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Abstract

In this paper, we study the tail behavior of maxi≤N sups>0 (Wi(s) +WA(s)− βs) as N → ∞, with
(Wi, i ≤ N) i.i.d. Brownian motions and WA an independent Brownian motion. This random variable can
be seen as the maximum of N mutually dependent Brownian queues, which in turn can be interpreted as the
backlog in a Brownian fork-join queue. In previous work, we have shown that this random variable centers
around σ2

2β
logN . Here, we analyze the rare-event that this random variable reaches the value (σ

2

2β
+a) logN ,

with a > 0. It turns out that its probability behaves roughly as a power law with N , where the exponent
depends on a. However, there are three regimes, around a critical point a?; namely, 0 < a < a?, a = a?, and
a > a?. The latter regime exhibits a form of asymptotic independence, while the first regime reveals highly
irregular behavior with a clear dependence structure among the N suprema, with a nontrivial transition at
a = a?.

Keywords: Brownian queues; fork-join queues; extreme value theory; tail asymptotics

1 Introduction
Fork-join queues are a useful modeling tool for congestion in complex networks, such as assembly systems,
communication networks, and supply chains. Such networks can be large and assembly is only possible upon
availability of all parts. Thus, the bottleneck of the system is caused by the slowest production line in the
system. This setting motivates us to investigate such delays in a stylized version of a large fork-join queueing
system. In this setting, a key quantity of interest is the behavior of the longest queue. We assume that arrival
and service processes are Brownian, as it is a standard result in queueing theory that queueing systems in heavy-
traffic can be approximated by reflected Brownian motions. Furthermore, when the arrival and service processes
are deterministic with some white noise perturbation, it is also a natural choice to model this with Brownian
motions. We analyze the steady-state behavior of this system. Hence, we can model the backlog in queue i by
Qβi,A = sups>0(Wi(s) + WA(s) − βs), where WA is a Brownian motion term with standard deviation σA that
represents the fluctuations in the arrival process, Wi is a Brownian motion term with standard deviation σ that
represents the fluctuations in the service process, and β > 0 represents the drift of the queue. Furthermore,
we assume that (Wi, i ≤ N) are i.i.d. Brownian motions, and for all i, Wi and WA are mutually independent.
These are natural choices as well, because these assumptions indicate that servers’ work speeds are mutually
independent, and independent with respect to the interarrival times.

Because the bottleneck in the system is the slowest production line, we are interested in the longest queue
length, and we investigate the random variable Q̄βN = maxi≤N Q

β
i,A. We see that this random variable is a

maximum of N dependent random variables, due to the common arrival process WA. As we try to model
systems with many servers, we are typically interested in the behavior of this random variable as N → ∞. In
[15], it is shown that Q̄βN is in the domain of attraction of the normal distribution:

P
(
Q̄βN >

σ2

2β
logN + x

√
logN

)
N→∞−→ P

(
σσA√

2β
X > x

)
, (1)
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with X d
= N (0, 1). This means that Q̄βN centers around σ2

2β logN and deviates with order
√

logN .
This convergence result provides a prediction of the typical delay. However, one might also be interested in

the question how likely it is that the delay will be much longer, as delays may cause large costs. Obviously, the
probability P(Q̄βN > yN )

N→∞−→ 0, when yN − σ2

2β logN grows to infinity at a rate faster than
√

logN , but the
question is how fast this probability converges to 0. In this study, we focus on the probability

P
(
Q̄βN >

(
σ2

2β
+ a

)
logN

)
,

with a > 0. As we show later on, the exact behavior of this tail probability depends on the choice of a, where we
can distinguish three regimes: 0 < a < a?, a = a?, and a > a?, with a? an explicitly identified constant in (0,∞).
The logarithmic asymptotics for these three regimes are given in Theorem 1, while the sharper asymptotics for
the cases a > a?, a = a?, and 0 < a < a? are given in Theorems 2, 3, and 4, respectively. It easily follows from
the proofs that when yN is of larger order than logN , the convergence behavior of P(Q̄βN > yN ) is the same as
for the case a > a?, cf. Corollary 5.1.

Our work is related to the literature on extreme values of Gaussian processes. In this paper, we examine
exceedance probabilities of the order (σ

2

2β + a) logN with a > 0. More work has been done on joint suprema of
Brownian motions. For instance, [10] gives the solution of the Laplace transform of joint first passage times in
terms of the solution of a partial differential equation, where the Brownian motions are dependent. Further, [5]
analyze the tail asymptotics of the all-time suprema of two dependent Brownian motions. The joint suprema
of a finite number of Brownian motions is also studied [4], where the authors give tail asymptotics of the joint
suprema of independent Gaussian processes over a finite time interval. These are just three examples – more
results may be found in [14] and [19].

Our work also relates to the literature on fork-join queues. Exact results on fork-join queues with two service
stations can be found in [1, 6, 8, 22]. Approximations for systems with an arbitrary but fixed number of servers
can be found in [2, 9, 16]. In [21] a heavy-traffic analysis for fork-join queues is derived; see also [17] and [18].
More recent work in this direction may be found in [11, 12, 13, 20]. Our work adds to the existing literature,
as we analyze the largest of N queues as N → ∞. Literature on such extreme value results is rare. More
specifically, we derive a large deviation principle for the longest of N dependent Brownian queues as N → ∞,
to obtain this, we use and extend the results obtained in [5], in which the case N = 2 is investigated.

This paper is organized as follows. In Section 2, we present our main results, which contain an interesting
phase transition in the way a large supremum occurs depending on the value of a. We explain the reason
behind this phase transition in detail. The rest of the paper is devoted to proofs. In Section 3, we give a
proof of Theorem 1, which focuses on logarithmic asymptotics. In Section 4, we present some auxiliary lemmas.
In Sections 5.1, 5.2, and 5.3, we provide the proofs of Theorems 2, 3, and 4, respectively, which deal with
asymptotic estimates that are sharper than Theorem 1.

2 Main results
In this section, we present our main results and also provide some intuition. We first introduce some additional
notation. Recall that (Wi, i ≤ N) is a sequence of i.i.d. Brownian motions with standard deviation σ, WA is a
Brownian motion with standard deviation σA, Wi and WA are mutually independent for all i, the steady-state
queue length in front of server i is given by

Qβi,A = sup
s>0

(Wi(s) +WA(s)− βs), (2)

and the maximum queue length equals

Q̄βN = max
i≤N

Qβi,A. (3)

Further, we write the supremum of a Brownian motion {Wi(t) +WA(t)− βt, t > 0} over an interval (u, v) as

Qβi,A(u, v) = sup
u<s<v

(Wi(s) +WA(s)− βs), (4)

and the maximum of N of these identically distributed random variables as

Q̄βN (u, v) = max
i≤N

Qβi,A(u, v). (5)
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Also, we introduce shorthand notation that we use later on:

fN (a) =

(
σ2

2β
+ a

)
logN, (6)

λ(a) = 1− σ/
√

2aβ + σ2, (7)

TN (a, k) = fN (a)/β + k
√

logN, (8)
TN (a) = TN (a, 0). (9)

Finally, we write

γ(a) =


2aβ + 2σ2 − 2σ

√
2aβ + σ2

σ2
A

if 0 < a < a?,

2aβ − σ2
A

σ2 + σ2
A

if a ≥ a?,
(10)

with a? =
σ4
A

σ22β +
σ2
A

β . The function γ(a) appears in the limit of the logarithmic asymptotics of P(Q̄βN > fN (a)).
In Figure 1, we plot −γ(a) for certain choices of the parameters σ, σA, β, and a?. As can be seen, from a = a?

onwards, the function is linear. Moreover, we see that γ(a) is continuous everywhere, also for a = a?.

Figure 1: σ = 1, σA = 1, β = 1, a? = 3/2

Our first result, Theorem 1, provides the logarithmic asymptotics of the tail probability of the maximum
steady-state queue length P(Q̄βN > fN (a)).

Theorem 1. Let a > 0, (Wi, i ≤ N) be i.i.d. Brownian motions with standard deviation σ, WA be a Brownian
motion with standard deviation σA, for all i, Wi and WA are mutually independent, and Q̄βN , γ(a), and fN (a)
are given by Equations (3), (10), and (6), respectively, then

log(P(Q̄βN > fN (a)))

logN

N→∞−→ −γ(a). (11)

We give the proof of Theorem 1 in Section 3. To provide some intuition, the form of the function γ(a)
suggests there are at least two regimes: the case where 0 < a < a?, and the case where a ≥ a?. These two cases
reveal interesting information on the tail behavior of the maximum queue length Q̄βN .

3



Case a > a?. First of all, observe that for a > a? and N large, by using the convergence result in (11) and
the memoryless property of the exponential distribution, we have that

P
(

max
i≤N

sup
s>0

(Wi(s) +WA(s)− βs) > fN (a)

)
≥ P

(
max
i≤N

sup
s>0

(Wi(s) +WA(s)− βs) > fN (a?)

)
P
(

sup
s>0

(Wi(s) +WA(s)− βs) > (a− a?) logN

)
= P

(
max
i≤N

sup
s>0

(Wi(s) +WA(s)− βs) > fN (a?)

)
exp

(
−−2β(a− a?)

σ2 + σ2
A

logN

)
≈ N−γ(a

?) exp

(
−−2β(a− a?)

σ2 + σ2
A

logN

)
= N−γ(a).

(12)

To understand the lower bound in this expression, observe that due to the memoryless property of an exponen-
tially distributed random variable E, we have that P(E > x + y) = P(E > x)P(E > x + y | E > x) = P(E >
x)P(E > y). Then for a sequence of exponentially and identically distributed random variables (Ei, i ≤ N), we
have for all j ≤ N that P(maxi≤N Ei > x+ y) ≥ P(maxi≤N Ei > x)P(Ej > x+ y | Ej > x) = P(maxi≤N Ei >
x)P(Ej > y). So, the fact that the tail probability of the maximum steady-state queue length in (12) is bounded
from below by the expression in (12) implies that for a > a?

P
(

#{j ≤ N : sup
s>0

(Wj(s) +WA(s)− βs) > fN (a)} = 1

∣∣∣∣Q̄βN > fN (a)

)
N→∞−→ 1.

Second, we see that for a ≥ a?, N−γ(a) = N P(Qβi,A > fN (a)). Obviously, since a ≥ 0, the union bound gives
that

P(Q̄βN > fN (a)) ≤ N P(Qβi,A > fN (a)) = N
− 2aβ−σ2A
σ2+σ2

A . (13)

The fact that the union bound is sharp when a ≥ a? indicates that for a ≥ a? the N queues are asymptotically
independent; i.e.,

P
(

max
i≤N

sup
s>0

(Wi(s) +WA(s)− βs) > fN (a)

)
≈ P

(
max
i≤N

sup
s>0

(Wi(s) +WA,i(s)− βs) > fN (a)

)
,

where the arrival processes (WA,i, i ≤ N) are independent Brownian motions. In Section 5.2, we see that the
boundary case a = a? does show some dependent behavior, but this dependence structure cannot be deduced
from the logarithmic asymptotics.

