3.4.3)

as N →∞.
The first convergence result follows from Donsker’s theorem. The left-hand side in (3.4.2)

is an infimum of a random walk with drift 0. Then for (B(t), t ≥ 0) a Brownian motion with
drift 0 and standard deviation 1, by using Donsker’s theorem [49] and the fact that the
infimum is a continuous functional, we obtain that

P

 inf
t
(N)
1 <k<t

(N)
2

∑k

j=1( 1
λ
−A(j))

√
logN

> x


N→∞−→ P

 inf(
1

Λ′(γ)γ−ε
)
<s< 1

Λ′(γ)γ

σAB(s) > x

.
Furthermore, we can rewrite

inf
1

Λ′(γ)γ−ε<s<
1

Λ′(γ)γ

σAB(s) d= σAB

(
1

Λ′(γ)γ − ε
)
− inf

0<s<ε
σAB̃(s),

where B̃ is an independent copy of B. Obviously, we have that σAB
(

1
Λ′(γ)γ − ε

)
d=

σA

√
1

Λ′(γ)γ − εX1 with X1 ∼ N (0, 1). Because inf0<s<ε σAB̃(s) d= σA
√
ε|X2|, with

X2 ∼ N (0, 1), we have that the limit in (3.4.2) follows.
In order to prove the second convergence result, we define for A ∈ Fk, with {Fk, k ≥ 1}
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the natural filtration, the probability measure

Pi(A) := E

exp

γ k∑
j=1

(
Si(j)−

1
λ

)1(A)

 ;

see [13, Ch. XIII, Par. 3]. Now, we know that

Ei
[
Si(j)−

1
λ

]
= E

(Si(j)− 1
λ

)
exp

(
γ

(
Si(j)−

1
λ

)) = Λ′(γ).

Thus, by checking the conditions in [13, Ch. XIII, Thm. 5.6], we see that

P

 sup
0≤k<t(N)

2

k∑
j=1

(
Si(j)−

1
λ

)
≥ 1
γ

logN + x
√

logN


= C exp

(
− γ
(

1
γ

logN + x
√

logN
))

Φ
(
− x
√
γΛ′(γ)√
Λ′′(γ)

)
(1 + o(1)). (3.4.4)

With the same approach, we get from [13, Ch. XIII, Thm. 5.6] that

P

 sup
0≤k<t(N)

1

k∑
j=1

(
Si(j)−

1
λ

)
≥ 1
γ

logN + x
√

logN


= o

(
C exp

(
− γ
(

1
γ

logN + x
√

logN
)))

, (3.4.5)

as N →∞, for all x ∈ R. By applying the union bound, we get that

P

 sup
0≤k<t(N)

2

k∑
j=1

(
Si(j)−

1
λ

)
≥ 1
γ

logN + x
√

logN


≤ P

 sup
0≤k<t(N)

1

k∑
j=1

(
Si(j)−

1
λ

)
≥ 1
γ

logN + x
√

logN


+ P

 sup
t
(N)
1 <k<t

(N)
2

k∑
j=1

(
Si(j)−

1
λ

)
≥ 1
γ

logN + x
√

logN


≤ P

 sup
0≤k<t(N)

1

k∑
j=1

(
Si(j)−

1
λ

)
≥ 1
γ

logN + x
√

logN
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+ P

 sup
0≤k<t(N)

2

k∑
j=1

(
Si(j)−

1
λ

)
≥ 1
γ

logN + x
√

logN

.
We can conclude from these bounds, together with (3.4.4) and (3.4.5) that

P

 sup
t
(N)
1 <k<t

(N)
2

k∑
j=1

(
Si(j)−

1
λ

)
≥ 1
γ

logN + x
√

logN


= C exp

(
− γ
(

1
γ

logN + x
√

logN
))

Φ
(
− x
√
γΛ′(γ)√
Λ′′(γ)

)
(1 + o(1)). (3.4.6)

By using this expression it is easy to derive that for x > 0

P

max
i≤N

sup
t
(N)
1 <k<t

(N)
2

k∑
j=1

(
Si(j)−

1
λ

)
≤ 1
γ

logN + x
√

logN


= P

 sup
t
(N)
1 <k<t

(N)
2

k∑
j=1

(
Si(j)−

1
λ

)
≤ 1
γ

logN + x
√

logN

N

N→∞−→ 1.

Similarly, for x < 0,

P

max
i≤N

sup
t
(N)
1 <k<t

(N)
2

k∑
j=1

(
Si(j)−

1
λ

)
≤ 1
γ

logN + x
√

logN


= P

 sup
t
(N)
1 <k<t

(N)
2

k∑
j=1

(
Si(j)−

1
λ

)
≤ 1
γ

logN + x
√

logN

N

N→∞−→ 0.

Combining these two results gives us the limit in (3.4.3). Finally, the convergence result
in (3.4.1) follows from the two limits in (3.4.2) and (3.4.3).

Lemma 3.5. Given the model in Section 3.2 where the sequence of service times (Si(j), i ≥
1, j ≥ 1) satisfies Assumption 3.1, t(N)

1 =
(

1
Λ′(γ)γ − ε

)
logN , δ = δ1

Λ′(γ)γ + δ2 with δ1,2 > 0

and small, and ε = δ1/4, then for all x ∈ R, we have that

P

max
i≤N

sup
0≤k<t(N)

1

k∑
j=1

(Si(j)−A(j)) > 1
γ

logN + x
√

logN

 N→∞−→ 0. (3.4.7)

Proof. We derive upper bounds for the left-hand side of (3.4.7) that converge to 0 as N →∞.
We get by using the subadditivity property of the sup operator and the union bound
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that

P

max
i≤N

sup
0≤k<t(N)

1

k∑
j=1

(Si(j)−A(j)) > 1
γ

logN

 (3.4.8)

≤ P

max
i≤N

sup
0≤k<t(N)

1

k∑
j=1

(
Si(j)−

1
λ

+ δ1

)
>

(
1
γ
− δ2

)
logN

 (3.4.9)

+ P

sup
k≥0

k∑
j=1

(
1
λ
− δ1 −A(j)

)
> δ2 logN + x

√
logN

. (3.4.10)

First, because E[ 1
λ
− δ1 −A(j)] < 0, we get that

P

sup
k≥0

k∑
j=1

(
1
λ
− δ1 −A(j)

)
> δ2 logN + x

√
logN

 N→∞−→ 0.

Second, we can bound the term in (3.4.9) as follows;

P

max
i≤N

sup
0≤k<t(N)

1

k∑
j=1

(
Si(j)−

1
λ

+ δ1

)
>

(
1
γ
− δ2

)
logN


≤ P

max
i≤N

sup
0≤k<t(N)

1

k∑
j=1

(
Si(j)−

1
λ

)
>

(
1
γ
− δ1

Λ′(γ)γ − δ2
)

logN

.
Now, we can bound this further to

P

max
i≤N

sup
0≤k<t(N)

1

k∑
j=1

(
Si(j)−

1
λ

)
>

(
1
γ
− δ1

Λ′(γ)γ − δ2
)

logN


≤
bt(N)

1 c∑
k=0

N P

 k∑
j=1

(
Si(j)−

1
λ

)
>

(
1
γ
− δ1

Λ′(γ)γ − δ2
)

logN

.
By using Chernoff’s bound we obtain that for Λ(θ) <∞

bt(N)
1 c∑
k=0

N P

 k∑
j=1

(
Si(j)−

1
λ

)
>

(
1
γ
− δ1

Λ′(γ)γ − δ2
)

logN

 (3.4.11)

≤ N
bt(N)

1 c∑
k=0

exp(kΛ(θ)) exp
(
− θ
(

1
γ
− δ1

Λ′(γ)γ − δ2
)

logN
)
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= N
−1 + exp

(
(bt(N)

1 c+ 1)Λ(θ)
)

exp(Λ(θ))− 1 exp
(
− θ
(

1
γ
− δ1

Λ′(γ)γ − δ2
)

logN
)
. (3.4.12)

Now,

log

(
N
−1+exp

(
(bt(N)

1 c+1)Λ(θ)
)

exp(Λ(θ))−1 exp
(
− θ
(

1
γ
− δ1

Λ′(γ)γ − δ2
)

logN
))

logN

N→∞−→ 1−

(
θ

(
1
γ
− δ1

Λ′(γ)γ − δ2
)
−
(

1
Λ′(γ)γ − ε

)
Λ(θ)

)
.

In order to make the bound in (3.4.12) as sharp as possible, we need to choose a convenient θ.
The choice of θ that gives the sharpest bound maximizes the function θ

(
1
γ
− δ1

Λ′(γ)γ − δ2
)
−(

1
Λ′(γ)γ − ε

)
Λ(θ). We have that δ = δ1

Λ′(γ)γ + δ2 and ε = δ1/4. Furthermore, we choose

θ = γ +
√
δ. This gives us a sharp enough bound in (3.4.12). We obviously have that

sup
η∈R

(
η

(
1
γ
− δ
)
−
(

1
Λ′(γ)γ − δ

1/4
)

Λ(η)

)

≥

(
(γ +

√
δ)
(

1
γ
− δ
)
−
(

1
Λ′(γ)γ − δ

1/4
)

Λ(γ +
√
δ)

)
.

The first order Taylor series of Λ(γ +
√
δ) around γ gives

Λ(γ +
√
δ) = Λ(γ) +

√
δΛ′(γ) +O(δ) =

√
δΛ′(γ) +O(δ).

Thus,(
(γ +

√
δ)
(

1
γ
− δ
)
−
(

1
Λ′(γ)γ − δ

1/4
)

Λ(γ +
√
δ)

)
= 1 + δ3/4Λ′(γ) +O(δ) > 1,

for δ small enough. Thus the expression in (3.4.12) is upper bounded by the term
N−δ

3/4Λ′(γ)−O(δ) N→∞−→ 0.

Lemma 3.6. Given the model in Section 3.2 where the sequence of service times (Si(j), i ≥
1, j ≥ 1) satisfies Assumption 3.1, 0 < ε < 1

Λ′(γ)γ , t
(N)
1 =

(
1

Λ′(γ)γ − ε
)

logN , and t(N)
3 =(

1
Λ′(γ)γ + ε

)
logN , then for all x ∈ R, we have that

lim sup
N→∞

P

max
i≤N

sup
t
(N)
1 ≤k<t(N)

3

k∑
j=1

(Si(j)−A(j)) > 1
γ

logN + x
√

logN
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≤ P

(
σA

√
1

Λ′(γ)γ − εX1 + σA
√

2ε |X2| > x

)
, (3.4.13)

with X1, X2 ∼ N (0, 1) and independent.

Proof. In order to prove this lemma, we first rewrite

maxi≤N sup
t
(N)
1 ≤k<t(N)

3

∑k

j=1(Si(j)−A(j))− 1
γ

logN
√

logN

≤
maxi≤N sup

t
(N)
1 ≤k<t(N)

3

∑k

j=1

(
Si(j)− 1

λ

)
− 1

γ
logN

√
logN

+
sup

t
(N)
1 ≤k<t(N)

3

∑k

j=1

(
1
λ
−A(j)

)
√

logN

≤
maxi≤N supk≥0

∑k

j=1

(
Si(j)− 1

λ

)
− 1

γ
logN

√
logN

+
sup

t
(N)
1 ≤k<t(N)

3

∑k

j=1

(
1
λ
−A(j)

)
√

logN
.

(3.4.14)

We first look at the first term in (3.4.14). This term gives the rescaled longest steady-state
waiting time of N i.i.d. D/G/1 queues. We know that

P

sup
k≥0

k∑
j=1

(
Si(j)−

1
λ

)
> x

 ∼ C exp(−γx),

as x→∞, with 0 < C < 1; see [13, Ch. XIII, Thm. 5.2]. Thus for x > 0,

P

(
maxi≤N supk≥0

∑k

j=1

(
Si(j)− 1

λ

)
− 1

γ
logN

√
logN

> x

)
∼ 1−

(
1− C exp(−γ(1/γ logN + x

√
logN))

)N
N→∞−→ 0.

Similarly, for x < 0,

P

(
maxi≤N supk≥0

∑k

j=1

(
Si(j)− 1

λ

)
− 1

γ
logN

√
logN

> x

)
∼ 1−

(
1− C exp(−γ(1/γ logN + x

√
logN))

)N
N→∞−→ 1.

Thus, the first term in (3.4.14) converges in probability to 0.
Now, we prove convergence of the tail probability of the second term in (3.4.14). This

term is a supremum of a random walk with drift 0. Then for (B(t), t ≥ 0) a Brownian motion
with drift 0 and standard deviation 1, by using Donsker’s theorem [49] and the fact that the
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supremum is a continuous functional, we obtain with a similar analysis as in Lemma 3.4,
that

P

 sup
t
(N)
1 ≤k<t(N)

3

∑k

j=1( 1
λ
−A(j))

√
logN

> x


N→∞−→ P

(
σA

√
1

Λ′(γ)γ − εX1 + σA
√

2ε |X2| > x

)
.

Lemma 3.7. Given the model in Section 3.2 where the sequence of service times (Si(j), i ≥
1, j ≥ 1) satisfies Assumption 3.1, δ = δ1

Λ′(γ)γ + δ2 with δ1,2 > 0 and small, ε = δ1/4, and

t
(N)
3 =

(
1

Λ′(γ)γ + ε
)

logN , then for all x ∈ R, we have that

P

max
i≤N

sup
k≥t(N)

3

k∑
j=1

(Si(j)−A(j)) > 1
γ

logN + x
√

logN

 N→∞−→ 0. (3.4.15)

Proof. As in the proof of Lemma 3.5, we derive upper bounds for

P

max
i≤N

sup
k≥t(N)

3

k∑
j=1

(Si(j)−A(j)) > 1
γ

logN + x
√

logN


that converge to 0 as N →∞.

First, we see that by using subadditivity and the union bound, we obtain

P

max
i≤N

sup
k≥t(N)

3

k∑
j=1

(Si(j)−A(j)) > 1
γ

logN + x
√

logN


≤ P

max
i≤N

sup
k≥t(N)

3

k∑
j=1

(
Si(j)−

1
λ

+ δ1

)
>

(
1
γ
− δ2

)
logN


+ P

sup
k≥0

k∑
j=1

(
1
λ
− δ1 −A(j)

)
> δ2 logN + x

√
logN

.
As in the proof of Lemma 3.5, we have that

P

sup
k≥0

k∑
j=1

(
1
λ
− δ1 −A(j)

)
> δ2 logN + x

√
logN

 N→∞−→ 0.

Furthermore, observe that logE[exp(θ(Si(j)−1/λ+ δ1))] = Λ(θ) + θδ1. Now, as in the proof
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of Lemma 3.5, we can bound

P

max
i≤N

sup
k≥t(N)

3

k∑
j=1

(
Si(j)−

1
λ

+ δ1

)
>

(
1
γ
− δ2

)
logN

 (3.4.16)

≤ N
∞∑

k=bt(N)
3 c

P

 k∑
j=1

(
Si(j)−

1
λ

+ δ1

)
>

(
1
γ
− δ2

)
logN

 (3.4.17)

≤ N
∞∑

k=bt(N)
3 c

exp(k(Λ(θ) + θδ1)) exp

(
−θ
(

1
γ
− δ2

)
logN

)

= N
exp
(
bt(N)

3 c(Λ(θ) + θδ1)
)

exp(Λ(θ) + θδ1)− 1 exp

(
−θ
(

1
γ
− δ2

)
logN

)
, (3.4.18)

when Λ(θ) + θδ1 < 0. When Λ(θ) + θδ1 ≥ 0 the sum in the upper bound diverges to ∞.
Now, for the case Λ(θ) + θδ1 < 0, we have that

log

(
N

exp
(
bt(N)

3 c(Λ(θ)+θδ1)
)

exp(Λ(θ)+θδ1)−1 exp
(
−θ
(

1
γ
− δ2

)
logN

))
logN

N→∞−→ 1 +
(

1
Λ′(γ)γ + ε

)
(Λ(θ) + θδ1)− θ

(
1
γ
− δ2

)
.

As in the proof of Lemma 3.5, we have δ = δ1
Λ′(γ)γ+δ2 and ε = δ1/4. We now get after a similar

derivation as in the proof of Lemma 3.5 that θ = γ−
√
δ gives a sharp bound. First, observe

that Λ(γ −
√
δ) = −

√
δΛ′(γ) + O(δ), thus Λ(θ) + θδ1 = −

√
δΛ′(γ) + (γ −

√
δ)δ1 + O(δ) =

−
√
δΛ′(γ) + O(δ) < 0 for δ small enough, thus the upper bound in (3.4.18) holds. Second,

we see that

sup
η∈R

(
η

(
1
γ
− δ2

)
−
(

1
Λ′(γ)γ + ε

)
(Λ(η) + ηδ1)

)

≥ (γ −
√
δ)
(

1
γ
− δ2

)
−
(

1
Λ′(γ)γ + ε

)
(Λ(γ −

√
δ) + (γ −

√
δ)δ1).

So, we can conclude that

(γ−
√
δ)
(

1
γ
− δ2

)
−
(

1
Λ′(γ)γ + δ1/4

)
(Λ(γ−

√
δ)+(γ−

√
δ)δ1) = 1+δ3/4Λ′(γ)+O(δ) > 1

for δ small enough, thus the expression in (3.4.18) converges to 0 as N →∞.
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Proof of Theorem 3.1. First, to prove a lower bound, we see that

max
i≤N

Wi(∞) ≥st. max
i≤N

⌊
1

(Λ′(γ)γ) logN
⌋∑

j=1

(Si(j)−A(j)).

Thus, combining this inequality with the result from Lemma 3.4, we see that

lim inf
N→∞

P
(

max
i≤N

Wi(∞) > 1
γ

logN + x
√

logN
)
≥ P

(
σA

√
1

Λ′(γ)γX > x

)
.

Second, by using the union bound of the types as given in (3.3.2) and explained in Section
3.3, we get from Lemmas 3.5, 3.6, and 3.7, with t

(N)
1 =

(
1

Λ′(γ)γ − ε
)

logN and t
(N)
3 =(

1
Λ′(γ)γ + ε

)
logN , that

lim sup
N→∞

P
(

max
i≤N

Wi(∞) > 1
γ

logN + x
√

logN
)

≤ lim sup
N→∞

P

max
i≤N

sup
t
(N)
1 ≤k<t(N)

3

k∑
j=1

(Si(j)−A(j)) > 1
γ

logN + x
√

logN


≤ P

(
σA

√
1

Λ′(γ)γ − εX1 + σA
√

2ε |X2| > x

)
.

Finally, we have that

P

(
σA

√
1

Λ′(γ)γ − εX1 + σA
√

2ε |X2| > x

)
ε↓0−→ P

(
σA

√
1

Λ′(γ)γX > x

)
.

Proof of Corollary 3.2. Since Brownian motions are continuous-time processes, the exten-
sion from random walks is not entirely trivial. We first observe that due to the fact
that Brownian motions are infinitely divisible, we can write Bi(btc) as

∑btc
j=1 Xi(j), with

(Xi(j), j ≥ 1) i.i.d. normally distributed random variables with mean 0 and standard
deviation σ. Similarly, we can write BA(btc) as

∑btc
j=1 XA(j), with (XA(j), j ≥ 1) i.i.d.

normally distributed random variables with mean 0 and standard deviation σA. Thus, it
follows that

max
i≤N

sup
s>0

(Bi(s) +BA(s)− βs) ≥ max
i≤N

sup
k≥0

k∑
j=1

(Xi(j) +XA(j)− βj). (3.4.19)



92 Chapter 3. Limiting behavior of the invariant distribution

Now, following Theorem 3.1, we see that for the lower bound in (3.4.19), we have that

Λ(θ) = log(E[exp(θ(Xi(1)− β))]) = θ2σ2

2 − βθ.

Therefore, γ = 2β/σ2, and Λ′(γ) = β, which means that the lower bound satisfies the limit
in (3.2.8). Thus, we have a sharp lower bound.

To prove a converging upper bound, we use similar techniques as in Lemmas 3.5,
3.6, and 3.7, but now for continuous-time processes. We write, as before, that t(N)

1 =(
1

Λ′(γ)γ − ε
)

logN =
(
σ2

2β2 − ε
)

logN and t
(N)
3 =

(
1

Λ′(γ)γ + ε
)

logN =
(
σ2

2β2 + ε
)

logN ,

with 0 < ε < σ2

2β2 . We have that

P

max
i≤N

sup
0<s<t(N)

1

(Bi(s) +BA(s)− βs) > σ2

2β logN + x
√

logN

 N→∞−→ 0. (3.4.20)

To prove this limit, we first give the following upper bound:

max
i≤N

sup
0<s<t(N)

1

(Bi(s) +BA(s)− βs)

≤ max
i≤N

sup
0<s<t(N)

1

(Bi(s)− βs) + sup
0<s<t(N)

1

BA(s). (3.4.21)

The first term on the right-hand side of (3.4.21) is a maximum of N i.i.d. random variables.
The tail probability of these random variables is known: we have that

P

 sup
0<s<t(N)

1

(Bi(s)− βs) > y


= Φ

−y − βt(N)
1

σ

√
t
(N)
1

+ exp
(
−2β
σ2 y

)
Φ

−y + βt
(N)
1

σ

√
t
(N)
1

 ; (3.4.22)

see [1, Eq. (1.1)]. Then, by the union bound, we have that

P

max
i≤N

sup
0<s<t(N)

1

(Bi(s)− βs) >
σ2

2β logN + x
√

logN


≤ N P

 sup
0<s<t(N)

1

(Bi(s)− βs) >
σ2

2β logN + x
√

logN

.
We now use the expression in (3.4.22) to prove that this upper bound converges to 0 as
N → ∞. We see that by letting y = σ2

2β logN + x
√

logN , the first term on the right-hand
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side of (3.4.22) becomes

Φ

−
σ2

2β logN − x
√

logN − β
(
σ2

2β2 − ε
)

logN

σ

√(
σ2

2β2 − ε
)

logN

 = Φ

 −σ2

β
+ βε

σ
√

σ2

2β2 − ε

√
logN(1 + o(1))

 .

The cumulative distribution function of the normal distribution Φ satisfies Φ(−x) = 1−Φ(x).
Furthermore, we have that 1−Φ(x) ∼ exp(−x2/2)/(

√
2πx) as x→∞; see [4, Eq. (2.1.1), p.

49], with f(x) ∼ g(x) as x→∞ meaning that limx→∞ f(x)/g(x) = 1. Therefore, because

−σ
2

β
+ βε

σ
√

σ2

2β2 − ε
< −
√

2,

we get that

NΦ

−
σ2

2β logN − x
√

logN − β
(
σ2

2β2 − ε
)

logN

σ

√(
σ2

2β2 − ε
)

logN

 N→∞−→ 0. (3.4.23)

By letting y = σ2

2β logN + x
√

logN , the second term on the right-hand side of (3.4.22)
becomes

exp

(
−2β
σ2

(
σ2

2β logN + x
√

logN
))

· Φ


−
(
σ2

2β logN + x
√

logN
)

+ β

((
σ2

2β2 − ε
)

logN + x
√

logN
)

σ

√(
σ2

2β2 − ε
)

logN


= 1
N

exp
(
−2β
σ2 x

√
logN

)
Φ

 −βε√
σ2

2β2 − ε

√
logN(1 + o(1))

 .

By again using the fact that Φ(−x) ∼ exp(−x2/2)/(
√

2πx) as x→∞, we obtain that

N exp

(
−2β
σ2

(
σ2

2β logN + x
√

logN
))
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· Φ


−
(
σ2

2β logN + x
√

logN
)

+ β

((
σ2

2β2 − ε
)

logN + x
√

logN
)

σ

√(
σ2

2β2 − ε
)

logN


= N

1
N

exp
(
−2β
σ2 x

√
logN

)
Φ

 −βε√
σ2

2β2 − ε

√
logN(1 + o(1))

 N→∞−→ 0. (3.4.24)

From these two limits in (3.4.23) and (3.4.24) it follows that

N P

 sup
0<s<t(N)

1

(Bi(s)− βs) >
σ2

2β logN + x
√

logN

 N→∞−→ 0.

For the second term on the right-hand side of (3.4.21), we have, because (BA(t), t ≥ 0) is a
Brownian motion with drift 0, that

sup
0<s<t(N)

1

BA(s) d= |BA(t(N)
1 )| d=

√(
σ2

2β2 − ε
)

logN |X|,

with X ∼ N (0, 1). One can easily see this by filling in β = 0 and by replacing σ with σA in
(3.4.22).

Therefore, we can use the upper bound in (3.4.21), and get by the union bound that

P

max
i≤N

sup
0<s<t(N)

1

(Bi(s) +BA(s)− βs) > σ2

2β logN + x
√

logN


≤ N P

 sup
0<s<t(N)

1

(Bi(s)− βs) >
σ2

2β logN + (x− y)
√

logN


+ P

 sup
0<s<t(N)

1

BA(s) > y
√

logN


N→∞−→ P

|X| > y√
σ2

2β2 − ε

.
This last expression converges to 0 as y →∞. Thus, the limit in (3.4.20) follows.

Similarly to the limit in (3.4.20), we also have that

P

max
i≤N

sup
s>t

(N)
3

(Bi(s) +BA(s)− βs) > σ2

2β logN + x
√

logN

 N→∞−→ 0. (3.4.25)
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To prove this limit, we first take

0 < δ < min

(
β + βσ2

2β2ε+ σ2 − 2 βσ√
2β2ε+ σ2

,
2β3ε

2β2ε+ σ2 , β

)
.

Then, we bound

max
i≤N

sup
s>t

(N)
3

(Bi(s) +BA(s)− βs) ≤ max
i≤N

sup
s>t

(N)
3

(Bi(s)− (β − δ)s) + sup
s>0

(BA(s)− δs).

(3.4.26)

The second term on the right-hand side is exponentially distributed with mean σ2
A/(2δ). We

can, due to the fact that Brownian motions have independent increments, rewrite the first
term as follows:

max
i≤N

sup
s>t

(N)
3

(Bi(s)− (β − δ)s)

= max
i≤N

(
Bi(t(N)

3 )− (β − δ)t(N)
3 + sup

s>0
(B̂i(s)− (β − δ)s)

)
,

with (B̂i(t), t ≥ 0) an independent copy of (Bi(t), t ≥ 0). By using the union bound, we
have that

P

(
max
i≤N

(
Bi(t(N)

3 )− (β − δ)t(N)
3 + sup

s>0
(B̂i(s)− (β − δ)s)

)
>
σ2

2β logN + x
√

logN

)

≤ N P
(
Bi(t(N)

3 )− (β − δ)t(N)
3 + sup

s>0
(B̂i(s)− (β − δ)s) > σ2

2β logN + x
√

logN
)
.

Now, by Chernoff’s bound, we obtain for all x ∈ R and 0 < θ < 2(β − δ)/σ2 that

N P
(
Bi(t(N)

3 )− (β − δ)t(N)
3 + sup

s>0
(B̂i(s)− (β − δ)s) > σ2

2β logN + x
√

logN
)

≤ N exp
(
t
(N)
3

θ2σ2

2 − θ(β − δ)t(N)
3 − θ σ

2

2β logN − θx
√

logN
)

2(β − δ)/σ2

2(β − δ)/σ2 − θ . (3.4.27)

We choose θ = (β − δ)/σ2 + β/(σ2 + 2β2ε). Because

δ <
2β3ε

2β2ε+ σ2 ,

we have that θ < 2(β − δ)/σ2. Thus, in order to derive the asymptotics of the term on the
right-hand side of (3.4.27), we can ignore the term

2(β − δ)/σ2

2(β − δ)/σ2 − θ .
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Moreover, the term −θx
√

logN = o(logN). The main remaining terms are

N exp
(
t
(N)
3

θ2σ2

2 − θ(β − δ)t(N)
3 − θ σ

2

2β logN + o(logN)
)

= exp

(1 +
(
σ2

2β2 + ε

)
θ2σ2

2 − θ(β − δ)
(
σ2

2β2 + ε

)
− θ σ

2

2β

)
logN(1 + o(1))


= exp

(
1
4

(
δ(4β − δ)

β2 + 2β2ε

2β2ε+ σ2 −
2ε(β − δ)2

σ2

)
logN(1 + o(1))

)
.

Because
0 < δ < β + βσ2

2β2ε+ σ2 − 2 βσ√
2β2ε+ σ2

,

we have that
1
4

(
δ(4β − δ)

β2 + 2β2ε

2β2ε+ σ2 −
2ε(β − δ)2

σ2

)
< 0.

Therefore, we have that

N exp
(
t
(N)
3

θ2σ2

2 − θ(β − δ)t(N)
3 − θ σ

2

2β logN − θx
√

logN
)

2(β − δ)/σ2

2(β − δ)/σ2 − θ
N→∞−→ 0.

Thus,

P

max
i≤N

sup
s>t

(N)
3

(Bi(s) +BA(s)− βs) > σ2

2β logN + x
√

logN


≤ N P

 sup
s>t

(N)
3

(Bi(s)− (β − δ)s) > σ2

2β logN + (x− y)
√

logN


+ P
(

sup
s>0

(BA(s)− δs) > y
√

logN
)

N→∞−→ 0,

for y > 0. Therefore, the limit in (3.4.25) follows.
Finally, we show that

lim sup
N→∞

P

maxi≤N sup
t
(N)
1 ≤s≤t(N)

3
(Bi(s) +BA(s)− βs)− σ2

2β logN
√

logN
≥ x


≤ lim sup

N→∞
P

(
σA

√
σ2

2β2 − εX1 +
√

2εσA|X2| ≥ x

)
, (3.4.28)
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as N →∞, with X1, X2 ∼ N (0, 1) and independent.
To prove this, we bound

maxi≤N sup
t
(N)
1 ≤s≤t(N)

3

(
Bi(s) +BA(s)− βs

)
− σ2

2β logN
√

logN

≤ sup
t
(N)
1 ≤s≤t(N)

3

BA(s)√
logN

+
maxi≤N sup

t
(N)
1 ≤s≤t(N)

3
(Bi(s)− βs)− σ2

2β logN
√

logN

≤ sup
t
(N)
1 ≤s≤t(N)

3

BA(s)√
logN

+
maxi≤N sups>0(Bi(s)− βs)− σ2

2β logN
√

logN
.

We can write

sup
t
(N)
1 ≤s≤t(N)

3

BA(s)√
logN

= BA(t(N)
1 )√

logN
+ sup

0≤s<2ε logN

B̂A(s)√
logN

d= σA

√
σ2

2β2 − εX1 +
√

2εσA|X2|,

with X1, X2 ∼ N (0, 1) and independent, and (B̂A(t), t ≥ 0) an independent copy of
(BA(t), t ≥ 0). Furthermore, because the random variable maxi≤N sups>0(Bi(s) − βs) is
a maximum of N i.i.d. exponentially distributed random variables, we have that

2β
σ2

(
max
i≤N

sup
s>0

(Bi(s)− βs)−
σ2

2β logN
)

d−→ G,

as N →∞, with G ∼ Gumbel; see [67, Thm. 1.2.1, p. 19]. Therefore,

maxi≤N sups>0(Bi(s)− βs)− σ2

2β logN
√

logN
P−→ 0,

as N → ∞. The limit in (3.4.28) follows. Combining the limits in (3.4.20), (3.4.25), and
(3.4.28) together gives that

lim sup
N→∞

P

(
maxi≤N sups>0

(
Bi(s) +BA(s)− βs

)
− σ2

2β logN
√

logN
≥ x

)

≤ P

(
σA

√
σ2

2β2 − εX1 +
√

2εσA|X2| ≥ x

)
ε↓0−→ P

(
σσA√

2β
X ≥ x

)
.

The corollary follows.

Proof of Lemma 3.3. Without loss of generality, we assume that β = 1. We write Yi =
sups>0(Bi(s) + BA(s) − s). Let d = σ2

2 , and XN =
√

2
σσA

BA(d logN)√
logN

. It is easy to see that
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XN ∼ N (0, 1). We want to prove that

E

∣∣∣∣∣maxi≤N Yi − σ2

2 logN
√

logN
− σσA√

2
XN

∣∣∣∣∣
 N→∞−→ 0. (3.4.29)

First observe that

E

∣∣∣∣∣maxi≤N Yi − σ2

2 logN
√

logN
− σσA√

2
XN

∣∣∣∣∣
 (3.4.30)

≤ E

∣∣∣∣∣maxi≤N Yi − σ2

2 logN
√

logN
− maxi≤N Bi(d logN) +BA(d logN)− σ2 logN√

logN

∣∣∣∣∣


(3.4.31)

+ E

[∣∣∣∣maxi≤N Bi(d logN) +BA(d logN)− σ2 logN√
logN

− σσA√
2
XN

∣∣∣∣
]
. (3.4.32)

Because Yi > Bi(d logN) +BA(d logN)− d logN , we can rewrite (3.4.31):

E

∣∣∣∣∣maxi≤N Yi − σ2

2 logN
√

logN
− maxi≤N Bi(d logN) +BA(d logN)− σ2 logN√

logN

∣∣∣∣∣


= E

[
maxi≤N Yi − σ2

2 logN
√

logN
− maxi≤N Bi(d logN) +BA(d logN)− σ2 logN√

logN

]
. (3.4.33)

Moreover, due to [123, Th. 3.1]:

E

[∣∣∣∣maxi≤N Bi(d logN) +BA(d logN)− σ2 logN√
logN

− σσA√
2
XN

∣∣∣∣
]

= E

[∣∣∣∣maxi≤N Bi(d logN)− σ2 logN√
logN

∣∣∣∣
]
N→∞−→ 0. (3.4.34)

From this, it also follows that

E
[

maxi≤N Bi(d logN) +BA(d logN)− σ2 logN√
logN

]
N→∞−→ E

[
σσA√

2
X

]
= 0. (3.4.35)

Thus, from the convergence results in (3.4.34) and (3.4.35) together with the bounds in
(3.4.31) and (3.4.32), we can conclude that we only need to show that

E

[
maxi≤N Yi − σ2

2 logN
√

logN

]
N→∞−→ 0,
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in order to prove Lemma 3.3. Because Yi > Bi(d logN) +BA(d logN)− d logN and due to
the convergence result in (3.4.35), we see that

lim inf
N→∞

E

[
maxi≤N Yi − σ2

2 logN
√

logN

]
≥ 0.

In order to prove a converging upper bound, we write

E

[
maxi≤N Yi − σ2

2 logN
√

logN

]

≤ E

maxi≤N Yi − σ2

2 logN
√

logN
1

(
−M ≤

maxi≤N Yi − σ2

2 logN
√

logN
< M

)
+ E

maxi≤N Yi − σ2

2 logN
√

logN
1

(
maxi≤N Yi − σ2

2 logN
√

logN
≥M

).
By Corollary 3.2 and the dominated convergence theorem we have that

E

maxi≤N Yi − σ2

2 logN
√

logN
1

(
−M ≤

maxi≤N Yi − σ2

2 logN
√

logN
< M

)
N→∞−→ E

[
σσA√

2
X1

(
−M ≤ σσA√

2
X < M

)]
= 0.

Thus,

lim sup
N→∞

E

[
maxi≤N Yi − σ2

2 logN
√

logN

]

≤ lim sup
N→∞

E

maxi≤N Yi − σ2

2 logN
√

logN
1

(
maxi≤N Yi − σ2

2 logN
√

logN
≥M

)
for all M > 0. Now, we bound

max
i≤N

Yi ≤ max
i≤N

sup
s>0

(Bi(s)− (1− 1/
√

logN)s) + sup
s>0

(BA(s)− s/
√

logN) =: ZN .

Then, we have the bound

E

maxi≤N Yi − σ2

2 logN
√

logN
1

(
maxi≤N Yi − σ2

2 logN
√

logN
≥M

)
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≤ E

ZN − σ2

2 logN
√

logN
1

(
maxi≤N sups>0(Bi(s)− (1− 1/

√
logN)s)− σ2

2 logN
√

logN
≥M/2

)
+ E

[
ZN − σ2

2 logN
√

logN
1

(
sups>0(BA(s)− s/

√
logN)

√
logN

≥M/2
)]

.

We have
E
[

sups>0(BA(s)− s/
√

logN)
√

logN

]
= σ2

A

2 ,

and

E

[
maxi≤N sups>0(Bi(s)− (1− 1/

√
logN)s)− σ2

2 logN
√

logN

]
N→∞−→ σ2

2 .

Furthermore, due to the memoryless property of exponential random variables, we have that

E

[
sups>0(BA(s)− s/

√
logN)

√
logN

1

(
sups>0(BA(s)− s/

√
logN)

√
logN

≥M/2
)]

= exp(−M/σ2
A)
(
M

2 + σ2
A

2

)
M→∞−→ 0,

and

E
[

maxi≤N sups>0(Bi(s)− (1− 1/
√

logN)s)− σ2

2 logN
√

logN

· 1
(

maxi≤N sups>0(Bi(s)− (1− 1/
√

logN)s)− σ2

2 logN
√

logN
≥M/2

)]
≤ NE

[
sups>0(Bi(s)− (1− 1/

√
logN)s)− σ2

2 logN
√

logN

· 1
(

sups>0(Bi(s)− (1− 1/
√

logN)s)− σ2

2 logN
√

logN
≥M/2

)]
N→∞−→ 0,

for M large enough. From these results, it follows that,

lim
M→∞

lim sup
N→∞

E

maxi≤N Yi − σ2

2 logN
√

logN
1

(
maxi≤N Yi − σ2

2 logN
√

logN
≥M

) = 0,

the lemma follows.



Chapter 4

Large deviations principle

4.1. Introduction

In this chapter, we study the Brownian fork-join queue. We consider a continuous-time
model as described in Corollary 3.2 and Lemma 3.3 in Chapter 3. We model arrival and
service processes directly by Brownian motions. We study the resulting maximum queue
length, as we also do in Chapter 6.

Specifically, we model the delay in queue i by Qβi = sups>0(Bi(s) +BA(s)− βs), where
(BA(t), t ≥ 0) is a Brownian motion term with standard deviation σA that represents the
fluctuations in the arrival process, (Bi(t), t ≥ 0) is a Brownian motion term with standard
deviation σ that represents the fluctuations in the service process, and β > 0 represents the
drift of the queue. Furthermore, we assume that (Bi, i ≤ N) are i.i.d. Brownian motions,
and for all i, the processes (Bi(t), t ≥ 0) and (BA(t), t ≥ 0) are mutually independent. In
this chapter, we write Q̄βN = maxi≤N Qβi .

Under these assumptions, in Corollary 3.2 we have shown that Q̄βN is in the domain of
attraction of the normal distribution:

P
(
Q̄βN >

σ2

2β logN + x
√

logN
)

N→∞−→ P
(
σσA√

2β
X > x

)
, (4.1.1)

with X
d= N (0, 1). This means that Q̄βN centers around σ2

2β logN and deviates with order√
logN .
This convergence result provides a prediction of the typical maximum queue length.

In assembly systems as discussed in Section 1.2, this maximum queue length determines
the typical delay. So, one might also be interested in the question how likely it is that
the delay will be much longer, as delays may cause large costs. Obviously, the probability
P(Q̄βN > yN ) N→∞−→ 0, when yN − σ2

2β logN grows to infinity at a rate faster than
√

logN ,

This chapter is based on [137].
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but the question is how fast this probability converges to 0. In this chapter, we focus on the
probability

P

(
Q̄βN >

(
σ2

2β + a

)
logN

)
,

with a > 0. As we show later on, the exact behavior of this tail probability depends on
the choice of a, where we can distinguish three regimes: 0 < a < a?, a = a?, and a > a?,
with a? an explicitly identified constant in (0,∞). The logarithmic asymptotics for these
three regimes are given in Theorem 4.1, while the sharper asymptotics for the cases a > a?,
a = a?, and 0 < a < a? are given in Theorems 4.2, 4.3, and 4.4, respectively. It easily follows
from the proofs that the convergence behavior of P(Q̄βN > yN ) when yN is of larger order
than logN , is the same as for the case a > a?; see Corollary 4.5.1.

The work in this chapter is related to the literature on extreme values of Gaussian
processes. In this chapter, we examine exceedance probabilities of the order (σ

2

2β + a) logN
with a > 0. More work has been done on joint suprema of Brownian motions. For instance,
[90] gives the solution of the Laplace transform of joint first passage times in terms of
the solution of a partial differential equation, where the Brownian motions are dependent.
Further, [47] analyze the tail asymptotics of the all-time suprema of two dependent Brownian
motions. The joint suprema of a finite number of Brownian motions is also studied [46], where
the authors give tail asymptotics of the joint suprema of independent Gaussian processes
over a finite time interval. These are just three examples – more results may be found in
[102] and [126].

This chapter is organized as follows. In Section 4.2, we present our main results, which
contain an interesting phase transition in the way a large supremum occurs depending on
the value of a. We explain the reason behind this phase transition in detail. The rest of the
chapter is devoted to proofs. In Section 4.3, we give the proof of Theorem 4.1, which focuses
on logarithmic asymptotics. In Section 4.4, we present some auxiliary lemmas that allow
us to provide the proofs of Theorems 4.2, 4.3, and 4.4 in Sections 4.5.1, 4.5.2, and 4.5.3,
respectively, which deal with asymptotic estimates that are sharper than Theorem 4.1.

4.2. Main results

In this section, we present our main results and also provide some intuition. We first
introduce some additional notation.

Definition 4.1. The sequence (Bi, i ≤ N) is a sequence of i.i.d. Brownian motions with
standard deviation σ, (BA(t), t ≥ 0) is a Brownian motion with standard deviation σA,
(Bi(t), t ≥ 0) and (BA(t), t ≥ 0) are mutually independent for all i, the steady-state queue
length in front of server i is given by

Qβi := sup
s>0

(Bi(s) +BA(s)− βs), (4.2.1)
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and the maximum queue length equals

Q̄βN := max
i≤N

Qβi . (4.2.2)

Next, we write the supremum of a Brownian motion (Bi(t) + BA(t) − βt, t ≥ 0) over an
interval (u, v) as

Qβi (u, v) := sup
u<s<v

(Bi(s) +BA(s)− βs), (4.2.3)

and the maximum of N of these identically distributed random variables as

Q̄βN (u, v) := max
i≤N

Qβi (u, v). (4.2.4)

Furthermore, we write Qβi (u) = Qβi (u,∞) and Q̄βN (u) = Q̄βN (u,∞).

We give additional shorthand notation that we use later on.

Definition 4.2.

fN (a) :=
(
σ2

2β + a

)
logN, (4.2.5)

λ(a) := 1− σ/
√

2aβ + σ2, (4.2.6)

TN (a, k) := fN (a)/β + k
√

logN, (4.2.7)
TN (a) := TN (a, 0). (4.2.8)

Finally, we define

γ(a) :=


2aβ + 2σ2 − 2σ

√
2aβ + σ2

σ2
A

if 0 < a < a?,

2aβ − σ2
A

σ2 + σ2
A

if a ≥ a?,
(4.2.9)

with
a? := σ4

A

σ22β + σ2
A

β
.

