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Summary

Fast heating by feedback flow control

In fluid heating two aspects need to be optimized simultaneously: i) transfer of
heat into a fluid (denoted energization in this thesis) and ii) transport of heat
throughout the fluid (homogenization). A proper balance between these compet-
ing aspects is crucial for fast heating. This thesis considers systems that transfer
heat into a cold fluid by a hot boundary as a representative problem. Heat trans-
port is influenced by stirring the fluid in the considered systems. This immediately
raises the question central to this thesis: "How to stir the fluid to heat it up as
quickly as possible?". This thesis presents novel active methods to boost fluid
heating by stirring.

Promoting transport of heat or other scalars in fluids has received significant
attention over the years. Rapid transport of scalars in fluids is important if not
vital for various industrial applications. Applications related to polymer and food
processing, process intensification and/or micro-fluidics are of particular interest
here. Such applications include organ-on-a-chip devices, dispersion in bioreac-
tors or pumping schemes for groundwater remediation or subsurface resource
recovery. The fundamental operation of these applications are captured well by a
Rotated Arc Mixer (RAM). Therefore, the (control of a) RAM is adopted as a case
study and investigated both numerically and experimentally in this thesis.

Conventional stirring methods to accelerate heating have primarily focused
on achieving chaotic advection. Chaotic advection can be achieved by activat-
ing, or controlling, piecewise steady flow fields. In conventional methods these
flow fields are reoriented periodically in either time and/or space. The periodic
reorientation results in periodic stirring of the fluid. Typically, it is assumed that
chaotic advection, accomplished by periodic stirring, automatically results in rapid
heating. However, this reasoning only applies to heat-transfer problems i) with
negligible diffusion compared advection (i.e. a Péclet number O & 105) and/or
ii) without heat transfer from a system boundary. Diffusion plays a significant role
in fluid heating in systems considered in this thesis. Furthermore, heat is actively
transferred from the system boundary into the fluid in the RAM. The presence of
both features distinguishes this work from conventional mixing studies.
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Summary

Periodic stirring protocols are typically designed a priori on a model before be-
ing applied in practice. This open-loop approach fixes the stirring sequence and
thus has some inherent limitations. Periodic stirring lacks any real-time adaptabil-
ity to perturbation in the instantaneous temperature field. Heating with periodic
stirring can also be significantly hampered when model and reality deviate (e.g.
parameter perturbations due manufacturing tolerance or ambient effects). Per-
formance results thus often only apply for the conditions/parameters used during
design. In addition, “optimal” (periodic) stirring sequences are known to change
under varying system conditions. The above pleads for adaptive stirring with
stirring based on the instantaneous “state of fluid heating. This closed-loop feed-
back control approach is known to mitigate the open-loop limitations. Therefore,
closed-loop control with feedback based on the temperature field is used in this
thesis.

The first contribution of this thesis consists of a flow controller for fluid heating.
The fluid flow activation is determined by way of a cost-function prediction. The
cost-function contains the difference between the instantaneous and a target fluid
temperature. This novel cost-function captures both facets of the heating process
(i.e. energization and homogenization). Function analysis reveals that the flow
field acts as the thermal actuator that influences both competing facets of heat-
ing simultaneously. The controller significantly accelerates heating compared to
periodic stirring for a large span of model parameters.

The second contribution of this thesis provides insights to improve existing
heating systems. To this end, the above controller is used to obtain stirring se-
quences that accelerate heating compared to periodic stirring. Fluid heating with
circulation in a single direction covers a large range of industrial applications.
Therefore, the controller is only allowed to circulate fluids in a single direction.
Numerical results reveal improved resilience against parameter deviations with
the adaptive sequences, while simultaneously ensuring faster heating. Adaptive
sequences achieve this by either i) (slightly) altering periodic stirring sequences
or ii) introducing aperiodic transients.

Conventional approaches rely on activating a single flow for discrete time
windows. The simultaneous and continuous actuation of flow(s) can potentially
achieve even faster fluid heating. In the third contribution of this thesis a general
form of the novel cost-function is used to achieve fluid heating. The analogy of
these cost functions with thermal energy makes them well suited as Lyapunov
functions. This view lies at the foundation of the bang-bang regulator and the
quadratic feedback regulator developed in this contribution. Numerical results
show that both regulators can heat a fluid faster compared to periodic stirring.
Proportionality makes the quadratic regulator particularly well suited for practical
application. Furthermore, the quadratic regulator shows improved resilience to
perturbations compared to conventional methods.

The flow controllers in this thesis rely on full knowledge of the temperature
field. However, in practice the temperature field is only partially available from
discretely located sensor data. Therefore, in the final contribution of this thesis an
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estimator is designed and implemented for temperature field reconstruction. The
estimator is investigated both numerically and experimentally to show practical
feasibility.
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CHAPTER 1
Introduction

1.1 Background

According to recent estimates, heating accounted to 50 % of the worlds’ energy
consumption. Moreover, heat transport, as part of industrial processes, accounts
for around 50 % of this global heat consumption [1]. Heat is a scalar quantity,
which, like mass, can be transported by fluids. Flows can be used to influence
the rate of fluid heating/cooling. The rapid transportation of scalar quantities such
as, e.g., heat or chemical species by flows is key to many industrial activities.
The industrial applications of interest range from viscous mixing of polymers and
foodstuffs [2, 3] via process intensification and micro-fluidic devices [4, 5, 6] to
subsurface resource recovery [7, 8, 9] and groundwater remediation [10, 11].
Boosting the efficiency of scalar transport can potentially result in faster and,
consequently, more (energy) efficient operation of these applications.

Central to this thesis is a practical scalar transport system that is representa-
tive for the applications of interest: the two-dimensional (2D) Rotated Arc Mixer
(RAM). The 2D RAM is a fluid heating system, which heats (cools) an initially
cold (hot) fluid by fluid stirring through a hot (cold) boundary. The experimental
2D RAM, shown in Figure 1.1, is a 2D experimental representation of an inline
mixer studied for heating/mixing of foodstuffs [16, 17]. The relative simple ex-
perimental configuration of the 2D RAM, i.e., compared to the other applications
in Figure 1.1, means that strategies, devised to boost scalar transport, can be
studied in practice as well. Practical feasibility of these strategies is key to their
adoption by industry and is, therefore, an important rationale to adopt the (exper-
imental) 2D RAM as a case-study. In addition, there are several key similarities,
schematically summarized in Figure 1.1, between the applications of interest and
the RAM, that forms the motivation for its adoption as a representative case-study
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1. Introduction

Figure 1.1: Various applications of interest that typically employ reorienting flow
fields for fluid stirring in a similar fashion as the case-study central to this thesis;
the two-dimensional (2D) Rotated Arc Mixer (RAM). Adopted pictures are, start-
ing from the upper right corner in clock-wise order around the 2D RAM , from
Baskan et al. [12], Roto-art [13], van Pelt et al. [14] and DiPippo [15].

throughout this thesis. These similarities will be summarized/explained next.

1.2 A representative scalar transport problem

The various applications in Figure 1.1 intend to transport heat or chemical species
(in)to the fluid as fast as possible. In the 2D RAM, fluid stirring is used to pro-
mote heat transport (in)to the fluid as fast as possible. Hence, they share the
same goal; boost scalar transport (in)to a fluid as much as possible. In addi-
tion, in both the applications and the RAM a non-adiabatic boundary condition is
present, which provides a scalar influx across the system boundary that “drives”
scalar transport. In addition, diffusion is present in both the applications and
the RAM, which significantly impacts scalar transport behaviour. The top view of
the experimental 2D RAM and the schematic configuration, used throughout this
thesis, are shown in Figure 1.2 to clarify the implementation of the non-adiabatic
boundary condition in the 2D RAM in Figure 1.1. The fluid is contained inside a
circular fluid container D with radius R. The circular fluid container D is enclosed

2



1.2 A representative scalar transport problem

Figure 1.2: The top view and the schematic configuration of the 2D RAM. The
schematic configuration that shows that the three apertures of arc-length ∆ reori-
ent by an angle Θ along the boundary ∂D. The hot (red) boundary temperature
and cold (blue) initial fluid temperature are indicated as well.

by a hot boundary ∂D implemented by circulating a hot fluid through the annulus
encircling the fluid container. Heat is transferred from the hot boundary, which
encloses the fluid container, into an initially cold fluid.

(a) Base flow. (b) Reoriented flows.

(c) Temperature field evolution.

Figure 1.3: The streamlines of (a) base flow and (b) the reoriented flows of a
2D RAM with three apertures. The typical evolution of the (c) temperature field
evolution for an open-loop periodic reorientation scheme that step-wise activates
of the base flow and reoriented flows (blue: cold; red: hot).
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1. Introduction

Scalar transport is “driven” by reorienting laminar base flows in both the ap-
plications of interest and the RAM. Such laminar flows occur in the flow system
under consideration as a result of high fluid viscosities, low flow velocities and/or
small length scales. Here, reorientations of the laminar base flow are imple-
mented in the applications of interest via flow forcing, e.g., by moving impellers
or alternating pumps, and serve to enhance scalar transport. In the 2D RAM,
moving boundary segments induce a fluid flow by viscous drag. To do so, the hot
boundary contains apertures along the azimuth, which are covered by belts. The
fluid inside this container is set into motion by viscous drag due to the tangential
motion of a belt-pulley system. These moving boundary segments are indicated
in Figure 1.2 as well. The (reoriented) fluid flow fields induced, by the moving
boundary segments, are shown in Figure 1.3. Flow fields merely reorient by, say,
an angle Θ as can be seen in Figure 1.3a,b. The activation of each aperture, fol-
lowing the periodic activation of apertures in Figure 1.3a,b, in the presence of the
hot boundary results in a temperature field evolution as shown Figure 1.3c. Fig-
ure 1.3c shows that the activation of a moving boundary results in the formation
of a plume that transfers heat from the hot boundary into the colder fluid. Various
other (a)periodic reorientation sequences can be envisioned for the activation of
the fluid flows shown in Figure 1.3a,b. This immediately raises the question that
is central to this thesis:

• How to stir the fluid to heat it up as quickly as possible?

1.3 Challenges in boosting scalar transport

This thesis concentrates on the representative scalar transport problem presented
in the previous section; heating/cooling of an initially cold/hot fluid in the presence
of diffusion through a hot/cold boundary. Boundary heating of a fluid, in the pres-
ence of diffusion, involves transporting the scalar quantity in(to) the fluid. This
inherently means that scalar transport (and, in particular, fluid heating) is gov-
erned by two processes. Namely, scalar transfer from the boundary into the fluid
and transport of said scalar throughout the fluid. In this study these two processes
are, respectively, referred to as energisation and homogenisation hereafter. This
section provides an overview of various research challenges currently encoun-
tered throughout literature.

1.3.1 Challenges of conventional flow forcing control

The question central to this thesis has been the topic of numerous transport stud-
ies. The majority of these transport studies solely concentrate on transport of
the scalar throughout the fluid and is commonly referred to as mixing [18]. In
such transport studies, the scalar field typically has a constant (or zero) mean
value owing to the presence of an adiabatic boundary condition (i.e. no scalar
transport across the system boundary). This means that the majority of transport

4



1.3 Challenges in boosting scalar transport

studies are primarily focussed on homogenization. Effective heat transport in the
presence of a non-adiabatic boundary condition requires the optimization of both
competing mechanisms involved in fluid heating, however.

The conventional approach towards enhancing scalar transport consists of
assuming that enhanced scalar transport, regardless of the nature of the problem,
is automatic with efficient fluid mixing and utilising periodic flow reorientations ei-
ther in space or time to accomplish such mixing in laminar flows via so-called
“chaotic advection” [19, 18, 20]. This leans on the intuitive notion that stirring a
fluid results in rapid scalar transport. However, a reoriented flow so designed,
even if effectively accomplishing chaotic advection, has important limitations for
enhancing scalar transport. First, it substantially restricts permissible flow reori-
entations and thus potentially excludes more optimal scenarios. Second, it dis-
counts the actual scalar transport relevant to the system. Third, it lacks resilience
to any unforeseen disturbances and changing process conditions. Fourth, it omits
diffusive transport both internally and across non-adiabatic boundaries. Numer-
ous studies have delved into any number of these limitations leading to various
solutions such as (a)periodic flow forcing [21], optimized periodic flow forcing
[12, 22] or optimized (aperiodic) flow forcing [23, 24] to name a few. Cortelezzi et
al. [24] showed that flow forcing protocols designed for fast homogenisation can
only enhance scalar transport in the absence of significant diffusion (i.e. for high
Pèclet numbers Pe & O(103)). However, adopting an open-loop flow forcing
approach – viz. real-time actuation of the fluid flow without any knowledge of the
underlying evolution of the scalar field – inherently results in the abovementioned
limitations.

These limitations can be mitigated by basing flow forcing on the current scalar
field with a controller. Thusfar, the roll-out based optimal controller proposed by
Dolk et al. [25] remains one of the only closed-loop methods that uses flow forcing
to boost homogenization. In addition, boosting scalar transport with a flow forcing
controller in the presence of both diffusion and non-adiabatic boundary conditions
has remained an open issue.

1.3.2 Scalar field estimation

Knowledge of the complete scalar field (or state) is of vital importance to perform
(closed-loop) flow forcing control to boost scalar transport. However, in practi-
cal (industrial) applications, information about the scalar field is, typically, only
partially available through measurements with a finite set of sensors. To obtain
the complete field and, consequently, track scalar transport, a state estimator (or
observer) can be used. Estimator (or observer) design for state reconstruction
is a well-established field within the control community (see reviews [26, 27] and
the references therein). The majority of these designs require states that only
evolve in time (i.e. their dynamics are described by ordinary differential equa-
tions (ODEs)). Estimating states that also evolve in space – viz. scalar fields
governed by partial differential equations (PDEs) – requires more elaborate tech-
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1. Introduction

niques for estimator/observer design. Several techniques for state estimation in
PDEs are available in literature, which include backstepping observers [28, 29],
optimal observers [30], nonlinear observers [31, 32, 33], (extended) Kalman fil-
ters [34, 35] or Luenburger observers [36, 37, 38, 39, 40]. However, the majority
of estimator design studies only focus on the theoretical and numerical devel-
opment of said designs. Moreover, the developed observers are often designed
for one-dimensional (1D) systems, which are governed by PDEs without space-
varying coefficients. In addition, PDEs are usually discretized, by various nu-
merical methods to obtain a set of ODEs, to perform numerical simulations [41].
Regardless of the method employed, fluid heating in two-dimensional (2D) sys-
tems typically contains a significantly large number of states (i.e. all nodal ele-
ments of a scalar field). The computational burden associated with estimation in
such large scale systems (i.e. in terms of the state dimension) renders most of
the abovementioned techniques computationally too slow/complex for real-time
state reconstruction. Furthermore, estimator designs for systems without space-
varying coefficients are not necessarily applicable to systems with more intricate
transport dynamics (e.g. such as heat transport with a 2D flow field shown in
Figure 1.3c). Nonetheless, Gunder et al. [34] successfully applied an extended
Kalman filter for 2D velocity field reconstruction based on a discretely sampled
field from a CFD model. Lausterer et al. [42] performed experimental 2D tem-
perature field reconstruction of a heated steel ingot. However, (experimental) 2D
scalar field estimation in fluids with a (laminar) flow field has remained an open
challenge.

1.3.3 Scalar transport measure

The question central to this thesis has been the subject of several studies. In
these studies a variety of measures has been proposed to gauge the effective-
ness of scalar transport. For example, Danckwerts [43] introduced the intensity of
segregation as the variance of a scalar field with respect to its equilibrium value.
Mix-norms – defined separately by Mathew et al. [44] and Doering and Thiffeault
[45] – are equivalent to Sobolev space norms of negative indices. These norms
can be viewed as the power spectral density of the scalar field [44]. D'Alessandro
et al. [46] gauged mixedness of a dynamical system by its entropy. Numerous
other measures have been investigated, which are very effective to determine
the “state” of the scalar field in measure-preserving systems [18, 47, 48, 49, 50].
However, the flow velocities, length scales and (thermal) diffusivity considered
here, are such that diffusion plays a significant role in scalar transport. More-
over, scalar influx across a system boundary occurs due to the presence of a
non-adiabatic boundary condition in the applications of interest. For flow systems
where scalar transport occurs in the presence of both i) diffusion and ii) a non-
adiabatic boundary condition, a different, more appropriate measure, needs to be
devised to track scalar transport. The effectiveness of scalar transport for sys-
tems with significant diffusion and a non-adiabatic boundary condition has been

6



1.4 Research objectives and contributions

determined by Lp norms [51] or (several) statistical properties of the scalar field
[52, 53]. However, how fluid flow relates to the two competing aspects that control
fluid heating remains an open challenge.

1.4 Research objectives and contributions

In this thesis, closed-loop flow controllers and field estimators are used to solve
the challenges inherently associated with rapid fluid heating by conventional flow
control strategies as introduced in Section 1.2. In Section 1.4.1, the essential
components of the closed-loop used to boost scalar transport are briefly intro-
duced. The research objectives of this thesis are presented in Section 1.4.2.
Finally, the research contributions of this thesis are presented in Section 1.5.

1.4.1 Closed-loop flow forcing control

The objective of a controller is to ensure the output of a system behaves as in-
tended by manipulating the input [54]. In this thesis, the goal of a flow controller
is to boost scalar transport by stirring. In that case, the scalar field can be viewed
as the output or, in case the field is measured with only a discrete sensor set,
parts of the scalar field can be viewed as the output. Moreover, the fluid flow
field(s) can be viewed as the input that can manipulate/influence the scalar field.
Boosting scalar transport, in the context of this thesis, refers to reaching a de-
sired (homogeneous) scalar field at steady-state which can thus be viewed as a
reference r such that T̃ = T − r. This allows a closed-loop flow controller for
boosting scalar transport to be schematically represented as in Figure 1.4.

Figure 1.4: A schematic of the closed-loop feedback controller C with estimator
L considered in this thesis.

Figure 1.4 shows a simplified version of the closed-loop flow controllers cen-
tral to this thesis. The flow controller C in Figure 1.4 requires a control error T̃ to

7



1. Introduction

devise an appropriate input (or fluid flow field) with which to adjust the scalar field.
For the 2D RAM, and likewise for the applications of interest in this thesis (see
Figure 1.1), the control error is defined as the difference between the desired (ho-
mogeneous) scalar field at steady-state (i.e. the scalar field as time t → ∞) and
the instantaneous scalar field. For the 2D RAM, the instantaneous scalar field of
interest is the temperature field. The controller requires this instantaneous scalar
field to determine the control error T̃ . The complete temperature distribution in-
side D is available in the (experimental) 2D RAM (like Figure 1.3c). However,
in many practical applications the scalar field is only partially available by mea-
surements with a discrete sensor set. Hence, the instantaneous field needs to be
reconstructed based on the available measurement data. The reconstruction or
estimation of the instantaneous field requires the inclusion of an estimator L (or
observer) in the feedback loop as shown in Figure 1.4.

1.4.2 Research objectives

The methods, developed throughout this thesis, are numerically and/or exper-
imentally investigated on a representative case-study, i.e., the 2D RAM, pre-
sented in Section 1.2. The case-study consists of a two-dimensional fluid con-
tainer, which is enclosed by a circular boundary. The schematic configuration of
the studied system is shown in Figure 1.2. A closed-loop flow forcing controller is
used to tackle the inherent challenges associated with boosting fluid heating with
open-loop flow forcing control (e.g. such as periodic flow reorientation shown in
Figure 1.3c).

The principal objective of this thesis is to gain theoretical and experimental
insight into the design of closed-loop flow forcing controllers that can boost scalar
transport by stirring. The intermediate objectives of this thesis can be listed as:

Objective 1. Gain insights into heating dynamics that can be used to structurally
boost fluid heating in practice.

Objective 2. Develop a flow forcing controller that significantly enhances fluid
heating in the presence of both diffusion and a non-adiabatic bound-
ary condition.

Objective 3. Develop a method that is able to accurately capture/reconstruct the
scalar field from discrete sensor data in practice.

The first two objective directly relate to the question raised at the end of Sec-
tion 1.2. Moreover, achieving the first objective can, for example, improve scalar
transport of existing systems or helps in the redesign/improvement of novel appli-
cations. The third objective directly relates to the closed-loop presented in Figure
1.4 as field estimation is of particular interest in the development of a practical
closed-loop flow forcing controller.

8



1.5 Contributions

1.5 Contributions

There are four contributions in this thesis that directly address the three research
objectives presented in the previous section. These contributions are:

Contribution 1. The first main contribution of this thesis consists of a flow con-
troller for fluid heating. The fluid flow activation is determined by way of a cost-
function prediction. The cost-function contains the difference between the instan-
taneous and a target fluid temperature. Moreover, the complete temperature field
is available for feedback flow control. Therefore, the estimator in Figure 1.4 is
absent in the closed-loop considered in this contribution. A rigorous and in-depth
analysis reveals that the cost-function captures both facets of the heating process
(i.e. energization and homogenization). Function analysis reveals that the flow
field acts as the “thermal actuator” that simultaneously influences both competing
facets of heating. The flow controller is investigated for the representative case-
study presented in Section 1.2. The controller significantly accelerates heating
compared to a conventional periodic stirring protocol for a large span of model
parameters.

Contribution 2. The second main contribution of this thesis provides insights
to improve existing heating systems. To this end, the flow controller of the first
main contribution is analysed further. The flow controller is used to obtain stirring
sequences that accelerate heating compared to periodic stirring. The flow con-
troller is only allowed to circulate the fluid in a single direction in these stirring se-
quences. Fluid heating with circulation in a single direction covers a large range
of industrial applications. Numerical results reveal improved resilience against
deviations in model parameter (i.e. Péclet number and activation time) with the
found stirring sequences, while simultaneously ensuring faster heating, compared
to the periodic stirring sequences. The adaptive sequences achieve this by either
i) (slightly) altering periodic stirring sequences or ii) introducing aperiodic tran-
sients.

Contribution 3. Conventional (periodic) stirring approaches rely on activating a
single flow for discrete time windows. The simultaneous and continuous actuation
of flow(s) can potentially achieve even faster fluid heating. In the third contribu-
tion of this thesis a general form of the novel cost-function is used to achieve
fluid heating. The analogy of these cost functions with thermal energy makes
them well suited as control Lyapunov functions. This view lies at the foundation of
the bang-bang controller and the quadratic feedback controller developed in this
contribution. The designed flow controllers use the simultaneous and continuous
actuation of flow(s) to boost heating. The flow controllers are numerically and
theoretically investigated for the representative case-study presented in Section
1.2. Well-posedness of the bang-bang controller is proven to assure existence
and uniqueness of the closed-loop system. Again, the complete temperature
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1. Introduction

field is available for flow control. Hence, the estimator in Figure 1.4 is absent in
the closed-loop considered in this contribution. Numerical results show that both
flow controllers can heat a fluid faster than mere diffusion, fluid circulation by a
single flow and a conventional periodic stirring sequence. Scaling of the inputs
with the instantaneous scalar field makes the quadratic controller particularly well
suited for practical applications. An in-depth analysis of the improved heating be-
haviour reveals an effective mechanism for fluid heating. Moreover, this heating
behaviour and, consequently, its improvement in fluid heating possesses at least
some resilience to perturbations.

Contribution 4. The flow controllers in the main contributions of this thesis rely
on the full knowledge of the temperature field. However, in practice the tempera-
ture field is only partially available from discretely located sensor data. Therefore,
in the final contribution of this thesis a Luenburger estimator is designed and
implemented for temperature field reconstruction. The estimator requires only a
small part of the scalar field, available through measurements by discrete sensors
that sample the scalar field, to reconstruct the field. A sensor placement method
and parameter identification method are presented here as well. The developed
estimators are investigated both numerically and experimentally on the represen-
tative case-study presented in Section 1.2. The estimator is investigated both
numerically and experimentally to gauge practical feasibility in the closed-loop in
Figure 1.4. Numerical results show that the estimator is able to accurately cap-
ture the scalar field for mere diffusion, a single flow or a periodic stirring sequence.
Moreover, experiments show that the estimator can still accurately reconstruct the
scalar field even in the presence of noise.

1.6 Thesis outline

This thesis consists of 7 chapters including the introduction. In Chapter 2, the
first main contribution of this thesis is presented. The main results in Chapter 2
are based on Lensvelt et al. [55] and preliminary results appear in Lensvelt et
al. [56]. The evolution of the cost-function in this chapter is presented in Ap-
pendix A. Chapter 3 encompasses the second main contribution of this thesis of
which preliminary results can be found in Lensvelt et al. [57]. In Chapter 4, the
two flow controllers, which represent the third main contribution of this thesis, are
presented and analyzed. The numerical results in this chapter are based on the
preliminary results presented in Lensvelt et al. [58]. The eigenfunctions, used
to model heat-transfer in Chapter 4, and a well-posedness result for the bang-
bang flow controller are presented in Appendix B and Appendix C, respectively.
Chapter 5 and Chapter 6 contain the fourth and final contribution of this thesis.
The derivations required to determine local identifiability during parameter iden-
tification are presented in Appendix D. Reorientation invariance of the discrete
algebraic Ricatti equation (DARE) and the evolution of the estimation error for a
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1.6 Thesis outline

periodic flow are presented in Appendix E and Appendix F, respectively. The im-
pact of sensor placement on scalar field estimation in with heat transport driven by
the base flow is presented in Appendix G. Finally, Chapter 7 provides a summary
of the main results and conclusions of this thesis combined with several recom-
mendations for future research. Note that Chapters 2, 4 and 5 are standalone
by design such that these chapters can be read individually. This can introduce
some repetition in the introductions and/or system descriptions amongst these
chapter. Chapter 3 and Chapter 6 are extension to Chapter 2 and Chapter 5,
respectively.
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CHAPTER 2
Fast fluid heating by adaptive

flow reorientation

Transport of scalar quantities such as e.g. heat or chemical species in laminar
flows is key to many industrial activities and stirring of the fluid by flow reorien-
tation is a common way to enhance this process. However, “How best to stir?”
remains a major challenge. The present study aims to contribute to existing solu-
tions by the development of a dedicated flow-control strategy for the fast heating
of a cold fluid via a hot boundary in a representative case study. In-depth analysis
of the dynamics of heating in fluid flows serves as foundation for the control strat-
egy and exposes fluid deformation as the “thermal actuator” via which the flow
affects the heat transfer. This link is non-trivial, though, in that fluid deformation
may both enhance and diminish local heat exchange between fluid parcels and
a fundamental “conflict” between local heat transfer and thermal homogenisation
tends to restrict the beneficial impact of flow to short-lived episodes. Moreover,
the impact of fluid deformation on the global fluid heating is primarily confined
to the direct proximity of the moving boundary that drives the flow. These in-
sights imply that incorporation of the thermal behaviour is essential for effective
flow-based enhancement strategies and efficient fluid mixing, the conventional
approach adopted in industry for this purpose, is potentially sub-optimal. The
notion that global heating encompasses two concurrent processes, i.e. increas-
ing energy content (“energising”) and thermal homogenisation, yields the relevant

The contents of this chapter is based on: R. Lensvelt, M.F.M. Speetjens and H. Nijmijer “Fast
fluid heating by adaptive flow reorientation”, In: International Journal of Thermal Sciences, (180),
107720, 2022. Related preliminary results are reported in: R. Lensvelt, M.F.M. Speetjens and H.
Nijmijer “Heat-transfer enhancement by adaptive reorientation of flow fields”. In: 5th Thermal and
Fluids Engineering Conference., New-Orleans, pages 411-420, 2020.
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2. Fast fluid heating by adaptive flow reorientation

metrics for the global dynamics and thus enables formulation of the control prob-
lem as the minimisation of a dedicated cost function. This facilitates step-wise
determination of the “best” flow reorientation from predicted future evolutions of
actual intermediate states and thereby paves the way to (real-time) regulation
of scalar transport by flow control in practical applications. Performance analy-
ses reveal that this “adaptive flow reorientation” significantly accelerates the fluid
heating throughout the considered parameter space and thus is superior over
conventional periodic schemes (designed for efficient fluid mixing) both in terms
of consistency and effectiveness. The controller in fact breaks with conventions
by, first, never selecting these periodic schemes and, second, achieving the same
superior performance for all flow conditions irrespective of whether said mixing
occurs. The controller typically achieves this superiority by thermal plumes that
extend from the hot wall into the cold(er) interior and are driven by two alternating
and counter-rotating circulations.

2.1 Introduction

Transport of scalar quantities such as e.g. heat or chemical species in laminar
flows is key to many industrial activities ranging from viscous mixing of polymers
and foodstuffs [2, 3] via process intensification and micro-fluidic devices [4, 5, 6]
to subsurface resource recovery [7, 8, 9] and groundwater remediation [10, 11].
Such systems often employ reorientations of a laminar base flow via the flow forc-
ing (e.g. moving impellers or alternating pumps) to enhance scalar transport and
thus lean on the intuitive notion that stirring of a fluid benefits this transport. How-
ever, design and engineering of such reoriented flows faces a major challenge,
namely “How best to stir?” and, intimately related to this, “What defines efficient
transport?” in a given system.

The conventional approach towards tackling this challenge consists of assum-
ing that enhanced scalar transport, regardless of the nature of the problem, is au-
tomatic with efficient fluid mixing and utilising periodic flow reorientations either
in space or time to accomplish such mixing in laminar flows via so-called “chaotic
advection” [19, 18, 20]. Numerous studies adopt this approach for a variety of
configurations and design strategies ranging from parametric optimisation of acti-
vation times to maximising entropy [46, 16, 59, 5, 60]. However, a reoriented flow
so designed, even if effectively accomplishing chaotic advection, has important
limitations for enhancing scalar transport. First, it substantially restricts permis-
sible flow reorientations and thus potentially excludes more optimal scenarios.
Second, it is non-dedicated by discounting the actual scalar transport relevant to
the system. Third, it lacks robustness to unforeseen disturbances and changing
process conditions. Fourth, it omits diffusive transport both internally and across
non-adiabatic boundaries.

The above limitations motivated a host of efforts to design and create flows
for enhancing scalar transport by way of optimal control [49, 23, 61, 62, 24, 63,
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64, 65, 66, 67, 25]. This overwhelmingly concerns scalar homogenisation in adia-
batic systems and the control strategy essentially consists of a priori determining
the flow (forcing) that maximally accelerates said homogenisation in terms of an
optimality criterion. To this end various measures for scalar transport have suc-
cessfully been employed, primarily the mix-norm [61, 24, 64, 60, 66, 67, 68] yet
also e.g. stretching rates of fluid interfaces [49] or the intensity of segregation
[25]. Reference [23] thus designed a control law for a four-point vortex flow that
maximizes the scalar flux across certain fluid interfaces via low-frequency modu-
lation of the vortex motion. Reference [68] thus determined the motion of stirrers
to accomplish maximum scalar homogenisation inside a circular domain using
the mix-norm by [44].

However, these control strategies generally concern scalar transport only
by (chaotic) advection and are often restricted to highly-idealised configurations
and/or forcing mechanisms with limited practical relevance. Several studies ad-
dress the effect of diffusion (characterised by the well-known Péclet number Pe)
by demonstrating that control laws and measures designed for advective transport
(i.e. limit Pe → ∞) may remain effective for finite Pe. Flow forcing optimised for
advective transport in Reference [24] e.g. proved effective for Pe & O(104) and
Reference [66] e.g. successfully applied the mix-norm down to Pe ∼ O(103).
Furthermore, Reference [24] introduces some degree of robustness by perform-
ing step-wise optimal control using the intermediate state. However, existing
studies nonetheless primarily address the first and second limitations mentioned
above; limited robustness and omission of diffusion remain two important short-
comings in most optimal-control approaches. Moreover, goals other than ho-
mogenisation such as e.g. enhanced scalar flux across non-adiabatic boundaries
receive scant attention to date.

The above findings motivate the present study, which aims at contributing to
the development of dedicated flow-control strategies for enhancement of advective-
diffusive scalar transport in realistic flow systems with non-adiabatic boundaries.
To this end the present study adopts heating of an initially cold fluid via an isother-
mal hot boundary in the 2D unsteady Rotated Arc Mixer (RAM) according to [17]
as representative case study. Control target is accomplishing “fast” fluid heat-
ing in a robust manner by a control strategy that step-wise determines the most
effective reorientation of the RAM base flow from predicted future evolutions of
the actual intermediate state. This expands the exploratory study in [56] by, first,
foundation of the control strategy on insights into the dynamics of heating in fluid
flows and, second, an extensive performance analysis.

The study contributes to existing work in literature in several ways. First, it
involves advective-diffusive scalar transport including flux across a non-adiabatic
boundary in a realistic configuration. The RAM namely is experimentally realis-
able and admits laboratory studies both on (chaotic) advection and thermal trans-
port [17, 69]. Second, the control problem is of great (practical) relevance yet,
contrary to scalar homogenisation in adiabatic systems, scarcely investigated.
Third, the control strategy paves the way to (real-time) regulation of scalar trans-
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port in practical applications. This sets the present study apart from related stud-
ies on realistic boundary-driven flows in [49, 25, 68]. The latter namely concern
enhancement of scalar homogenisation. Moreover, References [49, 68] again
employ optimal control for this purpose; only Reference [25] (to the best of our
knowledge) adopts prediction-based state-feedback control akin to the present
study.

The study is organised as follows. Section 2.2 introduces the problem of inter-
est and the general control strategy including the (to this end relevant) structure
of the temperature field in reoriented flows. The dynamics of heating in fluid flows
are investigated in Section 2.3 and insights thus gained are employed to develop
the control strategy in Section 2.4. The performance of adaptive flow reorienta-
tion is examined in Section 2.5 by a computational analysis and reconciled with
flow and thermal physics. Conclusions and recommendations for future work are
presented in Section 2.6.

2.2 Scalar transport in reoriented flows

2.2.1 Flow configuration

The flow configuration of the 2D unsteady RAM is given in Figure 2.1a and con-
sists of a circular container D =

{
(r, θ) ∈ R2

∣∣ r ≤ R,−π ≤ θ ≤ π
}

enclosed
by a circular boundary Γ = ∂D of unit radius R (red circle). The circumference
of the RAM contains N apertures (black arcs in Figure 2.1a) with arc length ∆
and angular offset Θ = 2π/N (i.e. the centerline of arc 1 ≤ k ≤ N is located
at angle θk = (k − 1)Θ). Sliding wall segments along these apertures (prac-
tically realizable by belts [17]) via viscous drag drive the flow inside the RAM.
Activation of the first arc (i.e. centred on the x-axis) in clockwise direction at an
angular velocity Ω thus sets up a steady flow v1 with streamline pattern following
Figure 2.1b. This constitutes the base flow of the RAM. Assumed are an in-
stantaneous fluid response and negligible inertia, implying that the base flow is a
steady Stokes flow symmetric about the x-axis and admitting an analytical solu-
tion following [70]. These properties have the important consequence that other
activations of the arcs result in flows that are direct transformations of base flow
v1. Reversal of the motion of the first arc simply reverses the base flow, yielding a
flow v(r, θ) = −v1(r, θ), while maintaining the streamline portrait following Fig-
ure 2.1c. Activation of arc k > 1 rotates the base flow and yields a flow following
v (r, θ) = v1 (r, θ + (k − 1)Θ), resulting in reoriented flows as shown in Figure
2.1d for k = 2 (left) and k = 3 (right) for reorientation angle Θ = 2π/3.

Systematic reorientation of a base flow by the flow forcing as exemplified in
Figure 2.1 for the RAM can be accomplished in many industrial applications by
similar wall activations yet also via mechanic stirrers, electro-magnetic stirring
and an array of (micro-fluidic) body forcings such as e.g. electro-osmosis, acous-
tic streaming or electro-wetting [20]. Moreover, recent studies demonstrated that
subsurface flows in e.g. enhanced geothermal systems, in situ mining or ground-
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water remediation admit similar flow reorientation via unsteady pumping schemes
for injection and production wells [71, 9]. Thus the RAM indeed captures the
essence of a wide range of systems.

(a) Geometry (b) Base flow

(c) Reversed flow (d) Reoriented flows

Figure 2.1: Flow configuration of 2D unsteady RAM: (a) geometry bounded by
circular wall of radius R containing apertures of arc length ∆ = π/4 and offset by
angle Θ; (b) streamline pattern (left) and magnitude (right) of base flow driven by
arc at −∆/2 ≤ θ ≤ ∆/2; (c) reversed base flow; (d) reorientations of the base
flow.

2.2.2 Thermal problem and general control strategy

Scalar transport in the RAM is investigated in terms of the heating of an initially
cold fluid at uniform temperature T0 inside D via the hot boundary Γ with con-
stant temperature T∞ > T0 (red circle in Figure 2.1a). The evolution of the
corresponding temperature field T (x, t) is described by the advection-diffusion
equation (ADE), which in non-dimensional form is given by

∂T

∂t
= −v · ∇∇∇T −∇ · q = −v · ∇∇∇T +

1

Pe
∇∇∇2T, q = − 1

Pe
∇∇∇T, (2.1)

with v (x, t) the unsteady flow, Pe = UR/ν the well-known Pèclet number (de-
termined by characteristic length and velocity scales R and U = ΩR, respec-
tively, and thermal diffusion ν) and q the diffusive heat flux according to Fourier’s
law [17, 56]. (Geometry and flow forcing rescale to unit radius R = 1 and unit
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2. Fast fluid heating by adaptive flow reorientation

angular velocity Ω = 1, respectively). The initial and boundary conditions corre-
sponding with the above heating problem are T (x, 0) = T0 and T (x, t)|Γ = T∞
for all x ∈ D and t ≥ 0. Thermal problems within the scope of our study typically
have Pe ∼ O(102 − 104), implying advection-dominated heat transfer yet with
significant diffusion. Presence of diffusion has the important consequence that,
regardless of the flow v, any initial temperature field T (x, 0) always evolves to-
wards the uniform final state limt→∞ T (x, t) = T∞ (Section 2.3.4). Thus the
dynamic behaviour induced by a particular flow v is entirely incorporated in the
transient temperature

T̃ (x, t) ≡ T (x, t)− T∞ (2.2)

which is governed by the ADE

∂T̃

∂t
= −v ·∇∇∇T̃ +

1

Pe
∇∇∇2T̃ , T̃ (x, 0) = T0−T∞, T̃ (x, t)

∣∣∣
Γ
= 0. (2.3)

as readily follows from substitution of (2.2) into (2.1). Heating of the fluid then
becomes equivalent to progression of the transient temperature towards the final
state T̃∞ = limt→∞ T̃ = 0. Initial and boundary conditions can be set to T0 = 0
and T∞ = 1 hereafter without loss of generality and thus give T̃ (x, 0) = −1 for
the initial condition in (2.3).

The flow v(x, t) in (2.3) plays a crucial role in the evolution of T̃ towards T̃∞.
It is namely well-known that stirring of a fluid has a major impact on its heating
and thereby on the duration of the transient. However, the central question is:
“How best to stir to obtain the fastest fluid heating?” The RAM (and reoriented
flows in general) aims at achieving optimal stirring in this sense via an unsteady
flow v generated by switching between steady flows vu following

v (x, t) = vun
(x) (2.4)

with U = {u0, u1, . . . un, . . . } the “reorientation scheme” that activates a se-
lected flow vu with reorientation u at time step tn = nτ (n ∈ {0, 1, . . . }) for a
time interval tn ≤ t ≤ tn + τ of duration τ . The activated flow vu can for a RAM
with N arcs at each tn be selected from the set of 2N + 1 flows vk defined by
transformations of the base flow v1 according to

vu (x) =

{
sign(u)v1 (Ru (x)) u 6= 0
0 u = 0,

(2.5)

with u ∈ {−N, . . . , N}. Here operators Ru : (r, θ) → (r, θ − (|u| − 1)Θ) and
sign(u) determine rotation and flow direction, respectively, for a given u 6= 0. For
example: u = 3 rotates the base flow by angle 2Θ by activation of aperture u = 3
in clockwise direction; u = −3 in addition reverses aperture motion and flow;
u = 0 deactivates the flow and heat is transferred by diffusion only. Reorientation
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scheme U = {1,−3, 2} e.g. subsequently activates apertures (1, 3, 2), each for
a duration τ and with clockwise (1, 2) and counter-clockwise (3) motion.

Determining the “best” reorientation scheme U to achieve the control tar-
get, i.e. accomplishing the “fastest” fluid heating, is a major challenge. Exist-
ing approaches employ reorientation schemes consisting of ad infinitum periodic
repetitions of a fixed sequence such as e.g. U = {1, 2, . . . , N} or sequences
determined a priori via optimal control. However, both approaches have impor-
tant conceptual shortcomings and current optimal-control schemes are in general
dedicated to homogenisation (Section 2.1). This limits the suitability of these ap-
proaches for the present control problem. Section 2.4 resolves this by a dedicated
control strategy that identifies the “best” U specifically for fast fluid heating by
step-wise determining the most effective flow reorientation from predicted future
evolutions of the actual intermediate state (denoted “adaptive flow reorientation”
hereafter). Crucial to this end is an adequate definition and quantification of what
constitutes “best” and “fastest” in the present context. This is to be specified in
Section 2.4.1.

2.2.3 Reorientation of the temperature field

Key for realizing a control strategy for advective-diffusive transport using reorien-
tations of a base flow for actuation is the property that flow reorientations (2.4)
and (2.5) carry over to the temperature field. This hinges on the spectral decom-
position of the Perron-Frobenius evolution operator Pt governing the temperature
evolution for the base flow v1, given by

T̃ (x, t) = PtT̃ (x, 0) =

∞∑
m=0

αmφ(x)e
λmt,

T̃ (x, 0) =

∞∑
m=0

αmφ(x),

(2.6)

with {φm, λm} the eigenfunction-eigenvalue pairs defined by the eigenvalue prob-
lem

Pe−1∇∇∇2φm − v1 · ∇∇∇φm = λmφm, φm (x)|Γ = 0, (2.7)

corresponding with the advection-diffusion operator in (2.1) and αm the expan-
sion coefficients determined by the initial condition [16, 17]. The terms in (2.6)
constitute fundamental dynamic states (commonly denoted “eigenmodes”) and
are ordered by increasing decay rate according to · · · < Re(λ1) < Re(λ0) < 0,
where m = 0 is the slowest-decaying (or “dominant”) mode with characteristic
decay time τ0 = −1/Re(λ0).

The spectral decomposition of reoriented flows is governed by eigenvalue
problem (2.7) upon substitution of v1 by vu following (2.5) and directly relates to
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the base-flow decomposition (2.6) via

T̃ (x, t) = P(u)
t T̃ (x, 0) =

∞∑
m=0

α(u)
m ψ(u)

m (x)eλmt,

T̃ (x, 0) =

∞∑
m=0

α(u)
m ψ(u)

m (x),

(2.8)

with P(u)
t the corresponding Perron-Frobenius operator and

µm =

{
λm u 6= 0
λ0m u = 0

, ψ(u)
m (x) =

{
φm (Gu (x)) u 6= 0
φ0m(x) u = 0

, (2.9)

where {φ0m, λ0m} are the eigenfunction-eigenvalue pairs for the diffusion-only
case u = 0 governed by (2.7) for deactivated base flow v1 = 0, and

Gu : (r, θ) →
{

Ru(r, θ) u > 0
S (Ru(r, θ)) u < 0

, (2.10)

the transformation operator for the eigenfunctions and S : (r, θ) → (r,−θ) a re-
flection about the symmetry axis θ = 0 of the base flow. Thus flow reorientation
(and reversal) results in the same reorientation (and reflection) of the eigenfunc-
tion basis φm of the base flow while maintaining the eigenvalue spectrum λm and,
inherently, the decay rates. Flow deactivation results in a projection onto to the
eigenfunction basis φ0m and corresponding eigenvalues λ0m of the diffusion-only
case.

Spectral decomposition (2.8) admits direct expression of the evolution of the
transient temperature T̃ for any flow reorientation (including deactivation) in terms
of the base-flow decomposition (2.6) and its diffusion-only counterpart for v1 = 0.
This facilitates efficient prediction of T̃ for arbitrary flow reorientations and is an
essential element for the control strategy proposed in Section 2.4.

2.3 Dynamics of heating in fluid flows

A further essential element for the control strategy, besides the reorientation prop-
erty of Section 2.2.3, is adequately capturing the system dynamics and in particu-
lar the impact of the (base) flow on the heating process. To this end the dynamics
of this process are investigated below.

2.3.1 Fluid deformation as “thermal actuator”

The main reasoning behind the belief that fluid mixing and chaotic advection au-
tomatically enhance heat transfer is that this tends to expand fluid interfaces and
increase scalar gradients via exponential stretching of fluid parcels and thereby
yields faster scalar exchange over larger areas [20]. Fluid deformation may thus
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indeed act as a “thermal actuator” yet the underlying mechanisms and resulting
behaviour are rather delicate and, contrary to said belief, not necessarily con-
ducive to efficient heat transfer. This is investigated below and leans on the so-
called “Lagrangian representation” of fluid flow and heat transfer (i.e. relative to
the fluid parcels).

2.3.1.1 Lagrangian dynamics of fluid motion

The Lagrangian representation of fluid motion expresses the Eulerian flow field
v in (2.1) in terms of the evolution of the current positions x(t) of fluid parcels
released at initial position x(0) = x0. This Lagrangian motion is governed by the
kinematic equation

dx(t)

dt
= u (x(t), t) , x(0) = x0 ⇒ x(t) = Φt(x0), (2.11)

with flow Φt as its formal solution [19]. Relevant in the present context of heat
transfer is, besides the displacement of fluid parcels, in particular also their de-
formation due to viscous stresses. Classical continuum mechanics describes this
deformation in terms of the so-called “Lagrangian coordinates”, which are defined
by the initial parcel positions x0 and via inversion of (2.11), i.e.

x0 = Φ−1
t (x). (2.12)

relate to the Eulerian coordinates x [72]. The Eulerian representation shows the
momentary situation at time t in fixed positions x in physical space as actually
seen by an observer; the Lagrangian representation gives this situation relative
to the moving fluid parcels (labelled by initial positions x0) and thus enables de-
scription of the corresponding material behaviour. Key to this are the deformation
gradient tensor and right Cauchy-Green deformation tensor, given by

F0 = ∂x/∂x0 = (∇0x)
†,

C0 = F †
0F0 = λ1v

0
1v

0
1 + λ2v

0
2v

0
2 = Λ−1v0

1v
0
1 + Λv0

2v
0
2,

(2.13)

respectively, where F0 describes the motion of initial material line segments dx0

in the reference frame co-moving with a parcel released at x0 via dx = F0dx0

and C0 describes its corresponding material deformation via |dx|2 = dx† · dx =

dx†
0 · C0 · dx0 († indicates transpose). Relation (2.13) gives C0 in terms of its

eigenvalue-eigenvector pairs (λi,v
0
i ) and thus exposes the principal compres-

sion axis v0
1 (factor λ1 = Λ−1 < 1) and principal stretching axis v0

2 ⊥ v0
1 (factor

λ2 = Λ > 1) of the deforming fluid parcel in question. (|C0| = λ1λ2 = 1 for the
2D flow of an incompressible fluid.) The associated left Cauchy-Green deforma-
tion tensor

B0 = F0F
†
0 = R0C0R

†
0 = Λ−1v1v1 + Λv2v2, vi = R0v

0
i , (2.14)
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describes the material deformation in terms of the principal deformation axes v1,2

in current position x in the Eulerian frame. These axes are simply rotations of
their companions v0

1,2 in the Lagrangian frame by R0 from the well-known polar
decomposition F0 = R0U0 [72]. Further relevant tensors are the counterparts of
(2.13) and (2.14) in the reversed flow x0 = Φ−1

t (x), i.e.

