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Abstract In the context of digital twins, it is essen-
tial that a model gives an accurate description of the
(controlled) dynamic behavior of a physical system
during the system’s entire operational life. Therefore,
model updating techniques are required that enable
real-time updating of physically interpretable param-
eter values and are applicable to a wide range of (non-
linear) dynamical systems. As traditional, iterative,
parameter updating methods may be computationally
too expensive for real-time updating, the inverse map-
ping parameter updating (IMPU) method is proposed
as an alternative. For this method, first, an artificial
neural network (ANN) is trained offline using novel
features of simulated transient response data. Then, in
the online phase, this ANN maps, with little computa-
tional cost, a set of measured output response features
to parameter estimates enabling real-timemodel updat-
ing. In this paper, various types of transient response
features are introduced to update parameter values of
nonlinear dynamical systems with increased computa-
tional efficiency and accuracy. To analyze the efficacy
of these features, the IMPUmethod is applied to a (sim-
ulated) nonlinear multibody system. It is shown that a
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smart selection of features, based on, e.g., the frequency
content of the transient response, can improve the accu-
racy of the estimated parameter values, leading to more
accurate updated models. Furthermore, the generaliza-
tion capabilities of theANNs are analyzed for these fea-
ture types, by varying the number of training samples
and assessing the effect of incomplete training data.
It is shown that the IMPU method can predict param-
eter values that are not part of the training data with
acceptable accuracy as well.

Keywords Model updating · Parameter estimation ·
Neural networks · Transient-based features · Digital
twin · Nonlinear systems

1 Introduction

As part of the fourth industrial revolution, Digital twins
(DTs) hold the promise of increasing the efficiency, and
lowering costs and throughput times of, among others,
high-tech engineering systems and manufacturing pro-
cesses [1], such as, e.g., wire bonder machines, lithog-
raphy systems, or steel manufacturing plants. As the
name ‘digital twin’ suggests, this potential is achieved
by having a digital representation of a physical system.

Using this DT, the behavior of the ‘physical twin’
is predicted risk-free by simulating and analyzing the
digital copy of the system [2]. In the design process
of future generations of the system, this provides engi-
neerswith valuable insight into the dynamics of the cur-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-023-08354-5&domain=pdf
http://orcid.org/0000-0003-4834-7938
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rent system, enabling improved design of the next gen-
eration. Additionally, measured behavior of the actual
system can be compared to behavior predicted by a DT
of the healthy system for the benefit of structural health
monitoring (SHM) [3], enabling efficient maintenance
management, minimizing maintenance cost, and lead-
ing to an increase in the lifetime of the system. Further-
more, during the operation of a system, a DT is able
to suggest different operation modes or adapt mission
planning if it senses that the current state of the system
is not suited for an originally planned operation mode
or mission [4]. This application can also be extended
to using a dedicated DT for each machine in a fleet of
akinmachines, based on itsmost recentmeasured state,
to account for machine-to-machine variations originat-
ing from, e.g., manufacturing tolerances. Availability
of such dedicatedDTs allows for adaptingmodel-based
(feedforward) controllers to enhance the performance
of each individual machine.

Coined in 2014 byGrieves [5], the concept of digital
twins is relatively novel and still faces multiple broad
challenges, such as managing heterogeneous models
across varying disciplines and combining models and
big-data for, among others, fault-detection and per-
formance optimization [6]. In this paper, these chal-
lenges are regarded as out of scope, however, and the
assumption is made that a DT is given by a paramet-
ric (dynamic) model, derived using either: (1) analyt-
ical approaches based on first-principles (FP) such as
Lagrange’s equations of motion or Hamilton’s princi-
ple, (2) (multiphysical) modeling and analysis software
packages, such as finite element (FE) or multibody
dynamics packages, and (3) software tools that com-
bine techniques from multiple engineering disciplines,
e.g., dynamic modeling andmotion control, such as the
Matlab-based Simulink or Simscape packages. Note
that, although these three modeling approaches are all
based on FPs, only the first approach provides direct
access to the closed-form equations of motion (EoMS)
for the user.Models from the second and third approach
are also referred to as simulationmodels. But also in the
latter two approaches, the user has access to the param-
eter values. Another challenge is related to the ever-
present mismatch between measurements of a physical
system and corresponding predictions of its DT. For
the DT to reach its full potential, this mismatch should
be minimal throughout the system’s operational life
[1,4,7]. This challenge of givingDTs life-long learning

capabilities is referred to as autonomous model updat-
ing and is considered in this paper.

In Mottershead et al. [8,9], the aforementioned mis-
match between measurement and model predictions is
contributed to three distinct model error sources; incor-
rect model structure [10,11], discretization errors [12],
and/or errors due to incorrect parameter values. This
paper focuses on model parameter updating as to min-
imize the last error source. Therefore, model structure
and discretization errors are assumed negligible. Fur-
thermore, in this work, experimental errors caused by,
e.g., sensingor calibration errors, are assumed tobe cor-
rected, negligible, or at least to be much smaller than
modeling errors, which is the case in many situations.

Given the intended application in a general digi-
tal twin context, key requirements for an autonomous
model updating procedure are defined as follows: (1)
although control and SHM will not be considered in
this paper yet, we aim to develop a model updating
methodology applicable in the context of model-based
control and/or SHM; therefore, updating should be per-
formed in real-time, (2) parameter updates should be
physically interpretable to enable insightful SHM, (3)
updating should be applicable to (complex) nonlinear
dynamical models, and (4) the updating method should
be suitable for parametric models (not necessarily of
dynamical systems) derived using FPs, FE/multibody
software, or multidisciplinary software tools. The pre-
sentation of an autonomous model updating method
simultaneously fulfilling these four requirements is the
main contribution of the current paper. The correspond-
ing technical contributions will be discussed in more
detail later in this section.

Approaches for model parameter updating found in
literature are divided in four types. The first type con-
cerns updating methods originating from the field of
structural dynamics, see, e.g., [9,13] for an overview.
Although some exceptions exist, see [14–17], these
updating methods are typically limited to linear(ized)
systems [8,18]. Furthermore, these methods are based
on expensive iterative sensitivity methods [16,17,19–
25] or physically non-interpretable direct methods
[21,26–28]. Consequently, these techniques do not
meet the four requirements for model updating for DTs
asmentioned above andare thus not regarded as aviable
solution to the problem considered here.

Alternatively, system identification techniques are
used to find a model that describes measured data. For
an overview of system identification techniques see,
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for example, [29–31]. Note that, in contrast to model
updating in the field of, typically linear(ized), structural
dynamics, system identification has been developed for
nonlinear systems [32,33].However, due to the fact that
in system identification generic model classes are fitted
to data, the identified models are difficult to interpret
from a physical perspective [34] and thus, do not satisfy
the above requirements.

A third type of parameter updating techniques
concerns filter-based (or observer-based) methods.
Examples are the vanilla [35], extended [36,37], and
unscented Kalman filter [38–40], Gaussian filters [41,
42], and particle filters [43].Although these approaches
are often used for DTs, for complex systems (i.e., sys-
tems with many states and/or parameters), filter meth-
ods might suffer from relatively high computational
costs, prohibiting online updating (especially if the
required sampling frequency is relatively high) [43].
Furthermore, filter-based methods require an initial
guess for the parameter estimates. If this information is
not available or sudden changes to the parameter val-
ues occur, filter methods might end up in local min-
ima. To avoid this, initial parameter values may be
estimated using a coarse global parameter estimation
method [38] at a significant cost of computation time.
Finally, filter-based updatingmethods typically require
direct accessibility to closed-formEoMsof the dynami-
cal model for the user. Consequently, filter-basedmeth-
ods cannot be directly applied to simulation models (as
obtained from, e.g., FE/multibody software packages,
or Matlab-based packages as Simulink or Simscape)
that may be used to constitute a digital twin.

The fourth approach to model updating employs
machine learning (ML). Here, again, we can distin-
guish between, firstly, identification, i.e., identifying a
system without using a FP reference model, and, sec-
ondly, updating (parameters of) a predefined reference
model. An example of the former is the work of Li
on identifying nonlinear normal modes using physics-
integrated deep learning [44].

An other example of ML-based identification is
the work by Karniadakis et al. [45–47] on physics-
informed neural networks (PINNs) that is also adopted
by other researchers [48]. In this method, coefficients
of (partial) differential equations governing the mea-
sured system are learned using a neural network. In
general, the learned coefficients of these (partial) dif-
ferential equations, however, do not refer to directly
interpretable physical quantities, e.g., masses, damp-

ing, and stiffness constants. Additionally, to update
a set of coefficients using measured data, a neural
network needs to be trained, which can take signif-
icant computation time and hence, impede real-time
updating. This holds especially for models consist-
ing of a large number of states and/or parameters.
An other ML-based identification methodology is the
sparse identification of nonlinear dynamics (SINDy)
algorithm developed by Brunton et al. [49–52]. Simi-
lar to PINNs, this method finds (a sparse set of) coef-
ficients of differential equations, which may not corre-
spond to physical quantities, again hindering physical
interpretation. Note that this argument holds for most
system identification methods (based on ML or not).
A ML-based method more closely related to (phys-
ically interpretable) model updating is found in the
work of Willcox et al. [53–57]. Here, a (FP) model is
selected from a predefined library ofmodels, represent-
ing systems with various fault types, using an optimal
decision tree. Due to a prerequisite library of models,
the ‘updated’ model is, however, limited to a discrete
set of models that are manually defined by the user,
and consequently is of limited accuracy. Other ML-
basedmethodologies aimat finding, online, the (global)
parameter values corresponding to a measured signal
(in a continuous domain) using, for example, iterative
genetic algorithms [58,59]. In this case, however, the
(genetic) search over the parameter space takes consid-
erable computational effort, rendering real-time updat-
ing impossible [38].

As an alternative, the inverse problem of estimating
physically interpretable parameter values in a contin-
uous domain using measurement data can be solved
using an inverse mapping model (IMM). Here, the
IMM directly maps, with small computational costs,
a set of measured features, describing the (dynami-
cal) behavior of a system, to a set of corresponding
physically-interpretable parameter values of the refer-
ence model. In the literature, (trained) Artificial Neural
Networks (ANNs) have been found suitable to consti-
tute these IMMs due to their generic function approx-
imation characteristics [18,60–63]. Consequently, this
methodology was coined the neural network updating
method (NNUM) by Atalla [18]. Note that, since other
generic function approximation algorithms may also
be used to constitute IMMs, the authors prefer to refer
to this methodology as the inverse mapping parameter
updating (IMPU) method. For example, in recent work
of the authors, Gaussian processes are used as IMMs,
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with the added benefit of enabling uncertainty quan-
tification for the estimated parameter values [64]. The
main qualitative advantage of this method with respect
to previously discussed parameter updating methods
is that online parameter updating is enabled even for
large-scale systems with high sampling frequencies.
This is enabled by shifting a significant majority of
the computation time to an offline (training) phase,
whereas the required online (inference) computations
are extremely efficient and scale marginally with the
complexity of the system.Although this IMPUmethod-
ology thus satisfies requirements 1 (real-time updating)
and 2 (physically interpretable updating) for a broad
range of systems and their DTs, this IMPU methodol-
ogy has, to the best of the authors’ knowledge, how-
ever, only been applied to linear(ized) dynamical sys-
tems. Also note that the IMPU method can be applied
on parametric models derived using any of the afore-
mentioned model derivation options (first-principles,
FE/multibody software, or multi-disciplinary software
packages), yielding valuable flexibility in themodeling
of the DT.