Case 0 < a < a?. Finally, the case 0 < a < a? is more involved. The function γ(a) involves a in a nonlinear
fashion. As we observe in Equation (13), due to the fact that the exponent of the tail probability of an
exponentially distributed random variable is linear in a, we expect that the logarithmic asymptotics would also
be linear in a. Thus the structure of γ(a) shows that the dependent part WA influences the tail asymptotics,
and contrary to the case where a > a?, we have that

lim inf
N→∞

P
(

#{j ≤ N : sup
s>0

(Wj(s) +WA(s)− βs) > fN (a)} > 1

∣∣∣∣Q̄βN > fN (a)

)
> 0.

The reason that we see this is that in order to get that the maximum steady-state queue length Q̄βN reaches the
level fN (a), the arrival process {WA(t) − λ(a)βt, t > 0} must reach a high level around λ(a)fN (a), which is a
rare event. Furthermore, one of the N service processes needs to reach a level around (1−λ(a))fN (a); however,
this is not a rare event. Even more, the event that a finite number of service processes reaches a level around
(1− λ(a))fN (a) has a finite probability.

The function γ(a) has more characteristics that can be explained from [15]. What we namely see is that
γ(0) = 0, which is to be expected as we know from (1) and (6) that for x = 0

P(Q̄βN > fN (0))
N→∞−→ 1

2
.

We further have that logNγ(x/
√

logN)
N→∞−→ x2β2

σ2σ2
A
. It thus follows that for N large,

N−γ(x/
√
logN) ≈ N

− x2β2

σ2σ2
A

logN = exp

(
− x

2β2

σ2σ2
A

)
,

4



which is the exponent of the limiting distribution given in (1).
To prove the logarithmic asymptotics in Theorem 1, it suffices to look at random variables of the type

maxi≤N (Wi(TN )+WA(TN )−βTN ) instead of the random variable Q̄βN = maxi≤N sups>0(Wi(s)+WA(s)−βs),
where the appropriate choice of TN is TN (a), cf. Equation (9). We show this in more detail in the proof of Lemma
1. For a > a?, the logarithmic asymptotics are relatively straightforward to derive because we see a notion of
asymptotic independence, as explained above. In the proof of Lemma 1, we show that when 0 < a ≤ a?,

log(P(Q̄βN > fN (a)))

≈ log(P(max
i≤N

Wi

(
TN (a)

)
− (1− λ(a))βTN (a) > (1− λ(a))fN (a)))

+ log(P(WA

(
TN (a)

)
− λ(a)βTN (a) > λ(a)fN (a))),

(14)

when N is large, and we show that the term log(P(maxi≤N Wi

(
TN (a)

)
− (1−λ(a))βTN (a) > (1−λ(a))fN (a)))

becomes negligible as N →∞.
We now turn to precise asymptotics, which are stated in Theorems 2, 3, and 4 below for the cases a > a?,

a = a?, and 0 < a < a?, respectively. The proofs of these theorems can be found in Sections 5.1, 5.2, and 5.3.

Theorem 2. Let a > a?, (Wi, i ≤ N) be i.i.d. Brownian motions with standard deviation σ, WA be a Brownian
motion with standard deviation σA, for all i, Wi and WA are mutually independent, and Q̄βN , γ(a), and fN (a)
are given by Equations (3), (10), and (6), respectively, then

Nγ(a) P(Q̄βN > fN (a))
N→∞−→ 1. (15)

The theorem shows that for a > a?, the tail probability of the steady-state maximum queue length has the
same asymptotic behavior as the one for independently and identically distributed arrival processes for each
queue.

Theorem 3. Let a = a?, (Wi, i ≤ N) be i.i.d. Brownian motions with standard deviation σ, WA be a Brownian
motion with standard deviation σA, for all i, Wi and WA are mutually independent, and Q̄βN , γ(a), and fN (a)
are given by Equations (3), (10), and (6), respectively, then

Nγ(a?) P(Q̄βN > fN (a?))
N→∞−→ 1

2
. (16)

To give a heuristic explanation why we have a transition point at a = a?, recall that λ(a) is given in Equation
(7), Wi is a Brownian motion with standard deviation σ, andWA is a Brownian motion with standard deviation
σA. Because the all-time supremum of a Brownian motion is exponentially distributed it is easy to see that for
a = a?,

sup
s>0

(WA(s)− λ(a?)βs)
d
= sup

s>0
(Wi(s)− (1− λ(a?))βs)

d
= sup

s>0
(Wi(s) +WA(s)− βs).

Similarly, after a straightforward calculation we observe that for 0 < a < a?,

sup
s>0

(WA(s)− λ(a)βs) ≥st. sup
s>0

(Wi(s)− (1− λ(a))βs),

and for a > a?,

sup
s>0

(WA(s)− λ(a)βs) ≤st. sup
s>0

(Wi(s)− (1− λ(a))βs).

For 0 < a < a?, large values of Q̄βN are predominantly caused by fluctuations of {WA(t) − λ(a)βt, t > 0}; we
show this rigorously in Section 5.3. In contrast, for a > a?, fluctuations are caused by a combination of the
arrival process and one of the service processes, and therefore we see a notion of asymptotic independence.

To explain in more detail why we have a constant 1/2 at the boundary case a = a?, we first observe that, since
the all-time supremum of a Brownian motion with negative drift is exponentially distributed, P(sups>0(WA(s)−
λ(a?)βs) > λ(a?)fN (a?)) = N−γ(a

?). Moreover, if the event sups>0(WA(s)− λ(a?)βs) > λ(a?)fN (a?) happens,
it most likely occurs at time TN (a?). By using the union bound and that all suprema are the same in distribution
we may therefore write

P(Q̄βN (TN (a?),∞) > fN (a?) |WA

(
TN (a?)

)
− λ(a?)βTN (a?) = λ(a?)fN (a?))

= P
(

max
i≤N

(
Wi

(
TN (a?)

)
− (1− λ(a?))βTN (a?) + Q̂βi,A

)
> (1− λ(a?))fN (a?)

)
≈ N P

(
Wi

(
TN (a?)

)
− (1− λ(a?))βTN (a?) + Q̂βi,A > (1− λ(a?))fN (a?)

)
= N P

(
sup

s>TN (a?)

(Wi(s)− (1− λ(a?))βs) > (1− λ(a?))fN (a?)

)
N→∞−→ 1

2
.
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If we condition on maxi≤N sups>0(Wi(s)− (1− λ(a?))βs) = (1− λ(a?))fN (a?), we obtain the same expression
after using the same heuristic argument.

Our final result is an improvement of the logarithmic asymptotics for the case 0 < a < a?.

Theorem 4. Let 0 < a < a?, (Wi, i ≤ N) be i.i.d. Brownian motions with standard deviation σ, WA be a
Brownian motion with standard deviation σA, for all i, Wi and WA are mutually independent, and Q̄βN , γ(a),
fN (a), and λ(a) are given by Equations (3), (10), (6), and (7) respectively, then

lim inf
N→∞

Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A P(Q̄βN > fN (a)) > 0, (17)

and

lim sup
N→∞

Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A P(Q̄βN > fN (a)) <∞. (18)

We give a proof of this result in Section 5.3. As already suggested in Theorem 1, for the case 0 < a < a? we
observe more irregular behavior, which manifests itself already in the values of γ(a). In Theorem 4, we observe

that the second term is not a constant, as was the case for the values a > a? and a = a?, but is (logN)
λ(a)

1−λ(a)
σ2

2σ2
A .

To obtain heuristic insights, we argue that

P
(

sup
s>0

(WA(s)− λ(a)βs) > λ(a)fN (a) + rN

)
= N−γ(a)(logN)

− λ(a)
1−λ(a)

σ2

2σ2
A , (19)

with rN =
σ
√

2aβ+σ2

4β log logN . Furthermore, we have for all k that

P
(

max
i≤N

Wi

(
TN (a, k)

)
− (1− λ(a))βTN (a, k) > (1− λ(a))fN (a)− rN

)
= Ω(1), (20)

where zN = Ω(1) means that lim infN→∞ zN > 0. Combining these two results we see that

P
(
Q̄βN > fN (a)

)
≥ P

(
sup
s>0

(WA(s)− λ(a)βs) > λ(a)fN (a) + rN ,max
i≤N

Wi(τN )− (1− λ(a))βτN > (1− λ(a))fN (a)− rN
)
, (21)

where τN = inf{t > 0 : WA(t)− λ(a)βt > λ(a)fN (a) + rN}. We show later on that τN conditioned being finite,
has the form of TN (a,K) with K being a random variable. Because

P
(

sup
s>0

(WA(s)− λ(a)βs) > λ(a)fN (a) + rN ,max
i≤N

Wi(τN )− (1− λ(a))βτN > (1− λ(a))fN (a)− rN
)

= P
(

sup
s>0

(WA(s)− λ(a)βs) > λ(a)fN (a) + rN

)
· P
(

max
i≤N

Wi(τN )− (1− λ(a))βτN > (1− λ(a))fN (a)− rN
∣∣∣∣τN <∞

)
,

(22)

we retrieve (17) after combining the results from (19)–(22). Thus, it turns out that for 0 < a < a?, rN plays
a key role. As explained in Section 5.2, in the case 0 < a < a?, {WA(t) − λ(a)βt, t > 0} dominates, which
explains why the tail asymptotics of the maximum queue length Q̄βN are the same as the tail asymptotics of
sups>0(WA(s)− λ(a)βs), and the behavior of maxi≤N Wi

(
TN (a, k)

)
− (1− λ(a))βTN (a, k) is typical.

The main approach of proving the lower and upper bounds in (17) and (18), as well as the limits in (15) and
(16), is by analyzing lower and upper bounds on the tail probability of the steady-state maximum queue length
P(Q̄βN > fN (a)). These bounds are derived by utilizing the union bound, Bonferroni’s inequality, and a careful
construction of hitting times. These hitting times are needed to estimate the time where the supremum most
likely hits the desired level, and to adequately separate the independent part Wi and the dependent part WA

from each other. We also rely on some existing asymptotic estimates in the literature from extreme value theory,
and on [5], that investigates the case N = 2. Finally, we develop a number of auxiliary technical estimates
related to the asymptotic behavior of convolutions of normally and exponentially distributed random variables.