F = (∇x0)
† = F−1

0 , C = B−1
0 = Λv1v1 + Λ−1v2v2,

B = C−1
0 = Λv0

1v
0
1 + Λ−1v0

2v
0
2,

(2.15)

constituting inverses of the tensors of the forward flow following (2.11) and reveal-
ing that the principal contraction and stretching axes interchange. The stretching
rate Λ introduced above admits alternative expression as the so-called “Finite-
time Lyapunov exponent” (FTLE), i.e.

σ(x0, t) ≡
log Λ(x0, t)

2t
, (2.16)

which sets the upper bound for the material stretching rate of parcel x0 in the
finite time span up to t: |x(t)|/|x0| ≤ exp(σt). Positive FTLEs (i.e. σ > 0) signify
exponential stretching and, if persistent for all t, are regarded as “fingerprints” of
chaotic advection [19].

Figure 2.2a illustrates typical Lagrangian dynamics in the base flow v1 (Figure
2.1b) by the evolution of a fluid element (blue) of initially circular shape released at
x0 (cyan dot). This reveals a gradual deformation into an elliptical shape during its
excursion from x0 to current position x (cyan star) via the Lagrangian path (cyan)
along the streamlines (black concentric curves). This deformation ensues from
the shear flow between the streamlines and is dictated by the principal contraction
(v1; gray bar) and stretching (v2; red bar) axes of B0. Figure 2.2b gives the
corresponding FTLE (2.16) and reveals an increase to a maximum about halfway
the high-shear region near the moving arc (entry and exit demarcated by the
dashed lines) that is followed by a sharp decline upon transiting into the domain
interior towards a minimum at around t ≈ 3 and a subsequent increase to a
moderate level. FTLE σ > 0 everywhere implies an overall net stretching yet with
a partial reversal of earlier deformation in the interval between local maximum
and minimum due to strong and “unfavourable” velocity gradients near the exit of
the arc region (bottom/left dashed line).

The orientation angle ρ of the principal stretching axis v2 relative to the stream-
lines, defined as cos ρ = v†

2u/|v2||u|, is shown in Figure 2.2c and exhibits non-
monotonic behaviour consistent with the FTLE: rapid alignment of v2 with stream-
lines (i.e. diminishing ρ) within the high-shear region, followed by rapid misalign-
ment upon exiting this region and renewed alignment while further migrating into
the domain interior. Fluid elements released at other locations exhibit essentially
the same behaviour upon passing through the arc region. Multiple passages
of this region while circulating along closed streamlines results in progressively
weaker fluctuations and eventually causes convergence on the asymptotic limit
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2.3 Dynamics of heating in fluid flows

limt→ ρ = 0. This exposes the stream lines as “attractors” for the fluid deforma-
tion in the sense that fluid parcels ultimately align with these entities. Compare
this with unstable manifolds of hyperbolic points in chaotic flows and their finite-
time counterparts in generic aperiodic flows, viz. attracting LCSs [20].

(a) Fluid deformation

(b) FTLE σ(x0, t)

(c) Relative orientation ρ(x0, t)/π

Figure 2.2: Lagrangian dynamics in base flow: (a) deformation of fluid element
(blue) along streamlines (black) versus principal stretching (red) and compression
(gray) axes; (b) quantitative deformation in terms of FTLE following (2.16); (c)
orientation of principal stretching axis relative to streamlines.

2.3.1.2 Lagrangian dynamics of heat transfer

Transformation of the energy balance (2.3) from Eulerian (x) to Lagrangian (x0)
coordinates via (2.12) yields the Lagrangian representation of heat transfer

∂T̃

∂t
= −∇∇∇0 · q0,

q0 = Fq = −F 1

Pe
∇T = −F 1

Pe
F †∇0T = −B 1

Pe
∇0T,

(2.17)

with q0 the Lagrangian representation of the diffusive heat flux q = −Pe−1∇T
according to (2.1) and B the left Cauchy-Green tensor of the reversed flow fol-
lowing (2.15) [73]. Energy balance (2.17) describes the actual heat transfer be-
tween a moving fluid parcel at current position x = Φt(x0) with its neighbouring
parcels. This occurs solely via diffusive flux q0; the advective term v · ∇T in
the Eulerian form has vanished from (2.17) due to vanishing velocity in the (co-
moving) Lagrangian frame. Relation (2.17) reveals that the momentary isotropic
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2. Fast fluid heating by adaptive flow reorientation

diffusive flux q = −Pe−1∇T in a fixed position x in Eulerian space translates
into a momentary anisotropic diffusive flux q0, with B the corresponding diffusion
tensor, at the fluid parcel passing through x and originating from x0 = Φ−1

t (x).
This anisotropy is a direct consequence of fluid deformation; B = I for a non-
deforming fluid and yields q0 = q.

The Lagrangian heat flux q0 in (2.17) constitutes the fundamental link be-
tween heat transfer and fluid motion and enables further investigation of the im-
pact of the latter on the former. Expression in terms of the principal deformation
axes v1,2 of tensor B following (2.15) yields

q0 = −B 1

Pe
∇0T = −

[
Λ

Pe
(v0

1 · ∇0T )v
0
1 +

1

ΛPe
(v0

2 · ∇0T )v
0
2

]
, (2.18)

and reveals that enhancement (by factor Λ) and diminution (by factor Λ−1) of heat
transfer occurs in the principal contraction (v0

1) and stretching (v0
2) directions,

respectively, compared to isotropic heat diffusion q iso
0 = −Pe−1∇0T between

non-deforming fluid parcels subject to the same flow and temperature field [73].
(Symbol † is for brevity omitted for inner products as in (2.18).) However, the net
effect of fluid deformation depends on the orientation of the principal axes v0

1,2

relative to the temperature gradient ∇0T and this may enhance yet also diminish
heat transfer between fluid parcels. This highly non-trivial process is investigated
further in Section 2.3.2.

Lagrangian energy balance (2.17) admits a formal solution according to

T̃D(x0, t) = T̃ (x0, 0) +
1

Pe

∫ t

0

∇0 ·
(
B|Φξ(x0)∇0T (x0, ξ)

)
dξ

≡ Dt[x0]T̃ (x0, 0),

(2.19)

with diffusion operator Dt as Lagrangian counterpart to the Perron-Frobenius op-
erator Pt in (2.6). This enables representation of simultaneous advective-diffusive
heat transfer governed by (2.3) as a composition of two successive operations:
(i) anisotropic diffusion between fluid parcels at fixed positions x0 via (2.19) and
(ii) passive redistribution of fluid parcels to positions x = ΦΦΦt(x0), i.e.

T̃ (x, t) = T̃ (Φt(x0), t) = T̃D(x0, t). (2.20)

which, upon defining an advection operator T̃ (x, t) = T̃
(
Φ−1

t (x), 0
)
≡ AtT̃ (x, 0),

translates into

T̃ (x, t) = AtDt[x]T̃ (x, 0) = Dt

[
Φ−1

t (x)
]
AtT̃ (x, 0), (2.21)

as two equivalent formulations in terms of Eulerian evolution operators. Thus the
Perron-Frobenius operator Pt following (2.6) decomposes into an advective (At)
and diffusive (Dt) factor following

Pt = AtDt[x] = Dt

[
Φ−1

t (x)
]
At, (2.22)
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2.3 Dynamics of heating in fluid flows

providing a link between the Eulerian and Lagrangian representations of heat
transfer.

Figure 2.3 shows the temperature evolution T̃ (x, t) in the Eulerian frame x

subject to the base flow v1, with blue and red indicating min(T̃ ) = −1 and
max(T̃ ) = 0, respectively. (This colour coding is used throughout the remain-
der of this study unless noted otherwise.) Shown evolution reveals a thermal
plume emanating from the bottom edge of the moving arc and propagating along
the streamlines (bright closed curves) into the domain interior. The plume thus
“wraps” itself around the center of circulation and creates a hot annular region en-
circling a cold “core”. This behaviour is a direct consequence of the fluid motion:
the material stretching along streamlines demonstrated in Figure 2.2 promotes
steepening and flattening of the temperature gradient transverse and parallel to
the streamlines, respectively. This gradient steepening enhances transverse heat
flux in the fluid heated during passage along the arc and thereby promotes its
transverse thermal homogenisation while propagating and shearing along the
streamlines and thus creates a thermal front (i.e. said plume). The underlying
local mechanisms and corresponding impact on the global heating dynamics are
investigated in Secs. 2.3.2–2.3.3 and Section 2.3.5, respectively.

Figure 2.3: Evolution of transient temperature T̃ (x, t) in Eulerian frame x subject
to base flow (blue: min(T̃ ) = −1; red: max(T̃ ) = 0; closed curves: streamlines).

2.3.2 Local impact of fluid deformation

Relations (2.17) and (2.18) reveal that fluid deformation has a twofold impact on
heat transfer q0 between fluid parcels:
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2. Fast fluid heating by adaptive flow reorientation

1. Change in flux density. Consider the heat flux q̃0 = q01v
0
1 + q02v

0
2 at an

undeformed rectangular dx01 × dx02 fluid parcel in the Lagrangian frame and the
corresponding heat flux q̃ = q1v1 + q2v2 at the deformed rectangular dx1 × dx2
fluid parcel in the Eulerian frame. (The normals of interfaces dx01,2 coincide with
v0
2,1 and likewise for dx1,2 versus v2,1.) The net heat exchange across the entire

interface is conserved due to |F0| = |C0| = 1, i.e. dQ = dx01q
0
2 + dx02q

1
2 =

dx1q2 + dx2q2, yet the heat-flux density at the individual interfaces changes as

q01
q1

=
dx2
dx02

=
√
Λ > 1,

q02
q2

=
dx1
dx01

=
1√
Λ
< 1, (2.23)

due to deformation q̃ = F0q̃0 and dx = F0dx0. Deformation thus augments
(reduces) the spatial contact area dx2 (dx1) between fluid parcels for heat ex-
change in v1 (v2) direction, in Eulerian space; for given Eulerian heat-flux density
q̃ this increases (decreases) the heat-flux density q̃0 at fluid interface dx02 (dx01)
in v0

1 (v0
2) direction. The net effect on the heat exchange between fluid parcels

depends on the relative orientation between heat flux and principal deformation
axes. The extremal cases q̃0 = q1v

0
1 and q̃0 = q2v

0
2 give maximum augmenta-

tion (|q̃0|/|q̃| =
√
Λ > 1) and reduction (|q̃0|/|q̃| = 1/

√
Λ < 1), respectively;

generic cases give 1/
√
Λ ≤ |q̃0|/|q̃| ≤

√
Λ.

2. Change in temperature gradient. A similar analysis for the tempera-
ture gradients ∇0T̃ = (∂T̃ /∂x01)v

0
1 + (∂T̃ /∂x02)v

0
2 and ∇T̃ = (∂T̃ /∂x1)v1 +

(∂T̃ /∂x2)v2 across the rectangular fluid parcels introduced above yields

∂T̃

∂x1
=
dx01
dxi

∂T̃

∂x01
=

√
Λ
∂T̃

∂x01
,

∂T̃

∂x2
=
dx02
dxi

∂T̃

∂x02
=

1√
Λ

∂T̃

∂x02
, (2.24)

due to deformation ∇T̃ = F †∇0T̃ and dx = F0dx0. Deformation in v1 and
v2 directions thus steepens (i.e. (∂T̃ /∂x1)/(∂T̃ /∂x01) =

√
Λ > 1) and flattens

(i.e. (∂T̃ /∂x2)/(∂T̃ /∂x02) = 1/
√
Λ < 1) the temperature gradient, respectively,

in Eulerian space; for given temperature difference dT between fluid parcels this
increases (decreases) the gradient-driven heat-flux density q̃ = −Pe−1∇T̃ in
Eulerian space in v1 (v2) direction. The net effect depends on the relative orienta-
tion between temperature gradient and principal deformation axes. The extremal
cases ∇0T̃ = (∂T̃ /∂x01)v

0
1 and ∇0T̃ = (∂T/∂x02)v

0
2 give maximum augmen-

tation (|∇T̃ |/|∇0T̃ | =
√
Λ > 1) and reduction (|∇T̃ |/|∇0T̃ | = 1/

√
Λ < 1),

respectively; generic cases give 1/
√
Λ ≤ |∇T̃ |/|∇0T̃ | ≤

√
Λ.

The anisotropic heat flux q̃0 between fluid parcels according to (2.17) re-
sults from the combined effect of (2.23) and (2.24). This yields a momentary net
change in heat-flux density by a factor

β(x0) ≡
|q̃0|
|q̃ iso

0 |
=

√
(∇0T̃ )† ·B2 · (∇0T̃ )

(∇0T̃ )† · (∇0T̃ )
, Λ(x0)

−1 ≤ β(x0) ≤ Λ(x0),(2.25)
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2.3 Dynamics of heating in fluid flows

compared to isotropic heat transfer q̃ iso
0 = −Pe−1∇0T̃ between non-deforming

fluid parcels (i.e. B = I) for a given flow and temperature field. Relative heat-
flux densities β > 1 and β < 1 signify relative enhancement and diminution,
respectively, of momentary heat transfer between neighbouring fluid parcels at
position x0 and time t. The actual β, similar as before, depends essentially on
the relative orientation between temperature gradient and principal deformation
axes and is bounded by β = Λ > 1 for ∇0T̃ = (∂T̃ /∂x01)v

0
1 and β = 1/Λ < 1

for ∇0T̃ = (∂T̃ /∂x02)v
0
2.

Fluid deformation, besides the heat-flux density following (2.25), also impacts
the heat-flux direction: Λ > 1 namely increases and decreases the leading and
trailing terms in (2.18), respectively, and thus promotes alignment of q̃0 with the
principal contraction axis v0

1. This, in turn, promotes thermal homogenisation
in v0

1-direction and, inherently, alignment of the temperature gradient ∇0T̃ with
the principal stretching axis v0

2. The net result is the emergence of a thermal
front propagating in v0

2-direction as e.g. the thermal plume in Figure 2.3. These
counter-acting mechanisms, viz. enhancement of the v0

1-component of ∇0T̃ in
q̃0 versus diminution of this same component by said thermal homogenisation,
suggest a fundamental “conflict” between heat transfer and homogenisation in
that the latter opposes the former. Angles %q and %T defined as

tan %q(x0) ≡
|v0

2 · q̃0|
|v0

1 · q̃0|
=

|v0
2 · ∇0T̃ |

Λ2(x0)|v0
1 · ∇0T̃ |

,

tan %T (x0) ≡
|v0

1 · ∇0T̃ |
|v0

2 · ∇0T̃ |
,

(2.26)

express the orientation of heat flux and temperature gradient relative to principal
axes v0

1 and v0
2, respectively, and enable examination of this process (%q,T = 0

means coincidence with axes v0
1,2).

The analysis below investigates the interplay between fluid deformation and
thermal phenomena for three fluid parcels with initial conditions x0 (coloured
stars) and corresponding trajectories (coloured curves) shown in Figure 2.4a rel-
ative to the streamline pattern (black curves) and central stagnation point (black
star). The FTLEs in Figure 2.4b reveal a fluid deformation that is qualitatively
similar to Figure 2.2a: peaking of the FTLE upon passage through the high-shear
arc region and a subsequent decline upon entering the domain interior via the
sharply deflecting streamlines at the lower arc edge. However, intensities and
variations depend strongly on the initial positions. Moreover, peaks progressively
weaken with multiple passages through the arc region, as demonstrated by the
only minor second peak of the cyan parcel around t ≈ 7.

The evolution of the temperature T̃ (x0, t) and corresponding gradient ∇0T̃
along the trajectories using the temperature field at t = 20 in Figure 2.3 as initial
condition are shown in Figure 2.4c and Figure 2.4d, respectively, and reveal a
significant thermal heterogeneity. The impact of the fluid deformation on heat
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2. Fast fluid heating by adaptive flow reorientation

(a) Trajectories (b) FTLE

(c) T̃ (x0, t) (d) ∇0T̃ (e) lnβ

(f) βΛ (g) %T /π (h) %q/π

Figure 2.4: Local heating dynamics due to interplay between fluid deformation
and temperature field in base flow: (a) representative fluid trajectories distin-
guished by red/blue/cyan (stars indicate initial positions x0; dots indicate positions
x(t) at time levels t = k∆t for ∆t = 0.1) versus streamlines (black); (b-d) FTLE
following (2.16) and temperature (gradient) of fluid parcels; (e) relative heat-flux
density β following (2.25); (f) normalised heat-flux density βΛ = β/Λ; (g) orienta-
tion of temperature gradient with principal stretching axis %T following (2.26); (h)
orientation of heat flux with principal compression axis %q following (2.26).

transfer is shown in Figure 2.4e in terms of the momentary change in heat-flux
density β following (2.25) (expressed as lnβ for greater legibility). This exposes
peaks β > 1 (lnβ > 0) that coincide with the FTLE-peaks in Figure 2.4b and thus
signify momentary heat-transfer enhancement due to passage through the arc
region. (The β-peak for the cyan parcel corresponds with the beforementioned
second passage of the arc region around t ≈ 7.) However, the quantitative
correlations are non-trivial in that the weak FTLE-peaks of the blue/cyan parcels
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2.3 Dynamics of heating in fluid flows

yield pronounced β-peaks of comparable magnitude while the high FTLE-peak of
the red parcel yields a substantially smaller β-peak. Moreover, both cyan and red
parcels exhibit significant heat-transfer diminution (β < 1 or lnβ < 0) during the
transition from arc region to flow interior, signifying an unfavourable orientation of
fluid deformation versus temperature gradient ∇0T̃ .

Normalised heat-flux density βΛ ≡ β/Λ quantifies to what extent heat-transfer
enhancement reaches its (theoretical) ceiling maxβ = Λ following (2.25) and the
corresponding evolutions of this measure are shown in Figure 2.4f. This reveals
short episodes of βΛ close to unity – signifying maximum beneficial impact of
fluid deformation – that closely correlate with the (first) FTLE-peaks in Figure
2.4b followed by a dramatic breakdown. The breakdown in βΛ reflects a sud-
den reduction of the impact of fluid deformation on heat transfer and ensues from
the diminution of heat flux q0 by thermal homogenisation due to the abovemen-
tioned conflict between heat transfer and homogenisation. Such local thermal
homogenisation, once reached, strongly diminishes the impact of future fluid de-
formation and thus explains why the second FTLE peak of the cyan parcel around
t ≈ 7, in contrast with the pronounced β-peak in Figure 2.4e, induces an only
weak second peak in βΛ. This has the fundamental implication that significant
impact of fluid deformation on heat transfer and thermal homogenisation is for a
given fluid parcel primarily restricted to the first passage of the arc region. These
phenomena are further examined in Section 2.3.3.

The dynamics of angles %q and %T of the heat flux q̃0 and temperature gra-
dient ∇0T̃ , respectively, with the principal axes v0

1,2 following (2.26) substantiate
the above findings. Figure 2.4g gives %T and exposes highly dynamic and non-
monotonic behaviour during episodes/peaks of βΛ close to unity followed by a
rapid decline – signifying progressive alignment of ∇0T̃ with principal stretch-
ing axis v0

2 and, inherently, thermal homogenisation in v1-direction – during the
breakdown of βΛ. The relative orientation angle %q of heat flux q̃0 in Figure 2.4h
overall exhibits the same correlation with βΛ in that also here progressive align-
ment sets in upon breakdown of βΛ.

2.3.3 Local breakdown of heat-transfer enhancement

The breakdown of maximum heat-transfer enhancement after the first FTLE peak
demonstrated with the normalised heat-flux density βΛ in Figure 2.4f ensues
from the beforementioned conflict between heat transfer and homogenisation
and signifies a highly non-trivial role of fluid deformation in the thermal trans-
port. Consider for a generic analysis the simplified case of a constant FTLE
σ in (2.16), resulting in Λ(t) = exp(2σt), and temperature gradient ∇0T̃ =
c1 exp(−σT t)v0

1+ c2v
0
2, with (c1, c2) the initial temperature gradient and σT > 0

the thermal-homogenisation rate. Substitution in (2.18) gives

q̃0(x0, t) = − 1

Pe
e(2σ−σT )t

[
c1v

0
1 + c2e

(σT−4σ)tv0
2

]
, (2.27)

29



2. Fast fluid heating by adaptive flow reorientation

and restricts the thermal-homogenisation rate to 2σ < σT < 4σ to maintain
bounded q0. Through

tan %q =
c2
c1
e(σT−4σ)t, tan %T =

c1
c2
e−σT t,

βΛ ≡ β

Λ
=

√
c21 exp(−2σT t) + c22 exp(−8σt)

c21 exp(−2σT t) + c22
,

(2.28)

this indeed yields the conjectured alignment of heat flux and temperature gra-
dient with principal contraction (v0

1) and stretching (v0
2) axes, respectively, i.e.

limt→∞ %q,T = 0 and, in consequence,

lim
t→∞

q̃0(x0, t) = − Λ

Pe
(v0

1 · ∇0T̃ )v
0
1, lim

t→∞
∇0T̃ = (v0

2 · ∇0T̃ )v
0
2, (2.29)

thus demonstrating the generic mechanisms behind said conflict. Relations ∇T̃ =
F∇0T̃ = exp(−σt) [c1 exp((2σ − σT )t)v1 + c2v2] and 2σ − σT < 0 imply that
the v0

1-wise thermal homogenisation in the Lagrangian frame causes correspond-
ing v1-wise thermal homogenisation in the Eulerian frame and, despite the non-
zero limit (2.29) for ∇0T̃ , subsequent full thermal homogenisation limt→∞ ∇T̃ =
0. This results in rapid convergence of βΛ on the intermediate state

βΛ ≈ β∗
Λ ≡

√
c21 exp(−2σT t)

c21 exp(−2σT t) + c22
=

|v0
1 · ∇0T̃ |
|∇0T̃ |

, (2.30)

for t & O(τβ) and subsequent progression to limit limt→∞ βΛ = 0. Here

τβ = 1/2(4σ − σT ), (2.31)

is the characteristic decay time of ratio exp(−t/τβ) = exp(−8σt)/ exp(−2σT t)
between the “fast” and “slow” unsteady terms in βΛ. Decay rate dβ∗

Λ/dt =
σTβ

∗
Λ(β

∗
Λ
2 − 1) � 0 due to σT � 1 around the first FTLE peaks and β∗

Λ < 1
causes a rapid diminution of β∗

Λ and thus explains the dramatic breakdown from
βΛ ∼ O(1) to βΛ � 1 in Figure 2.4f upon reaching the intermediate state β∗

Λ at
t ∼ O(τβ). Figure 2.5 overlays shown βΛ with the generic form of β∗

Λ following
(2.30) (dashed black curve) and the close agreement beyond the first FTLE peaks
– as well as during the build-up towards these peaks for the red and blue parcels
– indeed substantiates these findings.

The above exposes the local breakdown of heat-transfer enhancement ob-
served in Section 2.3.2 as generic (and consistent with the “diffusive relaxation”
during chaotic advection observed in [73]). This renders the common belief of
efficient heat transfer being automatic with fluid mixing and chaotic advection fal-
lacious. Fluid deformation namely plays a dual role by, on the one hand, enhanc-
ing heat transfer and thermal homogenisation between/of fluid parcels (provided
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Figure 2.5: Local breakdown of heat-transfer enhancement during transition from
βΛ ∼ O(1) to βΛ � 1 of normalised heat-flux density βΛ = β/Λ (solid) versus
intermediate state β∗

Λ (dashed) for fluid trajectories in Figure 2.4a.

favourable orientations with the temperature gradient) yet, on the other hand, re-
stricting its beneficial impact to short-lived episodes in the transient. Their specific
occurrence, duration and intensity for a given fluid parcel may vary greatly, though
(Figure 2.5). However, the local thermal equilibration of fluid parcels progressively
lagging behind with faster fluid deformation strongly suggests that σT and, con-
sequently, τβ tend towards their lower bounds minσT = 2σ and min τβ = 1/4σ,
respectively, with increasing σ. This advances τβ ' O(0.3− 3) as estimated du-
ration of said episodes for fluid parcels passing through the high-shear arc region
using σ ' O(0.1−1) from Figure 2.2b. The arc region is to emerge as dominant
for the global behaviour in Section 2.3.5.

2.3.4 Global metrics for heating and their general dynamics

Essential for effective control is an adequate description of the global dynamics
associated with the above local behaviour. Key to this is that the control target,
viz. fast heating of the cold fluid towards the hot equilibrium T̃∞ = 0, entails
concurrent accomplishment of two goals: (i) fast increase of the total energy con-
tent (denoted “energising” hereafter) and (ii) fast homogenisation of the internal
temperature distribution. Decomposition of the transient temperature as

T̃ (x, t) = T̄ (t) + T ′(x, t), T̄ (t) =
1

A

∫
D
T̃ (x, t)d2x,

T ′(x, t) ≡ T̃ (x, t)− T̄ (t),

(2.32)

with hereA = π, isolates the temperature contributions corresponding with these
goals. Average temperature T̄ (t) = Ẽ(t)/π represents the total energy content
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Ẽ of field T̃ (here Ẽ ≤ 0); “heterogeneity” T ′(x, t) represents the departure of T̃
from the momentary homogeneous state T̄ .

Decomposition (2.32) exposes the far greater dynamic complexity of the cur-
rent heating problem compared to homogenisation problems commonly consid-
ered in literature (Section 2.1). The latter generically concern adiabatic domains,
implying T̄ (t) = 0, and thus depend solely on the single field T̃ = T ′. Fluid
heating, on the other hand, encompasses two processes, viz. energising and ho-
mogenisation, and relevant to its dynamics are therefore the total transient field
T̃ as well as its individual components T̄ (t) and T ′ according to (2.32).

The above advances 3 measures for the global dynamic behaviour of the
heating process, viz.

J1(t) ≡
1

π

∫
D
T̃ 2(x, t)d2x, J2(t) ≡

1

π

∫
D
T̃ (x, t)d2x,

J3(t) ≡
1

π

∫
D
T ′2(x, t)d2x,

(2.33)

with J1 the global departure from equilibrium, J2 = T̄ the normalised energy
content of the transient state and J3 the global heterogeneity. These measures
via (2.32) and

∫
D T

′(x, t)d2x = 0 relate as

J1(t) = J2
2(t) + J3(t), (2.34)

and thus effectively constitute two independent degrees of freedom.
The evolution of J2 is governed by the integral energy balance corresponding

with (2.3). Property v · ∇∇∇T̃ = ∇∇∇ · (vT̃ ) for ∇∇∇ · v = 0 upon elimination of time
derivative ∂T̃ /∂t with (2.3) and application of Gauss’ divergence theorem [74]
yields

dJ2
dt

=
1

π

∫
D

∂T̃

∂t
d2x = − 1

π

∫
D
∇∇∇ · (vT̃ + q̃)d2x

= − 1

π

∫
Γ

(vT̃ + q̃) · nds,
(2.35)

with q̃ = −Pe−1∇T̃ . Here the convective flux v · n T̃ vanishes by virtue of both
the impenetrable boundary (v · n = 0) and the homogeneous Dirichlet condition
T̃ |Γ = 0. This reveals that energising effectively occurs only by the diffusive flux
q̃ normal to the boundary, i.e.

dJ2
dt

= − 1

π

∫
Γ

q̃ · nds = 1

πPe

∫
Γ

n · ∇∇∇T̃ ds, (2.36)

and flow v only indirectly affects the heat-flux density and temperature gradient
via motion and deformation of fluid parcels by the mechanisms from Section 2.3.2.
The evolution of J1 is governed by

dJ1
dt

=
2

π

∫
D
q̃ · ∇∇∇T̃ d2x = − 2

πPe

∫
D
|∇∇∇T̃ |2d2x, (2.37)
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2.3 Dynamics of heating in fluid flows

which follows in a similar way as (2.36) from the energy equation (A). The evolu-
tion of J3 via relation (2.34) depends on (2.36) and (2.37) according to dJ3/dt =
dJ1/dt− 2J2(dJ2/dt).

Relation (2.37) via inequality |∇∇∇T̃ | > 0 in at least one non-zero subset x ∈ D
for any non-uniform T̃ implies dJ1/dt < 0 and thus a monotonic decay of mea-
sure J1 from J1(0) > 0 to limt→∞ J1(t) = 0. This is a consequence of the
Second Law of Thermodynamics, which dictates that diffusive heat flux always
acts against the temperature gradient, i.e. q̃ = −Pe−1∇∇∇T̃ , and thereby yields
the particular RHS of (2.37). This implies that any non-zero transient tempera-
ture T̃ (x, t), irrespective of the flow, always evolves towards the final equilibrium
T̃∞ = 0 and the system is intrinsically stable. The decay rate of J1 depends es-
sentially on the flow, however. The principal goal of the control strategy in Section
2.4 is finding the fastest route towards this equilibrium.

Measure J3, on the other hand, is inherently non-monotonic due to identical
initial and asymptotic conditions J3(0) = limt→∞ J3(t) = 0 and this constitutes
a further essential departure from the beforementioned homogenisation problems
(where J3 = J1 implies monotonic behaviour). Said conditions namely dictate an
initial growth of heterogeneity (dJ3/dt|t=0 > 0) that through an inevitable J3(t) >
0 at intermediate times t settles on an eventual decline (dJ3/dt < 0) towards
the final state. Through relation (2.34) this in principle admits non-monotonic
evolutions from J2(0) < 0 to limt→∞ J2(t) = 0 for measure J2 as well. However,
here the uniform boundary condition T̃ |Γ = 0 together with the uniform initial
condition T̃ (x, 0) = −1 implies T̃ (x, t) ≤ 0 for all x and t and thus ∂T̃ /∂r|Γ > 0
and, in consequence, monotonic dJ2/dt > 0.

2.3.5 Global impact of fluid deformation

The evolution of metrics J2 and J1 – and, via relation (2.34), indirectly also of
J3 – is determined by (2.36) and (2.37), respectively. Lagrangian coordinates
admit, similar as in Section 2.3.2, investigation of the impact of fluid flow on these
evolutions. Consider to this end said metrics for a material region with current
Eulerian position D(t) and its boundary Γ(t), i.e.

J0
2 (t) =

1

π

∫
D0

T̃ (x0, t)d
2x0, J0

1 (t) =
1

π

∫
D0

T̃ 2(x0, t)d
2x0, (2.38)

with D0 and Γ0 the corresponding initial (fixed) position in the Eulerian (La-
grangian) frame. The evolutions of (2.38) are in Lagrangian coordinates de-
scribed by

dJ0
2

dt
= − 1

π

∫
Γ0

q̃0·n0ds0,

dJ0
1

dt
=

2

π

∫
D0

q̃0 · ∇∇∇0T̃ d
2x0 −

2

π

∫
Γ0

T̃ q̃0 · n0ds0,

(2.39)
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2. Fast fluid heating by adaptive flow reorientation

where the boundary integral in dJ0
1/dt emerges for generic material interfaces

Γ(t) evolving with the flow. This integral can be omitted in the present analysis
for reasons explained below.

The impact of the flow on the global dynamics is investigated via the rates-
of-change of the metric evolutions (2.39), which, upon omitting said boundary
integral, are governed by

d2J0
2

dt2
=

1

πPe

∫
Γ0

(
∂B

∂t
∇0T̃

)
· n0ds0

+
1

πPe

∫
Γ0

(
B∇0

(
∂T̃

∂t

))
· n0ds0

d2J0
1

dt2
= − 2

πPe

∫
D0

(
∂B

∂t
∇0T̃

)
· ∇0T̃ d

2x0

− 4

πPe

∫
D0

(B∇0T̃ ) · ∇0

(
∂T̃

∂t

)
d2x0,

(2.40)

using q̃0 = −Pe−1B∇0T̃ . The link with the corresponding behaviours of global
metrics J2 and J1 in (2.33) in the Eulerian frame is established via leading-order
approximations of (2.40). This embarks on considering (i) an initial material
boundary Γ0 of circular shape with radius r0 = 1 − εr very close to the circu-
lar boundary Γ of radius r = 1 (i.e. εr � 1) and (ii) incremental Lagrangian
motion from x(t) to x(t+ dt) = x(t) + dx = x(t) + udt. Thus D(t) ≈ D0 ≈ D
and Γ(t) ≈ Γ0 ≈ Γ, which via T̃ |Γ(t) ≈ T̃ |Γ = 0 indeed to good approxima-
tion implies vanishing of the boundary integral in the evolution of J0

1 in (2.39).
The leading-order approximations of the relevant quantities and variables, i.e.
J0
2 = J2 and J0

1 = J1, F = F0 = I , B = I , dx = dx0, n = n0 and ds = ds0,
combined with the rate-of-change ∂B/∂t ≡ Ḃ = −2D of the left Cauchy-Green
tensor as per [72] subsequently yield

d2J2
dt2

=
1

πPe

∫
Γ

(Ḃ∇T̃ ) · nds+ 1

π

∫
Γ

n · ∇

(
∂T̃

∂t

)
ds

d2J1
dt2

= − 2

πPe

∫
D
(Ḃ∇T̃ )·∇T̃ d2x− 4

πPe

∫
D
∇T̃ · ∇

(
∂T̃

∂t

)
d2x,

(2.41)

with D = 1/2[∇u+ (∇u)†] the strain-rate tensor.
Relations (2.41) describe the rates-of-change of the metric evolutions (2.36)

and (2.37) and via the leading integrals incorporate the momentary impact of fluid
deformation on the heating dynamics for given temperature T (x, t). The corre-
sponding integrands describe the rate-of-change of integrands f̄ ≡ n · ∇T̃ |Γ =

34



2.3 Dynamics of heating in fluid flows

∂T̃ /∂r|Γ and f̃ ≡ |∇T̃ |2 in (2.36) and (2.37), respectively, via

ḡ(x, t) ≡ df̄

dt

∣∣∣∣
T̃

= (Ḃ∇T̃ ) · n = 2µ
[
(w1 · ∇T̃ )w1 · n− (w2 · ∇T̃ )w2 · n

]
g̃(x, t) ≡ df̃

dt

∣∣∣∣∣
T̃

= (Ḃ∇T̃ ) · ∇T̃ = 2µ
[
(w1 · ∇T̃ )2 − (w2 · ∇T̃ )2

]
, (2.42)

with µ > 0 (−µ < 0) the stretching (contraction) rate along principal axis w2

(w1) of tensor D = µw2w2 − µw1w1. Here the impact of fluid deformation
on heat transfer, analogous to (2.18), again depends on the relative orientation
between principal deformation axes and temperature gradient. The qualitative
global impact is determined by the sign of the leading integrals in (2.41):

• Ḡ(t) ≡
∫
Γ
ḡ(x, t)ds > 0 momentarily accelerates the growth from

J2 < 0 to limt→∞ J2(t) = 0 compared to a non-deforming fluid (i.e.
d2J2/dt

2|µ>0 > d2J2/dt
2|µ=0) and thus accomplishes faster energising.

Conversely, Ḡ(t) < 0 delays global energising.

• G̃(t) ≡
∫
D g̃(x, t)d2x > 0 momentarily accelerates the decay from

J1 > 0 to limt→∞ J1(t) = 0 compared to a non-deforming fluid (i.e.
d2J1/dt

2|µ>0 < d2J1/dt
2|µ=0) and thus accomplishes faster equilibra-

tion. Conversely, G̃(t) < 0 delays global equilibration.

Integrals Ḡ(t) and G̃(t) incorporate the net impact on global energising and equi-
libration, respectively, by local enhancement (i.e. ḡ(x, t) > 0 and g̃(x, t) > 0)
or diminution (i.e. ḡ(x, t) < 0 and g̃(x, t) < 0). However, the local contributions
to the global behaviour may, consistent with Figure 2.4, vary significantly. This
admits investigation via the corresponding relative change rates

β̄ ≡ ḡ

f̄
= e†r · Ḃ · er = −2e†r ·D · er = −2

∂vr
∂r

,

β̃ ≡ g̃

f̃
= e†T · Ḃ · eT = −2e†T ·D · eT ,

(2.43)

with eT = ∇T/|∇T |, and constitute Eulerian counterparts to β following (2.25).
Here β̄ follows from uniformity of the wall temperature, which implies ∇T =
(∂T/∂r)er at boundary Γ and to leading-order approximation on the beforemen-
tioned circles Γ0. This furthermore implies eT = er and thus β̃ = β̄ at Γ.
Moreover, both measures are bounded as −2µ ≤ β̄ ≤ 2µ and −2µ ≤ β̃ ≤ 2µ.

Incompressibility ∇ · v = 0 yields ∂vr/∂r = −r−1∂vθ/∂θ and via (2.43)
links the energising dynamics to the boundary velocity v1|Γ = vθeθ. Through
vθ = H(θ −∆/2) −H(θ + ∆/2) this gives β̄ = 2δ(θ −∆/2) − 2δ(θ + ∆/2)
as singular limit for β̄ on Γ, with H and δ the well-known Heaviside and Dirac
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2. Fast fluid heating by adaptive flow reorientation

(a) β̄ at r0 = 0.99. (b) f̄ at r = 1.

(c) ḡ/max |ḡ| at r0 = 0.99.

Figure 2.6: Impact of fluid deformation on energising for temperature at t = 20
in Figure 2.3: (a) relative change rate β̄ = ḡ/f̄ on circle r0 = 0.99 (blue) in-
cluding limit on r = 1 (red) and bounds (cyan); (b) wall temperature gradient
f̄ = ∂T̃ /∂r|Γ (blue) including average (blue dashed) and diffusive limit (red
dashed); (c) change rate ḡ at r0 = 0.99 (blue). Vertical dashed lines indicate
leading (θ = ∆/2) and trailing (θ = −∆/2) arc edges.

functions, respectively. This, in turn, yields

Ḡ(t) = r0

∫ 2π

0

β̄(θ; r0)
∂T̃

∂r
dθ

r0=1
= 2

 ∂T̃

∂r

∣∣∣∣∣
θ=∆/2

− ∂T̃

∂r

∣∣∣∣∣
θ=−∆/2

 , (2.44)

as leading-order approximation for integral Ḡ on said Γ0 and its corresponding
limit on Γ. Figure 2.6a shows β̄ for r0 = 0.99 (blue) including its limit (red) and
bounds (cyan) and reveals that significant contributions to Ḡ are indeed restricted
to the direct proximity of the arc edges θ = ±∆/2 (dashed lines). The rapid
material stretching along streamlines and subsequent relaxation near arc edges
θ = ∆/2 and θ = −∆/2, respectively, demonstrated in Figure 2.2 causes a
relative steepening (flattening) of wall temperature gradient f̄ = ∂T̃ /∂r|Γ – or
equivalently, a local rate of change β̄ > 0 (β̄ < 0) – near former (latter) arc edge
by the mechanism according to Section 2.3.2. This implies

0 <
∂T̃

∂r

∣∣∣∣∣
θ=−∆/2,t>0

<
∂T̃

∂r

∣∣∣∣∣
Γ,t=0

<
∂T̃

∂r

∣∣∣∣∣
θ=∆/2,t>0

, (2.45)
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2.3 Dynamics of heating in fluid flows

due to the uniform initial gradient ∂T̃ /∂r|Γ,t=0 > 0 for the initial/boundary con-
ditions in (2.3) and via (2.44) thus always accelerates energising (Ḡ > 0). This
behaviour is demonstrated in Figure 2.6b by ∂T̃ /∂r|Γ (blue curve) and corre-
sponding integrand ḡ in Figure 2.6c for the temperature field at t = 20 in Figure
2.3 and, in accordance with Ḡ > 0, yields an average temperature gradient (blue
dashed line in Figure 2.6b) and associated boundary heat flux that is significantly
larger than the diffusive limit (red dashed line). However, consistent with the local
behaviour exposed in Section 2.3.2, unfavourable orientations of fluid deforma-
tion versus temperature gradient may via (2.44) also cause Ḡ < 0 and thus
(temporary) diminution of global energising.

Global equilibration shows similar characteristics due to the fact that signifi-
cant fluid deformation within the interior also concentrates primarily around the
arc edges. Figure 2.7a demonstrates this by the stretching rate µ (shown as
µ log = log10(µ/maxµ) to enhance contrast) and reveals a rapid decay from its
peaks near said edges by several orders of magnitude within a confined bound-
ary region. Typical corresponding magnitudes of β̃ are shown in Figure 2.7b for
t = 20 and t = 50 and Figure 2.7c distinguishes subregions of different impact
levels using β̃ rel ≡ β̃/max |β̃| and thresholds (ε1, ε2) = (5× 10−3, 5× 10−2):
strong enhancement (β̃ rel ≥ ε2; red) versus strong diminution (β̃ rel ≤ −ε2;
blue); moderate enhancement (ε1 ≤ β̃ rel < ε2; yellow) versus moderate diminu-
tion (−ε2 < β̃ rel ≤ −ε1; cyan); insignificant (|β̃ rel| < ε1; green). (Regions β̃ > 0

and β̃ < 0 correspond with local enhancement and diminution, respectively, of
equilibration due to f̃ > 0 and thus fully capture the equilibration dynamics.)
This reveals that the confinement of significant fluid deformation to the arc region
carries over to its impact on the equilibration dynamics. The red/blue regions
in Figure 2.7c with the strongest enhancement/diminution of equilibration remain
largely stationary and closely correlate with µ. Significant temporal changes in
β̃ occur mainly in the yellow/cyan regions and for the present temperature field
manifest themselves in the diminishing banana-shaped region emerging from arc
edge θ = ∆/2. However, their intensity is 1-2 orders of magnitude smaller com-
pared to the arc region and thus of secondary importance only.

The relative rate of change β̃ for a reorientation of the temperature field at
t = 20 following Figure 2.7d is shown in Figure 2.7e and exposes high-impact
regions (red/blue) at the arc edges that are basically reorientations of their base-
flow counterparts in Figure 2.7b – and thus (nearly) independent of the momen-
tary T̃ – coexisting with interior regions (yellow/cyan) that depend significantly on
T̃ yet have an only moderate impact. This behaviour is typical of any reorientation
and diminishes the (potential) impact of internal fluid mixing and chaotic advec-
tion, thereby further eroding the beforementioned common belief of an invariably
beneficial role of these conditions.

The rapid alignment of isothermals with streamlines in the arc region (Fig-
ure 2.3) suggests that β̃ here approximately behaves as β̃∗ = −2e†v · D · ev,
with ev = (vy,−vx)/|v1| the normal to the streamlines. (Property ev|Γ = er|Γ
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2. Fast fluid heating by adaptive flow reorientation

(a) µ log (b) β̃ log

(c) Partition of β̃ into impact levels. (d) Reoriented T̃ .

(e) β̃ log for reoriented T̃ . (f) β̃∗
log

Figure 2.7: Impact of fluid deformation on equilibration: (a) stretching rate µ
of fluid parcels expressed as µ log = log10(µ/maxµ); (b) relative change
rate β̃ = g̃/f̃ expressed as β̃ log = log10(|β̃|/max |β̃|); (c) partition of β̃ via
β̃ rel ≡ β̃/max |β̃| into regions with strong enhancement (β̃ rel ≥ ε2; red) versus
strong diminution (β̃ rel ≤ −ε2; blue), moderate enhancement (ε1 ≤ β̃ rel < ε2;
yellow) versus moderate diminution (−ε2 < β̃ rel ≤ −ε1; cyan) and insignificant
impact (|β̃ rel| < ε1; green) using thresholds (ε1, ε2) = (5× 10−3, 5× 10−2); (d)
reoriented T̃ at t = 20; (e) β̃ log for reoriented T̃ ; (f) approximation β̃∗ expressed
as β̃∗

log = log10(|β̃∗|/max |β̃∗|).

ensures consistency with the previous relation β̃|Γ = β̄|Γ.) Figure 2.7f gives
the magnitude of β̃∗ (left) and corresponding partition by impact levels (right).
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2.4 Adaptive flow reorientation

This indeed reveals a close agreement of the approximated strong-impact re-
gions (red/blue) with their actual counterparts in figures 2.7c and 2.7d; deviations
are restricted to the moderate-impact regions (yellow/cyan). Thus G̃ to good ap-
proximation collapses on a form akin to (2.44), i.e.

G̃(t) ≈
∫
(r,θ)∈D+

β̃∗(r, θ)
[
|∇T̃ |2(r,θ) − |∇T̃ |2(r,−θ)

]
rdrdθ (2.46)

with D+ the strong-enhancement region (red) in Figure 2.7f (right) and using
the anti-symmetry β̃∗(r, θ) = −β̃∗(r,−θ) about the centerline θ = 0 of the
arc. Similar reasoning as that underlying (2.45) gives 0 < |∇T̃ |2(r,−θ),t>0 <

|∇T̃ |2(r,±θ),t=0 < |∇T̃ |2(r,θ),t>0 and in conjunction with β̃∗|D+ > 0 implies G̃ >
0. So fluid deformation for (at least) base flow v1 and given initial/boundary condi-
tions in (2.3) always accelerates, besides energising, also equilibration. However,
unfavourable reorientations may, as before, also cause (temporary) diminution of
global equilibration (G̃ < 0).

2.4 Adaptive flow reorientation

2.4.1 Control strategy revisited

Section 2.3 reveals that the impact of flow on thermal transport is highly non-
trivial and depends essentially on the interplay between fluid deformation and
temperature field. This may benefit as well as deteriorate said transport and thus
conclusively demonstrates that efficient fluid mixing by chaotic advection does
not imply enhanced thermal performance. Decomposition (2.22) of the Perron-
Frobenius operator Pt clearly illustrates this: the temperature evolution depends
on factors At (advection) and Dt (diffusion) yet mixing/advection-based optimi-
sation effectively omits Dt. Moreover, significant impact of fluid deformation is
restricted to the active arc region (figures 2.6 and 2.7) and the underlying pro-
cesses become exponentially complex and intractable with consecutive flow re-
orientations. These issues render (i) optimisation of heat transfer based solely on
mixing/advection characteristics inefficient and potentially ineffective and (ii) con-
trol strategies based directly on fundamental thermal mechanisms as exposed in
Secs. 2.3.1 and 2.3.2 impractical.

