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1
Introduction

Embedded systems are an essential part of production and manufacturing,
providing a strict control and automation of the processes to ensure the
quality of final products. One can find embedded systems in many production
industries, such as agriculture and semiconductor industry. The trends in
modern production are characterized by mass customization, high variability
of machine configurations, and extensive technical updates to meet the ever-
changing requirements and specifications of production [393]. Such systems are
comprised of mechanical, electronic, software and other components, structured
in different abstraction layers, and implemented with multiple technologies. As
discussed in literature [138, 212, 393], embedded production systems impose
specific challenges in the process of software development and maintenance.
The most frequently discussed challenges in the literature include, but are not
limited to:

• explicit and implicit dependencies between thousands of software and hardware
components that are operating with each other. It is challenging to assess the
impact of a change to one component on other components of a system.

• critical performance requirements of systems. The systems that drive
production often have critical performance requirements that demand
real-time behavior. Even minor software changes can significantly affect
the timing of these systems, impacting production throughput.

• concepts and designs related to different disciplines. The software for
embedded production systems often encompasses concepts and designs
from various disciplines such as physics and chemistry, which makes
comprehending system behavior challenging. As time passes, developers
with deep domain knowledge may have left the project or the company,
further complicating the maintenance of legacy code.

Hence, software development and maintenance of embedded production
systems requires tailored software engineering methodologies, processes and
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tools due to the real-time, heterogeneous and multidisciplinary nature [138,
393]. The general software engineering methodologies may not have the
features to address the challenges raised by these requirements. For example,
empirical studies have shown that embedded systems require different tools in
testing [128, 360] and continuous integration [297].

To propose new and improve existing methodologies, processes, and tools
suitable for embedded production systems, we believe that it is essential
to obtain practical knowledge from a real-world context where software
developers are involved. Therefore, we aim to increase our understanding of
software engineering practice for embedded production systems by empirically
studying the question:

RQ: How do software developers engineer the software of embedded
production systems?

In this thesis, we study this question by collaborating with ASML, a leading
manufacturer of lithography machines for the semiconductor industry. The
industrial collaboration allows us to adopt the case study methodology—a
widely used empirical method aimed at investigating phenomena in their
context [324]. Machines developed by ASML are typical examples of embedded
production systems. The software system of these machines consists of a large
code base of more than 40 million lines of code1 that implements the concepts
and requirements related to different disciplines (e.g., physics, mechanics
and electronics). The system has multiple layers, consisting of thousands
of components that are developed by groups of engineers from different
engineering backgrounds. These components interact with each other, and
play various roles in the architecture of the system, ranging from high-level
production controllers to hardware drivers.

1.1 Research Questions
We study a number of topics that were all considered of immediate interest to
our main stakeholder ASML. Figure 1.1 shows the research studies presented
in this thesis. Note that the chapters are not listed in a chronological order, but
organized in such a way to highlight the links between the topics studied in this
thesis, providing readers a way to read and interpret our studies. As can be seen
from the figure, we studied several topics centering around logs and models in
the engineering process for embedded production systems. Logs and models
are of great interest to ASML because they are essential software engineering
artifacts used in ASML [332].

As stated in Lehman’s laws of software evolution [218], real-world systems
(i.e., E-type systems) are undergoing changes due to various maintenance
activities such as bug fixing, new feature implementation and refactoring.
Diving into the large-scale and ever-changing code base, and reasoning

1https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/
company/events/conferences/matlab-conference-benelux/2015/proceedings/
facing-moores-law-with-model-driven-r-and-d.pdf. Accessed: March 2022

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/company/events/conferences/matlab-conference-benelux/2015/proceedings/facing-moores-law-with-model-driven-r-and-d.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/company/events/conferences/matlab-conference-benelux/2015/proceedings/facing-moores-law-with-model-driven-r-and-d.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/company/events/conferences/matlab-conference-benelux/2015/proceedings/facing-moores-law-with-model-driven-r-and-d.pdf
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about the execution paths of programs can be difficult. Logs that record
runtime execution of software systems become an essential source of necessary
information during various activities such as bug fixing [421], anomaly
detection [370], and system monitoring [433]. Similarly to many other complex
systems, systems at ASML generate a large amount of log information that
capture the runtime behavior of the systems. ASML has a great interest
in leveraging the information contained in logs for software engineering
activities with automated tools.