These techniques, when put together, are effective in the case a = a? and a > a? in order to obtain exact
asymptotics. In the case 0 < a < a?, we are able to improve upon Theorem 1 and characterize the asymptotic
behavior of P(Q̄βN > fN (a)) up to a constant. To derive precise asymptotics in this case seems beyond the scope
of techniques developed in this paper.
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3 Proof of the logarithmic asymptotics
In this section, we give a proof of Theorem 1, establishing logarithmic asymptotics for the maximum queue
length. Our approach is to derive logarithmic lower and upper bounds of the maximum queue length by using
the heuristic idea given in (14), and show that they coincide. These bounds are presented in Lemmas 1 and 2
below.

Lemma 1. Let a > 0, (Wi, i ≤ N) be i.i.d. Brownian motions with standard deviation σ, WA be a Brownian
motion with standard deviation σA, for all i, Wi and WA are mutually independent, and Q̄βN , γ(a), and fN (a)
are given by Equations (3), (10), and (6), respectively, then

lim inf
N→∞

log(P(Q̄βN > fN (a)))

logN
≥ −γ(a). (23)

Proof. Recall that λ(a) = 1 − σ/
√

2aβ + σ2 and TN (a) = fN (a)/β. By choosing s = fN (a)/β and splitting
−βs into two terms, observe that

P
(

max
i≤N

sup
s>0

(Wi(s) +WA(s)− βs) > fN (a)

)
(24)

≥ P
(

max
i≤N

Wi

(
TN (a)

)
− (1− λ(a))βTN (a) > (1− λ(a))fN (a),WA

(
TN (a)

)
− λ(a)βTN (a) > λ(a)fN (a)

)
= P

(
max
i≤N

Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)

)
P
(
WA

(
TN (a)

)
> 2λ(a)fN (a)

)
. (25)

The expression in (25) is due to the fact that for all i, Wi and WA are independent. We now analyze the two
probabilities in (25) separately. Since Wi and Wj are i.i.d. for all i and j, for the first probability in (25) we get
from Bonferroni’s inequality that

P
(

max
i≤N

Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)

)
≥ N P

(
Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)

)
−
(
N

2

)
P
(
Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)

)2
. (26)

Furthermore, it is easy to see that

P
(

sup
s>0

(Wi(s)− (1− λ(a))βs) > (1− λ(a))fN (a)

)
=

1

N
(27)

and that

P(Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)) ≤ P

(
sup
s>0

(Wi(s)− (1− λ(a))βs) > (1− λ(a))fN (a)

)
,

and therefore we bound the second term in (26) as(
N

2

)
P
(
Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)

)2 ≤N2

2
P
(

sup
s>0

(Wi(s)− (1− λ(a))βs) > (1− λ(a))fN (a)

)
· P
(
Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)

)
=
N

2
P
(
Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)

)
.

Thus the lower bound given in (26) can be further bounded to

P
(

max
i≤N

Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)

)
≥ N

2
P(Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)).

As we aim to derive logarithmic asymptotics, we do so for the derived lower bound, now it is easy to see that

log

(
N

2
P
(
Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)

))
∼ logN + log

(
P
(
Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)

))
,

as N → ∞, with f(x) ∼ g(x) as x → ∞ meaning that limx→∞ f(x)/g(x) = 1. In addition, recall that for a
normally distributed random variable X with standard deviation σ, log(P(X > x)) ∼ −x2/(2σ2), as x → ∞.
Thus, we get that

log

(
P
(
Wi

(
TN (a)

)
> 2(1− λ(a))fN (a)

))
∼ − (2(1− λ(a))fN (a))2

2σ2TN (a)
= − logN,

7



as N →∞, following the definitions of λ(a), fN (a), and TN (a). Concluding,

lim inf
N→∞

log

(
P
(
maxi≤N Wi

(
TN (a)

)
− (1− λ(a))βTN (a) > (1− λ(a))fN (a)

))
logN

≥ 0. (28)

For the second probability in (25) the logarithmic asymptotics can be easily computed, since WA

(
fN (a)

)
is

normally distributed, and we obtain that

log

(
P
(
WA

(
TN (a)

)
> 2λ(a)fN (a)

))
logN

N→∞−→ −2aβ + 2σ2 − 2σ
√

2aβ + σ2

σ2
A

. (29)

Thus, after combining these two results in (28) and (29) with Equation (25), we have that,

lim inf
N→∞

log (P(maxi≤N sups>0 (Wi(s) +WA(s)− βs) > fN (a)))

logN
≥ −2aβ + 2σ2 − 2σ

√
2aβ + σ2

σ2
A

, (30)

irrespective for the choice of a. Now, observe that for a > 0,

2aβ + 2σ2 − 2σ
√

2aβ + σ2

σ2
A

≥ 2aβ − σ2
A

σ2 + σ2
A

,

with equality for a = a?. This means that only for 0 < a ≤ a?, the lower bound in (30) is sharp enough. For
a > a?, we apply the inequality in (12) to obtain for all c > 0 that

P
(

max
i≤N

sup
s>0

(Wi(s) +WA(s)− βs) > fN (a? + c)

)
≥ P

(
max
i≤N

sup
s>0

(Wi(s) +WA(s)− βs) > fN (a?)

)
exp

(
−2βc logN

σ2 + σ2
A

)
. (31)

Combining this result with the inequality in (30), we get that for all c > 0,

lim inf
N→∞

log (P(maxi≤N sups>0 (Wi(s) +WA(s)− βs) > fN (a? + c)))

logN
≥ −γ(a?)− 2βc

σ2 + σ2
A

= −γ(a? + c).

Combining the lower bounds in (30) and (31) gives the lower bound in (23).

Lemma 2. Let a > 0, (Wi, i ≤ N) be i.i.d. Brownian motions with standard deviation σ, WA be a Brownian
motion with standard deviation σA, for all i, Wi and WA are mutually independent, and Q̄βN , γ(a), and fN (a)
are given by Equations (3), (10), and (6), respectively, then

lim sup
N→∞

log(P(Q̄βN > fN (a)))

logN
≤ −γ(a). (32)

Proof. We have by the union bound in (13) that

lim sup
N→∞

log(P(Q̄βN > fN (a)))

logN
≤ −2aβ − σ2

A

σ2 + σ2
A

. (33)

This upper bound implies the upper bound given in (32) for a ≥ a?. Turning to the case 0 < a < a?, we
can bound the tail probability of the maximum queue length by using sub-additivity, the union bound, and by
integrating over possible values of sups>0(WA(s)− λ(a)βs), and we obtain that

P
(
Q̄βN > fN (a)

)
(34)

≤ P
(

max
i≤N

sup
s>0

(Wi(s)− (1− λ(a))βs) + sup
s>0

(WA(s)− λ(a)βs) > fN (a)

)

≤
∫ λ(a)(σ

2

2β+a)

0

2λ(a)β

σ2
A

N logN P
(

sup
s>0

(Wi(s)− (1− λ(a))βs) > fN (a)− y logN

)
exp

(
−2λ(a)βy logN

σ2
A

)
dy

+ P
(

sup
s>0

(WA(s)− λ(a)βs) > λ(a)fN (a)

)

=

∫ λ(a)(σ
2

2β+a)

0

2λ(a)β

σ2
A

N logN exp

(
−2(1− λ(a))β

σ2
(fN (a)− y logN)− 2λ(a)βy logN

σ2
A

)
dy

+ P
(

sup
s>0

(WA(s)− λ(a)βs) > λ(a)fN (a)

)
.
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Because the function exp
(
− 2(1−λ(a))β

σ2 (fN (a)− y logN)− 2λ(a)βy logN
σ2
A

)
with y ∈ [0, λ(a)(σ

2

2β +a)] is maximized

when y = λ(a)(σ
2

2β + a) and equals N
− 2aβ+2σ2−2σ

√
2aβ+σ2

σ2
A

−1
we get that

lim sup
N→∞

log

(∫ λ(a)(σ22β+a)

0
2λ(a)β
σ2
A

logN ·N exp
(
− 2(1−λ(a))β

σ2 (fN (a)− y logN)− 2λ(a)βy logN
σ2
A

)
dy

)
logN

= 1 + lim sup
N→∞

log

(∫ λ(a)(σ22β+a)

0 exp
(
− 2(1−λ(a))β

σ2 (fN (a)− y logN)− 2λ(a)βy logN
σ2
A

)
dy

)
logN

≤ −2aβ + 2σ2 − 2σ
√

2aβ + σ2

σ2
A

. (35)

Now we have found a logarithmic upper bound for the integral in (34), we are left with the expression
P(sups>0 (WA(s)− λ(a)βs) > λ(a)fN (a)) in (34). For this expression holds that

P
(

sup
s>0

(WA(s)− λ(a)βs) > λ(a)fN (a)

)
= N

− 2aβ+2σ2−2σ
√

2aβ+σ2

σ2
A .

Combining the upper bounds in (33) and (34) gives the logarithmic upper bound on the maximum queue length
in (32).

4 Useful lemmas
In the previous section, we have given a proof of the logarithmic asymptotics for the maximum queue length
Q̄βN . In order to be able to prove sharper results on the tail asymptotics, we need some auxiliary results; the
goal of this section is to derive these. We begin by giving an overview of the results in this section.

First of all, observe that

sup
s>T

(W (s)− βs) = W (T )− βT + sup
s>0

(Ŵ (s)− βs),

where {Ŵ (t), t > 0} is an independent copy of {W (t), t > 0}. From this, it follows that if we take the supremum
of a Brownian motion starting at a positive time, this is in distribution the same as adding a normally distributed
random variable to an exponentially distributed random variable. The tail asymptotics of this convolution equal
the tail asymptotics of the normally distributed part, the exponentially distributed part, or a more complicated
mixture of the two, depending on the starting time T , the standard deviation of W (s) and the drift β. In
Lemma 3, these three cases are studied in more detail.

Second, our main strategy to investigate the tail asymptotics involves the use of hitting times. Observe that
we have a maximum of N mutually dependent random variables. Based on the results in Section 3, we are able
to make an educated guess where the supremum is attained. Following the proof of Lemma 1, we see that

P
(

max
i≤N

sup
s>0

(Wi(s) +WA(s)− βs) > fN (a)

)
≈ P

(
max
i≤N

(Wi(TN (a)) +WA(TN (a))− βTN (a)) > fN (a)

)
.