The global metrics for heating defined in Section 2.3.4 incorporate the global
impact of the flow (Section 2.3.5) and thus offer a workable alternative to deter-
mine the “best” reorientation scheme U in the general control strategy in Section
2.2.2. Such metrics namely admit its formulation as the minimisation of a cost
function J(t) from J(0) > 0 to J(tε) ≤ ε in the shortest possible time tε > 0,
with ε > 0 a preset tolerance. The control action consists of step-wise activating
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2. Fast fluid heating by adaptive flow reorientation

flow vuk
in (2.4) at tn that minimises J for the finite horizon tn+1 = tn + τ , i.e.

argmin
k
Jk (tn+1) , Jk(t) ≡ J

(
T̃k(x, t)

)
,

T̃k(x, t) ≡ T̃ (x, t;vuk
(x), T̃ (x, tn)),

(2.47)

from predicted future states T̃k(x, tn+1) of the momentary temperature T̃ (x, tn).
The schematic in Figure 2.8 shows this control loop, which, by relying on (real-
time) feedback from the actual state at tn and its evolution, enables control that
is robustness to disturbances accumulated up to tn.

Critical for an effective controller is an adequate cost function J in (2.47). The
dynamics of global metrics (2.33) (Section 2.3.4) advance metric J1 as the most
suitable candidate, i.e. J ≡ J1, for the following reasons. First, J1 incorporates
both energising (represented by J2) and homogenisation (represented by J3) by
virtue of relation (2.34) and thus accounts for the two fundamental processes in
the heating process. Second, the fundamental conflict between heat transfer and
homogenisation (Section 2.3.2) precludes an overall effective controller based on
either J2 (energising) or J3 (homogenisation). Third, the invariably monotonic
decay of J1 dictated by (2.37) ensures convergence and regularity of the minimi-
sation procedure (2.47). The inherently (potentially) non-monotonic behaviour of
J3 (J2), on the other hand, may compromise this procedure.

Figure 2.8: Schematic of control loop for adaptive flow reorientation in the RAM.

The above effectively yields the step-wise optimal control adopted in [56] in-
cluding metric J1 as cost function. However, the study in [56] thus followed stan-
dard practice in control theory by using the well-known L2-norm of state T̃ (iden-
tifying with J1) [75]. The present study provides the hitherto missing scientific
support for adopting J1 as cost function in the current thermal context. The prac-
tical control action involves repetition of the following steps at time levels tn:

Step 1 Predict future temperature T̃k(x, tn+1) from T̃ (x, tn) for each flow
vuk

.

Step 2 Select flow vuk
(x) that minimises cost function J = J1 according

to (2.47).

Step 3 Activate the selected aperture k for time interval tn ≤ t ≤ tn+1.
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2.4 Adaptive flow reorientation

This procedure is terminated at time level tn+1 for which Jn+1 = J(tn+1) < ε.
The corresponding transient time tε, defined as J(tε) = ε, is interpolated via
tε = tn + τ(Jn − ε)/(Jn − Jn+1). Prediction using the actual intermediate
state T̃ (x, tn) provides robustness to disturbances accumulated up to tn and this
positions the control strategy within the realm of Model Predictive Control (MPC)
[76]. A difference compared to common MPC is that here the prediction horizon
coincides with the duration of the control action (prediction horizons usually are
far ahead into the future). A strong point is that the current strategy involves the
full spatio-temporal state described by the conservation laws (MPC of thermo-
fluidic systems usually concerns global behaviour of bulk quantities described by
integral models [77]).

Moreover, cost functions J in (2.47), instead of solely including the state T̃ in
the current J = J1, generically also account for the effort required to execute the
control action [77]. In the RAM this consists of the energy consumption E(t) for
driving the arcs. However, given reorientation schemes U here always concern
step-wise activation of a single arc at constant speed, said energy consumption
for any U always increases linearly in time following E(t) = Wt, with W the
constant power consumption by the flow forcing. Hence E(t) is irrelevant for the
minimisation procedure (2.47) and reaching the control target (i.e. the minimum
transient time tε) automatically yields the minimum energy consumption in the
present approach. Advanced control strategies involving e.g. simultaneous ac-
tivations of multiple arcs at variable speeds, on the other hand, result in energy
consumption that depends explicitly on the activation scheme and must therefore
generically be taken into account through cost function J for an overall optimal
performance.

2.4.2 Compact model for fast predictions

Essential for a useful controller is sufficiently fast prediction of the 2N + 1 future
states T̃k(x, tn+1) in (2.47) at each tn with an acceptable computational effort.
Backbone for this fast predictor is the property that spectral decomposition (2.8)
for the temperature evolution in the reoriented flow vu is a linear transformation
from spectral decomposition (2.6) of the base flow following (2.9). This enables a
fact predictor via the numerical approximation of Perron-Frobenius operator Pt in
(2.6) and embarks on spatial discretisation of ADE (2.3) for v = v1, i.e.

dT̃ (t)

dt
= AT̃ (t) , (2.48)

with T̃ (t) = [T̃ (x0, t) , . . . , T̃ (xM , t)]
† the temperatures in the nodes of the

computational grid X = [x0, . . . ,xM ]† and system matrix A the discrete ap-
proximation of the advection-diffusion operator. Steady base flow v1 implies a
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constant A and thus admits

T̃ (t) = PtT̃0 =

M∑
m=0

αmφφφme
λmt, ααα = V−1T̃0, Pt = VeΛΛΛ1tV−1, (2.49)

as semi-analytical solution for (2.48) using the spectral decomposition A = VΛΛΛV−1,
with V = [φφφ0, . . . ,φφφM ] and ΛΛΛ = diag(λ0, . . . , λM ) the eigenvector and eigen-
value matrices, respectively.

Relation (2.49) constitutes the discrete approximation of spectral decomposi-
tion (2.6) of the Perron-Frobenius operator Pt. The reorientation property of the
continuous system following Section 2.2.3 carries over to its discrete approxima-
tion and yields

T̃ (t) = P
(u)
t T̃0 =

M∑
m=0

α(u)
m ψψψ(u)

m eµmt,

ααα(u) = V−1
u T̃0, P

(u)
t = Vue

ΩΩΩutV−1
u ,

(2.50)

as discrete approximation of (2.8). Eigenvalues ΩΩΩu = diag(µ0, . . . , µM ) and
eigenvectors Vu = [ψψψ

(u)
0 , . . . ,ψψψ

(u)
M ] are following (2.9) given by (ΩΩΩu,Vu) =

(ΛΛΛ,GuV) and (ΩΩΩu,Vu) = (ΛΛΛ0,V0) for u 6= 0 and u = 0, respectively. The
reorientation operator is following (2.10) composed of the discrete rotation (Ru)
and reflection (S) operators: Gu = Ru for u > 0 and Gu = SRu for u < 0.

The above discrete approximation translates the evolution and reorientation
into standard matrix-vector multiplications using pre-constructed system matrices
and thus tremendously reduces the computational effort compared to a conven-
tional time-marching scheme for (2.48) and its counterpart for reoriented flows.
Further substantial reduction relies on the exponential decay with characteristic
time scale τm = −1/Re(µm) of the individual modes m in (2.50). This renders
contributions by modes m for which τm/τ � 1 insignificant and admits close
approximation of the temperature evolution by a truncation of expansion (2.50) at
Q�M , i.e.

T̃(t) ≈T̂(t) ≡ P̂
(u)
t T̃0 =

Q∑
m=0

α̂(u)
m ψψψ(u)

m exp(µmt),

α̂αα
(u)

= V̂∗
uT̃0, P̂

(u)
t = V̂ue

Ω̂ΩΩutV̂∗
u,

(2.51)

with V̂∗
u the Moore-Penrose inverse of the reduced eigenvector basis V̂u =

[ψψψ
(u)
0 , . . . ,ψψψ

(u)
Q ].

The total reduction in computational effort afforded by compact model (2.51)
amounts to 3-4 orders of magnitude compared to conventional time-marching of
(2.48) [56]. Moreover, system matrix A can be constructed from any spatial dis-
cretisation method including e.g. FEM and FVM (and even directly exported from
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some commercial CFD packages) and decomposed by linear-algebra tools as
e.g. MATLAB. Thus the compact model enables the fast temperature predic-
tions necessary to make the control strategy in Section 2.4.1 viable for practical
applications.

2.5 Computational performance analysis

2.5.1 Performance of minimisation procedure and predictor

The general performance and robustness of the minimisation procedure (2.47)
and the compact model (2.50) are investigated for a typical RAM consisting of
N = 3 apertures at Pe = 500 and τ = 5 and involves the following steps.
First, simulation of both the actual temperature evolution T̃ (x, t) and the step-
wise predictions T̃k(x, t) by full resolution of ADE (2.3) using the dedicated spec-
tral scheme for the RAM of [16]. This serves as reference for the performance
analysis. Second, simulation of T̃ (x, t) by full resolution of ADE (2.3) using a
conventional FVM scheme [78] and predictions T̃k(x, t) via approximation (2.50)
based on truncation of the spectral decomposition of the FVM system matrix A
in (2.48). This emulates a predictor-based minimisation in a practical implemen-
tation. The FVM grid consists of a cylindrical mesh with equidistant inter-nodal
spacings (∆r,∆θ) and here includes M = 51, 121 elements (convergence ver-
ified by mesh-refinement tests); truncation is at Q = 500 according to typical
reductions Q/M ∼ O(10−1) and thus accomplishes the total reduction in com-
putational effort as estimated in Section 2.4.2 [56].

The temperature evolution T̃ (x, t) and adaptive reorientation scheme U (here
restricted to u ≥ 0) determined via (2.3) by simulation with the spectral method
are shown in Figure 2.9a and Figure 2.9b, respectively. This results in sequen-
tial activation of the apertures reminiscent of periodic reorientation, i.e. U =
{1, 2, 3, 1, 2,
3, . . . }, yet with variable duration, i.e. t active = τ or t active = 2τ , signifying an
essentially aperiodic reorientation scheme. The reorientation is clearly visible in
the temperature field via the emergence of multiple thermal plumes. Figure 2.9c
gives the evolution of the cost function J = J1 as log10 J and reveals, consis-
tent with (2.37), a monotonic and exponential decay that reaches the termination
criterion J(tε) ≤ ε at transient time tε ≈ 140 for ε = 10−2. Simulations for
different (Pe, τ) yield reorientation schemes that comprise of switching between
apertures akin to Figure 2.9b and cost functions that exponentially converge sim-
ilar to Figure 2.9c and terminate the control action at comparable transient times
tε. This demonstrates an overall functioning control strategy that converges and
identifies an effective reorientation scheme.

The reorientation scheme U obtained with the FVM-based method is included
in Figure 2.9b (red solid) and coincides with the reference scheme (black dashed)
found via the spectral method. The corresponding evolution of the cost function in
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(a) Reference temperature T̃ (x, t)

(b) Adaptive reorientation scheme U . (c) log10 J

Figure 2.9: Performance of minimisation procedure and FVM-based predictor
for RAM with three apertures (N = 3) at (Pe, τ) = (500, 5): (a) reference tem-
perature T̃ (x, t) simulated by spectral method; (b) adaptive reorientation scheme
U = {u0, u1, . . . } accomplishing switching between reorientations un of the base
flow following (2.4) at time levels tn = nτ for spectral versus FVM-based method;
(c) cost function J for spectral versus FVM-based method.

Figure 2.9c (red circle) slightly deviates from its reference (black cross), though,
yet this must be attributed to different characteristics of the numerical schemes.
(FVMs are e.g. known to suffer from numerical diffusion [78].) However, attain-
ment of identical U implies that the controller is insensitive to (at least) distur-
bances of this magnitude, caused by numerical effects or otherwise. Simulations
for different cases consolidate these findings. This demonstrates that the FVM-
based predictor admits reliable and robust performance of minimisation (2.47)
and the control strategy indeed is viable for practical applications.

2.5.2 Performance of adaptive flow reorientation for process
enhancement

The effectiveness of adaptive flow reorientation is determined by comparing the
transient time tε required to reach equilibrium T̃∞ with that for conventional peri-
odic reorientation consisting of repetition of the sequence U = {1, 2, . . . , N} at
given (Pe, τ). The performance indicator

χ(Pe, τ) =
tε,p(Pe, τ)

tε,a(Pe, τ)
, (2.52)

where subscripts “p” and “a” denote periodic and adaptive schemes, respectively,
quantifies this effectiveness as follows: χ > 1 indicates a shorter transient and,
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inherently, a faster equilibration rate – and thus superior performance – of the
adaptive scheme compared to the periodic scheme; χ < 1 indicates a relatively
inferior performance of the adaptive scheme.

The performance analysis is carried out for aperture configurations N =
2, 3, 4 and involves evaluation of χ in (Pe, τ)-space for 5× 102 ≤ Pe ≤ 5× 103

and 3 ≤ τ ≤ 30 using tolerance ε = 10−2 introduced above. The range for
Pe encompasses the values Pe ∼ O(103) typical of practical systems within the
present scope (Section 2.1); the range for τ captures the transition from regu-
lar towards chaotic advection with conventional periodic reorientation schemes in
the RAM for givenN [12]. Performance indicator χ is computed on an equidistant
grid of 50 × 50 = 2500 points inside the considered parameter range using the
spectral method of Section 2.5.1.

Figure 2.10 gives χ versus (Pe, τ) for N = 2 (left), N = 3 (center) and N =
4 (right) using a logarithmic scale for τ to enhance contrast. This yields χ > 1
everywhere and thus exposes – at least in the considered parameter range – the
adaptive scheme as superior to the conventional periodic scheme. The difference
in performance exhibits substantial variation, however. Peak performance is for
cases N = 2 and N = 3 confined to relatively narrow bands near the lower
bound τ = 3 (log10 τ = 0.5) and within this regime reaches maxχ = 3.5 forN =
2 and maxχ = 3.9 for N = 3 at the upper bound Pe = 5 × 103; performance
rapidly declines to χ ' O(1) upon increasing τ . Case N = 4 is devoid of
pronounced high-performance bands and exhibits more erratic behaviour with a
considerably lower maxχ = 1.5. Section 2.5.4 reconciles shown performance
with the advection characteristics and fluid deformation.

(a) N = 2 (b) N = 3 (c) N = 4

Figure 2.10: Performance indicator χ versus (Pe, τ) for RAM with number of
apertures N as indicated.

Important for practical purposes is that the adaptive scheme also in regions
χ ' O(1) outside the high-performance bands significantly outperforms the con-
ventional periodic scheme. Figure 2.11 highlights this by partition of parame-
ter space into regions with a relative acceleration of the fluid heating χ rel =
(χ − 1) × 100% of 0 < χ rel ≤ 15% (blue), 15% < χ rel ≤ 20% (green),
20% < χ rel ≤ 25% (yellow), 25% < χ rel ≤ 30% (orange) and χ rel > 30%
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(red). This reveals accelerations by at least 15% in nearly the entire parameter
range (save some localised regions for N = 2 and N = 4) and 25% or more in
large areas. This has the major (practical) implication that adaptive flow reorien-
tation enables the same process with the same device yet at considerably lower
effort compared to conventional operation (energy consumption for flow forcing is
proportional to tε). Process enhancement of this magnitude namely constitutes
a dramatic reduction in energy and (potentially also) resource consumption in
industries as those highlighted in Section 2.1.

(a) N = 2 (b) N = 3 (c) N = 4

Figure 2.11: Relative acceleration of fluid heating χ rel = (χ − 1) × 100% by
adaptive flow reorientation for RAM with number of aperturesN as indicated: 0 <
χ rel ≤ 15% (blue), 15% < χ rel ≤ 20% (green), 20% < χ rel ≤ 25% (yellow),
25% < χ rel ≤ 30% (orange), χ rel > 30% (red). Dashed black triangles in
panels (b) and (c) approximately outline regions with adaptive schemes consisting
of periodic repetitions of U = {1, 3, 2} and U = {1, 4, 3, 2}, respectively.

2.5.3 Optimal reorientation schemes and heating dynamics

Control actions in the considered parameter range invariably involve aperture ac-
tivation and frequent switching (u 6= 0); intermediate diffusion-only steps (u = 0)
are non-existent in the adaptive reorientation schemes. This implies that flow re-
orientation, despite inevitable local diminution (Section 2.3.2), on a global scale
always enhances the heating process. Striking, though, is that the controller
never selects the conventional periodic reorientation scheme introduced in Sec-
tion 2.5.2 or, generically, repetitions of other systematic progressions along all
apertures such as e.g. U = {−1,−2, . . . ,−N} or U = {N,N − 1, . . . , 1}.
The sole exceptions are periodic repetitions of U = {1, 3, 2} for N = 3 and
U = {1, 4, 3, 2} for N = 4 found in the localised parameter regimes approxi-
mately bounded by the dashed black triangles in Figure 2.11b and Figure 2.11c,
respectively. Figure 2.9b demonstrates that the adaptive scheme, even upon re-
striction to u > 0, exhibits aperiodic deviation from said conventional scheme.
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Adaptive reorientation schemes generically are essentially aperiodic and Figure
2.12 shows typical cases for N = 2 (red), N = 3 (black) and N = 4 (blue)
yielding χ = 2.49, χ = 2.15 and χ = 1.25, respectively. However, adaptive
reorientation schemes in a significant portion of the parameter space encompass
prolonged periodic episodes (including some cases that are entirely periodic)
as illustrated in Figure 2.12b for (Pe, τ) = (3275, 4.2). Here the reorientation
schemes settle on the periodic sequence

UN=2 = {1,−2, 1,− 2, . . . }, UN=3 = {1,−3, 1,−3, . . . },
UN=4 = {2,−3, 2,−3, . . . },

(2.53)

either directly from the start (N = 2) or after a short transient (N = 3, 4) and for
given (Pe, τ) yield χN=2 = 2.81, χN=3 = 2.15 and χN=4 = 1.31.

(a) Essentially aperiodic schemes (b) Schemes with prolonged periodic
episodes

Figure 2.12: Typical adaptive reorientation schemes U = {u0, u1, . . . } accom-
plishing switching between reorientations un of the base flow following (2.4)
at time levels tn = nτ : (a) essentially aperiodic schemes for (Pe, τ)N=2 =
(2471, 4.4), (Pe, τ)N=3 = (3125, 4.2) and (Pe, τ)N=4 = (1012, 13.6); (b)
schemes with prolonged periodic episodes for (Pe, τ) = (3275, 4.2) and N as
indicated.

Key difference between said periodic sequences and the conventional peri-
odic schemes is that the former always consist of switching between two adjacent
arcs that move in opposite directions. This sets up two alternating and counter-
rotating circulations and, depending on the relative arc movement, results in the
following thermal behaviour. Arcs moving towards each other create a single
thermal plume between the arcs that sways back and forth with the alternating
circulations as demonstrated by the temperature evolutions in Figure 2.13a cor-
responding with case N = 2 (top) and N = 3 (bottom) in (2.53). Arcs moving
away from each other create two thermal plumes, emanating from the leading
edges of the arcs, that are periodically reinvigorated by the alternating circula-
tions as demonstrated in Figure 2.13b for case N = 4 in (2.53).

Aperiodic and (largely) periodic schemes as illustrated in Figure 2.12 may
emerge throughout parameter space yet the controller generally tends towards
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aperiodic (periodic) schemes for “lower” (“higher”) τ . Such aperiodic schemes of-
ten exhibit intermittent behaviour by comprising of plume-forming periodic episodes
interspersed with aperiodic intervals; this e.g. occurs typically in the high-performance
regions for N = 2 and N = 3 in Figure 2.10. Moreover, persistent single plumes
as shown in Figure 2.13a mainly emerge for N = 2 and N = 3; case N = 4
overall tends more towards aperiodic behaviour. However, a direct link between
type of adaptive reorientation and parameter regimes appears absent yet generic
correlations with the advection characteristics exist (Section 2.5.4).

(a) Single thermal plume for N = 2 (top) and N = 3 (bottom).

(b) Pair of thermal plumes for N = 4.

Figure 2.13: Formation of thermal plumes due to periodic (episodes of) reori-
entation schemes selected by adaptive flow reorientation demonstrated for case
(Pe, τ) = (3275, 4.2) in Figure 2.12b: (a) single thermal plume driven by two
adjacent arcs alternately moving towards each other for N = 2 (top) and N = 3
(bottom); (b) pair of thermal plumes driven by two adjacent arcs alternately mov-
ing away from each other for N = 4.

The dependence of performance indicator χ on parameters (Pe, τ) shown in
Figure 2.10 is inextricably linked to that of the transient times for the adaptive (tε,a)
and conventional periodic (tε,p) schemes. Figure 2.14 gives tε,a (dashed) and tε,p
(solid) for N = 2 and N = 3 at the indicated Pe and reveals a significant decline
of tε,p with increasing τ that grows more pronounced with larger Pe versus a
nearly uniform tε,a in τ -direction that increases moderately with Pe. Case N =
4 (not shown) exhibits similar behaviour yet with a mildly-fluctuating (instead of
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significantly declining) tε,p. These observations imply that variation of χ in Figure
2.10 stems primarily from variable tε,p and, inherently, variable performance of
the conventional periodic scheme.

Uniform tε,a dependent only on Pe in Figure 2.14, on the other hand, sig-
nifies a consistent performance of the adaptive scheme that (save the localised
spike at the lower bound for τ at Pe = 5000 in Figure 2.14a) is virtually inde-
pendent of both τ and N . This implies that the controller systematically identi-
fies the (on average) optimal orientation between deformation and temperature
gradient at the fluid parcels and heat transfer is limited primarily by the thermo-
physical conditions at the molecular level for given Pe. Heat transfer between
fluid parcels namely occurs at time scales proportional to the diffusive time scale
t diff = R2/ν, which in the non-dimensional formulation of Section 2.2.2 (i.e.
relative to the advective time scale t adv = R/U ) depends linearly on Pe via
t′diff = t diff/t adv = Pe. Linear correlation tε,a ∝ Pe, for (at least) N = 2 and
N = 3 in Figure 2.10 implies that the controller (within the constraint of the step-
wise optimisation of Section 2.4.1) consistently identifies the “best” reorientation
scheme for molecular transfer rates at given Pe.

(a) N = 2 (b) N = 3

Figure 2.14: Transient time tε,a (dashed) and tε,p (solid) of adaptive and con-
ventional periodic schemes, respectively, versus τ for selected Pe and RAM with
number of apertures N as indicated.

2.5.4 Role of fluid deformation and chaotic advection

Fluid deformation impacts the global heat transfer by changing the rates of global
energising (quantified by metric J2) and equilibration (quantified by metric J1) via
the leading integrals in (2.41) represented by functions Ḡ and G̃ according to
(2.44) and (2.46), respectively. The spatial distribution of the corresponding inte-
grands ḡ (g̃), shown in Figure 2.6 (Figure 2.7) in terms of β̄ (β̃) following (2.43),
reveals that this impact is primarily restricted to the direct vicinity of the arc edges
and (at least) for temperature evolutions in the base flow v1 from the uniform ini-
tial condition T0 accelerates energising and equilibration. The generality of this
behaviour is investigated below.
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Key to energising is the wall temperature gradient f̄ = ∂T̃ /∂r|Γ. Figure
2.15 shows f̄ for the adaptive (red) versus conventional periodic (blue) scheme
at time levels tn+1 during an intermediate episode of the transient for the typical
case N = 3 and Pe = 1000 at given τ . (The adaptive scheme corresponds with
UN=3 = {1,−3, 1,−3, . . . } following (2.53).) Gradient f̄ significantly steepens
at the active arc during step tn ≤ t ≤ tn+1, with corresponding leading (trailing)
edges indicated by dashed (solid) vertical lines, and peaks at the trailing egde.
This reveals that fluid deformation, despite considerable changes in initial condi-
tions at tn, step-wise creates essentially the same situation as for the base flow
in Figure 2.6b and – upon identifying θ = ∆/2 (θ = −∆/2) in (2.44) with the
trailing (leading) edge of the active arc – implies Ḡ > 0 and thus accelerated
energising compared to a non-deforming fluid. Both schemes accomplish this
yet the consistently higher peaks at the trailing edges for the adaptive scheme
render this effect more pronounced and thereby signify a systematically superior
performance over the conventional scheme.

The step-wise impact of fluid deformation on equilibration for the above case
is shown in Figure 2.16 in terms of β̃ and is also reminiscent of that of the base
flow in Figure 2.7: emergence of localised high-impact regions (red/blue) near the
arc edges and larger moderate-impact regions (yellow/cyan) in the interior. More-
over, these high-impact regions again vary only marginally in time and with flow
reorientation; significant spatio-temporal variation occurs only in the moderate-
impact regions. Thus the simplified G̃ following (2.46) to good approximation
holds in general and in conjunction with the wall temperature gradients in Figure
2.15 implies G̃ > 0 and, inherently, acceleration of equilibration by the same
reasoning as for the base flow in Section 2.3.5.

The above behaviour is representative for the entire transient in arbitrary
cases and demonstrates that fluid deformation generically indeed enhances en-
ergising and equilibration. However, as clearly demonstrated in Figure 2.16, this
primarily relies on the high-shear regions near the arc edges and their interaction
with the temperature gradient; fluid deformation in the flow interior only plays a
secondary role in this process due to its relative weakness compared to said re-
gions. This has the major implication that the adaptive scheme attains its superior
and consistent performance mainly from step-wise optimal orientation between
arc edges and wall temperature gradient. The adaptive scheme thus creates
peaks of comparable magnitude close to an upper limit set by the beforemen-
tioned thermo-physical conditions for all τ , as e.g. demonstrated by the profiles
at tn+1 = 20 in Figure 2.15, yielding the nearly uniform tε,a in Figure 2.14. The
conventional scheme, on the other hand, sequentially creates peaks at the con-
secutive arcs that grow with τ (again demonstrated by the profiles at tn+1 = 20
in Figure 2.15) due to the increasing fluid deformation associated with longer arc
activation and approach said upper limit only for sufficiently large τ . Reaching this
limit is intimately related to the local breakdown of heat-transfer enhancement at
t ∼ O(τβ), with τβ according to (2.31), where τβ ' O(0.3 − 3) for the degree
of fluid deformation in the arc region (Section 2.3.3). The significant decline and
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subsequent flattening of tε,p exactly at step durations τ of this magnitude in Fig-
ure 2.14 support this scenario.

(a) τ = 2

(b) τ = 5

(c) τ = 10

Figure 2.15: Impact of fluid deformation on energising demonstrated by wall tem-
perature gradient f̄ = ∂T̃ /∂r|Γ for adaptive (red) versus conventional periodic
(blue) scheme at time levels tn+1 for N = 3 and Pe = 1000 at given τ . Dashed
(solid) vertical lines indicate leading (trailing) edges of active arc.

The relative weakness of fluid deformation in the domain interior suggests
that global advection mainly serves as mechanism for exchanging (to be) heated
fluid parcels between the arc regions and said interior and makes whether this
fluid transport is chaotic or not of secondary importance. The following consid-
erations substantiate this subordinate role of chaotic advection for the heating
performance of the RAM. Lagrangian transport within the flow interior associ-
ated with the frequently-emerging periodic plume-forming schemes such as e.g.
(2.53) transits from regular to chaotic with increasing τ , as demonstrated in Fig-
ure 2.17 by the stroboscopic map of 100 tracers released on the x-axis. However,
the corresponding transient time tε,a in Figure 2.14 remains uniform, signifying
a thermal performance of the adaptive scheme that is consistent for all τ and, in
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(a) Adaptive scheme τ = 2 (b) Conventional scheme τ = 2

(c) Adaptive scheme τ = 5 (d) Conventional scheme τ = 5

(e) Adaptive scheme τ = 10 (f) Conventional scheme τ = 10

Figure 2.16: Impact of fluid deformation on equilibration demonstrated by partition
of relative change rate β̃ = g̃/f̃ via β̃ rel ≡ β̃/max |β̃| into regions with strong
enhancement (β̃ rel ≥ ε2; red) versus strong diminution (β̃ rel ≤ −ε2; blue),
moderate enhancement (ε1 ≤ β̃ rel < ε2; yellow) versus moderate diminution
(−ε2 < β̃ rel ≤ −ε1; cyan) and insignificant impact (|β̃ rel| < ε1; green) using
thresholds (ε1, ε2) = (5× 10−3, 5× 10−2) for N = 3 and Pe = 1000 at given τ .
Heavy boundary segments indicate active arc during step [t− τ, t] prior to given
time level t.

consequence, independent of the emergence of chaos.

The conventional scheme results in a similar transition from regular to chaotic
advection in the ranges 1 . τ . 6 (0 . log10 τ . 0.8), 2 . τ . 5 (0.3 .
log10 τ . 0.7) and 2 . τ . 5 (0.3 . log10 τ . 0.7) for N = 2, N = 3
and N = 4, respectively, and yields stroboscopic maps as shown in [12]. (Stro-
boscopic maps in [12] in fact concern companion schemes for Θ′ = −Θ and
Ω′) = −Ω and on grounds of symmetry are identical to maps of the current
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schemes.) The transition and fully-chaotic zones correlate with the regimes of
declining and flat profiles of tε,p in Figure 2.14, respectively, and this may thereby
suggest a significant role of the interior (chaotic) advection in the thermal per-
formance. However, increasing τ and N simultaneously changes the conditions
near the active arc by two effects: (i) circulation of more fluid parcels through
the N arc regions (thus promoting greater heat exchange between wall and inte-
rior) and (ii) larger fluid deformation (thus promoting a steeper wall temperature
gradient at the arc). This, together with the flattening of tε,p at τ ∼ O(τβ) es-
tablished above, advances the conditions at the active arc that drives the interior
(chaotic) advection – rather than the nature of this interior transport itself – as the
primary cause for the decline in tε,p and corresponding enhancement in thermal
performance.

Figure 2.17: Lagrangian transport associated with periodic plume-forming
schemes (2.53) versus τ demonstrated by stroboscopic map of 100 tracers re-
leased on x-axis for RAM with N = 2 (top) and N = 3 (bottom) apertures.

2.6 Conclusions

The present study aims to contribute to existing solutions for enhancement of
scalar transport in laminar flows through flow reorientation. To this end a ded-
icated flow-control strategy is developed (i.e. “adaptive flow reorientation”) that
systematically determines the “best” flow reorientation for the fast heating of a
cold fluid via a hot boundary in a representative case study.

The control strategy is founded on an in-depth analysis of the dynamics of
heating in fluid flows. This exposes fluid deformation as the “thermal actuator”
via which the flow affects the heat transfer. The link between former and latter
is non-trivial, though. Fluid deformation may, depending on its orientation rela-
tive to the temperature gradient, both enhance and diminish local heat exchange
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between fluid parcels. Moreover, enhanced heat transfer promotes local thermal
homogenisation and, by reducing temperature gradients, thus effectively counter-
acts itself. This fundamental “conflict” between local heat transfer and thermal ho-
mogenisation tends to restrict the beneficial impact of flow to short-lived episodes.
The impact of fluid deformation on the global fluid heating is primarily confined to
the direct proximity of the moving boundary that drives the flow. Fluid deformation
in the flow interior only plays a secondary role in this process due to its relative
weakness compared to said regions. These insights imply that incorporation of
the thermal behaviour is essential for effective flow-based enhancement strate-
gies and efficient fluid mixing, the conventional approach adopted in industry for
this purpose, is potentially sub-optimal.

Global heating encompasses two concurrent processes, i.e. increasing en-
ergy content (“energising”) and thermal homogenisation, and this fundamentally
differentiates the current problem from the thermal homogenisation in adiabatic
systems usually considered in related studies. Moreover, this notion yields the rel-
evant metrics for the global dynamics and thus enables formulation of the control
problem as the minimisation of a dedicated cost function that naturally emerges
from the dynamic analyses and adequately incorporates both processes. This
facilitates step-wise determination of the “best” flow reorientation from predicted
future evolutions of actual intermediate states and, in tandem with an efficient
predictor, paves the way to (real-time) regulation of scalar transport by flow con-
trol in practical applications. Key enablers for this predictor are (i) the property
that flow reorientations carry over to the temperature field (ii) a compact reduced-
order model for the Perron-Frobenius evolution operator that rapidly maps initial
to final temperature fields for each step duration and flow reorientation.

Performance analyses reveal that adaptive flow reorientation significantly ac-
celerates the fluid heating throughout the considered parameter space and thus is
superior over conventional periodic schemes (designed for efficient fluid mixing)
both in terms of consistency and effectiveness. Fluid heating is accelerated by at
least 14% everywhere and 24% or more in large areas and process enhancement
of this magnitude constitutes a dramatic reduction in energy and (potentially also)
resource consumption in industries motivating the present study. The controller
in fact breaks with conventions by, first, never selecting these periodic schemes
and, second, achieving the same superior performance for all flow conditions ir-
respective of whether said mixing occurs. The controller typically achieves this
superiority by creating an essentially heterogeneous situation comprising of ther-
mal plumes that extend from the hot wall into the cold(er) interior and are driven
by two alternating and counter-rotating circulations. The performance analyses
furthermore substantiate the primary and secondary roles of fluid deformation
near the driving boundary segments and in the flow interior, respectively, in the
heating enhancement by the flow.

Ongoing efforts concern, first, more advanced and precise regulation of the
thermal process by continuous actuation of all moving boundary segments and,
second, experimental validation and testing of the control strategy. Future stud-
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ies aim at further paving the way to practical applications by development of ob-
servers for full state estimation from discrete sensor data and data-based con-
struction of compact models as well as realisation of advanced control targets
such as e.g. thermal fronts or heterogeneous temperature fields for promotion of
chemical reactions.
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CHAPTER 3
Rapid thermalization with

restricted adaptive flow
reorientation

Abstract - The aim of this chapter is to provide insights into accelerating scalar
transport (e.g. of heat or chemical species) in flow systems where transport is
“driven” by reorientations of a laminar base flow. In the previous chapter, an adap-
tive flow reorientation approach, which determines the best flow field reorientation
and circulation direction to boost fluid heating, is presented. The applications of
interest in this chapter encompass applications that allow a reorientation of the
base flow as in Chapter 2. However, fluid is only allowed to circulate in a single
direction here. Such limitations are frequently imposed by the geometric/mechan-
ical configuration in, e.g., (inline) mixers or stirring tanks in the foodstuffs, medical
and/or (petro)chemical industry. The conventional heating/mixing approach for
rapid scalar transport in these applications entails the periodic reorientation (in
space) of the base flow to promote fluid mixing (e.g. by baffles or rotating beat-
ers). As discussed in Chapter 2, the homogenisation rate of the scalar field is not
necessarily accelerated with these periodic approaches in the presence of i) sub-
stantial diffusion and/or chemical reactions and/or ii) a non-adiabatic boundary
condition. In the present study, heat transport enhancement with the adaptive
reorientation protocol is again investigated on a case-study, the Rotated Arc Mixer
(RAM), for an entire parameter space of fluid and flow properties. However, fluid

The contents of this chapter is an extension of: R. Lensvelt, M.F.M. Speetjens, and H. Nijmeijer.
“Rapid thermalization by adaptive flow reorientation”. In: Journal of Physics: Conference Series.
(2116), Lisbon, 012114.
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circulation is only allowed in a single direction in this chapter. Numerical results
show that the adaptive approach is still able to significantly enhance heat trans-
port compared to the conventional periodic heating/mixing approach designed for
efficient mixing.

3.1 Introduction

In Chapter 2, an adaptive approach is presented for “optimal” selection of the flow
field reorientation and fluid circulation direction based on a L2 norm of a predicted
scalar field. In Chapter 2, a compact predictor model is developed that allows for
real-time selection of the flow field reorientation and fluid circulation direction in
the presence of both significant diffusion and a non-adiabatic boundary condition.

In this chapter, reorientation schemes obtained with the adaptive reorientation
protocol are analysed further in order to gain insights relevant to improving exist-
ing fluid stirring applications. Fluids can, in some of the applications of interest,
only be stirred in a single direction (e.g. due to geometrical and/or mechanical
configuration of the stirring application). Hence, the adaptive reorientation pro-
tocol is only permitted to circulate the fluid in a single direction in this chapter.
This constrains the fluid circulation direction – and thus the analysis – compared
to Chapter 2. However, the limitation ensures that the obtained reorientation
schemes are directly applicable to heating/mixing system where fluids circulate
in a single direction and where Stokes flows reorient in either space or time.

The primary focus of this chapter is to enhance scalar transport on a case-
study, which is representative for the applications of interest; heating of an initially
cold fluid by stirring in the presence of a hot boundary. Hence, the Rotated Arc
Mixer (RAM) studied in Chapter 2 is investigated here as well. The work in this
chapter extends the analysis of the adaptive reorientation protocol in Chapter 2
by performing an in-depth analysis of the reorientation schemes that result in
improved heat transport on the RAM. To this end, fluid heating in the case-study
is investigated for flow forcing based on the adaptive reorientation protocol and
compared to flow forcing by the conventional periodic protocol in Section 3.2.
Numerical results are investigated for a similar range of practically relevant fluid
and flow parameters as in Chapter 2. Finally, conclusions and recommendations
for future research are presented in Section 3.3.

3.2 Numerical study

In this section, the adaptive reorientation protocol is employed to determine “op-
timal” reorientation schemes for the same case-study that was investigated in
Chapter 2: the 2D Rotated Arc Mixer (RAM). The adaptive approach and the
compact model – required for fast numerical simulations – used in this chapter
are presented in Section 2.4.

58



3.2 Numerical study

3.2.1 Performance measure

(a) tε,a (b) χ

Figure 3.1: (a) Homogenisation times (tε,a) for the reorientation schemes ob-
tained with the adaptive flow reorientation protocol presented in Section 2.4 and
(b) homogenisation ratios (χ) for various Péclet numbers and activation times.

Here, fluid heating with each protocol is investigated for a range of Péclet
numbers where both advection and diffusion significantly impact heat transport.
The effectiveness to produce homogeneity is defined by the amount of non-
dimensional time steps (tε) required for the transient field to be within a certain
threshold ε (i.e.

∫
D T̃

2 (xxx, tε) d
2xxx ≤ ε2 where T̃ (xxx, t) = T (xxx, t)− 1 as in Chap-

ter 2). The homogenisation rate for each protocol is investigated by comparing
the transient times of reorientation schemes to reach ε. Therefore, the measure χ
presented in (2.52) is used here. Protocols are investigated on their ability to gen-
erate 99 % homogeneity ε = 10−2. The homogenisation time is obtained from
an interpolation of Jn when the temperature field reaches the threshold ε within
the activation interval of span τ (i.e. tε,a/p = nτ +(Jn+1−Jn)/τ (ε− Jn)). Ra-
tios (2.52) that exceed unity (χ > 1) denote accelerated thermal homogenisation
rates by the adaptive reorientation protocol, which are faster than the conven-
tional periodic one. The protocols are studied for a physically interesting param-
eter range with Péclet numbers and activation times between 500 ≤ Pe ≤ 4000
and 100 ≤ τ ≤ 101.5, respectively [79, 4]. We consider a RAM with three aper-
tures in which a fluid can only circulate in clock-wise direction. This constraint to
fluid circulation represents a key difference with respect to the analysis in Chapter
2. This limitation in the circulation direction means the adaptive reorientation pro-
tocol can only alter the order of flow field activation and its duration. However, this
makes observations potentially useful for better design of reorientation schemes
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in (existing) applications without requiring adaptations for feedback control (e.g.
due to the absence of sensors to obtain T̃ ).

3.2.2 Heating dynamics

Numerical results of homogenisation times and ratios according to (2.52) are
shown in Figure 3.1. Heating rates for the periodic scheme match numerical
results previously obtained with reorientation schemes that periodically activate
flow fields (i.e.
un ∈ {UT ,UT , . . .} where UT = {1, 2, 3} [16]).

(a) χ (b) Enhancement.

Figure 3.2: Zoom of (a) homogenisation ratios (χ) and (b) enhancement percent-
age with χr = (χ−1 − 1) × 100 %, into regions where 0 ≤ χr < 5% (blue),
5 ≤ χr < 15% (green), 15 ≤ χr < 30% (orange) and χr ≥ 30% (red) for
various Péclet numbers and activation times with points of interest A through B.

Figure 3.1b shows improved heating rates (χ ≥ 1) with the adaptive schemes
throughout the investigated parameter domain. A plateau with more or less con-
stant improvement (i.e. χ ≈ 1.6) can be found for small activation times in Fig-
ure 3.1b. Homogenisation times grow proportionately with Pe for the adaptive
schemes in this region as can be seen in Figure 3.1a. Examination of the adap-
tive reorientation schemes in this region reveals that they activate only a single
flow field. Periodic reorientations schemes rapidly reorient individual flows for
such small activation times. The rapid activation of the different flow fields in the
periodic scheme results in an average flow field governing heat transport [22]
(i.e. a small τ results in vvv(x, t) ≈ 1/3

∑
i vvvi(x)). Note that this characteristic

behaviour of the adaptive reorientation schemes remains the same, even if the
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number of parameters in the model’s parameter space is refined (i.e. the proto-
cols are evaluated for more model parameters Pe, τ inside the considered do-
main). The plateau has a distinct boundary of which activation times are related
by a reciprocal of the Péclet number (i.e. τ ∝ Pe−0.5).

The prediction horizons are too short to produce any significant changes in
the cost-to-go function (i.e. Jn) of the adaptive protocol for parameters inside
the plateau. This renders activation of a single flow more beneficial than a pe-
riodic scheme for certain Péclet numbers according to Jn in (2.47). Therefore,
(adaptive) reorientation of flows, with a one-step ahead prediction horizon, is only
investigated further for activation times beyond the aforementioned boundary that
marks the edge of this plateau. This is further illustrated by the significant drop in
homogenisation times for the adaptive reorientation schemes beyond this bound-
ary (in Figure 3.1a).

Following the plateau, a “transition zone” can be observed for increasing acti-
vation times in Figure 3.1b. In this region, heating shows a drastic improvement
with the adaptive schemes compared to the periodic schemes. The adaptive
schemes depart from single flow activations and transition into more complex
(a)periodic schemes as activation times increase. Immediately after the transi-
tion (around τ ≈ 2.2 (or log10 (τ) = 0.34) is a region where adaptive schemes
consist of an initial aperiodic window followed by periodic reorientation. Fluid is
circulated in the exact opposite direction in these adaptive schemes as the peri-
odic schemes (i.e. one finds un ∈ U = {3, 2, 1, 3, 2, . . .}). Heating rates can be
improved by more then three times (χ > 3) with the adaptive schemes compared
to the periodic ones for large Péclet numbers and medium sized activation times
(τ ≈ 3.2). Mixing studies on a RAM with Θ = 2π/3 show that the transition to
chaotic advection – signifying efficient laminar mixing – occurs in the considered
periodic schemes beyond the peak value for χ observed in Figure 3.1b [12]. The
transition towards “good mixing” performance is numerically estimated around
τ ≈ 3.2 (log10 (3.2) ≈ 0.5) for a RAM with Θ = 2π/3. Heating rates drasti-
cally improve with the periodic protocol beyond this point [16]. This is confirmed
by Figure 3.1a, where homogenisation times of the adaptive schemes vary only
slightly throughout the parameter domain. The observed decrease of χ in Figure
3.1b is therefore only due to improved heating rates of the periodic schemes.

The region after τ ≈ 3.2 in Figure 3.1b is investigated more closely in Figure
3.2a since heating rates significantly deteriorate with the periodic scheme before
this threshold. Note the difference in magnitudes between Figure 3.2a and Fig-
ure 3.1b. Better heating with the periodic scheme marks a sharp decrease in
homogenisation ratios as can be seen in Figure 3.2a. The adaptive schemes
in this region consist of an aperiodic transient followed by periodic reorientation.
Homogenisation ratios keep decreasing until both adaptive and periodic schemes
converge in terms of homogenisation time. Examination of Figure 3.2a reveals
a narrow strip without any heating rate enhancement with the adaptive scheme.
The adaptive reorientation protocol identifies the periodic schemes inside this
strip, resulting in the same homogenisation rates (i.e. χ = 1). This implies that
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the periodic schemes are “optimal” (according to (2.47)) inside the narrow strip.
Identification of periodic schemes by the adaptive reorientation protocol shows
that the periodic reorientation schemes also have some (limited) resilience to pa-
rameter perturbations in both τ and Pe. The same periodic reorientation protocol
is namely found for different τ and Pe.

Heating is significantly promoted outside the strip by the adaptive schemes.
To clarify this enhancement in homogenisation rate, the parameter space is parti-
tioned, based on the relative improvement of the homogenisation ratio defined by
χr = (1−χ−1)×100 %, into regions where 0 ≤ χr < 5% (blue), 5 ≤ χr < 15%
(green), 15 ≤ χr < 30% (orange) and χr ≥ 30% (red). Results are shown in
Figure 3.2b. A narrow band without any improvement (0 ≤ χr < 5%; blue) is
clearly visible in Figure 3.2b. This band coincides with the aforementioned strip
where both the adaptive and periodic reorientation schemes are the same, which
yields the same homogenisation time (i.e. χ = 1 and thus χr = 0 %). Here the
adaptive protocol fails to accelerate the homogenisation rate while it significantly
enhances heating by more then 15 % in a large portion of the considered parame-
ter space. Homogenisation rates χ progressively improve for increasing τ as the
adaptive reorientation schemes start to diverge from the periodic reorientation
schemes.

Four parameter sets are selected (each associated with a χr subspace in
Figure 3.3) to investigate the dependence of dynamic behaviour on τ (labelled
a through d in Figure 3.2). A relative improvement in homogenisation rate of
χr,a = 50.1 %, χr,b = 20.4 %, χr,c = 9.6 % and χr,d = 0 % can be found in
a, b, c and d, respectively. Note that even the (relatively) small improvement in c
can translate into a potentially significant reduction of the fluid heating time in (in-
dustrial) applications of interest. For example, the adaptive scheme accelerates
heating by several hours relative to the periodic scheme. The periodic scheme
typically achieves homogenisation in several tens of hours on the experimen-
tal RAM in [17]. Heating with a typical micro-mixer (i.e. having a characteristic
length of 100 µm with characteristic fluid velocity 1 mm/s according to Refer-
ence [80]) would be accelerated by several seconds relative to the several tens
of seconds in which a periodic reorientation scheme would achieve homogenisa-
tion. Figure 3.3a shows that adaptive schemes with χr ≥ 15 % (i.e. parameter
set a and b) activate the exact opposite sequence of (periodic) reorientations (e.g.
UT = {3, 2, 1}). In addition, both schemes for set a and b show an initial transient
that deviates from the rest of the reorientation scheme. This behaviour character-
izes most adaptive schemes, with high relative improvements, found outside the
strip in Figure 3.2a. Prolonged activation of the same flow field for consecutive ac-
tivation steps in reorientation schemes, associated with sets a and b, decreases
as the activation time τ increases.

The reorientation schemes associated with both c and d are completely peri-
odic. However, the reorientation scheme associated with set c shows a minor de-
viation in its reorientation scheme (i.e. UT = {1, 2, 2, 3, 1, 2, 3, 3}) compared to
the periodic scheme. This small deviation has a relatively small impact on the ho-
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(a) Reorientation schemes.

(b) Cost function.

Figure 3.3: The (a) adaptive reorientation schemes and (b) the transient field
associated with the selected points a, b, c and d in Figure 3.2.

mogenisation rate. This is clearly seen in Figure 3.3b as the adaptive scheme in c
reaches 99 % homogeneity after tε,a = 380 time units as opposed to tε,a = 388
time units (only a 2 % deviation with respect to the adaptive (periodic) scheme in
d). Furthermore, the similar tε,a for a and b in Figure 3.3b implies that the dete-
rioration of χ in the transition zone (observed in Figure 3.1b) is due to improved
heating with the periodic scheme as homogenisation times for adaptive schemes
vary only slightly.