Therefore, the three main contributions of this work
are:

1. Extension of the IMPU method towards nonlin-
ear dynamical systems. Hereto, we propose to use
transient-based output signal features to update non-
linear dynamical systems online by inferring (phys-
ically interpretable) parameter values using IMMs
with little (online) computational cost. Here, multi-
ple types of transient-based features are introduced
that use engineering knowledge to increase accuracy
and computational efficiency of the IMPU method-
ology.

2. An application and evaluation of the introduced
methodology and feature types to two simulated
nonlinear multibody systems.

3. An extensive evaluation of the generalization capa-
bilities of the introduced feature types by varying
the number of training samples and using incom-
plete training data.

In preliminary work of the authors [65], the IMPU
method has been applied to update a nonlinear dynam-
ical model. However, this extended abstract only dis-
cussed the use of a single, straightforward time-
domain-based feature type (samples of measured time-
series data as directly obtained from measurements).
With respect to this extended abstract, one of the impor-

tant novelties of this paper lies in the proposal of differ-
ent transient-based (both time-domain and frequency-
domain) feature types that aim at further improving
the accuracy of the parameter estimates using engi-
neering knowledge. The current paper expands upon
[65] with the following contributions: (1) a full-fledged
description of the IMPUmethod for nonlinear systems,
(2) a more complete application and analysis on two
simulated multibody systems, one of them including a
comparisonwith thewell-knownKalmanfiltering tech-
nique, (3) an elaborate analysis of generalization capa-
bilities of the IMPU method, and (4) the definition,
analysis, and comparison of various transient-based
feature types.

The outline of this paper is as follows. In Sect. 2,
a formal definition of the model parameter updating
problem is given. Moreover, the usage of transient-
based output features to update, online, interpretable
parameter values of nonlinear models with low com-
putational costs is introduced. Subsequently, in Sect. 3,
different transient-based output features are intro-
duced. In Sect. 4, the introduced technique is applied on
a (simulated) rigid double beam model and results are
analyzed. Additionally, this section analyzes the gener-
alization capabilities of the aforementioned transient-
based features. Then, in Sect. 5, the IMPU method is
applied on a roll plane model, and a brief (quantitative)
comparison ismadewith the application of an extended
Kalman filter to update parameter values. Finally, con-
clusions are discussed and recommendations for future
work are given in Sect. 6.

2 Model updating using inverse mapping models

2.1 Problem definition

It is assumed that a DT of a dynamical system is avail-
able in the form of a (nonlinear) reference model of
which the dynamics may be given in first-order State
Space (SS) form:

ẋ(t) = g(x(t), u(t), p),

y(t) = h(x(t), u(t), p).
(1)

Here x =
[
q�, q̇�]� ∈ R

2nDoF represents the state

vector of the dynamical system that generally con-
sists of translation and/or rotation degrees of freedom
(DoFs), q, and their time derivatives, q̇, where nDoF
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represents the number of DoFs in the model. Further-
more, y ∈ R

nout is a vector containing nout outputs and
u ∈ R

nin contains nin inputs. Finally, the parameter val-
ues (to be updated) are collected in p ∈ R

n p , where n p

denotes the number of updating parameters. Note that,
in this work, physically interpretable updating param-
eters directly available from the EoMs, e.g., spring and
damping constants (e.g., representing mechanical con-
nections), are used. Although in this paper mechanical
systems are considered, the presented methodology is,
in fact, applicable to general nonlinear dynamic sys-
tems and therefore suited for the use in the DT field
where models are often multi-disciplinary. Note that
the introduced methodology is, in principle, applica-
ble to any (traditional) dynamical model, i.e., models
that are not necessarily used within the DT context (in
which, among others, control, SHM, and visualization
are also incorporated). The benefits of the proposed
methodology are, however, especially relevant in the
DT context, as discussed in Sect. 1.

Values of updating parameters initially used in the
reference model may be inaccurate and/or may be sub-
ject to change over time with respect to a measured
physical system, leading to a DT that may inaccu-
rately represent its physical counterpart. Therefore, we
define a unique unknown set of true parameter val-
ues, p̄ ∈ R

n p , that, when used to parameterize the
reference model in (1), exactly replicates the physi-
cal system. Here, it is assumed that the structure of
the reference model is correct, i.e., functions g(.) and
h(.) fully capture the dynamics of the physical system,
and that discretization errors are negligible. Therefore,
these true dynamics, in which unbiased measurement
noise w̄(t) ∈ R

nout is present, are given by

˙̄x(t) = g(x̄(t), u(t), p̄),

ȳ(t) = h(x̄(t), u(t), p̄) + w̄(t),
(2)

where the bars indicate that variables are related to the
true/physical system.

Remark 1 Since, in practice, a correct model structure
may prove difficult to achieve, ongoing research by the
authors is concerned with (simultaneously) updating
parameter values and model structure.

Since nonlinear models are evaluated, output fea-
tures based on transient responses are required to com-
pare the model and physical system. Therefore, an
experiment (for proof of principle and/or a robust study
of themethod, also simulated experiments can be used)

is performed with known excitation signals u(t) and
initial conditions x̄(t = 0) = x0. Measuring the out-
put of the physical system in (2) yields discrete time
series data ȳi for the i th output signal ȳi (t):

ȳi = [ȳi (t1), . . . , ȳi (tN )] , (3)

where N indicates the number of equidistant time
points and i = 1, . . . , nout. Simulating this experimen-
tal scenario using the reference model in (1), param-
eterized with an arbitrary set of parameter values p,
yields time series data yi ( p), defined similarly to (3).
If p �= p̄, there exists a mismatch between yi ( p) and
ȳi , even if themeasurement noise w̄ in (2) is negligible.
In the following, inverse mapping models will be used
to reduce this mismatch by accurately estimating p̄ in
a computationally fast manner.

To improve performance of the updating procedure,
i.e., to make it computationally more efficient and/or
to improve accuracy of the updating parameter esti-
mates, a set of nψ,i ≤ N features ψ̄ i ∈ R

nψ,i is defined
that captures important characteristics of the time series
data:

ψ̄ i = L(ȳi ) for i = 1, . . . , nout, (4)

where L represents a feature extraction function.
Using these features, the goal is to estimate a set

of parameters p̂ (in real-time) that approximates p̄ by
solving

p̂ = argmin
p

E
(
ψ̄ − ψ( p)

)
, (5)

wherewith someabuseof notation,ψ i ( p) := ψ i (yi ( p)).
Furthermore, E : Rnψ → R is a cost functional and ψ̄

contains the concatenated measured features of all nout
output signals:

ψ̄ = [ψ̄�
1 , . . . , ψ̄

�
nout]�, (6)

such that ψ̄ ∈ R
nψ , with nψ = ∑nout

i=1 nψ,i . Further-
more, note thatψ( p) is a set of features obtained equiv-
alently using a simulation of the reference model (1)
parameterized with the parameter set p.

Since the objective is to solve (5) in (near) real-time,
conventional, iterative methodologies that require mul-
tiple model evaluations or simulations usually are com-
putationally too inefficient for a DT application. There-
fore, in the following section, an alternative method
to update parameter values in (near) real-time using
an IMM is presented that simultaneously meets the
other requirements defined in Sect. 1, i.e., updating
interpretable parameter values and updating nonlinear
dynamical models.
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2.2 Inverse mapping model

To solve the minimization problem in (5) with low
computational effort, inverse mapping models are
employed, as proposed in [60]. In contrast to forward,
FPmodels, such as the referencemodel in (1), the input
to an IMM is a set of (measured) output features and
its output is the set of corresponding inferred (i.e., esti-
mated) parameter values p̂. Mathematically, the IMM
is represented by the function I : Rnψ → R

n p :

p̂ = I(ψ̄), (7)

where it is emphasized that, in general, I(ψ̄) �= p̄ due
to the influence of noise and the approximate nature of
the IMM. To constitute the function I, a feed-forward
artificial neural network (abbreviated as ANN and also
known as the multilayer perceptron) is trained in an
offline phase. These ANNs are renowned for their uni-
versal function approximation capabilities [66]. More-
over, in the online phase, inferring parameter values
using ANNs is computationally efficient, as is also dis-
cussed in [59], where ANNs are used as surrogates for
FP models. Note that, in contrast to parameter updat-
ing methods such as PINNs or filter-based techniques
(see Sect. 1), known physics are not explicitly used in
the ANN. However, since training data are generated
using the FP model, the physics governing this model
are implicitly incorporated in and learned by the ANN.

Remark 2 In the case that the model structure is incor-
rect, the IMMmethodwill try to find suitable parameter
values such that the measured features are mimicked
as closely as possible (but inevitably with loss of accu-
racy) using the model parameterized with the updated
parameter values, i.e., the updated model. Note that in
this case, the identified parameter values do not fully
represent their physical counterparts as intended in the
reference model and should, therefore, be handled with
care for, e.g., SHM.

Next, Sect. 2.2.1 gives a general introduction to
feed-forward ANNs. Afterward, the offline and online
phases of the IMPUmethodare discussed inSects. 2.2.2
and 2.2.3, respectively.

2.2.1 Feed-forward ANN

As indicated by (7), a (feed-forward) ANNmaps a vec-
tor containing features ψ̄ to a vector containing param-
eter values p̂. The ANN consists of multiple layers

consisting of neurons that are interconnected between
neighboring layers, see Fig. 1. In the input layer, each
entry of the feature vector ψ̄[ j], j ∈ {1, . . . , nψ },
is assigned its own neuron. In the output layer, the
parameter vector p is used likewise. Between the in-
and output layer, nr hidden layers containing n

(r)
z neu-

rons in hidden layer r (r is an element of {1, . . . , nr })
are located. Here, nr and n(r)

z should be chosen large
enough to capture the complexity of the inverse map-
ping1, but not too large to prevent, e.g., improper train-
ing and poor generalizations. It is therefore advisable
to optimize these values by employing hyperparameter
tuning [69].

The output value of the j th neuron in (hidden) layer
r is given by

z(r)[ j] = α(w
(r)
j

�
z(r−1) + b(r)

j ), (8)

where α(·) represents an activation function that allows
for nonlinearities to be introduced in the mapping. Fur-

thermore,w(r)
j ∈ R

n(r−1)
z represents a vector containing

trainable weights between neuron j in layer r and all
neurons in layer r − 1, and b(r)

j represents a trainable
bias that allows for an affine input to α(·). Here, r = 0
and r = nr + 1 denote the input and output layer,
respectively. Since the bias can also be regarded as a
weight, from here on, the term ’weight’ refers to both
the weights w and the biases b. For a more detailed
discussion of ANNs, the reader is referred to [66].