So the expected hitting time, conditioned on being finite, is approximately TN (a). Next, observe that for
0 < a ≤ a?,

P
(

max
i≤N

sup
s>0

(Wi(s)− (1− λ(a))βs) > (1− λ(a))fN (a)

)
=1−

(
1− exp

(
−2(1− λ(a))β

σ2
(1− λ(a))fN (a)

))N
=Ω(1), (36)

and

P
(

sup
s>0

(WA(s)− λ(a)βs) > λ(a)fN (a)

)
= exp

(
−2λ(a)β

σ2
A

λ(a)fN (a)

)
= N−γ(a). (37)

Since the expected conditional hitting time of a level x equals this value x divided by the drift, it is easy to see
that in both (36) and (37) the expected conditional hitting time equals TN (a). Thus, this heuristically explains
why the processes {Wi(t) − (1 − λ(a))βt, t > 0} and {WA(t) − λ(a)βt, t > 0} are important. In Definition 1
below, we define the hitting time densities of these processes and in Lemma 4 we show that after proper scaling
these densities converge to the densities of normally distributed random variables, corrected with a constant.
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Finally, we need to analyze limits of the type

lim
N→∞

∫ ∞
−∞

P
(

sup
s>τN

Xi(s) > yN

∣∣∣∣τN = t

)
fτN (t)dt, (38)

where τN is a hitting time and fτN its density. In Lemma 5, we show that under certain assumptions, we can
interchange the integral and the limit, when the integrand is a product of two functions, as is the case in (38).
The proof of this interchange is similar to the proof of the dominated convergence theorem.

Lemma 3 (Convolution of normal and exponential distributions). Let X d
= N (0, 1) and E

d
= Exp(1) be

independent random variables. Let (ηN , N ≥ 1), (xN , N ≥ 1) be sequences with ηN > 0, xN
N→∞−→ ∞, and

xN/ηN
N→∞−→ ∞. Furthermore, let µ > 0 and c ∈ R. Then

1. if xN−µη
2
N√

2ηN

N→∞−→ c,

P
(
ηNX +

1

µ
E > xN

)
∼ ηNe

− x2N
2η2
N

√
2πxN

+
1

2
e

1
2µ(µη2N−2xN)(1 + erf(c)), (39)

as N →∞, and erf(c) the error function,

2. if xN−µη
2
N√

2ηN

N→∞−→ ∞,

P
(
ηNX +

1

µ
E > xN

)
∼ ηNe

− x2N
2η2
N

√
2πxN

+ e
1
2µ(µη2N−2xN), (40)

as N →∞,

3. and if xN−µη
2
N√

2ηN

N→∞−→ −∞,

P
(
ηNX +

1

µ
E > xN

)
∼ ηNe

− x2N
2η2
N

√
2πxN

− 1√
2π
e

1
2µ(µη2N−2xN) ηNe

− (xN−µη2N)
2

2η2
N

xN − µη2N
, (41)

as N →∞.

Proof. We have

P
(
ηNX +

1

µ
E > xN

)
= P(ηNX > xN ) +

∫ xN/ηN

−∞
P
(

1

µ
E > xN − ηNz

)
e−

z2

2

√
2π

dz. (42)

The first term satisfies

P(ηNX > xN ) ∼ ηNe
− x2N

2η2
N

√
2πxN

,

as N →∞. Furthermore,∫ xN/ηN

−∞
P
(

1

µ
E > xN − ηNz

)
e−

z2

2

√
2π

dz =
1

2
e

1
2µ(µη2N−2xN)

(
erf
(
xN − µη2N√

2ηN

)
+ 1

)
.

Observe that erf(z)→ 1, as z →∞ and 1 + erf(−z) ∼ e−z
2

√
πz

, as z →∞. The lemma follows.

Definition 1. For a > 0, r ∈ R, and i ∈ {1, 2, . . . , N}, we define the random variable τa,−ri,N by

τa,−ri,N := inf{t > 0 : Wi(t)− (1− λ(a))βt > (1− λ(a))fN (a)− r},

and the function fτa,−ri,N
as its density. Furthermore, we write

τa,−r∧,N := min
i≤N

τa,−ri,N .

Similarly, we define the random variable τ̃a,rA,N by

τ̃a,rA,N := inf{t > 0 : WA(t)− λ(a)βt > λ(a)fN (a) + r},

and the function fτ̃a,rA,N as its density.
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Lemma 4 (Convergence of hitting time density). For the density function fτa,−ri,N
given in Definition 1 and

TN (a, k) given in Equation (8) we have that

N
√

logNfτa,−ri,N

(
TN (a, k)

) N→∞−→ β2 exp

(
β
(
8a2β2r−β3k2σ

√
2aβ+σ2+8aβrσ2+2rσ4

)
σ(2aβ+σ2)5/2

)
√
π (2aβ + σ2)

. (43)

Proof. The density fτa,−ri,N
(t) satisfies

fτa,−ri,N
(t) =

(1− λ(a))fN (a)− r√
2πσt3/2

exp

(
− ((1− λ(a))fN (a)− r + (1− λ(a))βt)2

2σ2t

)
;

cf. [3, Eq. 2.0.2, p. 301]. From this, the limit in (43) follows.

Corollary 1. For the density function fτa,−ri,N
given in Definition 1 and TN (a, k) given in Equation (8) we have

that

lim
N→∞

∫ ∞
−∞

N
√

logNfτa,−ri,N

(
TN (a, k)

)
dk =

∫ ∞
−∞

lim
N→∞

N
√

logNfτa,−ri,N

(
TN (a, k)

)
dk. (44)

Proof. Observe that for N large enough such that (1− λ(a))fN (a)− r > 0,∫ ∞
−∞

N
√

logNfτa,−ri,N

(
TN (a, k)

)
dk =N P

(
sup
s>0

(Wi(s)− (1− λ(a))βs) > (1− λ(a))fN (a)− r
)

= exp

(
2(1− λ(a))βr

σ2

)
,

and

∫ ∞
−∞

β2 exp

(
β
(
8a2β2r−β3k2σ

√
2aβ+σ2+8aβrσ2+2rσ4

)
σ(2aβ+σ2)5/2

)
√
π (2aβ + σ2)

dk = exp

(
2(1− λ(a))βr

σ2

)
.

Lemma 5 (Convergence of integrals of sequences of functions). Assume we have sequences of positive integrable
functions vN (x) and wN (x) that satisfy the following:

• vN (x)
N→∞−→ v(x),

•
∫
R vN (x)dx

N→∞−→
∫
R v(x)dx,

• wN (x)
N→∞−→ w(x),

• There exists a constant c > 0 such that wN (x) < c for all x and N .

Then ∫
R
vN (x)wN (x)dx

N→∞−→
∫
R
v(x)w(x)dx. (45)

Proof. First of all, by using Fatou’s lemma we obtain that

lim inf
N→∞

∫
R
vN (x)wN (x)dx ≥

∫
R
v(x)w(x)dx.

Furthermore, observe that vN (x)c− vN (x)wN (x) > 0 for all x and N . Now, from Fatou’s lemma it follows that

lim inf
N→∞

∫
R
vN (x)c− vN (x)wN (x)dx ≥

∫
R
v(x)c− v(x)w(x)dx.

Because
∫
R vN (x)cdx

N→∞−→
∫
R v(x)cdx, we get that

lim sup
N→∞

∫
R
vN (x)wN (x)dx ≤

∫
R
v(x)w(x)dx.

The lemma follows.
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5 Proofs of the sharper asymptotics

In this section, we prove sharper asymptotics of the tail behavior of P(Q̄βN > fN (a)). Recall the definition of
τa,−ri,N and τ̃a,rA,N given in Definition 1, and observe that

P(Q̄βN > fN (a)) = P(Q̄βN (τa,−ri,N ∧ τ̃a,rA,N ,∞)1(τa,−r∧,N ∧ τ̃
a,r
A,N <∞) > fN (a)). (46)

This equation is valid, because for 0 < t < τa,−r∧,N ∧ τ̃
a,r
A,N , we see that Wi(t)− (1−λ(a))βt < (1−λ(a))fN (a)− r

and WA(t) − λ(a)βt < λ(a)fN (a) + r. Thus, Wi(t) + WA(t) − βt < fN (a). Now, using (46), we obtain lower
and upper bounds of the form

max

(
P
(
Q̄βN (τa,−ri,N ,∞)1(τa,−r∧,N <∞) > fN (a)

)
,P
(
Q̄βN (τ̃a,rA,N ,∞)1(τ̃a,rA,N <∞) > fN (a)

))
≤P(Q̄βN > fN (a))

≤P
(
Q̄βN (τa,−ri,N ,∞)1(τa,−r∧,N <∞) > fN (a)

)
+ P

(
Q̄βN (τ̃a,rA,N ,∞)1(τ̃a,rA,N <∞) > fN (a)

)
, (47)

which we can exploit. Other important inequalities that we use are the union bound and Bonferroni’s inequality.
In the case of identically distributed random variables Xi, these bounds simplify to

N P(Xi > x)−
(
N

2

)
P(min(Xi, Xj) > x) ≤ P(max

i≤N
Xi > x) ≤ N P(Xi > x),

which is the case for our problem. Dębicki et al. [5] have derived the tail asymptotics of min(Qβi,A, Q
β
j,A). In

Lemma 7 we show how we use [5, Th. 2.3] on the tails of min(Qβi,A, Q
β
j,A) together with Bonferroni’s inequality

such that these are applicable in our proof of the case a > a?.
Now that we can write upper and lower bounds in which hitting times play a role, we condition on the

hitting times and get sequences of the form as given in (38). By using Fatou’s lemma we know that

lim inf
N→∞

∫ ∞
−∞

P
(

sup
s>τN

Xi(s) > yN

∣∣∣τN = t

)
fτN (t)dt ≥

∫ ∞
−∞

lim inf
N→∞

P
(

sup
s>τN

Xi(s) > yN

∣∣∣τN = t

)
fτN (t)dt,

and by using Lemma 5, we obtain that

lim
N→∞

∫ ∞
−∞

P
(

sup
s>τN

Xi(s) > yN

∣∣∣τN = t

)
fτN (t)dt =

∫ ∞
−∞

lim
N→∞

P
(

sup
s>τN

Xi(s) > yN

∣∣∣τN = t

)
fτN (t)dt.

To obtain limits of the form as given in (38) we use Lemmas 3 and 4.

5.1 The case a > a?

In this section, we prove Theorem 2 on exact asymptotics of the maximum queue length when a > a?. As is
stated in (15), P(Q̄βN > fN (a)) ∼ N−γ(a), as N → ∞, when a > a?. Since the union bound in (13) gives us
that Nγ(a) P(Q̄βN > fN (a)) ≤ 1, we only need to show that

lim inf
N→∞

Nγ(a) P(Q̄βN > fN (a)) ≥ 1.