The four parameter sets (indicated in Figure 3.2a) are studied further by in-
vestigating the temporal snapshots of the temperature field in Figure 3.4 to un-
derstand the dynamic behaviour associated with the schemes. The difference in
homogenisation rate primarily occurs at the start of an activation. Hence, the ini-
tial transient temperature snapshots are of particular interest (i.e. for tn ≤ 100).
Snapshots for the adaptive scheme in Figure 3.4(a)-(d) reveal why heat transfer
from the boundary is promoted for sets a and b compared to sets c and d. Heat
is circulated less effectively into the cold flow interior for prolonged activation of
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(a)

tn = 19.1 tn = 38.2 tn = 57.2 tn = 76.3 tn = 95.4 tn = 114.5

(b)

tn = 27.8 tn = 55.6 tn = 83.4 tn = 111.2 tn = 138.9 tn = 166.7

(c)

tn = 36.8 tn = 73.7 tn = 110.5 tn = 147.4 tn = 184.2 tn = 221

(d)

tn = 46.5 tn = 93.2 tn = 139.8 tn = 186.4 tn = 233 tn = 279.6

Figure 3.4: Temporal snapshots of the transient temperature field T̃ (xxx, t) for an
advection dominated flow with Pe = 2249 at points a (top row), b (second row),
c (third row) and d (fourth row) in Figure 3.2 (blue: min(T̃ (xxx, t)) = −1; red:
max(T̃ (xxx, t)) = 0).

the flow fields in sets c and d. Heat transport seems to remain confined at the
circumference, for sets a and b, as the fluid temperature remains lower in the flow
interior than in close proximity to the boundary, compared to sets c and d. This
is especially visible in the first few transient temperature field snapshots in Figure
3.4. Prolonging the aperture activation – viz. beyond d – has a detrimental effect
on the homogenisation times as can be seen in Figure 3.1a. This observation
is in line with the observations made in Chapter 2 (i.e. effective heat transport
by flow circulation is confined to short-lived time windows after flow activation).
The snapshots for d (i.e. the periodic scheme) in Figure 3.4(d) reveal a “pattern”,
which is described by the dominant eigenmode in the spectral decomposition of
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the temperature field analogous to (2.6) [17], that reorients with the activated flow
field. This spatial pattern for set d remains mostly preserved in c despite a minor
alteration in its reorientation scheme compared in Figure 3.4(c). The persistence
of this pattern regardless of this minor alteration in the reorientation scheme ex-
plains the relatively small improvement in homogenisation rate from set c to set d
observed in Figure 3.3b.

3.3 Conclusions and discussion

Heat transfer into an initially cold fluid from a hot boundary is influenced by both
fluid and flow parameters. The numerical study of heat transport in Chapter 2 has
shown that flow field reorientations, obtained with an adaptive flow reorientation
protocol, can significantly improve heat transport compared to a conventional pe-
riodic reorientation protocol for a large span of these parameters. This chapter
again investigates the adaptive reorientation protocol on the same case-study as
in Chapter 2; the Rotated Arc Mixer (RAM). However, the adaptive reorientation
protocol is restricted in the numerical study in this chapter to circulation of the
fluid in a single direction. This is contrary to the study in Chapter 2, where the
adaptive reorientation protocol can circulate the fluid in two direction. Numeri-
cal results show that the adaptive reorientation protocol can still accomplish a
systematic improvement over a large span of fluid and flow parameters despite
the restriction. Numerical results reveal improved resilience against parameter
deviations with the adaptive schemes, while simultaneously ensuring faster heat-
ing. Adaptive schemes achieve this by either i) (slightly) altering the conventional
periodic reorientation scheme or ii) introducing an aperiodic transient.

Future work should extend the analysis in this chapter by evaluating ho-
mogenisation rates for different numbers of apertures. Such an extension can
determine the impact of fluid circulation in a single direction on scalar transport
with the adaptive protocol. Future efforts should be directed towards experimental
investigations of the adaptive reorientation protocol, determination of the spectral
decomposition from CFD/experimental data using e.g. Dynamic Mode Decom-
position (DMD), dedicated observer design for transient field estimation in exper-
iments and control synthesis for further enhancement of scalar transport.

65





CHAPTER 4
Boosting heating with flow

regulation based on
Lyapunov functions

Abstract - Transport of scalars, in the form of heat or chemicals, by fluid flow
is a key feature for the effective operation of applications that range from ther-
mal processing of foodstuffs via chemical species mixing to subsurface resource
extraction. Therefore, enhancing the transport of these scalars in(to) a fluid will
prove beneficial to a large variety of industries. The industrial applications of in-
terest involve scalar transfer from the boundary and have a substantial influence
of diffusion and/or chemical reactions which can both significantly influence heat/-
chemical transport. In this chapter we propose a bang-bang controller and a non-
linear quadratic feedback controller to rapidly heat and homogenize a scalar field
by reorienting a laminar Stokes flow. The general idea of these controllers is that
influencing heating rates by fluid flow is analogous to controlling the flow based on
a suitable Lyapunov function. The heating rates obtained by the two controllers
are theoretically and numerically investigated for a heat-transfer case-study that
is representative for the applications of interest; boosting boundary heating of a
cold fluid by stirring. Numerical results show that the proposed controllers im-
prove heating rates in the case-study by upto 78 % compared to mere diffusive
heating and 13 % compared to an optimized conventional periodic scheme.

The contents of this chapter is an extension of: R. Lensvelt, M.F.M. Speetjens and H. Nijmeijer
“Lyapunov-based temperature regulation by flow reorientation”. In: 19th European Control Confer-
ence, Delft, The Netherlands. Supplementary material is provided in Appendices B and C.
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4.1 Introduction

Transport of scalars, as either heat or chemicals, by fluid flows is a key feature
to the effective operation of various applications. These applications are diverse
and range from bioreactors for pollutant treatment [81], (micro)fluidic devices for
fluid heating/mixing [82] or thermal processing of foodstuffs [2]. A common fea-
ture amongst the mentioned applications is that fluids are stirred (e.g. induced
by rotating baffels or pumps) to accelerate scalar transport. This immediately
raises the key question central to this chapter: “How to stir a fluid to accelerate
transport?”.

The conventional approach to accelerate scalar transport relies heavily on pe-
riodic stirring strategies. Such strategies are tailored towards efficient fluid mixing
by achieving “chaotic advection” [6]. The rationale for periodic stirring approaches
is that fluid mixing automatically accelerates scalar transport. Numerous compu-
tational studies have been performed, which attempt to boost heating/mixing for
periodic approaches. For example, DAllesandro et al. [83] determined which peri-
odic sequence of flows maximizes entropy in the egg-batter flow. Omari and Guer
[59] determined which periodic stirring protocol maximizes heating in a two-rod
mixer. Lester et al. [16] optimized a periodic stirring protocol based on the decay
rate of the dominant eigenmode of the Rotated Arc Mixer (RAM). Results showed
that heating rates of periodic flows depend on both the stirring sequence and the
system parameters. Gubanov and Cortelezzi [60] showed that periodic stirring is
highly susceptible to perturbations in the initial conditions (ICs). Periodic stirring
protocols, which are optimized for effective mixing, were found to be effective only
if diffusion is negligible (i.e. for sufficiently high Péclet numbers Pe & O(104))
[24]. Moreover, aperiodic fluid forcing has been found to boost heating/mixing
rates beyond those accomplished with periodic stirring protocols [21, 23]. How-
ever, transport studies for (a)periodic stirring have typically focussed on systems
without scalar flux across the boundary (i.e. the scalar remains conserved due to
an adiabatic boundary) [21, 83, 23, 61, 16, 24]. Scalar transport in systems that
contain scalar boundary fluxes (via a non-adiabatic boundary condition) have re-
ceived considerably less attention [59, 58, 55]. The above highlights the inherent
issues associated with (a)periodic stirring. First, a priori design limits the amount
of stirring sequences and can thus lead to suboptimal transport enhancement.
Moreover, open-loop flow control using an a priori designed (a)periodic protocol
makes fluid heating sensitive to disturbances if they were not considered dur-
ing the design. Second, periodic stirring protocols are typically designed without
considering either diffusion or scalar transport via a non-adiabatic boundary.

Scalar transport is typically described by the advection-diffusion equation (ADE)
in the abovementioned applications. The ADE represents an infinite dimensional
bilinear system for which numerous control techniques are available. They range
from optimal control [61, 81, 84, 85, 86], backstepping control [87, 88, 89, 90]
and Lyapunov-based boundary control [32] to (quadratic) state feedback con-
trol [91, 92]. However, scalar transport can only directly be influenced by the
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fluid flow in the applications of interest. The bilinear nature of the ADE makes
flow control based on quadratic state feedback control of particular interest here.
Quadratic feedback control of (in)finite dimensional bilinear systems has been
well researched since the late 70s [93]. Such feedback laws, with(out) input
constraints, have been studied to ensure weak or strong stability in bilinear sys-
tems with bounded input operators of finite [94, 95, 96] and infinite dimension
[93, 97, 98]. Quadratic feedback has also been used to stabilize the unstable
heat equation with scalar control [99, 98]. However, control of bilinear systems
has primarily focussed on finding sufficient conditions to ensure stabilization. In
this chapter we use quadratic feedback and/or bang-bang control to boost scalar
transport of heat transfer/mixing problems. In [58], we designed a bang-bang
controller and nonlinear controller based on a Lyapunov function containing the
instantaneous temperature field. The controllers actuate the flow fields based on
the temperature field (gauged through a Lyapunov function) in order to boost fluid
heating. The proposed flow controllers showed i) rapid transfer of a scalar into
a fluid via a non-adiabatic boundary and ii) the spread of the scalar distribution
throughout the fluid.

The main objective of this chapter is to boost fluid heating with closed-loop
flow control. In [55], Chapter 2 and Chapter 3, we proposed a flow controller that
selects the optimal fluid stirring over a single time step from among a finite set
of stirring options. This makes heating rates dependant on both the considered
stirring options and the prediction time step. The controllers in this chapter do
not possess such dependencies since the fluid flows are controlled on the basis
of a (quadratic) feedback law. Moreover, the controllers in this chapter can con-
tinuously and simultaneously stir the fluid. In this chapter, we numerically inves-
tigate the dynamic behaviour associated with improved heat transport by these
methods. In addition, a theoretical analysis is performed to determine what im-
provements in heating rate can be expected with these controllers. Performance
of these controllers is investigated on a 2D thermal flow system: the 2D Rotated
Arc Mixer [12]. In the RAM, fluids are heated from an initially low temperature to
a homogeneous higher temperature. Heat transport is “driven” by steady laminar
fluid flows, which differ from each another by at most a reorientation. Heat (or
scalar) transport driven by reorienting flow fields make the RAM a representative
system to the abovementioned applications of interest. Two features that distin-
guish the investigated system from those in conventional mixing studies are the
presence of both i) significant diffusion (Pe ∼ O(103)) and ii) scalar transfer from
the boundary into the domain.

This chapter is structured as follows. In Section 4.2, the model and result-
ing system description we use to study heat-transfer regulated by fluid flows is
presented. In Section 4.3, we express the control objective and formulate two
controllers to accomplish it based on a Lyapunov function. In Section 4.5, we
present the simulated behaviour of the case study and discuss the characteristic
behaviour associated with control. Finally, conclusions and recommendations for
further design and practical implementation are presented in Section 4.6.
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4.2 Heat-transfer driven by reoriented flows

4.2.1 Representative case study

In this work, heat transport in a fluid is investigated in a two-dimensional (2D)
circular container D with a radius R. Three-dimensional effects are therefore ne-
glected and thus limit the current study. The proposed controllers (see Section
4.3.4) are investigated on the 2D Rotated Arc Mixer (RAM) [12]. The RAM con-
sists of a 2D circular container D =

{
(r, θ) ∈ R2|r ≤ R,−π ≤ θ ≤ π

}
of radius

R = 1 that contains a fluid. This container holds an initially cold fluid. The fluid
is enclosed by a hot boundary ∂D at constant temperature. There are I aper-
tures in the circumference ∂D. Each of these apertures has an opening angle ∆.
The apertures have an angular offset along the circumference of Θ = 2π/I . A
schematic representation of the RAM is shown in Figure 4.1.

Figure 4.1: Schematic representation of the 2D Rotating Arc Mixer (RAM) used
to study the proposed heating methods.

The apertures are covered by sliding belts in the 2D RAM. Belt motion along
the apertures thus creates moving boundary segments or “moving arcs”. These
moving arcs induce a flow inside the container by viscous drag. The fluid is as-
sumed viscous enough such that inertia can be neglected. Numerical simulation
times are sufficiently large to ensure that the fluid’s response to a moving bound-
ary segment can be considered instantaneous. Therefore, activation of each
moving arc results in a Stokes flow. In addition, the rotation symmetry between
apertures directly transfers to the fluid flow. This means each flow is a mere re-
orientation of the base flow (at Θ = 0) following (4.2). The analytical expression
for the base flow can be found in Hwu [70].

4.2.2 Thermal flow problem

Control of fluid heating inside the fluid container would typically involve influenc-
ing the temperature field by either adjusting the boundary temperature of the
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container or controlling heating/cooling actuators inside the fluid. However, our
interest is in heat-transfer problems without any sources/sinks inside the con-
tainer or at the boundary to directly influence the temperature field. Heat transport
throughout the container is captured by the non-dimensional advection-diffusion
equation (ADE) defined as [55]

dT (xxx, t)

dt
= −

I∑
i=1

vvvi(xxx, t)·∇∇∇T (xxx, t)−∇∇∇·qqq(xxx, t), qqq = −Pe−1∇∇∇T (xxx, t), (4.1)

with T the temperature field, vvvi the ith fluid flow field of in total I flow fields, ∇∇∇ the
gradient operator and Pe = UR/ν the Péclet number (with U the characteristic
velocity and ν the thermal diffusivity of the fluid). The right hand side terms in
(4.1) describe (from left to right) heat transport by advection (or convection) and
diffusion (or conduction). Heating and, more importantly, heat transport can thus
only be influenced in (4.1) by altering the fluid flow(s) vvvi. Flows vvvi are considered
solenoidal as mass is conserved and density is independent of T inside the con-
tainer (i.e. the considered flow fields are divergence-free and satisfy ∇∇∇ · vvvi = 0).
We consider sufficiently slow flow velocities and negligible fluid inertia so that the
flow field approaches the Stokes limit and instantaneously starts upon activation
of a wall. The considered Stokes flows consist of reorientations of a normalized
base flowwww which is defined as

vvvi(xxx, t) = ui(t)www(Ri(xxx)) = ui(t)www(r, θ + (i− 1)Θ), i = 1, . . . , I, (4.2)

with (r, θ) the polar coordinates, Θ = 2π/I the rotation angle of each flow and
ui(t) the inputs. The sign of these inputs indicates the direction of fluid circulation
while the magnitude determines the scaling with respect to base flow www. The
individual inputs are constrained to ui(t) ∈ [−1, 1]. Moreover, these Stokes flows
can be defined according to (4.2) due to the presence of rotation symmetries
between each fluid flow vvvi. The cold fluid inside the container is heated by a hot
circumference ∂D at a constant temperature T∞ captured by

T (xxx, 0) = T0 (xxx) T (xxx, 0)|∂D = T∞, (4.3)

with xxx a position inside the container D. The initial condition is limited to T0 (xxx) <
T∞ for all xxx ∈ D to ensure heating occurs. The fluid temperature (T ) is nor-
malized between the initial (T0) and the boundary temperature (T∞) such that
0 ≤ T (xxx, t) ≤ 1.

4.2.3 Bilinear state-space representation of heating

The ADE in (4.1) is discretized in space in order to numerically investigate heat
transport inside the container. To this end we employ the spectral method by
Lester et al [16]. The transient temperature field can be approximated by the L
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most dominant Laplacian eigenfunctions as [16]

T̃ (xxx, t) ≡ T (xxx, t)− T∞ ≈
L∑

`=1

φ` (xxx) η`(t), (4.4)

with T̃ (xxx, t) the transient temperature field and (φ`, λ`) the eigenfunction-eigenvalue
pairs to −∇∇∇2φ` = λ`φ` for all ` on D (see (B.1)). The evolution of the spectral
coefficients associated with these eigenfunctions can then be described as [16]

dηηη(t)

dt
=

(
I∑

i=1

ui (t)HHHi +
1

Pe
DDD

)
ηηη(t), (4.5)

with ηηη (t) ∈ RL the spectral coefficient vector,DDD ∈ RL×L a diagonal matrix and
HHHi ∈ RL×L a skew-symmetric matrix (i.e. HHHi

† = −HHHi) associated with each
flow field i ∈ {1, . . . , I} with inputs ui from (4.2) indicated by subscripts i. Note
that orthonormality of φ` under theL2 norm combined with the second law of ther-
modynamics assures thatDDD is a diagonal Hurwitz matrix containing the Laplacian
eigenvalues λ` ≤ 0. Heat transport dynamics expressed in the spectral coeffi-
cients accommodate real-time thermal control by enabling fast computation. The
obtained state-space description in (4.5) is known as a bilinear system, because
of the linear combination of the inputs ui(t) with the states ηηη. The description in
(4.5) provides access to a large variety of control methodologies [100]. However,
the presented fluid container limits heat-transfer studies to a circular 2D domain.
This geometry is encountered in a wide range of applications in practice though
(e.g. in 3D RAM [101] or stirred reactor tanks [102]). In addition, the state-space
description in (4.5) applies to other simple 2D container geometries as well [16].

4.3 Flow control to boost heating

The main objective of this work is to heat an initially cold fluid T0 (xxx) to a ho-
mogeneous hot temperature field at T∞ as fast as possible. To this end stirring
methods that accelerate fluid heating are investigated below.

4.3.1 Metrics for fluid heating

The bilinear representation in (4.5) enables fast computation of the temperature
field. Fast numerical simulations are important to reduce delays due to compu-
tation. A sufficiently fast computation therefore allows for real-time control. The
difference between the current fluid temperature and the hot boundary tempera-
ture is gauged from the transient temperature field defined according to (4.4). The
L2 norm of this transient temperature T̃ is expressed in the spectral coefficients
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by

J1(ηηη(t)) =
1

π

∫
D
T̃ 2(xxx, t)dxxx =

1

π

∫
D
ηηη†(t)ϕϕϕ†(xxx)ϕϕϕ(xxx)ηηη(t)dxxx,

=
1

π
ηηη†(t)PPP 1ηηη(t) =

1

π
‖ηηη(t)‖22,

(4.6)

with PPP 1 = III due to orthonormality of the eigenfunctions and where III ∈ RL×L

the identity matrix and ‖ηηη(t)‖22 = η21(t) + η22(t) + . . . the vector 2-norm of ηηη.
Time-dependency of ηηη is hereafter omitted for notational convenience.

Fluids are considered sufficiently heated when J1(ηηη) satisfies

J1(ηηη) ≤ σ, (4.7)

where σ = ε2. Relation (4.6) captures the “thermal distance” till equilibrium
inside D. In Chapter 2, the cost function J1(ηηη) was shown to capture the two key
aspects relate fluid heating. Fluid heating requires, first, heat to be transferred
into a fluid (denoted as energization). And second heat needs to be transported
throughout the fluid (homogenization).

Minimizing J1(ηηη) as fast as possible requires a minimization of its decay rate.
The decay rate dJ1(ηηη)/dt can readily be obtained from a time derivative of (4.6).
The decay rate of J1(ηηη) combined with (4.1) results in

dJ1(ηηη)

dt
= − 1

π

(
η̇ηη†ηηη + ηηη†η̇ηη

)
=

2

πPe
ηηη†DDDηηη +

1

π

I∑
i=1

uiηηη
†
(
HHHi

†PPP 1 +PPP 1HHHi

)
ηηη.

(4.8)

The advection matrices HHHi are skew-symmetry, which means that the inputs ui
therefore disappear from (4.8) for PPP 1 = III . In this case the heating rate in (4.12)
reduces to

dJ1(ηηη)

dt
=

2

πPe
ηηη†DDDηηη. (4.9)

Relation (4.9) expresses (2.37) in spectral coefficients ηηη. Rate J1 in (4.9) in
spectral coefficients is negative due to negative definiteness of DDD. Negative
definiteness of DDD implies that (4.5) is stable regardless of the fluid flow. As a
consequence the state ηηη converges to the origin as t → ∞. This implies that
(4.5) is asymptotically stable in that case. The decay rate of the thermal energy
in (4.9) reveals that i) (4.1) is always stable for Pe > 0 and ii) fluid flow indi-
rectly influences (4.6). The former is a direct consequence of the Second law
of Thermodynamics. Heat transfer qqq always acts in the opposite direction to a
temperature gradient for Pe ≥ 0. As a consequence, the transient temperature
is ensured to decay along state trajectories T̃ . This occurs for arbitrary inputs
since dJ1(ηηη)/dt < 0 for any T̃ 6= 0 based on (4.9). Thermal control therefore
only focusses on accelerating the transition towards a homogeneous hot fluid in
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4. Boosting heating with flow regulation based on Lyapunov functions

this work. However, a direct relation between the fluid flow and the heating rate
dJ1(ηηη)/dt is absent in (4.9). Further analysis of (4.6) revealed that fluid defor-
mation by induced flow fields serve as the “thermal actuators” [55]. Fluid flows
accelerate/decelerate fluid heating (i.e. ui(t) influences d2J1(ηηη)/dt

2 directly).
Direct influence of the heating rate dJ1(ηηη)/dt is preferred for control, however. A
methodology that ensures the direct influence of the fluid flow on the heating rate
is presented next.

4.3.2 Heating metrics as Lyapunov function candidates

The cost-function J1(ηηη) in (4.6) is convex in ηηη since J1(ηηη) can be expressed as
the vector 2-norm of ηηη. A generic heating metric, other than J1(ηηη), should also
possess this property, since convex cost functions simplify the analysis of optimal
heating considerably. The rationale for this is that local minima are absent in
a convex function [103]. Showing the cost function decays relies solely on a
functions’ decay rate in this case (e.g. dJ1/dt < 0 for any ηηη 6= 000 means that
J1(ηηη) always decreases). The general form of these convex functions is defined
as

J4(ηηη) =
1

π
ηηη†PPP 4ηηη, (4.10)

for PPP 4 a positive definite matrix. Positive definiteness of the matrix is denoted by
PPP 4 � 0 in this work. Functions of the form (4.10) can be regarded as potential
Lyapunov function candidates if they satisfy [75]

J4(0) = 0 iff ηηη ≡ 000, J4(ηηη) =
1

π
ηηη†PPP 4ηηη > 0 in H− {000} , (4.11)

for H ⊂ RL. The cost functions in (4.10) clearly satisfy (4.11) for PPP 4 � 0. The
substitution ofPPP 4 = III following (4.10) reveals that J1(ηηη) is also of the form (4.10).
It therefore satisfies the condition in (4.11) as well. The cost function J1 can thus
be regarded as a Lyapunov function. Functions of the form (4.10) are radially
unbounded for positive definite PPP 4 (i.e. J4(ηηη) → ∞ as ‖ηηη‖2 → ∞). Radial
unbounded functions are typically used to ensure global asymptotic convergence.

The utility of J4 becomes clear upon evaluating its evolution. The time deriva-
tive of (4.10), combined with (4.5), is expressed as

dJ4(ηηη)

dt
=

1

π

(
η̇ηη†PPP 4ηηη + ηηη†PPP 4η̇ηη

)
=

1

πPe
ηηη†
(
DDD†PPP 4 +PPP 4DDD

)
ηηη +

1

π

I∑
i=1

uiηηη
†QQQiηηη

(4.12)

where

QQQi =HHHi
†PPP 4 +PPP 4HHHi, (4.13)
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with QQQi an indefinite matrix. Matrix QQQi is neither positive definite nor negative
definite and thus ηηη†QQQiηηη can be either positive or negative. The switching func-
tions ηηη†QQQiηηη can thus change sign due to the indefiniteness ofQQQi (i.e. ηηη†QQQiηηη can
be either positive or negative for non-trivial ηηη). The indefiniteness of QQQi plays a
crucial role in the controllers designed in this work (see Section 4.3.4 and Sec-
tion 4.5.3). The advection matrices HHHi are skew-symmetry, which means that
QQQi = 000 if PPP 4 = PPP 1 = III . The inputs ui therefore vanish in (4.12) (see Section
4.3.1). However, inputs ui remains explicitly present in heating rate dJ4(ηηη)/dt
for PPP 4 6= III . Inputs ui and PPP 4 that render dJ4(ηηη)/dt negative imply that (4.5)
are asymptotically stable. In such a case, J4(ηηη) represents a Lyapunov func-
tion. Inputs ui and PPP 4 that yield a positive heating rate (dJ4(ηηη)/dt > 0) imply
instability of (4.5). This would imply that the fluid flow transports heat from the
cold fluid to the hot boundary and thus violates the Second Law of Thermody-
namics. Hence, inputs ui and PPP 4 that render (4.12) positive are meaningless to
adequately describe heating.

4.3.3 Link with boosting heat transport

The design the matrix PPP 4 with PPP 4 6= III allows for the direct influence of the
heating rate by inputs ui according to (4.12). Solutions to the Lyapunov inequality
(i.e. DDD†PPP 4 + PPP 4DDD � −QQQ) exist if and only if DDD is Hurwitz [75]. Matrix DDD
contains the eigenvalues of the Laplacian and is thus Hurwitz. The solution to
the Lyapunov equation is diagonal for the diagonal DDD if QQQ is also diagonal. The
matrixQQQ can be arbitrarily chosen as long as it is positive definite. Therefore, the
simple matrix QQQ = III is adopted here. Solving the Lyapunov equality results in a
unique solution for PPP 4 as

PPP 4 = −1

2
DDD−1, (4.14)

The inequality is used to design aPPP 4 based on aQQQ. The above solution provides
the link between J4(ηηη) and J1(ηηη). This can be observed by combining the cost
function in (4.10) with (4.14) such that

J4(ηηη) =
1

π
ηηη†PPP 4ηηη =

L∑
`=1

− 1

2πD``
η2` =

1

π

∫
D
Γ2(xxx, t)d2xxx, (4.15)

where

Γ(xxx, t) =

L∑
`=0

α`φ`(xxx)η`(t), (4.16)

for α` =
√
−1/ (2πD``). The “temperature” field Γ in (4.15) consists of eigen-

functions, which are scaled by their associated decay rate. Scaling each spectral
coefficient according to (4.14) means the energy of each eigenfunction is weighed
in J4(ηηη). The solution (4.14) also implies that J4(ηηη) ≤ J1(ηηη) since |D``| > 1.

75



4. Boosting heating with flow regulation based on Lyapunov functions

Moreover, (4.15) reveals that (4.10) represents a similar, but not the same, mea-
sure as (4.6).

The abovementioned design of PPP 4 ensures that the influence of the inputs
on dJ4(ηηη)/dt is maintained. Proper design of ui(t) therefore needs to enforce
dJ4(ηηη)/dt ≤ 0 for any non-trivial ηηη. Again, positive decay rates simply imply that
cost function J4(ηηη) is inadequate to describe heating. The heating rate in (4.12),
with PPP 4 according to (4.14), is described by

dJ4(ηηη)

dt
= − 1

πPe
‖ηηη‖22 +

1

π

I∑
i=1

uiηηη
†QQQiηηη, (4.17)

for all ηηη and where

QQQi =
1

2

(
HHHi

†DDD−1 +DDD−1HHHi

)
, (4.18)

following the substitution of (4.14) in (4.13). In the absence of any fluid flow (i.e
ui = 0) heat transport is governed by mere diffusion. In this case the heating
rate (4.17) reduces to

dJ4,d(ηηη)

dt
= − 1

πPe
‖ηηη‖22, (4.19)

where subscript “d” indicates diffusion. The design of ui, viz. developing inputs
that ensure dJ4(ηηη)/dt ≤ 0, needs to boost fluid heating compared to diffusion.
Conditions for ui that can boost heating are obtained by evaluating the difference
between (4.17) and (4.19). The difference between J4(ηηη) and J4,d(ηηη) is called
the Lyapunov control function and is defined as

E(ηηη) ≡ J4(ηηη)− J4,d(ηηη), (4.20)

and its evolution is described by

dE(ηηη)

dt
=

dJ4(ηηη)

dt
− dJ4,d(ηηη)

dt
=

1

π

I∑
i=1

uiηηη
†QQQiηηη. (4.21)

Fluid heating is as fast as possible if ui minimizes (4.17) as much as possible
(i.e. ui make dE(ηηη)/dt as small as possible). Rendering the evolution of the
Lyapunov control function in (4.20) negative definite enforces negative definite-
ness of (4.17) as well. A proper design of ui can guarantee that each component
in the evolution of the Lyapunov control function remains negative definite. This
will ensure that (4.21) is negative definite and thus that fluid heating is boosted
with respect to diffusion (i.e. since J4(ηηη) decays faster than J4,d(ηηη)). However,
each ηηη†QQQiηηη can change sign since eachQQQi is indefinite. The property will prove
vital in developing controllers that boost heating as will be shown in Section 4.3.4.
In addition, the matrix QQQi is Hermitian (i.e. QQQi = QQQ†

i ). This follows immediately
from its definition and the abovementioned solution for PPP 4 combined with the
skew-symmetry ofHHHi.
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4.3 Flow control to boost heating

In practice, the combined flow field vvv will be driven externally by actuators. As
a result, the inputs ui are constrained. The kinetic energy associated with the fluid
flow vvv depends on the scaling (ui) of each uuui in (4.2). This energy contribution,
due to fluid flow vvv, is constrained by a threshold β. Most applications of interest
circulate fluid by activating only a single flow at a time. Therefore, the kinetic
energy associated with vvv is constrained by the kinetic energy of a single flow
field. The kinetic energy of the combined flow field vvv (xxx, t) is defined as

1

2

∫
D
vvv (xxx, t)

†
vvv (xxx, t)d2xxx =

1

2

∫
D

(
I∑

i=1

vvvi (xxx, t)

)†( I∑
i=1

vvvi (xxx, t)

)
d2xxx,

(4.2)
=

1

2
ũuu
†
RRRũuu ≤ 1

2

∫
D
www (xxx)

†
www (xxx)d2xxx =

1

2
β,

(4.22)

where ũuu† =
[
u1(t) · · · uI(t)

]
the input vector andRRR ∈ RI×I the input weigh-

ing matrix. Constraint (4.22) will also ensure a fair comparison of heating rates
for various amounts of active flow fields. The coefficients of the input weighing
matrixRRR are defined as

Rij =

∫
D
www (Ri(xxx))

†
www (Rj(xxx))d

2xxx. (4.23)

The weighing matrix RRR is a symmetric matrix with coefficients dependent on the
angle Θ between flow fields. Moreover, the weighing matrix is positive definite by
definition (i.e. kinetic energy is positive regardless of the input vector).

4.3.4 Controllers for boosting heating

4.3.4.1 Bang-bang controller

The above shows that inputs ui should render (4.21) sufficiently negative in order
for the fluid flow to improve heating with respect to diffusion (i.e. dE/dt < 0).
A straightforward choice that ensures this strict requirement is bang-bang control
defined as

ui =

{
−k if ηηη†QQQiηηη ≥ 0,

k if ηηη†QQQiηηη ≤ 0
(4.24)

where k > 0 the maximum actuation magnitude. The inputs in (4.24) enforce
fluid circulation (i.e. ui 6= 0 since k 6= 0). Such inputs ensure that dJ4/dt < 0 is
satisfied until reaching the control objective (i.e. convergence to the origin ηηη = 000).

The discrete inputs of the bang-bang controller naturally raise questions on
existence and uniqueness (or well-posedness) of the closed-loop state trajecto-
ries. Well-posedness is essential for the reliable operation of the controller in
practice. Numerical solutions are shown to be well-posed by considering the
closed-loop as a hybrid automaton. A detailed well-posedness analysis of a
closed-loop with the bang-bang controller is provided in Appendix C.
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4. Boosting heating with flow regulation based on Lyapunov functions

The evolution of the Lyapunov control function associated with bang-bang
control is investigated to judge its impact on heating. Combining (4.21) with (4.24)
results in the evolution of the Lyapunov control function as

dE(ηηη)

dt
= −k

π

I∑
i=1

∣∣ηηη†QQQiηηη
∣∣. (4.25)

for the bang-bang controller. The Lyapunov control function (4.25) is negative
semi definite for any positive actuation magnitude k > 0. Moreover, (4.25) shows
that a high actuation magnitude maximizes the decay rate of Lyapunov control
function most and thus accelerates heating most for this Lyapunov control func-
tion as a result. However, the maximum allowable actuation magnitude is limited
to enforce the beforementioned constraint on kinetic energy. The constraint on
kinetic energy therefore also limits the maximum heating rate. Finding the maxi-
mum actuation magnitude based on the constraint requires i) vvvi in order to obtain
each element ofRRR and ii) the input vector ũuu. The latter requires knowledge of the
spectral coefficients, or likewise the temperature field, based on (4.24). Kinetic
energy will be maximized by maximizing ‖ũuu‖2 according to (4.22) though. Con-
sequently, a conservative maximum actuation magnitude can be obtained from
(4.22) by considering the simultaneous circulation of all flows in a single direction
(i.e. ũuu† =

[
k · · · k

]
). This maximizes both ‖ũuu‖2 and 1/2ũuu

†
RRRũuu simultaneously.

Evaluation of (4.22) reveals that actuation magnitudes should satisfy

k ≤
√

β∑I
i=1

∑I
j=1Rij

, (4.26)

in that case. Elements of the input weighing matrixRRR depend on the (number of)
flow fields as mentioned above. Maximum allowable actuation magnitudes thus
depend on both the flow field implemented by a particular system and the amount
of flow fields available for control. The controller actuation magnitudes considered
in this work will be discussed in more detail in Section 4.5.

Finally, the matrixQQQi (andHHHi) is (are) rank deficient and therefore has (have)
a non-trivial null space. For dE(ηηη)/dt = 0 to occur for non-trivial ηηη, the linear
combination of switching functions ηηη†QQQiηηη needs to vanish. In that case, the evo-
lution of (part of) the Lyapunov control function could vanish for such a non-trivial
ηηη. Note that this is caused by the indefiniteness of QQQi (or HHHi). Heat transport
is merely as fast as diffusion according to (4.17) in that case, even with fluid
flow(s). The non-trivial null space ofHHHi can be physically understood from (4.1).
The space describes the alignment between the streamlines of flow field vvv and
the isotherms (i.e. such that

∑I
i=1 ui(t)uuui · ∇∇∇T = 0). Alignment between the

isotherms and streamlines is expected to be highly improbable in practice though.
Even if alignment occurs, it will be short-lived due to the continuous evolution of
the temperature field.
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4.3.4.2 Quadratic feedback controller

Bang-bang control is well-known for causing undesirable high-frequency switch-
ing which can be detrimental to real-life actuators [104]. Therefore, we propose a
less restrictive input law that allows for a more proportionate response to devia-
tions from thermal homogenisation as

ui(t) =

{
−cηηη†QQQiηηη if c|ηηη†QQQiηηη| ≤ umax,

−umaxsign
(
ηηη†QQQiηηη

)
if c|ηηη†QQQiηηη| ≥ umax,

(4.27)

where c > 0 the quadratic controller gain and umax > 0 the maximum allowable
input. Input laws like (4.27) are known as quadratic feedback which have received
significant attention in (weak) stabilization and control of both SISO [93, 91, 105]
and, to a lesser extent, MIMO [84] (in)finite dimensional bilinear systems. The
non-linear controller uses a quadratic feedback law according when the first con-
dition in (4.27) is satisfied. The state feedback law saturates upon reaching umax.
In that case the controller behaves similar to the bang-bang controller according
to the second condition in (4.27). The evolution of the Lyapunov control function
according to (4.21) for inputs (4.27) is described as

dE(ηηη)

dt
=

{
− c

π

∑I
i=1

(
ηηη†QQQiηηη

)2
if c|ηηη†QQQiηηη| ≤ umax,

−umax

π

∑I
i=1

∣∣ηηη†QQQiηηη
∣∣ if c|ηηη†QQQiηηη| ≥ umax.

(4.28)

The evolution of the Lyapunov control function in (4.28) shows that heating is
accelerated most if both c and umax and maximized. The bound on umax can
be obtained analogously to the bound on k for the bang-bang regulator. The total
kinetic energy satisfies (4.22) for the second condition of (4.27) when

umax ≤
√

α∑
i

∑
j Rij

. (4.29)

for fluid circulation in a single direction (i.e. ũuu† =
[
umax · · · umax

]
). Both

(4.29) and (4.26) thus bound the inputs in a similar fashion. The second condition
in (4.28) is negative definite for any c ≥ 0. Inputs will still satisfies (4.22) even for
sufficiently high gain feedback. However, controller gain c cannot be increased
indefinitely even though the second condition in (4.28) suggests so. Only the sec-
ond condition of (4.28) will be active for sufficiently high gain feedback, thereby
reducing (4.29) to (4.24). In addition, high-gain feedback can result in undesir-
able noise amplification in a practical application. The controller gain c should
therefore be tuned to avoid unnecessary amplification of noise in practice.
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4.4 Numerical methods

4.4.1 Regularization of the bang-bang controller

The discontinuity in the bang-bang controller makes (numerically) solving the
state trajectory of ηηη accurately in (4.5) for (4.24) complex. Therefore, the inputs
(4.24) are regularized in close proximity to the discontinuity by

ui(t) = −k tanh
(
ηηη†QQQiηηη

δ

)
, (4.30)

for δ = γ/ arctanh (k) inside the threshold (i.e. for |ηηη†QQQiηηη| ≤ γ). An input ui(t)
according to (4.30) is schematically shown in Figure 4.2 for clarification. The regu-

Figure 4.2: Schematic representation of the regularized inputs (4.24) in (4.30).

larization ensures that the input ui is described by (4.24) as long as |ηηη†QQQiηηη| � γ
for a threshold γ > 0 where γ = 10−10. This regularization of the inputs means
ui(t) is smooth, which allows numerical simulations to be performed with regular
ODE-solvers (e.g. like a Runge-Kutta method). However, the threshold γ needs
to be sufficiently small for ui(t) to approximate (4.24). As a result, numerical
solutions can become exceedingly hard to obtain for the bang-bang controller.
This is caused by the regularization resulting in high stiffness of the ODE [106].
Therefore, a fixed time step of ∆τ = 0.05 is adopted to ensure reasonable com-
putation times. This time step is below the smallest characteristic time scale that
governs heat transport by a single flow (i.e. ∆τ � τm = −1/Re(µm) where
µm an eigenvalue of HHHi + Pe−1DDD). Such small time steps result in only small
increments of ηηη and, consequently, ensure that input switches are accurately cap-
tured during numerical simulation. Numerical simulations for time steps smaller
than ∆t remain unaltered, which confirms that results are independent of the time
step (i.e. ui(t) remains unaltered for ∆τ � 0.05). Practical implementation of
the bang-bang controller can require exact regularization (e.g. by applying the
augmented Lagrangian method) to allow for real-time computation of the input.
The non-dimensional fixed time step translates to a sample time of 31.25 s for
the RAM (with Pe = 103) presented in Baskan et al. [12]. The Strouhal number
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(defined as Sr = Tν/Ts with Tν the viscous time scale and Ts the sampling time)
increases to Sr ≈ 0.2 in this work. This increase means fluid inertia can have an
impact on the fluid flow. To investigate the impact of fluid inertia, the bang-bang
controller is investigated for a RAM with three apertures and Pe = 103 (see Fig-
ure 4.4c). The obtained inputs are used in a CFD model that includes inertia to
determine the influence of fluid inertia on heat transport. The difference between
the temperature fields with both models is negligible. Therefore, inertia remains
negligible even for this increased Strouhal number.

4.4.2 Spill-over effects

The Laplacian eigenvalue-eigenfunctions pairs (λ`, φ`) can be obtained analyti-
cally for the RAM [16]. Their expression is included in (B.1) for completeness.
Feasible numerical simulation requires a finite number of Laplacian eigenmodes
in (4.4). However, truncation to a finite number of Laplacian eigenmodes can
result in spill-over effects by the uncontrolled higher order modes [107]. The un-
controlled higher order modes can influence behaviour of the lower order modes.
In addition, both controllers require the spectral coefficients ηηη in order to pro-
vide an input ui. Spill-over effects can therefore potentially influence closed loop
control with the proposed controllers as well. However, relation (4.14) reveals
that the higher order modes contribute less to J4(ηηη) by definition (i.e. Re(µ`) ≥
Re(µ`+1) for all `). As a result, including higher order modes will have small
impact on ui(t) with PPP 4 in (4.14). Retaining a sufficient number of eigenmodes
in the truncation means that the highest order mode, which is still retained in the
truncation, decays fastest. This means that undesirable spill-over effects are di-
minished/absent when the highest order eigenmode’s decay rate is faster than
the characteristic time-scale of the system [107]. To determine the number of
eigenmodes that need to be retained, we investigate the bang-bang controller for
various numbers of Laplacian eigenmodes. The temperature fields are compared
to those obtained from a finite volume method (FVM). The domain is discretized
into a mesh of 11381 elements. This mesh size is sufficiently fine to ensure
accurate temperature fields based on a convergence analysis by mesh refine-
ment. The comparison should reveal negligible deviations for a sufficient number
of modes in (4.4). A convergence study reveals that L = 3067 Laplacian eigen-
modes is a sufficient number of modes to accurately capture the temperature field
for Pe = 103 [16].

4.5 Performance analysis

The conventional method to fluid heating periodically activates flow fields. In the
RAM flow fields periodically reorient as a consequence. Periodic activation of ui
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follows [108]

ui(lτ) =

{
1 if i = mod(l − 1, L) + 1,

0 otherwise.
(4.31)

where l = 0, 1, . . . and τ the activation time of an aperture. Heating with inputs
according to (4.31) depends on both τ and Pe [109]. Furthermore, heating rates
associated with an “optimal” τ and Pe in (4.31) lack resilience to perturbations.
For example, mixing efficiency is known to be highly susceptible to perturbations
in the initial configuration of the mixture and operating conditions [5]. The depen-
dency of heating on τ and Pe makes comparisons challenging however. This
means global conclusions require a large amount of simulations. Therefore, com-
parisons between heating rates from the periodic protocol and the controllers are
only made locally (i.e. for a specific Pe and τ ). Heating by the controllers is also
compared to mere diffusion and continuous circulation by a single flow. Further-
more, resilience against IC perturbations is gauged by numerical simulation. The
performance of the quadratic controller is compared to a periodic scheme where
the activation time τ is optimized on a RAM with four apertures with Pe = 103

(see Reference [16]). Fluids are considered sufficiently heated in this work when
J1 reaches the threshold ε = 10−4.

Table 4.1: Maximum allowable controller gains umax and actuation magnitudes k
that satisfy constraint (4.26) for various flow fields available for control.

Flow field I 1 2 3 4
Maximum umax and k 1 0.70405 0.56985 0.48689

Finally, both k and c need to be positive. This ensures that QQQi inherits the
same fluid circulation direction asHHHi in (4.5). Furthermore, in a physical system
low-gain feedback is required to prevent noise propagation. That is, if (part of) ηηη
is measured and used in output feedback. However, accelerated heating requires
high-gain feedback as seen in (4.28) and (4.25). The maximum allowable gains
and actuation magnitudes that satisfy (4.22) in both controllers are presented
in Table 4.1. The obtained values follow directly from considering (4.22) for the
RAM.

4.5.1 Heating by bang-bang control

Heating with the bang-bang controller is investigated for various actuation magni-
tudes k. The effect of the number of inputs (i.e. number of apertures I) on heating
with the bang-bang controller is considered as well. Numerical results are shown
in Figure 4.3. Figure 4.4 shows the evolution of ‖ηηη‖2 rather than the evolution
of J4. The rationale for this measure is that the relation of ‖ηηη‖2 with J1 in (4.6)
allows for a direct comparison with previous results obtained in [55]. The inputs
associated with the results in Figure 4.3 are shown in Figure 4.4. They serve to
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Figure 4.3: Evolution of the spectral coefficients ‖ηηη‖2 for various controller gains
k of the bang-bang controller on RAMs with different apertures numbers I where
transport is dominated by advection at Pe = 103.

clarify the flow field actuation that results in the heating behaviour observed in
Figure 4.3.

The results in Figure 4.3 reveal that fluid flow improves heating compared to
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Figure 4.4: Time evolution of the inputs ui(t) associated with ‖ηηη‖2 in Figure
4.3 for k = 1 on RAMs with different apertures numbers I where transport is
dominated by advection at Pe = 103.

mere diffusion. Moreover, fluid circulation by a single flow already significantly
improves heating rates. The threshold ε is reached in 323.3 time units when heat
transport is driven by a single flow. This an improvement of 58 % compared to the
764 time units required by mere diffusion to heat the fluid. Figure 4.3 shows little
improvements in heating by the bang-bang controller with a single flow. Reduction
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of the actuation magnitude inevitably decelerates heating rates with the bang-
bang controller compared to continuous circulation. Even the maximum allowable
actuation magnitude (see Table 4.1) fails to improve heating rates with the bang-
bang controller compared to continuous circulation by a single flow. Figure 4.4a
reveals that the bang-bang controller circulates the fluid in only a single direction.
This shows that the bang-bang controller with a single flow is, unsurprisingly, at
most as fast as continuous fluid circulation by just a single flow.

However, considering multiple flows for the bang-bang controller yield im-
provements in heating rate according to Figure 4.3. Results show improved heat-
ing compared to both diffusion and continuous circulation. Heating is accelerated
by a maximum of 31%, 41% and 49 % by the controller compared to continuous
circulation by a single flow for a RAM with two, three and four apertures, respec-
tively. Likewise, a comparison with diffusion reveals that heating is accelerated by
upto 78 % with the bang-bang controller for the considered parameters. Figures
4.3b and 4.3d reveal monotonic exponential heating for high actuation magni-
tudes. This monotonic decay of ‖ηηη‖2 is caused by the continuous and (nearly)
time-invariant fluid circulation by the bang-bang controller as can be seen in Fig-
ures 4.4b and 4.3d. As a result of this continuous and time-invariant circulation,
heating dynamics according to (4.5) become time-invariant as well. This allows
for a quantitative comparison of the heating rate for the controller and diffusion.

