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Abstract
Dimensionality reduction has become an important research topic as demand for interpreting high-dimensional datasets has
been increasing rapidly in recent years. There have been many dimensionality reduction methods with good performance
in preserving the overall relationship among data points when mapping them to a lower-dimensional space. However, these
existing methods fail to incorporate the difference in importance among features.
To address this problem, we propose a novel meta-method, DimenFix, which can be operated upon any base dimensionality
reduction method that involves a gradient-descent-like process. By allowing users to define the importance of different features,
which is considered in dimensionality reduction, DimenFix creates new possibilities to visualize and understand a given dataset.
Meanwhile, DimenFix does not increase the time cost or reduce the quality of dimensionality reduction with respect to the base
dimensionality reduction used.

CCS Concepts
• Computing methodologies → Dimensionality reduction and manifold learning; Feature selection; Visual analytics; • Math-
ematics of computing → Dimensionality reduction; Mathematical optimization; • Theory of computation → Unsupervised
learning and clustering;

1. Introduction

Demand for visualizing and interpreting high-dimensional datasets
has been increasing rapidly in recent years. One of the most popu-
lar ways to interpret those datasets is mapping such a dataset to a
lower dimensional space (usually 2D or 3D) while reproducing the
relationship between each pair of points in the dataset. This process
is called dimensionality reduction. Many methods have been devel-
oped, and they usually have an excellent performance in reproduc-
ing the relationships for different data points within a dataset on a
lower dimension.

Dimensionality reduction methods can be categorized into two
types: linear methods and nonlinear methods. For nonlinear di-
mensionality reduction methods that involve a gradient-descent-
like process, like t-Distributed Stochastic Neighbor Embedding (t-
SNE) [VdMH08], Uniform Manifold Approximation and Projec-
tion (UMAP) [MHM18] and Force Scheme [TMN03], the projec-
tion process is treated as an optimization problem that estimates
the low-dimensional projections by minimizing a loss function.
The loss function varies from method to method and can be based
on different relationships among points (e.g., probability distribu-

tion [VdMH08], Euclidean distance [TMN03], and Euclidean dis-
tance on manifolds [MHM18]).

Meanwhile, we want to point out a limitation that is held by both
linear and nonlinear dimensionality reduction methods: when map-
ping data points from a sample space with higher dimensions to
a lower one, the relationship between each pair of points will not
be identical for the raw dataset and the resulting projection. Even
though the existing methods limit this change in the relationship
among points to an acceptable degree, they generally consider all
dataset features equally important. All relationships (again, these
relationships vary as different loss functions are used) among points
regarding different features are uniformly changed. This, in turn,
makes it impossible to preserve the raw value of a given feature in
a dataset.

However, there is sometimes a vast difference in the importance
of each feature. This is especially true when it comes to classifi-
cation. There are even methods to perform feature selection for a
given dataset [LCJ21, CO21, BWSR22]. For example, suppose we
have a ranking result saying feature A plays a critical role in the
classification of this dataset; we now want to reduce the dimension
of this dataset. Indeed, it would be ideal to avoid changing feature
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A during the process of dimensionality reduction. However, most
existing methods do not explicitly consider such a difference in the
importance of features.

In addition, there might also be a manually created feature that
is considered important. Ranking results would be one of such
examples [HZZ22, LRZ∗22]. So far, if we have a ranked high-
dimensional dataset, it is hard to visualize it while keeping the rank-
ing results.

To solve these problems, we want to introduce an innovative
method, DimenFix. This paper mainly discusses the experimental
results (Section 4) of DimenFix based on Force Scheme [TMN03],
a well-developed dimensionality reduction and data visualization
method. However, DimenFix is a meta-method that can be applied
to any dimensionality reduction method that includes gradient-
descent-like steps. By applying DimenFix, users can better preserve
the values of a particular feature in a dataset while reducing the
dataset to a visualizable dimension, as well as control the change in
the relationships among points regarding a given feature to a given
degree.

In this paper, we first discuss some popular dimensionality re-
duction methods, which are also used as baselines to compare Di-
menFix with, as well as some former works on feature preservation.
Then, we describe the algorithms used for constructing DimenFix,
followed by the experimental results of applying DimenFix to dif-
ferent datasets. Finally, we make discussions based on the content
delivered in this paper and briefly mention some potential future
works. The full code for the methodology explained can be found
on GitHub [LCP22].