In order to prove the lim inf, we first observe that Q̄βN > Q̄βN (τa
?,0

i,N ,∞)1(τa
?,0
∧,N < ∞), and we know by using

Bonferroni’s inequality that

P(Q̄βN (τa
?,0

i,N ,∞)1(τa
?,0
∧,N <∞) > fN (a))

≥ N P
(
Qβi,A(τa

?,0
i,N ,∞)1(τa

?,0
i,N <∞) > fN (a)

)
−
(
N

2

)
P
(

min(Qβi,A(τa
?,0

i,N ,∞)1(τa
?,0

i,N <∞), Qβj,A(τa
?,0

i,N ,∞)1(τa
?,0

j,N <∞)) > fN (a)
)
, (48)

where τa
?,0

i,N and τa
?,0

j,N are hitting times defined in Lemma 4. In Lemma 7, we show that the first term is leading,
and the second order term is of smaller order. In order to prove this, we first give a convenient upper bound for

P(k<l)
(

min(Qβi,A(τa
?,0

i,N ,∞), Qβj,A(τa
?,0

j,N ,∞)) > fN (a)
)
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in Lemma 6, with

P(k<l)(A) = P
(
A
∣∣∣τa?,0i,N = TN (a?, k) < τa

?,0
j,N = TN (a?, l)

)
. (49)

From now on, let Ŵ be an independent copy of the Brownian motion W , and Q̂βi,A(s, t) an independent copy
of Qβi,A(u, v).

Lemma 6. Let a > a?, (Wi, i ≤ N) be i.i.d. Brownian motions with standard deviation σ, WA be a Brownian
motion with standard deviation σA, for all i, Wi and WA are mutually independent, and Qβi,A(u, v), γ(a),
fN (a), and P(k<l)(A) are given by Equations (5), (10), (6), and (49) respectively. Furthermore, τa

?,0
i,N is given

in Definition 1 and Q̂βi,A is an independent copy of Qβi,A. Then for all δ > 0 there exists an Nδ > 0 such that
for all N ≥ Nδ

P(k<l)
(

min(Qβi,A(τa
?,0

i,N ,∞), Qβj,A(τa
?,0

j,N ,∞)) > fN (a)
)

≤ 4P(k<l)

(
(1 + δ)WA(τa

?,0
i,N ) + min(Q̂βi,A, Q̂

β
j,A) > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa

?,0
i,N

)
.

Proof. First of all, we have that

P(k<l)
(

min(Qβi,A(τa
?,0

i,N ,∞), Qβj,A(τa
?,0

j,N ,∞)) > fN (a)
)

≤ P(k<l)
(
Qβi,A(τa

?,0
i,N , τa

?,0
j,N ) > fN (a)

)
+ P(k<l)

(
min(Qβi,A(τa

?,0
j,N ,∞), Qβj,A(τa

?,0
j,N ,∞)) > fN (a)

)
, (50)

because min(Qβi,A(τa
?,0

i,N ,∞), Qβj,A(τa
?,0

j,N ,∞)) < max(Qβi,A(τa
?,0

i,N , τa
?,0

j,N ),min(Qβi,A(τa
?,0

j,N ,∞), Qβj,A(τa
?,0

j,N ,∞))) when
τa

?,0
i,N < τa

?,0
j,N <∞. Now, recall from Definition 1 that

Qβi,A(τa
?,0

i,N , τa
?,0

j,N )

= sup
τa
?,0

i,N <s<τa
?,0

j,N

(Wi(s) +WA(s)−βs) = (1−λ(a?))fN (a?) +WA(τa
?,0

i,N )−λ(a?)βτa
?,0

i,N + Q̂βi,A(0, τa
?,0

j,N − τ
a?,0
i,N ).

Thus, for the first term in (50) we have

P(k<l)
(
Qβi,A(τa

?,0
i,N , τa

?,0
j,N ) > fN (a)

)
= P(k<l)

(
WA(τa

?,0
i,N ) + Q̂βi,A(0, τa

?,0
j,N − τ

a?,0
i,N ) > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa

?,0
i,N

)
≤ P(k<l)

(
WA(τa

?,0
i,N ) +

∣∣∣Ŵi(τ
a?,0
j,N − τ

a?,0
i,N ) + ŴA(τa

?,0
j,N − τ

a?,0
i,N )

∣∣∣ > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa
?,0

i,N

)
.

(51)

For any x and y, it holds that x + |y| ≤ max(x + y, x − y). Therefore, by the union bound we can bound the
probability in (51) as

P(k<l)
(
WA(τa

?,0
i,N ) +

∣∣∣Ŵi(τ
a?,0
j,N − τ

a?,0
i,N ) + ŴA(τa

?,0
j,N − τ

a?,0
i,N )

∣∣∣ > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa
?,0

i,N

)
≤ 2P(k<l)

(
WA(τa

?,0
i,N ) + Ŵi(τ

a?,0
j,N − τ

a?,0
i,N ) + ŴA(τa

?,0
j,N − τ

a?,0
i,N ) > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa

?,0
i,N

)
≤ 2P(k<l)

(
(1 + δ)WA(τa

?,0
i,N ) > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa

?,0
i,N

)
(52)

≤ 2P(k<l)

(
(1 + δ)WA(τa

?,0
i,N ) + min(Q̂βi,A, Q̂

β
j,A) > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa

?,0
i,N

)
, (53)

for δ > 0 and N > Nδ. The upper bound in (52) holds since τa
?,0

i,N = Ω(logN), and τa
?,0

j,N − τ
a?,0
i,N = O(

√
logN).

The upper bound in (53) holds because we add a positive random variable. For the second term in (50), first
observe that P(min(X,Y ) > z) = P(X > z, Y > z). Second, under the assumption that τa

?,0
i,N < τa

?,0
j,N <∞, we

can write

Qβi,A(τa
?,0

j,N ,∞) = (1−λ(a?))fN (a?)+Wi(τ
a?,0
j,N −τ

a?,0
i,N )−(1−λ(a?))β(τa

?,0
j,N −τ

a?,0
i,N )+WA(τa

?,0
j,N )−λ(a?)βτa

?,0
j,N +Q̂βi,A.

13



Thus, by applying similar techniques as for the analysis of the first term in (50) we obtain that

P(k<l)
(

min(Qβi,A(τa
?,0

j,N ,∞), Qβj,A(τa
?,0

j,N ,∞)) > fN (a)
)

= P(k<l)

(
WA(τa

?,0
j,N ) +Wi(τ

a?,0
j,N − τ

a?,0
i,N )− (1− λ(a?))β(τa

?,0
j,N − τ

a?,0
i,N ) + Q̂βi,A

> fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa
?,0

j,N ,

WA(τa
?,0

j,N ) + Q̂βj,A > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa
?,0

j,N

)
≤ P(k<l)

(
WA(τa

?,0
j,N ) +Wi(τ

a?,0
j,N − τ

a?,0
i,N ) + Q̂βi,A > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa

?,0
j,N ,

WA(τa
?,0

j,N ) + Q̂βj,A > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa
?,0

j,N

)
≤ P(k<l)

(
WA(τa

?,0
j,N ) + max(Wi(τ

a?,0
j,N − τ

a?,0
i,N ), 0) + min(Q̂βi,A, Q̂

β
j,A) > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa

?,0
j,N

)
≤ 2P(k<l)

(
WA(τa

?,0
j,N ) +Wi(τ

a?,0
j,N − τ

a?,0
i,N ) + min(Q̂βi,A, Q̂

β
j,A) > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa

?,0
j,N

)
≤ 2P(k<l)

(
(1 + δ)WA(τa

?,0
j,N ) + min(Q̂βi,A, Q̂

β
j,A) > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βτa

?,0
i,N

)
.

Combining this bound with the bound in (53) completes the proof of the lemma.

Lemma 7. Let a > a? (Wi, i ≤ N) be i.i.d. Brownian motions with standard deviation σ, WA be a Brownian
motion with standard deviation σA, for all i, Wi and WA are mutually independent, and Q̄βN , γ(a), and fN (a)
are given by Equations (3), (10), and (6), respectively, then

lim inf
N→∞

Nγ(a) P(Q̄βN > fN (a)) ≥ 1.

The general idea of the proof of Lemma 7 is to make rigorous that the lower bound on the maximum queue
length Q̄βN given in (48) is approximately the same as N P(Qβi,A(τa

?,0
i,N ,∞)1(τa

?,0
i,N < ∞) > fN (a)) when N is

large. Thus the last term in (48) is asymptotically negligible. We use the result from Lemma 6 to establish
this. Observe now that, following Definition 1,

Qβi,A(τa
?,0

i,N ,∞) = Wi(τ
a?,0
i,N ) +WA(τa

?,0
i,N )−βτa

?,0
i,N + Q̂βi,A = (1−λ(a?))fN (a?) +WA(τa

?,0
i,N )−λ(a?)βτa

?,0
i,N + Q̂βi,A.

Furthermore, observe that due to Equation (27), P(τa
?,0

i,N <∞) = 1/N . From this it follows that

N P(Qβi,A(τa
?,0

i,N ,∞)1(τa
?,0

i,N <∞) > fN (a)) = P(Qβi,A(τa
?,0

i,N ,∞) > fN (a) | τa
?,0

i,N <∞).

Therefore, in order to prove a sharp lower bound on the tail asymptotics of the maximum queue length, we
prove by using Fatou’s lemma that

lim inf
N→∞

Nγ(a) P(WA(τa
?,0

i,N )− λ(a?)βτa
?,0

i,N + Q̂βi,A > fN (a)− (1− λ(a?))fN (a?) | τa
?,0

i,N <∞) ≥ 1.

In order to prove this, we show that Q̂βi,A is most likely to hit a level gN (a, x, k), and WA(τa
?,0

i,N )− λ(a?)βτa
?,0

i,N

is most likely to hit the level fN (a)− (1− λ(a?))fN (a?)− gN (a, x, k).

We now turn to a formal proof of Lemma 7.

Proof. For abbreviation, we write

Pi,j,N = P
(

min(Qβi,A(τa
?,0

i,N ,∞)1(τa
?,0

i,N <∞), Qβj,A(τa
?,0

j,N ,∞)1(τa
?,0

j,N <∞)) > fN (a)
)
.

Thus, the inequality in (48) simplifies to

P(Q̄βN (τa
?,0

i,N ,∞)1(τa
?,0
∧,N <∞) > fN (a)) ≥ NPi,i,N −

(
N

2

)
Pi,j,N . (54)

For abbreviation, we also write

Qi,j,N (k, l) = P
(

min(Qβi,A(τa
?,0

i,N ,∞), Qβj,A(τa
?,0

j,N ,∞)) > fN (a)
∣∣∣τa?,0i,N = TN (a?, k), τa

?,0
j,N = TN (a?, l)

)
.
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Now, before we analyze (54) in more detail, observe that we can express P(τa
?,0

i,N <∞, τa
?,0

j,N <∞) as

P(τa
?,0

i,N <∞, τa
?,0

j,N <∞) =

∫ ∞
−∞

∫ ∞
−∞

f
τa
?,0

i,N

(
TN (a?, k)

)
f
τa
?,0

j,N

(
TN (a?, l)

)
logNdkdl =

1

N2
.