Heating rates associated with continuous circulation are approximated by
‖ηηη(t)‖2 ≤ αe−λt‖ηηη(0)‖2. This inequality typically bounds the temperature evo-
lution ‖ηηη‖2 from above. However, continuous circulation by the bang-bang con-
troller implies this inequality to be exact. Numerical approximation of λ, based
on the results in Figure 4.3, yields λ2 = 0.0203 and λ4 = 0.0276 for I = 2 and
I = 4, respectively. The heating rate for diffusion is known as λd = 0.0058 on the
RAM [16]. Furthermore, the heating rate for an optimized periodic input as shown
in (4.31) on a RAM with four apertures for Pe = 103 is known at λp = 0.0134
[16]. Heating is thus accelerated by at most a factor λ4/λd ≈ 4.76 with the
bang-bang controller compared to mere diffusion. Heating is also accelerated by
at most a factor λ4/λp ≈ 2.06 compared to an optimized conventional periodic
reorientation scheme. A similar analysis for RAMs with an odd number of aper-
tures is less insightful. Heating rates show “time” windows with non-monotonous
decay of ‖ηηη‖2 in these cases. Therefore, the heating rate estimates are far too
conservative. Figure 4.4c reveals that the time windows with non-monotonic be-
haviour coincide with the high frequent switching. This behaviour is characteristic
for bang-bang controllers. However, it only occurs for RAMs with an odd number
of apertures (e.g. similar behaviour is found for I = 5). This rapid switching
between constraints can be detrimental to actuators in real-life. The cause of this
rapid switching in RAMs with an odd number of apertures is investigated further
in Section 4.5.3.

The bang-bang controller improves heating compared to mere diffusion as
is shown in Figure 4.3. These results also show that proximity to the maximum
allowable actuation magnitude (see Table 4.1) maximizes heating for current con-

85



4. Boosting heating with flow regulation based on Lyapunov functions

ditions. Maximizing of the actuation magnitude can ensure the bang-bang con-
troller outperforms a single flow, provided that i) more than a single flow is ac-
tuated and ii) actuation magnitudes are sufficiently high. Heating rates are not
guaranteed to accelerate compared to continuous single flow circulation for every
actuation magnitude k though. Namely, Figure 4.3b shows a brief initial tran-
sient (i.e. t < 50) where continuously circulation with a single flow outperforms
bang-bang control for k = 0.25. Heating by the bang-bang controller resembles
continuous circulation by a single flow for such low actuation magnitudes. Heat-
ing slows down for such low actuation magnitudes regardless of the number of
apertures studied in this work. In fact, control with small actuation magnitudes en-
sures heating is primarily driven by diffusion. This observation is to be expected
based on (4.25) (i.e. dJ4(ηηη)/dt is dominated by ‖ηηη‖2 for insufficient k).

Performance of the bang-bang controller is compared to our adaptive reorien-
tation controller presented in chapters 2 and 3. Notable differences between this
controller and the bang-bang controller are i) the activation of a single flow ii) for
a discrete time iii) based on the minimization of J1 instead of J4. For a RAM with
three apertures (I = 3) either controller suffices to accelerate heating. Heating
rates are only slightly slower with the bang-bang controller (i.e. by only 2 %). This
heating rate cannot be improved by increasing the actuation magnitudes k due
to the additional constraint on the inputs in (4.22). The constraint limits any ad-
ditional improvement of increasing actuation magnitudes. This could be resolved
by allowing the bang-bang controller to turn off fluid circulation and adjusting the
maximum actuation magnitude that satisfies (4.26) for the remaining inputs (viz.
all inputs in (4.24) circulate fluid in a single direction in order to determine the
maximum allowable actuation magnitude for k in Table 4.1). Turning off fluid cir-
culation means higher maximum actuation magnitudes are permitted – such that
(4.22) is still satisfied – for inputs that keep circulating a fluid. However, making
the input constraint depending on the number of activated inputs is excessively
cumbersome. Note, however, that the heating rates obtained with the bang-bang
controller become comparable to those obtained with the adaptive reorientation
controller if both are considered on a RAM with four apertures (I = 4).

4.5.2 Heating by quadratic feedback control

The quadratic controller is studied in a similar fashion as the bang-bang controller
(see Section 4.5.1). The numerical results in the previous section show that the
number of apertures in the RAM is instrumental to accelerate heating. Therefore,
heating with the quadratic controller for various numbers of apertures is studied
as well. Numerical results are shown in Figure 4.5. The effect of the gain c on
heating rates is shown in Figure 4.5 too.

Numerical results in Figure 4.5 reveal that quadratic feedback can boost heat-
ing. Heating accelerates by at most 71 %, 74 % and 78 % compared to diffusion
on a RAM with two, three and four apertures, respectively. Furthermore, fluid
heating with the quadratic controller on a RAM with a single aperture is at most
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Figure 4.5: Time evolution of the spectral coefficients ‖ηηη‖2 for various controller
gains c of the nonlinear controller on RAMs with different amounts of apertures I
where transport is dominated by advection at Pe = 103.
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as fast as continuous circulation by a single flow. Moreover, monotonous heating
rates appear on RAMs with an even number of apertures. The RAM with three
apertures shows nonmonotonous heating rates for sufficiently high gains.

This can be understood by examining the inputs in Figure 4.6. The inputs
are associated with the high-gain feedback case, chosen at c = Pe2, in Figure
4.5. The quadratic controller responds exactly the same as the bang-bang con-
troller on a RAM with a single aperture (e.g. compare Figure 4.4a with Figure
4.6a). Most inputs on RAMs with more than one aperture reach their respective
constraints in the early stage of heating (i.e. within the time window t ∈ [0, 70]).
Thereafter inputs remain at the same value for a relatively long time for RAMs with
an even number of apertures. The input remains at the same value after an initial
transient for a RAM with four apertures (i.e. after t ≥ 15.1). This is exemplified
in both Figure 4.6b and Figure 4.6d. The constant inputs have a profound effect
on the fluid temperature evolution. Figure 4.5 shows a monotonous exponential
heating rate sets in on RAMs with an even number of apertures. The inputs (4.24)
behave vastly different for a RAM with three apertures than for a RAM with one,
two and four apertures. Moreover, in a RAM with three apertures heating rates
are nonmonotonous as shown in Figure 4.5. The above observations strongly
suggest that this can be attributed to the rapidly switching inputs shown in Fig-
ure 4.6. This follows since the rapid switching is the only discerning difference in
actuation behaviour.

The inputs start to diminish as time progresses beyond a certain time. This
diminishing of the inputs is observed for one or multiple apertures in the quadratic
controller. The decrease of the inputs is proportional to ‖ηηη‖2 in the controller. Pro-
portionality makes the quadratic controller dependent on both current state and
gain. Examining Figure 4.5 reveals that this input decay is associated with slower
heating rates. Inputs diminish in proportion with ‖ηηη‖2 as the system approaches
thermal homogenisation for t→ ∞. The proportionality of the inputs implies that
the inputs ui according to (4.28) can become smaller than the input constraints
(i.e. |ui| < umax). This means that activating more apertures can result in de-
teriorating heating rates with the quadratic controller compared to the bang-bang
controller (i.e. dJ4(ηηη)/dt becomes less negative even when more apertures are
activated). This effect is found to become less pronounced for higher controller
gains (i.e. the inputs diminishes proportionately with the state at a later stage of
the heating for higher gains).

The quadratic controller requires sufficiently large gains to boost heating. Fig-
ure 4.5 reveals that the quadratic controller can outperform continuous circulation
with a single flow. However, heating rates can deteriorate with the quadratic con-
troller for a too small gain. Increasing the gains sufficiently accelerates heating
compared to single flow circulation for any number of apertures. Notable excep-
tion is quadratic control on a RAM with a single aperture. In this case heating
is at most as fast as continuous circulation by a single flow. This can be seen
clearly in Figure 4.5a. Relatively low gains (i.e. below c = Pe) combined with
diminishing states can thus slow heating as heating progresses. This implies that
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Figure 4.6: Time evolution of the inputs ui(t) associated with ‖ηηη‖2 in Figure 4.5
for c = Pe2 on RAMs with different apertures numbers I where transport is
dominated by advection at Pe = 103.

tuning is vital for fast heating with quadratic feedback.
Heating is found to significantly accelerate for large gains upto c = Pe2.

These high gains force the inputs into their respective constraints (see Figure
4.6). Figure 4.5d reveals that the threshold is reached in 165.9 time units with the
controller on a RAM with four apertures. Furthermore, the associated monotonous
heating rate is only maintained for these high gains. Such monotonous heating
rates are caused by constant fluid circulation here. Gains that are too low, fail
to force the inputs into their respective constraints. As a consequence, the in-
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puts are unsteady throughout the entire time window resulting in nonmonotonous
heating rates. Large controller gains also result in rapid switching inputs on a
RAM with three apertures for the quadratic controller similar as for bang-bang
controller. The high-frequency switching for a RAM with three apertures (see Fig-
ure 4.6c) decreases for smaller gains. These results suggests that proper tuning
of controller gain c can simultaneously boost heating and minimize unnecessary
switching behaviour.

Figure 4.6c shows that rapid switching behaviour is confined to the early
stages of heating. The bang-bang controller showed rapid switching through-
out the entire time domain. The reduced number of switches makes the quadratic
controller less demanding compared to the bang-bang controller. Furthermore,
the quadratic controller is only slightly slower than the bang-bang controller (i.e.
a maximum of 0.05 % for the considered parameters). This means that the
quadratic controller is also slightly slower than the adaptive reorientation con-
troller considered in chapters 2 and 3. Likewise, the closed-loop response of the
quadratic controller resembles the bang-bang controller for high-gain feedback.
Increasing gains ensures heating rates similar to those observed in the bang-
bang controller can be obtained. These features make the quadratic controller
preferable to the bang-bang controller in practice.

4.5.3 Thermal plume formation for effective heating

The inputs in Figure 4.4 and Figure 4.6 show that both controllers circulate fluids
in opposing directions between apertures. Opposing fluid circulation is known
to boost heating in open-loop. For example, Omari and Guer [59] have shown
that heating was accelerated by sinusoidal flow modulation between the rods and
the boundary of a two-rod stirring system. In the RAM, opposing circulation be-
tween neighbouring apertures can produce a hot plume between said apertures.
These neighbouring apertures need to be separated by an arc-length Θ. In that
case, the opposing circulation results in the formation of a hot plume between the
neighbouring apertures, which enhances fluid heating very effectively. Such heat-
ing characteristics were observed for the discrete adaptive reorientation scheme
presented in [55]. Both controllers follow similar characteristic behaviour here
as well (see Figure 4.4 and Figure 4.6). Namely, the inputs of the controllers
lead to plume formation via a similar mechanism as mentioned above. However,
plume behaviour differs significantly from previously observed results (e.g. due
to invariant or rapidly switching inputs). This warrants a thorough analysis of the
dynamics involved in heating. Both controllers show close resemblance for high
gain feedback. Hence the analysis is limited to the quadratic controller with large
gains.

Bang-bang control continuously circulates the fluid for RAMs with one or two
apertures. The quadratic controller shows similar behaviour for large gains. To
understand the impact of continuous circulation, the transient temperature field is
investigated. Figure 4.7 shows transient temperature field snapshots at different
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(a) t = 5. (b) t = 20. (c) t = 35. (d) t = 50.

(e) t = 5. (f) t = 20. (g) t = 35. (h) t = 50.

Figure 4.7: Evolution of transient temperature fields for quadratic feedback for
a RAM with a single aperture (top row) and two apertures (bottom row) (blue:
min(T̃ ) = −1; red: max (T̃ ) = 0; closed curves: streamlines).

times during heating. The snapshots in Figures 4.7a and 4.7d result from applying
the inputs shown in Figure 4.6a. Similarly, snapshots in Figure 4.7c,d follow from
applying the inputs shown in Figure 4.6b. The streamlines are indicated to clarify
the underlying flow field.

Figure 4.7a shows the results of continuously circulating a single flow. The
induced flow generates a hot plume that heats up the fluid. Figure 4.7d shows
that the cold interior heats up as time progresses. The impact of continuous
circulation on heating is limited though. Heating acceleration is constrained to
only a brief time window following flow activation [55]. Prolonged circulation thus
drastically reduces the potential to accelerate heating. Figure 4.7d shows the
effect of prolonged activation of a single flow; the isotherms and streamlines align
as heating progresses. Similar behaviour was also observed in Chapter 2. This
progressive alignment reduces the contribution of advection to heating (i.e. uuu1 ·
∇∇∇T → 0 in (4.1) or, likewise, ηηη → N (HHH1) with N (HHH1) the non-trivial null-space
of HHH1 as both align). LaSalle’s invariance principle can potentially be used to
investigate the impact of the alignment on heating further.

Figure 4.7e shows multiple plumes. Both apertures continuously circulate the
fluid in opposing directions (see Figure 4.6c). These plumes merge due to the
simultaneous circulation between two apertures. The merged plume arises ex-
actly between these two apertures since both flows are induced by the same
input magnitudes with opposite circulation directions. The transient tempera-
ture field therefore becomes symmetric under the considered conditions. Fig-
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(a) Lyapunov control functions.
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Figure 4.8: The (a) Lyapunov control functions for the quadratic controller with
c = Pe2 on a RAM with I = 3. Magnification of the Lyapunov control functions
inside time intervals (b) T1 and (c) T2.

ure 4.7e shows that the merged plumes possess a reflection symmetry along
the y-axis. This symmetry axis coincides with the symmetry axis of the stream-
lines. Circulation by both flows progressively heats up the cold interior. Heating
is again hampered by the alignment between the isothermals and streamlines.
These isotherms and streamlines differ from those for a single flow though (e.g.∑2

i=1 vvvi · ∇∇∇T → 0 in (4.1) or ηηη → N
(∑2

i=1 uiHHHi

)
with N

(∑2
i=1 uiHHHi

)
the

non-trivial null-space of
∑2

i=1 uiHHHi). Hence, heating by advection is hampered
when the isothermals align with the linear combination of the activated flow fields.
The alignment ensures that advective heat transport diminishes as heating pro-
gresses (see discussion below Figure 2.7). Furthermore, continuous circulation
leaves undesirable “cold spots” inside the fluid as seen in Figure 4.7h.

Flow forcing control responds in a vastly different fashion on a RAM with three
apertures than on a RAM with two or less apertures. High-frequency switching
is observed in the inputs of both controllers for RAMs with uneven numbers of
apertures (see both Figure 4.4c and Figure 4.6c). This behaviour is linked to
the evolution of the respective Lyapunov control functions associated with each
input i. Their evolution partly depends on the geometry of the system at hand
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(e.g. the number of inputs is defined by the number of apertures of the RAM).
Each component of the Lyapunov control function is investigated further here.
Their analysis will reveal the reason for the fundamental difference between flow
control on a RAM with two and three apertures. The individual components of
the Lyapunov control function are shown in Figure 4.8. Each component i is
associated with the respective contribution of each flow field to heating. Figure
4.8a reveals that these components converge to the origin. Rapid oscillations
can be seen throughout the considered time span. Two time windows (indicated
by T1 and T2 in Figure 4.8a) are of particular interest to heating. Figure 4.8b
and Figure 4.8c show the Lyapunov control functions inside these windows. The
origin is intermittently approached by u1ηηη†QQQ1ηηη throughout T1. Similar behaviour
can be observed for u1ηηη†QQQ1ηηη throughout T2. Both magnifications show funda-
mentally different oscillating behaviour of the other Lyapunov control functions
(i.e. u2ηηη†QQQ2ηηη and u3ηηη†QQQ3ηηη). These Lyapunov control functions eventually con-
verge to the origin in both windows. However, throughout T1 these remaining
control functions oscillate in opposite phases without actually reaching the origin.
Throughout T2 all control functions reach the origin intermittently, albeit never si-
multaneously. Moreover, the control functions u2ηηη†QQQ2ηηη and u3ηηη†QQQ3ηηη stay close
to the origin for prolonged time windows. Figure 4.6c reveals that the inputs are
non-zero throughout T2 (i.e. both u2 and u3 are non-zero throughout T2). This
suggests the switching functions approach the origin as uiηηη†QQQiηηη approaches the
origin. The transition between the two behaviours occurs towards the end of T1.
Figure 4.8b shows that both u2ηηη†QQQ2ηηη and u3ηηη†QQQ3ηηη remain close to the origin
near the end of T1.

Notably different behaviour can be observed in both time-windows; the be-
haviour inside T1 is reminiscent of limit-cycling behaviour. This behaviour can
be visualized in the following fashion. The oscillating Lyapunov control functions
inside T1 result in oscillations in their associated inputs. These oscillating inputs
are, naturally, directly related to the oscillations in the switching functions. Figure
4.9 therefore shows the phase-space of the switching functions inside T1. The
trajectory is indicated in black and flow reversal moments are indicated by red
squares. The direction of the trajectory inside the time window is indicated by a
blue arrow. The trajectory in Figure 4.9 converges towards the origin as heating
progresses. Near the end of T1 both ηηη†QQQ2ηηη and ηηη†QQQ3ηηη converge to the origin
as well. Both approach the origin alternately. Heating by advection is severely
hampered when the Lyapunov control functions approach the origin (i.e. ηηη†QQQiηηη
approaches the origin such that uiηηη†QQQiηηη reaches the origin). In that case, the
advective contribution to dJ4/dt diminishes significantly according to (4.12). The
controller consequently adjusts the inputs to promote heating by advection again.
Numerical results thus suggest that the transition from the behaviour in T1 to
the behaviour in T2 occurs, because advective heat transport by circulating fluid
no longer contributes significantly to heating (see discussion below Figure 4.7).
Furthermore, oscillations of the switching functions follow a very distinct pattern
inside T1 according to Figure 4.9. This indicates limit cycling behaviour.
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Figure 4.9: Phase-space of the switching functions for the quadratic controller as-
sociated inside T1. Trajectories are indicated in black with flow reversal moments
(i.e. as ηηη†QQQiηηη passes through zero) indicated in red. The blue arrow indicates
direction of motion.

The relationship between oscillating control/switching functions and heating
can be understood from the associated transient temperature fields. Figure 4.10
shows snapshots of the transient temperature field inside both time windows.
These snapshots are sampled at the flow reversal moments indicated in Figure
4.9. Transient temperature fields associated with flow control on a RAM with
three apertures show vastly different behaviour than those observed in Figure
4.7. Transient temperature fields inside T1 (top row in Figure 4.10) and inside
T2 (bottom row in Figure 4.10) also contain a plume between two neighbouring
apertures. This plume is formed around the x-axis, which corresponds to the
symmetry axis of the base flow in this case (indicated by I1). The oscillation of the
inputs results in a plume that sways across the x-axis. The resulting back-and-
forth motion of the plume aids heat transport throughout the fluid. Similar heating
behaviour was observed for the adaptive reorientation scheme in [55]. However,
a key difference with the results presented here is that fluid flows are activated
simultaneously and sometimes even constantly rather than sequentially by a(n)
(a)periodic reorientation scheme. The reflection symmetry of the plume forms
around the symmetry axis of a flow field (e.g. I1 aligns with the symmetry axis
of the plume). Plume swaying occurs since the plume between the neighbouring
apertures has the same symmetry as the underlying flow field. The apertures of
these flows are located at the opposite side of the hot plume basis, close to the
hot boundary. The controller promotes the formation of a plume around such a
symmetry axis to further direct heat transport. Prolonged continuous circulation
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can result in cold spots as seen above. The goal of the behavioural transition from
T1 to T2 becomes clear from Figure 4.10. The controller heats the cold spots,
which were left inside T1, inside T2. Rapid switching of u1 and, simultaneously,
the intermittent reduction of inputs u2 and u3 directs heat into the cold spot left
during T1. The rapid flow reversals observed in T2 result in similar swaying of
the merged plume as seen in T1. However, the hot “core” of the plume moves
closer to the domain boundary inside T2 compared to T1. This is caused by the
intermittent reduction of either u2 or u3, observed in Figure 4.5c, combined with
the activation of u1. The reduction of u2 (or u3) results in reduces fluid circulation
such that

T1

t = 45.12 t = 47.35 t = 49.66 t = 52.06 t = 54.665

T2

t = 80.51 t = 88.27 t = 96.475 t = 103.61 t = 109.93

Figure 4.10: Evolution of the transient temperature field associated with time
windows shown in Figure 4.8a. Top row associated with Figure 4.8b (blue:
min(T̃ ) = −1; red: max (T̃ ) = 0; dashed line: reflection axis I1) and bot-
tom row associated with Figure 4.8c (blue: min(T̃ ) = −0.5; red: max (T̃ ) = 0;
dashed line: reflection axis I1).

The above suggests that indefiniteness of QQQi is vital for controller operation
in this work. Positive (or negative) definiteness ofQQQi would force the controller to
circulate fluid in only a single direction. To see this, observe that ui(t) in (4.29)
can only be positive (negative) for a positive (negative) definite QQQi. This would
inhibit the formation of large merged plumes for effective fluid heating (i.e. flows
can then only circulate in a single direction and thus the controller is unable to
form large merged plumes between apertures). Furthermore, symmetries play a
crucial role in heating with both controllers. RAMs with an odd number of aper-
tures can align merged hot plumes with the symmetry axes of flow fields that can
then be used to direct heat from this plume into cold spots. Both controllers use
this possibility to target cold spots inside the fluid. This suggests that an odd
number of apertures promotes that ability of the controllers to direct heat. Further
investigation is required and should include a RAM with six apertures. Such a
RAM contains the symmetry axes of a RAM with two and three apertures.
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4.5.4 Sensitivity of plume formation

(a) Nominal IC. (b) Half-domain IC. (c) Pattern IC.

Figure 4.11: The (a) nominal initial transient temperature field T̃ (xxx, 0) = −1, the
(b) initial temperature field where half of D is heated (to T̃ (xxx, 0) = −0.5) and
(c) the patterned initial temperature field with localized hot spots (at T̃ (xxx, 0) =
0.5 (max (sin (6πx), 0) + max (cos (6πy), 0))− 1) for the RAM.

Section 4.5.3 revealed that the controller produces a hot plume between
neighbouring apertures to effectively boost heating. However, plume formation
was only studied for a uniformly cold fluid. Heating behaviour can thus potentially
change if other ICs are presented to the controller. Heating behaviour of open-
loop flow control by a conventional periodic reorientation scheme (see (4.31)) is
investigated here as well. Such open-loop methods (e.g. like conventional pe-
riodic reorientation schemes) are widely adopted for fluid heating. For “optimal”
heating these methods require a priori parameter tuning. Fluid heating rates are
thus also susceptible to perturbations as a result (e.g. to erroneous model param-
eters or perturbations in the ICs). Therefore, fluid heating is studied for perturbed
ICs next. The results can provide insight into the sensitivity of the plume formation
behaviour observed in Section 4.5.3.

The ICs during the analysis are shown in Figure 4.11. Part of the fluid is
already heated in the first perturbation. Figure 4.11b shows a temperature field
with a cold bottom and hot top half. Temperatures in the top half are halfway
towards heating (i.e. T̃ (xxx, 0) = −0.5). The second perturbation introduces local
“hot spots” in the fluid as shown in Figure 4.11c. These hot spots follow a pat-
tern described by T̃ (xxx, 0) = 0.5 (max (sin (6πx), 0) + max (cos (6πy), 0)) − 1.
This perturbed IC is henceforth referred to as a patterned IC. ICs with such pat-
terned scalar distributions can be studied to determine the sensitivity of transport
enhancements [110, 5].

Figure 4.12a,b show the inputs from the quadratic controller in response to the
ICs in Figure 4.11. A comparison between the inputs in Figure 4.12b and Figure
4.6d reveals that the quadratic controller exhibits similar actuation behaviour for
the perturbed ICs as for the nominal IC (i.e. neighbouring flows circulate fluid be-
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(a) Half-domain IC.
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Figure 4.12: Time evolution of ui for (a) the half-domain and (b) the patterned
heat perturbation of the ICs for the quadratic controller on a RAM with four aper-
tures (I = 4) with advection-dominated transport at Pe = 103.

tween them). Moreover, a similar pattern in the inputs can be observed, albeit for
different inputs (e.g. input u3 in Figure 4.12b shows almost the same behaviour as
input u2 in Figure 4.6d). However, input behaviour in response to the half-domain
IC in Figure 4.12b differs significantly from the behaviour in Figure 4.6d. Namely,
both u3 and u4 show switching behaviour similar to the behaviour observed for
a RAM with three aperture (see Figure 4.6c). The results in Figure 4.12 reveal
that the quadratic controller adapts the inputs based on the presented IC. This
clarifies the utility of a closed-loop flow controller over a conventional open-loop
periodic reorientation scheme; namely the adaptation of the fluid flow in response
to perturbations and/or noise.

The snapshots, associated with the inputs in Figure 4.12, are shown in Figure
4.13 to investigate the response of the flow controller to the ICs in Figure 4.11
on the transient temperature field evolution. The flow controller opts for opposing
fluid circulation between neighbouring apertures regardless of the IC. Plumes ini-
tially emanate from different locations from the boundary. Figure 4.13 shows that
he initial plume emanates from the bottom left, top right, and bottom right parts of
the fluid domain for the nominal, half-domain and patterned IC, respectively. As a
result, hot plumes arise between different neighbouring apertures to ensure fast
fluid heating. The mechanism leading to this thermal plume formation is investi-
gated for the nominal IC in the previous section. The response of the quadratic
controller on a RAM with four apertures differs only slightly from those studied
in Section 4.5.3. For example, the inputs u1 and u2, in response to the nomi-
nal IC, circulate the fluid in the same direction as u4 and u3, respectively. This
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4. Boosting heating with flow regulation based on Lyapunov functions

means that the first and second aperture circulate the fluid in the direction that
aids the development of the hot plume. Fluid circulation by u1 and u2 reverses
after an initial transient resulting in another hot plume forming between these two
neighbouring apertures. The same behaviour is observed for the perturbed ICs
in Figure 4.13. To determine the difference in fluid heating behaviour, associated
with the transient temperature snapshots in Figure 4.13, heating rates are inves-
tigated next. The heating rate of a periodic reorientation scheme in Figure 4.11 is
also studied.

t = 5. t = 20. t = 35. t = 50. t = 65.

Figure 4.13: Evolution of transient temperature fields for quadratic feedback on a
RAM with four apertures in response to the nominal IC (top row), the half-domain
IC (middle row) and the patterned IC (bottom row) (blue: min(T̃ ) = −1; red:
max (T̃ ) = 0; closed curves: streamlines).

The periodic reorientation scheme is investigated for the same perturbed ICs
as the controller. This allows for a comparison between both methods of heating.
The periodic scheme in (4.31) activates apertures for a time span τ . Here, an
optimal activation time τ , optimized for Pe = 103 and the nominal IC shown in
Figure 4.11a, is adopted from Lester et al. [109]. Numerical simulation of a RAM
with four apertures with Pe = 103 reveals a local optimum for τ ≈ 25. This
activation time – and likewise the activation sequence – is not necessarily optimal
for other initial conditions. Consequently, changing the ICs can result in different
heating times (e.g. due to suboptimal τ ). This sensitivity, inherent to open-loop
flow control, can be reduced by opting for closed-loop control instead.

The response to both perturbations is shown in Figure 4.14. Heating by con-
tinuous circulation of a single flow is shown for comparison. Heating rates for
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(a) Half-domain IC.
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(b) Patterned IC.
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Figure 4.14: Time evolution of ‖ηηη‖2 for (a) the half-domain and (b) the patterned
heat perturbation of the ICs for the quadratic controller and the periodic reorien-
tation scheme on a RAM with four apertures (I = 4) with advection-dominated
transport at Pe = 103.

the first perturbation are shown in Figure 4.14a. Heating accelerates with a sin-
gle flow for the perturbed IC compared to the nominal one. The threshold is
reached in 300.6 dimensionless time units. This is an increase of 6.9 % with
respect to heating for the nominal IC. Figure 4.14a shows that heating with the
periodic scheme falls between the other two flow forcing methods. The fluid is
heated in 176.2 time units with the periodic scheme, an acceleration of 7.7 %
compared to the 191 units for the nominal IC. The controller further reduces this
“time” to 149.8 time units. Similar heating behaviour is observed for the patterned
IC in Figure 4.14b. Heating slightly decelerates for the patterned IC compared to
the perturbed IC in Figure 4.11b. The controller reaches the threshold in 157.4
time units. Whereas the periodic scheme sufficiently heats the fluid in 185.6 time
units. This is a decrease of 5.1 % and 5.3 % in the heating rates obtained by the
controller and the periodic scheme compared to results in 4.14a, respectively.

The accelerated heating is partly caused by the added heat due to the per-
turbations. Here, the heating rates of the controller and the periodic scheme are
compared to those obtained by continuous circulation by a single flow. Results
show that the periodic scheme and the controller boost heating rates compared
to a single flow by an average of 41 % and 49 %, respectively. The controller

99



4. Boosting heating with flow regulation based on Lyapunov functions

thus consistently outperforms both the periodic scheme and single flow for the
ICs considered here. Heating rates obtained by the controller are accelerated
by at least 13.2 % with respect to the periodic scheme, regardless of the IC.
Moreover, transient temperature field snapshots reveal that the quadratic con-
troller adopts similar plume formation behaviour for the ICs considered here. This
shows that plume formation behaviour, analysed in Section 4.5.3, has at least
some resilience to perturbed ICs.

4.6 Conclusions and discussion

In this chapter we investigated performance and sensitivity of a two nonlinear con-
trol methodologies to accelerate scalar transport. The presented control method-
ology relies on a spectral decomposition of the advection-diffusion equation in the
Laplacian eigenfunctions on a circular plane. The infinite dimensional system is
captured by a compact finite dimensional bilinear state-space description. State
feedback control of bilinear systems can become problematic when the inputs
vanish, which effectively results in the system becoming uncontrolled. However,
heating of an initially cold fluid combined with the second law of thermodynamics
ensures that the origin is only passed when the fluid reaches the boundary tem-
perature and is homogeneous. The challenge considered in this work is to ensure
that the stable heat transport system reaches the origin as fast as possible. The
real-time control of the scalar field involves designing the inputs such that the
decay rate of a generic Lyapunov function or “thermal energy” is minimized.

We proposed two control methods that minimize the decay rate: a bang-bang
controller and a nonlinear quadratic feedback controller. Heat transport from the
hot boundary is significantly improved resulting in substantially accelerated heat-
ing rates compared to mere diffusion. Both controllers also significantly acceler-
ate the heating rates compared to continuous fluid circulation depending on the
number of flows and the controller tuning. Fluid heating rates are comparable
with those accomplished with the adaptive reorientation controller presented in
chapters 2 and 3. The bang-bang controller shows high-frequency behaviour,
which is undesirable for real-time actuation. The quadratic feedback controller is
less restrictive compared to the bang-bang controller, which comes at a sacrifice
of heating rate improvement. However, rapid switching is significantly reduced
during control with the quadratic controller as a consequence. In addition, the
rapid switching with the quadratic controller is predominantly confined to the ini-
tial stages of control.

Numerical results reveal that plume formation, by circulating the fluid in oppo-
site directions between apertures, seems to form a key characteristic for effective
heat-transfer from the hot boundary (in)to the fluid. This makes the proposed
methods tailor-made for flow control of scalar transport in i) the presence of sig-
nificant diffusion and ii) the absence of a boundary condition that can directly
influencing the scalar field, e.g., a adjustable boundary temperature. Numeri-
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cal simulations show that the advantages of the quadratic controller to heat the
fluid also appears to hold for higher Péclet numbers than studied here. Fur-
thermore, heating rates obtained with the quadratic controller are compared to a
conventional open-loop periodic reorientation scheme for perturbed initial condi-
tions. The flow field activation time of this periodic scheme is locally optimized
for an unperturbed initial condition. Results show that the quadratic controller
consistently outperforms the periodic scheme for both the unperturbed and per-
turbed initial conditions. Moreover, the quadratic controller circulates the fluid in
opposite directions to effectively heat the fluid regardless of the initial conditions
considered here. This shows that the aforementioned plume formation behaviour
possesses some resilience towards perturbations. The degree of resilience and
robustness against perturbations in general requires further research though.

Future work will be focussed on experimental investigation of the results for
both the bang-bang controller and the quadratic controller. Further research ef-
forts will be focussed on the design and implementation of an observer to recon-
struct the spectral decomposition from discrete sensor data. This leads the way
to the implementation of both controllers in a practical device.
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CHAPTER 5
Numerical feasible model and

field estimation for scalar
transport

Abstract - Transport of scalar quantities (such as heat and/or chemical species)
by reorienting fluid flows is fundamental to the effective operation of various indus-
trial applications, ranging from resource extraction by subsurface reservoir flows
to processing of foodstuffs or chemicals. Fluid flows typically consist of the peri-
odic reorientation of a laminar base flow in either space or time in these applica-
tions (e.g. implemented by baffles or pump schemes). Dedicated closed-loop flow
control based on the scalar field can significantly boost fluid heating. However,
practical application of dedicated closed-loop flow control for scalar transport is
often inhibited by the unavailability of the complete scalar field. In this chapter
an estimator (or observer) is developed that can rapidly reconstruct the scalar
field based on discrete sensor data. The estimator is implemented on a scalar
transport problem that is representative for the applications of interest; heating
of an initially cold fluid surrounded by a hot boundary by stirring. Field estima-
tion is posed as an optimal estimation problem to design a Luenburger estimator.
The estimation accuracy is investigated numerically for heat transport governed
by mere diffusion, the base flow and a periodic flow. Results show rapid and ac-
curate field reconstruction is feasible and therefore help in developing dedicated
closed-loop flow control and enhance transport in practice.

Supplementary material to this chapter is provided in Appendices D, E, F and G.
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5.1 Introduction

Scalar transport (of heat and/or mass) is a key element to various industrial/medi-
cal processes. Scalar transport is indispensable during, for example, manufactur-
ing of ingredients/products in the foodstuffs industry [101, 102] or the polymer in-
dustry [111]. It also plays a vital role during resource extraction from underground
oil/gas/thermal reservoirs [112] or chemical species mixing in the pharmaceutical
industry [113]. Accelerating scalar transport can potentially result in faster and/or
more (energy) efficient operation of the abovementioned applications. Recent
research has shown that dedicated control strategies can significantly enhance
scalar transport [25, 55]. Thereby potentially reducing the time and/or (material)
cost of operating/manufacturing an application/product. The practical application
of dedicated control strategies requires the complete scalar field in order to func-
tion. However, the scalar field is often only partially available through a finite set
of sensors. The estimation of the scalar field based on discrete sensor data is
therefore essential to boost transport in real-time.

The estimation the scalars can be performed by a state estimator. The term
“state estimator” is interchangeable with the term “state observer” – well-known in
the control community – in this thesis. However, state estimator is used through-
out this thesis. Various techniques are available for state reconstruction or estima-
tion in lumped parameter models, where the state evolution is governed by a rela-
tively small set of ordinary differential equations (ODEs) (i.e. the number of states
n ∼ O(10)). Heating of a two dimensional (2D) cold fluid by a hot boundary is
studied in this work as a representative case study of the above applications. The
scalar quantities considered here (and in the applications of interest) depend on
both space and time. As a consequence, the evolution of these quantities is typi-
cally modelled/captured by partial differential equations (PDEs). State estimation
for (2D) distributed parameter models, whose evolution is typically governed by
PDEs, has received significantly less attention than state estimation in lumped pa-
rameter models, where the state evolution is governed by a small set ODEs [114].
Numerous numerical schemes can be employed to discretize the (2D) PDE re-
sulting in a set of ODEs (e.g. see books [78, 115]). Typically, a large state dimen-
sion n is required to perform accurate numerical simulations (i.e. the number of
states n ∼ O(104)). This renders most state estimation techniques developed for
ODEs too time-consuming for real-time scalar field estimation. Nonetheless vari-
ous design methods have been developed for estimators based on the (extended)
Kalman or Luenburger filter [42, 37, 34, 38], the backstepping method [116, 40]
or nonlinear/robust estimator design [31, 32, 117]. However, most estimator de-
signs for 2D PDEs are investigated theoretically and/or numerically. Moreover,
studies of estimators in practice are mostly restricted to a single dimension in
space. Thus far, the estimator presented by Lausterer et al. [42] remains one of
the few practical studies of scalar field estimation in two dimensions.

This chapter aims to contribute to the existing literature in several ways. First,
practical application of dedicated closed-loop flow control for boosting scalar trans-
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port is often inhibited by the unavailability of the complete scalar field. Hence, de-
veloping a scalar field estimator cab aid the practical adoption of flow controllers
in industry. Second, scalar field reconstruction can aid in real-time detection of
malfunctions that result from faults in, e.g., sensors or actuators during the opera-
tion of industrial applications [26]. Malfunction detection requires a good estimate
of a relevant transport measure that adequately captures the operational perfor-
mance of the application in question. Rapid reconstruction can therefore help
develop dedicated closed-loop flow control and enhance transport in practice.
Third, research into field reconstruction of 2D systems described by PDEs has,
to the author’s best knowledge, mostly dealt with their theoretical development.
The work in this chapter therefore distinguishes itself from other studies on state
estimators in 2D PDEs in [42, 116, 40, 34, 118, 117] by applying the developed
scalar field estimator on a practically realizable system; the RAM. The field esti-
mator, developed in this chapter, is experimentally investigated in Chapter 6 on
the experimental RAM.

This chapter is structured as follows. In Section 5.2, the model and resulting
system description we use for the reconstruction of a scalar field is presented.
In Section 5.3, we present the methods that are used to identify model param-
eters, place sensors and design the scalar field estimator. In Section 5.4, we
numerically investigate field reconstruction performance of a representative case
study. Several key transformations of the model are implemented before it is used
for parameter identification and state estimation. These model transformations,
together with their presentation in this chapter, estimator design and numerical
simulations are indicated in Figure 5.1. Finally, conclusions and recommenda-
tions for further development are presented in Section 5.5.

5.2 Scalar transport in Stokes flows

5.2.1 Experimental configuration

An experimental setup, known as the 2D Rotated Arc Mixer (RAM) [17], is con-
sidered here. Figure 5.2 shows the experimental 2D RAM in more detail. The
RAM consists of a fluid container encircled by an annulus, a thermal camera and
controller (see 1 − 3 in Figure 5.2a). The fluid is contained inside a 2D circular
domain D, which is surrounded by a hot boundary ∂D at a constant temperature
T∞. The estimation of scalar transport is studied by considering fluid heating of
an initially cold fluid at temperature T0.

The observed fluid container contains multiple apertures of arc-length ∆ as
shown in Figure 5.2a. The apertures are covered by belts, which can move tan-
gentially along the boundary by actuating a belt-pulley assembly. Radial tension-
ers prevents leaking at the belt aperture interfaces. Fluids inside the container are
heated by a hot boundary ∂D (see Figure 5.2b). The boundary ∂D is heated by
circulating a water-glycerol mixture through the annulus. Temperatures inside the
annulus are sampled with four standard PT100 sensors and fed back to a thermal
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Figure 5.1: A flow chart with an outline of Chapter 5 showing, in particular, the
various models introduced throughout this chapter.

bath. The thermal bath (Thermal Scientific Haake Bath K41) uses the average
annulus temperature to enforce a constant temperature inside the annulus. The
thermal bath enforces an annulus temperature T∞ that is 10◦C higher than T0.
However, fluid temperatures inside the thermal bath are at T0 at the beginning of
each experiment. Fluids inside the annulus thus undergo a brief transient period
of heating before reaching the required T∞. Fluid heating inside D occurs as long
as T0 < T∞. Experiments are initialized after temperatures inside the annulus
reach T∞ (i.e. to within 0.05 ◦C).

Temperature fields are obtained in the experimental RAM by a thermal cam-
era (see 2 in Figure 5.2a). The thermal camera (FLIR T650SC [119]) captures
infrared irradiation emitted and/or reflected by the fluid and the surroundings. The
camera heats up during the experiments to a temperature above the ambient
temperature during the experiment. This means the camera also emits infrared
irradiation itself. Heating of the camera during experiments can thus potentially in-
fluence the measured temperature field. The camera is therefore placed under an
angle at the elevated position as shown in Figure 5.2a. Such placement provides
a mostly unobstructed view of the container without reflecting infrared irradiation
generated by the camera. However, the camera placement results in image dis-
tortions on top of any regular lens distortions (e.g. the circular boundary ∂D be-
comes an ellipse). Temperature fields are therefore processed by purpose built
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(a) Experimental setup (b) Top view.

Figure 5.2: The (a) configuration of the experimental RAM with the fluid container
(1), the thermal camera (2) and the controller (3). Top view (b) of the container
from the perspective of the thermal camera.

software to compensate for both camera and lens distortions. Post-processed
temperature fields will be used in both parameter identification and a compara-
tive study to gauge field estimation quality in Section 5.4. Finally, a set of regular
J-type thermal couples – with five-point calibration – is included for the measure-
ment of the ambient temperature Ta. The initial and boundary temperatures –
important for normalization – can thus be measured independently. The initial
temperature T0 is sampled at the start of each experiment. Both ambient temper-
ature sensor and thermal camera are queried to obtain T0 (e.g. Ta(0) ≡ T0).

Experiments in this work use similar experimental settings as presented by
Baskan et al. [17]. Again, the layered fluid consists of a bottom layer with a
water-glycerol mixture and a top layer of silicone-oil. This inhibits bottom con-
tact such that three-dimensional flow effects are negligible and fluid flows can be
considered two-dimensional. Bottom and top layer thickness are changed, with
respect to Baskan et al. [17], to 0.006 m and 0.004 m, respectively. The in-
creased layer thickness of the water-glycerol mixture ensures horizontal levelling
of the RAM is less stringent. The thermal camera, ambient sensor and thermal
bath are all sampled and operated at a maximum sampling frequency of 1/30
Hz. Other experimental settings, that influence heat and mass transport in the
experimental RAM, are shown Table 5.1.

5.2.2 Heat transport model and configuration

Figure 5.3a shows a schematic configuration of the top-view observed with ther-
mal camera in the experimental RAM in Figure 5.3b. The experimental RAM has
a single open surface, which is used to measure the fluid temperature T (xxx, t) with
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Table 5.1: Fluid properties and configuration measures relevant to experiments.

Parameter Magnitude Unit

Aperture ∆ π/4 rad
Radius R 0.25 m
Sample time Ts 30 s
Density silicon-oil ρo 970 kg/m3

Density mixture ρm† 1186 kg/m3

Kinematic viscosity silicon-oil νo 0.01 m2/s
Kinematic viscosity mixture νm† 21.88 · 10−6 m2/s

†: Calculated at 21 ◦C for mixture with 0.33 L water and 0.67 L glycerol based
on method in [120].

a thermal camera. A fluid flow is induced by viscous drag due to a moving bound-
ary segment (of arclength ∆). The fields associated with these moving segments
reduce to a Stokes flow under strongly laminar flow conditions (i.e. negligible
inertia and rapid fluid response). Figure 5.3b shows the flow field induced by a
single moving segment, which is henceforth referred to as the base flow.

(a) Configuration. (b) Flow 1.

(c) Flow 2.

Figure 5.3: The (a) configuration of a boundary heated fluid, (b) the induced base
flow (left) and a typical associated temperature field (right) and (c) the reoriented
flow (left) and a typical associated temperature field (right) due to wall motion U
at the aperture.

Scalar transport inside the container is “driven” by two mechanisms, i.e., i)
diffusion (or conduction) and ii) advection (or convection). Such transport is typ-
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ically modelled by the well-known advection-diffusion-reaction equation (ADRE)
as

∂T (xxx, t)

∂t
= −vvv(xxx, t) · ∇∇∇T (xxx, t) + Pe−1∆T (xxx, t) + f (xxx, t) , (5.1)

where T the temperature field, vvv the fluid flow field, ∆ =∇∇∇2 the Laplace operator,
Pe the Péclet number, xxx ∈ D the position vector and t ∈ R+

0 non-dimensional
time. Heating by diffusion and advection both serve to transport heat (in)to the
fluid inside the container. The sink term f (xxx, t) in (5.1) models convective heat
losses at the open fluid-ambient interface. This heat loss to the ambient is known
to significantly impact long-term heating behaviour in the experimental RAM [17].

Fluids are in direct contact with the surrounding air in the experimental RAM
(shown in Figure 5.2a). Contact between the fluid and environment introduces
heat loss that can influence the temperature field T (xxx, t) as a result. This heat
loss at the fluid-environment interface can be substantial for long experiments
[17]. The ambient heat loss can be described as a sink term by

f(xxx, t) = κ(xxx) (Ta(t)− T (xxx, t)) , (5.2)

where κ(xxx) a (convective) heat transfer coefficient and Ta(t) the ambient tem-
perature. Heat will thus be lost to the environment if the local fluid temperature
exceeds the ambient temperature (i.e. Ta(t) < T (xxx, t)). The heat transfer coef-
ficient κ(xxx) is spatially dependent, because the convective heat loss to the envi-
ronment is not necessarily the same everywhere. However, modelling a spatially
dependent κ(xxx) requires a priori knowledge of any ambient flow conditions. The
spatial and temporal dependency of both the heat transfer coefficient is assumed
negligible. The accuracy of these assumptions are examined further in Section
5.4.1.

The flow field vvv in (5.1) is considered solenoidal as mass is conserved and
density is independent of T inside the container (i.e. the considered flow fields
are divergence-free and satisfy ∇∇∇ · vvv = 0). We consider sufficiently slow flow
velocities and negligible fluid inertia so that the flow field approaches the Stokes
limit and instantaneously starts upon activation of the aperture. Fluid flows are
induced by I moving boundary segments of arc-length ∆ resulting in

vvvi(xxx, t)|∂D =

{
Uieeeθ if|θ − (i− 1)Θ| ≤ ∆/2

0 otherwise
, (5.3)

where eeeθ the tangential unit vector, Ui the non-dimensional velocity of the moving
boundary segment and i the aperture. In this work, a RAM with two apertures
(I = 2), which can each induce a fluid flow, is considered. The activation of
a moving boundary segment at either one of these apertures results in the flow
fields and temperature fields shown in figures 5.3b and 5.3c. Here, only a single
moving boundary segment can be activated for an activation time τ . In this work,
flows are (de)activated for a total activation time τtot where τtot = T τ for T > 0
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samples. Flows are activated according to an “orientation scheme” u(t) where
u(t) ∈ U with U = {u0, u1, . . . , un}. For example, u(t) ∈ U with the orientation
scheme U = {1, 2, 0} consecutively activates flows vvv1, vvv2 and no flows. Both
apertures can only circulate the fluid in clockwise direction (i.e. U1 = U2 =
U 6= 0). As a result, vvv2 differs from the base flow vvv1 by a mere reorientation Θ.
Both moving boundary segments are considered stationary for i ≡ 0 (i.e. thus
resulting in vvvi(xxx, t) = 000). An analytical expression for the resulting (normalized)
flow field vvvi in the RAM is available as presented by Hwu et al. [70].

The ADRE in (5.1) including ambient heat loss, according to (5.2), can be
expressed as

∂T̃ (xxx, t)

∂t
=
(
−vvvi(xxx) · ∇∇∇+ Pe−1∆− κ

)
T̃ (xxx, t) + κT̃a(t)

= A(i) (xxx) T̃ (xxx, t) + κT̃a(t)

, (5.4)

where T̃ (xxx, t) ≡ (T (xxx, t)− T0) / (T0 − T∞) − 1 the normalized transient tem-
perature field and T̃a ≡ (Ta − T0) / (T0 − T∞)− 1 the normalized ambient tem-
perature. Here, operator A(i) (xxx) is time invariant as long as only a single Stokes
flow vvvi is activated or deactivated at a time. The superscript i indicates whether
heat transport includes advection due to an induced fluid flow (i 6= 0) or merely
consists of diffusion (i = 0).