2. Related Work

In this section, we focus on delivering information about formerly
published papers related to DimenFix. We discuss popular dimen-
sionality reduction methods and some former works that can pre-
serve certain yet limited features during dimensionality reduction.

2.1. Dimensionality Reduction

Many dimensionality reduction methods give high performance
on the task of mapping a high-dimensional dataset to a lower-
dimensional space.

One example is t-SNE [VdMH08]. t-SNE uses a Student t-
distribution model to map the data points from a higher dimensional
space to a lower dimensional space by calculating the similarity
probabilities of the data points.

Another example is Principal component analysis
(PCA) [Hot33]. PCA uses an orthogonal transformation pro-
cess to transform the dataset and reduce the dimensionality
linearly.

Furthermore, Force Scheme is also one of the methods with ex-
cellent and stable performance [TMN03]. It is also the method
based on which we tested (Section 4) our method DimenFix in
this paper. Force Scheme is named after the way how its algorithm
works. To reduce the dimension of a dataset, a distance matrix is
first created for all the data points (the distance here can be any

statistical distance, e.g., manhattan distance, euclidean distance. In
this paper, though, we are using euclidean distance). A gradient-
descent-like process is then done to the dataset. In this process,
Force Scheme pushes different points farther from each other and
pulls similar points closer to each other [TMN03], for which the
distance matrix defines the difference and similarity (for details,
see Algorithm 1).

2.2. Feature Preservation

The relationship change in each pair of points in a given dataset
has been a concern for dimensionality reduction methods. While
it is inevitable for such change to occur while mapping a high-
dimensional dataset to a lower-dimensional space, researchers have
made several attempts to control it. One option is to let users man-
ually interact with the dimensionality reduction process [SZS∗16,
PP20]. The other option is to develop methods that automatically
preserve certain features in a dataset [HKBE12, RFT18, VPN∗10].

Several methods have been developed to preserve a certain type
of feature during the dimensionality reduction process. Still, most
of them are designed only to be used in a limited situation. For ex-
ample, if we define the feature to be preserved as classes or other
categorical values, supervised or semi-supervised dimensionality
reduction methods [RFT18, VPN∗10] can be considered. Other-
wise, if we decide only to analyze a particular type of dataset and
collaborate with Machine Learning methods, we can also find some
methods specific to this type. For example, when the dataset is a
set of text documents, a visual classifier described by Heimerl et
al. [HKBE12] could be a choice. In this case, the resulting 2D pro-
jection does not directly reproduce the original relationship among
data points but presents the classification results from different as-
pects (confident value, diversity) using different axes. In turn, the
preserved features are manually created, classification-related ones.

On the other hand, if we want the preserved feature to be primar-
ily related to ranking, RankViz might be helpful by allowing the
user to understand which feature contributes the most during the
process of creating ranking and interact with the process accord-
ingly [PP20].

So far, even though some work has been done to preserve cer-
tain dataset features during the projection process, each can only be
used in limited ways. Hence by proposing DimenFix, we attempt
to give more flexibility to our users. Firstly, different from methods
that can only be used to preserve certain kinds of feature [RFT18,
VPN∗10, PP20] or certain kinds of datasets [HKBE12], we allow
user-defined feature preservation. The projection created by Di-
menFix could be either 2D or 3D. Either way, the y or z -axis
will preserve the user-defined feature. Secondly, unlike some for-
mer works [PP20], DimenFix not only shows the one-dimensional,
ranking-related feature but also tries to fit the relationships among
points defined by the remaining features in the dataset into the pro-
jection.

3. Methodology

In this section, we explain the algorithms of DimenFix. Di-
menFix could be applied to any base dimensionality reduction
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Data: X , the raw dataset; X ′, the embedded dataset; ∆, the learning rate
Result: X ′, the projection
calculate triangular matrix of distances M using dataset X ;
while not reaching the maximum iteration do

read current;
for each data point xi in X do

for each other data point x j in X do
retrieve d, the distance from xi to x j using M;
retrieve d′, the distance from x′i to x′j in the current projection;
move x′i regarding (d−d′) with a fraction of ∆;

end
end

end
Algorithm 1: Force Scheme Pseudo Code [TMN03]

method that includes a gradient-descent-like process, such as t-
SNE [VdMH08], Force Scheme [TMN03] and UMAP [MHM18].
In this section, we explain DimenFix independently of the base
method. In our experiments, we choose Force Scheme [TMN03]
as the base method.