The function γ(a) appears in the limit of the logarithmic asymptotics of P(Q̄βN > fN (a)).
As can be seen from (4.2.9), from a = a? onwards, the function γ(a) is linear. Moreover,
we see that γ(a) is continuous everywhere, also for a = a?. In Figure 4.1, we plot −γ(a) for
certain choices of the parameters σ, σA, β, and a?.
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Figure 4.1 σ = 1, σA = 1, β = 1, a? = 3/2

Throughout this chapter, we analyze the fork-join queueing system as defined in
Definitions 4.1 and 4.2. Our first result, Theorem 4.1, provides the logarithmic asymptotics
of the tail probability of the maximum steady-state queue length P(Q̄βN > fN (a)).

Theorem 4.1. For the model given in Definition 4.1 with the additional notation given in
Definition 4.2, and a > 0, we have that

log(P(Q̄βN > fN (a)))
logN

N→∞−→ −γ(a). (4.2.10)

We give the proof of Theorem 4.1 in Section 4.3. To provide some intuition, the form of
the function γ(a) suggests there are at least two regimes: the case where 0 < a < a?, and
the case where a ≥ a?. These two cases reveal interesting information on the tail behavior
of the maximum queue length Q̄βN .

Case a > a?. First, we give some intuitive explanation for the case a > a?. The maximum
steady-state queue length is the maximum of N dependent exponentially distributed random
variables. We can use the memoryless property of the exponential distribution to get some
heuristic insights into the behavior of the maximum steady-state queue length. Define τ :=
inf{t > 0 : maxi≤N Bi(t) + BA(t)− βt ≥ fN (a?)} and i? ∈ {j ≤ N : Bj(τ) + BA(τ)− βτ =



4.2 Main results 105

maxi≤N Bi(τ) +BA(τ)− βτ}. Then we get

P(Q̄βN > fN (a))

= P
(

max
i≤N

sup
s>0

(
Bi(s) +BA(s)− βs

)
> fN (a)

)
= P
(

max
i≤N

sup
s>0

(
Bi(s) +BA(s)− βs

)
> fN (a)

∣∣∣∣ τ <∞)P(τ <∞)

≥ P
(

sup
s>τ

(
Bi?(s) +BA(s)− βs

)
> fN (a)

∣∣∣∣ τ <∞)P(τ <∞).

(4.2.11)

Now, due to the fact that Brownian motions have independent increments, we can write
sups>τ (Bi?(s) + BA(s)− βs) = Bi?(τ) + BA(τ)− βτ + sups>0(B̂i?(s) + B̂A(s)− βs), with
(B̂i?(t), t ≥ 0) and (B̂A(t), t ≥ 0) independent copies of (Bi?(t), t ≥ 0) and (BA(t), t ≥ 0),
respectively. Thus, the lower bound in (4.2.11) simplifies to

P
(

max
i≤N

sup
s>0

(
Bi(s) +BA(s)− βs

)
> fN (a?)

)
· P
(

sup
s>0

(
Bi?(s) +BA(s)− βs

)
> (a− a?) logN

)
.

Therefore, when we compare this lower bound with the convergence result given in (4.2.10),
we get that

P
(
Q̄βN > fN (a)

)
= P
(

max
i≤N

sup
s>0

(
Bi(s) +BA(s)− βs

)
> fN (a)

)
≥ P
(

max
i≤N

sup
s>0

(
Bi(s) +BA(s)− βs

)
> fN (a?)

)
· P
(

sup
s>0

(
Bi(s) +BA(s)− βs

)
> (a− a?) logN

)
= P
(

max
i≤N

sup
s>0

(
Bi(s) +BA(s)− βs

)
> fN (a?)

)
exp
(
−2β(a− a?)

σ2 + σ2
A

logN
)

≈ N−γ(a?) exp
(
−2β(a− a?)

σ2 + σ2
A

logN
)

= N−γ(a),

(4.2.12)

with the ≈-sign indicating that we use the logarithmic asymptotics from (4.2.10), but we
ignore lower order terms. Thus, we see that when we use the result from (4.2.10) for a = a?,
then this lower bound is sharp for a > a?. From this lower bound (4.2.12) we can conclude
that for a > a?, there is at most one Brownian motion (Bi(t), t ≥ 0) for which it holds that
sups>0(Bi(s) + BA(s) − βs) > fN (a). The second intuitive observation is that for a ≥ a?,
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N−γ(a) = N P(Qβi > fN (a)). Obviously, since a ≥ 0, the union bound gives that

P(Q̄βN > fN (a)) ≤ N P(Qβi > fN (a)) = N
−

2aβ−σ2
A

σ2+σ2
A . (4.2.13)

The fact that the union bound is sharp when a ≥ a? indicates that for a ≥ a?, the N queues
are asymptotically independent; i.e.,

P
(

max
i≤N

sup
s>0

(
Bi(s) +BA(s)− βs

)
> fN (a)

)
≈ P
(

max
i≤N

sup
s>0

(
Bi(s) +BA,i(s)− βs

)
> fN (a)

)
,

where the arrival processes (BA,i, i ≤ N) are independent Brownian motions, and
(BA,i(t), t ≥ 0) and (Bi(t), t ≥ 0) are mutually independent. In Section 4.5.2, we see
that the boundary case a = a? does show some dependent behavior, but this dependence
structure cannot be deduced from the logarithmic asymptotics.

Case 0 < a < a?. Finally, the case 0 < a < a? is more involved. The function γ(a)
involves a in a nonlinear fashion. As we observe in Equation (4.2.13), due to the fact that
the exponent of the tail probability of an exponentially distributed random variable is linear
in a, we expect that the logarithmic asymptotics are also linear in a. Thus the structure of
γ(a) shows that the dependent part BA influences the tail asymptotics, and we have that

lim inf
N→∞

P

(
#{j ≤ N : sup

s>0
(Bj(s) +BA(s)− βs) > fN (a)} > 1

∣∣∣∣Q̄βN > fN (a)

)
> 0.

The reason that we see this is that in order to get that the maximum steady-state queue
length Q̄βN reaches the level fN (a), the arrival process (BA(t)− λ(a)βt, t ≥ 0) must reach a
high level around λ(a)fN (a), which is a rare event; see Equation (4.4.1). Furthermore, one
of the N service processes needs to reach a level around (1 − λ(a))fN (a); however, this is
not a rare event. Even more, the event that a finite number of service processes reaches a
level around (1− λ(a))fN (a) has a non-zero probability; see Equation (4.4.2).

The function γ(a) has more characteristics that can be explained from Corollary 3.2.
For example, γ(0) = 0, which is to be expected as we know from (4.1.1) and (4.2.5) that for
x = 0

P(Q̄βN > fN (0)) N→∞−→ 1
2 .

We further have that (logN)γ(x/
√

logN) N→∞−→ x2β2

σ2σ2
A

. It thus follows that for N large,

N−γ(x/
√

logN) ≈ N
− x2β2

σ2σ2
A

logN = exp
(
− x

2β2

σ2σ2
A

)
,

which is the exponent of the limiting distribution given in (4.1.1).
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To prove the logarithmic asymptotics in Theorem 4.1, it suffices to look at random
variables of the type maxi≤N (Bi(TN ) + BA(TN ) − βTN ) instead of the random variable
Q̄βN = maxi≤N sups>0(Bi(s) + BA(s) − βs), where the appropriate choice of TN is TN (a);
see Equation (4.2.8). We show this in more detail in the proof of Lemma 4.1. For a > a?,
the logarithmic asymptotics are relatively straightforward to derive because we see a notion
of asymptotic independence, as explained above. In the proof of Lemma 4.1, we show that
when 0 < a ≤ a?,

log(P(Q̄βN > fN (a)))
≈ log(P(max

i≤N
Bi
(
TN (a)

)
− (1− λ(a))βTN (a) > (1− λ(a))fN (a)))

+ log(P(BA
(
TN (a)

)
− λ(a)βTN (a) > λ(a)fN (a))),

(4.2.14)

when N is large, and we show that the term log(P(maxi≤N Bi
(
TN (a)

)
− (1−λ(a))βTN (a) >

(1− λ(a))fN (a))) becomes negligible as N →∞.
We now turn to precise asymptotics, which are stated in Theorems 4.2, 4.3, and 4.4 below

for the cases a > a?, a = a?, and 0 < a < a?, respectively. The proofs of these theorems can
be found in Sections 4.5.1, 4.5.2, and 4.5.3.

Theorem 4.2. For the model given in Definition 4.1 with the additional notation given in
Definition 4.2, and a > a?, we have that

Nγ(a) P(Q̄βN > fN (a)) N→∞−→ 1. (4.2.15)

The theorem shows that for a > a?, the tail probability of the steady-state maximum
queue length has the same asymptotic behavior as the one for independently and identically
distributed arrival processes for each queue.

Theorem 4.3. For the model given in Definition 4.1 with the additional notation given in
Definition 4.2, and a = a?, we have that

Nγ(a?) P(Q̄βN > fN (a?)) N→∞−→ 1
2 . (4.2.16)

To give a heuristic explanation of why we have a transition point at a = a?, we argue as
follows. Because the all-time supremum of a Brownian motion is exponentially distributed
it is easy to see that for a = a?,

sup
s>0

(BA(s)− λ(a?)βs) d= sup
s>0

(Bi(s)− (1− λ(a?))βs) d= sup
s>0

(Bi(s) +BA(s)− βs),

where λ(a) is given in Equation (4.2.6). Similarly, after a straightforward calculation, we
observe that for 0 < a < a?,

sup
s>0

(BA(s)− λ(a)βs) ≥st. sup
s>0

(Bi(s)− (1− λ(a))βs),
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and for a > a?,

sup
s>0

(BA(s)− λ(a)βs) ≤st. sup
s>0

(Bi(s)− (1− λ(a))βs),

with X ≥st. Y meaning that P(X ≥ x) ≥ P(Y ≥ x) for all x. For 0 < a < a?, large values
of Q̄βN are predominantly caused by fluctuations of (BA(t) − λ(a)βt, t ≥ 0); we show this
rigorously in Section 4.5.3. In contrast, for a > a?, fluctuations are caused by a combination
of the arrival process and one of the service processes, and therefore we see a notion of
asymptotic independence.

To explain in more detail why we have a constant 1/2 at the boundary case a = a?, we first
let Q̂βi be an independent copy of Qβi . Furthermore, observe that since the all-time supremum
of a Brownian motion with negative drift is exponentially distributed, P(sups>0(BA(s) −
λ(a?)βs) > λ(a?)fN (a?)) = N−γ(a?). Moreover, if the event sups>0(BA(s) − λ(a?)βs) >
λ(a?)fN (a?) happens, it most likely occurs at time TN (a?). By using the union bound and
that all suprema follow the same distribution, we may therefore write

P(Q̄βN (TN (a?)) > fN (a?) | BA
(
TN (a?)

)
− λ(a?)βTN (a?) = λ(a?)fN (a?))

= P
(

max
i≤N

(
Bi
(
TN (a?)

)
− (1− λ(a?))βTN (a?) + Q̂βi

)
> (1− λ(a?))fN (a?)

)
≈ N P

(
Bi
(
TN (a?)

)
− (1− λ(a?))βTN (a?) + Q̂βi > (1− λ(a?))fN (a?)

)
= N P

(
sup

s>TN (a?)
(Bi(s)− (1− λ(a?))βs) > (1− λ(a?))fN (a?)

)
N→∞−→ 1

2 .

The reason that we see a factor 1/2 emerging in the limit, follows from the fact that we take
the supremum over the set (TN (a?),∞). As the all-time suprema of Brownian motions are
exponentially distributed, it is easy to see that

N P
(

sup
s>0

(Bi(s)− (1− λ(a?))βs) > (1− λ(a?))fN (a?)
)

N→∞−→ 1.

Typical hitting times of this supremum are of the form TN (a?) + k
√

logN , with k ∈ R. We
will see in the proofs that the density of these hitting times will deviate symmetrically around
TN (a?); see Lemma 4.4. This heuristically explains that when we take the supremum over
the set (TN (a?),∞), we obtain the limit of 1/2. If we condition on maxi≤N sups>0(Bi(s)−
(1 − λ(a?))βs) = (1 − λ(a?))fN (a?), we obtain the same expression after using the same
heuristic argument.

Our final result is an improvement of the logarithmic asymptotics for the case 0 < a < a?.

Theorem 4.4. For the model given in Definition 4.1 with the additional notation given in
Definition 4.2, and 0 < a < a?, we have that

lim inf
N→∞

Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A P(Q̄βN > fN (a)) > 0, (4.2.17)
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and

lim sup
N→∞

Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A P(Q̄βN > fN (a)) <∞. (4.2.18)

We give a proof of this result in Section 4.5.3. As already suggested in Theorem 4.1, for
the case 0 < a < a? we observe more irregular behavior, which manifests itself already in
the values of γ(a). In Theorem 4.4, we observe that the second term is not a constant, as

was the case for the values a > a? and a = a?, but is (logN)
λ(a)

1−λ(a)
σ2

2σ2
A . To obtain heuristic

insights, we argue that

P
(

sup
s>0

(BA(s)− λ(a)βs) > λ(a)fN (a) + rN

)
= exp

(
−2λ(a)β

σ2
A

(λ(a)fN (a) + rN )
)

= N−γ(a)(logN)
− λ(a)

1−λ(a)
σ2

2σ2
A ,

(4.2.19)
with rN = σ

√
2aβ+σ2

4β log logN . Furthermore, we have for all k that

P
(

max
i≤N

Bi
(
TN (a, k)

)
− (1− λ(a))βTN (a, k) > (1− λ(a))fN (a)− rN

)
= Θ(1), (4.2.20)

where zN = Θ(1) means that lim infN→∞ zN > 0 and lim supN→∞ zN < ∞. Combining
these two results together with the definition of Q̄βN in (4.2.2), we see that

P
(
Q̄βN > fN (a)

)
≥ P
(

sup
s>0

(BA(s)− λ(a)βs) > λ(a)fN (a) + rN

,max
i≤N

Bi(τ (N))− (1− λ(a))βτ (N) > (1− λ(a))fN (a)− rN
)
,

(4.2.21)

where τ (N) = inf{t ≥ 0 : BA(t) − λ(a)βt > λ(a)fN (a) + rN}. We show later on that τ (N),
conditioned on being finite, is of the form TN (a,K) withK being a random variable. Because

P
(

sup
s>0

(BA(s)− λ(a)βs) > λ(a)fN (a) + rN

,max
i≤N

Bi(τ (N))− (1− λ(a))βτ (N) > (1− λ(a))fN (a)− rN
)

= P
(

sup
s>0

(BA(s)− λ(a)βs) > λ(a)fN (a) + rN

)
· P

(
max
i≤N

Bi(τ (N))− (1− λ(a))βτ (N) > (1− λ(a))fN (a)− rN
∣∣∣∣τ (N) <∞

)
,

(4.2.22)

we retrieve (4.2.17) after combining the results from (4.2.19)–(4.2.22). Thus, it turns out
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that for 0 < a < a?, rN plays a key role. As explained in Section 4.5.2, in the case 0 < a < a?,
(BA(t)−λ(a)βt, t ≥ 0) dominates, which explains why the tail asymptotics of the maximum
queue length Q̄βN are the same as the tail asymptotics of sups>0(BA(s) − λ(a)βs), and the
behavior of maxi≤N Bi

(
TN (a, k)

)
− (1− λ(a))βTN (a, k) is typical.

The main approach of proving the lower and upper bounds in (4.2.17) and (4.2.18), as
well as the limits in (4.2.15) and (4.2.16), is by analyzing lower and upper bounds on the
tail probability of the steady-state maximum queue length P(Q̄βN > fN (a)). These bounds
are derived by utilizing the union bound, Bonferroni’s inequality, and a careful construction
of hitting times. These hitting times are needed to estimate the time when the supremum
most likely hits the desired level and to adequately separate the independent part Bi and
the dependent part BA from each other. We also rely on some existing asymptotic estimates
in the literature from extreme-value theory, and on [47], which investigates the case N = 2.
Finally, we develop a number of auxiliary technical estimates related to the asymptotic
behavior of convolutions of normally and exponentially distributed random variables.

These techniques, when put together, are effective in the case a = a? and a > a? in
order to obtain exact asymptotics. In the case 0 < a < a?, we are able to improve upon
Theorem 4.1 and characterize the asymptotic behavior of P(Q̄βN > fN (a)) up to a constant.
To derive precise asymptotics in this case seems beyond the scope of techniques developed
in this chapter.

4.3. Proof of the logarithmic asymptotics

In this section, we give a proof of Theorem 4.1, establishing logarithmic asymptotics for the
maximum queue length. Our approach is to derive logarithmic lower and upper bounds of
the maximum queue length by using the heuristic idea given in (4.2.14), and show that they
coincide. These bounds are presented in Lemmas 4.1 and 4.2 below.

Lemma 4.1. For the model given in Definition 4.1 with the additional notation given in
Definition 4.2, and a > 0, we have that

lim inf
N→∞

log(P(Q̄βN > fN (a)))
logN ≥ −γ(a). (4.3.1)

Proof. Recall that λ(a) = 1−σ/
√

2aβ + σ2 and TN (a) = fN (a)/β. By choosing s = fN (a)/β
and splitting −βs into two terms, observe that

P
(

max
i≤N

sup
s>0

(
Bi(s) +BA(s)− βs

)
> fN (a)

)
(4.3.2)

≥ P
(

max
i≤N

Bi
(
TN (a)

)
− (1− λ(a))βTN (a) > (1− λ(a))fN (a)

, BA
(
TN (a)

)
− λ(a)βTN (a) > λ(a)fN (a)

)
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= P
(

max
i≤N

Bi
(
TN (a)

)
> 2(1− λ(a))fN (a)

)
P
(
BA
(
TN (a)

)
> 2λ(a)fN (a)

)
. (4.3.3)

The expression in (4.3.3) is due to the fact that for all i, (Bi(t), t ≥ 0) and (BA(t), t ≥ 0) are
independent. We now analyze the two probabilities in (4.3.3) separately. Since (Bi(t), t ≥ 0)
and (Bj(t), t ≥ 0) are i.i.d. for all i and j, for the first probability in (4.3.3) we get from
Bonferroni’s inequality that

P
(

max
i≤N

Bi
(
TN (a)

)
> 2(1− λ(a))fN (a)

)
≥N P

(
Bi
(
TN (a)

)
> 2(1− λ(a))fN (a)

)
−
(
N

2

)
P
(
Bi
(
TN (a)

)
> 2(1− λ(a))fN (a)

)2
.

(4.3.4)

Furthermore, it is easy to see that

P
(

sup
s>0

(Bi(s)− (1− λ(a))βs) > (1− λ(a))fN (a)
)

= 1
N

(4.3.5)

and that

P(Bi
(
TN (a)

)
> 2(1− λ(a))fN (a))

≤ P
(

sup
s>0

(Bi(s)− (1− λ(a))βs) > (1− λ(a))fN (a)
)
,

and therefore we bound the second term in (4.3.4) as(
N

2

)
P
(
Bi
(
TN (a)

)
> 2(1− λ(a))fN (a)

)2

≤ N2

2 P
(

sup
s>0

(Bi(s)− (1− λ(a))βs) > (1− λ(a))fN (a)
)

· P
(
Bi
(
TN (a)

)
> 2(1− λ(a))fN (a)

)
= N

2 P
(
Bi
(
TN (a)

)
> 2(1− λ(a))fN (a)

)
.

Thus, the lower bound given in (4.3.4) can be further bounded to

P
(

max
i≤N

Bi
(
TN (a)

)
> 2(1− λ(a))fN (a)

)
≥ N

2 P(Bi
(
TN (a)

)
> 2(1− λ(a))fN (a)).

As we aim to derive logarithmic asymptotics, we see that

log
(
N

2 P
(
Bi
(
TN (a)

)
> 2(1− λ(a))fN (a)

))
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∼ logN + log
(
P
(
Bi
(
TN (a)

)
> 2(1− λ(a))fN (a)

))
,

as N → ∞, with f(x) ∼ g(x) as x → ∞ meaning that limx→∞ f(x)/g(x) = 1. In
addition, recall that for a normally distributed random variable X with standard deviation
σ, log(P(X > x)) ∼ −x2/(2σ2), as x→∞. Thus, we get that

log
(
P
(
Bi
(
TN (a)

)
> 2(1− λ(a))fN (a)

))
∼ − (2(1− λ(a))fN (a))2

2σ2TN (a) = − logN,

as N →∞, following the definitions of λ(a), fN (a), and TN (a). Concluding,

lim inf
N→∞

log
(
P
(

maxi≤N Bi
(
TN (a)

)
− (1− λ(a))βTN (a) > (1− λ(a))fN (a)

))
logN ≥ 0. (4.3.6)

For the second probability in (4.3.3), the logarithmic asymptotics can be easily computed
since BA

(
fN (a)

)
is normally distributed. We obtain that

log
(
P
(
BA
(
TN (a)

)
> 2λ(a)fN (a)

))
logN

N→∞−→ −
2aβ + 2σ2 − 2σ

√
2aβ + σ2

σ2
A

. (4.3.7)

Thus, after combining these two results in (4.3.6) and (4.3.7) with (4.3.3), we have that,

lim inf
N→∞

log
(
P
(

maxi≤N sups>0
(
Bi(s) +BA(s)− βs

)
> fN (a)

))
logN

≥ −
2aβ + 2σ2 − 2σ

√
2aβ + σ2

σ2
A

, (4.3.8)

irrespective of the choice of a. Now, observe that for a > 0,

2aβ + 2σ2 − 2σ
√

2aβ + σ2

σ2
A

≥ 2aβ − σ2
A

σ2 + σ2
A

,

with equality for a = a?. This means that only for 0 < a ≤ a?, the lower bound in (4.3.8) is
sharp enough. For a > a?, we apply the inequality in (4.2.12) to obtain for all c > 0 that

P
(

max
i≤N

sup
s>0

(
Bi(s) +BA(s)− βs

)
> fN (a? + c)

)
≥ P
(

max
i≤N

sup
s>0

(
Bi(s) +BA(s)− βs

)
> fN (a?)

)
exp
(
−2βc logN
σ2 + σ2

A

)
. (4.3.9)

Combining this result with the inequality in (4.3.8), we get that for all c > 0,
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lim inf
N→∞

log
(
P
(

maxi≤N sups>0
(
Bi(s) +BA(s)− βs

)
> fN (a? + c)

))
logN

≥ −γ(a?)− 2βc
σ2 + σ2

A

= −γ(a? + c).

Combining the lower bounds in (4.3.8) and (4.3.9) gives the lower bound in (4.3.1).

Lemma 4.2. For the model given in Definition 4.1 with the additional notation given in
Definition 4.2, and a > 0, we have that

lim sup
N→∞

log(P(Q̄βN > fN (a)))
logN ≤ −γ(a). (4.3.10)

Proof. We have by the union bound in (4.2.13) that

lim sup
N→∞

log(P(Q̄βN > fN (a)))
logN ≤ −2aβ − σ2

A

σ2 + σ2
A

. (4.3.11)

This upper bound implies the upper bound given in (4.3.10) for a ≥ a?. Turning to the
case 0 < a < a?, we can bound the tail probability of the maximum queue length by using
subadditivity, the union bound, and by integrating over possible values of sups>0(BA(s) −
λ(a)βs), and we obtain that

P
(
Q̄βN > fN (a)

)
(4.3.12)

≤ P
(

max
i≤N

sup
s>0

(
Bi(s)− (1− λ(a))βs

)
+ sup
s>0

(
BA(s)− λ(a)βs

)
> fN (a)

)
≤
∫ λ(a)(σ

2
2β +a)

0

2λ(a)β
σ2
A

N logN P
(

sup
s>0

(
Bi(s)− (1− λ(a))βs

)
> fN (a)− y logN

)
· exp

(
−2λ(a)βy logN

σ2
A

)
dy

+ P
(

sup
s>0

(
BA(s)− λ(a)βs

)
> λ(a)fN (a)

)
(4.3.13)

=
∫ λ(a)(σ

2
2β +a)

0

2λ(a)β
σ2
A

N logN

· exp
(
−2(1− λ(a))β

σ2

(
fN (a)− y logN

)
− 2λ(a)βy logN

σ2
A

)
dy

+ P
(

sup
s>0

(
BA(s)− λ(a)βs

)
> λ(a)fN (a)

)
.

(4.3.14)

Because the function exp(− 2(1−λ(a))β
σ2 (fN (a)−y logN)− 2λ(a)βy logN

σ2
A

) with y ∈ [0, λ(a)(σ
2

2β +
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a)] is maximized when y = λ(a)(σ
2

2β + a) and equals N
−

2aβ+2σ2−2σ
√

2aβ+σ2

σ2
A

−1
, we get that

lim sup
N→∞

log
(∫ λ(a)(σ

2
2β +a)

0
2λ(a)β
σ2
A

logN ·N exp
(
− 2(1−λ(a))β

σ2

(
fN (a)− y logN

)
− 2λ(a)βy logN

σ2
A

)
dy

)
logN

= 1 + lim sup
N→∞

log
(∫ λ(a)(σ

2
2β +a)

0 exp
(
− 2(1−λ(a))β

σ2

(
fN (a)− y logN

)
− 2λ(a)βy logN

σ2
A

)
dy

)
logN

≤ −
2aβ + 2σ2 − 2σ

√
2aβ + σ2

σ2
A

. (4.3.15)

Now that we have found an upper bound for the integral in (4.3.14), we are left with the
expression P

(
sups>0

(
BA(s)− λ(a)βs

)
> λ(a)fN (a)

)
in (4.3.14). For this expression, it

holds that

P
(

sup
s>0

(
BA(s)− λ(a)βs

)
> λ(a)fN (a)

)
= N

−
2aβ+2σ2−2σ

√
2aβ+σ2

σ2
A .

Combining the upper bounds in (4.3.11) and (4.3.14) gives the logarithmic upper bound on
the maximum queue length in (4.3.10).

4.4. Useful lemmas

In the previous section, we gave a proof of the logarithmic asymptotics for the maximum
queue length Q̄βN . In order to be able to prove sharper results on the tail asymptotics, we
need some auxiliary results; the goal of this section is to derive these. We begin by giving
an overview of the results in this section.

First, observe that for a Brownian motion (B(t), t ≥ 0), we have that

sup
s>T

(B(s)− βs) d= B(T )− βT + sup
s>0

(B̂(s)− βs),

where (B̂(t), t ≥ 0) is an independent copy of (B(t), t ≥ 0). From this, it follows that if we
take the supremum of a Brownian motion starting at a positive time, this is in distribution
the same as adding a normally distributed random variable to an exponentially distributed
random variable. The tail asymptotics of this convolution equal the tail asymptotics of the
normally distributed part, the exponentially distributed part, or a more complicated mixture
of the two, depending on the starting time T , the standard deviation of B(s) and the drift
β. In Lemma 4.3, these three cases are studied in more detail.

Second, our main strategy to investigate the tail asymptotics involves the use of hitting
times. Observe that we have a maximum of N mutually dependent random variables. Based
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on the results in Section 4.3, we are able to make an educated guess where the supremum is
attained. Following the proof of Lemma 4.1, we see that for TN (a) given in (4.2.8),

P
(

max
i≤N

sup
s>0

(
Bi(s) +BA(s)− βs

)
> fN (a)

)
≈ P
(

max
i≤N

(
Bi(TN (a)) +BA(TN (a))− βTN (a)

)
> fN (a)

)
.

So the hitting time, conditioned on being finite, is approximately equal to TN (a). Next,
observe that for 0 < a ≤ a?,

P
(

sup
s>0

(
BA(s)− λ(a)βs

)
> λ(a)fN (a)

)
= exp

(
−2λ(a)β

σ2
A

λ(a)fN (a)
)

= N−γ(a), (4.4.1)

and

P
(

max
i≤N

sup
s>0

(
Bi(s)− (1− λ(a))βs

)
> (1− λ(a))fN (a)

)
= 1−

(
1− exp

(
−2(1− λ(a))β

σ2 (1− λ(a))fN (a)
))N

= Θ(1). (4.4.2)

Since the expectation of the hitting time, conditioned on being finite, of a level x, equals
this value x divided by the drift, it is easy to see that in both (4.4.1) and (4.4.2) the
conditional expectation of the hitting time equals TN (a). Thus, this heuristically explains
why the processes (BA(t)−λ(a)βt, t ≥ 0) and (Bi(t)− (1−λ(a))βt, t ≥ 0) are important. In
Definition 4.3 below, we define the hitting-time densities of these processes and in Lemma
4.4 we show that after proper scaling these densities converge to the densities of normally
distributed random variables, corrected with a constant.

Finally, we need to analyze limits of the type

lim
N→∞

∫ ∞
−∞

P

(
sup

s>τ(N)
Xi(s) > yN

∣∣∣∣τ (N) = t

)
fτ(N)(t)dt, (4.4.3)

where τ (N) is a hitting time and fτ(N) its density, with fτ(N)(t) = 0 for t < 0. In Lemma
4.5, we show that under certain assumptions, we can interchange the integral and the limit,
when the integrand is a product of two functions, as is the case in (4.4.3). The proof of this
interchange is similar to the proof of the dominated convergence theorem.

Lemma 4.3 (Convolution of normal and exponential distributions). Let X d= N (0, 1) and
E

d= Exp(1) be independent random variables. Let (ηN , N ≥ 1), (xN , N ≥ 1) be sequences
with ηN > 0, xN

N→∞−→ ∞, and xN/ηN
N→∞−→ ∞. Furthermore, let µ > 0 and c ∈ R. Then
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1. if xN−µη2
N√

2ηN

N→∞−→ c,

P
(
ηNX + 1

µ
E > xN

)
∼ ηNe

−
x2
N

2η2
N

√
2πxN

+ 1
2e

1
2µ(µη2

N−2xN)(1 + erf(c)), (4.4.4)

as N →∞, with

erf(c) = 2√
π

∫ c

0
exp(−t2)dt.

2. if xN−µη2
N√

2ηN

N→∞−→ ∞,

P
(
ηNX + 1

µ
E > xN

)
∼ ηNe

−
x2
N

2η2
N

√
2πxN

+ e
1
2µ(µη2

N−2xN), (4.4.5)

as N →∞,

3. and if xN−µη2
N√

2ηN

N→∞−→ −∞,

P
(
ηNX + 1

µ
E > xN

)
∼ ηNe

−
x2
N

2η2
N

√
2πxN

− 1√
2π
e

1
2µ(µη2

N−2xN) ηNe
−

(xN−µη2
N)2

2η2
N

xN − µη2
N

, (4.4.6)

as N →∞.

Proof. We have

P
(
ηNX + 1

µ
E > xN

)
= P(ηNX > xN ) +

∫ xN/ηN

−∞
P
(

1
µ
E > xN − ηNz

)
e−

z2
2

√
2π

dz. (4.4.7)

The first term satisfies

P(ηNX > xN ) ∼ ηNe
−
x2
N

2η2
N

√
2πxN

,

as N →∞. Furthermore,∫ xN/ηN

−∞
P
(

1
µ
E > xN − ηNz

)
e−

z2
2

√
2π

dz = 1
2e

1
2µ(µη2

N−2xN)
(
erf
(
xN − µη2

N√
2ηN

)
+ 1

)
.

Two standard results on the error function are that erf(z)→ 1, as z →∞, and 1+erf(−z) ∼
e−z

2
√
πz

, as z →∞; see [2, 7.1.13, 7.1.16 & 7.1.23]. The lemma follows.

For the remainder of this chapter, we use τ to indicate stochastic hitting times.
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Definition 4.3. For a > 0, r ∈ R, and i ∈ {1, 2, . . . , N}, we define the random variable
τ

(N)
i,a,−r by

τ
(N)
i,a,−r := inf{t ≥ 0 : Bi(t)− (1− λ(a))βt > (1− λ(a))fN (a)− r},

and the function f
τ

(N)
i,a,−r

as its density, with f
τ

(N)
i,a,−r

(t) = 0 for t < 0. Similarly, we define

the random variable τ̃ (N)
A,a,r by

τ̃
(N)
A,a,r := inf{t ≥ 0 : BA(t)− λ(a)βt > λ(a)fN (a) + r},

and the function f
τ̃

(N)
A,a,r

as its density, with f
τ̃

(N)
A,a,r

(t) = 0 for t < 0.

Lemma 4.4 (Convergence of hitting-time density). For the density function f
τ

(N)
i,a,−r

given

in Definition 4.3 and TN (a, k) given in Equation (4.2.7), we have that

N
√

logNf
τ

(N)
i,a,−r

(
TN (a, k)

)
N→∞−→ β2

√
π (2aβ + σ2)

exp

β
(

8a2β2r − β3k2σ
√

2aβ + σ2 + 8aβrσ2 + 2rσ4
)

σ (2aβ + σ2)5/2

 . (4.4.8)

Proof. The density f
τ

(N)
i,a,−r

(t) satisfies

f
τ

(N)
i,a,−r

(t) = (1− λ(a))fN (a)− r√
2πσt3/2

exp
(
− ((1− λ(a))fN (a)− r + (1− λ(a))βt)2

2σ2t

)
,

for t > 0, and 0 otherwise; see [32, Eq. (2.0.2), p. 301]. Due to the fact that TN (a, k) =
fN (a)/β + k

√
logN , for all k ∈ R, there exists Nk, such that for N > Nk, TN (a, k) > 0.

Following the notation given in Definition 4.2, we have that the prefactor of the density of
the hitting time equals

(1− λ(a))fN (a)− r√
2πσTN (a, k)3/2

=
σ√

2aβ+σ2
(σ

2

2β + a) logN − r
√

2πσ(( σ2

2β2 + a
β

) logN + k
√

logN)3/2

∼
σ√

2aβ+σ2
(σ

2

2β + a) logN
√

2πσ(( σ2

2β2 + a
β

) logN)3/2
,

as N →∞. When we simplify this last term further, we get

σ√
2aβ+σ2

(σ
2

2β + a)
√

2πσ(( σ2

2β2 + a
β

))3/2
√

logN
=

1√
2aβ+σ2

√
2π 1

β

√
σ2

2β2 + a
β

√
logN



118 Chapter 4. Large deviations principle

= 1
√

2π 1
β

√
2aβ + σ2

√
σ2

2β2 + a
β

√
logN

.

Because we can write
√

σ2

2β2 + a
β

= 1√
2β

√
2aβ + σ2, we get

1
√

2π 1
β

√
2aβ + σ2

√
σ2

2β2 + a
β

√
logN

= β2
√
π(2aβ + σ2)

√
logN

.

So, we can conclude that
√

logN times the first term of the density converges to β2
√
π(2aβ+σ2) ,

as N →∞, which is the prefactor of the limit. So, in order to prove the limit in (4.4.8), we
are left with proving that

N exp
(
− ((1− λ(a))fN (a)− r + (1− λ(a))βTN (a, k))2

2σ2TN (a, k)

)
N→∞−→ exp

β
(

8a2β2r − β3k2σ
√

2aβ + σ2 + 8aβrσ2 + 2rσ4
)

σ (2aβ + σ2)5/2

 . (4.4.9)

The numerator of the exponent on the left-hand side of (4.4.9) equals

((1− λ(a))fN (a)− r + (1− λ(a))βTN (a, k))2.

Because of the form of fN (a) and TN (a, k) as given in Definition 4.2, we can write

((1− λ(a))fN (a)− r + (1− λ(a))βTN (a, k))2

= c1(logN)2 + c2(logN)3/2 + c3 logN + c4
√

logN + r2, (4.4.10)

with c1, c2, c3, c4 to be determined. In order to determine c1 we should gather all the terms
in

(1− λ(a))fN (a)− r + (1− λ(a))βTN (a, k)

that scale as logN . We have

(1− λ(a))fN (a)− r + (1− λ(a))βTN (a, k)

= σ√
2aβ + σ2

(
σ2

2β + a

)
logN − r + σ√

2aβ + σ2
β

(
σ2

2β2 + a

β

)
logN

+ σ√
2aβ + σ2

βk
√

logN

= 2σ√
2aβ + σ2

(
σ2

2β + a

)
logN + o(logN).
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Therefore,

c1 =

(
2σ√

2aβ + σ2

(
σ2

2β + a

))2

= 4σ2

2aβ + σ2

(
σ2

2β + a

)2

= 2σ2

β

(
σ2

2β + a

)
.

Now, to determine c2 in (4.4.10), we have

(1− λ(a))fN (a)− r + (1− λ(a))βTN (a, k)

= σ√
2aβ + σ2

(
σ2

2β + a

)
logN − r + σ√

2aβ + σ2
β

(
σ2

2β2 + a

β

)
logN

+ σ√
2aβ + σ2

βk
√

logN

= 2σ√
2aβ + σ2

(
σ2

2β + a

)
logN + σ√

2aβ + σ2
βk
√

logN − r.

Therefore, c2 equals

c2 = 2 2σ√
2aβ + σ2

(
σ2

2β + a

)
σ√

2aβ + σ2
βk = 4 σ2

2aβ + σ2

(
σ2

2β + a

)
βk = 2σ2k.

Observe that
c1(logN)2 + c2(logN)3/2 = 2σ2TN (a, k) logN.

Thus, the numerator of the exponent on the left-hand side of (4.4.9) can be rewritten as

− ((1− λ(a))fN (a)− r + (1− λ(a))βTN (a, k))2

2σ2TN (a, k) = − logN +O(1),

and we can conclude that

N exp
(
− ((1− λ(a))fN (a)− r + (1− λ(a))βTN (a, k))2

2σ2TN (a, k)

)
= N exp(− logN+O(1)) = O(1).

The only term in (4.4.10) that is still of importance, is the term c3. We have

− ((1− λ(a))fN (a)− r + (1− λ(a))βTN (a, k))2

= −
(

2σ√
2aβ + σ2

(
σ2

2β + a

)
logN + σ√

2aβ + σ2
βk
√

logN − r
)2

.

The terms that scale as logN are as follows:

c3 logN = −
(
− 2r 2σ√

2aβ + σ2

(
σ2

2β + a

)
+ σ2

2aβ + σ2 β
2k2
)

logN.
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Thus,

−(−2r 2σ√
2aβ+σ2

(σ
2

2β + a) + σ2

2aβ+σ2 β
2k2) logN

2σ2TN (a, k)

=
−(−2r 2σ√

2aβ+σ2
(σ

2

2β + a) + σ2

2aβ+σ2 β
2k2) logN

2σ2(( σ2

2β2 + a
β

) logN + k
√

logN)
.

This expression converges to

−(−2r 2σ√
2aβ+σ2

(σ
2

2β + a) + σ2

2aβ+σ2 β
2k2)

2σ2( σ2

2β2 + a
β

)

=
β
(

8a2β2r − β3k2σ
√

2aβ + σ2 + 8aβrσ2 + 2rσ4
)

σ (2aβ + σ2)5/2 ,

as N →∞, which is exactly the exponent in the limit of (4.4.9). Putting everything together,
the limit in (4.4.8) follows.

Corollary 4.1. For the density function f
τ

(N)
i,a,−r

given in Definition 4.3 and TN (a, k) given

in Equation (4.2.7) we have that

lim
N→∞

∫ ∞
−∞

N
√

logNf
τ

(N)
i,a,−r

(
TN (a, k)

)
dk =

∫ ∞
−∞

lim
N→∞

N
√

logNf
τ

(N)
i,a,−r

(
TN (a, k)

)
dk.

(4.4.11)

Proof. Observe that for N large enough such that (1− λ(a))fN (a)− r > 0,∫ ∞
−∞

N
√

logNf
τ

(N)
i,a,−r

(
TN (a, k)

)
dk

= N P
(

sup
s>0

(Bi(s)− (1− λ(a))βs) > (1− λ(a))fN (a)− r
)

= exp
(

2(1− λ(a))βr
σ2

)
,

due to the fact that sups>0(Bi(s)−(1−λ(a))βs) is exponentially distributed with parameter
2(1− λ(a))β/σ2. Additionally,

∫ ∞
−∞

β2 exp

(
β
(

8a2β2r−β3k2σ
√

2aβ+σ2+8aβrσ2+2rσ4
)

σ(2aβ+σ2)5/2

)
√
π (2aβ + σ2)

dk
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=
∫ ∞
−∞

β2 exp
(
− β4k2

(2aβ+σ2)2

)
√
π (2aβ + σ2)

exp
(

2(1− λ(a))βr
σ2

)
dk.

The first term in this integral is the density of a normally distributed random variable.
Therefore, we get that

∫ ∞
−∞

β2 exp
(
− β4k2

(2aβ+σ2)2

)
√
π (2aβ + σ2)

exp
(

2(1− λ(a))βr
σ2

)
dk = exp

(
2(1− λ(a))βr

σ2

)
.

Lemma 4.5 (Convergence of integrals of sequences of functions). Assume we have sequences
of positive integrable functions vN (x) and wN (x) that satisfy the following:

• vN (x) N→∞−→ v(x),

•
∫∞
−∞ vN (x)dx N→∞−→

∫∞
−∞ v(x)dx,

• wN (x) N→∞−→ w(x),

• There exists a constant c > 0 such that wN (x) < c for all x and N .

Then ∫ ∞
−∞

vN (x)wN (x)dx N→∞−→
∫ ∞
−∞

v(x)w(x)dx. (4.4.12)

Proof. First, by using Fatou’s lemma, we obtain that

lim inf
N→∞

∫ ∞
−∞

vN (x)wN (x)dx ≥
∫ ∞
−∞

v(x)w(x)dx.

Furthermore, observe that vN (x)c − vN (x)wN (x) > 0 for all x and N . Now, from Fatou’s
lemma, it follows that

lim inf
N→∞

∫ ∞
−∞

vN (x)c− vN (x)wN (x)dx ≥
∫ ∞
−∞

v(x)c− v(x)w(x)dx.

Because
∫∞
−∞ vN (x)cdx N→∞−→

∫∞
−∞ v(x)cdx, we get that

lim sup
N→∞

∫ ∞
−∞

vN (x)wN (x)dx ≤
∫ ∞
−∞

v(x)w(x)dx.

The lemma follows.

In Definition 4.4, we give shorthand notation of some probability measures that we use
later on.
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Definition 4.4.