Incorporating the heat loss term (5.2) in (5.4) simultaneously i) influences the
operator A(i) (i.e. heat transfer coefficient κ influences A(i)) and ii) introduces
a constant heating rate in (5.4). The term containing the normalized ambient
temperature in (5.4) results in an inhomogeneous steady-state (or equilibrium)
temperature field. Local differences between the temperature field and the ambi-
ent temperature determine the deviation of the temperature field from an other-
wise homogeneous temperature field at T∞. The inhomogeneous steady-state
deviates from the boundary temperature for any Ta 6= T∞.

Model parameters rely on the configuration of the considered thermal flow
system. Parameters relevant for the RAM are given by [17]

Pe =
R2

αTc
, τ =

ξTs
Tc

, (5.5)

where Tc the characteristic time scale,R the radius of the container, α the thermal
diffusivity of the fluid, τ the non-dimensional activation time and Ts the sampling
time. Here ξ represents a time scaling factor which, following the results from
Baskan et al. [69], is used to match the model with the experiments. The scaling
factor is assumed unknown since the layer thickness in the experiments in this
thesis deviates form those in the experiments by Baskan et al. [69]. The heat
transfer coefficient κ and thermal diffusivity α are also unknown in this work and
these parameters, together with ξ, will be estimated in Section 5.3.1. Hence, the
thermal characteristics of both the ambient environment and the silicone oil can
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deviate with respect to previous work (see Section 5.2.1). The characteristic time
scale Tc represents either the advection time scale or the diffusion time scale
when heat transport is driven by a flow or mere diffusion. They are defined as
either Tc = R/U or Tc = R2/α, respectively.

5.2.3 State-space representation of heating

The operator A(i) in (5.4) is spatially dependent due to the introduction of both
flow and diffusion. Real-time computation of T̃ requires a spatial (and temporal)
discretization of (5.4) though. Standard numerical computation schemes (e.g.
FVM or FEM) can be used to discretize the PDE in (5.4) on an, in principle,
arbitrary discrete grid DDD. As a result of discretization, heat transport on DDD is
described by a set of ODEs of the form

dT̃TT (t)

dt
= AAA(i)(UUU,Pe, κ)T̃TT (t) + κbbbT̃a(t), (5.6)

where UUU† =
[
U1 U2

]
represents the velocity vector with the velocities of each

moving boundary segment that induces a fluid flow according to (5.3), T̃TT
†
(t) =[

T̃ (xxx1, t) · · · T̃ (xxxN , t)
]

the vector with N nodal transient temperatures on

the discrete grid DDD, AAA(i) the state matrix that represents the discretized version
of A(i) and bbb the “input” vector that incorporates the effect of T̃a. The fluid flow (or
absence thereof) influences the state matrix A(i) by altering the heating dynam-
ics and the normalized ambient temperature acts as an uncontrolled constant
input in (5.6). Both the state matrix AAA(i) and the input vector bbb depend on the
employed discretization scheme and are linear time-invariant (LTI) in the RAM ei-
ther with or without fluid flow. Heat-transport without any fluid flow is governed by
both diffusion and the heat-loss term according to (5.1). Heat-transport without
any fluid flow is referred to as mere diffusion henceforth in this chapter. This slight
abuse of terminology serves to better clarify the fundamental difference between
the heat transport mechanisms in the models used throughout this chapter. In ad-
dition, both AAA(i) and bbb explicitly depend on κ and the state matrix also depends
explicitly on α when a flow is present (i.e. through the Péclet number). This ex-
plicit dependence ofAAA(i) on these parameters is henceforth omitted for notational
convenience. Reorientations of flow fields by Θ result in the same reorientation
by Θ ofAAA(i) under current conditions (i.e. the considered Stokes flows only differ
from each other by a reorientation angle of Θ). This reorientation is captured by
a reorientation matrixRRRΘ resulting in matrices of the form

AAA(i) = RRR
(i−1)
Θ AAA(1)RRR

(1−i)
Θ , (5.7)

where i = 1, 2 andRRR−1
θ = RRR†

θ.
The finite dimensional relation in (5.6) is convenient as it resembles a ”clas-

sical” LTI state-space representation upon viewing the normalized ambient tem-
perature and fluid flow(s) as inputs. Here, either a single (reoriented) flow is
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activated at a time or all flows are deactivated (i.e. heat transport is governed by
mere diffusion) for a time span of τ . Time span τ represents the non-dimensional
discrete sampling time of the system according to (5.5). The similarity of (5.6)
with the well-known LTI state-space representation means that solutions can be
described by [121]

T̃TT (t) = PPP (i)(t0, t)T̃TT (t0) +

∫ t

t0

κPPP (i)(ξ, t)bbbT̃a(t)dξ. (5.8)

The solution integral of (5.8) for a constant normalized ambient temperature T̃a(t)
can be simplified to[∫ tk+1

tk

κPPP (i)(tk, ζ)bbbdζ

]
T̃a(tk) = κ

(
PPP (i) (tk, tk+1)− III

)(
AAA(i)

)−1

bbbT̃a(tk),

(5.9)
if T̃a(t) is assumed constant at T̃a(tk) throughout the time interval t ∈ [tk, tk+1].
The resulting simplification of (5.8) for a piece-wise constant normalized ambient
temperature T̃a(t) is thus given by

T̃TT (tk+1) = PPP (i)
τ T̃TT (tk) +BBB(i)

τ T̃a(tk), (5.10)

where PPP (i)
τ = PPP (i)(tk, tk+1) andBBB(i)

τ = BBB(i)(tk, tk+1) for k ≥ 0 are introduced
for notational convenience. The matrices in (5.10) can thus be described by

PPP (i)
τ = eAAA

(i)τ = RRR
(i−1)
Θ eAAA

(1)τRRR
(1−i)
Θ , BBB(i)

τ = κ
(
PPP (i)

τ − III
)(

AAA(i)
)−1

bbb.

(5.11)
Relation (5.11), arising from (5.7), is a key enabler to construct a numerically
efficient model for fast state estimation with (switching) multiple flows as will be
shown in Section 5.3.

Solution (5.10) describes scalar transport by either steady Stokes flow(s), e.g.
for UUU =

[
U 0

]
, or by diffusion, i.e. with UUU =

[
0 0

]
, on the discrete grid DDD.

This grid is the discrete counterpart of D, which can, without loss of generality, be
chosen arbitrarily. Here, the points in the grid correspond to pixels of the thermal
images obtained with the thermal camera (see Section 5.2.1). Nodal tempera-
tures in T̃TT (t) thus correspond to the individual pixels in the thermal image. Hence
the thermal camera provides “full” access to the temperature field T̃TT (t). Numeri-
cal solutions for T̃TT in (5.10) approach the solution T̃ in (5.4) for N → ∞.

5.2.4 Model reduction of the state-space representation

In a practical application, the temperature field is measured with a finite amount of
sensors that sample the field at discrete locations. Access to the “full state” T̃TT (t)
is therefore severely restricted. Placing sensors at the same location as some
nodes inDDD results in

yyy(t) = CCCT̃TT (t), (5.12)
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where the output matrix CCC ∈ Rp×N only contains non-zero elements at p loca-
tions inside DDD such that yi(t) = T (xxxi, t). Some nodal temperatures on DDD will
serve as “virtual” sensors for the state estimator in Section 5.4 (i.e. only some
entries of TTT (xxx, t) are considered measured). The outputs in (5.12) are thus mea-
sured at fixed sensor positions here. Access to the complete temperature field
via the thermal camera enables the quantitative analysis of this state estimator
by comparing the reconstructed fields, estimated solely based on the outputs in
(5.12), to the measured fields (also in Section 5.4).

Relations (5.10)-(5.12) describe the thermal flow system as a discrete state-
space representation. Such a representation is useful to i) perform system identi-
fication, ii) reduce the model for computational efficiency and iii) develop an accu-
rate field estimator. For equidistant sampling with sampling “time” τ , (5.10)-(5.12)
are also linear and time-invariant. Relation (5.11) shows that input matrix BBB(i)

τ

also relies on the activated flow i. In Chapter 6, UUU is considered either constant
or periodic. In the latter case, relations (5.8)-(5.12) describe a discrete hybrid
system where the impact of the uncontrolled input T̃a on heat transport depends
on the activated (or deactivated) flow i.

Models using regular spatial discretization schemes – resulting in systems of
the form (5.10)-(5.12) – can have a large amount of states. The state-space rep-
resentation in (5.10)-(5.12) consists of as many states as there are spatial nodes
in the discrete grid. Numerical implementation of (5.6) requires a relatively dense
grids for sufficiently accurate simulations though (i.e. containing N & O(104)
elements for the RAM [55]). As a result, the state matrix AAA(i) contains N2 ele-
ments. The large dimension of the state matrix AAA(i) results in long computation
times. Fast computation of T̃TT k by a low-dimensional model ensures rapid numer-
ical computation in real-time, which is especially important upon incorporating
state estimation in model based closed-loop control.

Therefore, the dimension of the state matrix is reduced by reducing the con-
sidered number of modes in the modal decomposition of AAA(i). The reduced
model captures the evolution of the transient temperature field T̃TT by truncating
the Perron-Frobenius operator PPP (i)

τ to M modes – with M � N – as shown
in Lensvelt et al. [55]. This reduction boosts the computational efficiency of
(5.10)-(5.12) such that T̃TT can be rapidly obtained. Relation (5.11) reveals that the
truncation of PPP (i)

τ can be obtained by simply reorienting the truncation of PPP (1)
τ

associated with the base flow. The discrete operatorAAA(i) is decomposable in an
eigenvector-eigenvalue decomposition according to [55]

AAA(i) = VVV (i)ΛΛΛ(i)
(
VVV (i)

)−1

, VVV (i) = RRR
(i−1)
Θ VVV (1), (5.13)

where the eigenvectors inVVV (i) and eigenvaluesΛΛΛ(i) ofAAA(i) represent the eigenvalue-
eigenfunctions pairs of the Perron-Frobenius operator on the discrete grid DDD.
Moreover, observe that the eigenvalues are invariant to reorientation in the RAM
such that ΛΛΛ(i) = ΛΛΛ(1) [16]. The higher order modes of the advection-diffusion
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operator typically become progressively more stable, viz. Re(λm) ≤ 0 becomes
smaller as m increases [122]. The constant heat transfer coefficient κ has no in-
fluence on this property. Therefore, it is assumed here that eigenvalues in (5.13)
are ordered such that Re(λ1) ≥ . . . ≥ Re(λN ).

Fast and accurate simulations requires including a sufficient number of eigen-
values and eigenvectors (or thermal “eigenmodes”). Various methodologies are
available for model reduction (e.g. see review by Besselink et al. [123]). However,
ordering of the eigenvalues makes a separation into fast and slow thermal modes
well suited for the ADRE. The M slowest eigenvalues are retained in the model
by introducing a transformation matrix of the form

T̃TT (tk) ≈GGG(i)ααα(i)(tk), GGG(i) =
[
VVV

(i)
1 · · · VVV

(i)
M

]
. (5.14)

where the definition of VVV (i) leads to the following relations

GGG(i) = RRRi−1
Θ GGG(1),

(
GGG(i)

)+
=
(
GGG(1)

)+
RRR1−i

Θ , (5.15)

and ( )
+ represents the well-known Moore-Penrose pseudoinverse used to “in-

vert” GGG(i). The inversion is used to determine the instantaneous spectral coef-
ficients ααα(i)(tk) from the temperature field T̃TT (tk) according to (5.14). The intro-
duction of GGG(i) means that (5.8)-(5.12) can be rewritten, by employing the pseu-

doinverse
(
GGG(i)

)+
, as

ααα(i)(tk+1) = ÃAA
(i)
ααα(i)(tk) + B̃BB

(i)
T̃a(tk)

yyy(tk) = C̃CC
(i)
ααα(i)(tk)

, (5.16)

with matrices defined as

ÃAA
(i)

=
(
GGG(i)

)+
PPP (i)

τ GGG(i) B̃BB
(i)

=
(
GGG(i)

)+
BBB(i)

τ , C̃CC
(i)

= CCCGGG(i), (5.17)

The above is analogous to a Rayleigh-Ritz reduction procedure used in vibration
theory [124].

5.3 Estimation of scalar transport

5.3.1 Parameter identification of scalar transport

Field estimation relies on the ability of a model to accurately describe the physical
behaviour of a system. Table 5.1 and (5.5) reveal that ξ, α and κ need to be
estimated. These parameters need to be (locally) structurally identifiable from the
measured outputs in order to get such an estimate. A dynamical system – like
(5.10)-(5.11) – is called identifiable if the model parameters, captured in θθθ, can be
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uniquely determined from the input(s) and the measured output(s) [125, 126] (i.e.
UUU(t), T̃a and yyy(t) uniquely determine θθθ). Moreover, a system structure is locally
structurally identifiable if and only if, for some set of model parameters θθθ in close
proximity to some θθθ∗, the output(s) satisfy yyy|θθθ=θθθ1

≡ yyy|θθθ=θθθ2
for θθθ1 ≡ θθθ2 and some

admissible input(s) [126]. A sufficient condition to guarantee that parameters
are (locally) structurally identifiable is when the output sensitivity matrix is full
rank [126]. Note that parameters can still be identifiable even though the output
sensitivity matrix is rank deficient [125]. Nonetheless, satisfying the rank condition
on the output sensitivity matrix provides a guarantee that the model parameters
are consistently and uniquely estimated. Availability of the “full” temperature field
with the thermal camera means the output encompasses the entire field T̃TT (t).
This means that CCC = III in (5.12) such that yyy(tk) = T̃TT (tk). The output sensitivity
matrix for K snapshots is defined as [125]

SSSK−1(θθθ) =


∂T̃TT (t0)
∂θ1

... ∂T̃TT (t0)
∂θp

...
. . .

...
∂T̃TT (tK−1)

∂θ1

... ∂T̃TT (tK−1)
∂θp

 , (5.18)

where θθθ contains the unknown model parameters. For diffusion both α and ξ
show up in τ and thus the columns of SSSK−1 differ by a mere constant (i.e. these
parameters are indistinguishable from the output). This means that α and ξ can-
not be estimated simultaneously for heat transport by mere diffusion. Therefore,
only κ and α are estimated for heat transport by mere diffusion since only these
parameters are relevant in that case. Hence, θθθ† =

[
ξ α κ

]
and θθθ† =

[
α κ

]
for the experiment with the base flow and with mere diffusion, respectively. The
columns of SSSK−1 can be derived from (5.10) by taking the derivatives where the
initial state T̃TT (t0) is available from the thermal camera. The definition PPP (i)

τ in
(5.11) inhibits a direct analytical computation of (5.18) for all model parameters
in θθθ. A (partial) numerical computation of the output sensitivity matrix and the
derivatives, as presented in Appendix D, is therefore pursued here.

Identification of θθθ for the set of ODEs in (5.10)-(5.11) is performed by the
minimisation of a model error. Parameter identification in the ADRE is formulated
as a least-square problem in time according to

J(θθθ∗) = argmin
θθθ

NT∑
k=1

J̃(θθθ, tk), subject to Re

(
λ

(
ÃAA

(i)
))

< 0, (5.19)

where NT the amount temperature field snapshots and θθθ∗ the local minimizer of
(5.19). An explicit stability constraint is included in (5.19) to enforce stability dur-
ing the optimization of J for κ < 0. This constraint enforces stable eigenvalues
in ΛΛΛ(i). Parameter identification on the experiments (in Section 5.4.1) converged
faster if κ < 0 is allowed. Such values for the (convective) heat transfer coef-
ficient imply that heat is added, rather than lost, by convection to the ambient
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environment. Parameter estimates with κ < 0 are disregarded though, since
such estimates are inconsistent with physics. The model error J̃ is defined as
the L2 norm between the measured and estimated temperature fields on D. The
integral, required to calculate the L2 norm, is approximated by an area weighed
summation on the discrete gridDDD resulting in a model error as

J̃(θθθ, tk) = εεε†(tk)FFFεεε(tk), εεε(tk) ≡ T̂TT (tk)− T̃TT (tk), (5.20)

where T̂TT (tk) and T̃TT (tk) the measured and estimated nodal temperature vectors
on DDD, respectively. The matrix FFF contains the surface area of each node in DDD.
The elements of FFF can be readily obtained for any grid by straightforward linear
algebra operations.

Model parameters θθθ are estimated by directly optimizing (5.19). The relation-
ship between (5.19) and (5.18) follows from the analysis of a Taylor series expan-
sion around θθθ∗. The analysis serves to justify the choice of J(θθθ) in (5.22). Tem-
perature snapshots T̃TT (tk) evolve according to (5.10) and their evolution therefore
depends on θθθ (see the discussion below (5.6) and the matrices in (5.11)). The
Taylor series expansion of T̃TT (tk) around θθθ∗ results in [126]

T̃TT (tk) ≈ T̃TT (tk)
∣∣∣
θθθ∗

+SSSK−1(θθθ∗)∆θθθ, ∆θθθ = θθθ − θθθ∗, (5.21)

where SSSK−1(θθθ) the output sensitivity matrix in (5.18). The substitution of (5.21)
into J(θθθ) reveals a quadratic relationship between J(θθθ) and ∆θθθ of the form

J(θθθ) ≈ ∆θθθ†HHH∆θθθ + 2fff†∆θθθ + c, (5.22)

with matrices and constants defined as

HHH =
(
SSSK−1

)†
WWWSSSK−1, fff = (YYY −ZZZ)

†
WWWSSSK−1,

c =− 2ZZZ†WWWYYY + YYY †WWWYYY +ZZZ†WWWZZZ, WWW =

FFF . . .
FFF

 (5.23)

whereYYY † =
[
T̃TT

†
(t0) · · · T̃TT

†
(tK−1))

]∣∣∣
θθθ∗

andZZZ† =
[
T̂TT

†
(t0) · · · T̂TT

†
(tK−1)

]
.

The quadratic form of J(θθθ) in (5.22) shows that the optimization problem accord-
ing to (5.22) has a minimum provided that the output sensitivity matrix is full rank.
Relation (5.22) in principle only applies in close proximity to θθθ∗ though. This
means that the aforementioned observation only apply locally. Error (5.19) can
be minimised by a variety of iterative optimization methods [127]. Here, numerical
solutions to (5.19) are obtained by a gradient-based optimization using a interior-
point method.
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5.3.2 Synthesis of scalar field estimator

The presented estimator synthesis will initially concentrate on the reconstruction
of T̃TT when heat transport is solely “driven” by a single flow i. The presented
estimator synthesis method also applies to heat transport by mere diffusion (i =
0). Restricting the synthesis to a single flow i is motivated by the observation that

the pair (C̃CC
(i)
, ÃAA

(i)
) can be obtained from (C̃CC

(1)
, ÃAA

(1)
) by a mere reorientation of

GGG(1) according to (5.15). Under certain conditions, the estimator design for flow i
is the same as the estimator designed for the base flow i = 1. This will be shown
below.

For an estimator to estimate ααα(tk) – and by extension T̃TT (tk) – the system
(5.14)-(5.17) needs to be observable. A state-space system is observable if the
initial condition at t0 can be determined from the time history of both the inputs
and the outputs for any time t1 with t1 > t0 [54]. For (5.14)-(5.17) this means
that the initial transient temperature field T̃TT (t0) can be determined from the evo-
lution of both the normalized ambient temperature T̃a, the fluid flow(s) i and the
outputs in yyy(t). With the inputs known, observability of the initial conditions solely

depends on the pair (C̃CC
(i)
, ÃAA

(i)
) [121]. The observability of the pair (C̃CC

(i)
, ÃAA

(i)
)

can be investigated by various methods [121]. Here, the Popov-Belevitch-Hautus
test is used for its computational efficiency [128]. To satisfy the Popov-Belevitch-

Hautus rank test, C̃CC
(i)

needs to be such that the matrix pair (C̃CC
(i)
, ÃAA

(i)
) yields

rank

([
ÃAA

(i)
− λIII

C̃CC
(i)

])
=M, (5.24)

for all λ ∈ C. The matrix ÃAA
(i)

− λIII can only lose rank if and only if λ is an

eigenvalue of ÃAA
(i)

. Therefore, it suffices to merely consider (5.24) for the eigen-

values of ÃAA
(i)

. Eigenvalues that satisfy (5.24) are called observable and eigen-

values that fail to satisfy (5.24) are called unobservable. The pair (C̃CC
(i)
, ÃAA

(i)
) is

called detectable if all the unobservable eigenvalues are asymptotically stable.
The eigenvalues of the ADRE become progressively more stable the higher the
order of the mode [122]. Moreover, eigenvalues associated with the eigenmodes
of the ADRE are stable regardless whether scalar transport is driven by a flow

or mere diffusion. This implies that any unobservable eigenvalue of ÃAA
(i)

is al-
ways stable. Hence, (5.24) is always satisfied for the system matrices in (5.17)
and, consequently, system (5.16) is always detectable. Temperature field recon-
struction from discrete sensor data with an estimator is thus possible for properly
chosen sensor locations. However, the rate at which a sufficiently accurate state
estimate can be obtained depends on the estimator’s design.

For the design of the temperature field estimator, a state-space system –
like (5.16) – needs to be detectable. For such a system, a state estimator will
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ensure that the state estimate TTT always converges on T̃TT . Numerous implemen-
tations are available for the implementation of a state estimator, e.g., high-gain
(Luenburger) estimators [75] or (extended) Kalman filtering [54]. The normalized
ambient temperature T̃a is measured with a set of thermal couples (see Section
5.2.1). Therefore, all the inputs in (5.16) are available during an experiment. This
makes full state estimation with a Luenburger estimator well-suited in this work
since only ααα(i)(tk) is unknown.

The implementation of a Luenburger estimator can be summarized as follows.
Consider the estimated state-space system, analogous to (5.16), given by

ααα(i)(tk+1) = ÃAA
(i)
ααα(i)(tk) + B̃BB

(i)
T̃a(tk) +LLL(i)(yyy(tk)− yyy(tk)),

yyy(tk) = C̃CC
(i)
ααα(i)(tk)

(5.25)

where (.) indicates the estimate and LLL(i) the Luenburger estimator gain matrix.
Relation (5.25) shows that the estimator injects a weighted output error to cor-
rect the estimated state evolution. The evolution of the state estimation error
eee(i)(tk) = ααα(i)(tk) − ααα(i)(tk) follows from its substitution into (5.25) resulting in
error dynamics as

eee(i)(tk+1) =

(
ÃAA

(i)
−LLL(i)C̃CC

(i)
)
eee(i)(tk). (5.26)

Measuring the normalized ambient temperature means that T̃a(tk) vanishes from
the error dynamics in (5.26). Accurate estimation thus relies on gain matrix LLL(i)

rendering the error dynamics (5.26) stable. State estimation for discrete sys-
tem (5.16) requires that closed-loop eigenvalues of the estimators are inside the

unit circle (i.e.

∣∣∣∣λ((ÃAA(i)
−LLL(i)C̃CC

(i)
))∣∣∣∣ < 1. Rapid estimation occurs if these

eigenvalues are inside a circle with radius 1/o for o > 1 [129]. In such case,
the estimated state converges to the actual state as the error converges to zero
(i.e. ‖eee(i)k ‖2 → 0 for k → ∞ resulting in αααk ≡ αααk for large k). For detectable
systems a gain matrix LLL(i) that ensures asymptotic stability can always be de-
signed. However, LLL(i) can only influence the observable eigenvalues of the pair

(C̃CC
(i)
, ÃAA

(i)
). As a consequence, the convergence rate of the estimation error

‖eeek‖2 will depend on the slowest eigenvalue of ÃAA
(i)

− LLL(i)C̃CC
(i)

. Hence, sensor
placement should ensure that the state estimator is able to influence/adjust the

slowest observable eigenvalues of the pair (C̃CC
(i)
, ÃAA

(i)
). Sensor placement – viz.

the design ofCCC in (5.12) – should thus render the slowest eigenvalues of ÃAA
(i)

ob-
servable as they determine the maximum attainable decay rate of the estimation
error (see Section 5.3.3).

The gain matrix LLL(i) can be designed by employing the duality between de-
tectability/observability and stabilizability/controllability [130]. The duality between
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control and estimation suggests that standard control techniques can be em-
ployed to develop the estimator. Here a standard discrete linear quadratic regu-
lator (LQR) is used to obtain LLL(i) since the algorithm is more convenient to work
with for large system matrices than other methods in MATLAB (e.g. pole place-
ment with place). The design method is briefly summarized here. The discrete
LQR problem minimizes a quadratic cost-function given by [131]

J =

∞∑
k=0

(
ααα†
kQQQαααk + yyy†kRRRyyyk

)
, (5.27)

where RRR a positive definite matrix and QQQ a positive semidefinite matrix. For a
detectable system the estimator gain matrix LLL(i) that minimizes (5.27) can be
determined as

LLL(i) =

(
RRR+ C̃CC

(i)
XXXi(C̃CC

(i)
)†
)−1

(C̃CC
(i)
XXXi(ÃAA

(i)
)†), (5.28)

where XXXi the positive definite solution to the discrete algebraic Riccati equation
(DARE) given by [131]

XXXi =ÃAA
(i)
XXXi(ÃAA

(i)
)†

− (ÃAA
(i)
XXXi(C̃CC

(i)
)†)(RRR+ C̃CC

(i)
XXXi(C̃CC

(i)
)†)−1(C̃CC

(i)
XXXi(ÃAA

(i)
)†) +QQQ.

(5.29)

Relations (5.28)-(5.29) suggest that the computation of the gain matrix LLL(i) re-
quires solving the DARE for each flow i. However, choosing an output matrix
which is invariant under reorientation (i.e. CCC = CCCRRRi−1

Θ ) renders both (5.29) and
(5.28) invariant under rotation as well. To see this, observe that rotation invari-

ance of the output matrix means that C̃CC
(i)

= C̃CC
(1)

. Moreover, the state matrix

ÃAA
(i)

= ÃAA
(1)

by definition (i.e. this follows from (5.17) since ΛΛΛ(i) = ΛΛΛ in (5.13)).

Hence, designing the estimator for the pair (C̃CC
(1)
, ÃAA

(1)
) is the same as designing

the estimator for the pair (C̃CC
(2)
, ÃAA

(2)
). As a consequence, state estimation with

the gain matrix designed for the base flow (i = 1) can also be applied to perform
state estimation for the reoriented flows (i > 1) (i.e. LLL(1) = LLL(i)). A mathematical
derivation of the above discussion is presented in Appendix E.

In Chapter 6 a state estimator will be presented that estimates the field in the
presence of a periodic flow. The flow consists of the periodic activation of flows
according to u(t) ∈ U for reorientation scheme U = {1, 2, 1, . . .}. According to
(5.16)-(5.17), the (periodic) switching of flows inevitably leads to a reorientation of
the eigenmodes that describe the relevant heating dynamics (i.e. heat transport
by flows 1 and 2 is expressed in GGG(1) and GGG(2), respectively). As a result, the
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error dynamics for the periodic activation of flows is described by

εεε(tk+1) =GGG(2)(ÃAA
(2)

−LLL(2)C̃CC
(2)

)
(
GGG(2)

)+
·

·GGG(1)(ÃAA
(1)

−LLL(1)C̃CC
(1)

)
(
GGG(1)

)+
εεε(tk).

(5.30)

The matrix product
(
GGG(2)

)+
GGG(1) describes the transition (or saltation) from heat

transport driven by flow 1 to heat transport driven by flow 2 and is also referred to
as a saltation matrix [106]. For an output matrix that is invariant under reorienta-
tion, the error dynamics in (5.30) can be simplified to

εεε(tk+1) = RRR2
Θ

(
RRR†

ΘGGG
(1)

(
ÃAA

(1)
−LLLC̃CC

(1)
)(

GGG(1)
)+)2

εεε(tk),

= AAA2
perεεε(tk),

(5.31)

whereRRRI
Θ = III [132] and LLL(i) = LLL based on the discussion following after (5.29)

(see Appendix F for derivation of (5.31)). For the state estimator to estimate
the temperature field in a periodic flow the error dynamics in (5.31) need to be
stable. Hence, the gain matrix LLL needs to ensure that the eigenvalues ofAAAper in
(5.31) are inside the unit circle. However, computation ofAAAper and its eigenvalues
typically require long computation times due to its dimension (i.e. AAAper ∈ CN×N ).
Here, the stability of the error dynamics for the switching system is gauged by
investigating whether ample time is spent to estimate temperature fields before
switches occur (i.e. dwell-time between switches should be sufficiently large to
ensure ‖εεε(t)‖2 decays [133]). For a periodic flow with a period of NT time, this
requires that, e.g., ‖εεε(tkNT

)‖2 ≥ ‖εεε(t(k+1)NT
)‖2.

The size of the state-space and the number of inputs considered here is large.
This allows for a very large number of possible choices for the weighing matrices
QQQ and RRR. Following a “classical” simplification (e.g. see Kwakernaak and Sivan
[134]), the complexity ofQQQ andRRR is reduced by considering them diagonal. This
structure allows for a single diagonal entry of QQQ or RRR to influence a single mode
or output in (5.27) (used in Section 6.2), respectively. The diagonal entries of QQQ
and RRR are considered the same unless stated otherwise. Such a choice results
in a further simplification of the weighing matrices to

QQQ = qIII, RRR = rIII, (5.32)

where q, r > 0. Relation (5.32) simplifies the interpretation of (5.27) significantly.
Namely, increasing q – or, equivalently, decreasing r – penalizes the state – or
the output – more in (5.27) (i.e. increasing q puts more emphasize on the state ααα
in (5.27) compared to the outputs). Further simplification of (5.29) – or (5.28) for
that matter – by using the simplified weighing matrices in (5.32) is not necessarily

feasible/insightful, since C̃CC
(i)

= CCCGGG(i) is a dense matrix. This dependence of the
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output matrix on the eigenmodes prevents a further simplification of either (5.29)
or (5.28) (e.g. through diagonalization of (5.29)). Nonetheless, substituting (5.32)
in (5.29) combined with (5.17) reveals that solution X̃XXi of (5.29) is determined by

X̃XXi =ÃAA
(i)
X̃XXi(ÃAA

(i)
)†

− (ÃAA
(i)
X̃XXi(C̃CC

(i)
)†)(III + C̃CC

(i)
X̃XXi(C̃CC

(i)
)†)−1(C̃CC

(i)
X̃XXi(ÃAA

(i)
)†) +

q

r
III.

(5.33)

where XXXi = rX̃XXi. Hence, the tuning of QQQ with respect to RRR – with matrices
according to (5.32) – through adjusting q/r determines the contribution of the
states ααα to (5.27) relative to the contribution of the outputs in (5.27).

5.3.3 Sensor placement methodology

A key step to accurate state estimation is proper input/output selection [135]. At-
tention is focussed on output selection, viz. sensor placement, since actuators
are already selected in the RAM. The analysis in Section 5.3.2 reveals two impor-
tant conditions for sensor placement in a system with reoriented flows:

i) Sensors should be placed such thatCCC is invariant under reorientation (see
discussion after (5.29)).

ii) Sensors should render the lower order modes observable.

Condition i) can significantly reduce computation times required to obtain LLL(i),
which becomes especially important upon including a larger number of flows. To
meet condition i) the following approach is followed to place p sensors for I = 2
flows. The first bp/Ic sensors are optimally placed for state estimation with heat
transport governed by the base flow (i = 1). Eigenmodes for the reoriented
flow (i = 2) differ by at most a reorientation. Optimal sensor locations for the
reoriented flow can thus also be obtain by a mere reorientation. The optimal
locations for the base flow are rotated by Θ and serve as the location for the
second bp/Ic sensors. The process continues until all Ibp/Ic are placed.

Condition ii) follows from the observation that (5.24) can only confirm whether
an eigenvalue is observable or not. For example, multiple sensor locations can
render the same eigenvalue observable. However, (5.24) provides no means to
determine which location is optimal. A large variety of criteria can be optimized
to obtain proper sensor locations (i.e. proper in the sense of a selected crite-
rion). Sensor placement techniques are available that optimize the modelling
error [136], minimize error dynamics [137], maximize modal observability [138] or
optimize Gramian-based selection [139]. These techniques focus on the infinite
dimensional PDE and rely on the absence of either advection or diffusion during
sensor placement. Here, sensor placement needs to ensure that sensors enable
accurate state estimation with an estimator (developed in Section 5.3.2) in the
presence of both advection and diffusion. Field estimation/reconstruction from
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5. Numerical feasible model and field estimation for scalar transport

measurements requires knowledge of each eigenmode to do so, since the model
in (5.16) consists of spectral coefficients. Therefore, sensor placement for optimal
modal observability, following a modified version of the approach presented by Ar-
maou and Demetriou [138], is considered here. The method is preferred here as
it also explicitly minimizes the effect of spill-over from higher-order modes dur-
ing estimation. Spill-over effects can, inadvertently, cause instability and/or noise
amplification and are thus important to consider during sensor placement.

The considered sensor placement method, maximizes the cumulative observ-
ability of the low-order modes under the spatial H2 norm. A key criterion in this
method is that dynamic behaviour can be described by a finite set of eigenmodes.
The transfer functionHHH(1)(s) describing this behaviour can be determined by tak-
ing the Laplace transform of (5.6) which, combined with (5.14), results in

T̃TT (s) = −GGG(1) (sIII −ΛΛΛ)
−1
(
GGG(1)

)+
T̃TT (0) + κGGG(1) (sIII −ΛΛΛ)

−1
(
GGG(1)

)+
bbbT̃a(t),

≈ −GGG(1) (sIII −ΛΛΛ)
−1
α̃αα(0) + κGGG(1) (sIII −ΛΛΛ)

−1
(
GGG(1)

)+
bbbT̃a(t),

= −HHH(1)(s)α̃αα(0) + κHHH(1)(s)
(
GGG(1)

)+
bbbT̃a(t), (5.34)

such that

H(1)
nm(s) = G(1)

nm

(
s− λ(1)m

)−1

. (5.35)

Transfer function H(1)
nm(s) describes the behaviour between mode m and an out-

put sampled with a sensor placed at xxxn ∈ DDD. The H2 norm of the transfer
function H(i)

nm(s) in (5.40) has an analytical expression given by

‖H(1)
nm(s)‖H2 =

(
1

2π

∫ ∞

−∞

∣∣∣H(1)
nm(jω)

∣∣∣2dω)1/2

,

=

(
D

(1)
nm

2|Re(λm)|

)1/2

,

(5.36)

where D(1)
nm =

(
Re
(
V

(1)
nm

))2
+
(
Im
(
V

(1)
nm

))2
. Relation (5.36) can be inter-

preted as the time domain norm of a system’s response to a unit impulse [54].
In essence, investigating heating of a cold fluid by a hot boundary can be viewed
as studying the step-response. Hence, evaluation (5.36) for sensor placement
is well-suited for the fluid heating system at hand. The relative spatial modal
observability of each mode m in (5.40) is defined for flow 1 as [138]

N (1)
nm =

‖H(1)
nm(s)‖H2

max
n

‖H(1)
nm(s)‖H2

× 100%, (5.37)

where ‖.‖H2
indicates the H2 norm [140] and s = jω ∈ C with ω the angular fre-

quency and j =
√
−1. The elements N (1)

nm thus express the relative observability
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5.3 Estimation of scalar transport

of a mode m from an output with a sensor at xxxn ∈DDD. High (low) values for N (1)
nm

indicate that a sensor at xxxn is more (less) sensitivity to the mode m according
to (5.37). Relation (5.36) thus suggests that (5.37) represents the ratio between
a mode’s spatial magnitude at xxxn with respect to its peak spatial magnitude (i.e.

N
(1)
nm =

(
D

(1)
nm/max

n
D

(1)
nm

)1/2
). To maximize the modal observability of the first

p modes in (5.40) and, simultaneously, minimize the spill-over effects of the re-
mainingM−p higher order modes, the following condition, adopted from Armaou
and Demetriou [138], is optimized

argmax
n∗

(
S(1)
n − ωsL

(1)
n

)
, for N (1)

nm ≥ β, (5.38)

where n∗ the optimal sensor location at xxxn∗ , β an observability threshold, ωs a
weighing function and

S(1)
n =

√
m=p∑
m=1

‖H(1)
nm(s)‖2H2

max
n

√
m=p∑
m=1

‖H(1)
nm(s)‖2H2

, L(1)
n =

√
m=M∑
m=p+1

‖H(1)
nm(s)‖2H2

max
n

√
m=M∑
m=p+1

‖H(1)
nm(s)‖2H2

.

(5.39)
The ratios S(1)

n and L(1)
n represent the cumulative modal observability of the p

lower order modes andM−p higher order modes observed from a sensor placed
at xxxn ∈ DDD, respectively. Following the optimization of (5.38), the mth sensor is
placed at xxxn∗ (i.e. the mth row of CCC consists of zeros and contains a one in the
n∗ column). The optimization is repeated until all bp/Ic sensors are placed.

The placement of sensor m at a location xxxn inhibits placement of another
sensor with a certain proximity (e.g. due to the dimensions of the sensor). This is
incorporated in the optimization (5.38) by excluding a set of grid points surround-
ing the placed sensors. Sensor locations inside a circle with radius r surrounding
location xxxn are excluded from the optimization in (5.38). Here, two times the nor-
malized diameter of a regular thermocouple is considered an appropriate radius

(i.e. a non-dimensional distance of r ≈ 1.6 ·10−5). Both the state matrix ÃAA
(i)

and

the output matrix C̃CC
(i)

reorient, due to transformation matrix GGG(i) in (5.14), as a
consequence of the activated flow i. Hence optimal sensor locations will depend
on the activated flow as well. In the considered sensor placement method, sen-
sors are placed based on the eigenmodes associated with heat transport follow-
ing the activation of the base flow i = 1 (i.e. described by columns ofGGG(1)). The
sensors for other flows (i.e. i > 1) in the system are placed at reorientations of
these locations. Placed sensors are considered immovable and thus remain fixed
at their location xxxn regardless of the (de)activated fluid flow (i.e. according toCCC in
(5.12)). Part of the placed sensors will therefore always be (sub)optimally placed
for state estimation if the above procedure is followed. Moreover, the above-
mentioned placement approach renders all sensors suboptimally placed for state
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5. Numerical feasible model and field estimation for scalar transport

estimation in the absence of flow (i.e. eigenmodes associated with mere diffusion
differs by more than a reorientation from the eigenmodes associated with the
base flow). This can result in suboptimal performance of the field estimator in the
absence of flow. However, results show that state estimation is relatively insen-
sitive to the suboptimal sensor placement in the absence of flow as opposed to
state estimation in the presence of flow (see Chapter 6). Therefore, sensors are
place solely on eigenmodes associated with the base flow.The weighted residual
ωs in (5.38) can be used to reduce spill-over effects of higher order modes in the
optimization. Here including the residual has, regardless of any nontrivial weight,
been found to have little influence on optimal sensor placement. Finally, relations
(5.35) through (5.39) are readily obtained on the discrete gridDDD.

To examplify the physical interpretation of the optimization in (5.38), consider
the simplified situation when T̃a = 0 for i = 1. In that case, the response of
(5.14)-(5.17) to a non-trivial initial condition ααα(1)(0) – viz. a cold fluid – can be
expressed as

Y (1)
n (s) = CCCnṼVV

(1)
(
sIII − Λ̃ΛΛ

(1)
)−1

ααα(1)(0) =

m=M∑
m=1

H(1)
nm(s)α(1)

m (0), (5.40)

where ααα(i)(0) 6= 000 in order for heating to occur in the RAM and n such that
xxxn ∈ DDD for n ∈ {1, ..., N}. The output vector CCCn consists of zeros, where
only a single element is non-zero. The effect of placing sensors according to
(5.38) can be gauged from (5.40). Maximizing (5.38) for the first p modes results
in the “amplification” of the associated initial conditions in (5.40) relative to the
M − p higher order modes. A similar observation, albeit less straightforward in
its interpretation, follows for T̃a(t) 6= 0.

Figure 5.4 shows the 48 sensor locations for the advective-diffusive eigen-
modes with model parameters presented in Table 5.2. The observability of the
eigenmodes are deemed acceptable when β = 0.95. The first 24 optimal sensor
locations, following the minimization of (5.38), are indicated by white squares in
Figure 5.4. The second 24 sensors, following a reorientation of the optimal sen-
sor locations for the base flow, are indicated by black circles in Figure 5.4. The
cyan crosses in Figure 5.4 indicate the sensor location that maximizes the ob-
servability of the shown mode (viz. the cyan cross in Figure 5.4(a) indicates the
n-th sensor that maximizes N (1)

m,n for m = 1).

Figure 5.4 reveals that sensors are placed in or close to the maxima (or min-
ima) of the respective eigenmode. Sensor placement is confined to a smaller
region of the flow domain for eigenmodes with flow. Lensvelt et al. [55] showed
that heat transport in the RAM primarily occurs in close proximity to an activated
aperture. Sensor placement in the vicinity of the aperture therefore makes physi-
cal sense since most of the relevant heating dynamics occurs there.
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(a) m = 1 (b) m = 2 (c) m = 3 (Re) (d) m = 3 (Im)

Figure 5.4: The first four dominant modes associated with the base flow (i = 1) of
the RAM. Parameters used to obtain optimal sensor locations are adopted from
Table 5.2. White squares: optimal sensor locations for the base flow (i = 1);
black circles: optimal sensor location for reoriented flow; cyan crosses: optimal
sensor for mode m.

5.4 Comparative analysis

In this section, results of estimated and experimentally obtained temperature
fields are compared. The analysis consists of three distinctive parts. First, param-
eters in (5.5), required for numerical simulation, are obtained from experiments
based on the identification procedure presented in Section 5.3.1. Next, these pa-
rameters are used to place sensors inside the fluid container of the RAM. Sensor
placement with the base flow and by mere diffusion according to results in Section
5.3.3 is investigated here as well. Finally, sensor locations and model parame-
ters are used to obtain state estimators. A comparison is made between both the
estimated and measured fields to investigate the accuracy of state estimation.

5.4.1 Parameter identification

Experiments can last extremely long for the RAM as Péclet numbers decrease.
Thermal experiments are limited to a fixed time of three hours to ensure practical
feasibility. As a result of long experiment times, experiments have been per-
formed at different times and/or days. This can result in different behaviour for
the ambient temperatures as the absolute ambient temperature can differ per ex-
periment. Its normalisation in (5.4) ensures that ambient temperatures are com-
parable across experiments. Therefore, ambient temperatures are normalised by
the minimal and maximal temperatures, respectively, T0 and T∞, and are mea-
sured during each experiment with a set of thermocouples. The thermocouples
are placed close to the open surface in RAM (see Figure 5.2b) without obstructing
the thermal camera’s view (i.e. bottom right corner in 1 in Figure 5.2a).

Figure 5.5 shows the measured normalized ambient temperatures T̃a for two
different experiments (i.e. for the base flow (i = 1) and for mere diffusion (i = 0)).
The normalized ambient temperatures T̃a fluctuates in time. However, the aver-
age normalized ambient temperature, denoted by µ(T̃a(t)), deviates by less than
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Figure 5.5: Evolution of the normalized ambient temperature measured surround-
ing to RAM for two different experiments used for parameter identification. Heat
transport is driven by the base flow (black) or by mere diffusion (red).

1 % between experiments. The low variability of µ(T̃a(t)) between experiments
suggests that both the ambient conditions and the measurement of T̃a are con-
sistent. The standard deviation of the normalized ambient temperature, denoted
by σ(T̃a(t)), is at most 2 % (i.e. σ(T̃a(t)) ≈ 0.02 in Figure 5.5). This implies that
T̃a can be viewed as a time-independent constant input in (5.10)-(5.11). However,
numerical simulations reveal that even small deviations in the input T̃a between
experiments can potentially have a large impact on the quality of field estima-
tion. Moreover, Figure 5.5 shows that the normalized ambient temperature is
skewed towards the start of the experiment (i.e. µ(T̃a(t)) changes only slightly
after 60 minutes of sampling T̃a(t) in experiments). In addition, obtaining a real-
time measurement of the average normalized ambient temperature takes a long
time compared to the duration of an experiment (i.e. sufficient samples of T̃a
need to be measured before an accurate average is obtained). Hence, µ(T̃a(t))
needs to be determined a posteriori. As a consequence, T̃a is assumed constant
during the parameter identification procedure.

Model parameters are estimated according to (5.19) based on experiments
with either the base flow or mere diffusion. The base flow (i = 1) circulates the
fluid in clockwise direction for a belt-speed U = 0.004m/s (see Figure 5.3b). To
determine identifiability of θθθ, (5.18) is evaluated for heat transport with the base
flow and by mere diffusion. Numerical evaluation of (5.18) reveals that SSSK−1 is
only full rank for mere diffusion in the considered parameter span. Therefore, θθθ
is guaranteed to be theoretically structurally identifiable in (5.10)-(5.11) for mere
diffusion. The minimization of (5.19) for experiments with the base flow requires
further analysis though. In addition, numerical solutions to a least-square problem
– like (5.19) – can converge to a set of parameters that are only locally optimal
[141]. Different numerical solutions to (5.19) can, e.g., indicate the presence
multiple optima [141] or the presence of numerical errors [127]. The optimization
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is therefore started from different initial guesses for θθθ∗. The relative proximity of
the obtained parameter estimates gives information about the optimality of the
parameters (e.g. close proximity of these parameter estimates implies the same
optimum is found). The close proximity of the residuals J(θθθ∗) implies that the
found optimum is unique. Numerically estimated parameters θθθ∗ are shown in
Table 5.2.

Table 5.2: Numerically estimated θθθ∗ based on the optimization according to (5.19)
for an the experiment with mere diffusion (i = 0) and the base flow (i = 1) with
belt speed U = 0.004m/s.

Parameter α [m2/s] κ ξ

Diffusion (i = 0) 3.3 · 10−7 45.1 −
Base flow (i = 1) 1.0 · 10−6 0.052 0.36

Thermal diffusivity is estimated at a consistently higher than the theoretical
value with pure silicone oils (or polydimethylsiloxane (PDMS)) for the experiment
with the base flow. The parameter identification method in (5.19) identifies a
thermal diffusivity coefficient in the experiment with flow comparable to those pre-
sented in Baskan et al [17]. Moreover, the estimated value is significantly elevated
compared to values typically found for pure silicone oils (or PDMS) [142]. How-
ever, the parameters in Table 5.2 reveal that the estimated thermal diffusivity is
estimated 66 % lower for the experiment with mere diffusion. This difference is
caused by the characteristic time-scales used to non-dimensionalize (5.1). As a
consequence, ξ and α are indistinguishable in the output and are thus estimated
together (see Appendix D). The factor α/ξ ≈ 9.25 · 10−7 m2/s – where ξ and α
estimated for the experiment with, respectively, the base flow and mere diffusion
– is close to the thermal diffusivity estimated for the base flow though. Hence, the
parameter identification method consistently overestimates α by the same factor.
As a result, the estimated Péclet number is much lower than observed in previ-
ous experiments (i.e. Pe = 104 in Baskan et al. [17]). The silicon oil used in
this work differs from the oil used in experiments by Baskan et al. [17]. The con-
sistent overestimate of α combined with the model’s agreement with experiments
suggests that the overestimate in α could have been caused by impurities in the
oil rather than significant model error (see Section 5.4.2 for details).