We propose two modes for DimenFix, the Strictly Fixed Mode
(Section 3.1) and the Moving-In-Range Mode (Section 3.2), where
Moving-In-Range Mode has two sub-modes, Normal Moving-In-
Range Mode (Section 3.2.1) and Gaussian Moving-In-Range Mode
(Section 3.2.2). Strictly Fixed Mode does not allow a point to move
along the fixed axis, while Moving-In-Range Mode allows a point
to move within a limited, user-defined range.

3.1. Strictly Fixed Mode

Given a non-linear dimensionality reduction method that maps data
points to a lower dimensional space by updating weights or other
values through a gradient-descent-like process, the update is usu-
ally done on all resulting dimensions. However, in DimenFix, we
propose to reduce the updated dimensions to (n− 1), where n is
the number of dimensions to which we want to reduce a dataset’s
dimensionality.

More specifically, before starting the gradient-descent-like pro-
cess, we manually set the values on the last dimension of the em-
bedding space to an arbitrary feature. The user can indicate which
feature to be fixed. During each iteration of the gradient-descent-
like process, the loss is calculated by a loss function, which can
vary as different base method is used, using the values from all di-
mensions in the projection, including the fixed feature. However,
we do not update the last dimension in the value update process.

Since the values on one of the axes will not be changed, to ensure
the projection’s stability, we suggest making a scale normalization
to each feature of the dataset right before starting the iteration pro-
cess.

The idea of DimenFix differs from simply adding a feature as
the third dimension to a 2D projection. DimenFix takes the fixed
feature into calculation during the gradient-descent-like process,
which influences the final stress and makes all the dimensions in
the resulting projection well united.

Taking Force Scheme as an example. The loss function of the
Force Scheme is defined by a distance matrix [TMN03] calculated
using all statistically meaningful features in the raw dataset. To ini-
tiate the program, we first create an embedding space. We provide
three choices for this step: random generation, t-SNE, or PCA. The
main difference between the three modes is the processing time.

We then set the last dimension of the embedding space, which
is the y axis for 2D or the z axis for 3D, to the values of the user-
defined feature. Once we set the last dimension, the values on this
axis should never be changed unless we use moving-in-range mode
(described in Section 3.2).

After getting the distance matrix [TMN03] and embedding space
prepared, we can start the point-moving process. For each iteration,
the algorithm is the same with vanilla Force Scheme [TMN03].
Except for each iteration, the last dimension should never be up-
dated(for details, see Algorithm 2).

3.2. Moving-In-Range Mode

In some cases, different points share the same value on the fixed
axis. For example, when the assigned feature is a categorical value,
the user may want to see how these points are distributed within the
same class. To meet this need, we provide an additional mode to
DimenFix, the moving-in-range mode. Under this mode, the values
on the fixed axis can be changed within a range. Our method allows
the user to manually set the range to adapt it to the dataset under
consideration.

For the moving-in-range mode, we develop two different sub-
modes. We will explain these two modes in the following two sub-
sections.

3.2.1. Normal Moving-In-Range mode

If the user wants to strictly restrict the moving range of a point
on the last dimension, we recommend this mode. The logic of this
mode is that, before starting the gradient-descent-like process, the
program records the original values of the fixed feature. Once the
process of creating the projection starts, we calculate whether the
value update will cause a value-out-of-range result on the last di-
mension in each iteration. Let the moving range be (−a,+a); we
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Data: X , the raw dataset; X ′, the embedded n-dimensional dataset; ∆, the learning rate
Result: X ′, the projection
calculate triangular matrix of distances M using dataset X ;
set the last dimension of X ′ to a user-defined feature;
while not reaching the maximum iteration do

read current;
for each data point xi in X do

for each other data point x j in X do
retrieve d, the distance from xi to x j using M;
retrieve d′, the distance from x′i to x′j in the current projection;
move x′i regarding (d−d′) with a fraction of ∆ on (n−1) dimensions;

end
end

end
Algorithm 2: DimenFix implemented on Force Scheme Pseudo Code [TMN03]

then calculate if the difference between the original value and the
value after iteration is within the range (−a,+a). If it is within the
range, the update will be done in all dimensions. Otherwise, it will
not change the value on the last dimension. The value difference
should be cumulative based on all iterations performed.