P
(N)
i,j := P

(
min(Qβi (τ (N)

i,a?,0)1(τ (N)
i,a?,0 <∞), Qβj (τ (N)

j,a?,0)1(τ (N)
j,a?,0 <∞)) > fN (a)

)
, (4.4.13)

Q
(N)
i,j (k, l)

:= P
(

min(Qβi (τ (N)
i,a?,0), Qβj (τ (N)

j,a?,0)) > fN (a)
∣∣∣ τ (N)

i,a?,0 = TN (a?, k), τ (N)
j,a?,0 = TN (a?, l)

)
,

(4.4.14)

P(k<l)(A) := P
(
A

∣∣∣ τ (N)
i,a?,0 = TN (a?, k) < τ

(N)
j,a?,0 = TN (a?, l)

)
, (4.4.15)

and

P(N)
i,a,−r,k(A) := P(A | τ (N)

i,a,−r = TN (a, k)). (4.4.16)

4.5. Proofs of the sharper asymptotics

In this section, we prove sharper asymptotics of the tail behavior of P(Q̄βN > fN (a)). Recall
the definition of τ (N)

i,a,−r and τ̃ (N)
A,a,r given in Definition 4.3, and observe that

P(Q̄βN > fN (a)) = P(max
i≤N

Qβi (τ (N)
i,a,−r ∧ τ̃

(N)
A,a,r)1(τ (N)

i,a,−r ∧ τ̃
(N)
A,a,r <∞) > fN (a)). (4.5.1)

This equation is valid, because for 0 < t < τ
(N)
i,a,−r ∧ τ̃

(N)
A,a,r, we see that Bi(t)− (1−λ(a))βt <

(1−λ(a))fN (a)− r and BA(t)−λ(a)βt < λ(a)fN (a) + r. Thus, Bi(t) +BA(t)−βt < fN (a).
Now, using (4.5.1), we obtain lower and upper bounds of the form

max
(
P
(

max
i≤N

Qβi (τ (N)
i,a,−r)1(τ (N)

i,a,−r <∞) > fN (a)
)
,P
(
Q̄βN (τ̃ (N)

A,a,r)1(τ̃ (N)
A,a,r <∞) > fN (a)

))
≤P(Q̄βN > fN (a))

≤P
(

max
i≤N

Qβi (τ (N)
i,a,−r)1(τ (N)

i,a,−r <∞) > fN (a)
)

+ P
(
Q̄βN (τ̃ (N)

A,a,r)1(τ̃ (N)
A,a,r <∞) > fN (a)

)
,

(4.5.2)

which we can exploit. Other important inequalities that we use are the union bound and
Bonferroni’s inequality. In the case of identically distributed random variables Xi, these
bounds simplify to

N P(Xi > x)−
(
N

2

)
P(min(Xi, Xj) > x) ≤ P(max

i≤N
Xi > x) ≤ N P(Xi > x),

which is the case for our problem. Dębicki et al. [47] have derived the tail asymptotics of
min(Qβi , Q

β
j ). In Lemma 4.7, we show how we use [47, Thm. 2.3] on the tails of min(Qβi , Q

β
j )

together with Bonferroni’s inequality such that these are applicable in our proof of the case
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a > a?.
Now that we can write upper and lower bounds in which hitting times play a role, we

condition on the hitting times and get sequences of the form as given in (4.4.3). By using
Lemma 4.5, we obtain that

lim
N→∞

∫ ∞
−∞

P

(
sup

s>τ(N)
Xi(s) > yN

∣∣∣τ (N) = t

)
fτ(N)(t)dt

=
∫ ∞
−∞

lim
N→∞

P

(
sup

s>τ(N)
Xi(s) > yN

∣∣∣τ (N) = t

)
fτ(N)(t)dt.

To obtain limits of the form as given in (4.4.3), we use Lemmas 4.3 and 4.4.

4.5.1 The case a > a?

In this section, we prove Theorem 4.2 on exact asymptotics of the maximum queue length
when a > a?. As is stated in (4.2.15), P(Q̄βN > fN (a)) ∼ N−γ(a), as N →∞, when a > a?.
Since the union bound in (4.2.13) gives us that Nγ(a) P(Q̄βN > fN (a)) ≤ 1, we only need to
show that

lim inf
N→∞

Nγ(a) P(Q̄βN > fN (a)) ≥ 1.

In order to prove the lim inf, we first observe that Q̄βN > maxi≤N Qβi (τ (N)
i,a?,0)1(τ (N)

i,a?,0 <∞),
and we know by using Bonferroni’s inequality that

P(max
i≤N

Qβi (τ (N)
i,a?,0)1(τ (N)

i,a?,0 <∞) > fN (a))

≥ N P
(
Qβ1 (τ (N)

1,a?,0)1(τ (N)
1,a?,0 <∞) > fN (a)

)
−
(
N

2

)
P
(

min(Qβ1 (τ (N)
1,a?,0)1(τ (N)

1,a?,0 <∞), Qβ2 (τ (N)
2,a?,0)1(τ (N)

2,a?,0 <∞)) > fN (a)
)
,

(4.5.3)
where τ (N)

i,a?,0 and τ
(N)
j,a?,0 are hitting times defined in Lemma 4.4. In Lemma 4.7, we show

that the first term is leading, and the second order term is of smaller order. In order to
prove this, we first give a convenient upper bound for

P(k<l)
(

min(Qβi (τ (N)
i,a?,0), Qβj (τ (N)

j,a?,0)) > fN (a)
)

in Lemma 4.6, with P(k<l)(A) given in Equation (4.4.15) in Definition 4.4.
For the remainder of this chapter, let (B̂(t), t ≥ 0) be an independent copy of the

Brownian motion (B(t), t ≥ 0), and Q̂βi (s, t) an independent copy of Qβi (s, t).

Lemma 4.6. Let a > a? and P(k<l)(A) be given in Equation (4.4.15). Furthermore, τ (N)
i,a?,0

is given in Definition 4.3 and Q̂βi is an independent copy of Qβi . Then for all δ > 0 there
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exists an Nδ > 0 such that for all N ≥ Nδ

P(k<l)
(

min(Qβi (τ (N)
i,a?,0), Qβj (τ (N)

j,a?,0)) > fN (a)
)

≤ 4P(k<l)
(

(1+δ)BA(τ (N)
i,a?,0)+min(Q̂βi , Q̂

β
j ) > fN (a)−(1−λ(a?))fN (a?)+λ(a?)βτ (N)

i,a?,0

)
.

Proof. First, we have that

P(k<l)
(

min(Qβi (τ (N)
i,a?,0), Qβj (τ (N)

j,a?,0)) > fN (a)
)

≤ P(k<l)
(
Qβi (τ (N)

i,a?,0, τ
(N)
j,a?,0) > fN (a)

)
+ P(k<l)

(
min(Qβi (τ (N)

j,a?,0), Qβj (τ (N)
j,a?,0)) > fN (a)

)
,

(4.5.4)

because

min(Qβi (τ (N)
i,a?,0), Qβj (τ (N)

j,a?,0)) < max(Qβi (τ (N)
i,a?,0, τ

(N)
j,a?,0),min(Qβi (τ (N)

j,a?,0), Qβj (τ (N)
j,a?,0)))

when τ (N)
i,a?,0 < τ

(N)
j,a?,0 <∞. Now, recall from Definition 4.3 that

Qβi (τ (N)
i,a?,0, τ

(N)
j,a?,0) = sup

τ
(N)
i,a?,0<s<τ

(N)
j,a?,0

(Bi(s) +BA(s)− βs) d= (1− λ(a?))fN (a?)

+BA(τ (N)
i,a?,0)− λ(a?)βτ (N)

i,a?,0 + Q̂βi (0, τ (N)
j,a?,0 − τ

(N)
i,a?,0).

Thus, for the first term in (4.5.4) we have

P(k<l)
(
Qβi (τ (N)

i,a?,0, τ
(N)
j,a?,0) > fN (a)

)
= P(k<l)

(
BA(τ (N)

i,a?,0) + Q̂βi (0, τ (N)
j,a?,0 − τ

(N)
i,a?,0) > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)

i,a?,0

)
≤ P(k<l)

(
BA(τ (N)

i,a?,0) +
∣∣∣B̂i(τ (N)

j,a?,0 − τ
(N)
i,a?,0) + B̂A(τ (N)

j,a?,0 − τ
(N)
i,a?,0)

∣∣∣
> fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)

i,a?,0

)
.

(4.5.5)

For any x and y, it holds that x+ |y| = max(x+ y, x− y). Therefore, by the union bound,
we can bound the probability in (4.5.5) as

P(k<l)
(
BA(τ (N)

i,a?,0) +
∣∣∣B̂i(τ (N)

j,a?,0 − τ
(N)
i,a?,0) + B̂A(τ (N)

j,a?,0 − τ
(N)
i,a?,0)

∣∣∣
> fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)

i,a?,0

)
(4.5.6)
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≤ 2P(k<l)
(
BA(τ (N)

i,a?,0) + B̂i(τ (N)
j,a?,0 − τ

(N)
i,a?,0) + B̂A(τ (N)

j,a?,0 − τ
(N)
i,a?,0)

> fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)
i,a?,0

)
(4.5.7)

≤ 2P(k<l)
(

(1 + δ)BA(τ (N)
i,a?,0) > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)

i,a?,0

)
(4.5.8)

≤ 2P(k<l)
(

(1 + δ)BA(τ (N)
i,a?,0) + min(Q̂βi , Q̂

β
j )

> fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)
i,a?,0

)
,

(4.5.9)

for δ > 0 and N > Nδ. The upper bound in (4.5.8) holds since under the measure P(k<l)

given in (4.4.15), τ (N)
i,a?,0 = fN (a?)/β+k

√
logN ∼

(
σ2

2β2 + a
β

)
logN as N →∞, and τ (N)

j,a?,0−

τ
(N)
i,a?,0 = (l − k)

√
logN = O(

√
logN). The upper bound in (4.5.9) holds because we add a

positive random variable. For the second term in (4.5.4), first observe that P(min(X,Y ) >
z) = P(X > z, Y > z). Second, under the assumption that τ (N)

i,a?,0 < τ
(N)
j,a?,0 < ∞, we can

write

Qβi (τ (N)
j,a?,0) d= (1− λ(a?))fN (a?) +Bi(τ (N)

j,a?,0 − τ
(N)
i,a?,0)

− (1− λ(a?))β(τ (N)
j,a?,0 − τ

(N)
i,a?,0) +BA(τ (N)

j,a?,0)− λ(a?)βτ (N)
j,a?,0 + Q̂βi .

Thus, by applying similar techniques as for the analysis of the first term in (4.5.4), we obtain
that

P(k<l)
(

min(Qβi (τ (N)
j,a?,0), Qβj (τ (N)

j,a?,0)) > fN (a)
)

= P(k<l)
(
BA(τ (N)

j,a?,0) +Bi(τ (N)
j,a?,0 − τ

(N)
i,a?,0)− (1− λ(a?))β(τ (N)

j,a?,0 − τ
(N)
i,a?,0) + Q̂βi

> fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)
j,a?,0,

BA(τ (N)
j,a?,0) + Q̂βj > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)

j,a?,0

)
.

This joint probability satisfies the following bound:

P(k<l)
(
BA(τ (N)

j,a?,0) +Bi(τ (N)
j,a?,0 − τ

(N)
i,a?,0)− (1− λ(a?))β(τ (N)

j,a?,0 − τ
(N)
i,a?,0) + Q̂βi

> fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)
j,a?,0,

BA(τ (N)
j,a?,0) + Q̂βj > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)

j,a?,0

)
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≤ P(k<l)
(
BA(τ (N)

j,a?,0) +Bi(τ (N)
j,a?,0 − τ

(N)
i,a?,0) + Q̂βi

> fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)
j,a?,0,

BA(τ (N)
j,a?,0) + Q̂βj > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)

j,a?,0

)
.

We can bound this further and get

P(k<l)
(
BA(τ (N)

j,a?,0) +Bi(τ (N)
j,a?,0 − τ

(N)
i,a?,0) + Q̂βi > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)

j,a?,0,

BA(τ (N)
j,a?,0) + Q̂βj > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)

j,a?,0

)
≤ P(k<l)

(
BA(τ (N)

j,a?,0) + max(Bi(τ (N)
j,a?,0 − τ

(N)
i,a?,0), 0) + min(Q̂βi , Q̂

β
j )

> fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)
j,a?,0

)
≤ 2P(k<l)

(
BA(τ (N)

j,a?,0) +Bi(τ (N)
j,a?,0 − τ

(N)
i,a?,0) + min(Q̂βi , Q̂

β
j )

> fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)
j,a?,0

)
≤ 2P(k<l)

(
(1 + δ)BA(τ (N)

j,a?,0) + min(Q̂βi , Q̂
β
j ) > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτ (N)

i,a?,0

)
.

Combining this bound with the bound in (4.5.9) completes the proof of the lemma.

Lemma 4.7. For the model given in Definition 4.1 with the additional notation given in
Definition 4.2, and a > a?, we have that

lim inf
N→∞

Nγ(a) P(Q̄βN > fN (a)) ≥ 1.

The general idea of the proof of Lemma 4.7 is to make rigorous that the lower
bound on the maximum queue length Q̄βN given in (4.5.3) is approximately the same as
N P(Qβi (τ (N)

i,a?,0)1(τ (N)
i,a?,0 < ∞) > fN (a)) when N is large. Thus the last term in (4.5.3) is

asymptotically negligible. We use the result from Lemma 4.6 to establish this. Observe now
that, following Definition 4.3,

Qβi (τ (N)
i,a?,0) d= Bi(τ (N)

i,a?,0) +BA(τ (N)
i,a?,0)− βτ (N)

i,a?,0 + Q̂βi

= (1− λ(a?))fN (a?) +BA(τ (N)
i,a?,0)− λ(a?)βτ (N)

i,a?,0 + Q̂βi .

Furthermore, observe that due to Equation (4.3.5), P(τ (N)
i,a?,0 < ∞) = 1/N . From this, it

follows that

N P(Qβi (τ (N)
i,a?,0)1(τ (N)

i,a?,0 <∞) > fN (a)) = P(Qβi (τ (N)
i,a?,0) > fN (a) | τ (N)

i,a?,0 <∞).
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Therefore, in order to prove a sharp lower bound on the tail asymptotics of the maximum
queue length, we prove by using Fatou’s lemma that

lim inf
N→∞

Nγ(a) P(BA(τ (N)
i,a?,0)−λ(a?)βτ (N)

i,a?,0 +Q̂βi > fN (a)−(1−λ(a?))fN (a?) | τ (N)
i,a?,0 <∞)

≥ 1.

In order to prove this, we show that Q̂βi is most likely to hit a level gN (a, x, k), and
BA(τ (N)

i,a?,0)−λ(a?)βτ (N)
i,a?,0 is most likely to hit the level fN (a)−(1−λ(a?))fN (a?)−gN (a, x, k).

We define the function gN (a, x, k) later on.
We now turn to a formal proof of Lemma 4.7.

Proof. Following Equation (4.4.13) in Definition 4.4, we can simplify the inequality in (4.5.3)
to

P(max
i≤N

Qβi (τ (N)
i,a?,0)1(τ (N)

i,a?,0 <∞) > fN (a)) ≥ NP (N)
i,i −

(
N

2

)
P

(N)
i,j . (4.5.10)

Now, before we analyze (4.5.10) in more detail, observe that we can express P(τ (N)
i,a?,0 <

∞, τ (N)
j,a?,0 <∞) as

P(τ (N)
i,a?,0 <∞, τ

(N)
j,a?,0 <∞)

=
∫ ∞
−∞

∫ ∞
−∞

f
τ

(N)
i,a?,0

(
TN (a?, k)

)
f
τ

(N)
j,a?,0

(
TN (a?, l)

)
logNdkdl = 1

N2 .

Then, by using Equation (4.4.14) in Definition 4.4, we get that

NP
(N)
i,i =N

∫ ∞
−∞

f
τ

(N)
i,a?,0

(
TN (a?, k)

)√
logNQ(N)

i,i (k, k)dk

=
∫ ∞
−∞

∫ ∞
−∞

f
τ

(N)
i,a?,0

(
TN (a?, k)

)
f
τ

(N)
j,a?,0

(
TN (a?, l)

)
N2 logNQ(N)

i,i (k, k)dkdl.

Also, observe that
(
N
2

)
< N2/2, and that

N2

2 P
(N)
i,j = N2

2

∫ ∞
−∞

∫ ∞
−∞

f
τ

(N)
i,a?,0

(
TN (a?, k)

)
f
τ

(N)
j,a?,0

(
TN (a?, l)

)
logNQ(N)

i,j (k, l)dkdl.

In conclusion, we can write the inequality in (4.5.10) as

P(max
i≤N

Qβi (τ (N)
i,a?,0)1(τ (N)

i,a?,0 <∞) > fN (a)) (4.5.11)

≥
∫
R2
f
τ

(N)
i,a?,0

(
TN (a?, k)

)
f
τ

(N)
j,a?,0

(
TN (a?, l)

)
N2 logN

(
Q

(N)
i,i (k, k)−

Q
(N)
i,j (k, l)

2

)
dkdl

(4.5.12)



128 Chapter 4. Large deviations principle

=
∫
R×(−∞,l)

f
τ

(N)
i,a?,0

(
TN (a?, k)

)
f
τ

(N)
j,a?,0

(
TN (a?, l)

)
N2 logN

(
Q

(N)
i,i (k, k)−

Q
(N)
i,j (k, l)

2

)
dkdl

+
∫
R×[l,∞)

f
τ

(N)
i,a?,0

(
TN (a?, k)

)
f
τ

(N)
j,a?,0

(
TN (a?, l)

)
N2 logN

(
Q

(N)
i,i (k, k)−

Q
(N)
i,j (k, l)

2

)
dkdl.

Since we want to prove a sharp lower bound on the tail asymptotics of the maximum queue
length Q̄βN we can use the expression in (4.5.12). We want to prove the convergence of a
lower bound of this integral by using Fatou’s lemma. Therefore, we focus on the integrand
first and prove convergence for the integrand as N → ∞. Assume that k ≤ l, and observe
that Q(N)

i,i (k, k)−Q(N)
i,j (k, l)/2 > 0. Thus,

Q
(N)
i,i (k, k)− 1

2Q
(N)
i,j (k, l) =

(
Q

(N)
i,i (k, k)−

Q
(N)
i,j (k, l)

2

)+

.

The density of BA
(
TN (a?, k)

)
equals

exp
(
−x2/(2σ2

ATN (a?, k))
)

√
2πσA

√
TN (a?, k)

.

We write a = a? + ε, with ε > 0. Let

gN (a, x, k)

= fN (a)− (1− λ(a?))fN (a?) + λ(a?)βTN (a?, k)−
σ2
A

(
σ2 + σ2

A

)
βσ2 logN − x

√
logN.

Observe that

gN (a, x, k) +
σ2
A

(
σ2 + σ2

A

)
βσ2 logN + x

√
logN

= fN (a)− (1− λ(a?))fN (a?) + λ(a?)βTN (a?, k).

Furthermore,

Nγ(a)Q
(N)
i,i (k, k)

= Nγ(a)P
(
BA
(
TN (a?, k)

)
+ Q̂βi > gN (a, x, k) +

σ2
A

(
σ2 + σ2

A

)
βσ2 logN + x

√
logN

)

=
∫ ∞
−∞

Nγ(a) P(Q̂βi > gN (a, x, k))

√
logN exp

−
(
σ2
A(σ2+σ2

A)
βσ2 logN+x

√
logN

)2

2σ2
A
TN (a?,k)


√

2πσA
√
TN (a?, k)

dx.
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We can simplify this expression further and get with a similar analysis as given in the proof
of Lemma 4.4, that

Nγ(a) P(Q̂βi > gN (a, x, k))

√
logN exp

−
(
σ2
A(σ2+σ2

A)
βσ2 logN+x

√
logN

)2

2σ2
A
TN (a?,k)


√

2πσA
√
TN (a?, k)

= Nγ(a) exp
(
− 2β
σ2 + σ2

A

gN (a, x, k)
)
√

logN exp

−
(
σ2
A(σ2+σ2

A)
βσ2 logN+x

√
logN

)2

2σ2
A
TN (a?,k)


√

2πσA
√
TN (a?, k)

N→∞−→ βσ
√
πσA

(
σ2 + σ2

A

) exp

−β2σ2
(
x
(
σ2 + σ2

A

)
− 2βkσ2

A

)2

σ2
A

(
σ2 + σ2

A

)4
 .

Furthermore, following Lemma 4.4, we have that

f
τ

(N)
i,a?,0

(
TN (a?, k)

)
f
τ

(N)
j,a?,0

(
TN (a?, l)

)
N2 logN

N→∞−→
β2 exp

(
− β4k2

(2a?β+σ2)2

)
√
π (2a?β + σ2)

β2 exp
(
− β4l2

(2a?β+σ2)2

)
√
π (2a?β + σ2)

.

Also, following Lemma 4.6, we have that

Q
(N)
i,j (k, l)

≤ 4P
(

(1+δ)BA
(
TN (a?, k)

)
+min(Q̂βi , Q̂

β
j ) > fN (a)−(1−λ(a?))fN (a?)+λ(a?)βTN (a?, k)

)
,

for all δ > 0 for N > Nδ. Let 0 < δ < βσ4ε

2σ2
A(σ2+σ2

A)2 and let

hN (a, x, k)

= fN (a)−(1−λ(a?))fN (a?)+λ(a?)βTN (a?, k)−(1+δ)

(
σ2
A

(
σ2 + σ2

A

)
βσ2 logN + x

√
logN

)
.

From Dębicki et al. [47, Thm. 2.3], we know that

P
(

min(Q̂βi , Q̂
β
j ) > x

)
exp
(

2β
σ2/2 + σ2

A

x

)
x→∞−→ 0. (4.5.13)
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We have that

Nγ(a) exp
(
− 2β
σ2/2 + σ2

A

hN (a, x, k)
)
√

logN exp

−
(
σ2
A(σ2+σ2

A)
βσ2 logN+x

√
logN

)2

2σ2
A
TN (a?,k)


√

2πσA
√
TN (a?, k)

N→∞−→ 0.

Thus, when k ≤ l, then

lim inf
N→∞

Nγ(a)f
τ

(N)
i,a?,0

(
TN (a?, k)

)
f
τ

(N)
j,a?,0

(
TN (a?, l)

)
N2 logN

(
Q

(N)
i,i (k, k)−

Q
(N)
i,j (k, l)

2

)+

≥
β2 exp

(
− β4k2

(2a?β+σ2)2

)
√
π (2a?β + σ2)

β2 exp
(
− β4l2

(2a?β+σ2)2

)
√
π (2a?β + σ2)

βσ exp

(
−
β2σ2

(
x(σ2+σ2

A)−2βkσ2
A

)2

σ2
A(σ2+σ2

A)4

)
√
πσA

(
σ2 + σ2

A

) .

The case k > l can be treated analogously. Finally, we have

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

β2 exp
(
− β4k2

(2a?β+σ2)2

)
√
π (2a?β + σ2)

β2 exp
(
− β4l2

(2a?β+σ2)2

)
√
π (2a?β + σ2)

·

βσ exp

(
−
β2σ2

(
x(σ2+σ2

A)−2βkσ2
A

)2

σ2
A(σ2+σ2

A)4

)
√
πσA

(
σ2 + σ2

A

) dxdkdl = 1,

because this is an integral over the whole domain of a product of three densities of normally
distributed random variables. By applying Fatou’s lemma, Lemma 4.7 follows.

Corollary 4.2. Let (yN , N ≥ 1) be a sequence such that lim infN→∞ yN/ logN = ∞, then
the tail probability of the steady-state maximum queue length satisfies

P(Q̄βN > yN ) ∼ N P(Qβi > yN ),

as N →∞.

Proof. By using the union bound, we have that P(Q̄βN > yN ) ≤ N P(Qβi > yN ).
Furthermore, by using Bonferroni’s inequality, we obtain that P(Q̄βN > yN ) ≥ N P(Qβi >
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yN )−N2/2P(Qβi > yN , Q
β
j > yN ). Now, using the limit in (4.5.13), we see that

lim sup
N→∞

N2/2P(Qβi > yN , Q
β
j > yN )

N P(Qβi > yN )
≤ lim sup

N→∞

1
2

N exp
(
− 2β
σ2/2+σ2

A

yN

)
exp
(
− 2β
σ2+σ2

A

yN

) = 0.

The corollary follows.

4.5.2 The case a = a?

In Section 4.3, we showed that we have at least two regimes, namely 0 < a < a?, and
a ≥ a?. It turns out, that when we investigate sharper asymptotics, the case a = a?

deserves special attention. In the present section, we establish that in the case a = a?,
P(Q̄βN > fN (a?)) ∼ 1

2N
−γ(a?), thus the prefactor is 1/2 instead of 1 as in the case a > a?.

To make the heuristics given in Section 4.2 rigorous, we proceed by deriving asymptotic lower
and upper bounds, in two separate lemmas. As in Section 4.5.1, we prove that the lim inf
converges to the desired limit. We do this in Lemma 4.8. The proof of this Lemma is similar
to the proof of Lemma 4.7. However, the simple union bound N P(Qβi > fN (a?)) ∼ N−γ(a?)

is not tight for a = a?. Thus, we also need to prove that the lim sup is tight. We provide
this proof in Lemma 4.9.

Lemma 4.8. For the model given in Definition 4.1 with the additional notation given in
Definition 4.2, and a = a?, we have that

lim inf
N→∞

Nγ(a?) P(Q̄βN > fN (a?)) ≥ 1
2 .

Proof. First, we have the lower bound

P(Q̄βN > fN (a?)) ≥ P(max
i≤N

Qβi (τ (N)
i,a?,r)1(τ (N)

i,a?,r <∞) > fN (a?)).

As in (4.5.10) we can bound this further by Bonferroni’s inequality to

N P
(
Qβi (τ (N)

i,a?,r)1(τ (N)
i,a?,r <∞) > fN (a?)

)
−
(
N

2

)
P
(

min(Qβi (τ (N)
i,a?,r)1(τ (N)

i,a?,r <∞), Qβj (τ (N)
j,a?,r)1(τ (N)

j,a?,r <∞)) > fN (a?)
)

≥
(
N − N2

2 P
(
τ

(N)
j,a?,r <∞

))
P
(
Qβi (τ (N)

i,a?,r)1(τ (N)
i,a?,r <∞) > fN (a?)

)
. (4.5.14)

The last step is true because

P
(

min(Qβi (τ (N)
i,a?,r)1(τ (N)

i,a?,r <∞), Qβj (τ (N)
j,a?,r)1(τ (N)

j,a?,r <∞)) > fN (a?)
)

= P
(
Qβi (τ (N)

i,a?,r)1(τ (N)
i,a?,r <∞) > fN (a?), Qβj (τ (N)

j,a?,r)1(τ (N)
j,a?,r <∞) > fN (a?)

)
≤ P
(
Qβi (τ (N)

i,a?,r)1(τ (N)
i,a?,r <∞) > fN (a?), τ (N)

j,a?,r <∞
)
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= P
(
Qβi (τ (N)

i,a?,r)1(τ (N)
i,a?,r <∞) > fN (a?)

)
P
(
τ

(N)
j,a?,r <∞

)
.

Since P(τ (N)
j,a?,r < ∞) = exp(−2(1 − λ(a?))βr/σ2)/N , we can simplify the expression in

(4.5.14) to1−
exp
(
− 2(1−λ(a?))βr

σ2

)
2

N P
(
Qβi (τ (N)

i,a?,r)1(τ (N)
i,a?,r <∞) > fN (a?)

)
. (4.5.15)

Following the same strategy as in the proof of Lemma 4.7, we have that

gN (a?, x, k)

= fN (a?)− (1− λ(a?))fN (a?) + λ(a?)βTN (a?, k)−
σ2
A

(
σ2 + σ2

A

)
βσ2 logN − x

√
logN

=
(
−x+ σ2

Aβk

σ2 + σ2
A

)√
logN.

Now, for x < σ2
Aβk/(σ2 + σ2

A), it follows that

Nγ(a?) P(Q̂βi > gN (a?, x, k)− r)

√
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√
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·
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−x+ σ2

Aβk

σ2+σ2
A
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√
2πσA

√
TN (a?, k)

.

(4.5.16)

By using the definition of TN (a?, k) in (4.2.7), we see that
√

logN/(
√

2πσATN (a?, k)) N→∞−→
βσ/(

√
2πσA((σ2 + σ2

A)). Furthermore, γ(a?) logN plus the exponent on the right-hand side
of (4.5.16) equals

γ(a?) logN −

(
σ2
A

(
σ2+σ2
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βσ2 logN + x
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logN

)2
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σ2
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N→∞−→ −
β2σ2
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A

)
− 2βkσ2

A
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(
σ2 + σ2

A

)4 +
2βr
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,

with a similar proof as in the proof of Lemma 4.4. Thus,
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,

when x < σ2
Aβk/(σ2 + σ2

A). When x > σ2
Aβk/(σ2 + σ2

A), we see that gN (a?, x, k) = (−x +
σ2
Aβk/(σ2 + σ2

A))
√

logN N→∞−→ −∞, thus P(Q̂βi > gN (a?, x, k)− r) N→∞−→ 1. In this case, we
get that
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A).
Thus, by combining this result with the result from Lemma 4.4, for x < σ2
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·
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) . (4.5.17)

Thus, L1(x, k) can be written as a product of two densities of normally distributed random
variables. When we consider the last term in (4.5.17) as a function of x, we get that the
function

βσ exp
(
−β

2σ2(x−2σ2
Aβk/(σ

2+σ2
A))2

σ2
A(σ2+σ2

A)2

)
√
πσA
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)
is the density of a normally distributed random variable with mean 2σ2

Aβk/(σ2 + σ2
A) and

standard deviation σA(σ2 + σ2
A)/(
√

2βσ). From this, it follows that
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∫ σ2
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)
,

with X1 standard normally distributed. Furthermore, when we consider the first term in
(4.5.17) as a function of k, we get that the function
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2 ,

with X2 standard normally distributed, and X1 and X2 mutually independent. Now, by
applying Fatou’s lemma, we have that

lim inf
N→∞

Nγ(a?)N P
(
Qβi (τ (N)
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2 .

Thus, by applying this result to the expression in (4.5.15), we get that

lim inf
N→∞

Nγ(a?) P(Q̄βN > fN (a?)) ≥ 1
2

1−
exp
(
− 2(1−λ(a?))βr

σ2

)
2

 r→∞−→ 1
2 .

Lemma 4.9. For the model given in Definition 4.1 with the additional notation given in
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Definition 4.2, and a = a?, we have that

lim sup
N→∞

Nγ(a?) P(Q̄βN > fN (a?)) ≤ 1
2 .

Proof. Let τ̃ (N)
A,a?,r = inf{t : BA(t)−λ(a?)βt > λ(a?)fN (a?) + r}. Following Equation (4.5.1)

and the upper bound in (4.5.2), we have that
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A,a?,r <∞) > fN (a?))

+ P(max
i≤N

Qβi (τ (N)
i,a?,−r)1(τ (N)

i,a?,−r <∞) > fN (a?)). (4.5.18)

Now, observe that we can bound the first term in (4.5.18) as
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)
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(4.5.19)

Furthermore, by using Equation (4.4.16) in Definition 4.4, we can bound the second term in
(4.5.18) as

Nγ(a?) P(max
i≤N

Qβi (τ (N)
i,a?,−r)1(τ (N)

i,a?,−r <∞) > fN (a?))

≤ Nγ(a?)N P(Qβi (τ (N)
i,a?,−r)1(τ (N)

i,a?,−r <∞) > fN (a?))

=
∫ ∞
−∞

Nγ(a?)N P(N)
i,a?,−r,k(Qβi (τ (N)

i,a?,−r) > fN (a?))f
τ

(N)
i,a?,−r

(TN (a?, k))
√

logNdk. (4.5.20)

Now, we examine the parts of the integrand of this integral separately. First, note that,
following Definition 4.3,

P(N)
i,a?,−r,k(Qβi (τ (N)

i,a?,−r) > fN (a?))

= P(N)
i,a?,−r,k(BA(τ (N)

i,a?,−r) + Q̂βi > λ(a?)fN (a?) + r + λ(a?)βτ (N)
i,a?,−r).

We can analyze this probability using Lemma 4.3 by taking xN = 2λ(a?)fN (a?) +
λ(a?)βk

√
logN + r, ηN = σA

√
TN (a?, k), and µ = 2β/(σ2 + σ2

A). Write

xN − µη2
N√

2ηN
=

2λ(a?)fN (a?) + λ(a?)βk
√

logN + r − 2β
σ2+σ2

A

σ2
ATN (a?, k)

√
2
√
σ2
ATN (a?, k)

=r − λ(a?)βk
√

logN
√

2
√
σ2
ATN (a?, k)

N→∞−→ − β2σσAk

(σ2 + σ2
A)2 .
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The first term in (4.4.4) of Lemma 4.3 satisfies

ηNe
−
x2
N

2η2
N

√
2πxN

∼

σ exp

(
−
β
(
β3k2σ2

Aσ
2+2r(σ2+σ2

A)3
)

(σ2+σ2
A)4

)
2
√
πσA

N−γ(a?)
√

logN
,

and the second term satisfies

1
2e

1
2µ(µη2

N−2xN)
(

1 + erf
(
− β2σσAk

(σ2 + σ2
A)2

))
∼ 1

2 exp
(
− 2βr
σ2 + σ2

A

)(
1 + erf

(
− β2σσAk

(σ2 + σ2
A)2

))
N−γ(a?),

as N →∞. So, we can conclude that

P(N)
i,a?,−r,k(Qβi (τ (N)

i,a?,−r) > fN (a?))

∼ 1
2 exp

(
− 2βr
σ2 + σ2

A

)(
1 + erf

(
− β2σσAk

(σ2 + σ2
A)2

))
N−γ(a?)

as N → ∞. Second, following Lemma 4.4, the density of the hitting time τ (N)
i,a?,−r appears

in the integrand in (4.5.20), and satisfies

Nf
τ

(N)
i,a?,−r

(
TN (a?, k)

)√
logN N→∞−→

β2 exp

β

(
8a?

2
β2r−β3k2σ

√
2a?β+σ2+8a?βrσ2+2rσ4

)
σ(2a?β+σ2)5/2


√
π (2a?β + σ2)

=

β2σ2 exp

(
β
(

2r(σ2+σ2
A)3−β3k2σ4

)
(σ2+σ2

A)4

)
√
π
(
σ2 + σ2

A

)2 .

Thus, for the integrand in (4.5.20) we have that

Nγ(a?)N P(N)
i,a?,−r,k(Qβi (τ (N)

i,a?,−r) > fN (a?))f
τ

(N)
i,a?,−r

(
TN (a?, k)

)√
logN

N→∞−→

β2σ2
(

1 + erf
(
− β2σσAk

(σ2+σ2
A

)2

))
exp

(
β
(

2r(σ2+σ2
A)3−β3k2σ4

)
(σ2+σ2

A)4 − 2βr
σ2+σ2

A

)
2
√
π
(
σ2 + σ2

A

)2 .
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When we integrate this result we get

∫ ∞
−∞

β2σ2
(

1 + erf
(
− β2σσAk

(σ2+σ2
A

)2

))
exp

(
β
(

2r(σ2+σ2
A)3−β3k2σ4

)
(σ2+σ2

A)4 − 2βr
σ2+σ2

A

)
2
√
π
(
σ2 + σ2

A

)2 dk = 1
2 .

For a = a?, we have that

sup
s>0

(BA(s)− λ(a?)βs) d= sup
s>0

(Bi(s)− (1− λ(a?))βs) d= sup
s>0

(Bi(s) +BA(s)− βs).

Thus,

Nγ(a?) P(N)
i,a?,−r,k(Qβi (τ (N)

i,a?,−r) > fN (a?))

= Nγ(a?) P(N)
i,a?,−r,k

 sup
s>τ

(N)
i,a?,−r

(Bi(s) +BA(s)− βs) > fN (a?)


= Nγ(a?)

· P(N)
i,a?,−r,k

(
BA(τ (N)

i,a?,−r)− λ(a?)βτ (N)
i,a?,−r + sup

s>0
(B̂i(s) + B̂A(s)− βs) > λ(a?)fN (a?) + r

)

= Nγ(a?) P(N)
i,a?,−r,k

 sup
s>τ

(N)
i,a?,−r

(B̂A(s)− λ(a?)βs) > λ(a?)fN (a?) + r


≤ Nγ(a?) P

(
sup
s>0

(
BA(s)− λ(a?)βs

)
> λ(a?)fN (a?) + r

)
= Nγ(a?) exp

(
−

2λ(a?)β
σ2
A

(λ(a?)fN (a?) + r)
)

= exp
(
−

2λ(a?)βr
σ2
A

)
.

Furthermore, we have that

lim
N→∞

∫ ∞
−∞

Nf
τ

(N)
i,a?,−r

(
TN (a?, k)

)√
logNdk =

∫ ∞
−∞

lim
N→∞

Nf
τ

(N)
i,a?,−r

(
TN (a?, k)

)√
logNdk.

We can use Lemma 4.5 to conclude that

lim sup
N→∞

Nγ(a?)N P
(
Qβi (τ (N)

i,a?,−r)1(τ (N)
i,a?,−r <∞) > fN (a?)

)
≤ 1

2 . (4.5.21)

Now, after combining the bounds in (4.5.19) and (4.5.21),

lim sup
N→∞

Nγ(a?) P(Q̄βN > fN (a?)) ≤ 1
2 + exp

(
−2λ(a?)βr

σ2
A

)
r→∞−→ 1

2 .
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4.5.3 The case 0 < a < a?

As we have proven the exact asymptotics for the cases a > a? and a = a? in Theorems 4.2
and 4.3, respectively, we now turn to the proof of Theorem 4.4. In Theorem 4.1 we have
shown that γ(a) = 2aβ+2σ2−2σ

√
2aβ+σ2

σ2
A

, thus we expect highly dependent behavior because

this indicates that the union upper bound P(Q̄βN > fN (a)) ≤ N P(Qβi > fN (a)) is not sharp
when 0 < a < a?, as is explained in the proof of Lemma 4.2.

Proof of Theorem 4.4. First, we prove Equation (4.2.17). We write

rN :=
σ
√

2aβ + σ2

4β log logN.

Let τ̃ (N)
A,a,rN

= inf{t ≥ 0 : BA(t) − λ(a)βt > λ(a)fN (a) + rN}. Let f
τ̃

(N)
A,a,rN

be its density.

Observe that

P(Q̄βN > fN (a))

≥ P(Q̄βN (τ̃ (N)
A,a,rN

, τ̃
(N)
A,a,rN

)1(τ̃ (N)
A,a,rN

<∞) > fN (a))

=
∫ ∞
−∞

P
(

max
i≤N

Bi
(
TN (a, k)

)
− (1− λ(a))βTN (a, k) > (1− λ(a))fN (a)− rN

)
· f
τ̃

(N)
A,a,rN

(
TN (a, k)

)√
logNdk.

(4.5.22)

As in the proof of Lemma 4.9, we analyze the components of the integrand of (4.5.22)
separately. By following a similar derivation as in Lemma 4.4, we see that the hitting-
time density f

τ̃
(N)
A,a,rN

(
TN (a, k)

)
in (4.5.22), with τ̃

(N)
A,a,rN

defined in Definition 4.3 and the

hitting-time density given in [32, Eq. (2.0.2), p. 301], satisfies

Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A f

τ̃
(N)
A,a,rN

(
TN (a, k)

)√
logN

= Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A

λ(a)fN (a) + rN√
2πσATN (a, k)3/2

· exp
(
− (λ(a)fN (a) + rN + λ(a)βTN (a, k))2

2σ2
ATN (a, k)

)√
logN

N→∞−→

β2
(√

2aβ + σ2 − σ
)

exp

(
−
β4k2

(√
2aβ+σ2−σ

)2

σ2
A(2aβ+σ2)2

)
√
πσA (2aβ + σ2)

.

(4.5.23)

Moreover, a result in extreme-value theory states that for

bN =
√

2 logN − log(4π logN)
2
√

2 logN
,
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we have that

bN

(
maxi≤N Bi(d logN)

σ
√
d logN

− bN
)

d−→ G,

as N → ∞, with G ∼ Gumbel; see [67, Ex. 1.1.7, p. 11] for a proof. From this, it follows
that the term P

(
maxi≤N Bi

(
TN (a, k)

)
− (1− λ(a))βTN (a, k) > (1− λ(a))fN (a)− rN

)
in

(4.5.22) satisfies

P
(

max
i≤N

Bi
(
TN (a, k)

)
− (1− λ(a))βTN (a, k) > (1− λ(a))fN (a)− rN

)

N→∞−→ 1− exp

−
exp
(
− β4k2

(2aβ+σ2)2

)
2
√
π

 . (4.5.24)

Thus, the product of the limits in (4.5.23) and (4.5.24) gives the tail asymptotics of the
integrand in (4.5.22). Now, by applying Fatou’s lemma, we obtain a sharper than logarithmic
lower bound on the asymptotics for the maximum queue length, and is given in (4.2.17).

In order to prove (4.2.18), we use the upper bound given in (4.5.2) and observe that

P(Q̄βN > fN (a)) ≤P(Q̄βN (τ̃ (N)
A,a,rN

)1(τ̃ (N)
A,a,rN

<∞) > fN (a)) (4.5.25)

+ P(max
i≤N

Qβi (τ (N)
i,a,−rN )1(τ (N)

i,a,−rN <∞) > fN (a)). (4.5.26)

We can bound the expression in (4.5.25) as follows:

P(Q̄βN (τ̃ (N)
A,a,rN

)1(τ̃ (N)
A,a,rN

<∞) > fN (a)) ≤ P(τ̃ (N)
A,a,rN

<∞) = N−γ(a)(logN)
− λ(a)

1−λ(a)
σ2

2σ2
A .

(4.5.27)

Therefore,

lim sup
N→∞

Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A P(Q̄βN (τ̃ (N)

A,a,rN
)1(τ̃ (N)

A,a,rN
<∞) > fN (a)) ≤ 1.

Thus, because of the bounds given in (4.5.25) and (4.5.26), to prove that (4.2.18) holds, it
is left to show that

lim sup
N→∞

Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A P(max

i≤N
Qβi (τ (N)

i,a,−rN )1(τ (N)
i,a,−rN <∞) > fN (a)) <∞.

To prove this, observe that, by using the union bound and by conditioning on the hitting
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time τ (N)
i,a,−rN the expression in (4.5.26) satisfies

P(max
i≤N

Qβi (τ (N)
i,a,−rN )1(τ (N)

i,a,−rN <∞) > fN (a))

≤ N P(Qβi (τ (N)
i,a,−rN )1(τ (N)

i,a,−rN <∞) > fN (a))

=
∫ ∞
−∞

N P(N)
i,a,−rN ,k(Qβi (τ (N)

i,a,−rN ) > fN (a))f
τ

(N)
i,a,−rN

(
TN (a, k)

)√
logNdk. (4.5.28)

Now, we can use Lemma 4.5 to show convergence of the integral in (4.5.28). By following
a similar analysis as in Lemma 4.4 and by using the expression of the hitting-time density
given in [32, Eq. (2.0.2), p. 301], we have that

N
1√

logN
√

logNf
τ

(N)
i,a,−rN

(
TN (a, k)

)
= N

(1− λ(a))fN (a)− rN√
2πσTN (a, k)3/2

exp
(
− ((1− λ(a))fN (a)− rN + (1− λ(a))βTN (a, k))2

2σ2TN (a, k)

)

N→∞−→
β2 exp

(
− β4k2

(2aβ+σ2)2

)
√
π (2aβ + σ2)

.