This is why our first research question, RQ1 introduced in Section 1.1.1 and
discussed in Chapter 2, aims at understanding the current industrial log analysis
practices. Based on the observations that developers need advanced techniques
for comparing multiple logs, our RQ2 and RQ3 (introduced in Section 1.1.2 and
discussed in Chapter 3) investigate existing log comparison techniques in the
literature.

As the observations from the study of RQ1-3, models are used in developers’
practice and log comparison techniques to abstract log information. This
is inline with ASML’s transition from traditional software engineering to
model-driven software engineering (MDSE). In fact, the adoption of MDSE
is observed not only in ASML but also widely in the embedded industry [12,
228, 229]. In MDSE, models are the primary artifacts of the development and
maintenance process. Abstracting software behavior with behavioral models
can further enable formal analysis and verification, as well as code generation.
That is, developers can specify the behavior of software with models, verify the
correctness of software behavior using model checking techniques, and then
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generate code from the verified models. The subsequent maintenance changes
such as bug fixing and feature implementation are all made to models. The
increasing adoption of MDSE and ongoing transition calls for research efforts
to study the practices, processes and tools of MDSE. That is why, our RQ4,
introduced in Section 1.1.3 and discussed in Chapter 4, studies how to infer
models from existing code-based systems, aiming at helping companies transit
from code-based engineering to MDSE. Although model inference techniques
have been improved by researchers over the years, industry still relies on
developers to create models manually. We therefore study RQ5 (introduced
in Section 1.1.4 and discussed in Chapter 5), aiming at understanding how
developers model software in practice.

1.1.1 Log Analysis Practice: An Exploratory Study

Due to the execution information they provide, execution logs are considered
to be essential inputs for software analytics tools and processes that aim at
helping developers deal with the complexity of large-scale systems [439]. Log
analysis techniques have been proposed to aid developers in such software
engineering tasks as program comprehension [325], test generation [308], and
change comprehension [19, 43, 254].

Understanding how developers obtain required information when
maintaining complex embedded software is essential to propose useful tools;
if the required information and actionable insights could be easily extracted
and provided by tools, developers could focus their effort and time on the
maintenance tasks, rather than on searching for relevant information [439].
Therefore, we state:

RQ1: How do developers use logs in engineering embedded
production software?

In order to answer this question, we conduct an exploratory study, which
consists of two parts. First, we interview 25 developers from ASML [427] about
the types of logs that they use, purposes for which they use logs, types of
log information that they need, challenges that they face, and tools they use.
To understand to what extent our findings at ASML are transferable to other
companies, we further interview 14 developers from four other companies.
The discussions from this exploratory study provide insights in the challenges
developers face and the information that they need, as well as possible tool
support for log analysis.

Among all the observations obtained from this exploratory study, in this
thesis we further zoom in on two based on ASML’s interest. First, we observe
that developers often compare multiple logs for various maintenance tasks
with text-based comparison tools. However, comparing logs is challenging
due to the lack of tools that can deal with the complex nature of software
(e.g., interleaving introduced by concurrent executions). To provide more
insights into this problem, in this thesis we explore existing log comparison
techniques (Section 1.1.2). Another interesting observation from this exploratory
study is that developers often manually sketch behavioral models (e.g., state
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machines and sequence diagrams) based on log information to obtain an
abstract representation of executed behavior. This observation, in hindsight,
supports the idea that developers at ASML might benefit from the use of
MDSE for their software development and maintenance practices. However,
the transition from traditional software engineering to MDSE raises a series of
challenges. In this thesis, we zoom in on two challenges about inferring models
from an existing code base (Section 1.1.3) and modeling software with MDSE
tools (Section 1.1.4).

1.1.2 Log Comparison: Understanding the State of the Art
As we observe in the exploratory study (RQ1), developers use text-based tools
for comparing multiple logs and face the challenges in identifying actionable
insights from a large number of differences between logs. This is consistent with
the observations at Google [146] and Microsoft [44]. However, over the years,
researchers have proposed many log comparison techniques to address different
challenges for different maintenance activities. As the first step required to
identify the gap between the state-of-the-art and practices, it is important to
understand what techniques exist and what limitations these techniques have.

Therefore, we study:

RQ2: What are the existing log comparison techniques?