In other words, the program performs like the base method un-
til the given moving range is reached. Once a point touches the
pre-defined boundary in either a positive or negative direction, the
movement of this point will immediately change and follow the al-
gorithm of Strictly Fixed Mode (Section 3.1).

3.2.2. Gaussian Moving-In-Range mode

Normal Moving-In-Range mode allows moving a point on the fixed
axis within a certain range. However, it blindly sets a threshold to
stop the movement of a point. As a result, the movement of the
points on the fixed axis will not be consistent. Most points will
only move around on the fixed axis in the first few iterations.

If the user wants a more consistent point-moving process and
accepts a result in which the values on the last dimension are
moved slightly out of range, we provide another mode named Gaus-
sian Moving-In-Range mode. Unlike the normal moving-in-range
mode, which switches the moving dimensions from three to two at
a certain boundary, this mode considers the moving range from the
beginning.

As indicated by its name, this mode uses the Gaussian function to
calculate the actual moving distance. Essentially, under this mode,
we convert the value of f (x), a Gaussian equation, to a moving
ratio. The farther the point is from its original position, the harder
it is to move. As a result, some points may slightly move out of the
boundary, but the movement on the fixed axis is consistent through
the whole gradient-descent-like process.

Below is the detailed algorithm for this mode. Given a Gaussian
function:

f (x) =
1

σ
√

2π
exp(− (x−µ)2

2σ2 ) (1)

Firstly, we let the x value of the Gaussian function be the numerical

difference between its origin and current position on the last di-
mension. The sign of the x value represents the direction in which
the point moves from its origin. We want to calculate f (x), which
is defined as the fraction of the actual moving distance (that is, the
moving distance along the fixed-axis under the Gaussian moving-
in-range mode) to the supposed moving distance (that is, the mov-
ing distance calculated by the dimensionality reduction method).
This means the maximum value of f (x) should equal 1 and appear
at the point where x = 0. In turn, this indicates µ = 0.

This condition gives us that µ in Eq. 1 must equal to 0, and in
turn, leads us to a new equation:

f (x) =
1

σ
√

2π
exp(− x2

2σ2 ) (2)

Next, a user-defined confidence interval 0 < CI < 1 and moving
range (−a,a) will be used to calculate the σ in Eq. 2. We will use
the z-score formula:

Z =
X−µ

σ
(3)

We want to use the z-score table to find the z-score where p= 1−CI
2 ,

which is the area on the left side of the significant interval. Let
this z-score be z. This z refers to how far a value is from the mean
value in a standard normal distribution. We now want to use it as
a reference to change the shape of the Gaussian function, which is
adapted to calculate the moving distance and thus is not standard
distribution.

Having z, a and the condition µ = 0, we then calculate the value
of σ using Eq. 3:

σ =
a
z

(4)

Now we have a Gaussian equation, but we need to adapt the value of
f (x) to a ratio showing how many percent of the distance calculated
by the base method should be moved. In particular, we know when
x = 0, f (x) = 1. Then we have the moving ratio MR as
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MR =
1

1
σ
√

2π
exp0

= σ
√

2π (5)

Using Eq. 5 and Eq. 2, we can calculate the real moving distance d
in each iteration:

d = σ
√

2π
1

σ
√

2π
exp(− x2

2σ2 ) = exp(− x2

2σ2 ) (6)

where x is the distance of an arbitrary point from its original posi-
tion on the last dimension (z-axis for 3D and y axis for 2D) when
we assume it is moved as the suggestion by the base method.

In short, we are calculating an appropriate value for σ using a
user-defined confidence interval for the Gaussian equation and a
user-defined moving range for DimenFix, to form a Gaussian func-
tion that can calculate the moving ratio.

4. Results

In this section, we discuss the performance of DimenFix. While
DimenFix can be applied to any gradient-descent-based methods
(See Section 3), in this section, the experimental results are based
on the implementation of the Force Scheme. We use t-SNE, PCA,
and vanilla Force Scheme as a baseline to compare the perfor-
mances. We analyze the performance of DimenFix based on run-
ning time, Kruskal’s stress score, classification performance, and
a case study on data visualization. We use four toy datasets from
scikit-learn [PVG∗11], which are Iris (4 dimensions), Wine (13 di-
mensions), Breast Cancer (30 dimensions), and Digits (64 dimen-
sions).