Then,

NPi,i,N =N

∫ ∞
−∞

f
τa
?,0

i,N

(
TN (a?, k)

)√
logNQi,i,N (k, k)dk

=

∫ ∞
−∞

∫ ∞
−∞

f
τa
?,0

i,N

(
TN (a?, k)

)
f
τa
?,0

j,N

(
TN (a?, l)

)
N2 logNQi,i,N (k, k)dkdl.

Also, observe that
(
N
2

)
< N2/2, and that

N2

2
Pi,j,N =

N2

2

∫ ∞
−∞

∫ ∞
−∞

f
τa
?,0

i,N

(
TN (a?, k)

)
f
τa
?,0

j,N

(
TN (a?, l)

)
logNQi,j,N (k, l)dkdl.

In conclusion, we can write the inequality in (54) as

P(Q̄βN (τa
?,0

i,N ,∞)1(τa
?,0
∧,N <∞) > fN (a)) (55)

≥
∫ ∞
−∞

∫ ∞
−∞

f
τa
?,0

i,N

(
TN (a?, k)

)
f
τa
?,0

j,N

(
TN (a?, l)

)
N2 logN

(
Qi,i,N (k, k)− 1

2
Qi,j,N (k, l)

)
dkdl (56)

=

∫ ∞
−∞

∫ l

−∞
f
τa
?,0

i,N

(
TN (a?, k)

)
f
τa
?,0

j,N

(
TN (a?, l)

)
N2 logN

(
Qi,i,N (k, k)− 1

2
Qi,j,N (k, l)

)
dkdl

+

∫ ∞
−∞

∫ ∞
l

f
τa
?,0

i,N

(
TN (a?, k)

)
f
τa
?,0

j,N

(
TN (a?, l)

)
N2 logN

(
Qi,i,N (k, k)− 1

2
Qi,j,N (k, l)

)
dkdl.

Since we want to prove a sharp lower bound on the tail asymptotics of the maximum queue length Q̄βN we can
use the expression in (56). We want to prove convergence of a lower bound of this integral by using Fatou’s
lemma. Therefore, we focus on the integrand first and prove convergence for the integrand as N →∞. Assume
that k ≤ l, then, following Lemma 6,

Qi,j,N (k, l) ≤ 4P
(

(1 + δ)WA

(
TN (a?, k)

)
+ min(Q̂βi,A, Q̂

β
j,A) > fN (a)− (1− λ(a?))fN (a?) + λ(a?)βTN (a?, k)

)
,

for all δ > 0 for N > Nδ. Observe that Qi,i,N (k, k)−Qi,j,N (k, l)/2 > 0. Thus,

Qi,i,N (k, k)− 1

2
Qi,j,N (k, l) =

(
Qi,i,N (k, k)− 1

2
Qi,j,N (k, l)

)+

.

The density of WA

(
TN (a?, k)

)
equals

exp
(
−x2/(2σ2

ATN (a?, k))
)

√
2πσA

√
TN (a?, k)

.

We write a = a? + ε, with ε > 0. Let

gN (a, x, k) = fN (a)− (1− λ(a?))fN (a?) + λ(a?)βTN (a?, k)−
σ2
A

(
σ2 + σ2

A

)
βσ2

logN − x
√

logN.

Observe that

gN (a, x, k) +
σ2
A

(
σ2 + σ2

A

)
βσ2

logN + x
√

logN = fN (a)− (1− λ(a?))fN (a?) + λ(a?)βTN (a?, k).

Furthermore,

Nγ(a)Qi,i,N (k, k)

= Nγ(a)P
(
WA

(
TN (a?, k)

)
+ Q̂βi,A > gN (a, x, k) +

σ2
A

(
σ2 + σ2

A

)
βσ2

logN + x
√

logN

)

=

∫ ∞
−∞

Nγ(a) P(Q̂βi,A > gN (a, x, k))

√
logN exp

−
(
σ2A(σ2+σ2A)

βσ2
logN+x

√
logN

)2

2σ2
ATN (a?,k)


√

2πσA
√
TN (a?, k)

dx.
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We can simplify this expression further and get that

Nγ(a) P(Q̂βi,A > gN (a, x, k))

√
logN exp

−
(
σ2A(σ2+σ2A)

βσ2
logN+x

√
logN

)2

2σ2
ATN (a?,k)


√

2πσA
√
TN (a?, k)

= Nγ(a) exp

(
− 2β

σ2 + σ2
A

gN (a, x, k)

) √logN exp

−
(
σ2A(σ2+σ2A)

βσ2
logN+x

√
logN

)2

2σ2
ATN (a?,k)


√

2πσA
√
TN (a?, k)

N→∞−→
βσ exp

(
−β

2σ2(x(σ2+σ2
A)−2βkσ2

A)
2

σ2
A(σ2+σ2

A)
4

)
√
πσA (σ2 + σ2

A)
.

Furthermore, following Lemma 4, we have that

f
τa
?,0

i,N

(
TN (a?, k)

)
f
τa
?,0

j,N

(
TN (a?, l)

)
N2 logN

N→∞−→
β2 exp

(
− β4k2

(2a?β+σ2)2

)
√
π (2a?β + σ2)

β2 exp
(
− β4l2

(2a?β+σ2)2

)
√
π (2a?β + σ2)

.

Let 0 < δ < βσ4ε

2σ2
A(σ2+σ2

A)
2 and let

hN (a, x, k) = fN (a)− (1− λ(a?))fN (a?) + λ(a?)βTN (a?, k)− (1 + δ)

(
σ2
A

(
σ2 + σ2

A

)
βσ2

logN + x
√

logN

)
.

From Dębicki et al. [5, Th. 2.3], we know that

P
(

min(Q̂βi,A, Q̂
β
j,A) > x

)
exp

(
2β

σ2/2 + σ2
A

x

)
−→ 0, (57)

as x→∞. We have that

Nγ(a) exp

(
− 2β

σ2/2 + σ2
A

hN (a, x, k)

) √logN exp

−
(
σ2A(σ2+σ2A)

βσ2
logN+x

√
logN

)2

2σ2
ATN (a?,k)


√

2πσA
√
TN (a?, k)

N→∞−→ 0.

Thus, when k ≤ l, then

lim inf
N→∞

Nγ(a)f
τa
?,0

i,N

(
TN (a?, k)

)
f
τa
?,0

j,N

(
TN (a?, l)

)
N2 logN

(
Qi,i,N (k, k)− 1

2
Qi,j,N (k, l)

)+

≥
β2 exp

(
− β4k2

(2a?β+σ2)2

)
√
π (2a?β + σ2)

β2 exp
(
− β4l2

(2a?β+σ2)2

)
√
π (2a?β + σ2)

βσ exp

(
−β

2σ2(x(σ2+σ2
A)−2βkσ2

A)
2

σ2
A(σ2+σ2

A)
4

)
√
πσA (σ2 + σ2

A)
.

The case k > l can be treated analogously. Finally, we have

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

β2 exp
(
− β4k2

(2a?β+σ2)2

)
√
π (2a?β + σ2)

β2 exp
(
− β4l2

(2a?β+σ2)2

)
√
π (2a?β + σ2)

βσ exp

(
−β

2σ2(x(σ2+σ2
A)−2βkσ2

A)
2

σ2
A(σ2+σ2

A)
4

)
√
πσA (σ2 + σ2

A)
dxdkdl = 1.

By applying Fatou’s lemma, Lemma 7 follows.

Corollary 2. Let (yN , N ≥ 1) be a sequence such that lim infN→∞ yN/ logN = ∞, (Wi, i ≤ N) be i.i.d.
Brownian motions with standard deviation σ, WA be a Brownian motion with standard deviation σA, for all i,
Wi and WA are mutually independent, and Q̄βN , γ(a), and fN (a) are given by Equations (3), (10), and (6),
respectively. Then the tail probability of the steady-state maximum queue length satisfies

P(Q̄βN > yN ) ∼ N P(Qβi,A > yN ),

as N →∞.
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Proof. By using the union bound, we have that P(Q̄βN > yN ) ≤ N P(Qβi,A > yN ). Furthermore, by using
Bonferroni’s inequality we obtain that P(Q̄βN > yN ) ≥ N P(Qβi,A > yN )−N2/2P(Qβi,A > yN , Q

β
j,A > yN ). Now,

using the limit in (57), we see that

lim sup
N→∞

N2/2P(Qβi,A > yN , Q
β
j,A > yN )

N P(Qβi,A > yN )
≤ lim sup

N→∞

1

2

N exp
(
− 2β
σ2/2+σ2

A
yN

)
exp

(
− 2β
σ2+σ2

A
yN

) = 0.

The corollary follows.

5.2 The case a = a?

In Section 3, we showed that we have at least two regimes, namely 0 < a < a?, and a ≥ a?. It turns out,
that when we investigate sharper asymptotics, that the case a = a? deserves special attention. In the present
section, we establish that in the case a = a?, P(Q̄βN > fN (a?)) ∼ 1

2N
−γ(a?), thus the prefactor is 1/2 instead of

1 as in the case a > a?. To make the heuristics given in Section 2 rigorous, we proceed by deriving asymptotic
lower and upper bounds, in two separate lemmas. As in Section 5.1, we prove that the lim inf converges to the
desired limit. We do this in Lemma 8. The proof of this Lemma is similar to the proof of Lemma 7. However,
the simple union bound N P(Qβi,A > fN (a?)) ∼ N−γ(a

?) is not tight for a = a?. Thus, we also need to prove
that the lim sup is tight. We provide this proof in Lemma 9.

Lemma 8. Let a = a?, (Wi, i ≤ N) be i.i.d. Brownian motions with standard deviation σ, WA be a Brownian
motion with standard deviation σA, for all i, Wi and WA are mutually independent, and Q̄βN , γ(a), and fN (a)
are given by Equations (3), (10), and (6), respectively, then

lim inf
N→∞

Nγ(a?) P(Q̄βN > fN (a?)) ≥ 1

2
.

Proof. First of all, we have the lower bound

P(Q̄βN > fN (a?)) ≥ P(Q̄βN (τa
?,r

i,N ,∞)1(τa
?,r
∧,N <∞) > fN (a?)).

As in (54) we can bound this further by Bonferroni’s inequality to

N P
(
Qβi,A(τa

?,r
i,N ,∞)1(τa

?,r
i,N <∞) > fN (a?)

)
−
(
N

2

)
P
(

min(Qβi,A(τa
?,r

i,N ,∞)1(τa
?,r

i,N <∞), Qβj,A(τa
?,r

j,N ,∞)1(τa
?,r

j,N <∞)) > fN (a?)
)

≥
(
N − N2

2
P
(
τa

?,r
j,N <∞

))
P
(
Qβi,A(τa

?,r
i,N ,∞)1(τa

?,r
i,N <∞) > fN (a?)