2.2.2 Offline phase: training of the ANN

In the offline phase, all weights in the ANN are trained
such that the resulting ANN approximates the correct
mapping and is consequently able to infer parameter
values with high accuracy. To train the weights, super-
vised learning is employed forwhich ns simulated pairs
(or samples) of parameter values and their correspond-
ing (output) features are employed.

As shown schematically in Fig. 2, depicting the
offline phase of the IMPUmethod, the first step is train-
ing/validation/testing data generation, where these data
types are distinguished by three distinct color-coded
lines. Note that, although the testing data are not used
in the offline phase, in Sects. 4 and 5, these data are used
to test performance of the trained ANN. In Fig. 2, data

1 Although, theoretically, a single-hidden layer network is able to
approximate any function [67], using multiple layers with fewer
nodes may decrease training and inference time [68].
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Fig. 1 Structure of a fully connected feed-forward ANN with
nr hidden layers

Fig. 2 Schematic representation of the offline phase of the IMPU
method. The blue ( ), orange ( ), and green ( ) lines
indicate training, validation, and testing data, respectively. Black
lines ( ) refer to universal variables

generation (area in light green) is performed for each
sample s separately. First, a set of updating parameter
values ps ∈ P ⊆ R

n p is selected (based on, e.g., Latin
HyperCube (LHC) sampling [70]). Here, P denotes a
pre-defined admissible set of updating parameter val-
ues in which the true updating parameter values are
expected to lie throughout the functional life of the
physical system. Then, for each sample s, the forward
reference model, i.e., (1), with p = ps , is used to
perform a simulation an experiment, with predefined
initial conditions x0 and excitations u(t). This results
in transient data y( ps), from which a set of features
ψ( ps) is extracted (for which different feature types
may be used) using (4). Note that the feature extraction
is performed for each output signal individually, after
which features extracted from the output signals are
concatenated using (6). In Fig. 2, four feature types are
extracted (see Sect. 3 for their definitions) from which
features are selected2. Furthermore, it is remarked that
we assume that the true parameter values will lie in P.
Therefore, provided that we use sufficient training sam-
ples, all (nonlinear) responses in P are captured in the
training data (note that in normalized response features
also still a nonlinear dependency of response features
and parameters is represented if it is present in the orig-
inal data). Consequently, encountering such responses
in the testing data/online will be recognizable for the
trained ANN. Furthermore, note that the lack of hats
and bars for ps andψ( ps) indicates that these variables
correspond to training data.

After data generation, to increase robustness of the
ANN [71], the inputs and outputs of the training data,
i.e., ψ( ps) and ps for s ∈ {1, . . . , ns}, are normal-
ized such that, per entry in both ψ( ps) and ps , the
minimum and maximum value across all ns training
samples equal 0 and 1, respectively. For more details
about normalization, see Appendix A.

Remark 3 To make the (training) data highly informa-
tive, the excitation signals u(t) employed to generate
the output responses should have relevant frequency
contents for the system under study, have a proper
magnitude (to guarantee a good signal-to-noise ratio),
excite relevant nonlinearities, and take the bounds of
the physical system into consideration, see, e.g., [31].

2 Although multiple selection strategies can be applied, in this
research, feature selection is limited to selecting a (sub)set of
features belonging to a single type only.
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Having generated the normalized training data, the
weights of the ANN with a user-defined structure (i.e.,
hyperparameters such as activation functions and num-
ber of layers and nodes) are tuned. First, the associ-
ated weights are initialized with random values. Subse-
quently, during iterative application of ne epochs these
weights are tuned, where in one epoch all training data
are used once. At the start of each epoch, all train-
ing data are randomly divided over nb batches (sub-
sets of training data containing multiple training sam-
ples). Then, for each sample s in a batch, the following
sequence of steps is performed:

1. The ANN (parameterized using the current values
for the weights) is used to estimate the param-
eter values given the features of sample s, i.e.,
Ĭk

(
ψ( ps)), where the breve indicates that the ANN

weights are still being tuned.
2. The cost function value is calculated using ps and

its current estimate Ĭk
(
ψ( ps)). In this paper, the

squared error is used as the cost function:

ε = (Ĭ(
ψ( ps)

) − ps)�(Ĭ(
ψ( ps)

) − ps), (9)

Note that, in contrast to (5), (9) minimizes the dif-
ference between the estimated and known train-
ing parameter values instead of features, due to the
inverse nature of the mapping.

3. Using backpropagation, the gradients of ε with
respect to all weights are calculated.

Using the gradients obtained in step 3 for all samples in
the batch, ANNweights are updated such that themean
squared error (MSE) in the parameter values over all
samples in the batch is minimized. After this update,
steps 1–3 are repeated for a new batch, until all batches
have been processed. Then, the validation data are used
to calculate the validation loss (MSE in the parameter
values). Here, the validation data are obtained in an
equivalent manner as the training data (with distinc-
tively sampledparameter values), seeFig. 2, andused to
evaluate performance of the ANNwithout being biased
towards the training data. If the validation loss has not
decreased for nes consecutive epochs or all ne epochs
have been processed, training is stopped and the ANN
with the lowest validation loss is saved; otherwise, a
new epoch is started. This is referred to as patience-
based early stopping and is employed to prevent over-
fitting [72]. For more information about backpropaga-

tion and ANN training in general, the reader is referred
to [66].

2.2.3 Online phase

After having trained the ANN offline with simulated
data, leading to the inverse trainedmapping in (7), in the
online phase, this trained ANN is used to infer param-
eter values p̂ from measured data using (7), where the
hat indicates that this is an inferred estimate. As shown
in Fig. 3, this is achieved by feeding normalized output
features ψ̄

nor
to theANNsee (7). Here, ψ̄

nor
is obtained

by normalizing (similar to normalization of the training
data) the features extracted from a measurement of a
physical system. Recall that an overbar is used to indi-
cate that these features relate to the physical system.
Since the ANN has been trained using normalized fea-
tures and parameter values to increase robustness, in the
online phase, again normalized features and parameter
values are utilized. Tomaintain consistency, normaliza-
tion in the online phase is performed using boundsψmin
andψmax as obtained during training, see Appendix A.
The inferred (or updated) normalized physical param-
eter values are then denormalized and substituted in
the parameterized reference model (1) resulting in the
updated model such that the DT better mimics the true
system. Furthermore, although the model constituting
a DT should in general be computationally efficient
(e.g., for control purposes), the IMPUmethod does not
require online evaluation of the parameterized model
(1), since in the online phase only measurements are
used and the ANN is evaluated for the measured fea-
tures to generate a parameter estimate. Defining para-
metric models with low online model evaluation time,
i.e., real-time simulation, which can be achieved using,
e.g., parametric model order reduction techniques is
therefore regarded as out of scope for this paper.

Due to the use of transient data to accommodate for
nonlinear systems, in contrast to (modal) characteris-
tics of linear systems as previously used in [60,62,63],
the measured experiment in the online phase should
be identical to the experiments simulated in the offline
phase. Therefore, the initial conditions and excitation
signals used in both phases are required to be equal
and known in advance. Consequently, this updating
method is only suited for applications with known forc-
ing which is relevant, e.g., in high-performance motion
stage systems with known reference trajectory inputs.
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Fig. 3 Schematic representation of the online phase of the IMPU
method

Remark 4 In a practical setting, a homing procedure
should be used to achieve the desired initial conditions.
In applications where, during operation of the phys-
ical system, a certain action needs to be performed
repetitively, the corresponding initial conditions and
excitation signals can be used to constitute the afore-
mentioned experiment, enabling on-the-fly parameter
updating.

3 Definition of transient-based output features

In this section, different definitions for the (not yet nor-
malized) feature vector ψ i ( p), containing a set of nψ

(depending on the choice of the user) features that are
used as inputs to the ANN, are given. Here, these fea-
tures are extracted from sampled transient datayi ( p) as
obtained from a simulated (for a model parameterized
with p) or measured experiment.

In other words, different definitions for function L
in (4) are introduced. Here, the aim is to define highly
informative features, i.e., features that are sensitive

to variations in output signals resulting from updat-
ing parameter value variations. We aim to do so by
exploiting engineering knowledge such that accuracy
and computational efficiency of the IMPU method are
improved. For the remainder of this section, we use the
notation for the offline simulated training data (without
overbar). For the validation/test and online measured
data, the discussed feature extraction methodologies
are applied identically.

The introduced feature types are divided in time- and
frequency-domain features, which will be discussed in
the coming Sects. 3.1 and 3.2, respectively.

3.1 Time-domain features

Here, feature types are introduced that directly use the
sampled transient data y. In Figs. 2 and 3, these feature
types are also indicated in the two left ’extract features’
blocks in the feature extraction part (marked in yellow).

Time samples

Time Samples (TS) features simply refer to the case in
which a selection of nTS entries of the sampled output
signal are used as features:

ψTS = y[vTS], (10)

with vTS ∈ N
nTS denoting a vector containing the

indices of the selected entries in y. In this work, vTS
is chosen such that the feature vector consists of time
samplesmeasured at equidistantmoments in time.Note
that, as the initial conditions are identical for all sim-
ulations and experiments, the measurements at initial
time t = 0 are not included in the feature vector. Using
TS features, the ANN is provided with the raw time
series data as directly obtained from themeasurements.
Therefore, without exploiting engineering knowledge,
the ANN has to implicitly extract ‘hidden features of
the underlying system’ from the time series data in its
hidden layer(s). In contrast, we will later introduce fea-
ture extractionmethods that exploit engineering knowl-
edge to aid the ANN by directly providing more infor-
mative data about the system. Specifically, we aspire
to extract (smaller) sets of features that have higher
information density, thereby improving accuracy and
computational efficiency of the offline training of the
ANN and the online inference of parameter estimates
using the ANN.
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Time extrema

For Time extrema (TE) features, we use the magnitude
at and temporal location of a selection of nTE local
extrema in the time domain signal:

ψTE =
[
y[vTE]�,t[vTE]�

]�
. (11)

Here, t = [t1, . . . , tN ] consists of all time instances at
which the measured signal is sampled, and vTE ∈ N

nTE

contains the (ascending) indices of the first nTE extrema
that are identified using some extrema-finding algo-
rithm. Note here that local extrema, i.e., local min-
ima and local maxima, are defined as the local max-
ima/minima near the peaks and/or troughs of the sig-
nals, such that, despite the influence of noise, only one
extremum is found per peak/trough. In practice, this
can be achieved by using various options of the find-
peaks algorithm in Matlab such as the minimum peak
prominence (a user-specified minimum change in sig-
nal value required on either side of the peak before
the signal attains a value beyond the peak itself [73]).
As, for different samples obtained for distinct param-
eter values sets, the measured signals may not have
the same number of extrema, nTE should be equal to or
smaller than the lowest number of extrema encountered
in the output signal across all training samples.