The estimated heat transfer coefficient for experiments with the base flow and
mere diffusion differ significantly. Note however that the values of κ in Table 5.2
are valid for different non-dimensionalizations (see Section 5.2.2). Taking into
account the difference between these non-dimensionalizations, reveals a devi-
ation of 21 % between the ratio of estimated heat transfer coefficients and its
expected theoretical value based on the estimated parameters in Table 5.2 (i.e.
κ0/κ1 ≈ 854 differs by 21 % from the equivalent UR/(α0/ξ1) ≈ 1.08·103 where
“0” and “1” indicate the model parameters for mere diffusion and the base flow in
Table 5.2, respectively). A large value for κ indicates a large impact of ambient
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heat loss on the overall heat transport inside the fluid. This can be understood
from (5.10)-(5.12) as follows. The introduction of a heat-loss term according to
(5.2) results in eigenvalues as

Λ̃ΛΛ
(i)
∣∣∣∣
κ 6=0

= −κIII + Λ̃ΛΛ
(i)
∣∣∣∣
κ=0

, (5.41)

for i = 0, 1, 2. The eigenvalues in (5.41) show that the loss term adds an ad-
ditional negative real part to the eigenvalues of the Perron-Frobenius operator
without heat loss. The additional term results in accelerated heat transport com-
pared to heat transport without ambient heat loss (i.e. κ = 0). Moreover, (5.8)
reveals that input T̃a acts, scaled by κ, on the transient temperature field T̃TT . This
implies that input T̃a has a larger impact on T̃TT for larger κ. The estimated pa-
rameters thus suggest implies that fluid heating in the RAM is more susceptible
to heat loss in the absence of a fluid flow.

The scaling factor is estimated at ξ = 0.36 for the experiment with the base
flow. The estimated scaling factor is considerably lower than the ξ = 0.86 pre-
sented by Baskan et al. [69]. They introduced the scaling factor ξ to compensate
for weak 3D effects resulting in a local departure from a full 2D Stokes flow in
the RAM. The largest deviation between the experimentally and numerically ob-
tained flow fields is found close to the activated aperture. The notable difference
with the experiments in this work and in Baskan et al. [69] are the experimental
settings. Here, the belt speed is reduced from U = 0.005 m/s to U = 0.004
m/s and the silicon oil (glycerol-water) layer thickness is reduced (increased) to
0.004 m (0.006 m) versus 0.005 m to ensure proper alignment (see the discus-
sion above Table 5.1). The changes in experimental settings directly influence
the fluid flow close to the aperture. Namely, the reduction in layer thickness of
the glycerol-water mixture can result in additional 3D-effects that influence the
flow field. Additionally, the scaling factor ξ captures the deviation of the exper-
imental and numerical temperature field evolution. Hence, ξ accounts for more
than just deviations in the flow field (e.g. deviations due to a heat loss term with
a non-homogeneous heat-transfer coefficient).

5.4.2 Predictive ability of the model

The model in (5.10)-(5.12) needs to be able to accurately predict fluid heating in
order to, eventually, be included in a control loop. Accurate prediction of transient
behaviour is key for fast prediction in closed-loop. In addition, close resemblance
of temperature fields from the model with those from the experiments is essen-
tial for good performance of the field estimator in Chapter 6 (i.e. state estima-
tion is namely dependent on accurate measurements and an accurate predictive
model). This warrants a closer examination of temperature field snapshots to
assess the accuracy of the model.

Figure 5.6 shows temperature field snapshots for both the experiments (top
row) and model (bottom row) for mere diffusion. Snapshots show qualitative
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agreement of the temperature fields between model and experiments. Axisym-
metry of the temperature field is preserved even though i) thermal images re-
quire image distortion compensation (e.g. to compensate for lens distortions)
and ii) local variation of the heat conduction coefficient in the annulus (e.g. at
the belt-aperture interface). Furthermore, temperatures are slightly lower in the
model compared to the experiments at the core of the fluid domain (i.e. around
x = y = 0). Despite the abovementioned deficiencies, numerical prediction by
(5.10)-(5.12) is accurate enough to capture heating.

t = 5 [min] t = 10 [min] t = 15 [min] t = 20 [min]

Figure 5.6: Measured (top row) and numerical (middle row) temperature snap-
shots (blue: min(T̃ ) = −0.5; red: max (T̃ ) = 0) combined with the error (bottom
row) (blue: min(εεε) = −0.2; red: max (εεε) = 0.2) between them for a RAM with
mere diffusion (i = 0). Model parameters used during numerical simulation are
taken from Table 5.2.

Figure 5.7 shows temperature field snapshots between the experiments (top
row) and model (bottom row) with the base flow. Constant belt motion of 0.004
m/s at one of the available apertures induces a fluid flow. This fluid flow even-
tually produces the hot plume observed in Figure 5.7. The model shows qualita-
tively similar heating to the experiments with flow. However, the plume formed in
the numerical simulation is better developed and is thus easier to discern than in
the experiments. A ”cold” spot can be observed in close proximity to the activated
aperture in both the numerical simulation and experiment, which is encircled by
the hot plume as time progress. This cold spot is more distinct for the numerical
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simulation than in the experiment. However, the discrepancy diminishes as time
progresses and the fluid heats up.

t = 5 [min] t = 10 [min] t = 15 [min] t = 20 [min]

Figure 5.7: Measured (top row) and numerical (middle row) temperature snap-
shots (blue: min(T̃ ) = −1; red: max (T̃ ) = 0) combined with error (bottom row)
(blue: min(εεε) = −0.2; red: max (εεε) = 0.2) between them for the base flow with
belt speed U = 0.004 m/s (i = 1). Model parameters used during numerical
simulation are taken from Table 5.2.

The model’s capacity to capture a cost-function, that accurately describes
fluid heating, is studied next. The cost-function that accurately captures fluid
heating is defined as [55]

J2(t) =
1

π

∫
D
T̃ 2(xxx, t)d2xxx ≈ 1

π

N∑
i=1

T̃ 2(xxxi, t)∆Ai =
1

π
T̃TT

†
(t)AAAT̃TT (t). (5.42)

The cost-function in (5.42) is successfully used in numerical simulations to boost
fluid heating in the RAM [55]. Hence, accurate predictions of the scalar field –
and thus also the cost-function – with the model will prove vital to replicate these
results in practice. The cost-function J2(t) is shown in Figure 5.8 for both ex-
periments and model. Based on Figure 5.8 the model captures the qualitative
behaviour fairly accurately. The model where heat transport is driven by the base
flow or mere diffusion both show similar exponential decay of J2 compared to
their respective experiments in Figure 5.8(a) and Figure 5.8(b). Moreover, heat
transport by mere diffusion is captured especially well. A relatively small error is
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observed between the cost-function of the model and experiments at steady-state
in the absence of any flow. This steady-state error in Figure 5.8a is comparable in
magnitude to the steady-state error in Figure 5.8b. However, the cost-function J2
is consistently underestimated for the model with the base flow throughout the en-
tire time window, whereas it is overestimated by the model for mere diffusion only
at the end of the time window. The model for mere diffusion captures transient
behaviour quantitatively better than “steady-state” behaviour in the considered
time span.

(a) u = 0
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Figure 5.8: The cost-function J2(t) for different experiments and model
(5.10)-(5.12) with parameters from Table 5.2 as a result of heating (a) by mere
diffusion and (b) with the base flow.

5.4.3 Numerical field estimation

In this subsection the estimator, presented in Section 5.3.2, is investigated nu-
merically. Numerical field estimation is investigate for heat transport driven by a
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fluid flow and by mere diffusion in sections 5.4.3.1 and 5.4.3.2, respectively. Field
estimation is performed with an estimator gain LLL designed on the sensor place-
ment presented in Section 5.3.3. Note that this sensor placement is suboptimal
for heat transport by mere diffusion, since sensors are optimally placed in Section
5.3.3 for detectability in the presence flow. The output vector ŷyy – used for field
estimation in (5.25) – is generated by a standard FVM code [143]. The output
vector and transient temperature fields obtained from the FVM code are hence-
forth referred to as the nominal output (vector) and nominal transient temperature
fields, respectively. The truncated model used in (5.25) is constructed using the
spectral method presented by Lester et al. [16].

5.4.3.1 Numerical field estimation by mere diffusion

Field estimation is performed on a truncated state-space model according to
(5.25). The number of eigenmodes considered in GGG(i) determine the accuracy
temperature field according to (5.14). The effect of the number of considered
eigenmodes on the field estimation is investigated by evaluating field estimation
accuracy for different M .

Numerical results from the field estimator for heat transport by mere diffusion
are shown in the top row of Figure 5.9. The second and the fourth row of Figure
5.9 show the estimation error in the transient temperature field for M = 500 and
M = 1000, respectively. Peak estimation errors are εεε(t) ≈ 0.1 and εεε(t) ≈ 0.07
for GGG(0) with M = 500 and M = 1000 eigenmodes, respectively. Both field
estimation errors show similar oscillations throughout DDD. These oscillations are
a result of the model truncation presented in Section 5.2. They are reminiscent
of the Gibbs phenomenon. The high frequency eigenmodes – present in the nu-
merically “measured” ŷyy – cannot be captured exactly by the lower order modes
considered during field estimation in (5.25). Based on Figure 5.9, the error ap-
pears to decrease as more eigenmodes are considered in field estimation with
(5.25). Hence, increasing M diminishes the impact of the Gibbs phenomenon.
Moreover, errors seem largely confined to close proximity of the boundary for
M = 1000. Beside the number of modes M , the evolution of the field estimation
error εεε depends on the design of LLL as well. The estimator design depends on
both weighing functionsQQQ andRRR according to (5.32). Therefore, the evolution of
the estimation error for different q/r tunings is investigated further.

Figure 5.10 shows the numerical result of field estimation for different ratios
q/r with weighing matrices QQQ and RRR according to (5.32). In Figure 5.10, field
esimation is performed for M = 500 eigenmodes (indicated by the solid lines) as
well as for M = 1000 eigenmodes (indicated by the dashed lines). Figure 5.10
reveals that increasing the number of eigenmodes in GGG(i) significantly improves
field estimation regardless of the ratio q/r used to design the state estimator.
Figure 5.10b shows that high values for q/r have little impact on improving field
estimation accuracy. However, increasing the state’s cost penalization in (5.27) is
found to slightly decrease the accuracy in field estimation for the q/r considered
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t = 5 [min] t = 10 [min] t = 15 [min] t = 20 [min]

Figure 5.9: Estimated transient temperature snapshots for heat transport by mere
diffusion withM = 500 (first row) andM = 1000 (third row) eigenmodes in (5.14)
(blue: min(T̃ ) = −1; red: max (T̃ ) = 0). Error with M = 500 (second row)
and M = 1000 (fourth row) eigenmodes between the estimated and nominal
transient temperature fields (blue: min(εεε) = −0.005; red: max (εεε) = 0.005).
Model parameters used during numerical simulation are taken from Table 5.2.

in Figure 5.10b. Decreasing q/r serves to improve the field estimation accuracy
for any number of eigenmodes considered here. The effect is more pronounced
for a smaller number of eigenmodes (i.e. changing RRR has a larger impact on J̃
for M = 500 than for M = 1000).

From the numerical results it can be concluded that considering M = 1000
eigenmodes results in sufficiently accurate estimation of heat transport by mere
diffusion. The above analysis reveals no clear preference for a certain choice of
ratio q/r. Closer examination of Figure 5.10 revealed that q/r < 1 is slightly pref-
erential to boost estimation performance here. The apparent invariance of J̃ to
changes in q/r in Figure 5.10 is caused by the relatively large number of eigen-
modes considered during estimation for mere diffusion. For such large numbers
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(a) Small q/r.
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(b) Large q/r.
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Figure 5.10: The cost-function J̃(θθθ∗, t) for small (a) q/r and (b) large q/r with
parameters from Table 5.2 as a result of heating. Field estimation with only the
first M = 500 dominant eigenmodes are represented by solid lines. Estimation
with M = 1000 eigenmodes is represented by dashed by dashed lines.

of eigenmodes (i.e. M ≥ 500), the ICs at the start of the estimation process –
obtained from the nominal IC with (5.14) – are already close to the nominal ICs.
This results in the observed rapid convergence and in the apparent invariance
of J̃ for changes in q/r observed in Figure 5.10. Note, however, the ratio influ-
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ences the weighing matrices that determine gain matrix LLL and thus determine
the amplification of noise during estimation (e.g. amplification of measurement
noise or perturbed ICs). The state estimator is evaluated in the absence of noise
though. In Chapter 6, the state estimator is investigated further for experimental
measurements and thus includes the presence of noise.

5.4.3.2 Numerical field estimation for the base flow

Numerical field estimation for heat transport driven by the base flow is investi-
gated for various M . Transient temperature field estimation is performed on the
sensors placed in Section 5.3.3. As (some) sensors are suboptimally placed (i.e.
according to the methodology in Section 5.3.3) they can potentially influence field
estimation accuracy. Therefore, the impact of sensor placement on the field es-
timation accuracy is investigated as well. The effect of sensor placement used
to design LLL(1) is investigated in Appendix G. Field estimation for the base flow
is performed on the truncated state-space model (5.25). Transient temperatures
fields T̃TT for heat transport driven by the base flow are again generated by a stan-
dard FVM code [143].

The number of eigenmodes considered in GGG(i) determines the accuracy of
the temperature field according to (5.14). Field estimation is performed with an
estimator gain matrix LLL(i) designed on the sensors placed in Section 5.3.3. The
base flow is rescaled compared to the parameter estimation in Section 5.4.1 by
decreasing the belt speed from U = 0.004 m/s to U = 0.001 m/s. Ratio-
nale for this rescaling of the base flow is that the experimental settings for field
estimation in Chapter 6 differ from those used during the parameter identifica-
tion in Section 5.4.1. Rescaling of U results in a lower Pe according to (5.5).
This means that the eigenmodes in GGG(i) change with respect to those consid-
ered during sensor placement in Section 5.4.1. As a consequence, the sensors
are suboptimally placed for field estimation with heat transport driven by the base
flow. The changes in the eigenmodes by altering Pe can be quite substantial
(e.g. see Lester et al. [109]). However, numerical results show that rescaling U
yields only slightly different eigenmodes than those used to place the sensors in
Section 5.3.3.

Transient temperature field snapshots for heat transport driven by the base
flow are shown in the top row of Figure 5.11. The middle and the bottom row of
Figure 5.11 show snapshots of the estimation error for field estimation with GGG(1)

consisting of M = 500 and M = 1000 eigenmodes, respectively. Peak esti-
mation errors are found at εεε(t) ≈ 0.11 and εεε(t) ≈ 0.09 for field estimation with
M = 500 and M = 1000 eigenmodes, respectively. Figure 5.11 reveals that the
maximum field estimation error occurs in close proximity to the aperture edges.
Based on Figure 5.11, the error in the temperature field estimate decreases as
more eigenmodes are considered during field estimation according to (5.25). Be-
side the number of modesM , the evolution of the field estimation error εεε depends
on the design of LLL(1) as well. The estimator design depends on both weighing
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functionsQQQ andRRR according to (5.32). Therefore, the evolution of the estimation
error for different q/r tunings is investigated further.

t = 5 [min] t = 10 [min] t = 15 [min] t = 20 [min]

Figure 5.11: Estimated transient temperature snapshots for heat transport driven
by the base flow with M = 500 (first row) and M = 1000 (third row) eigenmodes
in (5.14) (blue: min(T̃ ) = −1; red: max (T̃ ) = 0). Error with M = 500 (second
row) andM = 1000 (fourth row) eigenmodes between the estimated and nominal
transient temperature fields (blue: min(εεε) = −0.005; red: max (εεε) = 0.005).
Model parameters used during numerical simulation are taken from Table 5.2.

Figure 5.12 shows the field estimation error J̃ for various weighing functions.
The solid and dashed lines indicate field estimation for GGG(1) with M = 500 and
M = 1000 eigenmodes, respectively. Figure 5.12b reveals that heavier penal-
ization of the state – by increasing q/r in (5.27) – results in amplification of the
field estimation error J̃ for M = 500. Increasing the number of eigenmodes in
GGG(1) decreases the field estimation error significantly as can be seen in Figure
5.12a,b. Moreover, the initial oscillations in J̃ observed at the beginning of field
estimation significantly diminish for M = 1000 compared to M = 500. In addi-
tion, increasing q/r has less impact on the estimation error following this initial
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transient forM = 1000. Figure 5.12a reveals that increasing the output penaliza-
tion – by decreasing q/r in (5.27) – results in improved field estimation accuracy
for the weighing functions considered. Moreover, field estimation errors are small-
est when M = 1000 eigenmodes are considered during estimation. Additionally,
the initial transient oscillation of J̃ observed for large q/r in Figure 5.12b is absent
for small q/r in Figure 5.12a. Comparing Figure 5.12a with Figure 5.12b reveals
that the steady-state error also decreases for small q/r. Similar behaviour has
already been observed for field estimation for mere diffusion. Based on these
results, it is concluded that a small q/r is preferential for field estimation with heat
transport driven the base flow as well.

Numerical results show that considering a large number of eigenmodes is
key to accurate field estimation of heat transport for the base flow. Considering
M = 500 eigenmodes is sufficient to guarantee a small error J̃ . However, peak
estimation errors in the transient field are sufficiently minimized by considering
M = 1000 or more eigenmodes. Hence, M = 1000 eigenmodes are considered
in experimental field estimation of the transient temperature field for the base flow
in Chapter 6. Moreover, the results also suggests that decreasing q/r minimizes
the field estimation error significantly.

5.5 Conclusions and discussion

The present study aims to contribute to the detection of scalar transport in (re-
orienting) fluid flows. To this end a dedicated scalar field estimator is developed
that systematically reconstructs the transient temperature field by estimating the
contribution of the “dominant” eigenmodes based on a discrete set of thermal
sensors to capture heating of a cold fluid via a hot boundary in a representative
case study. Field reconstruction is considered for two heat transport mechanisms
that are commonly encountered in industry; transport by i) only diffusion or ii)
both advection and diffusion. In practice, however, a third transport mechanism
is present, i.e., a scalar sink in the form of a reaction term. Here, a case-study
is investigated where convective heat loss to the ambient environment encom-
passes this scalar sink. The ambient heat loss results in the presence of a non-
homogeneous scalar field at steady-state. The detection strategy relies on the
reconstruction of so-called “dominant” eigenmodes, which have been shown es-
sential for the accurate description of scalar transport. The sensors and the there-
upon developed field estimator are, respectively, placed and designed based on
these eigenmodes as well. The considered scalar transport dynamics therefore
play a crucial role in accurately reconstructing the dominant eigenmodes and, as
a consequence, the scalar field.

A Luenburger state estimator is developed by posing the detection problem
as a linear quadratic regulator (LQR) problem. Numerical analysis shows that the
estimator is able to accurately reconstruct/estimate the scalar field. The estimator
is able to capture the scalar field accurately in the absence of fluid flow even
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(a) Small q/r.
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(b) Large q/r.
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Figure 5.12: The cost-function J̃(θθθ∗, t) for (a) small q/r and (b) large q/r with
parameters from Table 5.2 as a result of heating. Field estimation with only the
first M = 500 dominant eigenmodes are represented by solid lines. Estimation
with M = 1000 eigenmodes is represented by dashed lines.

after only a rudimentary tuning of the weighing matrices. Similar results have
been found for scalar field estimation in the presence of the base flow. Moreover,
numerical results reveal that putting less emphasize on the outputs during the
design of the estimator gain matrix leads, in general, to reduced estimation errors.
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In addition, retaining a sufficient number of eigenmodes is crucial to attain low
estimation errors during state reconstruction (i.e. here M = 1000 eigenmodes
suffices for the case study). In Chapter 6, the estimators developed in this chapter
will be investigated further on the basis experimental results.

Future efforts will, first, be focussed on further analysis of the estimator’s (sta-
bility) properties in open-loop heating strategies with multiple flows and, second,
on closed-loop flow control where the scalar field is fed back to achieve rapid
fluid heating. Future studies should aim to improve parameter identification by
incorporating data-driven models based, for example, on Dynamic Mode Decom-
position.
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CHAPTER 6
Experimental estimation of

scalar transport

Abstract - The feedback flow controllers presented in this thesis require the com-
plete instantaneous scalar field to operate. However, the scalar field is usually
only partially available through a finite number of sensors. To reconstruct the
scalar field from the discrete set of sensor data, a field estimator is developed
in Chapter 5. The developed estimator is investigated on a representative case-
study: the RAM. Numerical results in Chapter 5 show that the estimator is able to
accurately reconstruct scalar fields for heat transport governed by mere diffusion
or a single Stokes flow. In this chapter, the estimators ability to reconstruct the
scalar field from experimental sensor data is investigated. Field estimation is –
like in Chapter 5 – investigated on the RAM with heat transport governed by mere
diffusion and a single Stokes flow. The estimator is also investigated for heat
transport driven by an open-loop periodic flow. The estimated scalar fields show
a close resemblance with the experimentally measured ones. Moreover, results
show close agreement between a measured cost-function, which is shown rele-
vant for fluid heating in Chapter 2, and its estimate. The accurate estimation of
this measure is key to be able to apply the estimator with feedback flow controllers
in a closed-loop in practice.

The contents of this chapter forms the basis for: R. Lensvelt, M.F.M. Speetjens and H. Nijmeijer,
“Experimental estimation of scalar transport”, in preparation, 2023.
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6.1 Introduction

In Chapter 5, a field estimator has been developed that reconstructs the scalar
field from a finite number of sensors. The estimator has been numerically in-
vestigated on a heat-transfer case-study known as the RAM. Numerical results
revealed that the estimator is able to capture the temperature field accurately for
heat transport driven by both the base flow and by mere diffusion (i.e. with a
small spatially averaged error). However, the outputs, used for field estimation by
the estimator, were obtained from a numerical model in Chapter 5. Any (mea-
surement) noise, e.g. introduced by sensors, were absent during the estimation.
Accurate estimation in the presence of noise is vital for any real-time application
of the estimator in closed-loop flow control (i.e. as presented in Chapter 1). In this
chapter, the analysis of the estimators, presented in Chapter 5, is extended. The
estimators from Chapter 5 are exposed to experimental measurements to inves-
tigate the estimator’s ability to accurately reconstruct the scalar field in practice.
This extension is summarized in Figure 6.1.

Figure 6.1: A flow chart showing the link between the estimator presented in
Chapter 5 showing the novel elements of Chapter 6 in yellow.

The field estimators in this chapter are investigated on different experimental
data sets than those used during the parameter identification in Section 5.4.1.
The same experimental settings are used during experiments as presented in
Section 5.2.1. Moreover, the model parameters in Table 5.2 and Table 5.1 are
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used to synthesize LLL(i) in the estimator (5.25). Experiments initialize as soon
as the temperature difference between the initial temperature field T0 and the
boundary temperature T∞ in the annulus reaches 10 ◦C. The virtual sensors are
placed based on the discrete Perron-Frobenius eigenmodes of the base flow and
reoriented flow for U = 0.004 m/s (see Figure 5.4 in Section 5.3.3). Field esti-
mation in the presence of only the base flow and the periodic flow is investigated
for U = 0.001 m/s – like in Section 5.4.3.2 – and for U = 0.004 m/s, respec-
tively. Hence, they are suboptimally placed for scalar field estimation with heat
transport governed by mere diffusion and the base flow. The estimators in this
chapter are designed on all the available sensors. Moreover, the weighing matri-
ces QQQ and RRR have the same structure as in (5.32) unless stated otherwise. The
estimator gain matrix LLL(i) is tuned with ratio q/r in (5.33) for weighing matrices
according to (5.32).

Similar to Chapter 5, experimental field estimation is studied for heat trans-
port driven by mere diffusion and by the base flow in Section 6.2 and Section 6.3,
respectively. Flows reorient sequentially in the conventional periodic reorientation
scheme and the closed-loop flow controller presented in Chapter 2. Therefore,
the response of the estimator to periodic reorientation is investigated in this chap-
ter as well. Estimation of the scalar field from experimental data in the presence
of a periodic flow is investigated in Section 6.4. This section is intended as a pre-
lude to the real-time application of closed-loop flow control. Finally, conclusions
and recommendations are presented in Section 6.5.

6.2 Field estimation for mere diffusion

Transient temperature field estimation is first investigated for heat transport gov-
erned by mere diffusion. Figure 6.2 presents snapshots of the measured fields
and the estimated fields in the top and bottom row, respectively. Two measure-
ment errors are immediately noticeable in the measured temperature fields. First,
departures from an axisymmetric field can be observed in close proximity to the
boundary. These perturbations are caused by a small leakage at the belt-aperture
interface. As a result, a small amount of the hot glycerol-water mixture in the an-
nulus leaks into the container throughout the experiment. Second, a hot spot can
be observed inside the fluid domain (encircled in snapshot at t = 13 [min] in
Figure 6.2). The hot spot is caused by the positioning of the thermal camera,
which locally heats up the fluid through infrared irradiation. Heat from the thermal
camera adds an additional source term to (5.1), which can alter the evolution of
the transient temperature field T̃ . The effect of this disturbance on the evolution
of T̃ is investigated before field estimation is performed. The overall evolution of
the transient temperature snapshots appears unaffected by the irradiation from
the thermal camera though. A visual inspection of the last measured snapshot
in Figure 6.2 (top row) reveals that the thermal camera is almost indistinguish-
able in the transient temperature field. Observe that the total energy added to the

143



6. Experimental estimation of scalar transport

fluid (by energization) is captured by its instantaneous energy content, which is
defined as [55]

J1(t) =
1

π

∫
D
T̃ 2(xxx, t)d2xxx. (6.1)

A comparison between the experiments presented here and in Section 5.4.1 is
made based on J1(t). This comparison reveals that both experiments, with heat-
transport driven by mere diffusion, have a maximum and time-averaged deviation
in J1(t) of 22.6 % and 7 % (i.e. J1(t) is maximally 22.6 %, and on average 7
%, higher for the experiment considered in this section). Note, however, that the
transient ambient temperature T̃a(t) in the experiment in this section is slightly
elevated as well. Hence, part of the higher energy content can also be attributed
to a reduction in heat loss. For the abovementioned reasons, the experiment with
heat transport governed by mere diffusion is still considered for analysis here.

t = 13 [min] t = 25 [min] t = 38 [min] t = 50 [min]

Figure 6.2: Measured (top row) and estimated (middle row) transient temperature
snapshots (blue: min(T̃ ) = −0.5; red: max (T̃ ) = 0) for a RAM with heat-
transport governed by mere diffusion (i = 0). The error between the transient
fields is shown in the bottom row (blue: min(εεε) = −0.15; red: max (εεε) = 0.15).
The estimator is designed for weighing matrices in (6.2) with model parameters
presented in Table 5.2 and q11 = 2 · 103.

Here, slightly altered weighing matrices, with respect to those in (5.32), are
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considered as

Q̃QQ =


q̃11

1
. . .

1

 , RRR = III, (6.2)

to design the estimator gain matrix LLL(0) as well. The rationale behind the weigh-
ing matrix Q̃QQ in (6.2) is that it puts, depending on the choice of q̃11, more em-
phasis on the first mode in (5.27). Here, this first mode represents the slowest
eigenmode for heat transport driven by mere diffusion. As a result, the estimator
exerts more effort to ensure e(0)1 (tk+1) in (5.26) converges faster on 0. Figure 6.3
shows the estimation error J̃ for different tunings of the weighing matrices Q̃QQ and
QQQ withRRR = III (i.e. r = 1 in (5.32)).
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Figure 6.3: The estimation error J̃ for different weighing matrices Q̃QQ and QQQ with
RRR = III for a RAM with heat-transport driven by mere diffusion. The employed
estimator is designed based on (5.28) with parameters in Table 5.2.

Some notable discrepancies can be observed in the estimated fields in Figure
6.2. Localized cold spots can be observed that coincide with the sensor locations
from Section 5.3.3. These spots are, most probably, caused by (local) noise am-
plification by the estimator. Moreover, a large hot spot can be observed at the
center of the fluid domain. The matrices in (6.2) put a heavier penalization on the
first mode in (5.27). As a result, the estimator gain matrix LLL(0) responds faster
and stronger to the contribution of the first eigenmode to the estimated transient
temperature field. This results in the observed hot spot. Peak estimation errors
occur in close proximity of the hot boundary. These peak errors are caused by
the thermal camera’s positioning (i.e. viewing the fluid under an angle obscures
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part of the temperature field). Errors stay below maxεεε ≈ 0.23 throughout the
experiment though. Estimator designs for different weighing matrices are investi-
gated to gauge the effect of tuning q and q11 in (5.32) and (6.2), respectively, on
transient temperature field estimation in practice.

Figure 6.3 shows that J̃ remains mostly unchanged for changed q in (5.32)
(i.e. changes in J̃ are very small). Similar behaviour is found for small q � 1 as
well. These results are not shown here for brevity. However, heavier penalization
of only the first mode in (5.27) can be seen to significantly decrease the estimation
error J̃ in Figure 6.3. The estimation accuracy for an estimator designed with
weighing matrices in (6.2) is significantly improved compared to those designed
with weighing matrices in (5.32). This result implies that not all states and outputs
in (5.27) are of equal importance to the accuracy of the estimator. The result also
suggests that tuning each diagonal entry in QQQ (or equivalently RRR) could further
improve the estimation accuracy. These results also suggest that a heat transport
model for mere diffusion should accurately describe the slowest eigenmodes to
achieve accurate scalar field estimation.
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Figure 6.4: The measured and estimated cost-functions J2 for different weighing
matrices Q̃QQ,QQQ andRRR for a RAM without flow. The employed estimator is designed
based on (5.28) with parameters in Table 5.2.

The ability of the estimator to reconstruct J2(t) in (5.42) is investigated next.
An accurate estimate of cost-function J2(t) is essential to the incorporation the
estimator into a closed-loop flow controller for boosting fluid heating (e.g. see
Chapter 2). Results of field estimation for different weighing matrices, with heat-
transport driven by mere diffusion, are shown in Figure 6.4. Figure 6.4 reveals
only a small deviation between the measured and estimated cost-function for an
estimator designed on the weighing matrices in (6.2). A maximum deviation of

146



6.3 Field estimation for the base flow

only 5.8 % is observed between the estimated and measured cost-function for
q̃11 = 2 · 103. Moreover, the result in Figure 6.3 suggests that a (local) optimum
for q̃11 exists since J̃ is underestimated by the estimator for q̃11 = 2 · 103 and
overestimated for q̃11. This indicates that optimization of the individual diagonal
elements in Q̃QQ can improve the transient field estimation for heat transport driven
by mere diffusion. The ability of the estimator to reconstruct the transient temper-
ature field when heat transport is driven by the base flow is investigated next.

6.3 Field estimation for the base flow

Field estimation for heat transport driven by the base flow is investigated next.
Snapshots of the transient temperature field are shown in Figure 6.5. Both the
measured (top row) and estimated (middle row) fields are shown. The estimated
temperature fields show significantly less agreement with the measured fields
than previously observed for field estimation with heat-transport driven by mere
diffusion. Key to capturing the heating dynamics in the RAM is the accurate es-
timation of the plume as a result of fluid flows. This hot plume in the estimated
fields shows some resemblance with the measured fields in Figure 6.5. However,
as time progresses the plume in the estimated transient fields develops further
into the domain than the plume for the measured field. Peak estimation errors
can reach upto max(εεε) ≈ 0.26 upon starting state estimation for q/r = 2 · 10−3.
This can clearly be seen in the error between the measured and estimated tem-
perature fields. Peak estimation errors decay to as low as max(εεε) ≈ 0.19 as time
progresses. These errors primarily occur in close proximity to the hot boundary
and are caused by a small detection mismatch of the hot boundary following the
application of the purpose built camera distortion compensation software (i.e. the
hot boundary is detected slightly too large in the thermal image and the thermal
camera observes the RAM under an angle). Nonetheless the field estimator is
able to capture the transient temperature field remarkably accurate for a signifi-
cant reduction in the number of modes (i.e. M � N ).

Moreover, localized hot and cold ripples surround the hot plume that are rem-
iniscent of the Gibbs phenomenon. The Gibbs phenomenon occurs if the number
of modes considered is to low to capture high frequent (or fast) dynamics. The
observed ripples (or striations) and differences in evolution between measured
and estimated hot plume could thus indicate modelling error. These errors can
be understood from the observation that 3D effects alter the fluid flow field com-
pared to the theoretical flow field [12]. A different flow field will result in different
eigenmodes in (5.13) and will, as a consequence, result in a different model (5.16)
through (5.14). Moreover, the heat transfer coefficient κ is not necessarily con-
stant. Local heat losses in the field depend on both the ambient air flow and the
(transient) temperature field and are, thus, space dependent. This coefficient is
assumed constant in Section 5.2.2 and, through (5.2), determines the convective
heat losses from the RAM to the environment. A spatially varying κ will introduce

147



6. Experimental estimation of scalar transport

local difference in heat loss and would result in a change of the eigenmodes in
(5.13) as well. However, agreement of the transient temperature field in sections
5.4.1 and 6.2 suggests that these effects are minimal. These striations can also
be the result of noise amplification by the estimator, since high estimator gains
can inhibit noise attenuation [54].

(a) t = 30 [min] (b) t = 60 [min] (c) t = 90 [min] (d) t = 120 [min]

Figure 6.5: Measured (top row) and estimated (middle row) temperature snap-
shots (blue: min(T̃ ) = −1; red: max (T̃ ) = 0) with the error (blue: min(εεε) =
−0.15; red: max (εεε) = 0.2) between them (bottom row) for a RAM with a rescaled
base flow at 0.001m/s. Model parameters used during estimator design in Table
5.2.

The estimation error J̃ is therefore investigated for different weighing functions
QQQ (orRRR). The weighing matrices used to synthesize LLL(1) can be found in (5.32).
Hence, LLL(1) is determined by the ratio q/r according to (5.33). The effect of esti-
mator tuning on the evolution of the field estimation error J̃ is of particular interest.
The estimation error in (5.20) is a measure for the “energy” left in the mismatch
between measured and estimated transient fields. It thus directly represents the
mismatch in fluid heating between the measured and estimated system. Results
are shown in Figure 6.6 for a base flow rescaled with U = 0.001m/s. Figure 6.6
shows that the estimator estimates the transient temperature field relatively ac-
curately based on experimental measurements. Transient temperature fields are
captured especially well at the start of the experiment. Nonetheless, the error J̃ is
orders of magnitude larger in the experiments than observed in Section 5.4.3.2.
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6.3 Field estimation for the base flow

This increased error compared to the numerical estimation results is caused by
a variety of measurement noise and model error(s) as explained above. Further-
more, it should be noted that the used model is an approximation of heat transport
in the RAM and, therefore, unmodelled dynamics can have a significant impact on
the accuracy of scalar field estimation. Observe that decreasing q/r minimizes J̃
significantly at the start of experiment. Conversely, increasing q/r results in an in-
crease of J̃ . The field estimation error therefore responds in the same fashion for
changing weighing functions as previously observed in Section 5.4.3.2. However,
tuning based on J̃ is challenging due to the presence of (measurement) noise,
model mismatch and model inaccuracies. However, the “steady-state” estimation
error is minimized most among the considered weighing functions between the
considered ratios q/r. This suggests an optimal setting for q/r. To gauge the
estimator’s ability to be used in a closed-loop flow control, the cost-function J2 in
(5.42) is investigated.
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Figure 6.6: The estimated error J̃ for different q/r on a RAM where heat trans-
port is driven by a rescaled base flow at 0.001 m/s. The employed estimator is
designed based on (5.28) with parameters in Table 5.2.

A significant mismatch between measured and estimated J2 is observed at
the early stage of estimation in Figure 6.6. The resulting error is significantly am-
plified upon increasing q/r. Heavier penalization of the outputs by increasing q/r
decreases this initial amplification. The transient error in the state estimate rapidly
declines as time progresses following this initial amplification. Furthermore, the
higher gains appear to amplify the initial mismatch between estimated and mea-
sured cost-function. The peak mismatch, observed in Figure 6.6 directly after
initialization, appears directly related to the increase of q/r. The increase of q/r
results in heavier penalization of the state in (5.27) and results in higher gains in
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the estimator gain matrix LLL(1). The estimator overcompensates, which results in
the observed “overshoot” (i.e. peak error of J2). The steady-state offset between
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Figure 6.7: The measured and estimated cost-functions J2 for different q/r for
a RAM with a rescaled base flow at 0.001 m/s. The employed estimator is de-
signed based on (5.28) with parameters in Table 5.2.

estimated and measured cost-functions initially decrease as q/r penalizes the
outputs in (5.27) more (i.e. the difference between measured and estimated J2
decreases at the end of the window as q/r decrease). Eventually, higher output
penalization also results in an increasing mismatch at steady-state. This can be
observed upon comparing the estimated and measured cost-functions for small
q/r in Figure 6.7. A different response is observed for large q/r in Figure 6.7.
Heavier state penalization in (5.27) always appears to result in a deterioration of
the steady-state field estimate for the considered q/r.

The presented results suggest that tuning of the gain matrix LLL(1) should pri-
marily concentrate on decreasing q/r. The presented results show that a relative
relaxation of state penalization in (5.27) – through the decrease of q/r – results
in a better overall estimate of J2 and J̃ . The above analysis suggests that the de-
sign of LLL(1) – by choosing q/r – is also dependant on the time-scale relevant for
estimation. For example, estimation of the initial transient field is less important in
thermal flow systems with constant flow (de)activation than in a system with dy-
namic flow (de)activation. In a thermal system with constant flow (de)activation,
ample “time” is available to estimate the steady-state field. Accurate estimation
of the steady-state field is less important to thermal systems with rapid switching
between multiple flows though. Rationale behind this is that the estimation error
J̃ is primarily caused by switching between the multiple flows (see Section 6.4).
Hence, minimizing the initial estimation error J̃ is more important if the time be-
tween switches (or dwell-time) is small. The proposed estimator is intended to be
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included into a closed-loop heating strategy (e.g. with the estimated scalar field
fed back to a flow controller as presented in Chapter 2 and [55]). Therefore, ac-
curate steady-state estimates are less relevant than capturing the initial transient.
The application of LLL(i) to estimate the transient field for a periodic flow is studied
next.

6.4 Field estimation for a periodic flow

The activation of multiple fluid flows and the possibility to switch between them
requires the development of multiple state estimators (see Section 5.3.2). The
fluid flows in the RAM differ by at most a reorientation (see Section 5.2.2), which
is inherited by the eigenmodes in (5.14). Placing the sensors such that the output
matrix is invariant reorientation allows for the straightforward design ofLLL(i) on the
base flow alone (i.e. LLL(i) = LLL(1)). Here, transient temperature field estimation is
investigated for a periodic flow. The flow follows a reorientation scheme u(t) that
periodically activates either the base flow (i = 1) or the reorientated flow (i = 2).
Fluid flows are activated for 31 minutes during experiments on the RAM (or the
aperture activation time τtot = 11 time-units). This activation time, combined
with Pe ≈ 103, maximizes fluid heating with the considered periodic flow [16].
Note that the numerical results in Chapter 3 show that, for these parameters,
heating rates attained with the adaptive reorientation scheme and the periodic
reorientation scheme closely resemble each other. Experiments are initialized at
the base flow (i = 1) as soon as the boundary temperature reaches its setpoint.
Estimators are designed for different q/r on all available sensors (i.e. based
on the reasoning in Section 6.3). Care should be taken in tuning the estimator
gain matrix LLL(1) though (see the discussion directly below (5.26)). The estimator
should be granted ample “time” to estimate the scalar field between reorientations
(i.e. the dwell-time should be sufficiently large).

Figure 6.8 presents snapshots of the measured fields and the estimated fields
in the top and middle row, respectively. The error between these fields is shown
in the bottom row. The snapshots reveal the transient temperature fields are es-
timated especially well at the start of the experiment. Moreover, the estimated
hot plumes show qualitative agreement with those in the measured temperature
fields. Some notable discrepancies are present though. Most noticeable is the
hotter “base” of the plume in the estimated fields compared to the measured
fields. In addition, striations can be observed throughout the domain in the es-
timated field. These striations are again reminiscent of the Gibbs phenomenon
and are most clearly visible in the vicinity of the plumes and the colder parts of
the domain. They introduce local hot and cold ripples inside the domain. Their
relative magnitudes diminish between switches as time progresses. To quantify
the accuracy of the estimator, the estimation error J̃ is investigated next.

Figure 6.9 shows the estimation error between measured and estimated tran-
sient temperature fields for various q/r. Figure 6.9 reveals that heavier penal-
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t = 30 [min] t = 60 [min] t = 90 [min] t = 120 [min]

Figure 6.8: Measured (top row) and estimated (middle row) transient tempera-
ture snapshots (blue: min(T̃ ) = −1; red: max (T̃ ) = 0) with the error (blue:
min(εεε) = −0.35; red: max (εεε) = 0.2) between them (bottom row) for a RAM
with a periodic flow with a belt-speed of 0.004 m/s. Model parameters in Table
5.2 and q/r = 2 · 10−3 used during estimator design.

ization of the state – by increasing q/r – results in deteriorating state estimates.
Large peaks can be observed in the estimation error as well. These peaks occur
directly after the flow reorients and they are caused by the change in eigenmodes
as a result of flow reorientation. An investigation of the transient temperature
field reveals that an insufficient number of eigenmodes is retained to capture the
scalar field immediately following the reorientation. Moreover, maximum peaks
are observed directly following the reorientation from the base flow (i = 1) to the
reoriented flow (i = 2). The reorientations between flows in the periodic flow can
be thought of as discrete jumps in system dynamics. As a result of these jumps,
all eigenmodes in the system are excited (i.e. similar to a step-response). The
system (5.16) is detectable and sensors are placed such that the slowest eigen-
modes are at least observable. Hence, rapid decay of the error after the jump is
due to the rapid decay rate of the higher order modes. Penalizing the output more
in (5.27) – by decreasing q/r – serves to diminish these large estimation peaks
directly following a switch. This can be observed in Figure 6.9. Estimation errors
are significantly lower throughout the entire experiment for lower q/r compared
to the errors for higher q/r in Figure 6.9. Heavier penalization of the output by
decreasing q/r shows improved convergence of the error dynamics on the origin.
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6.4 Field estimation for a periodic flow

Again, calculation of the (maximum) eigenvalues ofAAAper is hampered by the
dimension of the matrix. Hence, the estimation error after a single period is in-
vestigated (i.e. J̃ is sampled every 63 minutes). Periods are indicated by dashed
gray lines in Figure 6.9. The exact moment of switching for the estimator de-
signed with weighing matrices in (5.32) for q/r = 2 · 10−3 is indicated in Figure
6.9 by black-green circles. Figure 6.9 shows that the sampled estimation error
decreases after each period. This is an indication that the estimator’s have am-
ple dwell-time to sufficiently estimate the state before another flow reorientation
occurs.
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Figure 6.9: The estimatiod error J̃ for different gains (a) QQQ and (b) RRR for a RAM
with a periodic flow with a belt-speed of 0.004 m/s. The errors J̃ sampled after
a period (indicated by dashed gray lines) for q/r = 2 · 10−3 are indicated with
black-green circles. The employed estimators are designed based on (5.28) with
parameters in Table 5.2.

To investigate the estimation accuracy for output-based closed-loop flow con-
trol we investigate the ability to estimate the cost function J2(t). Figure 6.10
shows the measured and estimated cost functions for various q/r. Figure 6.10
reveals that the field estimator accurately estimates J2(t) for any q/r in the first
31 minutes (or 11 time units). Subsequent reorientation of flows results in poor
estimates for the cost function for high q/r though. Increasing q/r actually deteri-
orates the cost-function estimate rather than improve it. Figure 6.10 also reveals
that the discrepancy between the measured cost-function and the estimated cost-
function is significantly smaller for smaller q/r compared to larger q/r. Moreover,
decreasing q/r improves the estimate of the cost-function in the periodic flow.
An optimal value appears to exists as results show that increasing q/r (i.e. be-
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yond q/r = 2 · 10−3) further deteriorates the estimate of J2(t). Hence, optimal
performance by the field estimator requires the optimization of q/r for each flow.
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Figure 6.10: The measured and estimated cost-functions J2 for different gains (a)
QQQ and (b) RRR for a RAM with a periodic flow with a belt-speed U = 0.004 m/s.
The period is indicated with dashed gray lines ans the estimators are designed
based on (5.28) with parameters in Table 5.2.

6.5 Conclusions and discussion

The present study investigates the accuracy of scalar field estimation in practice.
To this end the scalar estimator is experimentally investigated on the represen-
tative heat-transfer problem studied throughout this thesis; the RAM. Field esti-
mation accuracy is – as done numerically in Chapter 5 – investigated for scalar
transport driven by mere diffusion and the base flow. As a prelude to output-
based closed-loop flow control, the estimators accuracy is investigated for a con-
ventional periodic flow as well.

The Luenburger state estimators studied here are synthesized by posing the
detection problem as a linear quadratic regulator problem with diagonal weighing
matrices. Experimental analysis shows that the estimator is able of accurately
reconstructing/estimating the scalar field in such a case. The estimator can cap-
ture the scalar field accurately with scalar transport driven by mere diffusion only
after rudimentary tuning of the weighing matrices (i.e. emphasizing only the first
mode instead of all considered eigenmodes). Field estimates prove considerably
more challenging in the presence of fluid flows though. Field estimates are con-
siderably less accurate, but the estimator is able to capture the important heating
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measure fairly accurately. The estimation of this measure is essential to i) moni-
tor the instantaneous “state of fluid heating and ii) enable heating acceleration by
output-based closed-loop flow control. Field estimation accuracy of the estimator
is further investigated for an experiment with a periodically reorienting fluid flow as
well. Results reveal close agreement between the measured and the estimated
scalar fields, which results in close agreement between the estimated heating
measure and the measured heating measure as well. Finally, the weighing matri-
ces should put more emphasize on the output to minimize peak estimation errors
with the developed estimator.

Future efforts should, first, be focused on noise attenuation for heat transport
in the RAM. Such an analysis will prove vital insights into the estimator’s accuracy
in an industrial setting (e.g. heat loss to the environment is far better controlled
there). Tuning of the weighing matrices is of particular interest to this analysis
(e.g. by tuning the diagonal entries of the weighing matrices). Second, estima-
tion accuracy of the estimators should be evaluated when sensors for (partial)
scalar field measurement are directly placed in the fluid. Such placement can po-
tentially significantly alter scalar transport, i.e., by altering the fluid flow, and thus
deteriorate the estimation accuracy with the current models. Finally, research
should focus on closed-loop flow control where outputs are measured by sensors
placed inside the fluid are fed back to achieve rapid fluid heating.
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CHAPTER 7
Conclusions and

recommendations

Scalar transport by (reoriented) fluid flows is a key feature in various (industrial)
applications ranging from, e.g., viscous mixing of polymers and foodstuffs via pro-
cess intensification and underground resource extraction by subsurface flows to
microfluidic heating/cooling in small-scale circuitry. Rapid scalar transport can
have significant benefits. For example, rapid scalar transport results in a more ef-
fective operation of these applications. Hence, this lowers the energy expenditure
of applications, to achieve the same target. Heat transport (in fluids) accounts for
a large portion of the energy used by both industry and private consumers. Boost-
ing heat transport by fluid stirring can thus potentially lead to lower energy usage.
Therefore, this thesis is focussed around the main question:

• How to stir a fluid to heat it up as quickly as possible?