Furthermore,

∫ ∞
−∞

β2e
− β4k2

(2aβ+σ2)2

√
π (2aβ + σ2)

dk =
∫ ∞
−∞

N√
logN

√
logNf

τ
(N)
i,a,−rN

(
TN (a, k)

)
dk = 1. (4.5.29)

Thus, the first and second condition in Lemma 4.5 hold. Thus, we now only need to analyze

P(N)
i,a,−rN ,k(Qβi (τ (N)

i,a,−rN ) > fN (a))

= P(N)
i,a,−rN ,k(BA(τ (N)

i,a,−rN ) + Q̂βi > λ(a)fN (a) + rN + λ(a)βτ (N)
i,a,−rN ), (4.5.30)

which is a component in the integrand in (4.5.28). We show that this expression satisfies
the third and fourth condition of Lemma 4.5 by proving pointwise convergence and by
proving that this probability is uniformly bounded by a constant. To do this, first observe
that the random variable in (4.5.30) has the form of the sum of a normally distributed
random variable and an exponentially distributed random variable. Hence we can follow the
framework of Lemma 4.3 in order to analyze this probability. We take xN = 2λ(a)fN (a) +
λ(a)βk

√
logN + rN , ηN = σA

√
TN (a, k), and µ = 2β/(σ2 + σ2

A). Now, the expression in
(4.5.30) can be written in the form of Equation (4.4.7). Furthermore, observe that

xN − µη2
N√

2ηN
=

2λ(a)fN (a) + λ(a)βk
√

logN + rN − 2β
σ2+σ2

A

σ2
ATN (a, k)

√
2
√
σ2
ATN (a, k)

N→∞−→ −∞.

Thus, for 0 < a < a?, we are in the third situation of Lemma 4.3. Following the same
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analysis as in the proof of Lemma 4.4, we see that the first term in (4.4.6) satisfies

ηNe
−
x2
N

2η2
N

√
2πxN

∼

σA exp

(
−
β4k2

(
σ−
√

2aβ+σ2
)2

σ2
A(2aβ+σ2)2

)
2
√
π
(√

2aβ + σ2 − σ
) (logN)

− λ(a)
1−λ(a)

σ2
2σ2
AN−γ(a) 1√

logN
,

as N →∞. Furthermore, we have for all t > 0 that

P
(
BA(t)− λ(a)βt > x

)
≤ P
(
BA(x/(λ(a)β)) > 2x

)
.

From this, it follows that the first part in (4.4.7) satisfies

P(ηNX > xN )

= P

(
BA(τ (N)

i,a,−rN ) > λ(a)fN (a) + rN + λ(a)βτ (N)
i,a,−rN

∣∣∣∣τ (N)
i,a,−rN = TN (a, k)

)

≤ P

(
BA(τ (N)

i,a,−rN ) > λ(a)fN (a) + rN + λ(a)βτ (N)
i,a,−rN

∣∣∣∣τ (N)
i,a,−rN = fN (a)

β
+ rN
λ(a)β

)

∼ σA

2
√
π
(√

2aβ + σ2 − σ
) (logN)

− λ(a)
1−λ(a)

σ2
2σ2
AN−γ(a) 1√

logN
,

as N → ∞. So there exists an ε > 0 and an Nε such that for N > Nε and all k >

−fN (a)/(β
√

logN),

(logN)
λ(a)

1−λ(a)
σ2

2σ2
ANγ(a)

√
logN

· P

(
BA(τ (N)

i,a,−rN ) > λ(a)fN (a) + rN + λ(a)βτ (N)
i,a,−rN

∣∣∣∣τ (N)
i,a,−rN = TN (a, k)

)
≤ σA

2
√
π
(√

2aβ + σ2 − σ
) + ε.

(4.5.31)
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The second term in (4.4.6) satisfies

− 1√
2π
e

1
2µ(µη2

N−2xN) ηNe
−

(xN−µη2
N)2

2η2
N

xN − µη2
N

∼

σA
(
σ2 + σ2

A

)
exp

− 2β4k2
(
σ2
(√

2aβ+σ2−σ
)

+aβ
(√

2aβ+σ2−2σ
))

σ2
A(2aβ+σ2)5/2


2
√
πσ

(
σ
(
σ −

√
2aβ + σ2

)
+ σ2

A

)
· (logN)

− λ(a)
1−λ(a)

σ2
2σ2
AN−γ(a) 1√

logN
,

(4.5.32)

as N → ∞. In this case, first observe that in Equation (4.4.7) the exact expression of the
convolution term equals∫ xN/ηN

−∞
P
(

1
µ
E > xN − ηNz

)
e−

z2
2

√
2π

dz = 1
2

(
erf
(
xN − µη2

N√
2ηN

)
+ 1

)
e

1
2µ(µη2

N−2xN).

Second, observe that this can be further rewritten into

1
2

(
erf
(
xN − µη2

N√
2ηN

)
+ 1

)
e

1
2µ(µη2

N−2xN)

= P(N)
i,a,−rN ,k

(
BA(τ (N)

i,a,−rN ) > 2β
σ2 + σ2

A

σ2
Aτ

(N)
i,a,−rN − λ(a)fN (a)− rN − λ(a)βτ (N)

i,a,−rN

)
· exp

(
1
2

2β
σ2 + σ2

A

(
2β

σ2 + σ2
A

σ2
ATN (a, k)− 2λ(a)fN (a)− 2λ(a)βTN (a, k)− 2rN

))
.

Thus, the expression that we are investigating is a product of a tail probability of a Gaussian
random variable and an exponential function. As for the first term in (4.4.6), we need to prove
that the last condition of Lemma 4.5 holds for the sequence of functions (JN (t), N ≥ 1, t ≥ 0)
with

JN (t)

:= (logN)
λ(a)

1−λ(a)
σ2

2σ2
ANγ(a)

√
logN P

(
BA(t) > 2β

σ2 + σ2
A

σ2
At− λ(a)fN (a)− rN − λ(a)βt

)
· exp

(
1
2

2β
σ2 + σ2

A

(
2β

σ2 + σ2
A

σ2
At− 2λ(a)fN (a)− 2λ(a)βt− 2rN

))
.

(4.5.33)
In order to order to prove that the sequence (JN (t), N ≥ 1, t ≥ 0) is uniformly bounded, we
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first observe that for X standard normally distributed and x > 0, we have that

P(X > x) ≤ exp(−x2/2)√
2πx

; (4.5.34)

see [4, Eq. (2.1.1), p. 49]. We call

δ1 =
σ
(
2aβ + σ2)(σ (σ −√2aβ + σ2

)
+ σ2

A

)
β2

(
σ2
A

(√
2aβ + σ2 + σ

)
+ σ2

(
σ −

√
2aβ + σ2

))
Now, let 0 < δ < δ1. Then, for t > TN (a) − δ logN , the prefactor 1/(

√
2πx) in (4.5.34)

becomes
σA
√
t√

2π( 2β
σ2+σ2

A

σ2
At− λ(a)fN (a)− rN − λ(a)βt)

.

This function is decreasing in t for t ≥ TN (a)− δ logN . Thus,

lim sup
N→∞

sup
t≥TN (a)−δ logN

√
logN

σA
√
t

√
2π( 2β

σ2+σ2
A

σ2
At− λ(a)fN (a)− rN − λ(a)βt)

≤ lim
N→∞

√
logN

σA
√
TN (a)− δ logN

√
2π( 2β

σ2+σ2
A

σ2
A(TN (a)− δ logN)− λ(a)fN (a)− rN − λ(a)β(TN (a)− δ logN))

≤ Cδ,

with Cδ > 0 a constant depending on δ. By using this bound and replacing the term√
logN P

(
BA(t) > 2β

σ2 + σ2
A

σ2
At− λ(a)fN (a)− rN − λ(a)βt

)
in (4.5.33) with

Cδ exp

−
(

2β
σ2+σ2

A

σ2
At− λ(a)fN (a)− rN − λ(a)βt

)2

2σ2
At

 ,

we get that t = TN (a) gives an asymptotic upper bound for JN (t), for t ≥ TN (a)− δ logN .
For the case that t < TN (a)−δ logN , we argue as follows: we can bound JN (t) as defined

in (4.5.33) by

JN (t) ≤ (logN)
λ(a)

1−λ(a)
σ2

2σ2
ANγ(a)

√
logN

· exp
(

1
2

2β
σ2 + σ2

A

(
2β

σ2 + σ2
A

σ2
At− 2λ(a)fN (a)− 2λ(a)βt− 2rN

))
.



4.5 Proofs of the sharper asymptotics 145

The upper bound is increasing in t. Thus,

sup
t∈[0,TN (a)−δ logN ]

JN (t) ≤ (logN)
λ(a)

1−λ(a)
σ2

2σ2
A Nγ(a)

√
logN

·exp
(

1
2

2β
σ2 + σ2

A

(
2β

σ2 + σ2
A

σ2
A(TN (a)−δ logN)−2λ(a)fN (a)−2λ(a)β(TN (a)−δ logN)−2rN

))
.

(4.5.35)

We call

δ2 =
σ

(
σ2
A

√
2aβ + σ2 + σ2

(√
2aβ + σ2 − σ

)
− 2aβσ

)
2β2σ2

A

.

We obtain that for t = TN (a)− δ2 logN, the exponential term in (4.5.33) equals

exp
(

1
2

2β
σ2 + σ2

A

(
2β

σ2 + σ2
A

σ2
A(TN (a)−δ2 logN)−2λ(a)fN (a)−2λ(a)β(TN (a)−δ2 logN)−2rN

))
= N−γ(a) exp

(
−

2β
σ2 + σ2

A

rN

)
.

Furthermore, we have that δ2 < δ1. Thus, when we take 0 < δ < δ2, we obtain by the upper
bound in (4.5.35) that supt∈[0,TN (a)−δ logN ] JN (t) is uniformly bounded by a sequence that
converges to 0. Thus, the sequence (JN (t), N ≥ 1, t ≥ 0) is uniformly bounded.

Hence, due to the upper bounds for (4.5.31) and (4.5.33), we have that the third and
fourth condition of Lemma 4.5 are satisfied. Thus, in the end, we know that

(logN)
λ(a)

1−λ(a)
σ2

2σ2
ANγ(a)N P(N)

i,a,−rN ,k(Qβi (τ (N)
i,a,−rN ) > fN (a))f

τ
(N)
i,a,−rN

(
TN (a, k)

)√
logN

N→∞−→


σA exp

(
−
β4k2

(
σ−
√

2aβ+σ2
)2

σ2
A(2aβ+σ2)2

)
2
√
π
(√

2aβ + σ2 − σ
)

+

σA
(
σ2 + σ2

A

)
exp

− 2β4k2
(
σ2
(√

2aβ+σ2−σ
)

+aβ
(√

2aβ+σ2−2σ
))

σ2
A(2aβ+σ2)5/2


2
√
πσ

(
σ
(
σ −

√
2aβ + σ2

)
+ σ2

A

)
 · β2e

− β4k2

(2aβ+σ2)2

√
π (2aβ + σ2)

=: L2(k),

and we apply Lemma 4.5 to conclude that (4.2.18) holds.

Remark 4.1. We have stated in Theorem 4.4 that we can prove lower and upper bounds
that are sharper than logarithmic. However, we do not specify these bounds, but from the
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proof of Theorem 4.4 it becomes clear that

lim inf
N→∞

Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A P(Q̄βN > fN (a))

≥
∫ ∞
−∞

β2
(
σ
(
σ −

√
2aβ + σ2

)
+ 2aβ

)
exp

(
−
β4k2

(
σ−
√

2aβ+σ2
)2

σ2
A(2aβ+σ2)2

)
√
πσA (2aβ + σ2)3/2

·

1− exp

−
exp
(
− β4k2

(2aβ+σ2)2

)
2
√
π


 dk,

and

lim sup
N→∞

Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A P(Q̄βN > fN (a)) ≤

∫ ∞
−∞

L2(k)dk + 1.



Chapter 5

Heavy-tailed services

5.1. Introduction

In this chapter, we investigate the longest waiting times in the N -server fork-join queue,
as we did in Chapter 3 as well. In Chapter 3, our analysis heavily relied on the fact that
service times are light-tailed, and we used Cramér-Lundberg theory. We were able to prove
convergence results for a general class of light-tailed service times, that is characterized by
the properties given in Assumption 3.1. We saw that the resulting longest waiting time scaled
with order of magnitude of logN as N → ∞. In this chapter, we abandon the assumption
of light-tailed services, and we will look at a specific class of fork-join queueing systems with
heavy-tailed service times. We will see that, in contrast with the results obtained in Chapter
3, the scaling of the longest waiting time will differ when we consider different heavy-tailed
service times.

Applications of these heavy-tailed fork-join queues are usually found in parallel comput-
ing. Companies such as Google, Microsoft, and Alibaba have data centers with thousands
of servers that are available for cloud computing, where there is often a form of parallel
scheduling. Jobs in these systems have typically large sizes and are often heavy tailed.
However, most literature on parallel queueing theory assumes service times to be light tailed;
see the survey [70]. This motivates the analysis of parallel queueing networks with heavy-
tailed job sizes.

We assume that service times are mutually dependent between servers, and can be
written as a product of two random variables, where one term is independent and identically
distributed for all servers, and has a Weibull-like tail, while the other term is the same for all
servers and has a regularly varying tail. This describes the situation that if a job has a large
size, all the subtasks also have a large size, where the fluctuation is described by the Weibull-
like distributed random variable. The reason that we focus on the Weibull distribution is
that we can exploit specific properties of this distribution, which we will explain in more

This chapter is based on [136].
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detail in Section 5.2.3.
We obtain a convergence result for the rescaled transient longest waiting time

maxi≤N Wi(tcN )/cN as N → ∞, after choosing the proper temporal and spatial scaling
(cN , N ≥ 1). This longest waiting time converges in distribution to a process which is the
supremum of Fréchet-distributed random variables minus a drift term. The temporal and
spatial scaling cN depends on the extreme-value scaling ofN independent Weibull-distributed
random variables, a slowly varying function, and the index of regular variation. Hence, to
obtain this result, a mixture of classic extreme-value theory and analysis of heavy tails is
needed. To state our result in more detail, we show that this rescaled longest waiting time
process (maxi≤N Wi(tcN )/cN , t ∈ [0, T ]) converges as a process in D[0, T ] to an extremal
process (sups∈[0,t](X(s,t) − µ(t − s)), t ∈ [0, T ]) with Fréchet marginals, with D[0, T ] the
space of càdlàg functions on [0, T ], which we equip with the d◦ metric [28, Eq. (12.16)],
under which D[0, T ] is separable and complete. Finally, we prove steady-state convergence
of maxi≤N Wi(∞)/cN to limt→∞ sups∈[0,t](X(s,t) − µ(t− s)).

The work in this chapter is connected to the literature on heavy-tailed phenomena; cf.
[116] for a summary. Specific results on the interplay between fork-join queues and heavy-
tailed services can be found in [129, 156, 157]. In [129, Thm. 2], asymptotic lower and upper
bounds for the tail probability of the longest waiting time in steady state are given; however
these bounds are not sharp when N is large. In [156] and [157], the authors investigate
the fork-join queue with heavy-tailed services under a blocking mechanism. This chapter
contributes to the existing literature, as we give sharp convergence results for the longest
waiting time with heavy-tailed service times, where the number of servers N grows large.

As mentioned before, the limiting process in this chapter is an extremal process with
negative drift. Several papers have been written on extremal processes; see [21, 22, 51,
52, 133]. These extremal processes are, among others, used and applied on the analysis of
records in sport, cf. [21, 22]. For example, in [21], a model is used to analyze the times in
the mile run.

This chapter is organized as follows. We present our model in Section 5.2 and our main
results in Theorems 5.1, 5.2, 5.3, and Proposition 5.1. We give a heuristic analysis of our
results in Section 5.2.1. In Section 5.2.2, we present some simulations. In Section 5.2.3, we
discuss other modeling choices. In Section 5.3, we present some auxiliary results. We prove
process convergence in Section 5.4. We prove our main results in Section 5.6.

The model that we study is very specific. In Section 5.7, we deviate from this model and
look at two other N -server parallel-server systems with i.i.d. regularly varying service times,
and give extreme-value results of the longest waiting time in steady state.

5.2. Model and main results

In this chapter, we analyze a fork-join queue with a common arrival process, and a service
process that consists of a Weibull-like i.i.d. part and a regularly varying part that is the
same among all servers. This models the situation that if a job has a large size, then all the
subtasks have a large size, with some variability. We show in Section 5.2.1 that the Weibull
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distribution has convenient properties that we exploit in this chapter; in Section 5.2.3 we
briefly discuss what happens when the i.i.d. part of the service process has a lighter tail. We
write the random variable S(1)

i (j)S(2)(j) as the representation of a service time at server i of
the subtask of the j-th job, while the random variable A(j) is the interarrival time between
the j-th and (j + 1)-st job. Now, by Lindley’s recursion, the waiting time at server i upon
arrival of the (n+ 1)-st job equals

Wi(n) = sup
0≤k≤n

n∑
j=k+1

(S(1)
i (j)S(2)(j)−A(j)), (5.2.1)

with Wi(0) = 0. Moreover, we write Wi(t) = Wi(btc). Furthermore, the maximum of the N
waiting times equals

max
i≤N

Wi(n) = max
i≤N

sup
0≤k≤n

n∑
j=k+1

(S(1)
i (j)S(2)(j)−A(j)). (5.2.2)

We assume that the sequence of random variables (S(2)(j), j ≥ 1) are independent
random variables that satisfy

P(S(2)(j) > x) = `(x)
xβ

, (5.2.3)

with `(x) a slowly varying function and β > 1. A positive function ` is slowly varying if and
only if limx→∞ `(ax)/`(x) = 1 for all a > 0 [116, Def. 2.6]. We let the i.i.d. random variables
(S(1)
i (j), i ≥ 1, j ≥ 1) satisfy

log P(S(1)
i (j) > x) ∼ −qxα, (5.2.4)

as x → ∞, with 0 < α < 1 and q > 0. Thus, the random variable S(1)
i (j) has the same

logarithmic tail asymptotics as the Weibull distribution. Let bN =
(
logN/q

)1/α. Then, we
know from standard extreme-value theory [67, Thm. 5.4.1, p. 188] that

maxi≤N S(1)
i

bN

P−→ 1, (5.2.5)

as N → ∞. Thus, the number bN indicates the approximate size of the largest of N
independent Weibull-distributed random variables. Furthermore, we have independent and
identically distributed random variables (A(j), j ≥ 1), such that

E[S(1)
i (j)S(2)(j)−A(j)] = −µ, (5.2.6)

with µ > 0.
In this chapter, we prove process convergence of the scaled longest waiting time over N

servers in Theorem 5.2; cf. Theorem 2.1 in Chapter 2 for a similar result for fork-join queues
with light-tailed services. In order to achieve this result, we need to scale the number of
arriving jobs and the longest waiting time with a sequence (cN , N ≥ 1), where the sequence
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(cN , N ≥ 1) satisfies

cN ∼
(cN/bN )β

`(cN/bN ) , (5.2.7)

as N → ∞, with cN/bN
N→∞−→ ∞ and f(x) ∼ g(x) as x → ∞ meaning that

limx→∞ f(x)/g(x) = 1. We explain in Section 5.2.1 in more detail why this sequence scales
as given in (5.2.7). Following standard arguments on generalized inverses of regularly varying
functions; see [132, Prop. 2.6 (v,vi,vii)] and [29, Thm. 1.5.12], we can solve the right-hand
side of (5.2.7) and get that cN/bN ∼ c

1/β
N /ˆ̀(cN ), with ˆ̀ a slowly varying function. From

this, it follows that bN ∼ ˆ̀(cN )c(β−1)/β
N . Now, we define the sequence (cN , N ≥ 1) as

cN := ˜̀(bN )bβ/(β−1)
N (5.2.8)

where ˜̀ is a slowly varying function that equals

˜̀(x)xβ/(β−1) = (((x/((xβ/`(x))←))∗)←)∗ (5.2.9)

with H(y)← = inf{s : H(s) ≥ y} and f(x)∗ a monotone function with the property that
f(x)∗ ∼ f(x) as x → ∞. Thus, the sequence (cN , N ≥ 1) satisfies the relation described in
(5.2.7). More precise properties of the function ˜̀ are given in Lemma 5.1.

As we have a proper scaling of the number of arriving jobs and the longest waiting time
by a sequence (cN , N ≥ 1), the scaled longest waiting time has the form

maxi≤N Wi(tcN )
cN

= sup
s∈[0,t]

maxi≤N
∑btcN c

j=bscN c+1(S(1)
i (j)S(2)(j)−A(j))

cN
. (5.2.10)

Notice that

sup
s∈[0,t]

maxi≤N
∑btcN c

j=bscN c+1(S(1)
i (j)S(2)(j)−A(j))

cN

d= sup
s∈[0,t]

maxi≤N
∑bscN c

j=1 (S(1)
i (j)S(2)(j)−A(j))
cN

. (5.2.11)

Thus, to prove convergence of a single random variable maxi≤N Wi(tcN )/cN , it suffices to
prove convergence of the right-hand side in Equation (5.2.11). However, the processes sup

s∈[0,t]

maxi≤N
∑bscN c

j=1 (S(1)
i (j)S(2)(j)−A(j))
cN

, t ∈ [0, T ]

 (5.2.12)

and (
maxi≤N Wi(tcN )

cN
, t ∈ [0, T ]

)
(5.2.13)
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are not equal in distribution. For instance, the process in (5.2.12), which we will refer to as
the auxiliary process, is non-decreasing in t and the longest waiting time process in (5.2.13)
is not non-decreasing in t. In Theorem 5.1, we show that this auxiliary process converges in
distribution to a limiting process;maxi≤N sups∈[0,t]

∑bscN c
j=1 (S(1)

i (j)S(2)(j)−A(j))
cN

, t ∈ [0, T ]


d−→

(
sup
s∈[0,t]

(Xs − µs), t ∈ [0, T ]

)
,

as N → ∞. The process (Xt, t ∈ [0, T ]) is a stochastic process with Fréchet-distributed
marginals. This process has cumulative distribution function P(Xt ≤ x) = exp(−t/xβ) for
x > 0. Furthermore, Xt+s = max(Xt, X̂s), where X̂s is an independent copy of Xs, because
P(Xt+s < x) = P(Xt < x)P(X̂s < x) = exp(−t/xβ) exp(−s/xβ) = exp(−(t + s)/xβ).
Thus, the process (Xt, t ∈ [0, T ]) is a function in D[0, T ] and is called an extremal process
[133]. It is easy to see that (sups∈[0,t](Xs − µs), t ∈ [0, T ]) is also non-decreasing in t. The
limiting process of (maxi≤N Wi(tcN )/cN , t ∈ [0, T ]) has the same marginals as the process
(sups∈[0,t](Xs − µs), t ∈ [0, T ]), but is not non-decreasing. We write the limiting process of
the longest waiting time as (sups∈[0,t](X(s,t) − µ(t− s)), t ∈ [0, T ]), with X(s,t)

d= Xt−s. For
r < s < t, we have that X(r,t) = max(X(r,s), X(s,t)), and we have that X(s,t) and X(u,v) are
independent if and only if the intervals (s, t) and (u, v) are disjoint. We write Xt := X(0,t).
In conclusion, the random variable Xt involves a single time parameter, while the random
variable X(s,t) is defined by two time parameters, which complicates the proof. There is
a clear connection between the stochastic processes however, and in this chapter, we first
prove convergence of the non-decreasing process (maxi≤N sups∈[0,t]

∑bscN c
j=1 (S(1)

i (j)S(2)(j)−
A(j))/cN , t ∈ [0, T ]) and we use this result with some additional steps to prove process
convergence of the scaled longest waiting time (maxi≤N Wi(tcN )/cN , t ∈ [0, T ]).

Definition 5.1. We write

Ri(k) :=
k∑
j=1

(S(1)
i (j)S(2)(j)−A(j)), (5.2.14)

Ri(l, k) :=
k∑
j=l

(S(1)
i (j)S(2)(j)−A(j)), (5.2.15)

with Ri(s, t) = Ri(bsc, btc), and

W̃i(n) := sup
0≤k≤n

Ri(k), (5.2.16)

with W̃i(t) = W̃i(btc).
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To summarize the model, we have that the waiting time of subtasks in front of the i-th
server is given in Equation (5.2.1), the i.i.d. random variables (S(1)

i (j), i ≥ 1, j ≥ 1) satisfy
(5.2.4), and the i.i.d. random variables (S(2)(j), j ≥ 1) satisfy (5.2.3), with `(x) a slowly
varying function. The slowly varying function satisfies (5.2.9). Furthermore, the sequence
of i.i.d. random variables (A(j), j ≥ 1) satisfies (5.2.6). Additionally, all random variables
S

(1)
i (j1), S(2)(j2), and A(j3) are mutually independent.

Moreover, we have a scaling sequence (bN , N ≥ 1) with bN = (logN/q)1/α, and we have
a scaling sequence (cN , N ≥ 1) that satisfies (5.2.7) and (5.2.8).

Finally, we have a limiting process (X(s,t), t ∈ [0, T ]) with Fréchet-distributed marginals.
For r < s < t, we have that X(r,t) = max(X(r,s), X(s,t)), and we have that X(s,t) and X(u,v)

are independent if and only if the intervals (s, t) and (u, v) are disjoint. We write Xt := X(0,t)

and we have that X(s,t)
d= Xt−s. Furthermore, P(Xt ≤ x) := exp(−t/xβ) for x > 0.

Now, we give the auxiliary and main results in Theorems 5.1–5.3 and in Proposition 5.1.

Theorem 5.1. For the sequence of random variables (W̃i(n), i ≥ 1, n ≥ 1) given in (5.2.16),
we have that(

maxi≤N W̃i(tcN )
cN

, t ∈ [0, T ]
)

d−→

(
sup
s∈[0,t]

(Xs − µs), t ∈ [0, T ]

)
(5.2.17)

as N →∞.

The main result proven in this chapter is given in Theorem 5.2.

Theorem 5.2. We have for all T > 0 that(
maxi≤N Wi(tcN )

cN
, t ∈ [0, T ]

)
d−→

(
sup
s∈[0,t]

(X(s,t) − µ(t− s)), t ∈ [0, T ]

)
(5.2.18)

as N →∞.

When t → ∞ in (5.2.18), we expect that the longest steady-state waiting time satisfies
P
(
maxi≤N Wi(∞) > xcN

) N→∞−→ P
(
supt>0(Xt − µt) > x

)
. Though this does not trivially

follow from Theorem 5.2, it is indeed true, and we prove this in Theorem 5.3.

Theorem 5.3. The longest steady-state waiting time satisfies

P
(

max
i≤N

Wi(∞) > xcN

)
N→∞−→ P

(
sup
t>0

(Xt − µt) > x

)
. (5.2.19)

We can write the limiting probabilities explicitly.

Proposition 5.1. We have that

P
(

sup
t>0

(Xt − µt) > x

)
= 1− exp

(
− 1
µ(β − 1)xβ−1

)
, (5.2.20)

and
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P

(
sup
s∈[0,t]

(X(s,t) − µ(t− s)) > x

)

= 1− exp

(
− 1
µβ(β − 1)

(
1

(x/µ)β−1 −
1

(x/µ+ t)β−1

))
. (5.2.21)

5.2.1 Main ideas for the proofs

To prove Theorem 5.2 directly is challenging, since the limiting random variable X(s,t)

depends on two parameters and cannot be written as a difference of the form Yt − Ys,
as is the case in standard queueing theory. However, the marginal distributions of X(s,t)

and Xt−s are the same. Thus, we first prove Theorem 5.1, after which we prove Theorem
5.2 using some auxiliary results on bounds on tail probabilities, convergence rates of sums
of Weibull-distributed random variables, and auxiliary results on process convergence in
D[0, T ]; see Section 5.3. To get a better understanding of the convergence result in Theorem
5.1, it benefits to first examine the process(

maxi≤N Ri(tcN )
cN

, t ∈ [0, T ]
)
, (5.2.22)

so we remove the supremum term from the expression on the left-hand side of (5.2.17) and
we are left with a maximum of N random walks. We can however apply the continuous
mapping theorem on this stochastic process and obtain the result in Theorem 5.1 because
the supremum is a continuous functional; see [154, Sec. 6]. Obviously, the law of large
numbers implies that

Ri(tcN )
cN

P−→ −µt, (5.2.23)

as N → ∞. However, when we investigate the largest of N of these random variables, we
obtain that

maxi≤N Ri(tcN )
cN

d−→ Xt − µt, (5.2.24)

as N → ∞. The fact that we see this limiting behavior has two main reasons; first, a
standard result is that for i.i.d. regularly varying (S(2)(j), j ≥ 1), the tail behavior of a finite
sum is the same as the tail behavior of the largest regularly varying random variable. Second,
for Weibull-distributed random variables and a deterministic sequence (bj , j ≥ 1), we have
that maxi≤N

∑n

j=1 Ai,jbj/bN
P−→ maxj≤n bj , as N → ∞, which follows from Lemma 2.13.

Therefore,

max
i≤N

n∑
j=1

S
(1)
i (j)S(2)(j) ≈ max

i≤N
S

(1)
i ·max

j≤n
S

(2)(j) + E[S(1)
i (j)S(2)(j)](n− 1)
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for N large. Thus, we can conclude that for N large,

maxi≤N Ri(tcN )
cN

≈ maxi≤N S(1)
i

bN

maxj≤btcN c S
(2)(j)

cN/bN
+
∑btcN c

j=1 (S(1)
i (j)S(2)(j)−A(j))

cN
(5.2.25)

≈ maxi≤N S(1)
i

bN

maxj≤btcN c S
(2)(j)

cN/bN
− µt (5.2.26)

≈
maxj≤btcN c S

(2)(j)
cN/bN

− µt. (5.2.27)

We see that the largest regularly varying random variable maxj≤btcN c S
(2)(j) determines the

stochastic part in the limit, and is of order cN/bN . Now, it is easy to see that

P
(

max
j≤btcN c

S
(2)(j) ≤ (x+ µt)cN

bN

)
= P
(
S

(2)(j) ≤ (x+ µt)cN
bN

)btcN c

∼

1− `((x+ µt)cN/bN )(
(x+ µt)cN/bN

)β
btcN c .

Because we have defined cN as having the relation cN ∼ (cN/bN )β/`(cN/bN ) as N →∞, we
get that1− `((x+ µt)cN/bN )(

(x+ µt)cN/bN
)β
btcN c ∼ (1− 1

(x+ µt)βcN

)btcN c
N→∞−→ exp

(
− t

(x+ µt)β

)
.

In conclusion, the limiting distribution of maxi≤N Ri(tcN )/cN is a Fréchet-distributed
random variable with a negative drift term. We also see that we can approximate
maxi≤N Ri(tcN )/cN with maxj≤btcN c S

(2)(j)/(cN/bN )−µt asN is large. This approximating
process has convenient properties since the stochastic term is non-decreasing in t. Therefore,
to prove process convergence of

(
maxi≤N Ri(tcN )/cN , t ∈ [0, T ]

)
to (Xt − µt, t ∈ [0, T ]), we

first prove that (maxj≤btcN c S
(2)(j)/(cN/bN )−µt, t ∈ [0, T ]) converges to (Xt−µt, t ∈ [0, T ]).

Furthermore, we prove in Lemma 5.9 that for all ε > 0,

P

 sup
t∈[0,T ]

∣∣∣∣∣∣∣∣
maxi≤N Ri(tcN )

cN
−

(
maxj≤btcN c S

(2)(j)
cN/bN

− µt

)∣∣∣∣∣∣∣∣ > ε

 N→∞−→ 0.
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After applying the triangle inequality, we obtain that(
maxi≤N Ri(tcN )

cN
, t ∈ [0, T ]

)
d−→
(
Xt − µt, t ∈ [0, T ]

)
,

as N → ∞. Now, by applying the continuous mapping theorem, we obtain the result of
Theorem 5.1. This is still an auxiliary result because the process on the left-hand side
of (5.2.17) is not the longest waiting time process. We can however prove the process
convergence of the longest waiting time in Theorem 5.2 by using some additional results, as
the marginals of the processes on the left side of the limit in Theorems 5.1 and 5.2 are the
same, and the marginals of the limiting processes in Theorems 5.1 and 5.2 are the same.
Thus, we already know that pointwise convergence holds.

In order to prove the convergence of the finite-dimensional distributions for the longest
waiting time process, we show that we can decompose the joint probabilities of both
the longest waiting time process and the limiting process into an operation of marginal
probabilities, and thus, the convergence of finite-dimensional distributions follows from
pointwise convergence. For example, for x2 + µt2 > x1 + µt1,

P

(
sup

s∈[0,t1]
(X(s,t1) − µ(t1 − s)) < x1, sup

s∈[0,t2]
(X(s,t2) − µ(t2 − s)) < x2

)

=
P
(

sups∈[0,t1](X(s,t1) − µ(t1 − s)) < x1
)

P
(

sups∈[0,t1](X(s,t1) − µ(t1 − s)) < x2 + µ(t2 − t1)
) P

(
sup

s∈[0,t2]
(X(s,t2) − µ(t2 − s)) < x2

)
.

An analogous equation holds for the process sup
s∈[0,t]

(
max

bscN c≤j≤btcN c

S
(2)(j)

(cN/bN ) − µ(t− s)

)
, t ∈ [0, T ]

 .

Now, as an abbreviation, we write

S̃(s, t) := max
bsc≤j≤btc

S
(2)(j) (5.2.28)

and

S̃(t) := max
j≤btc

S
(2)(j). (5.2.29)

In Lemma 5.10, we prove that the longest waiting time in (5.2.10) satisfies

P

 sup
t∈[0,T ]

∣∣∣∣∣ sup
s∈[0,t]

maxi≤N Ri(scN , tcN )
cN

− sup
s∈[0,t]

(
S̃(scN , tcN )
cN/bN

− µ(t− s)
)∣∣∣∣∣ > ε


N→∞−→ 0,

by using similar techniques as in Lemma 5.9. Finally, we show in the proof of Theorem 5.2
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that(
sup
s∈[0,t]

(
S̃(scN , tcN )

(cN/bN ) − µ(t− s)
)
, t ∈ [0, T ]

)
d−→

(
sup
s∈[0,t]

(X(s,t) − µ(t− s)), t ∈ [0, T ]

)
,

as N →∞, by using the earlier results together with [28, Thm. 13.3].
In summary, we prove process convergence of the longest waiting time through three

steps; first, pointwise convergence follows from Theorem 5.1; second, we show in Lemma
5.10 that the longest waiting process is asymptotically equivalent to an extremal process
that only depends on the regularly varying random variables, and finally, we prove process
convergence for this latter process in Theorem 5.2.

In Section 5.6, we show that the cumulative distribution function of the limiting longest
steady-state waiting time converges to P(supt>0(Xt−µt) < x). This means that the limiting
cumulative distribution function of the longest steady-state waiting time is the same as
limT→∞ P(sups∈[0,T ](X(s,T ) − µ(T − s)) < x), thus the steady-state behavior of the limiting
process of (sups∈[0,t](X(s,t) − µ(t − s)), t ∈ [0, T ]) is the same as the extreme-value limit of
the longest steady-state waiting time, which is not a trivial result.

5.2.2 Numerical examples

In Figure 5.1, we give four examples of the evolution of the longest waiting time. The
unbroken line indicates the rescaled longest waiting time per arriving job (maxi≤N Wi(k)/cN
, 0 ≤ k ≤ n), while the dashed line indicates the sample path of the rescaled auxiliary process
(sup0≤j≤k(S̃(j, k)/(cN/bN ) − µ(k − j)/cN , 0 ≤ k ≤ n) on the same probability space. We
set P(S(1)

i (j) > x) = exp(−
√
x) for x > 0, P(S(2)(j) > x) = 1/x2 for x > 1, and A(j) = 5.

In this case, we have that α = 1/2, β = 2, µ = 1, bN = (logN)2, and cN = (logN)4.
Furthermore, we let n = cN .

As we can see in Figure 5.1, the rescaled longest waiting time converges to a process
that has a negative drift and has jumps of random sizes at random moments in time. We
see that for N = 1000 and N = 10, 000, and k small, the rescaled longest waiting time and
the rescaled auxiliary process follow approximately the same trajectory. However, when k

grows, the error becomes larger. We can explain this fact when we look at the heuristic
calculations in (5.2.25)–(5.2.27): in order to derive the auxiliary process, we replace the
quantity maxi≤N Si/bN with 1, because maxi≤N Si/bN

P−→ 1, as N → ∞. To give a more
precise approximation, we look at the lower bound

maxi≤N Ri(k)
cN

≥ maxi≤Nk S(1)
i (j∗)

bN

maxj≤k S(2)(j)
cN/bN

+
∑k

j=1,j 6=j∗(S
(1)
i∗ (j)S(2)(j)−A(j))
cN

,

with S(2)(j∗) = maxj≤k S(2)(j) and S(1)
i∗ (j∗) = maxi≤Nk S(1)

i (j∗). Because bN/bNcN
N→∞−→ 1,

we also have that maxi≤Nk Si/bN
P−→ 1, as N → ∞ for all 1 < k < cN . However, for
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N = 10, 000 and k = 6000, we have that

E
[

maxi≤Nk Si
bN

]
= 4.05.

Moreover, we have that

E
[

maxi≤N Si
bN

]
= 1.15.

Thus, this explains that the jump sizes of the rescaled longest waiting time and the rescaled
auxiliary process differ. More specifically, we see that E[maxi≤Nk Si/bN ] ≥ 1 for all k; this
explains that the plots of the rescaled longest waiting time lie above the plots of the rescaled
auxiliary process.

(a) N = 10, n = 29 (b) N = 100, n = 450

(c) N = 1000, n = 2277 (d) N = 10, 000, n = 7197

Figure 5.1 Longest waiting time and auxiliary process

5.2.3 Other choices for S(1)
i (j)

Our main result in Theorem 5.2 heavily relies on the fact that S(1)
i (j) is Weibull-like, and we

are able to derive general results. Furthermore, when S(1)
i (j) has finite support, we are also

able to derive general results. Under the assumption that S(1)
i (j) has a finite right endpoint
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b, then from this, it follows that bN = b. Furthermore, in Lemma 2.13, we have shown that
maxi≤N

∑n

j=1 xjS
(1)
i (j)/b P−→

∑n

j=1 xj , as N →∞. Then,

P
(

max
i≤N

Ri(k) > x

)
N→∞−→ P

 k∑
j=1

(bS(2)(j)−A(j)) > x

. (5.2.30)

Furthermore, if E[bS(2)(j)−A(j)] < 0, we get that

P

(
max
i≤N

sup
k≥0

Ri(k) > x

)
N→∞−→ P

sup
k≥0

k∑
j=1

(bS(2)(j)−A(j)) > x

. (5.2.31)

In general, when S(1)
i (j) has unbounded support, it follows from Lemma 2.13 that

P
(

max
i≤N

W̃i(l) > xbN

)
N→∞−→ P

max
z


l∑

j=1

zjS
(2)(j) :

l∑
j=1

zαj ≤ 1, 0 ≤ zj ≤ 1

 > x

.
(5.2.32)

For the heavy-tailed case, i.e., when 0 < α ≤ 1, we have that

max
z


l∑

j=1

zjS
(2)(j) :

l∑
j=1

zαj ≤ 1, 0 ≤ zj ≤ 1

 = max
j≤l

S
(2)(j).

In contrast, for the light-tailed case, i.e., when α > 1, we get non-trivial results depending
on α. For instance for α = 2, we obtain

max
z


l∑

j=1

zjS
(2)(j) :

l∑
j=1

zαj ≤ 1, 0 ≤ zj ≤ 1

 =
√
S

(2)(1)2 + · · ·+ S
(2)(l)2.

In conclusion, when α > 1, we cannot rely on the property described in (5.2.25)–(5.2.27)
that follows from Weibull-distributed random variables. Therefore, in this chapter, we will
limit ourselves to the case 0 < α < 1. The case α = 1 lies on the boundary between these
two regimes; this case needs a separate analysis, beyond the scope of our methods.

5.3. Preliminary results

In Section 5.2.1, we gave the ideas behind our proofs. In order to be able to make these
rigorous, we need some auxiliary lemmas.

In (5.2.7), (5.2.8), and (5.2.9), we heuristically describe the behavior of the sequence
(cN , N ≥ 1) and the slowly varying function ˜̀ given a sequence (bN , N ≥ 1) and a slowly
varying function `. An unanswered question is whether this sequence (cN , N ≥ 1) and this
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function ˜̀ exist. In Lemma 5.1, we show how ` and ˜̀ are asymptotically related. Their
asymptotic relation resembles the asymptotic relation between a slowly varying function `
and its de Bruijn conjugate `#; cf. [29, Thm. 1.5.13].

Lemma 5.1 (Asymptotic behavior of ˜̀(x)). The sequence (cN , N ≥ 1) is given as cN =
˜̀(bN )bβ/(β−1)

N where the function ˜̀ satisfies the relation

˜̀(x) ∼ `(˜̀(x)x1/(β−1))1/(β−1), (5.3.1)

as x→∞.

Proof. We write x = bN , then the relation in (5.2.7) can be rewritten to

˜̀(x)xβ/(β−1) ∼ (˜̀(x)xβ/(β−1)/x)β

`(˜̀(x)xβ/(β−1)/x)
,

as x→∞. This simplifies to
˜̀(x) ∼

˜̀(x)β

`(˜̀(x)x1/(β−1))
,

as x→∞. The lemma follows.

Remark 5.1 (Asymptotic solutions of ˜̀(x)). It is not trivial to find functions ˜̀(x) that
have the asymptotic relation described in (5.3.1), since ˜̀ appears both on the left-hand and
the right-hand side of the equation. However, we know that ˜̀ is slowly varying; thus the term
x1/(β−1) is dominant in `(˜̀(x)x1/(β−1))1/(β−1), so we can remove ˜̀ from the right-hand side
in (5.3.1) and look at a function ˜̀(1) that equals

˜̀(1)(x) = `(x1/(β−1))1/(β−1).

For example, when `(x) = log x, ˜̀(1) satisfies (5.3.1). However, there are also examples
where ˜̀(1) does not satisfy the relation in (5.3.1), for example, when `(x) = exp(

√
log x).

Still, we are able to find candidates that satisfy the relation in (5.3.1). First, we see that the
relation in (5.3.1) is actually an iterative relation. Thus, we can rewrite (5.3.1) to

˜̀(x) ∼ `(`(˜̀(x)x1/(β−1))1/(β−1)x1/(β−1))1/(β−1),

as x→∞. Now, with the same reasoning as before, we define

˜̀(2)(x) = `(`(x1/(β−1))1/(β−1)x1/(β−1))1/(β−1).

The function ˜̀(2) satisfies the relation in (5.3.1) when `(x) = exp(
√

log x) and is a slowly
varying function itself.

In order to prove that the heuristic approximations in Equations (5.2.25)–(5.2.27) are
correct, we need to prove two things; first, that the largest regularly varying random variable
determines the stochastic part of the limit, and second, that the other random variables
satisfy the law of large numbers. To prove this second property, we use Bennett’s inequality
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as stated below. In Corollary 5.1, we state a simplified version of this inequality which we
use in our proofs.

Lemma 5.2 (Bennett’s inequality [25]). Let Y1, . . . , Yn be independent random variables,
E[Yi] = 0, E[Y 2

i ] = σ2
i , and |Yi| < M almost surely. Then for y > 0,

P

(
n∑
i=1

Yi > y

)
≤ exp

−∑n

i=1 σ
2
i

M2 h

(
yM∑n

i=1 σ
2
i

) ,

with h(x) = (1 + x) log(1 + x)− x.

For a proof, see [158].