As indicated by developers from ASML and Google [146], a major challenge
that developers experience is that the trivial and unimportant log differences
overshadow the important information that points to the problem. For
example, when using text-based tools to compare logs for identifying the root
cause of bugs, one of the challenges is to deal with the interleaving of events
caused by concurrency. It is interesting to study how the state-of-the-art log
comparison techniques address the challenges faced by developers. Therefore,
we further dive into the log comparison techniques that address the industrial
challenges. We ask:

RQ3: How do existing log comparison techniques address industrial
challenges?

1.1.3 Model Inference: Combining Active and Passive Learning
To gain the potential benefit that MDSE promises, practitioners are still facing
many challenges [228, 274, 386, 409]. One of the challenges is the transition
from traditional software engineering to MDSE because the existing code base
is typically huge [346]. Manually creating models is very time-consuming,
as it requires developers to comprehensively understand the behavior of the
complex systems. A more effective, but yet challenging method would be
automatically inferring models from software and its artifacts.

Model inference techniques can be broadly classified into those based on
static analysis and dynamic analysis. Static analysis is an offline approach
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which does not require the execution of software systems. Instead, it examines
the code and all the execution paths to construct models [84]. Typically,
static analysis is time-consuming and suffers from scalability issues when
dealing with large-scale software systems [176]. The learned model is often
an over-approximation of software behavior. Dynamic analysis, in contrast,
constructs a behavioral model based on observations by executing the systems.
It is usually more efficient as it learns an under-approximation of software
behavior (i.e., incomplete models). Moreover, dynamic analysis can capture
how software systems interact with their environment, which is not identifiable
in static analysis. In this thesis, we investigate dynamic model inference
techniques because embedded production systems are usually not standalone
but integrated to work with their environment.

There are two types of dynamic model inference techniques in the
literature, namely active learning and passive learning. In 1987, Angluin
proposed the L* algorithm [23] which lays the foundation for active learning
techniques. Active learning techniques dynamically construct models based on
iterative interactions with systems, and refine the hypothesized models with
exhaustive testing or random testing. The completeness of the learned model is
guaranteed under the assumption that the counterexamples differentiating the
hypothesized model from the system can be found via testing. However, the
required number of tests to be executed grows exponentially with the size of the
system. The execution of such large set of tests can be very time and resource
consuming [383].

Passive learning, on the other hand, infers models from logs that capture
software behavior at runtime [134, 394]. The learning process is more efficient
because interactions with systems are not required. However, since logs are
often collected from the executions of limited use cases, the learned models
often capture only partial behavior of systems.

Combining the insights provided by these two groups of studies, we learn
that active and passive learning techniques have their own limitations and
strengths. It is yet an interesting research problem to explore whether these two
types of techniques can be combined, exploiting the benefits of one to aid the
other. Therefore, we state:

RQ4: How to combine active and passive learning techniques to infer
models from code and logs?

1.1.4 Modeling Practice: Why Developers Violate Guidelines

Another striking challenge in MDSE is the lack of suitable modeling tools
to facilitate the use of models in such a large-scale and heterogeneous code
base [332]. As the result of the ongoing transition to MDSE, the share of the
models is increasing in the code base of complex embedded systems. Even
though MDSE promises a lot of advantages, it requires suitable modeling tools.
However, as reported in literature [407], the majority of modeling tools fail
to support development activities by forcing developers to work in a way
that fit the tool instead of making the tool fit the people. This observation
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Figure 1.2: A single state machine (also called a flower model). The circle
represents the single state, and the arrows going from and to the same
state represent the transitions. The incoming arrow indicates the initial
transition into this state.

emphasizes the importance of understanding how developers use models
and what challenges they face in practice.

There are several existing observation studies on modeling practice [205,
306]. These studies observe how students model software using Unified
Modeling Language (UML). As reported in the SE literature, developers often
have valid reasons to violate SE guidelines (e.g., coding guidelines), and
the violations reveal the limitations of software engineering tools and the
challenges faced by developers [69, 291, 382]. Inspired by these studies, we
are interested in identifying the challenges of MDSE practices through the
lens of how developers adhere to modeling guidelines and why developers
violate guidelines if they do so.

In this study, we start the exploration of this question with a wide-spread
modeling guideline: a state machine model is only meaningful if it contains
more than one state, and if each state represents different behavior. The intuition
behind this guideline is that a model should contain non-trivial information,
otherwise it merely clutters the presentation of ideas [20]. Single-state state
machines (SSSMs)—affectionately known as “flowers” due to their graphical
representation shown in Figure 1.2—violate this recommendation. This type
of model has only one state with self transitions, thus it does not describe the
change of software states. We observe at ASML that developers use SSSMs even
though the modeling guideline suggests not to do so. The violation triggers the
question:

RQ5: Why do developers use single-state state machines in practice?