To test DimenFix, we must decide on a feature to fix on one of
the projection axes. To decide on this feature, we manually tested
the classification accuracy (Section 4.3) of fixing each feature for
the Iris and Wine datasets. For the Breast Cancer and Digit datasets,
we calculated the Pearson correlation for each feature to choose the
feature with the highest score. We choose the "sepal width" fea-
ture for the Iris dataset, the "alkalinity of ash" feature for the Wine
dataset, the "worst concave points" feature for the Breast Cancer
dataset, and the "pixel 6,4" feature for the Digit dataset.

In each of the tables (Table 3) shown in this section, the datasets
are arranged in increasing order regarding the number of features
in a dataset from left to right.

4.1. Running Time

We demonstrate the running time by comparing t-SNE, PCA, and
vanilla Force Scheme with different modes of DimenFix (Table 1).
The projections we are creating are three-dimensional for both
baselines and DimenFix. One thing that needs to notice is that to
ensure good performance, we are setting the iteration number for
t-SNE to 1000, while setting the maximum iteration number for
Force Scheme and DimenFix to 500. Kruskal’ Stress determines
this performance (see details in Section 4.2).

Overall speaking, PCA has the shortest running time. This is be-
cause PCA reduces the dimensionality by a linear transformation,

which gives a short running time for small datasets (all the four toy
datasets we are using are small enough, in this case). On the other
hand, the running time of t-SNE stably increases as the size of the
dataset increases.

For DimenFix and vanilla Force Scheme, however, the running
time is independent of the size of the dataset but depends more on
the starting projection mode. More specifically, the running time of
DimenFix and vanilla Force Scheme is composed of two parts: the
time used by starting projection (creating the embedding space) and
the time taken to move data points according to a cost calculated by
the distance matrix. The total running time increases as the time is
used for creating the embedding space. However, the fast creation
of embedding space does not necessarily mean a shorter overall
running time. If the data points in embedding space form a very
different shape than the ideal shape calculated by Force Scheme’s
distance matrix, more iterations are needed, and more time is taken.
Hence, creating a random embedding space gives a less stable run-
ning time.

However, by comparing DimenFix (last six rows) and vanilla
Force Scheme (the third to the fifth row), we can see that Dimen-
Fix does not significantly increase the running time. This is prefer-
able because our method can be applied to any dimensionality re-
duction method which involves a gradient-descent-like process, as
mentioned in Section 3. It is important to make sure that adding
our method to a vanilla method does not hurt the efficiency of the
vanilla method.

4.2. Kruskal’s Stress

Unlike classification tasks, we do not have wildly accepted mathe-
matical metrics for dimensionality reduction results. Neither PCA
nor t-SNE implemented in the scikit-learn library has such a built-
in metric [PVG∗11]. Here we propose to use a modified version of
Kruskal’s stress [Kru64], which was originally used for measuring
Multidimensional scaling(MDS), to measure the quality of projec-
tions created by DimenFix and other baselines.

The formula of Kruskal’s stress is defined as

S =

√
∑(di j−δi j)2

∑d2
i j

(7)

where d is the distances between each pair of data points in the
original dataset, and δ is the distances (again, in this paper, we
are using euclidean distance) between each pair of data points in
the dimensionality reduced dataset or the projection. The range of
Kruskal’s stress is [0,1], where closer to 0 means better the projec-
tion [Kru64].