Corollary 5.1. Let Y1, . . . , Yn be independent random variables, E[Yi] = 0, E[Y 2
i ] = σ2

i , and
|Yi| < M almost surely. Then for y > 0,

P

(
n∑
i=1

Yi > y

)
≤ exp

− y

M

log

(
1 + yM∑n

i=1 σ
2
i

)
− 1


 .

Proof. Observe that for x > 0 we get that h(x) > x(log(1 + x) − 1). Now, the corollary
follows from Lemma 5.2.

Though in Lemma 2.13 it is proven that for Weibull-distributed random variables
maxi≤N

∑n

j=1 xjS
(1)
i (j)/bN

P−→ maxj≤n xj , as N → ∞, which heuristically explains the
nature of our main result, our approximations in Equations (5.2.25)–(5.2.27) suggest that
we should take the sum of btcNc random variables. In Lemma 2.13 however, n does not
depend on N . Thus, we cannot resort to this lemma in our proofs. However, in Lemma
5.3, a result is presented that we can use in this chapter and proves the approximations in
Equations (5.2.25)–(5.2.27).

Lemma 5.3 ([35, Thm. 2]). Let Y1, . . . , Yn be independent random variables with log P(Yi >
x) ∼ −qxα, as x → ∞, with 0 < α < 1 and q > 0. Let (xn, n ≥ 1) be a sequence such that
limn→∞ xn/n

1/(2−α) =∞. Then

lim
n→∞

1
xαn

log P

(
n∑
i=1

Yi > xn

)
= −q.

We want to prove process convergence of the longest waiting time to a limiting process,
this limiting process is a function in D[0, T ]. In [28, Thm. 13.3], a result is given that
guarantees the convergence of a process in D[0, T ] when three conditions are satisfied, which
we will apply.

Lemma 5.4 ([28, Thm. 13.3]). Assume a sequence of processes (Y (N)(t), t ∈ [0, T ]) and
a process (Y (t), t ∈ [0, T ]) in D[0, T ], equipped with the d◦ metric, satisfy the following
conditions:
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1. For all {t1, . . . , tk} ⊆ [0, T ]: (Y (N)(t1), . . . , Y (N)(tk)) d−→ (Y (t1), . . . , Y (tk)) as N →
∞.

2. Y (T )− Y (T − δ) P−→ 0 as δ ↓ 0, and

3. For 0 < r < s < t < T , ε, η > 0 there exists N0 ≥ 1 and δ > 0 such that

P

(
sup

s∈[r,t],t−r<δ
min

(∣∣∣Y (N)(s)− Y (N)(r)
∣∣∣ , ∣∣∣Y (N)(t)− Y (N)(s)

∣∣∣) > ε

)
≤ η, N ≥ N0.

Then (Y (N)(t), t ∈ [0, T ]) d−→ (Y (t), t ∈ [0, T ]) as N →∞.

Finally, to prove pointwise convergence of the longest waiting time process in (5.2.18)
to the limiting random variable, we need to pay special attention to the case that S(2) is a
regularly varying random variable with 1 < β ≤ 2, since in this case the second moment of
S

(2) is not finite. In Lemma 5.5, we give a useful convergence result of the second moment
of S(2) conditioned on S(2) being bounded.

Lemma 5.5. Let S be a positive random variable that satisfies P(S > x) = `(x)/xβ, with
`(x) a slowly varying function and 1 < β ≤ 2. Then,

E[S2|S < r]
r

r→∞−→ 0.

Proof. Choose 0 < ε < β − 1. Because P(S > x) = `(x)/xβ we have that E[Sβ−ε] < ∞.
Therefore,

E[S2|S < r]
r

≤ r2−(β−ε)

r
E[Sβ−ε] r→∞−→ 0.

5.4. Convergence of the auxiliary process in D[0, T ]

In this section, we prove Theorem 5.1. As explained in Section 5.2.1, we first remove the
supremum functional from the random variable on the left-hand side in (5.2.17) and prove
convergence of the process (maxi≤N Ri(tcN )/cN , t ∈ [0, T ]) to (Xt−µt, t ∈ [0, T ]). To do so,
we first show pointwise convergence in Lemma 5.6; afterwards, we prove process convergence
in Lemma 5.7. In order to prove Lemma 5.7, we need two auxiliary results, which are given
in Lemmas 5.8 and 5.9. By using the continuous mapping theorem, Theorem 5.1 follows.

Lemma 5.6. For the sequence of random variables (Ri(k), i ≥ 1, k ≥ 1) given in (5.2.14),
we have for all t > 0 and x > 0, that

P
(

max
i≤N

Ri(tcN ) > xcN

)
N→∞−→ 1− exp

(
− t

(x+ µt)β

)
. (5.4.1)

Proof. The approach to prove this lemma is by analyzing upper and lower bounds of the
probability given in (5.4.1) and by proving that these bounds are sharp as N → ∞. Thus,
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first we see that

P
(

max
i≤N

Ri(tcN ) > xcN

)
(5.4.2)

= P
(

max
i≤N

Ri(tcN ) > xcN

∣∣∣∣ S̃(tcN ) > (x+ µt− δ)cN
bN

)
P
(
S̃(tcN ) > (x+ µt− δ)cN

bN

)
+ P
(

max
i≤N

Ri(tcN ) > xcN

∣∣∣∣ S̃(tcN ) ≤ (x+ µt− δ)cN
bN

)
P
(
S̃(tcN ) ≤ (x+ µt− δ)cN

bN

)
≤ P
(
S̃(tcN ) > (x+ µt− δ)cN

bN

)
+ P
(

max
i≤N

Ri(tcN ) > xcN

∣∣∣∣ S̃(tcN ) ≤ (x+ µt− δ)cN
bN

)
.

(5.4.3)

The first term in (5.4.3) yields

P
(
S̃(tcN ) > (x+ µt− δ)cN

bN

)
∼ 1−

1− `((x+ µt− δ)cN/bN )(
(x+ µt− δ)cN/bN

)β
btcN c

N→∞−→ 1− exp
(
− t

(x+ µt− δ)β

)
δ↓0−→ 1− exp

(
− t

(x+ µt)β

)
.

Hence, in order to prove that the upper bound of (5.4.1) is asymptotically sharp, we are left
with proving that the second term in (5.4.3) vanishes as N → ∞. We analyze this term as
follows: first, we have that (x+µt− δ/2)/(x+µt− δ) > 1 for δ small enough, thus we write
(x+ µt− δ/2)/(x+ µt− δ) = 1 + ε with ε > 0. Second, in order to bound the second term
in (5.4.3), we first write Pt(A) = P(A | S̃(tcN ) ≤ (x + µt − δ)cN/bN ). Then we can bound
the second term in (5.4.3) as

Pt
(

max
i≤N

Ri(tcN ) > xcN

)
(5.4.4)

≤ Pt
(

max
i≤N

btcN c∑
j=1

(S(1)
i (j)1(S(1)

i (j) < (1 + ε)1−αb1−αN )S(2)(j)−A(j))

+ max
i≤N

btcN c∑
j=1

S
(1)
i (j)1(S(1)

i (j) ≥ (1 + ε)1−αb1−αN )S(2)(j) > xcN

)
. (5.4.5)

The upper bound in (5.4.5) holds because for (S(1)
i (j), i ≥ 1, j ≥ 1), we have that

max
i≤N

 k∑
j=1

S
(1)
i (j)

 ≤ max
i≤N

k∑
j=1

S
(1)
i (j)1(S(1)

i (j) < c) + max
i≤N

S
(1)
i (j)

k∑
j=1

1(S(1)
i (j) > c).
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Now, we can further bound the expression in (5.4.5) as follows:

Pt
(

max
i≤N

btcN c∑
j=1

(S(1)
i (j)1(S(1)

i (j) < (1 + ε)1−αb1−αN )S(2)(j)−A(j))

+ max
i≤N

btcN c∑
j=1

S
(1)
i (j)1(S(1)

i (j) ≥ (1 + ε)1−αb1−αN )S(2)(j) > xcN

)

≤ Pt
(

max
i≤N

btcN c∑
j=1

S
(1)
i (j)1(S(1)

i (j) < (1 + ε)1−αb1−αN )S(2)(j) >
(
E[S(1)

i (j)S(2)(j)]t+
δ

4

)
cN

)
(5.4.6)

+ P

btcN c∑
j=1

−A(j) >
(
−E[A(j)]t+

δ

4

)
cN

 (5.4.7)

+ Pt

max
i≤N

btcN c∑
j=1

S
(1)
i (j)1(S(1)

i (j) ≥ (1 + ε)1−αb1−αN )S(2)(j) >
(
x+ µt−

δ

2

)
cN

 . (5.4.8)

The upper bound from (5.4.5) to (5.4.6), (5.4.7), and (5.4.8) holds because of the union
bound. The term in (5.4.7) converges to 0 due to the law of large numbers. For the term in
(5.4.6), we know by the union bound that

Pt

max
i≤N

btcN c∑
j=1

S
(1)
i (j)1(S(1)

i (j) < (1 + ε)1−αb1−αN )S(2)(j) >
(
E[S(1)

i (j)S(2)(j)]t+ δ

4

)
cN


≤ NPt

btcN c∑
j=1

S
(1)
i (j)1(S(1)

i (j) < (1 + ε)1−αb1−αN )S(2)(j) >
(
E[S(1)

i (j)S(2)(j)]t+ δ

4

)
cN

 .

(5.4.9)

Now, since we have a probability of sums of almost surely bounded random variables, we
can apply Bennett’s inequality with the setting given in Lemma 5.2 and Corollary 5.1. We
see that E[S(1)

i (j)1(S(1)
i (j) < (1 + ε)1−αb1−αN )S(2)(j) | S(2)(j) ≤ (x + µt − δ)cN/bN ] <

E[S(1)
i (j)S(2)(j)]. Furthermore, we can choose M as M = (x+µt− δ)(1 + ε)1−αb1−αN cN/bN ,

and y = δ/4cN . Thus,

y

M
= δ

4(x+ µt− δ)(1 + ε)1−α b
α
N = δ

4(x+ µt− δ)(1 + ε)1−αq
logN.

It is important to note here, that y/M equals a constant times logN . We now add a subscript
N to the variables y,M , and σi to indicate sequences that change with N . Now, for β > 2,
lim supN→∞ σ2

i,N <∞. Thus
yNMN∑btcN c
j=1 σ2

i,N

N→∞−→ ∞.
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Therefore, using the information that y/M equals a constant times logN and by using
Corollary 5.1, we see that the exponent in Corollary 5.1 grows faster to infinity than logN .
Thus, by applying Bennett’s inequality, we get that the expression in (5.4.9) converges to
0 as N → ∞. When 1 < β ≤ 2, σ2

i,N
N→∞−→ ∞, however, from Lemma 5.5 it follows

that σ2
i,N/(cN/bN ) N→∞−→ 0. Therefore, yNMN/

∑btcN c
j=1 σ2

i,N
N→∞−→ ∞. Concluding, from

Corollary 5.1 we again get that the expression in (5.4.9) and therefore the expression in
(5.4.6) converges to 0.

Furthermore, for the term in (5.4.8) we have that

Pt

max
i≤N

btcN c∑
j=1

S
(1)
i (j)1(S(1)

i (j) ≥ (1 + ε)1−αb1−αN )S(2)(j) >
(
x+ µt− δ

2

)
cN


≤ P

max
i≤N

btcN c∑
j=1

S
(1)
i (j)1(S(1)

i (j) ≥ (1 + ε)1−αb1−αN ) > x+ µt− δ/2
x+ µt− δ bN

.
We have (x + µt − δ/2)/(x + µt − δ) = 1 + ε with ε > 0; thus we can further simplify this
probability. We write

A
(N)
ε,t :=

{
max
i≤N

max
j≤btcN c

S
(1)
i (j) > (1 + ε)bN

}
.

Then

P

max
i≤N

btcN c∑
j=1

S
(1)
i (j)1(S(1)

i (j) ≥ (1 + ε)1−αb1−αN ) > (1 + ε)bN


= P

max
i≤N

btcN c∑
j=1

S
(1)
i (j)1(S(1)

i (j) ≥ (1 + ε)1−αb1−αN ) > (1 + ε)bN ∩A(N)
ε,t

 (5.4.10)

+ P

max
i≤N

btcN c∑
j=1

S
(1)
i (j)1(S(1)

i (j) ≥ (1 + ε)1−αb1−αN ) > (1 + ε)bN ∩ ¬A(N)
ε,t

. (5.4.11)

Since cN = ˜̀(bN )bβ/(β−1)
N with bN = (logN/q)1/α, it follows that bN/bNtcN

N→∞−→ 1,
therefore, we have that

maxi≤N maxj≤btcN c S
(1)
i (j)

bN

P−→ 1,

as N → ∞. From this, it follows that the term in (5.4.10) converges to 0 as N → ∞, and
we only need to focus on the term in (5.4.11). Observe that by the union bound,

P

max
i≤N

btcN c∑
j=1

S
(1)
i (j)1(S(1)

i (j) ≥ (1 + ε)1−αb1−αN ) > (1 + ε)bN ∩ ¬A(N)
ε,t
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≤ N P

btcN c∑
j=1

S
(1)
i (j)1((1 + ε)1−αb1−αN ≤ S(1)

i (j) ≤ (1 + ε)bN ) > (1 + ε)bN

. (5.4.12)

Following the proof given in [35, Lem. 8], we assume without loss of generality that q = 1
and choose 1/(1 + ε)α < q′ < 1 and q′ < q′′ < 1. Now, we have by using Chernoff’s bound,
that for θ > 0,

N P

btcN c∑
j=1

S
(1)
i (j)1((1 + ε)1−αb1−αN ≤ S(1)

i (j) ≤ (1 + ε)bN ) > (1 + ε)bN


≤ N

(
1 + E

[
exp
(
θS

(1)
i (j)

)
1((1 + ε)1−αb1−αN ≤ S(1)

i (j) ≤ (1 + ε)bN )
])btcN c

· exp(−θ(1 + ε)bN ).

Then, for θ = q′(1 + ε)α−1bα−1
N , in [35, Lem. 8] it is proven that for N large enough

E
[

exp
(
q′(1 + ε)α−1bα−1

N S
(1)
i (j)

)
1((1 + ε)1−αb1−αN ≤ S(1)

i (j) ≤ (1 + ε)bN )
]

≤ (1 + q′(1 + ε)αbαN ) exp(q′ − q′′(1 + ε)α(1−α)b
α(1−α)
N ).

Now, by using the fact that x > 0 we have the simple bound 1 + x ≤ exp(x), and that
cN = ˜̀(bN )bβ/(β−1)

N , it is easy to see that(
1 + (1 + q′(1 + ε)αbαN ) exp(q′ − q′′(1 + ε)α(1−α)b

α(1−α)
N )

)btcN c N→∞−→ 1.

Therefore, we know that Chernoff’s bound with θ = q′(1+ε)α−1bα−1
N applied to the expression

in (5.4.12) satisfies

lim sup
N→∞

N
(

1 +E
[

exp
(
q′(1 + ε)α−1bα−1

N S
(1)
i (j)

)
1((1 + ε)1−αb1−αN ≤ S(1)

i (j) ≤ (1 + ε)bN )
])btcN c

· exp(−q′(1 + ε)α−1bα−1
N (1 + ε)bN ) ≤ lim sup

N→∞
N exp(−q′(1 + ε)αbαN ).

Since q′ > 1/(1 + ε)α, we have that q′(1 + ε)αbαN > logN and therefore that N exp(−q′(1 +
ε)αbαN ) N→∞−→ 0. Thus, we can conclude that the expression in (5.4.12) converges to 0 as
N → ∞. From this, it follows that the term in (5.4.8) converges to 0 as N → ∞ as well,
and we can conclude that the upper bound proposed in (5.4.3) is asymptotically sharp.

To prove a sharp lower bound for the probability in (5.4.1), observe that, because for a
sequence (ai(j), i ≥ 1, j ≥ 1) we have that maxi≤N

∑k

j=1 ai(j) ≥ maxi≤N maxj≤k ai(j) +∑k

j=1,j 6=j∗ ai∗(j), with j∗ ∈ arg max{j : maxi≤N ai(j) = maxi≤N maxl≤k ai(l)} and i∗ ∈
arg max{i : ai(j∗) = maxm≤N am(j∗)}. Then,

lim inf
N→∞

P

(
max
i≤N

Ri(tcN ) > xcN

)
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≥ lim inf
N→∞

P

(
max
i≤N

S
(1)
i (j∗(tcN ))S̃(tcN )−A(j∗(tcN ))

+
btcN c∑

j=1,j 6=j∗(tcN )

(S(1)
i∗(tcN )(j)S(2)(j)−A(j)) > xcN

)
,

(5.4.13)

with j∗(tcN ) ∈ arg max{j : S(2)(j) = S̃(tcN )} and i∗(tcN ) ∈ arg max{i : S(1)
i (j∗(tcN )) =

maxm≤N S(1)
m (j∗(tcN ))}. Because S̃(tcN ) scales as cN/bN , we get that E[S(1)]S̃(tcN )/cN

P−→
0, as N → ∞. Since S(1)

i∗(tcN )(j) with j 6= j∗(tcN ) and S
(1)
i∗(tcN )(j

∗(tcN )) are independent,

we have that
∑btcN c

j=1,j 6=j∗(tcN )(S
(1)
i∗(tcN )(j)S

(2)(j) − A(j))/cN
P−→ −µt; cf. [79, Thm. 1].

Furthermore,

P
(

max
i≤N

max
j≤btcN c

(S(1)
i (j)S(2)(j))/cN > x+ µt

)
N→∞−→ 1− exp

(
− t

(x+ µt)β

)
and A(j∗(tcN ))/cN

P−→ 0 as N → ∞. In conclusion, the lower bound in (5.4.13) is sharp,
as the limit is the same as the limit in (5.4.1).

We have established pointwise convergence of the process (maxi≤N Ri(tcN )/cN , t ∈
[0, T ]) to a Fréchet-distributed random variable. In Lemma 5.7, we prove convergence in
D[0, T ].

Lemma 5.7. For the sequence of random variables (Ri(k), i ≥ 1, k ≥ 1) given in (5.2.14),
we have for all T > 0, that(

maxi≤N Ri(tcN )
cN

, t ∈ [0, T ]
)

d−→
(
Xt − µt, t ∈ [0, T ]

)
, (5.4.14)

as N →∞.

This lemma follows from the two results stated in Lemma 5.8 and 5.9.

Lemma 5.8. For the sequence of random variables (S̃(k), k ≥ 1) given in (5.2.29), we have
for all T > 0, that (

S̃(tcN )
cN/bN

, t ∈ [0, T ]
)

d−→
(
Xt, t ∈ [0, T ]

)
, (5.4.15)

as N →∞.

Lemma 5.9. For the sequences of random variables (Ri(k), i ≥ 1, k ≥ 1) and (S̃(k), k ≥ 1)
given in (5.2.14) and (5.2.29), we have for all T > 0 and ε > 0, that

P

 sup
t∈[0,T ]

∣∣∣∣∣maxi≤N Ri(tcN )
cN

−
(
S̃(tcN )
cN/bN

− µt
)∣∣∣∣∣ > ε

 N→∞−→ 0. (5.4.16)

Using the triangle inequality, we get that (5.4.14) follows from (5.4.15) and (5.4.16).
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Proof of Lemma 5.8. In this proof, we use Lemma 5.4, thus we need to prove the three
conditions stated in Lemma 5.4. First, we need to prove that(

S̃(t1cN )
cN/bN

, . . . ,
S̃(tmcN )
cN/bN

)
d−→ (Xt1 , . . . , Xtm) ,

as N → ∞. Let us assume that m = 2 and t2 > t1. If x2 ≤ x1, because S̃(k) is increasing
in k, we have that

P
(
S̃(t1cN )
cN/bN

≤ x1,
S̃(t2cN )
cN/bN

≤ x2

)
= P
(
S̃(t2cN )
cN/bN

≤ x2

)
N→∞−→ P(Xt2 ≤ x2) = P(Xt1 ≤ x1, Xt2 ≤ x2). (5.4.17)

When x2 > x1, we have that

P
(
S̃(t1cN )
cN/bN

≤ x1,
S̃(t2cN )
cN/bN

≤ x2

)

= P

 S̃(t2cN )
cN/bN

≤ x2

∣∣∣∣∣ S̃(t1cN )
cN/bN

≤ x1

P
(
S̃(t1cN )
cN/bN

≤ x1

)

= P
(
S̃(bt2cNc − bt1cNc)

cN/bN
≤ x2

)
P
(
S̃(t1cN )
cN/bN

≤ x1

)
N→∞−→ P(Xt2−t1 ≤ x2)P(Xt1 ≤ x1) = P(Xt1 ≤ x1, Xt2 ≤ x2).

(5.4.18)

For m > 2 but finite, we can prove by induction that all the finite-dimensional distributions
converge. Assume that the m-dimensional distributions converge. Consider t1 < t2 < . . . <

tm < tm+1, and x1, . . . , xm+1. Now, by the induction hypothesis, we know that

P
(
S̃(t1cN )
cN/bN

≤ x1, . . . ,
S̃(tmcN )
cN/bN

≤ xm
)

N→∞−→ P(Xt1 ≤ x1, . . . , Xtm ≤ xm).

To prove that the (m + 1)-dimensional distributions also converge, we need to distinguish
two cases: first, the case that xm+1 < max(x1, . . . , xm). Because S̃(t) is non-decreasing in
t, the joint probability

P
(
S̃(t1cN )
cN/bN

≤ x1, . . . ,
S̃(tm+1cN )
cN/bN

≤ xm+1

)
reduces to a joint probability of at most m events, similar to (5.4.17). We know that the m-
dimensional distributions converge, and thus, by the same argument as in (5.4.17), the (m+
1)-dimensional distribution also converges. The second case is that xm+1 ≥ max(x1, . . . , xm).
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Similarly to (5.4.18), we have that

P
(
S̃(t1cN )
cN/bN

≤ x1, . . . ,
S̃(tm+1cN )
cN/bN

≤ xm+1

)

= P

 S̃(tm+1cN )
cN/bN

≤ xm+1

∣∣∣∣∣ S̃(t1cN )
cN/bN

≤ x1, . . . ,
S̃(tmcN )
cN/bN

≤ xm


· P
(
S̃(t1cN )
cN/bN

≤ x1, . . . ,
S̃(tmcN )
cN/bN

≤ xm
)

= P
(
S̃(btm+1cNc − btmcNc)

cN/bN
≤ xm+1

)
P
(
S̃(t1cN )
cN/bN

≤ x1, . . . ,
S̃(tmcN )
cN/bN

≤ xm
)

N→∞−→ P(Xtm+1−tm ≤ xm+1)P(Xt1 ≤ x1, . . . , Xtm ≤ xm)
= P(Xt1 ≤ x1, . . . , Xtm+1 ≤ xm+1).

Second, we need to prove that

XT −XT−δ
P−→ 0,

as δ ↓ 0. We can write XT = max(XT−δ, X̂δ) with X̂δ an independent copy of Xδ. Therefore,
XT −XT−δ ≤ X̂δ. Let ε > 0, then

P(XT −XT−δ > ε) ≤ P(X̂δ > ε) = 1− exp
(
− δ

εβ

)
δ↓0−→ 0.

Finally, we show that the process
(
S̃(tcN )/(cN/bN ), t ∈ [0, T ]

)
satisfies the third condition

in Lemma 5.4. The random variable S̃(k) is increasing with k. Furthermore, the minimum
of two numbers is bounded from above by the average. Also, because for k > l, S̃(k)− S̃(l) =
max(S̃(l), S̃(l + 1, k))− S̃(l), we can bound

S̃(scN )− S̃(rcN )
cN/bN

≤st.
maxj≤bscN c−brcN c Ŝ

(2)(j)
cN/bN

,

where Ŝ(2) is an independent copy of S(2). Therefore, we have that

sup
s∈[r,t]

min

∣∣∣∣∣ S̃(scN )− S̃(rcN )
cN/bN

,
S̃(tcN )− S̃(scN )

cN/bN

∣∣∣∣∣
= sup
s∈[r,t]

min

(
S̃(scN )− S̃(rcN )

cN/bN
,
S̃(tcN )− S̃(scN )

cN/bN

)

≤ S̃(tcN )− S̃(rcN )
2cN/bN

≤st.
maxj≤btcN c−brcN c Ŝ

(2)(j)
2cN/bN

.
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Thus, using the expression in the third condition of Lemma 5.4, we obtain that

P

(
sup

s∈[r,t],t−r<δ
min

∣∣∣∣ S̃(scN )− S̃(rcN )
cN/bN

,
S̃(tcN )− S̃(scN )

cN/bN

∣∣∣∣ > ε

)

≤ P

(
maxj≤bδcN c Ŝ

(2)(j)
cN/bN

> 2ε

)
≤ bδcNc

`(2εcN/bN )
(2εcN/bN )β .

We have that cN `(2εcN/bN )/(cN/bN )β N→∞−→ 1 because cN ∼ (cN/bN )β/`(cN/bN ) asN →∞
and ` is a slowly varying function, so we choose N0 > 1 such that

bδcNc
`(2εcN/bN )
(2εcN/bN )β < (1 + ε) δ

(2ε)β

for all N > N0. Now, choose 0 < δ < η(2ε)β/(1 + ε) and we get

P

(
sup

s∈[r,t],t−r<δ
min

∣∣∣∣ S̃(scN )− S̃(rcN )
cN/bN

,
S̃(tcN )− S̃(scN )

cN/bN

∣∣∣∣ > ε

)
< η, N > N0.

Hence, the process
(
S̃(tcN )/(cN/bN ), t ∈ [0, T ]

)
also satisfies the third condition in Lemma

5.4 and the result follows.

We have proven process convergence of
(
S̃(tcN )/(cN/bN ), t ∈ [0, T ]

)
to (Xt, t ∈ [0, T ]).

Now, in order to prove Lemma 5.7, we are left with proving that the convergence result in
(5.4.16) holds. We do this in Lemma 5.9.

Proof of Lemma 5.9. The random variable in (5.4.16) has the form of a supremum of the
absolute value of a stochastic process. We know that |X| = max(X,−X). Then, by
applying the union bound, we get that P(|X| > x) ≤ P(X > x) + P(−X > x). Thus,
to prove the convergence result in (5.4.16), we can remove the absolute value and prove
that the probability of a supremum of a stochastic process converges to 0 as N → ∞; see
(5.4.19). Then, we need to prove that the probability of the supremum of the mirrored
process converges to 0 as N →∞; cf. (5.4.28).

We first prove that

P

 sup
t∈[0,T ]

(
−maxi≤N Ri(tcN )

cN
+
(
S̃(tcN )
cN/bN

− µt
))

> ε

 (5.4.19)

converges to 0 as N →∞. We have, by using i∗(tcN ) and j∗(tcN ), as defined in Lemma 5.6,
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that

P

 sup
t∈[0,T ]

(
−maxi≤N Ri(tcN )

cN
+
(
S̃(tcN )
cN/bN

− µt
))

> ε


≤ P

(
sup
t∈[0,T ]

(
− µt−

∑btcN c
j=1,j 6=j∗(tcN )(S

(1)
i∗(tcN )(j)S

(2)(j)−A(j))−A(j∗(tcN ))
cN

+ S̃(tcN )
cN/bN

− maxi≤N S(1)
i (j∗(tcN ))S̃(tcN )

cN

)
> ε

)

≤ P

 sup
t∈[0,T ]

−µt− ∑btcN cj=1,j 6=j∗(tcN )(S
(1)
i∗(tcN )(j)S

(2)(j)−A(j))−A(j∗(tcN ))
cN

 >
ε

2


(5.4.20)

+ P

 sup
t∈[0,T ]

(
S̃(tcN )
cN/bN

− maxi≤N S(1)
i (j∗(tcN ))S̃(tcN )

cN

)
>
ε

2

. (5.4.21)

For the term in (5.4.20), we use the union bound to obtain that

P

 sup
t∈[0,T ]

−µt−∑btcN cj=1,j 6=j∗(tcN )(S(1)
i∗(tcN )(j)S(2)(j)−A(j))−A(j∗(tcN ))

cN

 >
ε

2


≤ P

 sup
t∈[0, ε

4E[A(j)] ]

−µt−∑btcN cj=1,j 6=j∗(tcN )(S(1)
i∗(tcN )(j)S(2)(j)−A(j))−A(j∗(tcN ))

cN

 >
ε

2


(5.4.22)

+ P

 sup
t∈[ ε

4E[A(j)] ,T ]

−µt−∑btcN cj=1,j 6=j∗(tcN )(S(1)
i∗(tcN )(j)S(2)(j)−A(j))−A(j∗(tcN ))

cN

 >
ε

2

.
(5.4.23)

Because all random variables S(1)
i (j), S(2)(j), and A(j) are positive, it is easy to see that

the term in (5.4.22) can be upper bounded by

P

 sup
t∈[0, ε

4E[A(j)] ]

∑btcN cj=1 A(j)
cN

 >
ε

2

 = P

∑b ε
4E[A(j)] cN c
j=1 A(j)

cN
>
ε

2

 N→∞−→ 0,

as we can conclude from the law of large numbers that
∑b ε

4E[A(j)] cN c
j=1 A(j)/cN

P−→ ε/4 as
N → ∞. For the term in (5.4.23) we have for 0 < δ < 1, since all random variables are
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positive, that

P

(
sup

t∈[ ε
4E[A(j)] ,T ]

(
− µt−

∑btcN c
j=1,j 6=j∗(tcN )(S(1)

i∗(tcN )(j)S(2)(j)−A(j))−A(j∗(tcN ))

cN

)
>
ε

2

)
≤ sup
t∈[ ε

4E[A(j)] ,T ]

1
δ

· P
(

sup
s∈[t,t+δ]

(
− µs−

∑bscN c
j=1,j 6=j∗(scN )(S(1)

i∗(scN )(j)S(2)(j)−A(j))−A(j∗(scN ))

cN

)
>
ε

2

)
≤ sup
t∈[ ε

4E[A(j)] ,T ]

1
δ

· P
((
− µt−

infs∈[t,t+δ]
∑bscN c

j=1,j 6=j∗(scN ) S
(1)
i∗(scN )(j)S(2)(j)

cN
+

∑b(t+δ)cN c
j=1 A(j)

cN

)
>
ε

2

)
.

(5.4.24)

To bound the term in (5.4.24), we argue as follows: we have that

inf
s∈[t,t+δ]

bscN c∑
j=1,j 6=j∗(scN )

S
(1)
i∗(scN )(j)S

(2)(j) ≥ inf
s∈[t,t+δ]

btcN c∑
j=1,j 6=j∗(scN )

S
(1)
i∗(scN )(j)S

(2)(j).

Due to the definition of j∗(scN ) in Lemma 5.6 we know that if the process (S̃(k), k ≥ 0)
achieves a new extreme at time bτcNc in the interval [tcN , (t+ δ)cN ], then that means that
j∗(τcN ) > tcN . When the process (S̃(k), k ≥ 0) does not achieve a new extreme in the
interval [tcN , (t + δ)cN ], that means that j∗(scN ) = j∗(tcN ), for all s ∈ [t, t + δ]. In either
case, we have that

inf
s∈[t,t+δ]

btcN c∑
j=1,j 6=j∗(scN )

S
(1)
i∗(scN )(j)S

(2)(j) ≥ inf
s∈[t,t+δ]

btcN c∑
j=1,j 6=j∗(tcN )

S
(1)
i∗(scN )(j)S

(2)(j).

The latter lower bound is an infimum over a stochastic number of sums, and this number
is determined by the number of new extremes of the process (S̃(k), k ≥ 0) in the interval
[tcN , (t+δ)cN ]. We use the result from [65, Eq. (6)] that the expected number of new extremes
of the process (S̃(k), k ≥ 0) in the interval [tcN , (t + δ)cN ] equals

∑b(t+δ)cN c
j=btcN c

1/j N→∞−→
log((t+ δ)/t). Therefore, we can conclude that the number of different instances of i∗(scN )
when s ∈ [t, t + δ] is asymptotically finite, with probability converging to 1. Therefore, we
have that

P
((
− µt−

infs∈[t,t+δ]
∑btcN c

j=1,j 6=j∗(tcN ) S
(1)
i∗(scN )(j)S

(2)(j)
cN

+
∑b(t+δ)cN c

j=1 A(j)
cN

)
>
ε

2

)
≤ P

(
# new extremes of

(
S̃(scN ), s ≥ 0

)
in [t, t+ δ] ≥

⌈
1
δ2

⌉)
(5.4.25)
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+ P
((
− µt−

infs∈[t,t+δ]
∑btcN c

j=1,j 6=j∗(tcN ) S
(1)
i∗(scN )(j)S

(2)(j)
cN

+
∑b(t+δ)cN c

j=1 A(j)
cN

)
>
ε

2 ,

# new extremes of
(
S̃(scN ), s ≥ 0

)
in [t, t+ δ] <

⌈
1
δ2

⌉)
.

(5.4.26)

We can bound the term in (5.4.25) by using Markov’s inequality:

lim sup
N→∞

P

(
# new extremes of

(
S̃(scN ), s ≥ 0

)
in [t, t+ δ] ≥

⌈
1
δ2

⌉)
≤ δ2 log

(
t+ δ

t

)
.

For the term in (5.4.26) we can apply the union bound and get

P
((
− µt−

infs∈[t,t+δ]
∑btcN c

j=1,j 6=j∗(tcN ) S
(1)
i∗(scN )(j)S

(2)(j)
cN

+
∑b(t+δ)cN c

j=1 A(j)
cN

)
>
ε

2 ,

# new extremes of
(
S̃(scN ), s ≥ 0

)
in [t, t+ δ] <

⌈
1
δ2

⌉)
≤ P
((
− µt−

mini≤d1/δ2e
∑btcN c

j=1,j 6=j∗(tcN ) S
(1)
i (j)S(2)(j)

cN
+
∑b(t+δ)cN c

j=1 A(j)
cN

)
>
ε

2

)
≤
⌈

1
δ2

⌉
P
((
− µt−

∑btcN c
j=1,j 6=j∗(tcN ) S

(1)
i (j)S(2)(j)

cN
+
∑b(t+δ)cN c

j=1 A(j)
cN

)
>
ε

2

)
.

Obviously, the distribution of the random variables (S(2)(j), j ≤ btcNc, j 6= j∗(tcN )) depends
on the value of S(2)(j∗(tcN )), because we know that S(2)(j) ≤ S

(2)(j∗(tcN )) for j ≤ btcNc
and j 6= j∗(tcN ). Observe that for y < z,

P(S(2)(j) ≤ x | S(2)(j) ≤ y) ≥ P(S(2)(j) ≤ x | S(2)(j) ≤ z).

Now, we can choose xδ = (t/ log(1/δ3))1/β such that lim supN→∞ P
(
S̃(tcN ) ≤ xδcN/bN

)
=

δ3. Then, we can bound

P

((
− µt−

∑btcN c
j=1,j 6=j∗(tcN ) S

(1)
i (j)S(2)(j)

cN
+

∑b(t+δ)cN c
j=1 A(j)

cN

)
>
ε

2

)
≤ P

(
S̃(tcN ) ≤ xδ

cN

bN

)
+ P

(
S̃(tcN ) ≥ xδ

cN

bN

)
· P
((
− µt−

∑btcN c
j=1,j 6=j∗(tcN ) S

(1)
i (j)S(2)(j)

cN
+

∑b(t+δ)cN c
j=1 A(j)

cN

)
>
ε

2

∣∣∣∣S̃(tcN ) ≥ xδ
cN

bN

)
≤ δ3 + P

((
− µt−

∑btcN c
j=1,j 6=j∗(tcN ) S

(1)
i (j)S(2)(j)

cN
+

∑b(t+δ)cN c
j=1 A(j)

cN

)
>
ε

2

∣∣∣∣S̃(tcN ) = xδ
cN

bN

)
.
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Because E[S(2)(j) | S(2)(j) ≤ xδcN/bN ] N→∞−→ E[S(2)(j)], we get by the law of large numbers
that

− µt−

∑btcN c
j=1,j 6=j∗(tcN ) S

(1)
i (j)S(2)(j)

cN
+
∑b(t+δ)cN c

j=1 A(j)
cN

P−→ −µt− E[S(1)
i (j)S(2)(j)]t+ (t+ δ)E[A(j)] = E[A(j)]δ,

as N → ∞. Thus, we can conclude that when we take δ small enough compared to ε, the
expression in (5.4.24), and therefore also in (5.4.20), converge to 0 as N →∞.

For the term in (5.4.21), we have that

P

 sup
t∈[0,T ]

(
S̃(tcN )
cN/bN

− maxi≤N S(1)
i (j∗(tcN ))S̃(tcN )

cN

)
>
ε

2


≤ P

 sup
t∈[0,T ]

(
1− maxi≤N S(1)

i (btcNc)
bN

)
S̃(TcN )
cN/bN

>
ε

2

. (5.4.27)

This tail probability converges to 0 as N → ∞, since, we know that S̃(TcN )/(cN/bN )
converges in distribution to a Fréchet random variable as N → ∞, and supt∈[0,T ](1 −
maxi≤N S(1)

i (btcNc)/bN ) P−→ 0, as N →∞. To see this, we first bound

P

 sup
t∈[0,T ]

(
1− maxi≤N S(1)

i (btcNc)
bN

)
>
ε

2

 =P

(
inf

t∈[0,T ]

maxi≤N S(1)
i (btcNc)
bN

< 1− ε

2

)

≤bTcNcP

(
maxi≤N S(1)

i (1)
bN

< 1− ε

2

)
.

Now, we have that

P

(
maxi≤N S(1)

i (1)
bN

< 1− ε

2

)
≤ exp

−N P

(
S

(1)
i (1)
bN

> 1− ε

2

) ,

see the proof of [67, Thm. 5.4.4, p. 192]. Thus

bTcNcP

(
maxi≤N S(1)

i (1)
bN

< 1− ε

2

)
≤ bTcNc exp

−N P

(
S

(1)
i (1)
bN

> 1− ε

2

)
= bTcNc exp

(
−N exp(−(1 + o(1))(1− ε/2)α logN)

)
= bTcNc exp

(
−N1−(1+o(1))(1−ε/2)α

)
N→∞−→ 0.
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Hence, the upper bound in (5.4.27) converges to 0 as N → ∞. These results together give
that the tail probability in (5.4.19) converges to 0 as N →∞.

To prove the convergence result in (5.4.16), we are left with proving that the probability

P

 sup
t∈[0,T ]

(
maxi≤N Ri(tcN )

cN
−
(
S̃(tcN )
cN/bN

− µt
))

> ε

 (5.4.28)

converges to 0 as N →∞. In order to do so, we have η > 0 and use the upper bound

P

 sup
t∈[0,T ]

(
maxi≤N Ri(tcN )

cN
−
(
S̃(tcN )
cN/bN

− µt
))

> ε


≤ sup
t∈[0,T ]

1
δ
P

(
sup

s∈[t,t+δ]

(
maxi≤N

∑bscN c
j=1 (S(1)

i (j)1(S(1)
i (j) < (1 + η)1−αb1−αN )S(2)(j)−A(j))

cN

+ µs

)
>
ε

2

)
(5.4.29)

+ P

(
sup

t∈[0,T ]

(
maxi≤N

∑btcN c
j=1 S

(1)
i (j)1(S(1)

i (j) ≥ (1 + η)1−αb1−αN )S(2)(j)

cN
−
S̃(tcN )
cN/bN

)
>
ε

2

)
,

(5.4.30)

with 0 < δ < 1. For the term in (5.4.29), we argue as follows:

sup
s∈[t,t+δ]

maxi≤N
∑bscN c

j=1 (S(1)
i (j)1(S(1)

i (j) < (1 + η)1−αb1−αN )S(2)(j)−A(j))
cN

+ µs


≤

maxi≤N
∑b(t+δ)cN c

j=1 S
(1)
i (j)1(S(1)

i (j) < (1 + η)1−αb1−αN )S(2)(j)−
∑btcN c

j=1 A(j)
cN

+µ(t+δ).

This last expression converges in probability to δE[A] as N → ∞, which follows from the
proof of Lemma 5.6. Therefore, the expression in (5.4.29) asymptotically vanishes by taking
δ small enough compared to ε. For the term in (5.4.30), we know from Lemma 5.6 thatmaxi≤N

∑bTcN c
j=1 S

(1)
i (j)1(S(1)

i (j) ≥ (1 + η)1−αb1−αN )
bN

− 1

 P−→ 0,

as N →∞. We also know from Lemma 5.6 that S̃(TcN )/(cN/bN ) converges in distribution
to XT as N →∞. Now, we can conclude from a similar proof as in Lemma 5.6 that

P

 sup
t∈[0,T ]

maxi≤N
∑btcN c

j=1 S
(1)
i (j)1(S(1)

i (j) ≥ (1 + η)1−αb1−αN )S(2)(j)

cN
−
S̃(tcN )
cN/bN

 >
ε

2





5.5 Process convergence of the longest waiting time in D[0, T ] 175

≤ P

 sup
t∈[0,T ]

maxi≤N
∑btcN c

j=1 S
(1)
i (j)1(S(1)

i (j) ≥ (1 + η)1−αb1−αN )

cN

S̃(tcN )
cN/bN

−
S̃(tcN )
cN/bN

 >
ε

2


≤ P


maxi≤N

∑bTcN c
j=1 S

(1)
i (j)1(S(1)

i (j) ≥ (1 + η)1−αb1−αN )

bN
− 1

 S̃(TcN )
cN/bN

>
ε

2


≤ P

maxi≤N
∑bTcN c

j=1 S
(1)
i (j)1(S(1)

i (j) ≥ (1 + η)1−αb1−αN )

bN
− 1 > η

+ P

(
S̃(TcN )
cN/bN

>
ε

2η

)
N→∞−→ P(XT > ε/(2η)) η↓0−→ 0.

The last bound holds due to the union bound: for random variables X and Y with Y ≥ 0 and
x, y > 0, we have that P(XY ≥ xy) ≤ P(X ≥ x) + P(Y ≥ y). Now that we have established
that the probabilities in (5.4.19) and (5.4.28) converge to 0 as N →∞, the result follows.

From the results in Lemmas 5.7 and 5.8, we can conclude that the convergence result
in (5.4.14) holds. Furthermore, by applying the continuous mapping theorem, Theorem 5.1
follows.

5.5. Process convergence of the longest waiting time in D[0, T ]

At this point, we have proven the convergence result of an auxiliary process whose marginals
are the same as the marginals of the longest waiting time. Now, we can extend these results
to prove convergence of the longest waiting time (maxi≤N Wi(tcN )/cN , t ∈ [0, T ]) to the
process (sups∈[0,t](X(s,t) − µ(t − s)), t ∈ [0, T ]) as N → ∞. We first show in Lemma 5.10
that the longest waiting time can be approximated by an auxiliary process, as we did in
Lemma 5.9, and then we prove the main result described in Theorem 5.2.