An advantage of TE features is that, especially if
the transient signal is similar to a free response, the
height and temporal location of extrema in the tran-
sient signal are related to dynamic characteristics such
as amplitude decay of eigenmodes and eigenfrequen-
cies, respectively. For example, the heights of consec-
utive peaks in an impulse response (which decrease in
magnitude) are indicative about the amount of damp-
ing in a system. Consequently, only few of these fea-
tures can already contain a lot of information about
the transient response that is closely related to phys-
ical parameters such as mass, damping, and stiffness
parameters. Therefore, compared to, e.g., TS features,
the ANN only needs to learn a relatively simple IMM,
potentially boosting its accuracy and simultaneously
lowering training and inference time due to the smaller
set of features. A disadvantage, however, is that the
temporal location of an extremum is relatively sensi-
tive to noise, potentially causing the true location of
the extremum to be identified at one of the neighboring
entries in t. Due to the discrete nature of t, this may
cause relatively large variations in the resulting feature
values.

3.2 Frequency-domain features

Alternatively, features can be extracted from frequency
domain data Y ∈ C

N/2+1, where N is an even integer
such that we obtain N/2 − 1 complex numbers and
2 real numbers (for f = 0 and half the Nyquist fre-
quency). For this, as indicated in Figs. 2 and 3, first,
the measured/simulated time domain data y are trans-
formed to the frequency domain:

Y( f j ) = F(y(tk)), (12)

where tk denotes timestep k (where k = 1, . . . , N ),
f j denotes frequency bin j (where j = 1, . . . , N/2 +
1), and F represents the Discrete Fourier Transform
(DFT); in practice, usually the Fast Fourier Transform
(FFT) algorithm is used.

Since the discrete frequency domain data are rep-
resented in a set of complex numbers, there are two
options to pass this data to the ANN (which requires
real valued data): 1) using the Magnitude and Phase
information (MP): see (13), or 2) using the Real and
Imaginary components of the frequency domain data
(RI): see (14):

ψMP =
[
|Y[vFT]|� , � Y[vFT]�

]�
, (13)

ψRI =
[
� (Y[vFT])� ,	 (Y[vFT])�

]�
, (14)

where |·|, � (·),�(·), and	(·), represent the magnitude,
phase, real part, and imaginary part of a complex num-
ber, respectively. Since the phase and imaginary part at
f1 = 0 and at the folding frequency (half of the sample
frequency) of real valued time signals are always zero,
these numbers do not convey any information and are
therefore excluded from the feature vector.

Although the discrete frequency domain signal con-
tains, by definition, exactly the same information as
the discrete time domain signal, the relevant informa-
tion may be more condensed in the frequency domain
signal. For example, frequencies at which themeasured
signal has only small magnitudes are likely less infor-
mative about the system’s dynamics and response than
frequencies with high magnitudes. Indices of the fre-
quency bins that are deemed informative, e.g., located
near eigenfrequencies of the linearized system or as
encountered in exploratory experiments, are therefore
collected in the index set vFT ∈ N

nFT . Only using the
features belonging to these more relevant frequencies
bins, referred to as Frequency Bins of Interest (FBoIs),
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leads to amore compact set of features, raising potential
for improved performance of the ANN. For example,
at bins corresponding to high frequencies, the signals
may be dominated by noise. Excluding these bins from
vFT can improve the inverse mapping learned by the
ANN. In this paper, FT-based features that are limited
to the information in some FBoIs are indicated by the
suffix (FBoI).

4 Illustrative case study on double beam system

In this section, the inverse mapping parameter updat-
ing method and various feature types are applied on a
case study of a nonlinear multibody rigid double beam
(RDB) system. Here, we employ simulated experi-
ments, where noise will be added to the response
signals. Firstly, the system and experiment design
are introduced, along with exploratory simulations,
in Sect. 4.1. Additionally, this section discusses the
employed ANN and accompanying (training) settings.
In Sect. 4.2, results are analyzed in terms of accuracy
of the inferred parameter values and responses of the
updated model/DT. Finally, an extensive analysis of
the generalization capabilities of the ANN is given in
Sect. 4.3.

4.1 Problem setting

4.1.1 Model description

Figure4 shows the side view of the multibody sys-
tem academic demonstrator by means of which the
introduced methodology is demonstrated in this sec-
tion. The system consists of one translating rigid
beam (beam 1) with mass m1, which is connected
to a rotating rigid beam (beam 2) with mass m2 and
mass moment of inertia ICoM,2 about its center of
mass (CoM). The position of beam 1 is indicated by
y1(t) [m], and the orientation of beam 2 is indicated
by y2(t) [rad]. The location of the CoM of beam
2 is given by the position vector pointing from the
joint connecting beams 1 and 2 to the CoM of beam
2: ρCoM = (

lCoM,1 cos(y2) − lCoM,2 sin(y2)
)
e1 +(

lCoM,1 sin(y2) + lCoM,2 cos(y2)
)
e2, where e1 and e2

represent unit vectors of a (global) fixed reference
frame as indicated in Fig. 4.

Fig. 4 Schematic representation of the RDB academic demon-
strator model

Table 1 Updating parameter space bounds for the RDB model

Parameter Lower bound Upper bound Unit

d1 0.8 1.2 N·s
m

d2 1.75 × 10−4 2.25 × 10−4 N·m·s
rad

k1 5 15 N
m

k2 2.7 × 10−2 4.5 × 10−2 N·m
rad

The translational and rotational joint have stiffness
and damping constants k1 and d1, and k2 and d2, respec-
tively. The rest length/rotation of springs k1 and k2 are
lk1 and θk2 , respectively. Furthermore, the system is
subject to gravity, with gravitational acceleration con-
stant g. For reference, the EoMs for this system are
presented in Appendix B.1.

In the following case study, the values of parame-
ters d1, d2, k1, and k2 of the model/DT are assumed
to be uncertain and, therefore, will be updated, i.e.,
p = [d1, d2, k1, k2]�. Here, we assume that the refer-
ence model is parameterized with an initial guess for
these updating parameters pc. Additionally, for this
case study, it is assumed that the true parameter val-
ues may vary, with equal amounts in both the negative
and positive direction, around this initial guess. Con-
sequently, the upper and lower bounds of the updating
parameter spaceP, tabulated inTable 1, are chosen such
that pc lies in the center of P. The values for all other
parameters remain constant and are given in Table 2.

Beams 1 and 2 are excited, in open-loop, by force
u1(t) and torque u2(t), respectively:

u1(t) =
{
5 N if 0.2 ≤ t < 0.25,
0 N else,

u2(t) =
{
0.075 Nm if 0.2 ≤ t < 0.25,
0 Nm else.

(15)

Here impulse-like excitations are used since these yield
free vibration responses that vary significantly when
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Table 2 Constant parameter values of RDB model

Parameter Value Unit

m1 2.1630 kg

m2 0.13701 kg

ICoM,2 2.981 × 10−4 kg · m2

lCoM,1 3 × 10−3 m

lCoM,2 4.6 × 10−3 m

lk1 0.05 m

θk2 0 rad

g 9.81 m
s2

parameters of the system are changed. Additionally, in
the time interval [0, 0.2] s, no excitations are imposed
such that information with respect to the static equi-
librium of the system is also obtained. In future work,
the excitation signals may be optimized to increase the
sensitivity of the response with respect to parameter
changes, see, e.g., [74,75].

Furthermore, as initial conditions, the static equi-
librium of the system is used, which is parameterized
with updating parameter values in the center of the
parameter space P (referred to as pc), i.e., y(t = 0) =[
0.05 −0.1898

]�
and ẏ(t = 0) = [

0 0
]�

.
Using numerical integration3, the system is sim-

ulated for a time interval of 2 s, in which N =
256 equidistant samples of y1(tk), and y2(tk), k ∈
{1, . . . , N }, are obtained as outputs. Here, the length of
the simulated experiment is chosen long enough such
that sufficient, relevant dynamics is captured, but not
too long to prevent excessive data generation times4.
Furthermore, N is chosen as a power of 2 to make the
Fast Fourier Transform (FFT) algorithm as efficient as
possible. Note that, in practice, the simulated signal
may require down-sampling such that it matches the
measurement sampling rate. To mimic the (simulated)
measurements, zero-mean Gaussian noise is added to
these outputs with standard deviations σy1 = 2× 10−4

m (approximately 0.5% of maximummagnitude of y1)
and σy2 = 2 × 10−2 rad (approximately 2% of maxi-
mummagnitude of y2). In practice, these noise proper-

3 For the numerical integration, the ode45 function (with
RelTol=1 × 10−3, AbsTol=1 × 10−6) in Matlab 2021b has
been used.
4 In practice, the length of an experiment also depends on the
duration of operational trajectories and/or the time available to
perform a dedicated updating experiment during operation.

ties should be chosen corresponding to the (expected)
noise observed in measurements performed on the
physical system. Note that, as explained in [76], the
addition of noise to training data improves robustness
of the ANN. Examples of possible responses using the
above experiment design are provided in Sect. 4.1.2.

To provide the reader with some insight into the
dynamic characteristics of the system, properties of
the linearized system for five different combinations of
updating parameter values, also referred to as param-
eter cases and tabulated in Table 3, are presented.
Note that parameter case 1 refers to pc and the val-
ues of cases 2, 3, 4, and 5 are located at the bound-
aries of P, as defined in Table 1, such that the ‘most
extreme’ behavior of the system is presented here. Each
model, parameterized using one of the parameter cases,
is linearized around its static equilibrium point. The
resulting eigenvalues (with positive imaginary part) λi ,
(damped) eigenfrequencies fi,eig, and their correspond-
ing, modal, damping coefficients ξi , with i = 1, 2 indi-
cating the first and second eigenmodes, are listed in
Table 3. More information about the linearized sys-
tems, e.g., eigenmodes and Frequency Response Func-
tions (FRFs), is provided in Appendix C.

4.1.2 Output features for exploratory simulations

In this section, exploratory simulation results are shown
for the five updating parameter cases, as defined in
Table 3. These simulations are performed according
to the simulated experiment design (excitation signals
and initial conditions) introduced in Sect. 4.1.1. Fur-
thermore, features are extracted, conform the theory in
Sect. 3, and plotted for additional insight.