)
. (58)

The last step is true because for independent X and Y , P(min(X,Y 1(Y < ∞)) > z) ≤ P(Y < ∞)P(X > z).
Since P(τa

?,r
j,N <∞) = exp(−2(1− λ(a?))βr/σ2)/N , we can simplify the expression in (58) to1−

exp
(
− 2(1−λ(a?))βr

σ2

)
2

N P
(
Qβi,A(τa

?,r
i,N ,∞)1(τa

?,r
i,N <∞) > fN (a?)

)
. (59)

Following the proof of Lemma 7 we have that

Nγ(a?) P(Q̂βi,A > gN (a?, x, k)− r)

√
logN exp

−
(
σ2A(σ2+σ2A)

βσ2
logN+x

√
logN

)2

2σ2
ATN (a?,k)


√

2πσA
√
TN (a?, k)

N→∞−→
βσ exp

(
−β

2σ2(x(σ2+σ2
A)−2βkσ2

A)
2

σ2
A(σ2+σ2

A)
4

)
√
πσA (σ2 + σ2

A)
exp

(
2βr

σ2 + σ2
A

)
,

when x < σ2
Aβk/(σ

2 + σ2
A), and 0 otherwise. Thus, by combining this result with the result from Lemma 4, for
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x < σ2
Aβk/(σ

2 + σ2
A),

f
τa
?,r

i,N

(
TN (a?, k)

)
N
√

logNNγ(a?) P
(
Q̂βi,A > gN (a?, x, k)− r

)
√

logN exp

−
(
σ2A(σ2+σ2A)

βσ2
logN+x

√
logN

)2

2σ2
ATN (a?,k)


√

2πσA
√
TN (a?, k)

N→∞−→
β2σ2 exp

(
−
β
(
β3k2σ4+2l(σ2+σ2

A)
3
)

(σ2+σ2
A)

4

)
√
π (σ2 + σ2

A)
2

βσ exp

(
−β

2σ2(x(σ2+σ2
A)−2βkσ2

A)
2

σ2
A(σ2+σ2

A)
4

)
√
πσA (σ2 + σ2

A)
exp

(
2βr

σ2 + σ2
A

)
.

Observe that the integral

∫ ∞
−∞

∫ σ2Aβk

σ2+σ2
A

−∞

β2σ2 exp

(
−
β
(
β3k2σ4+2r(σ2+σ2

A)
3
)

(σ2+σ2
A)

4

)
√
π (σ2 + σ2

A)
2

βσ exp

(
−β

2σ2(x(σ2+σ2
A)−2βkσ2

A)
2

σ2
A(σ2+σ2

A)
4

)
√
πσA (σ2 + σ2

A)
exp

(
2βr

σ2 + σ2
A

)
dxdk =

1

2
.

Now, by applying Fatou’s lemma,

lim inf
N→∞

Nγ(a?)N P
(
Qβi,A(τa

?,r
i,N ,∞)1(τa

?,r
i,N <∞) > fN (a?)

)
≥ 1

2
,

and thus by applying this on the expression in (59), we get that

lim inf
N→∞

Nγ(a?) P(Q̄βN > fN (a?)) ≥ 1

2

1−
exp

(
− 2(1−λ(a?))βr

σ2

)
2

 r→∞−→ 1

2
.

Lemma 9. Let a = a?, (Wi, i ≤ N) be i.i.d. Brownian motions with standard deviation σ, WA be a Brownian
motion with standard deviation σA, for all i, Wi and WA are mutually independent, and Q̄βN , γ(a), and fN (a)
are given by Equations (3), (10), and (6), respectively, then

lim sup
N→∞

Nγ(a?) P(Q̄βN > fN (a?)) ≤ 1

2
.

Proof. Let τ̃a
?,r

A,N = inf{t : WA(t)− λ(a?)βt > λ(a?)fN (a?) + r}. Following Equation (46) and the upper bound
in (47), we have that

P(Q̄βN > fN (a?)) ≤ P(Q̄βN (τ̃a
?,r

A,N ,∞)1(τ̃a
?,r

A,N <∞) > fN (a?)) + P(Q̄βN (τa
?,−r

i,N ,∞)1(τa
?,−r
∧,N <∞) > fN (a?)).

(60)

Observe that we can bound the first term in (60) as

P(Q̄βN (τ̃a
?,r

A,N ,∞)1(τ̃a
?,r

A,N <∞) > fN (a?)) ≤ P(τ̃a
?,r

A,N <∞) = N−γ(a
?) exp

(
−2λ(a?)βr

σ2
A

)
, (61)

and the second term in (60) as

Nγ(a?) P(Q̄βN (τa
?,−r

i,N ,∞)1(τa
?,−r
∧,N <∞) > fN (a?))

≤ Nγ(a?)N P
(
Qβi,A(τa

?,−r
i,N ,∞)1(τa

?,−r
i,N <∞) > fN (a?)

)
=

∫ ∞
−∞

Nγ(a?)N P
(
Qβi,A(τa

?,−r
i,N ,∞) > fN (a?)

∣∣∣τa?,−ri,N = TN (a?, k)
)
f
τa
?,−r

i,N

(
TN (a?, k)

)√
logNdk. (62)

Now, we examine the parts of the integrand of this integral separately. First, note that, following Definition 1,

P
(
Qβi,A(τa

?,−r
i,N ,∞) > fN (a?)

∣∣∣τa?,−ri,N = TN (a?, k)
)

= P
(
WA(τa

?,−r
i,N ) + Q̂βi,A > λ(a?)fN (a?) + r + λ(a?)βτa

?,−r
i,N

∣∣∣τa?,−ri,N = TN (a?, k)
)
,
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We can analyze this probability using Lemma 3 by taking xN = 2λ(a?)fN (a?) + λ(a?)βk
√

logN + r, ηN =
σA
√
TN (a?, k), and µ = 2β/(σ2 + σ2

A). Write

xN − µη2N√
2ηN

=
2λ(a?)fN (a?) + λ(a?)βk

√
logN + r − 2β

σ2+σ2
A
σ2
ATN (a?, k)

√
2
√
σ2
ATN (a?, k)

=
r − λ(a?)βk

√
logN√

2
√
σ2
ATN (a?, k)

N→∞−→ −
√

2β3kσAσ
2

(σ2 + σ2
A)

3 .

The first term in (39) of Lemma 3 satisfies

σ exp

(
−
β
(
β3k2σ2

Aσ
2+2r(σ2+σ2

A)
3
)

(σ2+σ2
A)

4

)
2
√
πσA

N−γ(a
?)

√
logN

,

and the second term satisfies

1

2
e

1
2µ(µη2N−2xN)

(
1 + erf

(
−
√

2β3kσAσ
2

(σ2 + σ2
A)

3

))
∼ 1

2
exp

(
− 2βr

σ2 + σ2
A

)(
1 + erf

(
−
√

2β3kσAσ
2

(σ2 + σ2
A)

3

))
N−γ(a

?),

as N →∞. So, we can conclude that

P
(
Qβi,A(τa

?,−r
i,N ,∞) > fN (a?)

∣∣∣τa?,−ri,N = TN (a?, k)
)
∼ 1

2
exp

(
− 2βr

σ2 + σ2
A

)(
1 + erf

(
−
√

2β3kσAσ
2

(σ2 + σ2
A)

3

))
N−γ(a

?),

as N →∞. Second, following Lemma 4, the density of the hitting time τa
?,−r

i,N appears in the integrand in (62),
and satisfies

Nf
τa
?,−r

i,N

(
TN (a?, k)

)√
logN

N→∞−→
β2 exp

(
β
(
8a?

2
β2r−β3k2σ

√
2a?β+σ2+8a?βrσ2+2rσ4

)
σ(2a?β+σ2)5/2

)
√
π (2a?β + σ2)

=

β2σ2 exp

(
β
(
2r(σ2+σ2

A)
3−β3k2σ4

)
(σ2+σ2

A)
4

)
√
π (σ2 + σ2

A)
2 .

Thus, for the integrand in (62) we have that

Nγ(a?)N P
(
Qβi,A(τa

?,−r
i,N ,∞) > fN (a?)

∣∣∣τa?,−ri,N = TN (a?, k)
)
f
τa
?,−r

i,N

(
TN (a?, k)

)√
logN

N→∞−→
β2σ2

(
1 + erf

(
−
√
2β3kσAσ

2

(σ2+σ2
A)

3

))
exp

(
β
(
2r(σ2+σ2

A)
3−β3k2σ4

)
(σ2+σ2

A)
4 − 2βr

σ2+σ2
A

)
2
√
π (σ2 + σ2

A)
2 .

When we integrate this result we get

∫ ∞
−∞

β2σ2

(
1 + erf

(
−
√
2β3kσAσ

2

(σ2+σ2
A)

3

))
exp

(
β
(
2r(σ2+σ2

A)
3−β3k2σ4

)
(σ2+σ2

A)
4 − 2βr

σ2+σ2
A

)
2
√
π (σ2 + σ2

A)
2 dk =

1

2
.

Now, because

Nγ(a?) P
(
Qβi,A(τa

?,−r
i,N ,∞) > fN (a?)

∣∣∣τa?,−ri,N = TN (a?, k)
)

≤ Nγ(a?) P
(

sup
s>0

(WA(s)− λ(a?)βs) > λ(a?)fN (a?) + r

)
= Nγ(a?) exp

(
−2λ(a?)β

σ2
A

(λ(a?)fN (a?) + r)

)
= exp

(
−2λ(a?)βr

σ2
A

)
,

and

lim
N→∞

∫ ∞
−∞

Nf
τa
?,−r

i,N

(
TN (a?, k)

)√
logNdk =

∫ ∞
−∞

lim
N→∞

Nf
τa
?,−r

i,N

(
TN (a?, k)

)√
logNdk,
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we can use Lemma 5 to conclude that

lim sup
N→∞

Nγ(a?)N P
(
Qβi,A(τa

?,−r
i,N ,∞)1(τa

?,−r
i,N <∞) > fN (a?)

)
≤ 1

2
. (63)

Now, after combining the bounds in (61) and (63),

lim sup
N→∞

Nγ(a?) P(Q̄βN > fN (a?)) ≤ 1

2
+ exp

(
−2λ(a?)βr

σ2
A

)
r→∞−→ 1

2
.

5.3 The case 0 < a < a?

As we have proven the exact asymptotics for the cases a > a? and a = a? in Theorems 2 and 3, respectively,

we now turn to the proof of Theorem 4. In Theorem 1 we have shown that γ(a) =
2aβ+2σ2−2σ

√
2aβ+σ2

σ2
A

, thus

we expect highly dependent behavior because this indicates that the union upper bound P(Q̄βN > fN (a)) ≤
N P(Qβi,A > fN (a)) is not sharp when 0 < a < a?, as is explained in the proof of Lemma 2.