Here we determine d by calculating the triangular distance ma-
trix using the original dataset after a pre-process of scaling. More
specifically, we scale the original datasets to a certain range (n,m)
where n and m can be defined by the user. This pre-processing is
necessary because we are fixing an arbitrary feature on one axis.
If the dataset is not scaled and the original scale of the fixed fea-
ture has a highly different range than the majority of the features,
the resulting dataset might be weird. We then use the pre-processed
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Iris Wine Cancer Digit
t-SNE 0.5586 0.6530 1.8637 8.1966
PCA 0.0057 0.0005 0.0062 0.0097
vanilla FS RANDOM 3.4046 0.7954 1.1158 2.6178
vanilla FS PCA 3.1948 2.4821 1.1870 1.8550
vanilla FS TSNE 1.5389 1.1543 1.9115 6.8993
DimenFix RANDOM 3.7058 0.8299 1.0899 1.3676
DimenFix PCA 2.9507 0.9476 0.4534 2.7260
DimenFix TSNE 3.9838 1.7048 2.8627 6.7649
DimenFix norm_mov_range RANDOM 3.6864 0.8045 1.2872 4.6592
DimenFix norm_mov_range PCA 2.9232 1.0935 2.1563 4.8718
DimenFix norm_mov_range TSNE 5.5858 2.7024 2.3901 6.1028
DimenFix gauss_mov_range RANDOM 2.4573 1.4672 0.5157 1.4099
DimenFix gauss_mov_range PCA 3.2706 0.5242 0.7446 2.2404
DimenFix gauss_mov_range TSNE 4.1499 1.4890 1.9189 8.8643

Table 1: Running time (second): Both t-SNE and Force Scheme based methods require a process of creating embedding space. As a result,
PCA gives the shortest running time for all four experimental datasets. However, when comparing DimenFix and vanilla Force Scheme, we
can see no significant extra running time added as DimenFix is applied.

dataset to create a triangular distance matrix, which will be used
later to get d.

After getting the projection, before calculating δ, we again scale
the projection with the same range (n,m). This is to eliminate any
unnecessary influence brought by scaling differences before and
after the projection and only to compare the distances of each pair
of data points with the same scale.

Here the projections we created are again three-dimensional for
both baselines and DimenFix. Force Scheme (both vanilla Force
Scheme and DimenFix) performs better than PCA and t-SNE,
as shown in Table 2. This is because of the nature of the Force
Scheme, which uses the distances among data points to create pro-
jections. It is the distance that Force Scheme is trying to reduce.
Hence, Kruskal’s stress is calculated based on distances.

Similar to running time, DimenFix does not increase Kruskal’s
stress significantly compared with the vanilla Force Scheme (see
Section 4.1).

4.3. Classification Performance

In this subsection, we measure the performance of DimenFix by
comparing the classification accuracy of the result projection to
baselines. For this experiment, in addition to the t-SNE, PCA, and
vanilla Force Scheme, we record the classification accuracy of the
whole dataset. The projections created by baselines and DimenFix
are still three-dimensional.

To experiment, we again created three-dimensional projections.
We randomly sampled 70% of each experimental dataset as the
training set. The remaining 30% are used as a test set. The indexes
used to sample training and test set are identical to minimize any
influence brought by the difference of data points used within the
same dataset (the column-wise results of Table 3). The classifiers
we use are built-in methods in the scikit-learn library [PVG∗11].
We choose Random Forest Classifier, Decision Tree Classifier, and

Logistic Regression. The starting projection mode we are using
for DimenFix here is t-SNE. In the classification results, while the
bolded values are the best performances, we are not bolding the re-
sults of raw datasets which passed all dimensions to the classifiers
(see Table 3).

There are several conclusions we can get from the classification
performance.

Firstly, we see a difference in the accuracy of the raw dataset, t-
SNE projection, PCA projection, and vanilla Force Scheme. These
differences come from the fact that the different algorithms (loss
functions defined by t-SNE and vanilla Force Scheme or the prin-
ciple component calculated by PCA) used by t-SNE, PCA, and
vanilla Force Scheme change the relationship among points in dif-
ferent ways. In most cases, the raw high-dimensional dataset, which
is more informative than the projections, usually has a better clas-
sification performance.

Occasionally, suppose the features regarding which points had
changed in their relationship with each other are not decisive for
a specific classifier to make the decision. In that case, the projec-
tion may give a slightly better classification accuracy than the raw
dataset for that particular classifier (e.g., classification by decision
tree classifier on the projection of Digit dataset created by t-SNE).
This result entirely depends on the dataset and the classifier and is
out of the user’s control.