Some settings to extract the features are as follows.
For the time samples features, two variants are used:
1) dense with nψ = N = 256, and 2) sparse with
nψ = 34. For the time extrema features, the minimum
peak prominence mpp(y) is used for output signal y
(as used in the timepeaks Matlab function [73]) and is
defined as

mpp(y) = 0.15 (max(y) − min(y)) , (16)

where y denotes a sampled output signal. As a result, a
peak is only defined if the value of y between that peak
and the closest peak with a higher magnitude drops by
a minimal amount of mpp [73]. Note that the definition
of mpp(y) should be tailored towards the encountered
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Table 3 Different parameter cases with corresponding updat-
ing parameter values, resulting eigenvalues, (damped) eigenfre-
quencies, and modal damping coefficients of the linearized RDB
models. Note that, ξi = −�(λi )

2π fi,eig
in principle is only defined for

proportionally damped systems, whereas the current (linearized)
system is generally viscously damped. Nonetheless, here, it is
used to provide insight in the relative amount of damping

Parameter
case

d1
[ N·s
m ]

d2
[ N·m·s

rad ]
k1
[ Nm ]

k2
[ N·m
rad ]

λ1
[rad/s]

λ2
[rad/s]

f1,eig
[Hz]

f2,eig
[Hz]

ξ1
[-]

ξ2
[-]

1 1.0 2.00 × 10−410 3.6 × 10−2−0.217 + 2.074 j−0.331 + 10.477 j0.330 1.668 0.104 0.032

2 0.8 1.75 × 10−45 2.7 × 10−2−0.174 + 1.464 j−0.290 + 9.034 j 0.233 1.438 0.118 0.032

3 0.8 1.75 × 10−415 4.5 × 10−2−0.174 + 2.548 j−0.290 + 11.776 j0.406 1.874 0.068 0.025

4 1.2 2.25 × 10−45 2.7 × 10−2−0.261 + 1.451 j−0.372 + 9.031i 0.231 1.437 0.177 0.041

5 1.2 2.25 × 10−415 4.5 × 10−2−0.261 + 2.540 j−0.372 + 11.774 j0.404 1.874 0.102 0.032

responses using engineering insight. Due to the differ-
ent dominating frequencies of both output signals, the
number of peaks in output signals y1(t) and y2(t) are
nTE,1 = 1 and nTE,2 = 5, respectively. Furthermore,
the FBoIs are defined as the frequency bins within the
frequency interval from 0 Hz to 4 Hz, such that the
(damped) eigenfrequencies of the linearized models,
as given in Table 3, lie within this range.

InFigs. 5 and6, time-domain responses, here referred
to as TS (dense) features, are shown for the various
parameter cases. In addition, TS (sparse) and TE fea-
tures are indicated by color-coded squares in Figs. 5
and 6, respectively. Furthermore, Figs. 7 and 8 show
the corresponding Fourier transforms of the TS (dense)
response features using the MP representation, and the
RI representation, respectively. Additionally, Figs. 7
and 8 indicate the features corresponding to the FBoIs
using color-coded squares.

4.1.3 Artificial neural network

As mentioned in Sect. 2.2, the IMM is constituted by
a (trained) feed-forward ANN, see Fig. 1. In this case
study, a 4-layer fully connected feed-forward ANN,
i.e., nr = 2, is used ofwhich the number of neurons and
activation function per layer are listed in Table 4. Here,
the Rectified Linear Unit activation function, defined
as

α(a) =
{
a if a > 0,
0 else,

(17)

is abbreviated as ReLU. In the output layer, linear acti-
vation functions (α(a) = a) are used to enable inferring
of parameters outside the training parameter space P,

which is, if the bounds of P are used for normalization,
impossible using, e.g., Sigmoid activation functions.
Note that a single multi-output ANN is used as this
is typically more efficient than having a single-output
ANN per updating parameter [77].

The ANN is trained using a collection of ns = 1000
training samples, of which the corresponding updat-
ing parameter values are sampled from P using a Latin
HyperCube. Optimization of the weights and biases
of all neurons is done using the Keras Adams algo-
rithm [78], where the mean squared error is minimized
over ne = 200 epochs in 20 batches of nb = 50
samples. Additionally, patience-based early stopping
is included, meaning that training is stopped if the vali-
dation loss, calculated for 1000 validation samples, has
not decreased in nes = 40 successive epochs. Here, the
validation samples are randomly selected from P using
a uniform probability distribution. Note that the ANN
hyperparameters, i.e., the ANN structure and training
settings, used here have been chosen empirically. Since
ANN hyperparameter tuning is not trivial, multiple
ANNs with different combinations of empirically cho-
sen hyperparameters have been trained and evaluated
on the test data. The ANN presented here was chosen
due to a favorable combination of parameter estima-
tion accuracy and complexity (number of neurons and
layers, and training time). This being said, considering
the large hyperparameter space, these hyperparameters
are not expected to be optimal. Therefore, optimization
of the ANN hyperparameters is part of current research
by the authors.

Using a single core 2.60 GHz CPU, the offline gen-
eration of the training data, i.e., simulating the refer-
ence model for all ns = 1000 training samples, takes
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Fig. 5 Time domain simulation responses of the RDB model
with temporally equidistant TS (dense) features (consisting of all
points used to draw each response). Additionally, the TS (sparse)

features are indicated by the (colored) squares ( ). The (line) col-
ors correspond to parameter cases 1 ( ), 2 ( ), 3 ( ),
4 ( ), and 5 ( )

Fig. 6 Time domain simulation responses of the RDB model
with TE features (local extrema) indicated by the (colored)
squares ( ). Note that the TE feature vector contains pairs of the

temporal location and height of each extremum. The line colors
correspond to parameter cases 1 ( ), 2 ( ), 3 ( ), 4
( ), and 5 ( )

approximately 3 min. Additionally, the offline training
of the ANN takes 13 s. In the online phase, inferring
a single set of parameter values p̂ from a feature vec-
tor ψ̄ takes only 3 ms, indeed enabling (near) real-time
parameter updating of the DT.

4.2 Inference results: parameter updating using the
ANN

In the following, the accuracy of the inferred param-
eter values and updated model/DT is analyzed in
Sects. 4.2.1 and 4.2.2, respectively.

4.2.1 Inferred parameter accuracy

To analyze the accuracy of the inferred parameter val-
ues, p̂, the reference model is simulated for ns̄ = 1000

test samples. These test samples are obtained similarly
to the training and validation samples, see Fig. 2. Note
that, since, for testing,measurements aremimicked,we
employ the overbar notation to indicate (the number of)
test samples. To ensure an unbiased evaluation of the
ANN performance, the test samples should be distinct
from the training and validation samples. Therefore,
for each test sample s̄, the model is parameterized with
a set of true parameters p̄ that are randomly selected
in P, again based on a uniform probability distribu-
tion. To mimic actual measurements, noise is added to
the simulated outputs with equal properties as used to
generate the training data. The features extracted from
these simulated measurements are denoted as ψ̄ s̄ and
fed into the ANN, see (7), to obtain p̂s̄ .

Accuracy of the inferred parameter values of test
sample s̄ is evaluated based on the relative error, εs̄ ∈
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Fig. 7 Fourier transform of TS (dense) simulation responses
of the RDB model represented by magnitude and phase. The
MP features consist of all points used to draw each curve. Fur-

thermore, the MP (FBoI) features are indicated by the (colored)
squares ( ). The line colors correspond to parameter cases 1
( ), 2 ( ), 3 ( ), 4 ( ), and 5 ( )

Fig. 8 Fourier transform of
TS (dense) simulation
responses of the RDB model
represented using real and
imaginary values. The RI
features consist of all points
used to draw each curve.
Furthermore, the RI (FBoI)
features are indicated by the
(colored) squares ( ). The
line colors correspond to
parameter cases 1 ( ), 2
( ), 3 ( ), 4 ( ),
and 5 ( )

R
n p , of the parameter estimate p̂s̄ :

εs̄ = (
p̂s̄ − p̄s̄

) 
 (
p̄s̄

)
, (18)

where 
 denotes the element-wise division operator.
Before comparing results for different output fea-

tures, we first focus on the case in which we only

use the RI (FBoI) features as inputs to the ANN. Fig-
ure9 displays the distribution of these relative errors
(in %) per updating parameter in a histogram. Indeed,
the ANN is able to infer parameter values from the
provided features. The accuracy of the estimates varies
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Table 4 ANN structure for RDB use case

Layer Number of neurons Activation function

Input nψ –

Hidden 1 200 ReLU

Hidden 2 100 ReLU

Output n p(= 4) Linear

per updating parameter, with d1 being estimated with
the lowest accuracy and k2 with the highest accuracy.
It is remarked that, despite a relatively larger contri-
bution of noise in y2 compared to y1 (as mentioned in
Sect. 4.1.1), the parameters most closely related to this
signal, i.e., k2 and d2, are estimated with slightly higher
accuracy than k1 and d1. Here, please note that, as is
explained in Appendix C, the responses of the system
are largely uncoupled. The observation that k2 and d2
are estimated more accurately is most likely a result of
the relatively low amount of oscillations in signal y1
compared to y2, as seen in Figs. 5 and 8. Nevertheless,
even for d1, the worst encountered relative error is only
approximately 10%, whereas the majority lies below
5%. Therefore, it can be concluded that the parameter
values are inferred with good accuracy.

Additionally, in Fig. 10, the (absolute) relative error
for each test sample is plotted (in %) in the subspace
of P spanned by d1 and d2. Note that the values of
k1 and k2 vary randomly, within P, for each plotted
sample. This figure shows that accuracy at or near the
edges of the d1-d2 subspace is slightly worse than in the
middle. Specifically, for d1 and d2, there are relatively
many high relative errors at the left and bottom edge,
respectively. This is explained by the fact that, in these
regions, there are obviously less training samples (actu-
ally, none beyond the bounds of the training space) that
allow the ANN to properly learn the mapping between
ψ and p in this part of the parameter space. To alleviate
this phenomenon, the training space may be extended
beyond the parameter values that are expected to be
encountered on the physical system.

Having analyzed the results for the RI (FBoI) fea-
tures only, in the following, different output feature
types are compared. For ease of comparison, the per-
formance of the IMPU method (for any feature type)
is summarized using three relative error metrics, being
the bias of the relative error, με, the (unbiased sam-
ple [79]) standard deviation, σ ε, and the mean absolute

relative error, μ|ε|:

με = 1

ns̄

ns̄∑
s̄=1

εs̄, (19)

σ ε =
√√√√ 1

ns̄ − 1

ns̄∑
s̄=1

(
εs̄ − με

) ⊗ (
εs̄ − με

)
, (20)

μ|ε| = 1

ns̄

ns̄∑
s̄=1

|εs̄ |, (21)

where⊗ denotes the element-wisemultiplication oper-
ator.

In Table 5, these metrics are listed (in %) per param-
eter for the output feature types introduced in Sect. 3.

Firstly, it is observed that, in terms of σ ε andμ|ε|, the
dense and sparse time samples feature vectors perform
roughly equally well for the stiffness parameters. How-
ever, the sparse variant performs worse for the damp-
ing parameters. This might be attributed to the fact that
the dense TS features are more likely to contain the
extremum values of the transient signal which provide
valuable information about damping, see Fig. 5. Sec-
ondly, the results obtained using time extrema features
are comparatively inaccurate for d1 and k1, which can
be ascribed to a lownumber of features5 and a relatively
large influence of noise. As there are more TE features
for signal y2(t), we see that d2 and k2 are estimated
with reasonable accuracy despite the low number of
features due to the smart choice of features.

