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Lebesgue sampling

Key idea: sample only when a signal crosses fixed
thresholds

• Reduces data-rate requirements
• Analysis and control design are more complicated
• To avoid spurious sampling, send-on-delta strategy

can be used
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Problem formulation

Continuous-time SISO system in state-space form:
dx(t) = Ax(t)dt +Bu(t)dt + dw(t)

z(t) = Cx(t) + Du(t)
• w(t): Wiener process of incremental covariance Q
• u(t): known input signal
• A,B,C, D and Q: unknown constant matrices

Assume z(t) is sampled as above, with time-stamps{t l}Ml=1
and threshold distance h

How can we estimate A,B,C, D and Q using {u(t)}t∈[t1,tM ]

and {z(t l)}Ml=1 and the intersample behavior knowledge?

EM for Lebesgue-sampled data

Approach: small sampling period ∆ + Delta domain.
Relabeling k = 1 to k = N := ⌊ tM

∆ ⌋−⌊
t1
∆ ⌋+1 and discretizing:

dx+k =∆Ainxk +∆Binuk +dw+k
zk = Cxk + Duk+εek← added to ensure full rank matrices

yk =Qh{zk}← set-valued function describing Lebesgue sampling

with Ain = (eA∆− I)/∆, Bin =∆−1
∫∆

0 eAτBdτ, and noise vec-
tor covariance ∆Qinδ

K
k−l , where Qin =∆−1

∫∆

0 eAτQeA⊤τdτ.
Note that (Ain,Bin,Qin)≈ (A,B,Q) for small ∆

=⇒ derive EM for fast-sampled Delta domain equivalent!
Parameter estimates A,B,C, D,Q described in θ

E-step: Q function
−Q(θ , θ̂i) = −E
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log p(x1:N+1, z1:N )|y1:N , θ̂i

	

−Q(θ , θ̂i)∼ L0(θ̂i) + N logdet(Qin)
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where Γ matrices are conditional expectations w.r.t.
y1:N , θ̂i .
M-step: EM iterations θ̂i+1= argmaxθ Q(θ , θ̂i) are given by
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How to compute Γ ? Particle filtering/smoothing (or
Gaussian Sum filtering/smoothing)

Simulation studies

Kalman Smoother EM (KS-EM) Proposed method (PS-EM)
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