If we compare DimenFix with vanilla Force Scheme, on the
other hand, the classification accuracy depends on how important
the feature fixed is. For example, in the Wine dataset, all three clas-
sifiers perform better on the projections created by DimenFix than
by a vanilla Force Scheme. Moreover, the moving-in-range modes
of DimenFix give a slightly worse performance than the normal
mode (strictly fixed mode) in all three classifiers. That is normal
DimenFix > moving-in-range DimenFix > vanilla Force Scheme.
This means the feature selected to fix ("alkalinity of ash") is very
important. We can also see a similar phenomenon from the results
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Iris Wine Cancer Digit
t-SNE 0.4691 0.5612 0.6690 0.8306
PCA 0.3153 0.6204 0.8228 0.8410
vanilla FS RANDOM 0.1597 0.4863 0.6793 0.8299
vanilla FS PCA 0.2329 0.4975 0.6713 0.8249
vanilla FS TSNE 0.1866 0.4977 0.6859 0.8283
DimenFix RANDOM 0.1640 0.5047 0.6325 0.8001
DimenFix PCA 0.1995 0.4871 0.6141 0.7982
DimenFix TSNE 0.2017 0.4974 0.6218 0.7935
DimenFix norm_mov_range RANDOM 0.2455 0.5031 0.6433 0.8201
DimenFix norm_mov_range PCA 0.2001 0.4867 0.6450 0.8214
DimenFix norm_mov_range TSNE 0.2582 0.4880 0.6169 0.8130
DimenFix gauss_mov_range RANDOM 0.2816 0.5073 0.6479 0.8091
DimenFix gauss_mov_range PCA 0.2113 0.4948 0.6471 0.8150
DimenFix gauss_mov_range TSNE 0.2704 0.4932 0.6359 0.8088

Table 2: Kruskal’s Stress: This score is designed to measure the similarity and dissimilarity between the raw dataset and a projection using
distance. Since t-SNE and PCA do not use distance as a reference for creating the projection, it is not surprising that Force Scheme based
methods give a better score. Moreover, DimenFix does not significantly increase the stress score compared with vanilla Force Scheme

of the Breast Cancer dataset. However, the difference in Breast
Cancer results between DimenFix and vanilla Force Scheme is less
significant. This means the chosen feature ("worst concave points")
has a significant influence on the class labels but is not as important
as "alkalinity of ash" for the Wine dataset. On the contrary, the fea-
tures selected in the Iris and Digit datasets are less important than
those in the other two.

To conclude, for a particular dataset, if a critical feature exists,
applying DimenFix on that feature should give a better projection.
On the other hand, by analyzing the classification result of the Di-
menFix protection, we should also get a sense of how important the
fixed feature is to the corresponding dataset.

4.4. Visualization

For visualization, we used Plotly [Inc15] library to visualize
the projections. Since a three-dimensional figure cannot be fully
printed out in a research paper, to demonstrate the visualization
ability better, we this time created two-dimensional projections for
the baselines (t-SNE, PCA, vanilla Force Scheme) and DimenFix.
The y axis represents the feature to be fixed, while the colors repre-
sent the classes (in Fig. 1).

We have several observations from the projections.

Firstly, as the y axis represents the fixed feature, we can see the
class distribution on the fixed feature. For example, in the Breast
Cancer dataset, we can see that the two classes have a different
distribution on the fixed axis "worst concave points" (Fig. 1 (l))
One class is concentrated on the top part, while another class is
concentrated on the bottom of the figure.

Secondly, the x axis is also very informative. The algorithm of
Force Scheme is trying to push different points farther away from
each other [TMN03], but here y axis is fixed. Different points will
then move in opposite directions on the x axis. As a result, we can
observe that the data point distribution, calculated using all features

in the raw dataset, is visualized regarding the fixed feature. This is
especially obvious for the Iris and Breast Cancer datasets. We can
see that for both datasets, one of the classes formed two obvious
subsets within the fixed feature (Fig. 1 (d) and Fig. 1 (l)).

In short, using DimenFix, we are not just trying to create visual
clusters, if there are any of them in the raw dataset, but are try-
ing to reproduce some more detailed and customized relationships
among points from a given dataset. The task of visual clustering
can be well done by different dimensionality reduction methods,
but the results we described in this section can only be observed by
DimenFix.

5. Conclusion

In this paper, we presented a novel meta-method, DimenFix, which
is built upon any gradient-descent-based base dimensionality re-
duction method and allows its user to influence the change in rela-
tionships, where the relationships are defined by the loss function
of the base dimensionality method between each pair of points in a
dataset.