Lemma 5.10. For the sequences of random variables (Ri(l, k), i ≥ 1, k ≥ l ≥ 1) and
(S̃(l, k), k ≥ l ≥ 1) given in (5.2.15) and (5.2.28), we have for all T > 0 and ε > 0, that

P

 sup
t∈[0,T ]

∣∣∣∣∣ sup
s∈[0,t]

maxi≤N Ri(scN , tcN )
cN

− sup
s∈[0,t]

(
S̃(scN , tcN )
cN/bN

− µ(t− s)
)∣∣∣∣∣ > ε


N→∞−→ 0. (5.5.1)

Proof. As in Lemma 5.9, we first use that |X| = max(X,−X). Then, by applying the union
bound we get that P(|X| > x) ≤ P(X > x) + P(−X > x). Now, we have that

sup
t∈[0,T ]

(
sup
s∈[0,t]

maxi≤N Ri(scN , tcN )
cN

− sup
s∈[0,t]

(
S̃(scN , tcN )
cN/bN

− µ(t− s)
))
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≤ sup
t∈[0,T ]

sup
s∈[0,t]

(
maxi≤N Ri(scN , tcN )

cN
−
(
S̃(scN , tcN )
cN/bN

− µ(t− s)
))

.

Similarly,

sup
t∈[0,T ]

(
sup
s∈[0,t]

(
S̃(scN , tcN )
cN/bN

− µ(t− s)
)
− sup
s∈[0,t]

maxi≤N Ri(scN , tcN )
cN

)

≤ sup
t∈[0,T ]

sup
s∈[0,t]

((
S̃(scN , tcN )
cN/bN

− µ(t− s)
)
− maxi≤N Ri(scN , tcN )

cN

)
.

Therefore,

P

 sup
t∈[0,T ]

∣∣∣∣∣ sup
s∈[0,t]

maxi≤N Ri(scN , tcN )
cN

− sup
s∈[0,t]

(
S̃(scN , tcN )
cN/bN

− µ(t− s)
)∣∣∣∣∣ > ε


≤ 2P

 sup
t∈[0,T ]

sup
s∈[0,t]

∣∣∣∣∣maxi≤N Ri(scN , tcN )
cN

−
(
S̃(scN , tcN )
cN/bN

− µ(t− s)
)∣∣∣∣∣ > ε

.
Now, we use the same approach as in Lemma 5.9, with the somewhat different upper bound:

P

 sup
t∈[0,T ]

sup
s∈[0,t]

(
maxi≤N Ri(scN , tcN )

cN
−
(
S̃(scN , tcN )
cN/bN

− µ(t− s)
))

> ε

 ≤
sup

t∈[0,T ]
sup
s∈[0,t]

1
δ2 P

(
sup

r∈[t,t+δ]
sup

q∈[s−δ,s]

(
maxi≤N Ri(qcN , rcN )

cN
−
S̃(qcN , rcN )
cN/bN

+ µ(r − q)
)
> ε

)
.

(5.5.2)

Also,

P

 sup
t∈[0,T ]

sup
s∈[0,t]

(
−

maxi≤N Ri(scN , tcN )
cN

+
(
S̃(scN , tcN )
cN/bN

− µ(t− s)
))

> ε

 ≤
sup

t∈[0,T ]
sup
s∈[0,t]

1
δ2 P

(
sup

r∈[t,t+δ]
sup

q∈[s−δ,s]

(
−

maxi≤N Ri(qcN , rcN )
cN

+
S̃(qcN , rcN )
cN/bN

− µ(r − q)
)
> ε

)
.

(5.5.3)

We can use the same arguments as in the proof of Lemma 5.9. For the expression in (5.5.2),
we have by the subadditivity property of the sup operators that

sup
r∈[t,t+δ]

sup
q∈[s−δ,s]

(maxi≤N
∑brcN c

j=bqcN c
(S(1)
i (j)S(2)(j)−A(j))

cN
−
(
S̃(qcN , rcN )
cN/bN

− µ(r − q)
))

(5.5.4)
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≤ sup
r∈[t,t+δ]

sup
q∈[s−δ,s]

(maxi≤N
∑brcN c

j=bqcN c
(S(1)
i (j)1(S(1)

i (j) < (1 + η)1−αb1−αN )S(2)(j)−A(j))

cN

+ µ(r − q)
)

+ sup
r∈[t,t+δ]

sup
q∈[s−δ,s]

(maxi≤N
∑brcN c

j=bqcN c
S

(1)
i (j)1(S(1)

i (j) ≥ (1 + η)1−αb1−αN )S(2)(j)

cN

−
S̃(qcN , rcN )
cN/bN

)
.

Because the random variables S(1)
i (j), S(2)(j), and A(j) are positive, we can bound these

two expressions on the right-hand side in the same way as in Lemma 5.9, and thus remove
the two sup operators. For the first term on the right-hand side of (5.5.4), we have that

sup
r∈[t,t+δ]

sup
q∈[s−δ,s]

(maxi≤N
∑brcN c

j=bqcN c
(S(1)
i (j)1(S(1)

i (j) < (1 + η)1−αb1−αN )S(2)(j)−A(j))

cN

+ µ(r − q)
)

≤
maxi≤N

∑b(t+δ)cN c
j=b(s−δ)cN c

S
(1)
i (j)1(S(1)

i (j) < (1 + η)1−αb1−αN )S(2)(j)−
∑btcN c

j=bscN c
A(j)

cN

+ µ(t− s+ 2δ).

A similar analysis holds for the second term on the right-hand side of (5.5.4). Thus, by
following the same reasoning as in the proof of Lemma 5.9, we have that the term in (5.5.2)
converges to 0 when δ is small enough.

For the probability in (5.5.3), we also follow the same steps as in Lemma 5.9.

Proof of Theorem 5.2. We have proven in Lemma 5.10 that the longest waiting time can
be approximated with the process (sups∈[0,t](S̃(scN , tcN )/(cN/bN ) − µ(t − s)), t ∈ [0, T ]).
Therefore, in order to prove convergence of the longest waiting time to the process
(sups∈[0,t](X(s,t)−µ(t−s)), t ∈ [0, T ]) inD[0, T ], it suffices to prove convergence of the process
(sups∈[0,t](S̃(scN , tcN )/(cN/bN )−µ(t−s)), t ∈ [0, T ]) to the process (sups∈[0,t](X(s,t)−µ(t−
s)), t ∈ [0, T ]) in D[0, T ]. As in Lemma 5.8, we again check the conditions given in Lemma
5.4.

We start with proving the convergence of finite-dimensional distributions. To do this,
we show that the joint probabilities of these processes can be written as operations of
marginal probabilities, and therefore, convergence of finite-dimensional distributions follows
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from convergence of the one-dimensional distributions. Thus, we can write

P

(
sup

s∈[0,t1]
(X(s,t1) − µ(t1 − s)) < x1, sup

s∈[0,t2]
(X(s,t2) − µ(t2 − s)) < x2

)

= P

(
sup

s∈[0,t1]
(X(s,t1) + µs) < x1 + µt1

∣∣∣∣ sup
s∈[0,t2]

(X(s,t2) + µs) < x2 + µt2

)

· P

(
sup

s∈[0,t2]
(X(s,t2) + µs) < x2 + µt2

)
.

(5.5.5)

Now, we can further rewrite the event{
sup

s∈[0,t2]
(X(s,t2) + µs) < x2 + µt2

}
=
{

sup
s∈[0,t1]

(X(s,t1) + µs) < x2 + µt2
}
∩
{
X(t1,t2) + µt1 < x2 + µt2

}
∩
{

sup
s∈(t1,t2]

(X(s,t2) + µs) < x2 + µt2
}
.

Thus, when x2 + µt2 ≤ x1 + µt1, then

P

(
sup

s∈[0,t1]
(X(s,t1) + µs) < x1 + µt1

∣∣∣∣ sup
s∈[0,t2]

(X(s,t2) + µs) < x2 + µt2

)
= 1,

and when x2 + µt2 > x1 + µt1,

P

(
sup

s∈[0,t1]
(X(s,t1) + µs) < x1 + µt1

∣∣∣∣ sup
s∈[0,t2]

(X(s,t2) + µs) < x2 + µt2

)

=
P
(
sups∈[0,t1](X(s,t1) + µs) < x1 + µt1

)
P
(
sups∈[0,t1](X(s,t1) + µs) < x2 + µt2

) .
From now on, we focus on the case x2 + µt2 > x1 + µt1. The proof of the case x2 + µt2 ≤
x1 + µt1 is analogous. For the case x2 + µt2 > x1 + µt1, we have that

P

(
sup

s∈[0,t1]
(X(s,t1) − µ(t1 − s)) < x1, sup

s∈[0,t2]
(X(s,t2) − µ(t2 − s)) < x2

)

=
P
(
sups∈[0,t1](X(s,t1) − µ(t1 − s)) < x1

)
P
(
sups∈[0,t1](X(s,t1) − µ(t1 − s)) < x2 + µ(t2 − t1)

)
· P

(
sup

s∈[0,t2]
(X(s,t2) − µ(t2 − s)) < x2

)
.

(5.5.6)

Thus, we can write the joint probability in (5.5.5) as an operation of marginal probabilities.
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We can do the same for the process (sups∈[0,t]
(
S̃(scN , tcN )/(cN/bN )− µ(t− s)

)
, t ∈ [0, T ]);

P

(
sup

s∈[0,t1]

(
S̃(scN , t1cN )

cN/bN
− µ(t1 − s)

)
< x1, sup

s∈[0,t2]

(
S̃(scN , t2cN )

cN/bN
− µ(t2 − s)

)
< x2

)

=
P
(
sups∈[0,t1](S̃(scN , t1cN )/(cN/bN )− µ(t1 − s)) < x1

)
P
(
sups∈[0,t1](S̃(scN , t1cN )/(cN/bN )− µ(t1 − s)) < x2 + µ(t2 − t1)

)
· P

(
sup

s∈[0,t2]

(
S̃(scN , t2cN )

cN/bN
− µ(t2 − s)

)
< x2

)
.

(5.5.7)

By the same induction arguments as in Lemma 5.8, the same result holds for all finite-
dimensional distributions.

Using Lemma 5.8 and the decomposition of a joint probability into marginal probabilities,
we establish that the joint probability in (5.5.7) converges to the joint probability in (5.5.6)
as N → ∞. Analogous extensions hold for higher dimensional distributions. Hence, the
convergence of finite-dimensional distributions follows. To prove process convergence of
(sups∈[0,t]

(
S̃(scN , tcN )/(cN/bN )− µ(t− s)

)
, t ∈ [0, T ]), we show that the second and third

condition of Lemma 5.4 also hold. To establish that the second condition holds, we bound

P

∣∣∣∣∣ sup
s∈[0,T ]

(X(s,T ) − µ(T − s))− sup
s∈[0,T−δ]

(X(s,T−δ) − µ(T − δ − s))

∣∣∣∣∣ > ε


≤ P

(
sup

s∈[0,T ]
(X(s,T ) + µs)− sup

s∈[0,T−δ]
(X(s,T−δ) + µs) + µδ > ε

)
.

Now, we can further bound this as follows:

sup
s∈[0,T ]

(X(s,T ) + µs)− sup
s∈[0,T−δ]

(X(s,T−δ) + µs) + µδ

= max

(
sup

s∈[0,T−δ]
(X(s,T ) + µs), sup

s∈[T−δ,T ]
(X(s,T ) + µs)

)
− sup
s∈[0,T−δ]

(X(s,T−δ) + µs) + µδ

≤ max

(
sup

s∈[0,T−δ]
(X(s,T ) −X(s,T−δ)), X(T−δ,T ) + µT − sup

s∈[0,T−δ]
(X(s,T−δ) + µs)

)
+ µδ

≤ max

(
sup

s∈[0,T−δ]
(X(s,T ) −X(s,T−δ)), X(T−δ,T ) + µT − µ(T − δ)

)
+ µδ

= X(T−δ,T ) + 2µδ. (5.5.8)
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We have that

P(X(T−δ,T ) + 2µδ > ε) = 1− exp
(
− δ

(ε− 2µδ)β

)
δ↓0−→ 0.

To establish that the third condition of Lemma 5.4 holds, we first observe that for r ≤ t∣∣∣∣∣ sup
u∈[0,t]

(
S̃(ucN , tcN )
cN/bN

− µ(t− u)
)
− sup
u∈[0,r]

(
S̃(ucN , rcN )
cN/bN

− µ(r − u)
)∣∣∣∣∣

≤ sup
u∈[0,t]

(
S̃(ucN , tcN )
cN/bN

+ µu

)
− sup
u∈[0,r]

(
S̃(ucN , rcN )
cN/bN

+ µu

)
+ µ(t− r).

Thus, due to the fact that for x, y > 0, min(x, y) ≤ (x+ y)/2, we have for r < s < t, that

min
(∣∣∣∣ sup

u∈[0,s]

(
S̃(ucN , scN )
cN/bN

− µ(s− u)
)
− sup
u∈[0,r]

(
S̃(ucN , rcN )
cN/bN

− µ(r − u)
)∣∣∣∣,∣∣∣∣ sup

u∈[0,t]

(
S̃(ucN , tcN )
cN/bN

− µ(t− u)
)
− sup
u∈[0,s]

(
S̃(ucN , scN )
cN/bN

− µ(s− u)
)∣∣∣∣)

≤ 1
2

∣∣∣∣ sup
u∈[0,s]

(
S̃(ucN , scN )
cN/bN

− µ(s− u)
)
− sup
u∈[0,r]

(
S̃(ucN , rcN )
cN/bN

− µ(r − u)
)∣∣∣∣

+ 1
2

∣∣∣∣ sup
u∈[0,t]

(
S̃(ucN , tcN )
cN/bN

− µ(t− u)
)
− sup
u∈[0,s]

(
S̃(ucN , scN )
cN/bN

− µ(s− u)
)∣∣∣∣

≤ 1
2

(
sup
u∈[0,t]

(
S̃(ucN , tcN )
cN/bN

+ µu

)
− sup
u∈[0,r]

(
S̃(ucN , rcN )
cN/bN

+ µu

)
+ µ(t− r)

)
.

For t− r < δ, we have by using the same bounds as in (5.5.8), that

1
2

(
sup
u∈[0,t]

(
S̃(ucN , tcN )
cN/bN

+ µu

)
− sup
u∈[0,r]

(
S̃(ucN , rcN )
cN/bN

+ µu

)
+ µ(t− r)

)
≤st.

1
2
S̃(δcN )
cN/bN

+ µδ.

By taking δ > 0 small enough, we see that the third condition of Lemma 5.4 holds. Thus, we
have process convergence of the longest waiting time to (sups∈[0,t](X(s,t)−µ(t−s)), t ∈ [0, T ]).

5.6. Steady-state convergence of the longest waiting time

Finally, we prove steady-state convergence of the longest of the N waiting times. We give
lower and upper bounds of P(maxi≤N Wi(∞) > xcN ) and show that these are asymptotically
sharp.

Proof of Theorem 5.3. To prove a sharp lower bound, we first use that maxi≤N Wi(∞) d=
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maxi≤N supk≥0
∑k

j=1(S(1)
i (j)S(2)(j)−A(j)); see Lemma 3.1. Thus, the longest steady-state

waiting time satisfies the lower bound

max
i≤N

Wi(∞) ≥st. max
i≤N

sup
0≤k≤l

k∑
j=1

(S(1)
i (j)S(2)(j)−A(j))

with l > 0. Thus, by using the convergence result in (5.2.17) in Theorem 5.1, we know that

lim inf
N→∞

P
(

max
i≤N

Wi(∞) > xcN

)
≥ lim
N→∞

P
(

max
i≤N

W̃i(McN ) > xcN

)
= P

(
sup

t∈[0,M ]
(Xt − µt) > x

)
M→∞−→ P

(
sup
t>0

(Xt − µt) > x

)
.

The last limit follows from the monotone convergence theorem. Thus, we have a tight lower
bound.

We now want to find a tight upper bound for the tail probability of the longest steady-
state waiting time. We have that

P
(

max
i≤N

Wi(∞) > xcN

)
= P

(
max
i≤N

sup
k≥0

Ri(k) > xcN

)

= P

(
max

(
max
i≤N

W̃i(McN ),max
i≤N

sup
t>M

Ri(tcN )
)
> xcN

)

≤ P
(

max
i≤N

W̃i(McN ) > xcN

)
+ P
(

max
i≤N

sup
t>M

Ri(tcN ) > xcN

)
. (5.6.1)

For the first term in (5.6.1), we obtain that

P
(

max
i≤N

W̃i(McN ) > xcN

)
N→∞−→ P

(
sup

t∈[0,M ]
(Xt − µt) > x

)
M→∞−→ 1− exp

(
− 1
µ(β − 1)xβ−1

)
.

Thus, we need to prove that the second term in (5.6.1) asymptotically vanishes whenN,M →
∞. Let Ŝ(1)

i (j) and Ŝ(2)(j) be independent copies of S(1)
i (j) and S(2)(j), respectively. Then

we can bound the second term in (5.6.1) as follows:

P
(

max
i≤N

sup
t>M

Ri(tcN ) > xcN

)
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= P

max
i≤N

Ri(McN ) + sup
k≥0

k∑
j=1

(Ŝ(1)
i (j)Ŝ(2)(j)− Â(j))

 > xcN


≤ P

max
i≤N

Ri(McN ) + max
i≤N

sup
k≥0

k∑
j=1

(Ŝ(1)
i (j)Ŝ(2)(j)− Â(j)) > xcN

 (5.6.2)

≤ P
(

max
i≤N

Ri(McN ) > −µ2McN

)
+ P
(

max
i≤N

sup
k≥0

k∑
j=1

(Ŝ(1)
i (j)Ŝ(2)(j)− Â(j)) >

(
x+ µ

2M
)
cN

)
.

(5.6.3)

The bound in (5.6.2) holds because maxi≤N (ai + bi) ≤ maxi≤N ai + maxi≤N bi, the bound
in (5.6.3) follows from the union bound. For the first term in (5.6.3), we have that

P
(

max
i≤N

Ri(McN ) > −µ2McN

)
N→∞−→ 1− exp

(
−M

(µM/2)β

)
M→∞−→ 0.

In order to analyze the second term in (5.6.3), we use the fact that E[S(1)
i (j)S(2)(j)−A(j)] =

−µ < 0. From this, it follows that there exists a γ > 1, such that E[S(1)
i (j)S(2)(j)] <

E[A(j)]/γ. We write γE[S(1)
i (j)S(2)(j)]− E[A(j)] = −µγ < 0. Then,

P

max
i≤N

sup
k≥0

k∑
j=1

(Ŝ(1)
i (j)Ŝ(2)(j)− Â(j)) >

(
x+ µ

2M
)
cN


≤ P

max
i≤N

sup
k∈[0,bcN c]

k∑
j=1

(Ŝ(1)
i (j)Ŝ(2)(j)− Â(j)) >

(
x+ µ

2M
)
cN


+
∞∑
n=0

P

max
i≤N

sup
k∈[bγncN c,bγn+1cN c]

k∑
j=1

(Ŝ(1)
i (j)Ŝ(2)(j)− Â(j)) >

(
x+ µ

2M
)
cN


≤ P

max
i≤N

sup
k∈[0,bcN c]

k∑
j=1

(Ŝ(1)
i (j)Ŝ(2)(j)− Â(j)) >

(
x+ µ

2M
)
cN


+
∞∑
n=0

P

max
i≤N

bγn+1cN c∑
j=1

Ŝ
(1)
i (j)Ŝ(2)(j)−

bγncN c∑
j=1

Â(j) >
(
x+ µ

2M
)
cN


N→∞−→ P

(
sup
t∈[0,1]

(Xt − µt) > x+ µ

2M

)
+
∞∑
n=0

(
1− exp

(
− γn+1

(x+ µM/2 + γnµγ)β

))
.

(5.6.4)



5.6 Steady-state convergence of the longest waiting time 183

It is clear that P(supt∈[0,1](Xt − µt) > x+ µM/2) M→∞−→ 0. The sum in (5.6.4) is finite and
also converges to 0 as M →∞, as the ratio test gives us that

lim
n→∞

(
1− exp

(
−γn+2/(x+ µM/2 + γn+1µγ)β

))(
1− exp

(
−γn+1/(x+ µM/2 + γnµγ)β

)) = 1
γβ−1 < 1.

Hence, we can choose for all ε > 0 a K large enough such that

∞∑
n=K

(
1− exp

(
− γn+1

(x+ µM/2 + γnµγ)β

))
< ε,

and it is obvious that
K∑
n=0

(
1− exp

(
− γn+1

(x+ µM/2 + γnµγ)β

))
M→∞−→ 0.

Thus, we can conclude that both terms in (5.6.4) converge to 0 asM →∞, and consequently,
both terms in (5.6.3) asymptotically vanish. Returning to the upper bound for the steady-
state tail probability of the longest waiting time given in (5.6.1), we can conclude that

lim sup
N→∞

P
(

max
i≤N

Wi(∞) > xcN

)
≤ P
(

sup
t>0

(Xt − µt) > x

)
.

We have proven process convergence of the maximum transient waiting time and we
have proven steady state convergence. The limiting processes have the form of a supremum
of Fréchet-distributed random variables with a negative drift. We now give an explicit
expression of the cumulative distribution function.

Proof of Proposition 5.1. To prove Equation (5.2.20), we provide sharp lower and upper
bounds of P(supt>0(Xt − µt) < x). First, let δ > 0. We have that

P(Xδ − µδ < x) = exp
(
− δ

(x+ µδ)β

)
.

Obviously, we can bound P
(
supt>0(Xt − µt) < x

)
from above as

P
(

sup
t>0

(Xt − µt) < x

)
< P
(
∩∞i=1Xiδ − µiδ < x

)
.

We can write X2δ = max(X̂δ, Xδ), with X̂δ an independent copy of Xδ. From this relation
we know that, if Xδ − δ < x, then X2δ − 2δ < x if and only if X̂δ − 2δ < x. Therefore,

P(Xδ − δ < x,X2δ − 2δ < x) = P(Xδ − δ < x, X̂δ − 2δ < x)
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= P(Xδ − δ < x)P(X̂δ − 2δ < x).

Thus, in general, the cumulative distribution function of supt>0(Xt − µt) is bounded from
above as

P
(

sup
t>0

(Xt − µt) < x

)
< P
(
∩∞i=1Xiδ − µiδ < x

)
=
∞∏
i=1

exp
(
− δ

(x+ µiδ)β

)
. (5.6.5)

We can find a lower bound as well. Because both Xt and µt are non-decreasing in t, we
know that sups∈((i−1)δ,iδ](Xs − µs) ≤ Xiδ − µ(i− 1)δ. Therefore,

P
(

sup
t>0

(Xt − µt) < x

)
= P

(
∩∞i=1 sup

s∈((i−1)δ,iδ]
(Xs − µs) < x

)
> P
(
∩∞i=1Xiδ − µ(i− 1)δ < x

)
.

With a similar derivation as before, we have that

P
(
∩∞i=1Xiδ − µ(i− 1)δ < x

)
=
∞∏
i=1

exp
(
− δ

(x+ µ(i− 1)δ)β

)
.

Now, we can rewrite this expression as

∞∏
i=0

exp
(
− δ

(x+ µiδ)β

)
= exp

− δ

(µδ)β

∞∑
i=0

1(
x/(µδ) + i

)β


= exp

(
− δ

(µδ)β ζ
(
β,

x

µδ

))
,

where ζ(β, x) is the Hurwitz zeta function [3, Eq. (1.10)]. We have that

lim
δ↓0

δ

(µδ)β ζ
(
β,

x

µδ

)
= 1
µ(β − 1)xβ−1 ,

which follows directly from [76, Thm. 2]. The same limit holds for the upper bound in
(5.6.5); thus Equation (5.2.20) follows.

The proof of Equation (5.2.21) is analogous and follows from the fact that

lim
δ↓0

δ

(µδ)β

bt/δc∑
i=0

1(
x/(µδ) + i

)β = lim
δ↓0

δ

(µδ)β
(
ζ
(
β,

x

µδ

)
− ζ
(
β,

x

µδ
+
⌊
t

δ

⌋
+ 1
))

= 1
µβ(β − 1)

(
1

(x/µ)β−1 −
1

(x/µ+ t)β−1

)
.
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5.7. Other results

In this section, we deviate from our original model and present some other results on heavy-
tailed parallel-server systems. The first result we derive is a convergence result of the longest
steady-state waiting time with i.i.d. regularly varying service times. In contrast to the fork-
join queue described in Section 5.2, the service times are mutually independent between the
different servers.

Proposition 5.2. Let (Si(j), i ≥ 1, j ≥ 1) be a sequence of i.i.d. regularly varying random
variables, i.e., P(Si(j) > x) = `(x)/xβ, with `(x) a slowly varying function. Moreover,
we assume that β > 1. We also define a slowly varying function ˜̀(x) which satisfies that
((xβ−1/`(x))←)∗ = ˜̀(x)x1/(β−1). Furthermore, let (A(j), j ≥ 1) be a sequence of i.i.d.
random variables with the property that A(j) and Si(k) are independent for all i, j, and k,
and E[Si(j)−A(j)] < 0. Then

P

max
i≤N

sup
k≥0

k∑
j=1

(Si(j)−A(j)) < x˜̀(N)N1/(β−1)


N→∞−→ exp

(
− 1
xβ−1E[A(1)− Si(1)](β − 1)

)
. (5.7.1)

Proof. Let ε > 0 such that E[Si(j) − (1 − ε)A(j)] < 0. Then, we have by the subadditivity
property of the sup operator that

max
i≤N

sup
k≥0

k∑
j=1

(Si(j)−A(j))

≤ max
i≤N

sup
k≥0

k∑
j=1

(Si(j)− (1− ε)E[A(j)]) + sup
k≥0

k∑
j=1

((1− ε)E[A(j)]−A(j)).

Following [38, Thm. 1] and [116, Thm. 7.6], we have that

P

sup
k≥0

k∑
j=1

(Si(j)− (1− ε)E[A(j)]) > x

 ∼ 1
E[(1− ε)A(1)− Si(1)](β − 1)xP

(
Si(1) > x

)
= 1

E[(1− ε)A(1)− Si(1)](β − 1)
`(x)
xβ−1 ,

as x→∞. From [132, Prop. 2.6 (v,vi,vii)] and [29, Thm. 1.5.12], we know that we can find a
slowly varying function ˜̀(x) such that ((xβ−1/`(x))←)∗ = ˜̀(x)x1/(β−1). From this, it follows
that

N P

sup
k≥0

k∑
j=1

(Si(j)− (1− ε)E[A(j)]) > x˜̀(N)N1/(β−1)
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N→∞−→ 1
xβ−1E[(1− ε)A(1)− Si(1)](β − 1) .

Therefore,

P

max
i≤N

sup
k≥0

k∑
j=1

(Si(j)− (1− ε)E[A(j)]) < x˜̀(N)N1/(β−1)


N→∞−→ exp

(
− 1
xβ−1E[(1− ε)A(1)− Si(1)](β − 1)

)
.

Furthermore, it is easy to see that

supk≥0
∑k

j=1((1− ε)E[A(j)]−A(j))
˜̀(N)N1/(β−1)

P−→ 0,

as N →∞. Now, we can conclude that

lim inf
N→∞

P

max
i≤N

sup
k≥0

k∑
j=1

(Si(j)−A(j)) < x˜̀(N)N1/(β−1)


≥ exp

(
− 1
xβ−1E[(1− ε)A(1)− Si(1)](β − 1)

)
ε↓0−→ exp

(
− 1
xβ−1E[A(1)− Si(1)](β − 1)

)
.

With a similar analysis, we see that the lower bound

max
i≤N

sup
k≥0

k∑
j=1

(Si(j)−A(j))

≥ max
i≤N

sup
k≥0

k∑
j=1

(Si(j)− (1 + ε)E[A(j)]) + inf
k≥0

k∑
j=1

((1 + ε)E[A(j)]−A(j))

is asymptotically sharp.

After replacing the common arrival sequence (A(j), j ≥ 1) in Proposition 5.2 with N i.i.d.
arrival sequences (Ai(j), i ≥ 1, j ≥ 1), the result still holds. We prove this in Proposition
5.3.

Proposition 5.3. Let (Si(j), i ≥ 1, j ≥ 1) be a sequence of i.i.d. regularly varying random
variables, i.e., P(Si(j) > x) = `(x)/xβ, with `(x) a slowly varying function. Moreover,
we assume that β > 1. We also define a slowly varying function ˜̀(x) which satisfies that
((xβ−1/`(x))←)∗ = ˜̀(x)x1/(β−1). Furthermore, let (Ai(j), i ≥ 1, j ≥ 1) be a sequence of i.i.d.
random variables with the property that Ai(j) and Sk(l) are independent for all i, j, k, and
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l, and E[Si(j)−Ai(j)] < 0. Then

P

max
i≤N

sup
k≥0

k∑
j=1

(Si(j)−Ai(j)) < x˜̀(N)N1/(β−1)


N→∞−→ exp

(
− 1
xβ−1E[Ai(1)− Si(1)](β − 1)

)
. (5.7.2)

Proof. Let ε > 0 such that E[Si(j)− (1− ε)Ai(j)] < 0. Then, we have by the subadditivity
property of the sup operator that

max
i≤N

sup
k≥0

k∑
j=1

(Si(j)−Ai(j))

≤ max
i≤N

sup
k≥0

k∑
j=1

(Si(j)− (1− ε)E[Ai(j)]) + max
i≤N

sup
k≥0

k∑
j=1

((1− ε)E[Ai(j)]−Ai(j)).

The analysis of the first term on the right-hand side is identical to the analysis in the proof
of Proposition 5.2.

For the second term on the right-hand side, we observe that the random variable (1 −
ε)E[Ai(j)]−Ai(j) is light-tailed. From Chapter 3, we know that maxi≤N supk≥0

∑k

j=1((1−
ε)E[Ai(j)]−Ai(j)) scales like logN . Thus,

maxi≤N supk≥0
∑k

j=1((1− ε)E[Ai(j)]−Ai(j))
˜̀(N)N1/(β−1)

P−→ 0,

as N →∞. With a similar analysis, we see that the lower bound

max
i≤N

sup
k≥0

k∑
j=1

(Si(j)−Ai(j))

≥ max
i≤N

sup
k≥0

k∑
j=1

(Si(j)− (1 + ε)E[Ai(j)]) + inf
k≥0

k∑
j=1

((1 + ε)E[Ai(j)]−Ai∗(j))

is asymptotically sharp, with i∗ satisfying supk≥0
∑k

j=1(Si∗(j) − (1 + ε)E[Ai(j)]) =
maxi≤N supk≥0

∑k

j=1(Si(j)− (1 + ε)E[Ai(j)]).





Chapter 6

Centralized optimization

6.1. Introduction

In this chapter, we consider the Brownian fork-join queue that we gave in Definition 4.1.
We examine different scenarios: we distinguish between stochastic and deterministic arrivals.
We use this fork-join queueing system to model key features of high-tech manufacturing. The
focus lies on a specific type of assembly system where many suppliers produce components
that need to be assembled into a final product. Due to delays, the system faces backorder
costs. The main question is how suppliers should balance between optimizing a base stock
of components and optimizing their production capacity in order to minimize the expected
total costs in the system. This is an important question, as in these high-tech assembly
systems, the total costs due to backorders are high [144]. This is also a non-trivial question,
as the number of suppliers is usually high [12, p. 53]. The results yield new insights into the
joint optimization of capacity and inventory for large-scale assembly systems.

We now provide a model description. We study an assembly system with N servers,
where N is large, and the amount of demand and the number of produced components are
deterministic with some random perturbation, which is assumed to be normally distributed.
Thus, the total delay for one supplier in steady state can be modeled by the all-time
supremum of a Brownian motion. We consider the model in which the manufacturer sends
orders to all suppliers at the same time. We can therefore model the system as a fork-join
queue. In such an assembly system, the total delay is determined by the slowest supplier,
since a final product can only be assembled when all components are finished. Thus, we
model the total delay with the maximum queue length in the fork-join queue.

Next, we give an overview of our results. When interarrival times are deterministic, the
cumulative distribution function of the maximum queue length has a complicated structure
due to the fact that N is large. We derive a simple approximation of this cumulative
distribution function using basic extreme-value results. In the case that interarrival times

This chapter is based on [107].

189



190 Chapter 6. Centralized optimization

are stochastic, the cumulative distribution function of the maximum queue length is not
known, due to the dependence among different queues. We therefore use the second-order
convergence result from Corollary 3.2 to estimate the longest queue, and we give a close-to-
optimal approximation of the expected total costs in the system using this approximation.
Thus, we obtain a base-stock level and a capacity that minimizes an approximation of the cost
function. In Theorems 6.1 and 6.2, we analyze the model with deterministic and stochastic
arrivals, respectively. In these theorems, we show how much the total costs under this
base-stock level and capacity differ from the minimal costs.

The work in this chapter generates new insights in fork-join queues that lead to new
analytical results for an important class of assembly systems: this chapter is the first to
consider simultaneous optimization of inventory and capacity in a multi-component assembly
system with dependent delays. Due to the dependencies in delays, evaluating such a system
with fixed capacity and inventory is already a difficult problem. One possible way to do this
would be to resort to simulation, but we will see in Section 6.4.2 that, due to dependencies,
simulating this system is hard. We provide several asymptotically optimal expressions for
capacity and inventory that are either in closed form or can easily be computed numerically.

Our results may help high-tech equipment manufacturers (OEMs) to optimally allocate
budget to capacity and inventory, to cost-efficiently ensure timely deliveries to their
customers. OEMs namely spend billions of dollars on spare component production capacity
and component inventories in the hope of guaranteeing a reliable production system [12].
However, despite decades of research in inventory management, the joint optimization of
production capacity and inventory remains a challenge [34], and there is a lack of analytical
results that may aid OEMs in analyzing the crucial trade-offs that underlie the outcome of
their investments. Indeed, while the topic has increasingly been studied, see for example
[131], the focus of analysis has been on problems with a single component. We consider
the much more common situation of assembling a system from many components, and we
aim to choose capacity and inventory levels that minimize the sum of holding, capacity, and
backorder costs.

We explore repercussions of our results for OEMs, for example Airbus and ASML.
The production system of these OEMs consists of roughly two stages: 1) Component
production; and 2) assembly/integration of components. This setup is crucial to enable
the modular design, production and testing of components, and substantial value is added in
both stages. For these reasons system integration is only initiated after customers have
committed to purchasing the system. We consider a manufacturing system in which a
manufacturer assembles a final product from N common components, where N is a large
number, meaning that all components are required whenever a product is assembled. Each
component is produced on a single production line that involves highly skilled staff and
specialized equipment. In anticipation of uncertain demand, an inventory buffer is built up:
production continues until a target inventory position is reached, after which production is
switched off until the inventory position drops below this target. Such base-stock policies
are widely used for modeling component inventories, e.g. [6, 30, 77]. Also in a high-tech
manufacturing environment, where capacity mainly refers to people working in cleanrooms
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that can be at work or have a day off instead of expensive machines with high start-up costs,
such policies are suitable. Despite these inventory buffers, random delays may occur in the
production process for each of the components.

6.1.1 Literature review

Simultaneous optimization of capacity and inventory is an important problem in supply chain
management, but the literature on this topic is limited due to the complexity of the problem
[34]. Considering the interaction between a manufacturer and a single supplier, Chaturvedi
and Martínez-de-Albéniz [36] discuss the trade-off between inventory and capacity and
how properly diversifying supply sources can reduce inventory and capacity investments.
Sleptchenko et al. [143] study simultaneous optimization of spare-part inventory and repair
capacity. In the last decade, simultaneous optimization of capacity and inventory in a single
supplier-manufacturer relationship has been studied increasingly, cf. [130, 131]. Reed and
Zhang [131] show that the square-root staffing rule of [69] is a valuable tool in optimizing
inventory and capacity in a multi-server make-to-stock queue. Altendorfer and Minner [7]
study simultaneous optimization of inventory and planned lead-time and [106] study the joint
optimization of inventory and temporarily available additional capacity. Our work differs
fundamentally from these studies, as we consider the assembly of multiple components that
face the same (stochastic) demand.

The literature concerning simultaneous optimization of capacity and inventory in single-
sourced assembly (or assembly-to-order) systems with multiple components is also limited.
Zou et al. [160] study how supply chain efficiency can be increased by synchronizing
processing times and delivery quantities. Pan and So [121] consider the simultaneous
optimization of component prices and production quantities in a two-supplier setting where
one supplier has uncertainty in the yield. Our main contribution compared to the work of
[160] and [121] is that we provide approximations of the optimal capacity and base-stock
levels that only require two moments.

Our work is related to [63], who provides approximations for setting base-stock levels in
single-stage and multi-stage systems that are asymptotically exact as the target service level
or the backorder penalty becomes large. For single-product-lost-sales inventory systems
under periodic review, Huh et al. [73] show that order-up-to policies are asymptotically
optimal when the lost-sales penalty is large compared to the holding cost. Bijvank et
al. [27] show the robustness of this result when using the optimal base-stock levels of the
corresponding backorder system instead of those of the lost-sales system. The asymptotic
analysis in this chapter has also been influenced by related problems for queues with many
servers, inspired by agent staffing problems in call centers; we refer to [33, 61] and [95] for
background.

We use the Brownian fork-join queue to model delays in large-scale assembly systems.
Brownian motion models are common in the literature on inventory control. Optimal control
of inventory that can be described by a Brownian motion is described in [72, Par. 7], in which
optimality conditions for both discounted and average cost criteria are provided. Closely
related to our work is the Brownian motion model presented in [34, Par. 3] to study the
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trade-off between capacity and inventory. They provide closed-form approximations to the
optimal capacity and base-stock levels in a system with a single item. We consider an
assembly system in which multiple components are merged into one end-product. This is
an essential difference, since in our model inventory does not only buffer against uncertain
demand, but a component may also need to be stored when other components are not yet
available.

6.1.2 Overview of results

Now, we give an overview of the results that we obtained in this chapter. First, we
investigate a base model, in which arrivals are not stochastic. Thus, we analyze a fork-
join queue with a deterministic arrival stream. Extremes for this network as N → ∞
are obtained using extreme-value theory. Based on those results, in Section 6.3 we derive
easy-to-calculate expressions for capacity and inventory that are asymptotically optimal as
the number of components grows large. We provide order bounds between the costs under
optimal and approximate inventory and capacity. In particular, inspired by the literature on
call centers [33, 61, 95], we distinguish three regimes, which depend on the growth rates of
cost parameters and are determined by the probability γN of not having enough inventory.
Given that γN → γ, we say that the regime is balanced if γ ∈ (0, 1). We are in the quality-
driven regime if γ = 0 and in the efficiency-driven regime if γ = 1. For the base model, we
establish asymptotic cost optimality in all three regimes. For the balanced, quality-driven,
and efficiency-driven regimes, we have convergence rates of 1/(N logN), γN/(N log(N/γN ))
and 1/ logN respectively.

Next, we analyze the model in which arrivals are stochastic. In Section 6.4, we assume
that the cumulative stochastic demand for systems is modeled by a Brownian motion; see
[34] for a single-component manufacturing system. This implies that the demand over any
finite time period is a normal variable, which is a standard assumption in literature, cf.
[15, 85]. In high-tech manufacturing, normally distributed demand is a suitable assumption,
especially when considering longer time periods, but it is also a reasonable approximation
for shorter periods. As a consequence of these demand variations, component delays become
dependent, since they face the same stochastic demands from system assembly. The question
is now how this affects the maximum delay as the number of queues/components N → ∞.
We use the second-order convergence results that we derived in Corollary 3.2 in Chapter 3
as an approximation, and we especially use the convergence result in (3.2.8). This implies
that, with proper scaling of holding and backorder costs, the optimal inventory for stochastic
demand converges to a scaled version of the quantile function of the normal distribution,
while this quantile function also appears in the limit of the optimal capacity.

Further, we test the validity of the approximation from Corollary 3.2 in Chapter 3
through simulations. In Section 6.4.2, numerical experiments show that we typically are
most of the times 10% off the optimum (e.g., when N is in the range from 10 to 100);
see Tables 6.6 and 6.7. Naturally, the difference goes to 0 as N → ∞; see Theorem 6.2.
We give an improvement of this approximation by combining our results for deterministic
demand and stochastic demand. Based on this approximation, we optimize the capacity



6.2 Model 193

and inventory decisions and we test the quality of these approximations through numerical
experiments. It turns out that these approximations perform well already when considering
a limited number of components, and are typically less than 2% off the optimum.

The remainder of this chapter is organized as follows. We introduce the general
mathematical model in Section 6.2.1. As we distinguish between two cases; deterministic and
stochastic arrivals, we first present general results that hold for both cases in Section 6.2.2.
We study the assembly system with deterministic demand in Section 6.3. We provide explicit
expressions and approximations for optimal inventory and capacity. The stochastic demand
case, with solutions to the minimization problem and convergence results, is studied in more
detail in Section 6.4. A refinement of the approximations from Section 6.4 is provided in
Section 6.5, where we combine the lessons learned in Sections 6.3 and 6.4 to obtain better
approximations for optimal capacity and inventory. In Section 6.6, we briefly touch upon
the case of asymmetric systems and demonstrate that even in these settings our result for
symmetric systems remains useful. We give a summary and conclusions in Section 6.7.

6.2. Model

In Section 6.2.1, we first define in Definition 6.1 the queueing process that models the delays
in a high-tech assembly system. We then define the variables denoting the base-stock levels
and the capacities, and the total inventory per server in steady state. We do this in Definition
6.2. In Definition 6.3, we present the resulting cost function. This cost function depends on
the holding and backorder costs per item. In this chapter, we assume that these costs per item
are the same for each server and can depend on N . These costs per item are given by hN and
bN , and we show that the asymptotic behavior of the ratioNhN/(NhN+bN ) determines three
possible regimes. We therefore define a sequence (γN , N ≥ 1) with γN = NhN/(NhN + bN ).

In Section 6.2.2, we present results on this cost function which hold for the system with
deterministic and stochastic arrivals. We show in Lemmas 6.1 and 6.2 that the complexity
of the minimization problem can be significantly reduced. Furthermore, we give expressions
of the optimal base-stock levels, capacities, and optimal costs in Lemmas 6.3 and 6.4.
In Lemmas 6.5 and 6.6 and in Corollary 6.1, we derive first-order approximations of the
maximum steady-state queue length and apply these to give approximations of the optimal
costs in the system.

6.2.1 Cost function

We examine the Brownian fork-join queue as defined in Definition 4.1. In Chapter 4, we
considered the Brownian fork-join queue with a fixed σA > 0. In this chapter, we distinguish
between the case σA = 0 and σA > 0. Therefore, we give a similar notation for the queue
lengths per server and the maximum steady-state queue length as in Definition 4.1. Contrary
to Chapter 4, in this chapter, we only focus on steady-state behavior. Thus, we only give
the definition of the steady-state queue length.
Definition 6.1. The sequence (Bi, i ≤ N) is a sequence of i.i.d. Brownian motions with
standard deviation σ, (BA(t), t ≥ 0) is a Brownian motion with standard deviation σA,
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(Bi(t), t ≥ 0) and (BA(t), t ≥ 0) are mutually independent for all i, and the drift parameter
βi is positive, then the steady-state queue length in front of server i is given by

Qβi,σAi := sup
s>0

(Bi(s) +BA(s)− βis). (6.2.1)

In the case that σA = 0, Equation (6.2.1) reduces to

Qβi,0i := sup
s>0

(Bi(s)− βis).