Thirdly, for the frequency-domain-based features,
omitting the (uninformative and noisy) features out-
side the FBoIs does significantly improve performance
with respect to the frequency-domain-based features
where all frequency bins are used, as was hypothesized
in Sect. 3.2. Fourthly, MP features are less accurate
than RI features, both when using features in all fre-
quency bins, or those restricted to the FBoIs. As this
difference holds primarily for d1 and k1, to explain this
observation, we focus our attention on the first Fourier-
transformed output signal Y1 (recall the quite uncou-
pled nature of this particular system, see Appendix C).
This difference in performancemay be explained by the
fact that some of the (normalized) MP features do not
deviate significantly for distinct parameter values com-
binations. To illustrate this, in Figs. 11 and 12, the MP

5 Since d1 and k1 dominantly influence y1(t), there are only two
TE features (one extremum) that can be used to determine these
updating parameters, see Fig. 6.
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Fig. 9 Distribution, per updating parameter, of relative inferred parameter errors, εs̄ , as obtained using the RI (FBoI) output features
and ns = 1000 training samples in the RDB use case

Fig. 10 Absolute relative
error |εs̄ | of each test sample
s̄ in the d1-d2 subspace of P
per updating parameter in
the RDB use case, as
obtained by using the RI
(FBoI) output features with
ns = 1000. Red plus signs
( + ) indicate locations of
training data samples
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Table 5 Relative error metrics per updating parameter for all feature types in the RDB use case, for ns = 1000. Furthermore, the
number of features per output feature type, nψ , is listed

Feature Type nψ με [%] σ ε [%] μ|ε| [%]

d1 d2 k1 k2 d1 d2 k1 k2 d1 d2 k1 k2

TS (dense) 510 −0.290 0.441 −0.233 −0.070 2.845 2.525 1.710 0.715 2.227 2.030 1.307 0.562

TS (sparse) 34 0.830 0.152 −0.699 −0.431 4.102 4.049 1.518 0.657 3.248 3.230 1.296 0.623

TE 12 1.817 −0.047 1.659 −0.103 11.013 3.477 5.316 1.434 9.232 2.749 4.375 1.138

MP 512 1.945 0.947 −1.386 −0.337 11.810 7.642 7.106 3.020 9.778 6.453 5.675 2.407

RI 512 0.280 0.780 −0.907 −0.946 6.291 7.482 2.542 1.583 4.981 6.083 2.076 1.451

MP (FBoI) 34 0.421 0.271 0.429 0.200 3.561 2.927 1.723 0.572 2.735 2.262 1.256 0.453

RI (FBoI) 34 −0.213 −0.450 0.013 −0.188 2.699 2.555 1.145 0.515 2.129 2.062 0.885 0.427

(FBoI) and RI (FBoI) features are normalized between
0 and 1 such that the maximum and minimum fea-
ture values across the five parameter cases defined in
Table 3 equal one and zero, respectively. In Fig. 11,
it is observed that the normalized features originating
from � Y1, i.e., part of the (normalized) MP features,
are relatively similar for parameter combinations 2 and
4, and combinations 3 and 5. Therefore, the ANN has
difficulty in distinguishing between each of these sim-
ilar parameter cases, e.g., the normalized features for
parameter combinations 2 and4 are both approximately
1. In contrast, this is only the case to a lesser extent for
normalized features originating from 	(Y1) in Fig. 12.
Consequently, distinguishing between these parameter
cases when using MP features is mostly done based
on the |Y1| features, whereas for the RI features, both
�(Y1) and 	(Y1) can distinguish between these cases.
Finally, comparing the TS features with the RI (FBoI)
features, we see that the RI (FBoI) features yield better
performance than the sparse set of TS features (with an
identical number of features). Alternatively, the dense
TS features yield comparable performance at the cost of
15 times as many features. Note, however, that still the
RI (FBoI) features perform, although slightly, better.
This, again, leads to the conclusion that the individual
RI (FBoI) features have relatively high informative-
ness.

It should be remarked that the conclusions drawn
here are found for a specific system and (simulated)
experiment design. Different systems or designs, e.g.,
systems with higher modal density, (highly) coupled
DoFs, and insufficient actuation will influence accu-
racy of the individual features types. For example, time
extrema features are expected to be less profitable to

estimate damping properties related to higher-order (or
less dominant) modes. Therefore, automated feature
selection techniques have high potential to select the
most informative features for any system and experi-
ment design [80].

Nevertheless, some general conclusions are drawn.
Firstly, by using transient-based output response fea-
tures as input to an IMM, physically interpretable
parameters of nonlinear dynamical models can be
updated online with little computational effort while
achieving acceptable levels of accuracy. Furthermore,
it is shown that, at least for mechanical systems,
defining features using engineering knowledge can
increase performance of the ANN. For example, only
using frequency-domain-based features in the fre-
quency ranges that are relevant for the dynamics of
the system can result in higher accuracy of the inferred
updating parameter values.

4.2.2 Updated model accuracy

As shown in the previous section, the IMPU method is
able to infer parameter values with mean absolute rela-
tive errors of approximately 2%or lower. However, one
of the main purposes of parameter updating is to obtain
amore accuratemodel, such that theDigital Twin accu-
rately represents the true physical system. Therefore,
the accuracy of the updated model, i.e., the reference
model parametrized with the inferred updating param-
eter values, is briefly discussed here.

For this purpose, a single test sample is selected of
which the true parameter estimates p̄ are listed in Table
6. Simulating a (noise injected) measurement for the
system parameterized with these true parameter values
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Fig. 11 MP (FBoI)
features, normalized for the
five parameter cases, as
obtained from the Fourier
transform of TS (dense)
simulation responses of the
RDB model represented
using magnitude and phase,
zoomed in on the FBoIs.
The MP (FBoI) features are
indicated by the (colored)
squares ( ). The line colors
correspond to parameter
cases 1 ( ), 2 ( ), 3
( ), 4 ( ), and 5
( )

Fig. 12 RI (FBoI) features,
normalized for the five
parameter cases, as obtained
from the Fourier transform
of TS (dense) simulation
responses of the RDB
model represented using
real and imaginary values,
zoomed in on the FBoI. The
RI (FBoI) features are
indicated by the (colored)
squares ( ). The line colors
correspond to parameter
cases 1 ( ), 2 ( ), 3
( ), 4 ( ), and 5
( )

results in the solid blue line in Fig. 13. For this simula-
tion,we have used the same (simulated) experiment set-
tings as discussed in Sect. 4.1.1. Extracting RI (FBoI)
features from this signal and using the computation-
ally cheap IMPU method to infer ‘updated’ parameter
values p̂ yields the values listed in Table 6. Simulating
the updatedDT, i.e., the referencemodel parameterized
with these updated parameter values, yields the dashed
orange line in Fig. 13. Here, we see that, for both DoFs,
there is high agreement in the measured and updated

response. Furthermore, the response of the reference
model (with an initial guess for the updating parameter
values p = pc) is plotted (dashed purple line) clearly
demonstrating the benefit of updating themodel param-
eters.

Due to the retained model structure, the updated
model is also accurate for (simulated) experiments
with different initial conditions and excitation signals
(as may be expected). For example, Fig. 14 shows
the response of the, among others, updated model
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Table 6 Parameter values
used to parameterize RDB
models used in Figs. 13 and
14

Parameter d1 [ N·s
m ] d2 [ N·m·s

rad ] k1 [ Nm ] k2 [ N·m
rad ]

p̄ 1.082 1.886 × 10−4 11.51 3.919 × 10−2

p̂ 1.097 1.891 × 10−4 11.38 3.908 × 10−2

pc 1.000 2.000 × 10−4 10.00 3.600 × 10−2

when using a harmonic excitation signal, i.e., u1(tk) =
0.15 cos(ω1( pc)tk) and u2(tk) = 0.01 cos(ω2( pc)tk),
and deviating initial conditions, i.e., y(t1 = 0) =[
0.055 0.5

]�
and ẏ(t1 = 0) = [−0.01 2

]�
. Here,

ω1( pc) and ω2( pc) represent the damped angular
eigenfrequencies of the linearized (reference) model
parameterized with p = pc. This shows that a Digital
Twin that is updated using some updating experiment
can be employed to simulate operating scenarios that
have not been used for the updating procedure.

4.3 Generalization capabilities

Since the IMM is learned using training data, it is
important to obtain insight in how accurate the IMM is
for data it has not yet seen before. Note that the analysis
in Sect. 4.2.1, which is similar to the analysis in [18],
hardly gives insight in the generalization capabilities of
the ANN. Therefore, in this section, generalization is
analyzed by 1) varying the number of training samples,
and 2) excluding parts of the training samples.

4.3.1 Number of training samples

The impact of the number of training samples, ns , on
the accuracy of the inferred parameters is analyzed,
such that insight in the generalization capabilities of the
discussed output features is obtained. Here, the training
and testing space are equivalent and as defined in Table
1. The mean absolute relative error for each updating
parameter has been plotted versus ns in Fig. 15, for the
different output feature types.

In general, for ns < 100, the accuracy of the param-
eter estimates is observed to be relatively low, showing
that these low amounts of training samples do not suf-
fice to properly learn the inverse relation between out-
put features and parameter values. It should be noted,
however, that the updating parameter space is, in this
case, four-dimensional. Consequently, such few train-
ing samples do not sufficiently cover P and hence, per-
formance is poor. Overall, it seems that, for almost all
analyzed values of ns , the RI (FBoI) features perform
best or approximately equally as good as the next best
alternative(s). Furthermore, when using all frequency
bins for the MP and RI features, significantly more
training samples are required to achieve the same accu-

Fig. 13 Comparison of simulated measurement ( ) and
simulation of updated RDB model ( ), for the (simulated)
experiment used to train the ANN, i.e., impulse-like excitation
and the static equilibrium of the reference system with p = pc

as initial conditions. Furthermore, the error of the updated model
( ) is plotted and, for reference, the simulation is performed
using the reference model with p = pc ( )
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Fig. 14 Comparison of simulated measurement ( ) and
simulation of updated RDB model ( ), for different (simu-
lated) experiment (harmonic excitation and deviating initial con-
ditions) than used to update the model. Furthermore, the error

of the updated model ( ) is plotted and, for reference, the
simulation is performed using the reference model with p = pc
( )

Fig. 15 Mean absolute relative error as a function of the number
of training samples, ns , per updating parameter in the RDB use
case, for the different output feature types: TS (dense) ( ),
TS (sparse) ( ), TE ( ), MP ( ), RI ( ), MP
(FBoI) ( ), and RI (FBoI) ( )

racy as when only information in the FBoIs is used.
Again, this is caused by the large amount of redundant
and noisy high-frequency information, making these
features generalize relatively poorly. Since all TS fea-
tures in both the dense and sparse variant carry useful
information about the system, we do not see this behav-
ior for the time-series-based features. Finally, the accu-
racy of the TE features is relatively consistent, although
comparatively low for some parameters, when vary-

ing ns (especially for d1 and d2). This agrees with the
fact that the difference in magnitude between subse-
quent maxima/minima is closely related to the damp-
ing values. This thus shows that the IMM between the
damping parameter values and the TE features is rela-
tively easy to learn for the ANN as was hypothesized in
Sect. 3.1, i.e., TE features generalize well for different
values of ns .