In this thesis, a heat-transfer system known as the Rotated Arc Mixer (RAM) is
studied. Fluid stirring is achieved in the RAM by reorienting Stokes flows and heat
transport occurs in the presence of i) a non-adiabatic boundary condition, and
ii) significant diffusion. These features make the RAM representative as a case-
study for the systems of interest to this thesis. The principal objective of this thesis
is to gain theoretical and experimental insight into the design of closed-loop flow
forcing controllers that can boost scalar transport by stirring. The intermediate
objectives related to this principal objective are:

Objective 1. Gain insights into heating dynamics that can be used to structurally
boost fluid heating in practice.
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Objective 2. Develop a flow forcing controller that significantly enhances fluid
heating in the presence of both diffusion and a non-adiabatic bound-
ary condition.

Objective 3. Develop a method that is able to accurately capture/reconstruct the
scalar field from discrete sensor data in practice.

The conclusions regarding the main question – and related objectives – are sum-
marized here.

7.1 Conclusions

Chapter 2 is focused on objectives 1 and 2. A dedicated flow-control strategy
is developed in Chapter 2 (i.e. “adaptive flow reorientation”) that systematically
determines the “best” flow reorientation for the fast heating of a cold fluid via a
hot boundary in the RAM.

The control strategy is founded on an in-depth analysis of the dynamics of
heating in fluid flows. This exposes fluid deformation as the “thermal actuator”
via which the flow affects the heat transfer. The link between former and latter
is non-trivial, though. Fluid deformation may, depending on its orientation rela-
tive to the temperature gradient, both enhance and diminish local heat exchange
between fluid parcels. Moreover, enhanced heat transfer promotes local thermal
homogenisation and, by reducing temperature gradients, thus effectively counter-
acts itself. This fundamental “conflict” between local heat transfer and thermal ho-
mogenisation tends to restrict the beneficial impact of flow to short-lived episodes
following a flow’s activation. The impact of fluid deformation on the global fluid
heating is primarily confined to the direct proximity of the moving boundary that
drives the flow. Fluid deformation in the flow interior only plays a secondary role
in this process due to its relative weakness compared to said regions. These
insights imply that incorporation of the thermal behaviour is essential for effective
flow-based enhancement strategies and efficient fluid mixing, the conventional
approach adopted in industry for this purpose, is potentially sub-optimal.

Global heating encompasses two concurrent processes, i.e. increasing en-
ergy content (“energising”) and thermal homogenisation, and this fundamentally
differentiates the current problem from the thermal homogenisation in adiabatic
systems usually considered in related studies. Moreover, this notion yields the rel-
evant metrics for the global dynamics and thus enables formulation of the control
problem as the minimisation of a dedicated cost function that naturally emerges
from the dynamic analyses and adequately incorporates both processes. This
facilitates step-wise determination of the “best” flow reorientation from predicted
future evolutions of actual intermediate states and, in tandem with an efficient
predictor, paves the way to (real-time) regulation of scalar transport by flow con-
trol in practical applications. Key enablers for this predictor are i) the property that
flow reorientations carry over to the temperature field ii) a compact reduced-order
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model for the Perron-Frobenius evolution operator that rapidly maps initial to final
temperature fields for each step duration and flow reorientation.

Performance analyses reveal that adaptive flow reorientation significantly ac-
celerates the fluid heating throughout the considered parameter space and thus
is superior over conventional periodic schemes (designed for efficient fluid mix-
ing) both in terms of consistency and effectiveness. Fluid heating is accelerated
in the RAM by at least 14% everywhere and 24% or more in large areas. Process
enhancement of this magnitude on other (industrial) applications would consti-
tute a dramatic reduction in energy and (potentially also) resource consumption.
The controller in fact breaks with conventions by, first, never selecting these pe-
riodic schemes and, second, achieving the same superior performance for all
flow conditions irrespective of whether said mixing occurs. The controller typi-
cally achieves this superiority by creating an essentially heterogeneous situation
comprising of thermal plumes that extend from the hot wall into the cold(er) in-
terior and are driven by two alternating and counter-rotating circulations. The
performance analyses furthermore substantiate the primary and secondary roles
of fluid deformation near the driving boundary segments and in the flow interior,
respectively, in the heating enhancement by the flow.

Chapter 3 extends the analysis of the reorientation schemes found with the dedi-
cated control approach from Chapter 2. This chapter is focused on further gaining
insights into fast fluid heating and is thus concentrated on objective 2. Fluid heat-
ing is investigated for a large span of realistic fluid and flow properties. Fluid is
merely allowed to circulate in a single direction to emulate existing fluid flow con-
figuration of existing fluid mixing/heating applications widely adopted in industry.
Hence, fluid stirring with adaptive flow reorientation is constrained during the op-
timization in this chapter compared to Chapter 2. Numerical results show that
adaptive flow reorientation yields a systematic improvement over a large span of
these parameters. Moreover, numerical results reveal improved resilience against
parameter variations with the reorientation schemes, found with the dedicated
controller from Chapter 2, while simultaneously ensuring faster heating. Reorien-
tation schemes achieve these two facets by either i) (slightly) altering the conven-
tional periodic reorientation scheme or ii) introducing an aperiodic transient to an
otherwise periodic reorientation scheme.

In Chapter 4, performance and sensitivity of a general nonlinear control method-
ology to accelerate scalar transport is investigated. This chapter is also focused
on objective 1 and 2. The presented control methodology relies on a spectral de-
composition of the advection-diffusion equation of the Laplacian eigenfunctions
on a circular plane. The infinite dimensional system is approximated by a com-
pact finite dimensional bilinear state-space description. The real-time control of
the scalar field involves designing the inputs such that the decay rate of a generic
Lyapunov function or “thermal energy” is minimized. In Chapter 4, two flow con-
trol methods, that minimize this decay rate, are proposed: a bang-bang controller
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and a nonlinear quadratic feedback controller. Heat transport from the hot bound-
ary is significantly improved resulting in substantially accelerated heating rates
compared to mere diffusion. Both controllers are found to significantly acceler-
ate the heating rates compared to continuous fluid circulation depending on the
number of flows and the controller tuning. The bang-bang controller shows high-
frequency behaviour during control, which is undesirable for real-time actuation.
The inputs of the nonlinear quadratic feedback controller are proportional with the
temperature field due to its quadratic feedback and are, therefore, less restrictive
than the inputs of the bang-bang controller. However, this comes at a sacrifice
of heating rate improvement. However, rapid switching is significantly reduced
during control with the nonlinear controller as a consequence.

Heating rates with the nonlinear controller are compared to a conventional
open-loop periodic reorientation scheme for perturbed initial conditions. Results
show that the nonlinear controller consistently outperforms the periodic scheme
for both the unperturbed and perturbed initial conditions. Moreover, plume for-
mation, by circulating the fluid in opposite directions between apertures, seems
to form a key characteristic for this effective heat transfer from the hot boundary
(in)to the fluid. Namely, both flow controllers circulate the fluid in opposing direc-
tions between neighbouring fluid flow fields and effectively heat the fluid. This
fluid flow behaviour possesses some resilience towards perturbations, since re-
sulting plumes are formed regardless of the initial conditions considered here.
The fluid circulation behaviour is similar to the behaviour observed in Chapter
2. The key difference between this behaviour and the flow forcing behaviour ob-
served in Chapter 4 is that both flow controllers simultaneously circulate the fluid
resulting in a hot plume. The consistently improved heating rates by similar fluid
flow behaviour makes the proposed methods – or at least the resulting fluid cir-
culation behaviour – tailor-made for practical applications of flow control to boost
heat transport in i) the presence of significant diffusion and ii) the absence of a
boundary condition that can directly influence the scalar field, e.g., an adjustable
boundary temperature.

In Chapter 5, a method for the detection of scalar transport in a fluid from a set of
sensors that discretely sample the field is presented. This chapter is thus focused
on the third objective of this thesis. To this end, a dedicated scalar field estimator
is developed that systematically reconstructs the transient temperature field by
estimating the contribution of the “dominant” eigenmodes based on a discrete set
of thermal sensors to capture heating of a cold fluid via the hot boundary in the
RAM. The detection strategy relies on the reconstruction of so-called “dominant”
eigenmodes, which have been shown essential for the accurate description of
scalar transport in Chapter 2. The sensors and the thereupon developed field
estimator are, respectively, placed and designed based on these eigenmodes as
well. The considered scalar transport dynamics therefore play a crucial role in
accurately reconstructing the dominant eigenmodes and the scalar field. A Luen-
burger state estimator is developed by posing the detection problem as a (dual)
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linear quadratic regulator problem. Numerical analysis shows that the estimator
is capable of accurately reconstructing the scalar field.

In Chapter 6, the field estimator – developed in Chapter 5 – is investigated
on an experimental version of the RAM as well. Results show that the estima-
tor is able to capture the scalar field accurately in the absence of any fluid flow
even after only rudimentary tuning and poor sensor placement. Field estimates
prove considerably more challenging in the presence of fluid flows though. Field
estimates are considerable less accurate. However, the estimator is able to cap-
ture the fluid heating measure, used by the flow controllers in this thesis, quite
accurately. Field estimation accuracy of the estimator is further investigated on
a periodically reorienting fluid flow as well. Results reveal close agreement be-
tween the measured and the estimated transient fields resulting in close proximity
of the estimated heating measure to the measured heating measure.

7.2 Recommendations

Several suggestions for future research and development arise. These are as
follows.

Fluid stirring by reorienting Stokes flows is a key feature in many industrial flow
systems, which can be utilized to boost scalar transport. Boosting heat-transfer
from a non-adiabatic boundary condition in(to) a fluid by reorienting Stokes flows
has therefore been studied on the RAM as a case-study throughout this the-
sis. The RAM is experimentally realisable and admits laboratory studies both on
(chaotic) advection and thermal transport. However, industrial applications typi-
cally have complexer geometries and operate under more challenging conditions
than explored for the RAM. In principle, the flow controllers developed in this the-
sis can be applied to more complex cases as well. Hence, the flow controllers
developed in this thesis should be studied on systems other than the RAM to
determine the generality of their fluid heating performance.

The dedicated flow control-strategy, developed in Chapter 2, shows great
promise to improve fluid mixing/heating in the RAM. However, applications of this
flow controller have largely been theoretical and numerical throughout this thesis.
Implementation of the flow controller on the experimental RAM in a preliminary
study – not part of this thesis – suggests that results translate to practice as well
[144]. Ongoing research should be focussed on ascertaining the robustness of
the fluid heating enhancement by the developed controller in practice. This leads
the way to the industrial application of these type of dedicated flow controllers.

Both the dedicated flow controller and scalar field estimator in, respectively,
Chapter 2 and Chapter 4 rely on the eigenmodes associated with the base flow.
The methods in those chapters rely on a scalar transport model to obtain the
eigenmodes of the Perron-Frobenius operator, e.g., from CFD software. The
modelling effort to obtain the eigenmodes can become exceedingly cumbersome
for geometries/systems complexer than the RAM considered in this thesis, though.
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Moreover, the identification of model parameters to obtain the eigenmodes can in-
cur significant computational overhead for such geometries/systems. Data-driven
models such as, e.g., Dynamic Mode Decomposition (DMD) could provide an al-
ternative that minimize both the modelling and numerical efforts to obtain these
eigenmodes. Future work could concentrate on a data-driven approach to rapidly
obtain the eigenmodes for both flow control and scalar field detection.

The numerical analyses in Chapter 3 have revealed that a slight adaptation of
existing periodic reorientation schemes can already significantly improve heating
rates in the RAM. These results are obtained with adaptive flow reorientation on
a RAM with three possible flow reorientations. A further analysis of the adaptive
reorientation approach for perturbed system conditions, e.g., a perturbed initial
condition, is also required though. Such further analyses might reveal tuning
guidelines to improve heating/mixing rates for (a)periodic reorientation schemes
in existing applications without the need for any major (mechanical) overhauls.

The bang-bang controller and nonlinear quadratic feedback controller devel-
oped in Chapter 4 were studied for a single Péclet number. Hence, fluid heating
performance for these controllers for different fluid and flow parameters are un-
known. Exceeding stiffness for larger Péclet numbers might result in long sim-
ulation times. Preliminary numerical simulations show that the advantage of the
nonlinear quadratic controller, to boost fluid heating, also holds for higher Péclet
numbers than studied in this thesis. Fluid heating performance of the nonlinear
quadratic feedback controller should be investigated further in future studies to
determine generality of fluid heating performance with these flow controllers.

The flow controllers developed in Chapter 2 and Chapter 4 have both ex-
posed a similar plume forming mechanism that effectively boosts fluid heating
on the RAM (i.e. circulating fluids between neighbouring apertures). This fluid
heating phenomenon is shown to have some degree of resilience against per-
turbations for the nonlinear quadratic feedback controller. Moreover, (a)periodic
and opposing circulation between neighbouring apertures occurred throughout
the large parameter span studied in Chapter 2. Future research should study if
this methodology of fluid circulation also results in enhanced heat transport for
fluid flow systems with other geometries/operating conditions than the RAM. If
so, the mechanism represents an opportunity to improve heating/mixing rates in
existing applications without major (mechanical) alterations.

Scalar field estimation is studied in Chapter 5 for heat-transport driven with-
out flow, the base flow and a periodic flow. The scalar field was estimated espe-
cially accurately when heat-transport inside the fluid is driven by a periodic flow.
Moreover, the developed scalar field estimators captured the heating measure,
presented in Chapter 2, sufficiently accurate regardless of these flow fields. The
estimation of this measure is essential to; i) monitor the evolution of fluid heating
and ii) enable fluid heating with closed-loop flow controllers based on the scalar
field. Closed-loop flow control with feedback based on a reconstructed/estimated
scalar field requires a more rigorous study of the estimator’s (stability) proper-
ties than examined in this thesis. Future efforts should therefore concentrate on
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closed-loop flow control where a scalar field, estimated on a finite sensor set, is
fed back.

In Chapter 5, the scalar field is estimated from a finite number of ”virtual” sen-
sors that discretely sample the scalar field from a thermal image in this thesis. A
thermal image is generally unavailable in existing applications and thus sensors
need to be placed inside the fluid to locally gauge the fluid temperature in prac-
tice (e.g. placing thermal couples inside the fluid flow). Placing sensors inside
the fluid can potentially alter the fluid flow field, e.g., due to vortex shedding, and
thus, as a result, disturb the development of the scalar field. This can potentially
significantly influence field estimation accuracy. Moreover, the sensor placement
method used in this thesis is based on the thermal eigenmodes associated with
the base flow, which does not account for (parametric) noise directly. In addition,
poor sensor placement can result in (additional) measurement noise if sensors
are placed in the wake formed upstream of a sensor. Future research of the es-
timators should theoretically and experimentally study the impact of the sensors
on both the scalar field evolution and its estimation.
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APPENDIX A
Evolution of metric J1

The evolution of metric J1 according to (2.33) is governed by

dJ1
dt

=

∫
D

∂T̃ 2

∂t
d2x = 2

∫
D
T̃
∂T̃

∂t
d2x

(2.3)
= −2

∫
D
T̃ v · ∇∇∇T̃ d2x− 2

∫
D
T̃ ∇∇∇ · q̃d2x.

(A.1)

The leading term on the RHS of (A.1) admits reformulation as∫
D
v · (T̃∇∇∇T̃ )d2x =

∫
D
v · ∇∇∇(T̃ 2/2)d2x

∇∇∇·v=0
=

∫
D
∇∇∇ ·

(
vT 2/2

)
d2x∫

Γ

v · nT̃ 2/2ds = 0,

(A.2)

due to v · n = 0 and T̃ = 0 on Γ. The trailing term on the RHS of (A.1) admits
reformulation as∫

D
T̃ ∇∇∇ · q̃d2x =

∫
D
∇∇∇ · (T̃ q̃)d2x−

∫
D
q̃ · ∇∇∇T̃ d2x

=

∫
Γ

q̃ · nT̃ ds−
∫
D
q̃ · ∇∇∇T̃ d2x

= −
∫
D
q̃ · ∇∇∇T̃ d2x,

(A.3)

due to T̃ = 0 on Γ. Substitution of (A.2) and (A.3) into (A.1) yields

dJ1
dt

= 2

∫
D
q̃ · ∇∇∇T̃ d2x. (A.4)

as simplified evolution equation for metric J1.
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APPENDIX B
Laplacian eigenfunctions

The eigenfunction-eigenvalue problem of the Laplacian operator as ∆φ` (xxx) =
λ`φ` (xxx) on a circular domain results in eigenfunctions of the form [16]

φ` (xxx) =

√
2

π

J` (α`r)

J`+1 (α`)


1√
2

if ` ∈ Σ0,

cos (`θ) if ` ∈ Σ1,

sin (`θ) if ` ∈ Σ2,

(B.1)

with Jk (α`r) the kth-order Bessel function of the first kind, α` the `th zero of the
kth-order Bessel function of the first kind and Σ0, Σ1 and Σ2 index sets required
for ordering.
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APPENDIX C
Well-posedness of the

bang-bang controller

Discrete switching events in a continuous (closed-loop) system can make ob-
taining numerical solutions difficult if not impossible (e.g. due to infinitely many
switches in a finite time [145]). Well-posedness, that is existence and uniqueness
of solution trajectories, of these hybrid system needs to be examined. This chap-
ter examines well-posedness of the bang-bang controller presented in Section
4.3.4.1. In Section C.1 relevant concepts and definitions for the well-posedness
analysis are introduced. Moreover concepts are introduced in the context of the
bang-bang controller. Their theoretical treatment is therefore neither exhaustive
nor rigorous here. A more formal and comprehensive background on hybrid au-
tomatons, on which this section is based, can be found in Lygeros [146], and
Lygeros et al. [147]. Finally, well-posedness of the bang-bang controller for two
flows is analysed in Section C.2.

C.1 Hybrid automaton definitions

Hybrid automata are continuous dynamical systems that contain discrete switch-
ing events. A hybrid automaton A consists of a collection of sets such that
A = (Q,H, f, Init,Dom,E,G,R)). These sets are defined, in order, as:

i) The set Q = {q1, q2, . . .} contains all discrete modes of operation of the
hybrid automaton.

ii) The set H represents the continuous state of the automaton and thus con-
sist of H = RK according to (4.5).
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iii) The vector field fff i(·, ·) : Q×H → Rn associated with discrete state i.

iv) The set Init ⊂ Q × H contains all possible combinations of states from
which the automaton can be initialized (i.e. combination of discrete and
continuous states).

v) The domain Dom(·) : Q → P (H) assigns continuous states to the dis-
crete states in Q.

vi) The setE ⊂ Q×Q contains the edges along which the system “transitions”
between discrete states.

vii) The setG(·) : E → P (H) consists of guard condition that, if true, “triggers”
the transition between discrete states.

viii) The reset map R(·, ·) : E × H → P (H) establishes the relationship be-
tween continuous states before and after an event.

The power set P (H) refers to the set of all subsets of H . The combination of q
and ηηη defines the state of the hybrid automaton A (i.e. (q,ηηη) ∈ Q × H). The
definitions presented below are directly adopted from Lygeros [146].

Definition C.1 (Lygeros [146], Definition 4.1). A state (q̃, η̃ηη) ∈ Q × H of a
hybrid automaton A is called reachable if there exists a finite execution (τ, q, x)

ending in (q̃, η̃ηη), i.e. τ = {[τi, τ ′i ]}
N
0 , N <∞, and (qN (τ ′N ), ηηηN (τ ′N )) = (q̃, η̃ηη).

Definition C.1 formally states that the (q̃, η̃ηη) can be reached by the automaton
within a finite amount of time steps starting at τi. The set of all these reachable
states is defined as Reach. The set of states for which continuous state evolution
is impossible is defined as Trans.

Definition C.2 (Lygeros [146], Definition 4.2). A hybrid automaton H is called
non-blocking if for all initial (q̃, η̃ηη) ∈ Init there exists an infinite execution starting
at (q̃, η̃ηη). It is called deterministic if for all initial states (q̃, η̃ηη) ∈ Init there exists
at most one maximal execution starting at (q̃, x̃).

Non-blocking automata, according to Definition C.1, are in essence assured to
have a state trajectory. If the automaton is simultaneously deterministic, then the
state trajectory converging on (q̃, η̃ηη) is also unique. The abovementioned defini-
tions are important to show existence and uniqueness of a state trajectory. Two
important Lemmas are presented here that, if satisfied, ensure the existence and
uniqueness of a state trajectory.

Lemma C.1: (Lygeros [146], Lemma 4.1). A hybrid automaton A, is non-
blocking if for all (q̃, η̃ηη) ∈ Reach ∩ Trans, there exists q̃′ ∈ Q such that (q̃, q̃′) ∈
E and η̃ηη ∈ G(q̃, q̃′). If A is deterministic, then it is non-blocking if and only if this
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condition holds.

Hybrid automatons that satisfy Lemma C.1 have continuous and discrete states
that are well-defined. In other words, for a non-blocking hybrid automaton it is
ensured that a state trajectory exists for all (q̃, η̃ηη) ∈ Init. Moreover this trajectory
is unique if Lemma C.2 is satisfied.

Lemma C.2 (Lygeros [146], Lemma 4.2). A hybrid automaton, A, is determin-
istic if and only if for all (q̃, η̃ηη) ∈ Reach

i) if η̃ηη ∈ G(q̃, q̃′) for some (q̃, q̃′) ∈ E, then (q̃, η̃ηη) ∈ Trans;

ii) if (q̃, q̃′) ∈ E and (q̃, q̃′′) ∈ E with q̃′ 6= q̃′′ then η̃ηη 6= G(q̃, q̃′) ∩ G(q̃, q̃′)′;
and,

iii) if (q̃, q̃′) ∈ E and ηηη ∈ G(q̃, q̃′) thenR(q̃, q̃′, η̃ηη) =
{
η̃ηη′
}

, i.e. the set contains
a single element, η̃ηη′.

Figure C.1: Hybrid automaton for heating by bang-bang control of a RAM with
two apertures (I = 2).

By satisfying both Lemmas one is assured that an unique state trajectory ex-
ists. Zeno-type behavior, i.e., infinitely many switches in finite time, might still be
part of the system behaviour despite it being well-posed though. Proving the ab-
sence/presence of Zeno-type behavior with closed-loop flow control of the RAM
is considered beyond the scope of this work however.
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Table C.1: Table with guard conditions regulating the discrete transition between
modes for bang-bang control of a RAM with two apertures (I = 2).

Mode q1 q2
q1 - G(q1, q2) =

{ηηη ∈ H|Σ1 ≤ 0 ∧ Σ2 ≥ 0}
q2 G(q2, q1) =

{ηηη ∈ H|Σ1 ≤ 0 ∧ Σ2 ≤ 0}
-

q3 G(q3, q1) =
{ηηη ∈ H|Σ1 ≤ 0 ∧ Σ2 ≥ 0}

G(q3, q2) =
{ηηη ∈ H|Σ1 ≥ 0 ∧ Σ2 ≤ 0}

q4 G(q4, q1) =
{ηηη ∈ H|Σ1 ≥ 0 ∧ Σ2 ≤ 0}

G(q4, q2) =
{ηηη ∈ H|Σ1 ≤ 0 ∧ Σ2 ≤ 0}

Mode q3 q4
q1 G(q1, q3) =

{ηηη ∈ H|Σ1 ≥ 0 ∧ Σ2 ≤ 0}
G(q1, q4) =
{ηηη ∈ H|Σ1 ≥ 0 ∧ Σ2 ≥ 0}

q2 G(q2, q3) =
{ηηη ∈ H|Σ1 ≥ 0 ∧ Σ2 ≥ 0}

G(q2, q4) =
{ηηη ∈ H|Σ1 ≥ 0 ∧ Σ2 ≤ 0}

q3 - G(q3, q4) =
{ηηη ∈ H|Σ1 ≥ 0 ∧ Σ2 ≤ 0}

q4 G(q4, q3) =
{ηηη ∈ H|Σ1 ≤ 0 ∧ Σ2 ≥ 0}

-

Switching functions are defined as Σi = ηηη†QQQiηηη for i = 1, 2.

C.2 Analysis of the bang-bang controller

Here, heating by bang-bang control of a RAM with two apertures (I = 2) is con-
sidered. Heating with the bang-bang controller can be represented by the hybrid
automaton shown in Figure C.1. Discrete states in Figure C.1 are character-
ized by the fluid circulation direction implemented with the bang-bang controller
in (4.24). The four discrete states, associated with bang-bang control on a RAM
with two apertures, are designated as:

q1: clockwise circulation by u1 = k and u2 = k.

q2: clockwise and counter-clockwise circulation by u1 = k and u2 = −k.

q3: clockwise and counter-clockwise circulation by u1 = −k and u2 = k.

q4: counter-clockwise circulation by u1 = −k and u2 = −k.

The aforementioned four discrete modes thus form set Q = {q1, q2, q3, q4}. The
hybrid automaton in Figure C.1 transitions between each discrete state if the rel-
evant guard condition G(qi, qj) is triggered. Possible edges along which transi-
tions can occur are E = {(qi, qj)} with i, j ∈ {1, . . . , 4}. Notable exceptions

172



C.2 Analysis of the bang-bang controller

are self-loops defined by G(qi, qi). No transition to a different discrete state oc-
curs if such loops are triggered. The guard conditions in Figure C.1 are based
on the switching functions of (4.24). These switching functions are defined as
Σ1 = ηηη†QQQ1ηηη and Σ2 = ηηη†QQQ2ηηη. Table C.1 presents all guard condition as-
sociated with the automaton in Figure C.1. Finally, the continuous state is in-
dependent of the discrete state in the sense that the reset map is defined as
R(qi, qj , ηηη) = R(qj , qi, ηηη) = {ηηη}.

The reachable set and set where continuous evolution of the state ηηη is impos-
sible are defined by

Reach := Q×H, Trans := Trans1∪Trans2∪Trans3∪Trans4, (C.1)

respectively. The sets Transi are associated with each discrete state qi of the
automaton and are given by

Trans1 = {q1} ×
{
ηηη ∈ RK

∣∣
Σ1 > 0 ∧ Σ2 ≤ 0 ∨ Σ1 ≤ 0 ∧ Σ2 > 0 ∨ Σ1 > 0 ∧ Σ2 > 0} ,

T rans2 = {q2} ×
{
ηηη ∈ RK

∣∣
Σ1 > 0 ∧ Σ2 ≥ 0 ∨ Σ1 ≤ 0 ∧ Σ2 < 0 ∨ Σ1 > 0 ∧ Σ2 < 0} ,

T rans3 = {q3} ×
{
ηηη ∈ RK

∣∣
Σ1 < 0 ∧ Σ2 ≥ 0 ∨ Σ1 ≥ 0 ∧ Σ2 < 0 ∨ Σ1 < 0 ∧ Σ2 < 0} ,

T rans4 = {q4} ×
{
ηηη ∈ RK

∣∣
Σ1 < 0 ∧ Σ2 ≤ 0 ∨ Σ1 ≥ 0 ∧ Σ2 > 0 ∨ Σ1 < 0 ∧ Σ2 > 0} .

(C.2)

Continuous evolution of ηηη is inhibited when switching functions Σ1 and Σ2 satisfy
the guard condition. The sets Transi thus capture logical impossibilities. For
example, Trans1 expresses that in state q1 at least one of the two switching
functions exceeds zero. This implies that either G(q1, q2), G(q1, q3) or G(q1, q3)
in Table C.1 is triggered. Hence continuous evolution according to discrete state
q1 is impossible by its definition. The intersection of Reach and Trans as

Reach ∩ Trans = {q1} ×
{
ηηη ∈ RK

∣∣ Σ1 ≤ 0 ∧ Σ2 ≤ 0}
∪ {q2} ×

{
ηηη ∈ RK

∣∣ Σ1 ≥ 0 ∧ Σ2 ≤ 0}
∪ {q3} ×

{
ηηη ∈ RK

∣∣ Σ1 ≥ 0 ∧ Σ2 ≥ 0}
∪ {q4} ×

{
ηηη ∈ RK

∣∣ Σ1 ≤ 0 ∧ Σ2 ≥ 0}

, (C.3)

describes the set where continuous evolution of the ηηη is possible.
To show that closed-loop bang-bang control possesses a unique state trajec-

tory, both Lemma C.1 and Lemma C.2 need to be satisfied. To this end, consider
the set of initial conditions defined as

Init = {q1, q2, q3, q4} × {ηηη ∈ H| ‖ηηη‖2 6= 0} . (C.4)
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The considered set Init consists of any fluid that is still cold compared to the
boundary temperature (i.e. ‖ηηη‖2 = 0 means the fluid is uniformly heated at T∞).
Take any q̃ = qi and η̃ηη such that ‖ηηη‖2 6= 0 and (q̃, η̃ηη) ∈ Init. According to
(C.3) this naturally means that (q̃, η̃ηη) ∈ Reach ∩ Trans for i = 1, . . . , 4 since
Init ≡ Reach ∩ Trans. Moreover, for any q̃′ = qj one find an edge such that
(q̃, q̃′) ∈ E and subsequently η̃ηη ∈ G(q̃, q̃′). The above shows that the bang-
bang controller on a RAM with two apertures (I = 2) is non-blocking according
to Lemma C.1. In other words, continuous state evolution can occur regardless
of the initial heat distribution in the fluid.

Consider a state (q̃, η̃ηη) ∈ Reach with q̃ = qi as above. From Table C.1 and
(C.2) it can thus be observed that condition i) of Lemma C.2 holds for any q̃′ 6= qi.
To show condition ii) of Lemma C.2 holds, consider q̃ = q1 combined with q̃′ 6= q̃′′

according to Table C.1. The intersection between the different guard conditions
are given by:

i) G(q1, q2) ∩G(q1, q3) =
{
ηηη ∈ RK

∣∣Σ1 = 0 ∧ Σ2 = 0 };

ii) G(q1, q2) ∩G(q1, q4) =
{
ηηη ∈ RK

∣∣Σ1 = 0 ∧ Σ2 ≥ 0 };

iii) G(q1, q3) ∩G(q1, q4) =
{
ηηη ∈ RK

∣∣Σ1 ≥ 0 ∧ Σ2 = 0 }.

The intersections in ii) and iii) are both subsets of Trans1. Therefore, η̃ηη /∈
G(q1, q2) ∩ G(q1, q4) and η̃ηη /∈ G(q1, q3) ∩ G(q1, q4) by definition. Moreover,
Σi = 0 means that η̃ ∈ N (QQQi) for i = 1, 2 where N (·) denotes the null-space
of a matrix (i.e. N (XXX) =

{
bbb ∈ RK |XXXbbb = 000 for all bbb 6= 000

}
). The intersection i)

can thus only occur if the null-spaces of matrices QQQi are equivalent or the fluid
is completely heat (i.e. N (QQQ1) ≡ N (QQQ2) or η̃ηη ≡ 000). The null-spaces only align
when Θ ≡ 0 for the chosen PPP 4 in Section 4.3 such that vvv1 ≡ vvv2. A similar re-
sult, following an analogous analysis of guard condition intersections, is found by
considering q̃ = q2 or q̃ = q3. Therefore, condition ii) of Lemma C.2 is satisfied
almost everywhere as η̃ηη ∈ G(q̃, q̃′) ∩ G(q̃, q̃′′) (viz. if and only if the fluid is not
homogeneously heated resulting in η̃ηη = 000). Finally, condition iii) in Lemma C.2 is
automatically satisfied by the definition of the reset map. This means that Lemma
C.2 is satisfied. The above shows that closed-loop heating with the bang-bang
controller is both non-blocking and deterministic. As a results bang-bang control
is well-posed in forward time. State trajectories of the closed-loop therefore exist
and are unique as long as the fluid is still (partially) cold. The above presented
analysis is generalisable to bang-bang control with more than two flows as well.
However, analysis for more flows is omitted for the sake of brevity (e.g. a RAM
with I apertures will lead to an automaton with 2I discrete states).
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APPENDIX D
Local identifiability of model

parameters

The output sensitivity matrix (5.18) uses the derivatives of (5.10)-(5.11) with re-
spect to θθθ† =

[
ξ α κ

]
or θθθ† =

[
α κ

]
for heat transport in the absence of any

flow (i = 0) or the base flow (i = 1), respectively. The output sensitivity matrix
SSS in (5.18) is numerically constructed in a similar fashion for both (i.e. deriva-
tives with respect to α and κ follow from the same relations presented below).
Therefore, derivatives of (5.10)-(5.11) are only derived for the base flow. The
derivatives of (5.10)-(5.11) can be expressed as

∂T̃TT (tk)

∂θj
=

∂

∂θj
(PPP τ )

k
T̃TT (t0) +

∂

∂θj

(
k∑

`=0

(PPP τ )
k−`−1

BBBτ T̃a(t`)

)
, (D.1)

where superscript i is omitted for the sake of notational convenience. The deriva-
tives in (D.1) with respect to ξ can be readily obtained as

∂ (PPP τ )
k

∂ξ
= k

Ts
Tc
AAA (PPP τ )

k−1
,

∂ (PPP τ )
k−`−1

BBBτ

∂ξ
= κ

Ts
Tc
AAA (PPP τ )

k−`−1 (
(k − `)III − (k − `− 1)PPP−1

τ

)
AAA−1bbb,

(D.2)

The derivative of T̃TT with respect to ξ thus has an analytical expression according
to (D.2). Observe that both α and κ occur in the exponent of PPP τ (see (5.11) and
(5.6)). Therefore, the output derivatives with respect to α and κ are computed nu-
merically. The numerical calculation of these derivatives can lead to long compu-
tation times. Diagonalisation of AAA (and likewise PPP τ ) according to (5.13) reduces
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the numerical computation time significantly. The derivative of PPP τ with respect to
θj can be obtained as

∂ (PPP τ )
k

∂θj
=
∂VVV

∂θj
Λ̃ΛΛ

k
VVV −1 + kVVV

∂Λ̃ΛΛ

∂θj
Λ̃ΛΛ

k−1
VVV −1 − VVV Λ̃ΛΛ

k
VVV −1 ∂VVV

∂θj
VVV −1 , (D.3)

where Λ̃ΛΛ = eΛΛΛτ and ∂VVV −1

∂θj
= −VVV −1 ∂VVV

∂θj
VVV −1. This latter property for ∂VVV −1

∂θj
follows

immediately by solving ∂VVVVVV −1

∂θj
= 000. The derivative of the trailing terms in (D.1)

are determined by

∂ (PPP τ )
`
BBBτ

∂θj
=
∂ (PPP τ )

`

∂θj
BBBτ + (PPP τ )

` ∂BBBτ

∂θj
, (D.4)

and

∂BBBτ

∂θ2
= −κ R2

α2Tc

(
∂VVV

∂θ2
ΛΛΛ−1VVV −1 + VVV

∂ΛΛΛ−1

∂θ2
VVV −1 − VVVΛΛΛ−1VVV −1 ∂VVV

∂θ2
VVV −1

)
,

∂BBBτ

∂θ3
= (PPP τ − III)AAA−1bbb

+ κ

(
∂VVV

∂θ3
ΛΛΛ−1VVV −1 + VVV

∂ΛΛΛ−1

∂θ3
VVV −1 − VVVΛΛΛ−1VVV −1 ∂VVV

∂θ3
VVV −1

)
.

(D.5)

Numerical computation of (D.5) to construct (5.18) with (numerical) derivatives in
(D.4) reveals that θθθ is locally structurally identifiable in the absence of any flow for
the parameters in Table 5.2. Numerical computation of (D.5) to construct (5.18)
with (numerical) derivatives in (D.2) and (D.4) reveals that θθθ is locally structurally
unidentifiable for the base flow for the parameters in Table 5.2.
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APPENDIX E
Reorientation invariance of

the discrete algebraic Ricatti
equation

The state estimator for the base flow (i = 1) is described by

LLL(1) =

(
RRR+ C̃CC

(1)
PPP 1(C̃CC

(1)
)†
)−1

(C̃CC
(1)
PPP 1(ÃAA

(1)
)†),

=

(
RRR+CCCG̃GG

(1)
PPP 1(CCCG̃GG

(1)
)†
)−1

(CCCG̃GG
(1)
PPP 1(ÃAA

(1)
)†),

(E.1)

with the matrix XXX1 the positive definite solution to the discrete algebraic Riccati
equation (DARE) given by [131]

XXX1 =ÃAA
(1)
XXX1(ÃAA

(1)
)†

− (ÃAA
(1)
XXX1(C̃CC

(1)
)†)(RRR+ C̃CC

(1)
XXX1(C̃CC

(1)
)†)−1(C̃CC

(1)
XXX1(ÃAA

(1)
)†) +QQQ,

(E.2)

where RRR a positive definite matrix and QQQ a positive (semi)definite matrix. Like-
wise, a similar state estimator can be obtained for flow i described by

LLL(i) =

(
RRR+ C̃CC

(i)
XXXi(C̃CC

(i)
)†
)−1

(C̃CC
(i)
XXXi(ÃAA

(i)
)†), (E.3)
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with the matrix XXXi the positive definite solution to the discrete algebraic Riccati
equation (DARE) given by

XXXi =ÃAA
(i)
XXXi(ÃAA

(i)
)†

− (ÃAA
(i)
XXXi(C̃CC

(i)
)†)(RRR+ C̃CC

(i)
XXXi(C̃CC

(i)
)†)−1(C̃CC

(i)
XXXi(ÃAA

(i)
)†) +QQQ.

(E.4)

The combination of (5.7), (5.15) and (5.15) results in the following observation

ÃAA
(i)

=
(
GGG(i)

)+
XXX(i)

τ GGG(i) =
(
GGG(1)

)+
RRR1−i

Θ XXX(i)
τ RRRi−1

Θ GGG(1),

=
(
GGG(1)

)+
XXX(1)

τ GGG(1) = ÃAA
(1)
,

(E.5)

and reorientation invariance ofCCC = CCCRRRi−1
Θ implies that

C̃CC
(i)

= CCCRRRi−1
Θ GGG(1) = C̃CC

(1)
. (E.6)

Hence the substitution of both (E.5) and (E.6) in (E.4) reveals that both (E.4) and
(E.2), which suggests thatXXXi =XXX1. As a consequence, (E.3) and (E.1) express
the same state estimator (i.e. LLL(i) = LLL(1) following the substitution of (E.5), (E.6)
andXXXi =XXX1 in (E.3)).
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APPENDIX F
Error dynamics for a periodic

flow

Here the estimation error dynamics for a periodic flow are investigated. The pe-
riodic flow activates fluid flows in the RAM according to u(t) ∈ U for the reori-
entation scheme U = {1, 2, 1, . . .}. The error dynamics after to subsequent flow
activations thus reads as

εεε(tk+1) =GGG(2)(ÃAA
(2)

−LLL(2)C̃CC
(2)

)
(
GGG(2)

)+
GGG(1)(ÃAA

(1)
−LLL(1)C̃CC

(1)
)
(
GGG(1)

)+
εεε(tk).

(F.1)

The definition of transformation matrices GGG(2) and GGG(1), in (5.15), leads to a
saltation matrix as

GGG(2) = RRRΘGGG
(1),

(
GGG(2)

)+
GGG(1) =

(
GGG(1)

)+
RRR−1

Θ GGG(1), (F.2)

whereRRR−1
Θ = RRR†

Θ. The substitution of (F.2) results in

εεε(tk+1) = RRRΘGGG
(1)(ÃAA

(2)
−LLL(2)C̃CC

(2)
)
(
GGG(1)

)+
RRR†

Θ

GGG(1)(ÃAA
(1)

−LLL(1)C̃CC
(1)

)
(
GGG(1)

)+
εεε(tk).

(F.3)

which, with LLL(i) = LLL according to results in Appendix E, results in

εεε(tk+1) = RRR2
Θ

(
RRR†

ΘGGG
(1)

(
ÃAA

(1)
−LLLC̃CC

(1)
)(

GGG(1)
)+)2

εεε(tk). (F.4)
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Finally, usingRRRI
Θ = III [132] for I = 2, results in

εεε(tk+1) =

(
RRR†

ΘGGG
(1)

(
ÃAA

(1)
−LLLC̃CC

(1)
)(

GGG(1)
)+)2

εεε(tk), (F.5)
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APPENDIX G
Impact sensor placement on
field estimation for the base

flow

This chapter considers the impact of sensor placement on field estimation in the
presence of the base flow. In Section 5.3.3, sensors are placed based on the
eigenmodes associated with both the base flow and the reoriented flow with U =
0.004 m/s for the model parameters in Table 5.2. Any number of these sensors
(or outputs) can be used to design the estimator gain matrix LLL(i) according to

Section 5.3.2. The choice of the sensors used by the estimator determines C̃CC
(i)

and thus the design of gain matrix LLL(i). Based on the methodology presented in
Section 5.3.2, two obvious choices are available; i) select the first bp/Ic outputs
(i.e. first bp/Ic rows ofCCC) to designLLL(1) or ii) select all outputs placed in Section
5.3.3 to design LLL(1). In the former option, sensors are placed based on the
eigenmodes associated with heat transport driven by the base flow. Hence, the
first bp/Ic sensors are optimally placed for estimation of the base flow. In the
latter option, the second bp/Ic sensors are placed optimally for the eigenmodes
associated with the base flow (i.e. they are optimally placed for the reoriented
flow). As a result, a part of these sensors will always be suboptimally placed to
estimate the transient temperature field (i.e. the first bp/Ic sensors – indicated
by the squares in Figure 5.4 – are suboptimally placed for the reoriented flow).

Numerical field estimation is investigated for a rescaled base flow at U =
0.001 m/s with M = 1000 eigenmodes. As a consequence, Pe decreases and
results in topological changes of the eigenmodes associated with the base flow.
This implies that all sensors are suboptimally placed for field estimation in the
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rescaled base flow (i.e. sensors were placed based on eigenmodes with a larger
Pe in Section 5.3.3). Nonetheless, the estimation accuracy is investigated when
all sensors or only the first bp/Ic placed sensors are used during field estimation
of the base flow. Rescaling of the base flow from U = 0.004 m/s to U = 0.001
m/s – yielding a smaller Pe – can result in a topological change of the (dominant)
eigenmodes (e.g. see results in Reference [109]). However, topological changes
for the lower order modes are relatively small for the considered Pe. Numeri-
cal analysis (i.e. placing sensors based on the rescaled base flow) reveals that
the eigenmodes, and as consequence the optimal sensor placement, only sub-
stantially change for the higher order modes. Hence, sensor placement remains
unaltered in the analysis with respect to the placement presented in Section 5.3.3.

t = 5 [min] t = 10 [min] t = 15 [min] t = 20 [min]

Figure G.1: Estimated transient temperature snapshots (first and third row) and
error between estimated and nominal transient temperature snapshots (second
and fourth row) for the base flow with estimation based on first bp/Ic sensors (top
two rows) and all sensors (bottom two rows). Parameters during simulations are
adopted from Table 5.2 with M = 1000 eigenmodes.

Figure G.1 shows snapshots of the nominal transient temperature field in the
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(a) Small q/r.
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(b) Large q/r.

0 10 20 30 40 50
−6

−5

−4

−3

Time [min]

lo
g 1

0
(J̃

(θθ θ
∗ ,
t)
)

q/r = 1

q/r = 1

q/r = 3

q/r = 3

q/r = 5

q/r = 5

Figure G.2: The cost-function J̃(θθθ∗, t) for the base flow with (a) small q/r and (b)
large q/r. Field estimation on only the first 24 sensors are represented by solid
lines. Estimation with all sensors is represented by dashed lines. Parameters
during simulations are adopted from Table 5.2 with M = 1000 eigenmodes.

top row. The middle and bottom row in Figure G.1 show snapshots where, re-
spectively, the first bp/Ic sensors and all p sensors are used for field estimation
of the base flow. Figure G.1 reveals no quantitatively and qualitatively differences
if the estimator is designed on estimation for either half or all sensors. The sec-
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ond bp/Ic sensors are suboptimally placed for field estimation of the base flow
(i.e. they are placed based on GGG(2) rather than GGG(1)). This suboptimal place-
ment means that the higher-order modes can potentially (negatively) influence
the lower-order modes. This is commonly referred to as the spill-over effect [107].
However, spill-over effects appear to be limited/negligible regardless of the sub-
optimal placement.

The effect of ratio q/r on the evolution of the field estimation error is shown
in Figure G.2. The dashed and solid lines in Figure G.2 indicate results where
field estimation is performed with all sensors and only the first bp/Ic sensors,
respectively. Figure G.2 reveals that J̃ is smaller at steady-state if only the first
bp/Ic sensors are used during estimation. This improved steady-state estimation
accuracy for a smaller number of sensors occurs irrespective of the q/r tuning.
Notably different behaviour of the estimation error is observed in the initial tran-
sient in Figure G.2a compared to Figure 5.12b (i.e. in the first 10 minutes). The
oscillations of J̃ – observed in the first 10 minutes in Figure G.2a – diminish if
also the suboptimally placed sensors are included during estimation. The estima-
tion error becomes larger for estimation based on all sensors as time progresses
though (i.e. field estimation errors with the estimation based on all sensors be-
comes larger than those based on the first bp/Ic sensors). Moreover, larger q/r
result in an increase of the field estimation error regardless which sensors are
used here. The behaviour of the error for a larger q/r is consistent with the be-
haviour observed in Section 5.4.3.2. A similar observation holds for decreasing
q/r. Figure G.2b reveals that a small q/r minimizes the estimation error J̃ most.
Moreover, for q/r � 1 there is no distinguishable difference between estimation
based on the first bp/Ic or all sensors. Therefore, it is concluded that a small q/r
preferential to boost estimation accuracy.

The numerical results presented above show that considering all sensors in-
stead of only the first bp/Ic sensors during field estimation has only a small detri-
mental effect on the field estimation error. Moreover, proper tuning of RRR can
mostly counteract the differences in J̃ observed between estimation of the base
flow based on all or the first half of the available sensors. However, estimation
errors are smallest immediately following base flow activation (i.e. in the initial
transient) for estimation based on all sensors in CCC. This low estimation error
becomes especially important for successful field estimation in rapidly switching
(periodic) flows. Hence, all sensors should be used for (experimental) field es-
timation of the base flow and the periodic flow. Observe that the invariance of
the sensor position to rotation is still preserved for such an output matrix (i.e.
CCCRRR = CCC).
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[87] M. Krstić and A. Smyshlyaev, “Adaptive control of pdes,” Annual Reviews
in Control, vol. 32, pp. 149–160, 2008.

[88] S. Koga, R. Vázquez, and M. Krstić, “Backstepping control of the stefan
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