In case that βi = β for all i ≤ N , we write the maximum queue steady-state queue length as

Q̄β,σAN := max
i≤N

Qβ,σAi . (6.2.2)

We use the fork-join queueing system given in Definition 6.1 to define a large-scale
assembly system.

Definition 6.2. We define the following quantities:

1. The parameter Ii is the base-stock level for server i.

2. The parameter βi is the capacity for server i.

3. The total inventory of server i in steady state is given by

Ii −Qβi,σAi + max
j≤N

(Qβj ,σAj − Ij)+. (6.2.3)

Furthermore, we define in Definition 6.3 the total costs due to having backorders, due to
having an inventory of components, and due to investing in capacity.

Definition 6.3. The sequences (hN , N ≥ 1) and (bN , N ≥ 1) denote the holding costs and
backorder costs per item, respectively, which may depend on N . Furthermore, the sequence
(γN , N ≥ 1) is defined as

γN := NhN
NhN + bN

. (6.2.4)

Given the steady-state queue lengths per server given in Definition 6.1, the base-stock levels
(Ii, i ≤ N) and capacities (βi, i ≤ N) given in Definition 6.2, we define the expected total
costs in the system; i.e., the sum of the expected holding, backorder, and capacity costs, as

N∑
i=1

hN E
[
Ii −Qβi,σAi + max

j≤N
(Qβj ,σAj − Ij)+

]
+ bN E

[
max
i≤N

(Qβi,σAi − Ii)+
]

+
N∑
i=1

βi.

(6.2.5)

The cost function CN (I, β) denotes the expected total holding and backorder costs in the
system when all servers have the same base-stock level I, and the same capacity β, and
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equals

CN (I, β) :=E

 N∑
i=1

[
hN (I −Qβ,σAi + (Q̄β,σAN − I)+)

]
+ bN (Q̄β,σAN − I)+


=E
[
NhN (I −Qβ,σAi ) + (NhN + bN )(Q̄β,σAN − I)+

]
.

(6.2.6)

Additionally, we write

CN (I) := CN (I, 1). (6.2.7)

Furthermore, we define the expected total costs in the system FN (I, β) when all servers have
the same base-stock level I, and the same capacity β, as

FN (I, β) := CN (I, β) + βN. (6.2.8)

The steady-state queue length given in (6.2.1) models the steady-state delays per supplier
in a high-tech assembly system. Demand is represented by the common arrival process of jobs
going to each server; each server, with independent, identical service processes, represents
production of a component. Furthermore, we assume that production capacity in every finite
time interval is normally distributed, meaning that cumulative production is a Brownian
motion with drift. The backorder of each component is represented by a queue of jobs that
have not been served yet.

After completion of a job, the finished component is stored in a warehouse. When all
servers have a finished component in their warehouse, the end-product can be assembled.
This system is visualized in Figure 1.4.

We look at this system in an equilibrium state, where the total backorder is determined
by the slowest supplier. We subsequently find a trade-off between investing in the base-
stock buffer and investing in capacity. To efficiently satisfy demand of the end-product, we
must decide how much capacity to establish for each component and how many finished
components to keep in inventory. Even though it is costly to establish capacity and to hold
inventory, not being able to satisfy demand gives rise to backorder costs. Therefore, we need
to find capacity and inventory levels that minimize the expected total costs.

The inventory of server i consists of two parts: first, the excess supply that works as
a buffer against uncertain demand; second, the committed inventory that consists of items
that are committed to realized demand but put aside because other components are not
yet available. I.e., the excess supply of server i is given by (Ii − Qβi,σAi )+, with Ii the
base-stock level of server i and Qβi,σAi the steady-state queue length. Moreover, the number
of backorders for server i is equal to (Qβi,σAi − Ii)+, since for Qβi,σAi ≤ Ii the shortage
is compensated by inventory Ii and only the part of Qβi,σAi exceeding Ii represents actual
backorders that cannot be satisfied. Since all components need to be available to assemble the
final product, the number of backorders in the system is equal to the number of backorders
of the component with the largest backlog and is thus given by maxj≤N (Qβj ,σAj − Ij)+.
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Therefore, the committed inventory of server i equals the number of backorders in the system
minus its own backlog and can be expressed as maxj≤N (Qβj ,σAj −Ij)+− (Qβi,σAi −Ii)+. The
total inventory of server i in steady state is thus given by

(Ii −Qβi,σAi )+ + max
j≤N

(Qβj ,σAj − Ij)+ − (Qβi,σAi − Ii)+,

which equals the expression in (6.2.3) in Definition 6.2.

Example 6.1. We give an example of the evolution over time of the inventory on hand, the
number of completed components, the number of components in service, and the number of
assembled products, given a common demand and independent service speeds.

Time Demand Q1 # finished 1 Inv. pos. 1 Q2 # finished 2 Inv. pos. 2 # assembl. prod.
0 0 0 0 2 0 0 2 0
1 1 1 0 1 1 0 1 1
2 0 1 0 1 0 1 2 0
3 2 3 0 0 2 0 1 1
4 0 3 0 0 0 2 3 0
5 0 2 1 0 0 0 2 1
6 0 0 2 2 0 0 2 0

Table 6.1 Fork-join queue with two servers, I = 2.

In Table 6.1, we see that at time 1 there is a demand of one product. As both servers have
two components in stock, this product is assembled immediately. Afterwards, both servers aim
to produce one component to get their target inventory. At time 3, there is a demand of two
products. Server 1 had only one component in stock while server 2 had two components
in stock. Therefore, one product is assembled. However, in order to assemble the other
product, server 1 needs to produce a component first. At time 4, server 2 has completed two
components; now it has three components in inventory, two components to reach the target
buffer, and one component, as there is an outstanding demand of one product, and server 1
has not produced its component yet. It is easy to see that the inventory on hand at any time
equals the expression in Equation (6.2.3).

The total inventory of server i in steady state is given by (6.2.3). As the holding cost
per item equals hN , the total expected holding cost in the system equals

N∑
i=1

hN E
[
Ii −Qβi,σAi + max

j≤N
(Qβj ,σAj − Ij)+

]
.

Furthermore, the number of backorders for server i is equal to (Qβi,σAi − Ii)+. Because the
delay for the manufacturer equals the delay of the slowest server, the number of backorders
for the manufacturer equals maxi≤N (Qβi,σAi − Ii)+. The backorder cost per item equals bN ,
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thus the expected backorder cost equals

bN E
[

max
i≤N

(Qβi,σAi − Ii)+
]
.

Finally, we assume that the capacity costs per server equals the drift term βi. Therefore,
the total capacity cost equals

∑N

i=1 βi. Now, the expected total cost in the system equals
the expression in (6.2.5).

When we simplify the problem and only allow the servers to choose the same capacity
βi = β and the same Ii = I for given β and I, then the expected total costs given in
(6.2.5) simplify to CN (I, β) + βN . In the centralized optimization problem, this expression
is minimized with respect to I and β. In Lemma 6.1, we show that it suffices to consider
symmetric solutions where both Ii and βi are constant in i when we consider the independent
random variables (Qβi,0i , i ≤ N), or when we consider the dependent random variables
(Qβ,σAi , i ≤ N); thus, we minimize over only one drift parameter. For these two cases, we
exploit the self-similarity property of Brownian motions, which makes it more convenient to
simplify CN (I, β). Due to the self-similarity of Brownian motion, we can write

βmax
i≤N

sup
s>0

(Bi(s)− βs) = βmax
i≤N

sup
t>0

(
Bi

(
t

β2

)
− β t

β2

)
d= max
i≤N

sup
t>0

(Bi(t)− t).

This means that Q̄β,0N

d= 1
β
Q̄1,0
N . Therefore, after rescaling the variable I, we can write

min
(I,β)

(
CN (I, β) + βN

)
= min

(I,β)

(
1
β
CN (Iβ, 1) + βN

)
= min

(I,β)

(
1
β
CN (I, 1) + βN

)
. (6.2.9)

In the last part of Equation (6.2.9), I has the interpretation of the base-stock level where
the net capacity β = 1. Therefore, from now on, the actual number of products in stock at
time 0 equals I/β. Similarly, the actual unsatisfied demands of component i equals Q1,0

i /β.
This allows us to write the cost function FN (I, β) in Definition 6.3 as

FN (I, β) = 1
β
CN (I) + βN.

6.2.2 General results

6.2.2.1 Simplifying the minimization problem

Our goal is to solve min(I,β) FN (I, β), focusing on the case where N is large. Before we focus
on this regime, we first derive some additional properties of this problem, which are valid for
each N . First, we show in Lemma 6.1 that we do not lose generality with our choice of the
same base-stock level I for all servers. Furthermore, we prove that when σA = 0, we also do
not lose generality with our choice of the same net capacity β for all servers.

Lemma 6.1. (i) In the case that σA = 0, when we minimize the expected total costs over N
base-stock levels and N capacities, we have that the minimizing base-stock levels are all the
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same, and that the minimizing capacities are all the same. Thus;

min
(I1...,IN ),(β1,...,βN )

N∑
i=1

E
[
hN (Ii −Qβi,0i ) + βi

]
+ (NhN + bN )E

[
max
j≤N

(Qβj ,0j − Ij)+
]

= min
(I,β)

E
[
NhN (I −Qβ,0i )

]
+ βN + (NhN + bN )E

[
max
j≤N

(Qβ,0j − I)+
]
.

(ii) In the case that σA > 0, when we minimize the expected total costs over N base-stock
levels and the same capacity for each server, we have that the minimizing base-stock levels
are all the same. Thus;

min
(I1,I2,...,IN ),β

N∑
i=1

E
[
hN (Ii −Qβ,σAi ) + β

]
+ (NhN + bN )E

[
max
j≤N

(Qβ,σAj − Ij)+
]

= min
(I,β)

E
[
NhN (I −Qβ,σAi )

]
+ βN + (NhN + bN )E

[
max
j≤N

(Qβ,σAj − I)+
]
.

In the proof of this lemma, we exploit the self-similarity property of Brownian motion.
The proofs of this section can be found in Section 6.8.1.

In the next lemma, we show that minimizing the total costs FN (I, β) over the base-stock
level I and capacity β can be simplified to two separate minimization problems; one in
which we only need to minimize over the base-stock level, and one in which we only need to
minimize over the capacity.

Lemma 6.2. Let (bN , N ≥ 1), (hN , N ≥ 1) be sequences such that hN > 0 and bN > 0 for all
N . Let (IN , βN ) minimize the expected total costs FN (I, β) given in Definition 6.3. Then the
optimal base-stock level IN minimizes CN (I) and the optimal βN minimizes 1

β
CN (IN )+βN .

Furthermore, the function CN (I) is convex with respect to I and the function 1
β
CN (I) + βN

is convex with respect to β.

6.2.2.2 Expressions for optimal quantities

Using Lemma 6.2, we can characterize the optimal net capacity and base-stock level. In
Lemma 6.3, we provide expressions for the optimal net capacity and costs in terms of the
optimal base-stock level, which is given in Lemma 6.4.

Lemma 6.3. Given I∗N = arg minI CN (I), minimizing FN (I, β) given in Definition 6.3

with respect to β yields β∗N =
√

CN (I∗
N

)
N

. Furthermore, the corresponding expected costs are
FN (I∗N , β∗N ) = 2Nβ∗N = 2

√
CN (I∗N )N .

The optimal value of I can be expressed as a quantile of the distribution of Q̄1,σA
N :

Lemma 6.4. The optimal base-stock level I∗N is the unique solution of

P(Q̄1,σA
N ≤ I∗N ) = 1− γN , (6.2.10)
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with γN given in (6.2.4).

6.2.2.3 First-order approximations

The main technical issue is that the distribution of this maximum is in general not very
tractable, as the random variable Q̄1,σA

N is a maximum of N dependent random variable.
Thus, solving Equation (6.2.10) is not possible when σA > 0. Therefore, we consider
approximations of this distribution using extreme-value theory, to analyze their quality if N
is large.

To explain our ideas, we mention the following first-order approximation of Q̄1,σA
N :

Lemma 6.5. The maximum queue length Q̄1,σA
N satisfies the first-order approximation

Q̄1,σA
N

logN
L1−→ σ2

2 ,

as N →∞.

This first-order approximation is valid regardless of whether σA = 0 or σA > 0. For
σA = 0, a proof is given in [123, Thm. 3.1, p. 888], and for σA > 0, the result trivially follows
from Lemma 3.3. In the subsequent two sections, we consider more refined extreme-value-
theory approximations covering both cases. It turns out that the second-order behavior of
the maximum is qualitatively different when σA becomes strictly positive. This has, in turn,
an impact on the structure of the optimal solution of our cost minimization problem when
N grows large.

To better understand this structure, we heuristically analyze the first-order approxima-
tion of the cost minimization problem and apply it to approximate I∗N and β∗N . First, we
use the approximation Q̄1,σA

N ≈ σ2

2 logN to write

CN (I) ≈ C̄N (I) = NhN

(
I − σ2 + σ2

A

2

)
+ (NhN + bN )

(
σ2

2 logN − I
)+

.

The optimal value ĪN for the associated first-order minimization problem minI C̄N (I) is
given by ĪN = σ2

2 logN , since bN > 0. Using this approximation, we see that CN (ĪN ) ≈

C̄N (ĪN ) = (1 + o(1))σ
2

2 NhN logN , β̄N =
√
C̄N (ĪN )/N = (1 + o(1))

√
σ2
2 hN logN , and

FN (ĪN , β̄N ) ≈ 2
√
N

√
σ2
2 NhN logN . These results can be made rigorous and the decision

rule ĪN can be shown to be asymptotically optimal, i.e., FN (ĪN , β̄N ) = FN (I∗N , β∗N )(1+o(1)).
To prove this, we need to specify how the cost parameters hN and bN scale with N . For
this, we consider three regimes. These regimes relate to the quantile 1−γN of Q̄1,0

N at which
I∗N attains its optimal solution, with γN given in (6.2.4). Assume that 1− γN converges to
a constant 1− γ. We classify the three regimes in a similar way as is done in the analysis of
large call centers; cf. [33]:

• we are in the balanced regime if γ ∈ (0, 1),
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• if γ = 0, for large systems, the inventory is always sufficiently high to ensure that the
manufacturer can assemble the end-product. We call this the quality-driven regime,

• finally, if γ = 1, inventories are much lower, and we call this the efficiency-driven
regime.

When we are in the balanced or efficiency-driven regime, we can prove how far the costs
under the first-order approximation are from the real optimal costs. This is established in
Lemma 6.6.

Lemma 6.6. Given that γN in (6.2.4), either satisfies γN = γ ∈ (0, 1) or γN
N→∞−→ 1, then

FN (I∗N , β∗N )
FN (ĪN , β̄N )

= 1− o(1).

In the next two sections, we carry out a more elaborate program using more refined
extreme-value estimates of Q̄1,0

N . This analysis gives sharper bounds than those given in
Lemma 6.6. In particular, in the following sections, we consider the minimization in two
distinct cases. First, in Section 6.3, we look at the case where demand is assumed to be
deterministic, such that σA = 0. Thereafter, in Section 6.4, we consider the stochastic
demand case. In the former case, we utilize existing results in extreme-value theory, while
the latter case requires the development of a novel limit theorem. Furthermore, we use the
result given in Corollary 6.1; this corollary shows how the ratio between the optimal costs
and approximate costs can be represented, when the approximate base-stock level and net
capacity are solutions to a minimization problem as well. This corollary follows trivially
from Lemma 6.3.

Corollary 6.1. Assume we have a function F̃N (I, β) : (0,∞) × (0,∞) → R. Furthermore,
assume that the function F̃N has the form

F̃N (I, β) = 1
β
C̃N (I) + βN,

where C̃N is a positive function with domain (0,∞). Moreover, assume that the minimum
value F̃N (ĨN , β̃N ) = 2Nβ̃N = 2

√
C̃N (ĨN )N , where ĨN and β̃N are minimizers, then

F (I∗N , β∗N )
F (ĨN , β̃N )

=
2
√
CN (I∗N )

√
C̃N (ĨN )

CN (ĨN ) + C̃N (ĨN )
.

6.3. The basic model: deterministic arrival stream

6.3.1 Solution and convergence of the minimization problem

We now analyze the minimization of the cost function described in Definition 6.3 for the
special case with σA = 0 representing deterministic demand. Although we can simplify the
minimization problem significantly, by using the self-similarity of Brownian motions and
by writing the minimization problem as two separate minimization problems, as shown in
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Lemma 6.2, the function FN still has a difficult form, since we have the expression Q̄1,0
N in

this function. In Lemma 6.7, we give the optimal base-stock level that minimizes the costs.
We assume that the holding and backorder costs per item (hN , N ≥ 1) and (bN , N ≥ 1) are
positive sequences, and we distinguish three cases. First, we consider the balanced regime
γN = NhN/(NhN + bN ) = γ ∈ (0, 1) for all N > 0. Second, we consider the quality-
driven regime, where γN

N→∞−→ 0. Finally, we investigate the efficiency-driven regime, where
γN

N→∞−→ 1. All proofs for this section can be found in Section 6.8.2. We present numerical
results for the three regimes in Section 6.3.2.

Lemma 6.7. Let Q1,0
i be given in Definition 6.1, with (Bi, 1 ≤ i ≤ N) independent Brownian

motions with mean 0 and variance σ2. Let (hN , N ≥ 1) and (bN , N ≥ 1) be positive
sequences. In order to minimize FN (I, β) given in Definition 6.3, the optimal base-stock
level I∗N satisfies,

I∗N = P−1
N (1− γN ) = σ2

2 log

(
1

1− (1− γN )
1
N

)
, (6.3.1)

with P−1
N the quantile function of P(Q̄1,0

N < x) and γN given in (6.2.4).

To get a better understanding of the limiting behavior of the solution to min(I,β) FN (I, β),
we would like to approximate the function FN . Since (Q1,0

i , i ≤ N) are independent and
exponentially distributed, we know by standard extreme-value theory [67, Thm. 1.2.1, p.
19] that 2

σ2 Q̄
1,0
N − logN d−→ G, as N → ∞, with G ∼ Gumbel. Therefore, for N large,

Q̄1,0
N

d
≈ σ2

2 G+ σ2

2 logN . We get a new minimization problem when we replace Q̄1,0
N with this

approximation σ2

2 G + σ2

2 logN . In Definition 6.4, we give the resulting function F̂N (I, β)
that is to be minimized.

Definition 6.4. The cost function ĈN (I) denotes the approximation of the cost function
CN (I) given in Definition 6.3, as we replace the random variable Q̄1,0

N in CN (I) with
σ2

2 G+ σ2

2 logN , where G follows a Gumbel distribution. The resulting approximation for the
backorder and holding costs satisfies

ĈN (I) := E

[
NhN

(
I −Q1,0

i

)
+
(
NhN + bN

)(
σ2

2 G+ σ2

2 logN − I
)+
]
. (6.3.2)

The approximation of the backorder, holding, and capacity costs in the system equals

F̂N (I, β) := 1
β
ĈN (I) + βN. (6.3.3)

In the remainder of this section, we investigate whether minimizing F̂N (I, β) results in
costs that are close to those when we minimize FN (I, β). Note that we write (I∗N , β∗N ) for
the minimizers of the cost function FN defined in Definition 6.3, and we write (ÎN , β̂N ) for
the minimizers of the cost function F̂N defined in Definition 6.4. Throughout this chapter,
we indicate second-order approximations by the ∧ symbol.
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In Proposition 6.1, we present the base-stock level that minimizes F̂N . This base-stock
level turns out to be a quantile of σ

2

2 G added to σ2

2 logN .

Proposition 6.1 (Approximation of the optimal base-stock level). Minimizing F̂N (I, β)
given in Definition 6.4, gives the solution (ÎN , β̂N , F̂N (ÎN , β̂N )), with

ÎN = σ2

2 logN − σ2

2 log
(
− log (1− γN )

)
, (6.3.4)

and

ĈN (ÎN ) = NhN

(
ÎN −

σ2

2

)
+ (NhN + bN )σ

2

2

(∫ ∞
− log(1−γN )

e−t

t
dt+ Γ + log

(
− log (1− γN )

))
, (6.3.5)

where Γ ≈ 0.577 is Euler’s constant and γN is given in (6.2.4).

Combining Equations (6.3.4) and (6.3.5) with the results in Lemma 6.3 gives the solution
(ÎN , β̂N , F̂N (ÎN , β̂N )).

We compare the costs under the optimal base-stock level and net capacity with the
costs under the approximate base-stock level and net capacity. We distinguish the balanced
regime, quality-driven regime, and efficiency-driven regime.

By using the results from Lemmas 6.11 and 6.12 in Section 6.8.2, we prove the order
bounds in the balanced, quality-driven, and efficiency-driven regime in Theorem 6.1. In the
efficiency-driven regime, we impose the additional condition γN < 1 − exp(−N) needed to
make sure that ÎN > 0. Namely, if we choose γN > 1− exp(−N), we get that ÎN < 0, which
is not feasible, because ÎN has the physical meaning of the number of items that need to be
stored.

Theorem 6.1 (Order bounds between the optimal and approximate costs). For (γN , N ≥ 1)
given in Definition 6.3, with γN = γ ∈ (0, 1), we have that

FN (I∗N , β∗N )
FN (ÎN , β̂N )

= 1−O(1/(N logN)). (6.3.6)

For (γN , N ≥ 1) given in Definition 6.3, with γN
N→∞−→ 0, we have that

FN (I∗N , β∗N )
FN (ÎN , β̂N )

= 1−O(γN/(N log(N/γN ))). (6.3.7)

For (γN , N ≥ 1) given in Definition 6.3, with γN
N→∞−→ 1 and γN < 1 − exp(−N), we have

that

FN (I∗N , β∗N )
FN (ÎN , β̂N )

= 1−O(1/ logN). (6.3.8)

Using the order bounds given in Theorem 6.1, we can establish for the three different
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regimes how FN (I∗N , β∗N ) scales with N as N becomes large.

Lemma 6.8. Given γN in (6.2.4), if γN = γ ∈ (0, 1) in the balanced regime, then

FN (I∗N , β∗N ) = 2
√
N

(
NhN

σ2

2
(
logN − log(− log(1− γ))− 1

)
+ (NhN + bN )σ

2

2 E
[(
G+ log(− log(1− γ))

)+]) 1
2

+O(
√
hN/

√
logN).

(6.3.9)

If γN
N→∞−→ 0 in the quality-driven regime, then

FN (I∗N , β∗N ) = 2
√
N

√
NhN

σ2

2
(
log(N/γN )− 1

)
+ (NhN + bN )σ

2

2 γN

+O(γN
√
hN/

√
log(N/γN )). (6.3.10)

Last, if γN
N→∞−→ 1 and γN < 1− exp(−N) in the efficiency-driven regime, then

FN (I∗N , β∗N ) = 2
√
N

√
NhN

σ2

2 (logN − 1) + bN
σ2

2 log(− log(1− γN ))

+O(N
√
hN/

√
logN). (6.3.11)

The results given in Theorem 6.1 and Lemma 6.8 are obtained by using the properties
stated in Lemmas 6.11 and 6.12. In Lemma 6.11, we show that we can write a Gumbel-
distributed random variable that is on the same probability space as Q̄1,0

N . This gives us a very
powerful result; namely, that Q̄1,0

N and GN are ordered and that their difference decreases as
Q̄1,0
N becomes large. Consequently, we obtain very sharp bounds on |CN (I∗N )−CN (ÎN )| and
|ĈN (ÎN )−CN (ÎN )| in Lemma 6.12 which leads to sharp results in Theorem 6.1 and Lemma
6.8.

6.3.2 Numerical experiments

We now provide some numerical results to illustrate the solutions to the minimization
problem and their characteristics discussed in Section 6.3.1. In all experiments, we let
σ = 1 and let N vary from 10 to 1000. The results for the balanced regime, quality-driven
regime, and efficiency-driven regime are given in Tables 6.2, 6.3, and 6.4, respectively. We
can observe that in all regimes the approximate solutions are close to the optimal solutions.
Most importantly, already for small N , the fraction of the costs corresponding to the optimal
solution over the costs corresponding to the approximate solution nearly equals 1.
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N I∗N β∗N FN (I∗N , β∗N ) ÎN β̂N FN (ÎN , β̂N )
(

1− FN (I∗N ,β
∗
N )

FN (ÎN ,β̂N )

)
N logN

10 1.35178 1.19648 23.9296 1.33455 1.19328 23.9315 0.001807
50 2.14273 1.49338 149.338 2.13927 1.49286 149.338 0.000379
100 2.48757 1.60499 320.997 2.48584 1.60475 320.997 0.000192
200 2.83328 1.70944 683.775 2.83242 1.70932 683.775 9.68 · 10−5

500 3.29091 1.8385 1838.5 3.29056 1.83846 1838.5 3.91 · 10−5

1000 3.63731 1.93044 3860.87 3.63713 1.93042 3860.87 1.97 · 10−5

Table 6.2 Balanced regime, hN = 1, bN = N such that γN = 1
2 .

N I∗N β∗N FN (I∗N , β∗N ) ÎN β̂N FN (ÎN , β̂N )
(

1− FN (I∗N ,β
∗
N )

FN (ÎN ,β̂N )

)
N
γN

log N
γN

10 2.32898 1.52962 30.5925 2.3266 1.52924 30.5925 0.000617
50 3.91708 1.97978 197.978 3.91698 1.97976 197.978 2.52 · 10−5

100 4.60768 2.14684 429.368 4.60766 2.14684 429.368 6.31162 · 10−6

200 5.29957 2.30221 920.886 5.29956 2.30221 920.886 1.21801 · 10−6

500 6.21511 2.49306 2493.06 6.21511 2.49306 2493.06 5.51467 · 10−6

1000 6.90801 2.62833 5256.66 6.90801 2.62833 5256.66 0.000176
Table 6.3 Quality-driven regime, hN = 1, bN = N2 such that γN = 1

1+N .

N I∗N β∗N FN (I∗N , β∗N ) ÎN β̂N FN (ÎN , β̂N )
(

1− FN (I∗N ,β
∗
N )

FN (ÎN ,β̂N )

)
logN

10 0.497572 3.12224 62.4448 0.386624 3.08439 62.4616 0.000797
50 0.965997 9.35451 935.451 0.927385 9.34122 935.452 8.65678 · 10−6

100 1.21527 14.4701 2894.02 1.19242 14.4615 2894.02 1.30518 · 10−6

200 1.48208 22.0864 8834.57 1.46889 22.0808 8834.57 2.20863 · 10−7

500 1.85348 38.0553 38055.3 1.84728 38.0521 38055.3 2.51171 · 10−8

1000 2.14443 56.945 113890 2.14098 56.9428 113890 5.30189 · 10−9

Table 6.4 Efficiency-driven regime, hN = N, bN = 1 such that γN = N2

N2+1 .

6.4. Stochastic demand

We now extend our framework to the case where demand is stochastic. This means that
stochasticity not only arises from the production process of the individual components but
also results from uncertain demands. Consequently, delays may no longer only be caused by
low production of a specific component, but may also occur when there is a sudden peak in
demand. Since all components need to be available to assemble the end-product and satisfy
demand, delays of the different components are now correlated. We use the same strategy
when demand is stochastic as in the basic model with deterministic demand. However, we can
no longer approximate the maximum queue length distribution with the Gumbel distribution.
From Corollary 3.2 in Chapter 3 it follows that for N large, Q̄1,σA

N ≈ σ2

2 logN+ σσA√
2

√
logNX

with X a standard normal random variable. Using this approximation, we obtain a new
minimization problem, in which we minimize F̂AN (I, β) as given in Definition 6.5 with respect
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to I and β.

Definition 6.5. The cost function ĈAN (I) denotes the approximation of the cost function
CN (I) given in Definition 6.3, as we replace the random variable Q̄1,σA

N in CN (I)
with σ2

2 logN + σσA√
2

√
logNX, where X follows a normal distribution. The resulting

approximation for the backorder and holding costs satisfies

ĈAN (I) = E

[
NhN

(
I −Q1,σA

i

)
+
(
NhN + bN

)(
σ2

2 logN + σσA√
2

√
logNX − I

)+
]
.

The approximation of the backorder, holding, and capacity costs in the system equals

F̂AN (I, β) = 1
β
ĈAN (I) + βN.

In Section 6.4.1, we elaborate on the solution and the convergence of the optimal value
of FN (I, β) with σA > 0.

6.4.1 Solution and convergence of the minimization problem

We can use the convergence result proven in Corollary 3.2 to prove asymptotics of the optimal

value of the function FN (I, β). Since
√

2β
σσA

Q̄
β,σA
N

−σ
2

2β logN√
logN

is a continuous random variable,
we know that its quantile function converges to the quantile function of a standard normal
random variable; see [148, Lem. 21.2, p. 305]. We can use this to derive asymptotics of the
minimization problem of FN .

Using PAN (z) as described in Definition 6.6, we can solve the minimization problem
min(I,β) FN (I, β), which yields the optimal base-stock level and net capacity given in Lemma
6.9. The proofs concerning the solution and subsequent convergence results are provided in
Section 6.8.3.

Definition 6.6. We define the cumulative distribution function of the rescaled maximum
queue length as

PAN (z) := P

( √
2

σσA

Q̄1,σA
N − σ2

2 logN
√

logN
≤ z

)
,

with Q̄1,σA
N given in Definition 6.1.

Lemma 6.9. Let (bN , N ≥ 1), (hN , N ≥ 1) be sequences such that hN > 0 and bN > 0
for all N , and γN given in (6.2.4). Let

(
βAN , I

A
N

)
minimize FN (I, β) given in Definition 6.3.

Then the optimal base-stock level IAN equals

IAN = σ2

2 logN + σσA√
2
PAN
−1 (1− γN )

√
logN. (6.4.1)

When we are in the balanced regime, we can approximate the minimization problem
given in Definition 6.5, using the convergence result in Corollary 3.2, and prove how far
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the approximate solution is from the optimal solution. This is done in Proposition 6.2 and
Theorem 6.2. In Lemma 6.10, we show how the optimal costs scale with N when we are in
the balanced regime. The proofs are given in Section 6.8.3.

Proposition 6.2. For (bN , N ≥ 1), (hN , N ≥ 1) and γN given in (6.2.4), the base-stock
level ÎAN minimizes the function F̂AN (I, β) given in Definition 6.5, and equals

ÎAN = σ2

2 logN + σσA√
2

√
logNΦ−1 (1− γN ) . (6.4.2)

Furthermore, the approximation of the backorder and holding cost equals

ĈAN (ÎAN )

= NhN

(
σ2

2 logN − σ2 + σ2
A

2

)
+ (NhN + bN )σσA

√
logNe− 1

2 Φ−1(1−γN )2

2
√
π

. (6.4.3)

Theorem 6.2 (Order bound between the optimal and approximate costs). We assume that
γN given in (6.2.4) satisfies γN = γ ∈ (0, 1). Then∣∣∣∣∣FN (IAN , βAN )

FN (ÎAN , β̂AN )
− 1

∣∣∣∣∣ = o

(
1√

logN

)
.

Lemma 6.10 (Balanced regime). We assume that γN given in (6.2.4) satisfies γN = γ ∈
(0, 1). Then the optimal base-stock level is given by

IAN = σ2

2 logN + σσA√
2

√
logNΦ−1 (1− γ) + o(

√
logN), (6.4.4)

and the optimal cost for the system is given by

FN (IAN , βAN ) = 2
√
N

√
ĈAN (ÎAN ) + o(N

√
hN ). (6.4.5)

The result in Lemma 6.10 only holds for the balanced regime; a natural question is thus
the performance of the system in the efficiency and the quality-driven regimes. As is shown
in Lemma 6.6, in the efficiency-driven regime, the first-order approximation ĪN = σ2

2 logN
gives that the ratio of the approximate costs and the optimal costs converge to 1. Thus, we
expect the approximation given in (6.4.2) will also satisfy this convergence result. In order
to determine whether this approximation also satisfies the order bound given in Theorem
6.2, further analysis is needed. The analysis we provide for the balanced regime heavily relies
on [148, Lem. 21.2, p. 305], which says that if YN

d−→ Y , then for γ ∈ (0, 1), P−1
YN

(γ) N→∞−→
P−1
Y (γ). This gives us the convergence result (6.4.4) of the inventory in the balanced regime.

In order to be able to prove a similar result for the efficiency-driven regime, we need an
improvement of [148, Lem. 21.2, p. 305] which also holds when γN

N→∞−→ 1.
However, for the quality-driven regime, this convergence result does not hold, because

we see in Lemma 6.8 that IAN ≈ σ2

2 log(N/γN ). In order to find a sharp order bound such as
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given in Theorem 6.2 we should resort to the analysis of tail asymptotics, which is beyond
the scope of this study.

6.4.2 Numerical experiments

In Section 6.4.1, we provided expressions to calculate the asymptotically optimal net capacity
and base-stock level. The question remains how large the number of components has to be for
these approximations to be of use. Therefore, we now examine the expected costs under both
the optimal net capacity and base-stock level and under these asymptotic approximations.
Since it is not straightforward to calculate E[(Q̄1,σA

N − I)+], as Q̄1,σA
N is a maximum of

dependent random variables, to evaluate the cost function given in Definition 6.3 we resort
to simulation. First, we explain the details of our simulation experiment, after which we
discuss the numerical results.

In our simulation, we aim to determine the maximum queue length Q̄1,σA
N . For this,

we use the algorithm proposed in [14, Par. 4.5], who describe an exact algorithm for
simulating a reflected Brownian motion at the grid points. At every grid point, we draw
normal random variables with the required drift and variance for the supply and demand
processes and update the maximum. We use a step size of 0.001 for the grid points. Since
we cannot simulate over an infinite horizon, we have to determine when to terminate the
simulation. The maximum value is expected to be attained at a time which is smaller than
t̂ = σ2+σ2

A
2

∑N

j=1
1
j
. To simulate well beyond this point, we run the simulation until t = 2t̂.

Using the above method to simulate Q̄1,σA
N , we can estimate PAN

−1(1−γN ) with PAN (z) as
described in Definition 6.6. To obtain a median-unbiased estimate of the quantile, we use the
approach suggested in [159, p. 982–983]. For this, we sample Q̄1,σA

N 100 times and randomly
choose between the observations (1−γN ) ·100 and (1−γN ) ·100+1, with weights depending
on the value of the fractile. Our estimate is equal to the median over 100 iterations. Once we
have our estimate of PAN

−1(1− γN ), we determine the value of the optimal base-stock level
as given in Equation (6.4.1). Using the optimal base-stock level we determine the optimal
net capacity given in Lemma 6.3. Since this also requires the expectation of (Q̄1,σA

N − I)+,
we determine this value by taking the average based on 10,000 simulations.

Next, we compare the costs under our asymptotic approximations of the net capacity and
base-stock level (provided in Proposition 6.2) to the costs under the optimal net capacity
and base-stock level obtained from the simulation. We again sample (Q̄1,σA

N − I)+ based on
10,000 new simulations and determine the costs of the different policies using cost function
FN (I, β).

The procedure described above is applicable for N in the order of hundreds. However,
it is close to impossible to provide a fast simulation for N in the order of thousands. Hence,
to give a useful approximation of the optimal capacity and base-stock level in these cases,
we need to use the limit we derived in Corollary 3.2.

In order to assess the performance of the approximations and their sensitivity to various
model parameters, we perform a full factorial experiment. In our experiment, we vary the
number of components, demand variability, and backorder costs. The setup of the experiment
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is given in Table 6.5. We set the holding costs per item hN = 1 and σ = 1 in all experiments.
In total, we have 24 instances. The results are given in Tables 6.6 and 6.7 with the backorder
costs per item bN = N and bN = 3N , respectively.

Parameter Values
Number of components N 10, 50, 100
Standard deviation of arrivals σA 0.1, 0.5, 0.75, 1
Backorder costs per item bN N , 3N

Table 6.5 Parameter settings for experiments

N σA IAN βAN FN (IAN , βAN ) ÎAN β̂AN FN (ÎAN , β̂AN )
(

1− FN (IAN ,β
A
N )

FN (ÎA
N
,β̂A
N

)

)
√

logN

10 0.1 1.327 1.1583 23.1894 1.151 0.855514 24.5143 0.0820
50 0.1 2.122 1.47611 147.534 1.956 1.25004 150.337 0.0369
100 0.1 2.455 1.58865 318.588 2.303 1.38516 322.994 0.0293
10 0.5 1.486 1.25448 25.333 1.151 0.976909 26.9363 0.0903
50 0.5 2.338 1.59412 159.934 1.956 1.3744 164.689 0.0571
100 0.5 2.715 1.71664 343.937 2.303 1.51094 352.91 0.0546
10 0.75 1.714 1.36908 27.191 1.151 1.00605 29.7614 0.1311
50 0.75 2.638 1.70591 171.443 1.956 1.41834 180.556 0.0998
100 0.75 2.980 1.83438 367.348 2.303 1.55865 383.319 0.0894
10 1 1.990 1.47358 29.8393 1.151 1.0037 34.6552 0.2109
50 1 3.006 1.84276 185.25 1.956 1.43941 201.314 0.1578
100 1 3.394 1.97602 393.668 2.303 1.58534 421.505 0.1417

Table 6.6 Comparison of costs approximate solution for hN = 1, bN = N

N σA IAN βAN FN (IAN , βAN ) ÎAN β̂AN FN (ÎAN , β̂AN )
(

1− FN (IAN ,β
A
N )

FN (ÎA
N
,β̂A
N

)

)
√

logN

10 0.1 1.726 1.31058 25.9539 1.224 0.884692 31.2239 0.2561
50 0.1 2.533 1.5931 159.026 2.050 1.27624 173.141 0.1612
100 0.1 2.883 1.69656 341.44 2.405 1.41084 367.575 0.1526
10 0.5 2.067 1.43331 28.3311 1.513 1.0992 31.2606 0.1422
50 0.5 2.987 1.74381 173.875 2.428 1.48993 183.166 0.1003
100 0.5 3.370 1.86469 371.779 2.814 1.62542 387.809 0.0887
10 0.75 2.449 1.57036 31.4004 1.694 1.18023 35.5139 0.1758
50 0.75 3.418 1.89842 190.571 2.664 1.58369 205.174 0.1408
100 0.75 3.899 2.01955 404.306 3.070 1.72277 429.58 0.1263
10 1 2.913 1.72878 34.6096 1.875 1.23092 40.7704 0.2293
50 1 4.158 2.06968 207.553 2.899 1.65341 230.281 0.1952
100 1 4.567 2.20696 439.681 3.326 1.79761 479.663 0.1789

Table 6.7 Comparison of costs approximate solution for hN = 1, bN = 3N

There are several important observations to be made from Table 6.6. First, we can
observe that for N = 10 the difference in costs between the simulated optimal solution and
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the asymptotic solution is around 10% for most cases, the case N = 10 and σA = 1 is an
outlier, where the difference is around 15%. As N increases to 50, the difference decreases.
Furthermore, the difference becomes larger when σ increases. In the last column, we verify
the convergence result from Theorem 6.2. We observe that the difference decreases as N
increases, and that increasing σA causes the difference to increase.

When we consider the results for bN = 3N given in Table 6.7, we observe that the
difference between the asymptotic and optimal costs is considerably higher than for bN = N .
Especially for N = 10, the difference is around 15% of the optimum, except for N = 10 and
σA = 0.1, where the difference is around 20%. However, for a larger number of components,
the difference is around 10% of the optimum. Interestingly, for the case σA = 1, the difference
between bN = N and bN = 3N is relatively small.

Overall, in most of our experiments, the difference between the costs under the optimal
base-stock level and net capacity and the costs under the approximations are around 10%.
Furthermore, we can conclude that for small variations in demand and low backorder costs,
the asymptotic approach performs well in terms of costs already for a reasonable number of
components. Also, the performance improves by increasing N . Finally, the performance of
the approximations highly depends on the backorder costs relative to the holding costs.

6.5. Mixed-behavior approximations

The numerical results in Section 6.4.2 show that the approximations are in most of the cases
around 10-15% off the optimal value. In this section, we show how we can further improve
the approximations.

Under deterministic demand and stochastic demand, the approximate problems are given
in Definition 6.4 and Definition 6.5. If σA is small, then we know that on the one hand,

Q̄1,σA
N

d
≈ σ2

2 G+ σ2

2 logN,

because Q1,σA
i and Q1,σA

j are only slightly correlated. But on the other hand,

Q̄1,σA
N

d
≈ σσA√

2

√
logNX + σ2

2 logN ≈ σ2

2 logN.

Since the Gumbel term is missing here, this could be the reason that this approximation
is not working well for small N . Thus, it could be beneficial to look at the combination of
these two approximations. Then, we have

Q̄1,σA
N

d
≈ σ2

2 logN + σσA√
2

√
logNX + σ2

2 G. (6.5.1)
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When we replace Q̄1,σA
N with Equation (6.5.1) in the minimization problem, we get

min
(I,β)

 1
β
E

[
NhN (I −Q1,σA

i ) + (NhN + bN )
(
σ2

2
logN +

σσA√
2

√
logNX +

σ2

2
G− I

)+ ]
+ βN

.
The optimal IMN satisfies P

(
σ2

2 logN + σσA√
2

√
logNX + σ2

2 G < IMN

)
= 1− γN . Thus,∫ ∞

−∞
exp
(
− exp

(
− 2
σ2

(
IMN −

σ2

2 logN − σσA√
2

√
logNx

)))
φ(x)dx = 1− γN . (6.5.2)

Now, IMN can be computed through standard numerical methods such as the bisection
method. Furthermore, the optimal net capacity βMN satisfies

βMN =

√
E
[
NhN (IMN −Q

1,σA
i ) + (NhN + bN )

(
σ2
2 logN + σσA√

2

√
logNX + σ2

2 G− I
M
N

)+
]

√
N

.

(6.5.3)
The relevant expectations in this symbolic expression can be computed numerically; see
Section 6.9 for details.