4.3.2 Excluded training zones

In practice, the true parameters of the DT may lie (far)
outside the expected parameter space, e.g., when the
system is (suddenly) badly damaged. In this case, the
IMPU method should recognize this such that the dig-
ital twin can be updated for the benefit of SHM.

Remark 5 The IMPU method can theoretically detect
both gradual and sudden degradation/changes to the
true parameter values. In case of gradual degrada-
tion/changes, SHM using the updated DT can be
employed to plan timely maintenance. However, sud-
den degradation/changes might already damage the
system before this change has been detected by the
(inverse mapping) parameter updating method. This
will, however, be a problem for any model updating
strategy.

Therefore, in this section, generalization is analyzed
by deliberately omitting parts of the training space and
testing how accurate test samples are in distinct ‘test-
zones.’ In the following, changes are only made to the
subspace of P spanned by d1 and d2. Specifically, for
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Fig. 16 Absolute relative
error (in %) of each test
sample |ε| (see (18) for
definition of ε) in the d1-d2
subspace of P per updating
parameter in the RDB use
case, as obtained by using
the RI (FBoI) output
features with ns = 645. Red
plus signs ( + ) indicate
locations of training data
samples. Testzones are
indicated by the color-coded
rectangles as follows: zone
1 ( ), zone 2 ( ), zone 3
( ), zone 4 ( ), zone 5
( ), and zone 6 ( ). Note
that all absolute relative
errors larger than 10% are
colored orange

both d1 and d2, the test subspace is extended on both
sides of the training space with 50% of its width. Fur-
thermore, for both damping parameters, a band, cen-
tered in the d1-d2 subspace, with a width of 20% of
the training subspace width is excluded from the train-
ing data. In Fig. 16, all test samples are allocated to six
testzones, indicated by a color-coded box, where all
retained training samples are located in testzone 1. A
higher number of a testzone indicates decreasing num-
ber and proximity of adjacent boxes with training data
(or zone 1 boxes). For example, each box in zone 2
shares two edges with adjacent zone 1 boxes and for
zone 6 only one of the corners of each box coincides
with the corner of a zone 1 box.

To acquire the training data, the LHC sampled train-
ing data used in Sect. 4 are reused, of which the sam-
ples located in testzones 2 and 3 are excluded. Con-
sequently, as we started with 1000 training samples
(as used for Fig. 16), after exclusion approximately
ns = 645 retained training samples are left. Due to
the exclusion of samples, the ‘density’ of training sam-
ples per test sample is kept identical in testzone 1
with respect to the analysis in Sect. 4.2. The validation

parameter space (here only used for early stopping) is
obtained in an equivalentmanner as the training param-
eter space.

To analyze the effect of these changes in the training
and testing parameter subspaces, firstly we focus on the
case with ns = 645 obtained using RI (FBoI) features.
The absolute relative error per parameter is plotted for
each test sample in the d1-d2 subspace in Fig. 16. In
the upper left plot of Fig. 16, we observe that for low
and high values of d1 (near the edges of the test sub-
space), the absolute relative error of d1 increases. This
is simply explained by the fact that the true values for
d1 are far away from the training data, forcing the ANN
to extrapolate with respect to d1. Similar observations
are made for d2. Please also note the similarity of this
finding with the observation that test samples near the
edge of the training space yield relatively poor results,
as discussed in Sect. 4.2.1. In contrast, the accuracy of
k1 and k2 is hardly affected by changes in the training
and test d1-d2 subspace (apart from some testsamples
in zone 6), as is also seen in Fig. 17. This is explained
by the fact that alterations in training and testing data
are restricted to the d1-d2 subspace.
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Fig. 17 Mean absolute relative error (in %) per testzone as a
function of the number of training samples, ns , per updating
parameter in the RDB use case. The results indicated with solid
lines ( ) are obtained using RI (FBoI) features, and results
indicated with dashed lines ( ) are obtained using RI fea-
tures. The colors of the solid/dashed lines correspond to test-
zones 1 ( ), 2 ( ), 3 ( ), 4 ( ), 5 ( ), and 6
( ), respectively

In Table 7, the mean absolute relative errors μ|ε|
for the test samples in testzone 1 are listed (as cal-
culated using (21), but summed over the test sam-
ples in testzone 1 only), for the different feature types.
Since the density of training samples per test sample
is roughly equivalent, we can compare these metrics to
those found in Table 5. As seen, proportionate errors
are indeed found: due to the lower number of training
samples in total, μ|ε| in Table 7 is, however, typically
somewhat higher.

In Fig. 17, mean absolute relative errors μ|ε| for
the different testzones (as calculated using (21) but
summed over the test samples per evaluated testzone),
for both the RI and RI (FBoI) features, are plotted as a
function of ns . Focusing on the μ|ε| for d1 and d2, we
observe that, for most values of ns , testzone 6 is least
accurate, followed, in order, by zones 5, 4, 1, 2, and 3,
with testzone 3 being the most accurate. Although this
result might, initially, be counterintuitive (one would
expect testzone 1 to be most accurate). This observa-
tion is, again, closely connected to an aforementioned
observation in Sect. 4.2.1. Namely, the accuracy within
a zone is affected by the relative number of test sam-

Table 7 Mean absolute relative error (in%) per updating param-
eter in the RDB use case for all feature types, for testzone 1 when
training samples are excluded such that ns = 645

Feature Type μ|ε| [%]

d1 d2 k1 k2

TS (dense) 2.884 2.461 1.626 0.771

TS (sparse) 3.838 3.555 1.181 0.611

TE 11.175 2.701 4.388 1.165

MP 11.246 7.564 7.855 2.980

RI 7.486 7.659 3.917 2.044

MP (FBoI) 3.074 2.569 1.435 0.562

RI (FBoI) 2.362 2.347 1.115 0.515

ples of that zone that lie close to the outer ranges of
the training subspace. For example, each area belong-
ing to testzone 1 has two relatively long edges beyond
which no training samples are present. In contrast, the
test samples in testzone 3 lie in the center between
the lowest and highest training values of d1 and d2.
For (approximately) ns > 2500, this order of accuracy
does not hold anymore, since then this phenomenon is
alleviated due to the large presence of training samples
overall.

Furthermore, as is to be expected, Fig. 17 shows the
trend that μ|ε| decreases with ns for all testzones. Con-
sequently, as each application requires a different level
of accuracy, the number of training samples may be
used to tune the accuracy of the IMPU method in an
a posteriori manner. Note that, although μ|ε| seems to
approach 0 for large ns , the influence of measurement
noise and the inexact nature of the trained IMM will
always cause some error in the inferred parameter val-
ues.

Additionally, comparing the results obtained using
the RI and RI (FBoI) features, we see that, again, the RI
(FBoI) features outperform the full frequency content
RI features, where the latter requires relatively many
training samples to yield comparable accuracy. Note
that, for, e.g., ns = 645, the RI (FBoI) features are bet-
ter at extrapolating outside the outer ranges of the train-
ing space, i.e., zones 4, 5, and 6, than the RI features
are at interpolating, i.e., zones 1, 2, and 3. Furthermore,
the qualitative behavior of the results, i.e., high errors
for low ns that decrease for increasing values of ns , is
similar for RI features and RI (FBoI) features.
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Table 8 Mean absolute relative error of d1 estimate for testzones
1, 3, and 6, obtained using ns = 2569 training samples in the
RDB use case

Feature Type μ|ε| of d1 [%]

Testzone 1 Testzone 3 Testzone 6

TS (dense) 1.778 1.644 4.390

TS (sparse) 2.779 2.590 5.929

TE 10.996 5.141 28.593

MP 5.849 5.827 12.606

RI 3.209 3.435 6.437

MP (FBoI) 2.131 2.299 4.865

RI (FBoI) 1.661 1.877 3.790

To conclude, in general, if sufficient training data
are used, even test samples in zones outside the train-
ing subspace can be approximated relatively accurately
when using RI (FBoI). For example, the mean absolute
relative errors, calculated for testzones 1, 3, and 6, are
listed for d1 and d2 in Tables 8 and 9, respectively.
Here, we observe that the values of μ|ε| in testzone 6
are, with some exceptions for the TE and MP features,
approximately two times higher than the values of μ|ε|
in testzones 1 and 3. Given the fact that only few train-
ing samples lie somewhat close to testzone 6, this is an
acceptable result. Due to the already high relative errors
for the TE, MP, and RI features in testzones 1 and 3,
their relative errors in testzone 6 are, however, regarded
as too high. Nevertheless, as estimates will worsen if
their true values are farther from the training space, it is
advised to treat parameter estimates outside the train-
ing space with caution. Incorrect parameter values that
are regarded as true, lead to an inaccurate DT which
may lead to faulty decisions. For this reason, explicitly
quantifying the uncertainty in the inferred parameter
estimates is part of ongoing research of the authors.
Since the ANN does extrapolate parameter values, one
can, however, often recognize that the true system lies
outside the training space.

5 Case study on roll plane model

In this section, the IMPU method is applied on a dif-
ferent use case. The analyzed model is a four-DoF Roll
PlaneModel (RPM) of a vehiclewith nonlinear suspen-
sion driving over a speed bump with constant velocity,
as considered in [37], see Fig. 18. The EoMs for this

Table 9 Mean absolute relative error of d2 estimate for testzones
1, 3, and 6, obtained using ns = 2569 training samples in the
RDB use case

Feature Type μ|ε| of d2 [%]

Testzone 1 Testzone 3 Testzone 6

TS (dense) 1.372 1.156 2.415

TS (sparse) 2.627 2.813 4.921

TE 2.583 3.138 7.067

MP 5.396 4.262 11.015

RI 3.893 3.293 7.139

MP (FBoI) 1.606 1.759 3.007

RI (FBoI) 1.443 1.544 2.963

Fig. 18 Schematic representation of the RPM

model, with DoFs x = [
x1, x2, x3, x4

]�
, are given in

Appendix B.2. The non-updating (i.e., known) param-
eter values are listed in Table 10. The two parameters
considered for updating are kt1 and kt2 (representing
the stiffnesses of the tires), for both of which P ranges
from 80 to 120% of their nominal values of 96319.76
N/m.

As outputs, the relative displacement and relative
velocity between the roll bar and both tires, i.e., y1 =
x1− x3, y2 = x2 − x4, y3 = ẋ1− ẋ3, and y4 = ẋ2 − ẋ4,
are measured every 0.3 s for a duration of 3 s. To sim-
ulate a real measurement, zero-mean Gaussian noise
with a standard deviation of 1% of the value of yi (tk)6

is added to yi (tk). As inputs, prescribed displacements
of the road surface profile u1(t) and u2(t) are used, see
Appendix B.2. Note that all these settings are equiva-
lent to those in [37].