Unlike normal dimensionality reduction methods, the aim of Di-
menFix is not only to form visual clusters for datasets containing
multiple classes while treating the dataset features uniformly. With
DimenFix, different goals can be achieved, like (a) better preserv-
ing a particular feature of the dataset while simultaneously reducing
the dimensionality and (b) understanding the data distribution with
respect to a specific feature specified by the user.

DimenFix maintains an equally good running time and Kruskal’s
Stress score compared with vanilla Force Scheme and other base-
lines while enabling a novel feature preservation task, where the
feature is selected by the user. For those datasets containing a crit-
ical feature, DimenFix gives a better projection than the baselines,
as demonstrated by the higher classification accuracies. When the
projection is visualized, DimenFix also provides the users with
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Iris (DT) Wine (DT) Cancer (DT) Digit (DT)
raw dataset 1.0000 0.9597 0.9824 0.9515

t-SNE 0.9619 0.8790 0.9774 0.9928
PCA 1.0000 0.9274 0.9598 0.9189
vanilla FS 1.0000 0.8952 0.9774 0.9101
DimenFix 0.9905 0.9919 0.9799 0.9101
DimenFix norm_range 0.9905 0.9758 0.9749 0.9109
DimenFix gauss_range 1.0000 0.9919 0.9824 0.9045

Iris (RF) Wine (RF) Cancer (RF) Digit (RF)
raw dataset 1.0000 1.0000 0.9950 0.9936

t-SNE 0.9714 0.9032 0.9724 0.9976
PCA 1.0000 0.9597 0.9749 0.9204
vanilla FS 1.0000 0.9113 0.9724 0.9324
DimenFix 1.0000 0.9919 0.9849 0.9189
DimenFix norm_range 1.0000 0.9839 0.9849 0.9300
DimenFix gauss_range 1.0000 0.9919 0.9950 0.9212

Iris (LR) Wine (LR) Cancer (LR) Digit (LR)
raw dataset 0.9810 0.9597 0.9447 0.9889

t-SNE 0.8667 0.6613 0.9095 0.9642
PCA 0.9810 0.8306 0.9347 0.7049
vanilla FS 0.9810 0.7097 0.9146 0.6388
DimenFix 0.9429 0.9597 0.9347 0.6874
DimenFix norm_range 0.8952 0.9194 0.9372 0.6794
DimenFix gauss_range 0.9048 0.9758 0.9347 0.6698

Table 3: Classification Accuracy: Decision Tree (DT) vs Random Forest (RF) vs Logistic Regression (LR). As agreed by all classifiers,
the Wine and Cancer datasets have a very important feature, and as the relationship defined by this feature is preserved, the classification
accuracy significantly improved

more information related to the particular feature, which is not re-
vealed by any baselines.

6. Future Work

Several future research directions can be pursued.

Firstly, we have tested DimenFix using Force Scheme as the
base dimensionality reduction method (Section 4). The method-
ology for applying DimenFix to other base methods is identical
to what we did for Force Scheme (the URL of the source code
can be found in Section 1), but the result might vary significantly.
DimenFix is applied to the gradient-descent-like process. In turn,
the base method’s performance is affected by the loss function,
and therefore it may vary from method to method. For example,
in Force Scheme, this loss function is defined by the Euclidean
distance between each pair of points, while for t-SNE, this loss
function is defined by the probability distribution among points.
Hence, even though the inference made by DimenFix on any base
method is identical, we might see different results. In the future,
we also plan to test the performance of DimenFix based on other
gradient-descent-based dimensionality reduction methods, like t-
SNE or UMAP.

Secondly, DimenFix, so far, is focused on 2- and 3-dimensional
projection. If visualization is not necessary, and if more than one

feature is more important than the others in a dataset, a higher-
dimensional projection will become helpful.

Thirdly, DimenFix can only be applied to an entire dataset.
Sometimes, the importance of some data points within a dataset
might be higher than the rest. In this case, it would be helpful for
a user to define a part of a dataset to be fixed or define the mov-
ing range point by point. A user interface and an interactive pro-
cess would help achieve this goal. Ideally, in such a user interface,
a user should be able to interact with the projection-creating pro-
cess by understanding and changing the relationships among points
shown by the current projection.
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