6.5.1 Numerical results for mixed-behavior approximations

Using the same simulation procedure as described in Section 6.4.2, we evaluate the
performance of these adjusted approximations. The results for the cases of hN = 1, bN = N

and hN = 1, bN = 3N are given in Tables 6.8 and 6.9, respectively.
From the simulation results, we can conclude that these adjusted approximations result

in costs that are much closer to the optimal costs, already for small N . When comparing the
last two columns, where the last column repeats the results from Section 6.4.2, we observe
that the mixed-behavior approximations show better convergence, also when σA is larger.
Furthermore, where we saw in Section 6.4.2 that the cost difference increased considerably
with the change in bN , we now do see an increase, but the difference is still small for a larger
value of bN . Therefore, we can conclude that these mixed-behavior approximations perform
well especially when demand variations are no more than 75% of the variations in component
production, even with a small number of components.
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N σA IMN βMN FN (IMN , βMN )
(

1− FN (IAN ,β
A
N )

FN (IM
N
,βM
N

)

)
√

logN
(

1− FN (IAN ,β
A
N )

FN (ÎA
N
,β̂A
N

)

)
√

logN

10 0.1 1.33785 1.1945 23.2022 0.000837 0.082011
50 0.1 2.14487 1.49567 147.567 0.000442 0.036877
100 0.1 2.49244 1.60808 318.638 0.000337 0.029273
10 0.5 1.38072 1.21129 25.4342 0.006038 0.090320
50 0.5 2.19829 1.53814 160.497 0.006938 0.057107
100 0.5 2.54871 1.65808 345.247 0.008143 0.054563
10 0.75 1.40013 1.2128 27.6956 0.027647 0.131055
50 0.75 2.216 1.56166 174.269 0.032074 0.099827
100 0.75 2.5656 1.68745 372.643 0.030493 0.089412
10 1 1.41255 1.19665 31.5428 0.081950 0.210871
50 1 2.22627 1.57136 192.722 0.076684 0.157827
100 1 2.57434 1.70384 407.343 0.072043 0.141724
Table 6.8 Comparison of costs convergence of the mixed-behavior approximation with the
second-order approximation for hN = 1, bN = N

N σA IMN βMN FN (IMN , βMN )
(

1− FN (IAN ,β
A
N )

FN (IM
N
,βM
N

)

)
√

logN
(

1− FN (IAN ,β
A
N )

FN (ÎA
N
,β̂A
N

)

)
√

logN

10 0.1 1.78238 1.34746 25.9965 0.002487 0.256113
50 0.1 2.59271 1.62088 159.162 0.001690 0.161243
100 0.1 2.94168 1.72533 341.49 0.000314 0.152581
10 0.5 1.94345 1.38309 28.3671 0.001926 0.142201
50 0.5 2.83775 1.68955 174.284 0.004642 0.100327
100 0.5 3.21861 1.8044 372.617 0.004826 0.088703
10 0.75 2.09429 1.41142 32.0055 0.028689 0.175760
50 0.75 3.04648 1.74512 193.854 0.033496 0.140773
100 0.75 3.44819 1.86761 410.624 0.033019 0.126256
10 1 2.25658 1.43095 36.5165 0.079240 0.229298
50 1 3.26538 1.79271 216.91 0.085321 0.195211
100 1 3.68765 1.92281 456.859 0.080689 0.178876
Table 6.9 Comparison of costs convergence of the mixed-behavior approximation with the
second-order approximation for hN = 1, bN = 3N

6.6. Analyzing asymmetric systems

So far in this chapter, we have derived several new, analytic results for joint capacity and
inventory optimization for large-scale, symmetric assembly systems. In this section, we
provide an informal discussion of the application of such results in asymmetric settings.

For ease of exposition, consider a case where different components have different holding
costs — for other parameters, our assumptions remain in place. In practical settings,
component prices might range from a few thousand euros to hundreds of thousands of
euros. Companies seeking to apply advanced methods for optimizing capacity and inventory
investments typically focus on the most expensive components: for inexpensive components
some coarse heuristics suffice.
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Suppose the company seeks to derive separate safety stock and capacity rules for two
groups of components: expensive and very expensive components. This yields k = 2 groups
of components. We seek to apply our results on extremes as the total number of components
N in these two groups grows large; we keep k and the ratio of components in the two groups
fixed. Also, since we seek to derive rules at the group-level, and following Lemma 6.1, it
makes sense to assume symmetry within groups, i.e., by averaging cost parameters within
the groups. For example, consider the following: N/2 servers have a holding cost h(1)

N per
item and N/2 servers have a holding cost h(2)

N per item. Then, we need to minimize

N

2

(
h

(1)
N

1
β1

(
I1 −

σ2

2

)
+ β1

)
+ N

2

(
h

(2)
N

1
β2

(
I2 −

σ2

2

)
+ β2

)

+
(
N

2 h
(1)
N + N

2 h
(2)
N + bN

)
E

[
max

(
1
β1

max
i≤N/2

(Q1,0
i − I1), 1

β2
max

N/2+1≤i≤N
(Q1,0

i − I2)
)+
]
.

(6.6.1)

over (I1, I2, β1, β2). The expectation in (6.6.1) is an expectation of a maximum of N positive
random variables. Therefore, we can bound

E

[
max

(
1
β1

max
i≤N/2

(Q1,0
i − I1), 1

β2
max

N/2+1≤i≤N
(Q1,0

i − I2)
)+
]

≤ E
[

1
β1

max
i≤N/2

(Q1,0
i − I1)+

]
+ E
[

1
β2

max
i≤N/2

(Q1,0
i − I2)+

]
.

Therefore, the cost function in (6.6.1) can be bounded from above by

N

2

(
h

(1)
N

1
β1

(
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)
+ β1
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(
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(6.6.2)

+
(
N

2 h
(1)
N + N

2 h
(2)
N + bN

)(
E
[

1
β1

max
i≤N/2

(Q1,0
i − I1)+

]
+ E
[

1
β2

max
i≤N/2

(Q1,0
i − I2)+

])
.

(6.6.3)

Our analytic results enable us to minimize this upper bound; for instance, by choosing
h̃

(1,2)
N = h

(1,2)
N and b̃

(1,2)
N = N

2 h
(2,1)
N + bN , we can rewrite the upper bound in (6.6.2) as

follows:
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+ E
[

1
β2

max
i≤N/2
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= N
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(
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1
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)
+
(
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2 h̃
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E
[

1
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(Q1,0
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(2)
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(2)
N

)
E
[

1
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max
i≤N/2

(Q1,0
i − I2)+

]
.

This is the sum of two functions that can be minimized using the exact solutions that we
derived. In Table 6.10 we compare numerically the actual costs under the capacity and
base-stock level that are obtained by minimizing this upper bound with the costs under the
actual optimal capacity and base-stock level. In this table, the ratio indicates how many
servers have a holding cost h(1)

N per item, and how many servers have a holding cost h(2)
N

per item; the 1:1 ratio corresponds to the above example while the 1:3 ratio can be treated
similarly. The table demonstrates that our asymptotic results may be useful when optimizing
asymmetric systems as well as symmetric systems.

N h
(1)
N h

(2)
N Ratio bN Optimal Heuristic Diff.

10 1 10 1:1 10 42.3 ± 0.1 42.9 ± 0.1 0.14 %
100 1 10 1:1 100 615.6 ± 1.2 617.4 ± 1.0 0.3 %
1000 1 10 1:1 1000 7597.9 ± 8.2 7643.0 ± 7.8 0.6 %
10 10 100 1:1 1 126.0 ± 0.4 127.0 ± 0.4 0.7 %
100 100 1000 1:1 1 5967±10.9 6002 ± 9.6 0.6 %
1000 1000 10000 1:1 1 236063 ± 256 236402± 233 0.1 %
10 1 10 1:3 10 53.1±0.2 53.2 ± 0.2 0.2 %
100 1 10 1:3 100 770.5±1.3 772.9± 1.2 0.3 %
1000 1 10 1:3 1000 9551.1±10.7 9581.6± 9.5 0.3 %

Table 6.10 Comparison of optimal costs and costs under upper bound heuristic, σ = 1, σA = 0.

6.7. Summary of results

In this chapter, we defined a large-scale assembly system in which N components are
assembled into a final product. We studied an assembly system with linear demand and
production, subjected to some random noise. Thus, we imposed the natural assumption that
this noise is normally distributed. Hence, delays per component are written as an all-time
supremum of a Brownian motion minus a drift term. We aimed to minimize the expected
total costs in the system with respect to the inventory and net capacity per component.
The costs in the system consist of inventory holding costs for each component and penalty
costs for delay of assembling the final product, which is equal to the delay of the slowest
produced component. Before attempting to solve the minimization problem, we simplified
the minimization problem, using the self-similarity property of a Brownian motion, into two
separate minimization problems. We distinguished two cases: first, we covered the case of
deterministic demand, resulting in all delays being independent; second, we investigated the
case that demand is stochastic and consequently delays of the components are dependent.
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For the deterministic demand scenario, we proved order bounds for three different
regimes: balanced, quality driven, and efficiency driven. Additionally, we verified numerically
that already for a limited number of components, our approximations result in costs that
are very close to the costs corresponding to the optimal solution. For the stochastic demand
scenario, we developed a limit theorem that we use to obtain approximate solutions. We
showed numerically that even though theoretically these approximations perform well, for
practical situations there is still room for improvement. However, this limit theorem is still
necessary for systems with N of the order of thousands, because it is close to impossible to
simulate these systems fast. Therefore, we provided additional approximations for a mixed-
behavior regime, where we use a combination of the approximations for the deterministic
and stochastic demand scenarios. We demonstrated numerically that these approximations
perform very well already for a practical number of components.

Future work could extend the model to a decentralized minimization problem, where
suppliers have their own objectives, which results in an asymptotic analysis of a game
theoretical equilibrium, cf. [66, 91, 115].

6.8. Proofs

6.8.1 Proofs of Section 6.2

Proof of Lemma 6.1. In the independent case, we can write, by using the self-similarity
property of Brownian motions, that

N∑
i=1

E
[
hN (Ii −Qβi,0i ) + βi

]
+ (NhN + bN )E

[
max
j≤N
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]

=
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)
+ βi
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[
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]
.

We write ηi = 1/βi. Thus,
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E

[
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(
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1
βi
Q1,0
i

)
+ βi

]
+ (NhN + bN )E

[
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(
1
βj
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=
N∑
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hN (Ii − ηiQ1,0

i ) + 1
ηi

]
+ (NhN + bN )E

[
max
j≤N

(ηjQ1,0
j − Ij)

+
]
.

It is easy to see that
∑N

i=1 E
[
hN (Ii − ηiQ1,0

i ) + 1/ηi
]
is strictly convex with respect to

(η1, . . . , ηN , I1, . . . , IN ), with ηj , Ij > 0. In order to examine whether E[maxj≤N (ηjQ1,0
j −

Ij)+] is convex, we should prove convexity of ηjQ1,0
j −Ij , because taking the expectation of a

convex function and taking maxima of convex functions preserve convexity. Since ηjQ1,0
j −Ij
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is linear in both ηj and Ij , convexity holds. Now, we write

C = min
(I1,I2,...,IN ),(β1,β2,...,βN )

N∑
i=1

E
[
hN (Ii −Qβi,0i ) + βi

]
+ (NhN + bN )E

[
max
j≤N

(Qβj ,0j − Ij)+
]

with minimizers (β(l)
1 , . . . , β

(l)
N ) and (I(l)

1 , . . . , I
(l)
N ). Assume there exists i, j such that

β
(l)
i 6= β

(l)
j or I(l)

i 6= I
(l)
j . Then, because of the symmetry of the problem with respect

to the N servers, all the permutations of the minimizers give solutions. Assume there are k
permutations, where the l-th permutation has minimizers (β(l)

1 , . . . , β
(l)
N ) and (I(l)

1 , . . . , I
(l)
N ).

Now, define βi and Ii such that they satisfy 1/βi = 1
k

∑k

l=1 1/β(l)
i , and Ii = 1

k

∑k

l=1 I
(l)
i .

Because of the symmetry of the cost function around theN servers, we have that βi = βj = β,
and Ii = Ij = I. Since we have a strictly convex function with respect to Ii and 1/βi,

C ≥ E
[
NhN (I −Qβ,0i )

]
+ βN + (NhN + bN )E

[
max
j≤N

(Qβ,0j − I)+
]
.

Thus Ii = I, and βi = β are minimizers. An analogous derivation holds for the dependent
case where we only minimize over one drift parameter.

Remark 6.1. In the dependent case where all servers choose a different drift parameter,
we have that sups>0(Bi(s) + BA(s) − βis) = sups>0(B̂i(s) + B̂A(s) − s)/βi where
B̂i(s) = Bi(s/β2

i )βi and B̂A(s) = BA(s/β2
i )βi. However, E

[
BA(s/β2

i )βiBA(s/β2
j )βj

]
=

σ2
Aβiβjs/max(βi, βj)2 6= σ2

As when βi 6= βj. Thus, when we have different drift parameters
βi and βj, the joint distribution of sups>0(Bi(s) + BA(s) − βis) and sups>0(Bj(s) +
BA(s) − βjs) is not the same as the joint distribution of sups>0(Bi(s) + BA(s) − s)/βi
and sups>0(Bj(s) + BA(s) − s)/βj. So to prove Lemma 6.1 when the drifts are different,
other techniques are needed.

Remark 6.2. In the case that σi 6= σj, in the independent case, the cost function given in
Definition 6.3 can be simplified to

N∑
i=1

E

[
hN

1
β̃i

(
Ĩi −

1
2

)
+ σ2

i β̃i

]
+ (NhN + bN )E

[
max
j≤N

(Q1,0
j − Ĩj)

+

β̃j

]
,

where Ĩi = Ii
βi
σ2
i

, β̃i = βi
σ2
i

, and Q1,0
j

d= Exp(2), by again using the self-similarity property.
Due to the term σ2

i β̃i, we cannot reduce the system to a minimization problem with two
variables Ĩ and β̃, because the problem is not symmetric anymore in each term. Thus,
although the system is still strictly convex, for the minimizer we have that β̃i and β̃j are
not necessarily the same. As this formula shows, the servers with larger standard deviations
σi will cause more costs. What this formula also shows is that the problem with different
standard deviations σi is equivalent to the problem with the same standard deviations σ but
different capacity costs for each server.

Remark 6.3. In this chapter, we assume that capacity costs per supplier i equal the drift
term βi. One could extend this model to a system where the capacity costs per supplier is
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given by a function k(βi). In order to be able to conclude that we can reduce the complexity
from 2N to 2 variables, and to minimize the cost function, we need to have that k is a strictly
convex function with respect to 1/βi.

Proof of Lemma 6.2. We have that the function FN (I, β) > 0, hence FN has a global
infimum, and since limβ↓0 FN (I, β) =∞, limβ→∞ FN (I, β) =∞ and limI→∞ FN (I, β) =∞,
FN has a global minimum. Now, assume FN (IN , βN ) = min(I,β) FN (I, β). Assume that
there exists an ÎN such that

E[NhN (ÎN −Q1,σA
i + (Q̄1,σA

N − ÎN )+) + bN (Q̄1,σA
N − ÎN )+]

< E[NhN (IN −Q1,σA
i + (Q̄1,σA

N − IN )+) + bN (Q̄1,σA
N − IN )+].

Then FN (ÎN , βN ) < FN (IN , βN ). This contradicts the statement that (IN , βN ) gives the
minimum of FN . Hence, the optimal base-stock level minimizes CN (I). The proof that βN
minimizes 1

β
CN (IN ) + βN goes analogously.

To prove that CN (I) is convex with respect to I, we observe that
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N > x)dx

= (bN +NhN ) f(I) ≥ 0,

because f is the probability density function of Q̄1,σA
N . This density exists; see [41, Prop. 2a].

In conclusion, we have a convex minimization problem. Moreover, d2

dβ2

(
1
β
CN (IN ) + βN

)
=

2
β3CN (IN ) > 0. Thus 1

β
CN (IN ) + βN is also convex with respect to β.

Proof of Lemma 6.3. FN (I, β) has the form FN (I, β) = 1
β
CN (I) + βN . Thus, in order

to minimize FN (I∗N , β), we know by Lemma 6.2 that we need to solve d
dβ
FN (I∗N , β) =

− 1
β2CN (I∗N )+N = 0. Thus, β∗N =

√
CN (I∗

N
)

√
N

, and FN (I∗N , β∗N ) = 2
√
NCN (I∗N ) = 2Nβ∗N .

Proof of Lemma 6.4. To solve minI CN (I), we have to solve d
dI
CN (I) = 0. This gives for

the optimal base-stock level I∗N that

NhN − (NhN + bN )P(Q̄1,σA
N > I∗N ) = 0.

Hence, I∗N = P−1
N

(
bN

NhN+bN

)
, with P−1

N the quantile function of Q̄1,σA
N .

Proof of Lemma 6.6. Following Corollary 6.1, we have

FN (I∗N , β∗N )
FN (ĪN , β̄N )

=
2
√
CN (I∗N )

√
C̄N (ĪN )

CN (ĪN ) + C̄N (ĪN )
.
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Furthermore, observe that

E[Q̄1,σA
N ] ≥ E[max

i≤N
sup
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(Bi(s)− s) +BA(τ)] = σ2

2

N∑
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1
i
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2 logN,

where τ is the first hitting time of the supremum of maxi≤N (Bi(t)− t). From this, it follows
that for I < σ2

2 logN , σ2
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2 logN ,
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N − I)+]. In conclusion, CN (I) > C̄N (I). Therefore,
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We have |CN (I∗N )− CN (ĪN )| ≤ (2NhN + bN )|I∗N − ĪN |, and

|C̄N (ĪN )− CN (ĪN )| ≤ (NhN + bN )E
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N − σ2

2 logN
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.

In the case that γN = γ ∈ (0, 1), we have by applying Lemma 6.5 that |C̄N (ĪN )−CN (ĪN )| =
o((NhN + bN ) logN). Furthermore, CN (ĪN ) ∼ NhN

σ2

2 logN , and since Q̄1,σA
N / logN P−→

σ2/2, as N → ∞, we also have that I∗N/ logN N→∞−→ σ2/2. Thus, |CN (I∗N ) − CN (ĪN )| =
o((NhN + bN ) logN), and the lemma follows.
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N − σ2

2 logN
)+
]

≤NhN
(
σ2

2 logN − σ2 + σ2
A

2

)
+ (NhN + bN )E

[∣∣∣∣Q̄1,σA
N − σ2

2 logN
∣∣∣∣
]
.

Thus,

CN (ĪN )
NhN logN ≤

σ2

2 + o(1) + 1
γN

E
[∣∣∣Q̄1,σA

N − σ2

2 logN
∣∣∣]

logN .

By Lemma 6.5, we know that E
[∣∣∣Q̄1,σA

N − σ2

2 logN
∣∣∣]/ logN N→∞−→ 0. Thus

lim sup
N→∞

CN (ĪN )/(NhN logN) ≤ σ2/2.
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Finally,

CN (I∗N ) =NhN
(
I∗N −

σ2 + σ2
A

2

)
+ (NhN + bN )E

[(
Q̄1,σA
N − I∗N

)+
]

≥NhN
(
I∗N −

σ2 + σ2
A

2

)
+ (NhN + bN )E

[
Q̄1,σA
N − I∗N

]
≥−NhN

σ2 + σ2
A

2 + (NhN + bN )σ
2

2 logN − bNI∗N .

The optimal base-stock level I∗N satisfies I∗N = O(logN), and bN/(NhN ) N→∞−→ 0. Therefore,
lim infN→∞ CN (I∗N )/(NhN logN) ≥ σ2/2. Combining these results gives that the lower
bound

√
CN (I∗N )

√
C̄N (ĪN )/

√
CN (ĪN ) for the fraction FN (I∗N , β∗N )/FN (ĪN , β̄N ) satisfies

lim inf
N→∞

FN (I∗N , β∗N )
FN (ĪN , β̄N )

≥ lim inf
N→∞

√
CN (I∗N )

√
C̄N (ĪN )

CN (ĪN )
= 1.

6.8.2 Proofs of Section 6.3

Proof of Lemma 6.7. In Lemma 6.4, it is shown that I∗N = P−1
N (1 − γN ), with P−1

N the
quantile function of Q̄1,0

N . Because the random variables (Q1,0
i , i ≤ N) are independent and

exponentially distributed,

P
(
Q̄1,0
N ≤ P

−1
N (x)

)
= x =

(
1− e−

2
σ2 P

−1
N

(x)
)N

.

From this, it follows that P−1
N (x) = σ2

2 log
(

1
/(

1− x 1
N

))
.

Proof of Proposition 6.1. Minimizing F̂N (ÎN , β̂N ) goes analogously as minimizing
FN (IN , βN ) in Lemma 6.7. Hence, ÎN = P̂−1

N (1− γN ). Thus, we have to solve

P
(
σ2

2 G+ σ2

2 logN ≤ P̂−1
N (x)

)
= P
(
G ≤ 2

σ2 P̂
−1
N (x)− logN

)
= e−e

−
(

2
σ2 P̂

−1
N

(x)−logN
)

= x.

Therefore, P̂−1
N (x) = σ2

2 logN − σ2

2 log(− log x). Hence, the optimal base-stock level is given
in Equation (6.3.4). Furthermore,

E

[(
σ2

2 G+ σ2

2 logN − ÎN
)+
]

=E

[(
σ2

2 G+ σ2

2 log
(
− log(1− γN )

))+
]

=σ2

2

∫ ∞
− log(− log(1−γN ))

1− e−e
−x
dx.
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By using partial integration and substitution we can write

σ2

2

∫ ∞
− log(− log(1−γN ))

1− e−e
−x
dx = σ2

2

(∫ ∞
− log(1−γN )

e−t

t
dt+ Γ + log

(
− log(1− γN )

))
.

Hence, this gives us the expression of ĈN (ÎN ) in (6.3.5).

Lemma 6.11. We define the random variable

GN := − log

− log

(1− exp
(
− 2
σ2 Q̄

1,0
N

))N
 , (6.8.1)

with Q̄1,0
N given in Definition 6.1. The random variable GN has the property that

P(GN < x) = e−e
−x

, for all N ≥ 1. Thus, GN follows a Gumbel distribution. Moreover,

Q̄1,0
N >

σ2

2 GN + σ2

2 logN, (6.8.2)

and Q̄1,0
N −

σ2

2 GN −
σ2

2 logN strictly decreases as a function of Q̄1,0
N with limit 0.

Proof. To prove that GN follows a Gumbel distribution, we first observe that P(Q̄1,0
N < x) =(

1− exp
(
− 2
σ2 x
))N

. Therefore,
(

1− exp
(
− 2
σ2 Q̄

1,0
N

))N
∼ Unif[0, 1]. Then,

P(GN < x) =P

− log

− log

(1− exp
(
− 2
σ2 Q̄

1,0
N

))N
 < x


=P

− log

(1− exp
(
− 2
σ2 Q̄

1,0
N

))N > e−x


=P

(1− exp
(
− 2
σ2 Q̄

1,0
N

))N
< e−e

−x

 = e−e
−x
.

To prove (6.8.2), we need to show that for all x > 0 and N

x >− σ2

2 log

− log

(1− exp
(
− 2
σ2 x

))N
+ σ2

2 logN.

This is equivalent to the inequality x > −σ
2

2 log
(
− log

(
1− exp

(
− 2
σ2 x
)))

, which is
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equivalent to 1 − e
− 2
σ2 x < e−e

− 2
σ2 x , with x > 0. This is equivalent to e−y > 1 − y

for y ∈ (0, e−1]. Observe that for y = 0, we have equality, and we have for y > 0 that
(e−y)′ > −1 = (1− y)′. The statement follows. To prove that the larger Q̄1,0

N becomes, the
smaller the difference between Q̄1,0

N and σ2

2 GN + σ2

2 logN becomes, we first observe that

σ2

2 GN + σ2

2 logN =− σ2

2 log

− log

(1− exp
(
− 2
σ2 Q̄

1,0
N

))N
+ σ2

2 logN

=− σ2

2 log

− log

(
1− exp

(
− 2
σ2 Q̄

1,0
N

)) .

Thus, we need to obtain that x + σ2

2 log(− log(1 − e−
2
σ2 x)) is strictly decreasing in x for

x > 0. Taking the first derivative gives the inequality

e
− 2x
σ2(

1− e−
2x
σ2
)

log
(

1− e−
2x
σ2
) + 1 < 0.

This is equivalent to the inequality −y/((1 − y) log(1 − y)) > 1 for y ∈ (0, 1), which can
be rewritten to log y > 1 − 1/y, which is a basic logarithm inequality. Finally, limx→∞ x +
σ2

2 log(− log(1− e−
2
σ2 x)) = 0.

Lemma 6.12. Let γN be given in (6.2.4), then we have the following bounds on the cost
functions CN and ĈN given in Definitions 6.3 and 6.4:∣∣∣CN (I∗N )− CN (ÎN )

∣∣∣ ≤ (I∗N − ÎN )(NhN + bN )

(
1− γN −

(
1 + log(1− γN )

N

)N)
, (6.8.3)

∣∣∣ĈN (ÎN )− CN (ÎN )
∣∣∣ ≤ (I∗N − ÎN )NhN

(
1−

(
1 + log(1− γN )

N

)N)
. (6.8.4)

Proof. The optimal base-stock level I∗N satisfies the equation given in (6.2.10). The
approximation ÎN satisfies a similar equation:

P(σ
2

2 GN + σ2

2 logN ≤ ÎN ) = 1− γN .

Due to the inequality in (6.8.2), it follows that I∗N > ÎN , we have

CN (I∗N )− CN (ÎN )
= NhN (I∗N − ÎN ) + (NhN + bN )E[(Q̄1,0

N − I
∗
N )+ − (Q̄1,0

N − ÎN )+]
= NhN (I∗N − ÎN ) + (NhN + bN )E[(ÎN − I∗N )1(Q̄1,0

N > I∗N )]
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− (NhN + bN )E[(Q̄1,0
N − ÎN )+

1(ÎN < Q̄1,0
N < I∗N )].

We have P(Q̄1,0
N > I∗N ) = γN = NhN/(NhN + bN ), thus

NhN (I∗N − ÎN ) + (NhN + bN )E[(ÎN − I∗N )1(Q̄1,0
N > I∗N )] = 0.

Furthermore,

E[(Q̄1,0
N − ÎN )+

1(ÎN < Q̄1,0
N < I∗N )]

≤ (I∗N − ÎN )P(ÎN < Q̄1,0
N < I∗N )

= (I∗N − ÎN )

(
1− γN −

(
1 + log(1− γN )

N

)N)
.

Equation (6.8.3) follows. To prove Equation (6.8.4), we observe that

|ĈN (ÎN )− CN (ÎN )|

= (NhN + bN )E

[(
Q̄1,0
N − ÎN

)+
−
(
σ2

2 GN + σ2

2 logN − ÎN
)+
]

= (NhN + bN )E

[(
Q̄1,0
N −

σ2

2 GN −
σ2

2 logN
)
1

(
σ2

2 GN + σ2

2 logN > ÎN

)]
(6.8.5)

+ (NhN + bN )E

[(
Q̄1,0
N − ÎN

)
1

(
σ2

2 GN + σ2

2 logN < ÎN < Q̄1,0
N

)]
. (6.8.6)

Because GN and Q̄1,0
N are on the same probability space, we have P

(
Q̄1,0
N = I∗N

∣∣∣σ2

2 GN +
σ2

2 logN = ÎN

)
= 1. Furthermore, x + σ2

2 log(− log(1 − e−
2
σ2 x)) is decreasing in x. Thus,

we can bound

E

[(
Q̄1,0
N −

σ2

2 GN −
σ2

2 logN
)
1

(
σ2

2 GN + σ2

2 logN > ÎN

)]

≤ (I∗N − ÎN )P
(
σ2

2 GN + σ2

2 logN > ÎN

)
= (I∗N − ÎN )γN . (6.8.7)

Similarly, for (6.8.6), we observe that if σ
2

2 GN + σ2

2 logN < ÎN , then Q̄1,0
N < I∗N . Thus,

E

[(
Q̄1,0
N − ÎN

)
1

(
σ2

2 GN + σ2

2 logN < ÎN < Q̄1,0
N

)]

≤ (I∗N − ÎN )P
(
σ2

2 GN + σ2

2 logN < ÎN < Q̄1,0
N

)
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≤ (I∗N − ÎN )

(
1−

(
1 + log(1− γN )

N

)N
− γN

)
. (6.8.8)

Adding the bounds in (6.8.7) and (6.8.8) gives the result.

Proof of Theorem 6.1. First, we assume that γN = γ ∈ (0, 1). Using Corollary 6.1, we have

FN (I∗N , β∗N )
FN (ÎN , β̂N )

=
2
√
CN (I∗N )

√
ĈN (ÎN )

CN (ÎN ) + ĈN (ÎN )
.

Because of the inequality in (6.8.2), we have for all I that CN (I) > ĈN (I). Thus

FN (I∗N , β∗N )
FN (ÎN , β̂N )

>
2
√
CN (I∗N )

√
ĈN (ÎN )

2CN (ÎN )
.

By computing the Taylor series of the function I∗1/x around x = 0, we have

I∗1/x = σ2

2 log
(

1
1− (1− γ)x

)
= −σ

2

2 log x− σ2

2 log(− log(1− γ)))− σ2

4 x log(1− γ) +O(x2)

= Î1/x −
σ2

4 x log(1− γ) +O(x2).

Thus, (I∗N − ÎN ) ∼ −σ2 log(1− γ)/(4N). Following (6.8.4), we can conclude that |ĈN (ÎN )−
CN (ÎN )|/(NhN ) = O(1/N). We can do the same for P(ÎN < Q̄1,0

N < I∗N ), and get(
1− γ −

(
1 + log(1− γ)

N

)N)
∼ 1

2N (1− γ) log(1− γ)2.

Thus, after applying the inequality in (6.8.3), we get |CN (I∗N ) − CN (ÎN )|/(NhN + bN ) =
O(1/N2). We have that the approximation function ĈN (ÎN ) satisfies

ĈN (ÎN )

= NhN
σ2

2 (logN − log(− log(1− γ))− 1) + (NhN + bN )σ
2

2 E
[
(G+ log(− log(1− γ)))+]

∼ NhN
σ2

2 logN,

as N → ∞, because (NhN + bN )/(NhN ) = 1/γ, and − log(− log(1 − γ)) and E[(GN +
log(− log(1− γ)))+] are of O(1). In conclusion, we have

FN (I∗N , β∗N )
FN (ÎN , β̂N )

>

√
CN (I∗N )√
CN (ÎN )

√
ĈN (ÎN )√
CN (ÎN )
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=
√
CN (ÎN )−O((NhN + bN )/N2)√

CN (ÎN )

√
CN (ÎN )−O(NhN/N)√

CN (ÎN )

=
√

1−O(1/(N2 logN))
√

1−O(1/(N logN))
=1−O(1/(N logN)).

Now, we assume that γN
N→∞−→ 0, then we have that − log(− log(1 − γN )) ∼ − log(γN ),

thus ÎN ∼ σ2

2 log(N/γN ). Also,

E
[
(GN + log(− log(1− γN )))+] ∼ E

[
(GN + log(γN ))+] ∼ γN .

From this, it follows that ĈN (ÎN ) ∼ NhN σ2

2 log(N/γN ). Furthermore,

P(Q̄1,0
N > ÎN ) = 1−

(
1 + log(1− γN )

N

)N
≤ N P(Q1,0

i > ÎN ) = − log(1− γN ) = γN (1 +O(γN/2)).

Therefore, we have that(
1− γN −

(
1 + log(1− γN )

N

)N)
≤ − log(1− γN )− γN = γ2

N

2 (1 + o(1)).

Also

P(Q̄1,0
N < I∗N ) = P

(
σ2

2 GN + σ2

2 logN < ÎN

)
= 1− γN

N→∞−→ 1.

In the first part of this proof, we showed that when γN = γ, (I∗N − ÎN ) = O(1/N), now
I∗N is larger, because P(Q̄1,0

N < I∗N ) = 1 − γN
N→∞−→ 1. Following the statement in Lemma

6.11 that the difference between Q̄1,0
N and σ2

2 GN + σ2

2 logN decreases as Q̄1,0
N increases, we

can conclude that (I∗N − ÎN ) = O(1/N). Following the proof before, and by using the order
bounds in (6.8.3) and (6.8.4), we have that

FN (I∗N , β∗N )
FN (ÎN , β̂N )

= 1−O(γN/(N log(N/γN ))).

Finally, we consider the case that γN
N→∞−→ 1 and γN ≤ 1 − exp(−N). Then, ÎN ≥ 0.

Furthermore, when γN
N→∞−→ 1, we have log(− log(1 − γN )) N→∞−→ ∞. From this, it follows

that

E
[
(GN + log(− log(1− γN )))+] ∼ log(− log(1− γN )).

Thus

ĈN (ÎN ) ∼σ
2

2 NhN (logN − log(− log(1− γN ))) + σ2

2 (NhN + bN ) log(− log(1− γN ))
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=σ2

2 NhN logN + σ2

2 bN log(− log(1− γN )).

Since we consider the efficiency-driven regime, we have bN/(NhN ) N→∞−→ 0. Also, it is
easy to deduce that when γN < 1 − exp(−N), we have log(− log(1 − γN )) < logN . Thus
ĈN (ÎN ) ∼ σ2

2 NhN logN . Furthermore, I∗N − ÎN = O(1); thus, the bounds in (6.8.3) and
(6.8.4) are of O(NhN ). By using the same argument as in the proof for the balanced regime,
we see that the approximate and optimal costs differ with order 1/ logN :

FN (I∗N , β∗N )
FN (ÎN , β̂N )

= 1−O(1/ logN).

Proof of Lemma 6.8. Following Equations (6.8.3) and (6.8.4) and using the same arguments
as in the proof of Theorem 6.1, we can find the same order bound for FN (I∗N , β∗N )/F̂N (ÎN , β̂N )
=
√
CN (I∗N )/

√
ĈN (ÎN ).

In the case that γN = γ ∈ (0, 1), we have

ĈN (ÎN ) =NhN
σ2

2
(
logN − log(− log(1− γ))− 1

)
+(NhN + bN )σ

2

2 E
[(
G+ log(− log(1− γ))

)+]
.

Thus F̂N (ÎN , β̂N )/(N logN) = 2
√
N
√
ĈN (ÎN )/(N logN) = O(

√
hN/
√

logN).
When γN

N→∞−→ 0, we have that − log(− log(1 − γN )) ∼ − log(γN ), thus ÎN ∼
σ2

2 log(N/γN ). Also,

E
[
(GN + log(− log(1− γN )))+] ∼ E

[
(GN + log(γN ))+] ∼ γN .

From this, it follows that

ĈN (ÎN ) ∼ NhN
σ2

2
(
log(N/γN )− 1

)
+ (NhN + bN )σ

2

2 γN .

Therefore, 2
√
N
√
ĈN (ÎN )γN/(N log(N/γN )) = O(γN

√
hN/

√
log(N/γN )).

When γN
N→∞−→ 1, we have

ĈN (ÎN ) ∼σ
2

2 NhN (logN − log(− log(1− γN ))) + σ2

2 (NhN + bN ) log(− log(1− γN ))

=σ2

2 NhN logN + σ2

2 bN log(− log(1− γN )).

Thus, 2
√
N
√
ĈN (ÎN )/ logN = O(N

√
hN/
√

logN).
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6.8.3 Proofs of Section 6.4

Proof of Lemma 6.9. From Lemma 6.2, we know that the optimal inventory IAN satisfies

d

dI
E[NhN (IAN −Q1,σA

i + (Q̄1,σA
N − IAN )+) + bN (Q̄1,σA

N − IAN )+] = 0.

We have

d

dI
E[NhN (IAN −Q1,σA

i + (Q̄1,σA
N − IAN )+) + bN (Q̄1,σA

N − IAN )+]

= NhN − (NhN + bN )P
(
Q̄1,σA
N > IAN

)
= NhN − (NhN + bN )P

( √
2

σσA

Q̄1,σA
N − σ2

2 logN
√

logN
>

√
2

σσA

IAN − σ2

2 logN
√

logN

)
.

Therefore, IAN satisfies
√

2
σσA

(IAN − σ2

2 logN)/
√

logN = PAN
−1(1− γN ).

Proof of Proposition 6.2. We have to find I and β such that FN (I, β) is minimized. As
before, we know that the optimal ÎAN should satisfy

NhN − (NhN + bN )P
(
σ2

2 logN + σσA√
2

√
logNX > ÎAN

)
= 0.

Thus, ÎAN as given in (6.4.2) minimizes ĈAN (I). We know that

E

[(
σ2

2 logN + σσA√
2

√
logNX − ÎAN

)+
]

=
∫ ∞
ÎA
N
−σ2

2 logN
σσA√

2
√

logN

(
σ2

2 logN + σσA√
2

√
logNx− ÎAN

)
φ(x)dx

=
(
σ2

2 logN − ÎAN
)
P
(
σσA√

2

√
logNX ≥ ÎAN −

σ2

2 logN
)

+ σσA√
2

√
logN 1√

2π
exp

−
(
σ2 logN − 2ÎAN

)2

4σ2σ2
A logN


= −σσA√

2

√
logNΦ−1(1− γN )γN

+ σσA√
2

√
logN 1√

2π
exp
(
− 1

2Φ−1(1− γN )2
)
.

The expression in Equation (6.4.3) follows.
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Proof of Theorem 6.2. Using Corollary 6.1, we have

FN (IAN , βAN )
FN (ÎAN , β̂AN )

=
2
√
CN (IAN )

√
ĈAN (ÎAN )

CN (ÎAN ) + ĈAN (ÎAN )
.

First, assume ĈAN (ÎAN ) > CN (ÎAN ). Then, FN (IAN , βAN )/FN (ÎAN , β̂AN ) >
√
CN (IAN )/ĈAN (ÎAN ).

We have

|ĈAN (ÎAN )− CN (IAN )|

≤ (2NhN + bN )|IAN − ÎAN |+ (NhN + bN )E

[∣∣∣∣Q̄1,σA
N − σ2

2 logN − σσA√
2
X

∣∣∣∣
]
.

We know by [148, Lem. 21.2, p. 305], that (IAN − ÎAN )/
√

logN N→∞−→ 0. Furthermore,
we have shown in Lemma 3.3 that E

[∣∣Q̄1,σA
N − σ2

2 logN − σσA√
2

√
logNX

∣∣/√logN
]
N→∞−→

0. From this, it follows that |ĈAN (ÎAN ) − CN (IAN )| = o((NhN + bN )
√

logN). Since

ĈAN (ÎAN ) ∼ σ2

2 NhN logN , we have
√

CN (IA
N

)√
ĈA
N

(ÎA
N

)
= 1 − o

(
(NhN + bN )

√
logN/(NhN logN)

)
=

1− o
(
1/
√

logN
)
.

Second, assume ĈAN (ÎAN ) < CN (ÎAN ), then

FN (IAN , βAN )
FN (ÎAN , β̂AN )

>

√
CN (IAN )ĈAN (ÎAN )
CN (ÎAN )

=
√
CN (IAN )√
CN (ÎAN )

√
ĈAN (ÎAN )√
CN (ÎAN )

.

With an analogous derivation, we obtain the same order bound.

Proof of Lemma 6.10. We have ÎAN = σ2

2 logN+ σσA√
2

√
logNΦ−1(1−γ). Furthermore, |IAN −

ÎAN | = o(
√

logN), thus (6.4.4) follows. Furthermore, by using the same argument as in
Lemma 6.8, (6.4.5) follows.

6.9. Mixed-behavior approximations

Though we have a symbolic expression for βMN in (6.5.3), it is not completely clear how to
compute the part

E

[(
σ2

2 logN + σσA√
2

√
logNX + σ2

2 G− IMN

)+
]

=
∫ ∞
IM
N

P
(
σ2

2 logN + σσA√
2

√
logNX + σ2

2 G > x

)
dx
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in βMN . First, observe that we can write

P
(
σ2

2 logN + σσA√
2

√
logNX + σ2

2 G > x

)
= P
(
σA
√

2
σ

√
logNX +G >

2
σ2 x− logN

)
=
∫ ∞
−∞

P
(
σA
√

2
σ

√
logNX >

2
σ2 x− logN − z

)
exp(− exp(−z)− z)dz.

Now, we write z = − log s. Then,∫ ∞
−∞

P
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σA
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2
σ

√
logNX >

2
σ2 x− logN − z

)
exp(− exp(−z)− z)dz

=
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√
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σ2 x− logN + log s

)
exp(−s)ds.

Thus,
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]

=
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N
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0
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2
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√
logNX >

2
σ2 x− logN + log s

)
exp(−s)dsdx

=
∫ ∞

0

∫ ∞
IM
N
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(
σA
√

2
σ

√
logNX >

2
σ2 x− logN + log s

)
exp(−s)dxds.

It turns out that∫ ∞
IM
N

P
(
σA
√

2
σ

√
logNX >

2
σ2 x− logN + log s

)
exp(−s)dx

can be expressed in terms of error functions. Thus, since IMN can be numerically found by

solving Equation (6.5.2), E
[(

σ2

2 logN + σσA√
2

√
logNX + σ2

2 G− I
M
N

)+
]

can be computed

numerically as well. Observe that the procedure to obtain IMN and βMN is efficient and that
its running time is independent of the system size N .
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Summary

The work in this thesis is inspired by modeling delays in supply chains for high-tech
manufacturers, such as ASML, Philips Healthcare, and Boeing; these supply chains are large.
A typical property is that many high-tech suppliers specialize in producing and delivering a
specific component of the final product. In this system, the slowest supplier determines the
delay of the manufacturer.

To model this delay, we consider the N -server fork-join queueing network, in which
each server represents a unique supplier, and the arrival stream denotes orders from the
manufacturer. The literature on this network for large N is scarce. First, we investigate
the behavior of the longest queue and the longest waiting time by proving limiting results
as the number of servers N converges to infinity. Second, we propose centralized base-stock
and capacity policies to minimize costs incurred by delays. To achieve these objectives, we
use results from extreme-value theory, diffusion approximations, large deviations principles,
theory on heavy-tailed random variables, and newsvendor problems.

In Chapter 2, we assume the arrivals and services to be nearly deterministic. The aim of
this study is to approximate the length of the largest of the N queues in the network. We
present a fluid limit and a steady-state result for the maximum queue length, as N goes to
infinity. In order to achieve this fluid limit, we have to scale time and space appropriately,
where these scalings depend on the number of servers N . We extend these results to a fork-
join queue with non-zero initial queue lengths with few assumptions on the distribution of
these initial queue lengths. To prove the fluid limit for this case, we obtain an extreme-value
result on the sum of two independent random variables, which is of independent interest.

In Chapter 3, the main result we derive is a second-order convergence result on the
longest waiting time using a scaling that is more refined than the one in Chapter 2. The
rescaled longest waiting time converges in distribution to a Gaussian random variable. By
applying distributional Little’s law, we show that a similar convergence result holds for the
maximum queue length. Finally, we present a similar convergence result for the Brownian
fork-join queue in steady-state.

We focus on the Brownian fork-join queue in Chapter 4 as well, here we derive large
deviations results for the maximum queue length. We show that there are two regimes of
large deviations, one in which the dependence structure between queue lengths is recognized
in the limit, and one where we see asymptotic independence between the queue lengths.

In Chapter 5, we model the longest waiting time in an N -server fork-join queue with
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heavy-tailed services, which is motivated by applications in parallel cloud computing. We
derive a fluid limit and a steady-state result, where the limiting process is a supremum of a
drifted process with Fréchet marginals.

In Chapter 6, we apply earlier obtained results in an industrial setting. Namely, we
wish to optimize the performance of the supply chain of a multi-component assembly system
involving original equipment manufacturers. Specifically, we model the supply chain with an
N -server Brownian fork-join queue. We argue the validity of the Brownian fork-join queue
and look at the system in steady state. Thus, we model the queue lengths as all-time suprema
of Brownian motions with drift. As each server faces the same arrivals, these queue lengths
are again mutually dependent. We define a newsvendor problem where costs are caused
by (i) the maximum queue length, which is a measure of the delay in the system, (ii) the
base-stock level, and (iii) the average speed of service. Now, as the cumulative distribution
function cannot be written down explicitly, it is impossible to solve the resulting minimization
problem directly. However, we use the central limit result derived in Chapter 3 to obtain an
explicit approximate solution of the minimization problem. We prove asymptotic optimality
of this approximate solution and test its performance using numerical experiments.
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