AnANN (with structure listed in Table 11) is trained
for various numbers of training samples and 1000 val-
idation samples. As features, TS, MP, and RI features

6 Note that, although in [37] (erroneously) a variance of 1% is
mentioned, in reality a standard deviation of 1% is used, as is
evident from [81] where the same model is used.
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Table 10 Constant parameter values of RPM model

Parameter Value Unit

m 580 kg

mt1, mt2 36.26 kg

I 63.3316 kg · m2

L 1.524 m

c1, c2 710.70 N·s
m

k1, k2 19357.2 N
m

k1,3, k2,3 15000 N
m3

Table 11 ANN structure for RPM use case

Layer Number of neurons Activation function

Input nψ (= 40) –

Hidden 1 100 ReLU

Hidden 2 80 ReLU

Hidden 3 40 ReLU

Output n p(= 2) Linear

that used all 10 measured time samples (measurements
at t = 0 are excluded) for all 4 outputs are used.
Evaluating μ|ε| of the estimated parameter values for
ns̄ = 1000 testing samples results in the three color-
coded solid lines in Fig. 19, where we see that a larger
ns leads to a smaller μ|ε|. Furthermore, the different
feature types show comparable results. Note that, in
this case, there is no point in defining FBoIs due to
the low number of time samples and high frequency
density of the Fourier transformed output responses.

Additionally, as [37] used an extended Kalman fil-
ter (EKF) to update the parameter values, a comparison
is made between the accuracy of the EKF and IMPU
method. In [37], the accuracy of only a single param-
eter estimate is evaluated (with true parameter values

p̄ref = [
k̄t1,ref k̄t2,ref

]� = [
100800 88855

]�
N/m), of

which the absolute relative error is plotted in Fig. 19.
To compare, individual IMPU-based estimates of p̄ref
are indicated in Fig. 19 as well. Here, we observe that,
already for a relatively low number of training sam-
ples (order 100), the IMPUmethod is competitive with
and can even outperform (for sufficiently high ns) the
EKF in terms of accuracy. Most likely, this is caused
by the fact that the IMPU method simultaneously pro-
cesses multiple data points (features), yielding a com-
plete overview of all dynamics present in the system,

Fig. 19 Mean absolute relative error over test data set ( )
and absolute relative error of estimate of pref ( ) as a function
of the number of training samples, ns , per updating parameter
of the RPM. The black dash-dotted line ( ) indicates the
absolute relative errors of the EKF-based estimates obtained in
[37] (independent of ns ). The output feature types used for the
IMPU method are color-coded: TS ( ), MP ( ), and RI
( )

and, simultaneously, (partly) filters out the effects of
(measurement) noise.

Also, it should be noted that estimating these param-
eter values takes only 1.5 ms using the IMPU method.
Although EKF computation times are not specified in
[37], the computation time of the EKF scales signifi-
cantly with the complexity of the system, in contrast to
the inference time of the IMPU method. It is therefore
stressed again that the main advantages of the IMPU
method over filter-based parameter updating methods
(such as EKFs) in the DT context (i.e., online com-
putational efficiency, nonobligatory initial guess, and
applicability to simulation models) are of a qualitative
nature, see Sect. 1.

6 Conclusions and future work

To minimize the mismatch between a physical sys-
tem and its Digital twin (DT, which is represented
as a model), this paper proposes to update physically
interpretable parameter values of nonlinear dynami-
cal models in real-time by an inverse mapping param-
eter updating (IMPU) approach. This approach con-
sists of an offline and an online phase. In the offline
phase, an Artificial Neural Network (ANN) is trained
using training samples consisting of output response
features, as obtained from a simulated user-defined
experiment (with known initial conditions and excita-
tions), and corresponding (known) parameter values.
The resulting trained ANN then constitutes a direct
inversemapping between response features and param-
eter values. In the online phase, this experiment is per-
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formed on a real system. Then, the trained ANN is
used tomap themeasured transient-based response fea-
tures to inferred parameter estimates. These estimates
are then used to update the DT. Although data gen-
eration and training can take significant time in the
offline phase, computation times in the online phase
are very small, allowing for (near) real-time parame-
ter updating. For this purpose, novel transient-based
feature types have been introduced and evaluated on a
(simulated) 2-DoF dynamical multibody system. Engi-
neering knowledge about the system is used to define
informative output features resulting in improved accu-
racy and computational efficiency (the latter both in
the learning and in the inferring phase) of the IMPU
approach. Additionally, generalization capabilities are
shown and improved by properly choosing output fea-
tures such that relatively few training samples already
achieve satisfactory accuracy or parameter values out-
side the training space are estimated with reduced but
still acceptable accuracy. Furthermore, the parame-
ter updating using the IMPU method is compared to
parameter updating using an extended Kalman filter
(EKF), where it is observed that, in quantitative sense,
the IMPU method is competitive with or even outper-
forms the EKF.

As estimates of true parameter values that lie beyond
the training range become less accurate, quantifying the
uncertainty in the estimated parameter values is ongo-
ing research. Additionally, the choice of ANN struc-
ture and training settings is far from trivial. There-
fore, systematically optimizing the ANN hyperparam-
eters is ongoing research as well. Furthermore, as the
IMPU method requires a highly accurate model struc-
ture, futurework should focus on simultaneous (online)
updating of model structure and parameter values.
Finally, instead of discussing simulated use cases as
done in the current paper, the authors intend to apply
the introduced methodology to a physical system in the
future.
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Appendix A: Normalization of parameter values
and features

As discussed in Sect. 2.2.2, prior to being used in the
ANN, both the features and parameters are normalized
to increase robustness of the ANN. In the following,
the normalization procedure is explained for training
parameter vector ps . However, the presented proce-
dure is equivalently applicable to training feature vec-
tor ψ( ps).

Entry j ∈ {1, . . . , n p} of ps is denoted by ps[ j].
The normalization is performed such that the normal-
ized value, pnors [ j], equals 0 for the lowest valued entry
across all ns training samples and equals 1 for the high-
est valued entry across all training samples:

pnors [ j] = ps[ j] − pmin[ j]
pmax[ j] − pmin[ j]

, (A1)

where the smallest and highest values of ps[ j] across
all training samples are given by pmin[ j] and pmax[ j],
respectively:

pmin[ j] = min
(
p1[ j], . . . , pns [ j]

)
, (A2)
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pmax[ j] = max
(
p1[ j], . . . , pns [ j]

)
. (A3)

To calculate the denormalized parameter values
using the normalized parameter values as inferred in
the online phase by the ANN, we use the normaliza-
tion bounds calculated in the training phase:

p̂s̄[ j] = pmin[ j] + p̂nors̄ [ j] (
pmax[ j] − pmin[ j]

)
.(A4)

Equivalently, for the normalization of measured fea-
tures in the online phase, these (measured) features are
normalized using the normalization bounds ψmin and
ψmax as obtained using equivalent variants of (A2) and
(A3) for the feature vectors:

ψ̄
nor
s̄ [ j] = ψ̄ s̄[ j] − ψmin[ j]

ψmax[ j] − ψmin[ j]
. (A5)

Here it is emphasized that ψmin and ψmax are thus
obtained using training data only.

Note that validation samples (features and parameter
values) are normalized in an equivalent manner as the
measured (or testing) samples, i.e., with normalization
bounds calculated in the training phase.

Appendix B: Equations of motion

In this appendix, the EoMs of the rigid double beam
model as analyzed in Sect. 4 and the EoMs of the roll
plane modeling vehicle as used in Sect. 5.

B.1 Rigid double beam model

The EoMs of the RDB model discussed in Sect. 4 are
given by

M( y) ÿ + c( y, ẏ) + g( y) + f ( y, ẏ) = u, (B1)

where explicit dependency on t and p are omitted for
brevity. Furthermore, the mass matrix M, the vector
containing Coriolis and centripetal forces c, the vector
with gravitational forces g, and the vector with spring
and damper forces f are given by

M( y) =
[

M11 M12( y)
M21( y) M22

]

c( y, ẏ) =
[−m2 ẏ22 (lCoM,1 cos(y2) − lCoM,2 sin(y2))

0

]

g( y) =
[

0
m2glCoM,1 cos(y2) − m2glCoM,2 sin(y2)

]

f ( y, ẏ) =
[
k1(y1 − lk1) + d1 ẏ1
k2(y2 − θk2) + d2 ẏ2

]
,

(B2)

where

M11 = m1 + m2,

M12( y) = M21( y)

= −m2(lCoM,1 sin(y2) + lCoM,2 cos(y2)),

M22 = m2l
2
CoM,1 + m2l

2
CoM,2 + ICoM,2.

B.2 Roll plane model

The EoMs of the RPM analyzed in Sect. 5 are given by

Mq̈ + f K (q) + f C (q̇) = f U (u), (B3)

where explicit dependency on t and p are omitted for
brevity. Furthermore, the mass matrix M, the vector
containing (linear and nonlinear) spring forces f K , the
vector with (nonlinear) damper forces f C , and vector
with forces due to the prescribed displacement fU are
given by

M =

⎡
⎢⎢⎣

m
2

m
2 0 0

− I
L

I
L 0 0

0 0 mt1 0
0 0 0 mt2

⎤
⎥⎥⎦ ,

f K (q) =

⎡
⎢⎢⎣

FK1(q1 − q3) + FK2(q2 − q4)
L
2

(
FK2(q2 − q4) − FK1(q1 − q3)

)
FK1(q3 − q1) + kt1q3
FK2(q4 − q2) + kt2q4

⎤
⎥⎥⎦ ,

f C (q̇) =

⎡
⎢⎢⎣

FC1(q̇1 − q̇3) + FC2(q̇2 − q̇4)
L
2

(
FC1(q̇3 − q̇1) − FC2(q̇4 − q̇2)

)
FC1(q̇3 − q̇1)
FC2(q̇4 − q̇2)

⎤
⎥⎥⎦ ,

f U (u) =

⎡
⎢⎢⎣

0
0

kt1u1(t)
kt2u2(t)

⎤
⎥⎥⎦ , (B4)

where, for i = 1, 2, nonlinear stiffness and damper
terms are given by

FKi (q) = kiq + ki,3q
3,

FCi (q̇) = ci (0.2 tanh (10q̇)) .
(B5)

Furthermore, the prescribed displacements are shown
in Fig. 20.
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Fig. 21 Frequency
response functions for
linearized models for the
five parameter cases. The
line colors correspond to
parameter cases 1 ( ), 2
( ), 3 ( ), 4 (

), and 5 ( ). Please
note that the FRF from u2 to
y1 is equal to the FRF from
u1 to y2

Fig. 20 Prescribed displacements of theRPM, u1(t) ( ) and
u2(t) ( ), representing a speed bump over which is driven
with a constant velocity

Appendix C: Linearized system properties of RDB
model

The frequency response functions (FRFs) of the RDB
model are plotted in Fig. 21 for each parameter case,
as defined in Table 3. From the FRFs, it is observed
that, for this system, the DoFs are largely uncoupled,

i.e., yi is mostly influenced by ui , with i indicating the
DoF. This is also apparent from the eigenmodes φi of
parameter case 1:

φ1 =
[

1
−3.80 × 10−2 − 7.88 × 10−3 j

]

φ2 =
[
1.29 × 10−4 + 5.23 × 10−6 j

1

]
,

(C1)

with j the imaginary unit.
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