Proof of Theorem 4. First of all, we prove Equation (17). We write rN =
σ
√

2aβ+σ2

4β log logN . Let τ̃a,rNA,N =

inf{t > 0 : WA(t)− λ(a)βt > λ(a)fN (a) + rN}. Let fτ̃a,rNA,N
be its density. Observe that

P(Q̄βN > fN (a))

≥ P(Q̄βN (τ̃a,rNA,N , τ̃a,rNA,N )1(τ̃a,rNA,N <∞) > fN (a))

=

∫ ∞
−∞

P
(

max
i≤N

Wi

(
TN (a, k)

)
− (1− λ(a))βTN (a, k) > (1− λ(a))fN (a)− rN

)
fτ̃a,rNA,N

(
TN (a, k)

)√
logNdk.

(64)

As in the proof of Lemma 9, we analyze the components of the integrand of (64) separately. Following a similar
derivation as in Lemma 4, we see that the term fτ̃a,rNA,N

(
TN (a, k)

)√
logN in (64) satisfies

Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A fτ̃a,rNA,N

(
TN (a, k)

)√
logN

N→∞−→
β2
(
σ
(
σ −

√
2aβ + σ2

)
+ 2aβ

)
exp

(
−
β4k2

(
σ−
√

2aβ+σ2
)2

σ2
A(2aβ+σ2)2

)
√
πσA (2aβ + σ2)

3/2
. (65)

Moreover, a result in extreme value theory states that when bN =
√

2 logN − log(4π logN)/(2
√

2 logN), then

bN

(
maxi≤N Wi(d logN)

σ
√
d logN

− bN
)

d−→ G,

with G
d
= Gumbel, as N → ∞, cf. [7, p. 11, Ex. 1.1.7] for a proof. From this it follows that the term

P
(
maxi≤N Wi

(
TN (a, k)

)
− (1− λ(a))βTN (a, k) > (1− λ(a))fN (a)− rN

)
in (64) satisfies

P
(

max
i≤N

Wi

(
TN (a, k)

)
− (1− λ(a))βTN (a, k) > (1− λ(a))fN (a)− rN

)

N→∞−→ 1− exp

−exp

(
− β4k2

(2aβ+σ2)2

)
2
√
π

 . (66)

Thus, the product of the limits in (65) and (66) gives the tail asymptotics of the integrand in (64). Now, by
applying Fatou’s lemma, we obtain a sharper than logarithmic lower bound on the asymptotics for the maximum
queue length, and is given in (17).

In order to prove (18), we use the upper bound given in (47) and observe that

P(Q̄βN > fN (a)) ≤P(Q̄βN (τ̃a,rNA,N ,∞)1(τ̃a,rNA,N <∞) > fN (a)) (67)

+ P(Q̄βN (τa,−rNi,N ,∞)1(τa,−rN∧,N <∞) > fN (a)). (68)
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We can bound the expression in (67) as follows:

P(Q̄βN (τ̃a,rNA,N ,∞)1(τ̃a,rNA,N <∞) > fN (a)) ≤ P(τ̃a,rNA,N <∞) = N−γ(a)(logN)
− λ(a)

1−λ(a)
σ2

2σ2
A . (69)

Therefore,

lim sup
N→∞

Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A P(Q̄βN (τ̃a,rNA,N ,∞)1(τ̃a,rNA,N <∞) > fN (a)) ≤ 1.

Thus, because of the bounds given in (67) and (68), to prove that (18) holds, it is left to show that

lim sup
N→∞

Nγ(a)(logN)
λ(a)

1−λ(a)
σ2

2σ2
A P(Q̄βN (τa,−rNi,N ,∞)1(τa,−rN∧,N <∞) > fN (a)) <∞.

To prove this, observe that, by using the union bound and by conditioning on the hitting time τa,−rNi,N the
expression in (68) satisfies

P(Q̄βN (τa,−rNi,N ,∞)1(τa,−rN∧,N <∞) > fN (a))

≤ N P(Qβi,A(τa,−rNi,N ,∞)1(τa,−rNi,N <∞) > fN (a))

=

∫ ∞
−∞

N P(Qβi,A(τa,−rNi,N ,∞) > fN (a) | τa,−rNi,N = TN (a, k))f
τ
a,−rN
i,N

(
TN (a, k)

)√
logNdk. (70)

Now, we can use Lemma 5 to show convergence of the integral in (70). Following a similar analysis as in Lemma
4, we have that

N
1√

logN

√
logNf

τ
a,−rN
i,N

(
TN (a, k)

) N→∞−→ β2 exp
(
− β4k2

(2aβ+σ2)2

)
√
π (2aβ + σ2)

.

Furthermore,

∫ ∞
−∞

β2e
− β4k2

(2aβ+σ2)2

√
π (2aβ + σ2)

dk =

∫ ∞
−∞

N√
logN

√
logNf

τ
a,−rN
i,N

(
TN (a, k)

)
dk = 1.

Thus, the first and second condition in Lemma 5 hold. Thus, we now only need to analyze

P(Qβi,A(τa,−rNi,N ,∞) > fN (a) | τa,−rNi,N = TN (a, k))

= P(WA(τa,−rNi,N ) + Q̂βi,A > λ(a)fN (a) + rN + λ(a)βτa,−ri,N | τa,−rNi,N = TN (a, k)), (71)

which is a component in the integrand in (70). We show that this expression satisfies the third and fourth
condition of Lemma 5, by proving pointwise convergence and by proving that this probability is uniformly
bounded by a constant. To do this, first observe that the random variable in (71) has the form of the sum of
a normally distributed random variable and an exponentially distributed random variable, hence we can follow
the framework of Lemma 3 in order to analyze this probability, we take xN = 2λ(a)fN (a)+λ(a)βk

√
logN+rN ,

ηN = σA
√
TN (a, k), and µ = 2β/(σ2 +σ2

A). Now, the expression in (71) can be written in the form of Equation
(42). Furthermore, observe that

xN − µη2N√
2ηN

=
2λ(a)fN (a) + λ(a)βk

√
logN + rN − 2β

σ2+σ2
A
σ2
ATN (a, k)

√
2
√
σ2
ATN (a, k)

N→∞−→ −∞.

Thus, for 0 < a < a?, we are in the third situation of Lemma 3. The first term in (41) satisfies

ηNe
− x2N

2η2
N

√
2πxN

∼
σA exp

(
−
β4k2

(
σ−
√

2aβ+σ2
)2

σ2
A(2aβ+σ2)2

)
2
√
π
(√

2aβ + σ2 − σ
) logN

− λ(a)
1−λ(a)

σ2

2σ2
AN−γ(a)

1√
logN

,

as N →∞. Furthermore, we have for all t > 0 that

P(WA(t)− λ(a)βt > x) ≤ P(WA(x/(λ(a)β)) > 2x).
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From this it follows that the first part in (42) satisfies

P(ηNX > xN )

= P
(
WA(τa,−rNi,N ) > λ(a)fN (a) + rN + λ(a)βτa,−ri,N

∣∣∣∣τa,−rNi,N = TN (a, k)

)
≤ P

(
WA(τa,−rNi,N ) > λ(a)fN (a) + rN + λ(a)βτa,−ri,N

∣∣∣∣τa,−rNi,N =
fN (a)

β
+

rN
λ(a)β

)
∼ σA

2
√
π
(√

2aβ + σ2 − σ
) logN

− λ(a)
1−λ(a)

σ2

2σ2
AN−γ(a)

1√
logN

,

as N →∞. So there exists an ε > 0 and an Nε such that for N > Nε and all k > −fN (a)/(β
√

logN),

(logN)
λ(a)

1−λ(a)
σ2

2σ2
ANγ(a)

√
logN P

(
WA(τa,−rNi,N ) > λ(a)fN (a) + rN + λ(a)βτa,−rNi,N

∣∣∣∣τa,−rNi,N = TN (a, k)

)
≤ σA

2
√
π
(√

2aβ + σ2 − σ
) + ε. (72)

The second term in (41) satisfies

− 1√
2π
e

1
2µ(µη2N−2xN) ηNe

− (xN−µη2N)
2

2η2
N

xN − µη2N

∼
σA
(
σ2 + σ2

A

)
exp

(
−

2β4k2
(
σ2
(√

2aβ+σ2−σ
)
+aβ

(√
2aβ+σ2−2σ

))
σ2
A(2aβ+σ2)5/2

)
2
√
πσ
(
σ
(
σ −

√
2aβ + σ2

)
+ σ2

A

) logN
− λ(a)

1−λ(a)
σ2

2σ2
AN−γ(a)

1√
logN

, (73)

as N →∞. In this case first observe that in Equation (42) the exact expression of the convolution term equals∫ xN/ηN

−∞
P
(

1

µ
E > xN − ηNz

)
e−

z2

2

√
2π

dz =
1

2

(
erf
(
xN − µη2N√

2ηN

)
+ 1

)
e

1
2µ(µη2N−2xN).

Second, observe that this can be further rewritten into

1

2

(
erf
(
xN − µη2N√

2ηN

)
+ 1

)
e

1
2µ(µη2N−2xN)

= P
(
WA(τa,−rNi,N ) >

2β

σ2 + σ2
A

σ2
Aτ

a,−rN
i,N − λ(a)fN (a)− rN − λ(a)βτa,−rNi,N

∣∣∣τa,−rNi,N = TN (a, k)

)
· exp

(
1

2

2β

σ2 + σ2
A

(
2β

σ2 + σ2
A

σ2
ATN (a, k)− 2λ(a)fN (a)− 2λ(a)βTN (a, k)− 2rN

))
.

Thus, the expression that we are investigating is a product of a tail probability of a Gaussian random variable
and an exponential function. With an analogous derivation as for the first term in (41), due to the expression
in (73) we can bound for all t > 0

(logN)
λ(a)

1−λ(a)
σ2

2σ2
ANγ(a)

√
logN P

(
WA(t) >

2β

σ2 + σ2
A

σ2
At− λ(a)fN (a)− rN − λ(a)βt

)
· exp

(
1

2

2β

σ2 + σ2
A

(
2β

σ2 + σ2
A

σ2
At− 2λ(a)fN (a)− 2λ(a)βt− 2rN

))
.

Hence, due to this and the upper bound given in (72), we have that the third and fourth condition of Lemma
5 are satisfied. Thus, in the end we know that

(logN)
λ(a)

1−λ(a)
σ2

2σ2
ANγ(a)N P

(
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and we apply Lemma 5 to conclude that (18) holds.

Remark 1. We have stated in Theorem 4 that we can prove a lower and upper bound which are sharper than
logarithmic, however we do not specify these bounds, but from the proof of Theorem 4 it becomes clear that
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