1.2 Thesis Outline and Origins of Chapters
This thesis contributes to the body of research on understanding developers’
practice for dealing with large-scale embedded software systems by obtaining
empirical insight from software and software processes in companies, and
understanding current state of techniques. Figure 1.1 shows the relation between
the topics that we investigated, and the chapters that they correspond to.

Chapter 2: Log analysis practice. In this chapter, we answer RQ1. We
report an interview study with 25 developers from ASML and a replication
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study with 14 developers from other four companies. We present the identified
challenges and information needs, as well as possible tool support for log
analysis. This chapter is based on:

[425] Yang, N., Cuijpers, P.J.L., Hendriks, D., Schiffelers, R.R.H., Lukkien,
J., & Serebrenik, A. An interview study about the use of logs in embedded
software engineering. 2023. Empirical Software Engineering, 28. Special
issue, selection of papers from ICSE-SEIP 2021.

a special issue extension of

[427] Yang, N., Cuijpers, P.J.L., Schiffelers, R.R.H., Lukkien, J., &
Serebrenik, A. An interview study of how developers use execution logs
in embedded software engineering. In IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(pp. 61-70). 2021. IEEE.

Chapter 3: A literature study of log comparison techniques. This
chapter addresses RQ2 and RQ3. We provide an in-depth analysis of 81 papers
about log comparison techniques used in software engineering. We study the
SE activities these techniques aim to help, the methods of comparison and the
evaluation of these techniques, and the methods provided to address industrial
challenges presented in Chapter 2. This chapter is based on

[429] Yang, N., Hendriks, D., Lukkien, J., & Serebrenik, A. A Literature
Review of Log Comparison Techniques for Software Engineering. ACM
Transactions on Software Engineering and Methodology. Manuscript
under review.

Chapter 4: Combining Active and Passive Learning for Model
Inference. In this chapter, we answer RQ4. First, we study 218 software
components to provide empirical evidence on the trade-off between learning
time and completeness achieved (i.e., the more time is spent, the more behaviors
can be learned via interactions with systems) in active learning. The required
number of interactions for learning an accurate model grows exponentially
with the number of states of the system under study. To solve the problem, we
introduce a hybrid solution that enhances active learning techniques with logs
and models learned from logs by passive learning techniques. We evaluate the
proposed hybrid solution with industrial components from ASML. This chapter
is based on the following publication:

[424] Yang, N., Aslam, K., Schiffelers, R.R.H., Lensink, L., Hendriks, D.,
Cleophas, L., & Serebrenik, A. Improving model inference in industry
by combining active and passive learning. In IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (pp. 253-
263). 2019. IEEE.

Chapter 5: Use of Single-state State Machines in Practice. In this
chapter, we address RQ5. First, we present the study of mining 1500 state
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machines from ASML. By interviewing developers, we then identify the reasons
for which developers use singe-state state machines in practice. We then study
when these single-state state machines were introduced in the systems. Lastly,
we provide implications based on our findings for researchers, practitioners
and tool builders. This chapter is based on:

[428] Yang, N., Cuijpers, P.J.L., Schiffelers, R.R.H., Lukkien, J., &
Serebrenik, A. Single-state state machines in model-driven software
engineering: an exploratory study. 2021. Empirical Software Engineering,
26(6), 1-46.

a special issue extension of

[426] Yang, N., Cuijpers, P.J.L., Schiffelers, R.R.H., Lukkien, J., &
Serebrenik, A. Painting Flowers: Reasons for Using Single-State State
Machines in Model-Driven Engineering. In Proceedings of the 17th
International Conference on Mining Software Repositories (pp. 362-373).
2020.

Chapter 6: Conclusions. In this chapter, we revisit our research questions
and propose future research directions.

Suggested Methods of Reading
Figure 1.1 shows the overview of the chapters presented in this thesis. These
chapters are self-contained and can be read independently. In each chapter, we
present the introduction, research questions, methodology, result and discussion.
We do not provide a separate chapter on related work. Instead, we discuss the
related work in each chapter.





2
Log Analysis Practices for

Embedded Production
Software

Execution logs capture the run-time behavior of software systems. To assist
developers in their maintenance tasks, many studies have proposed tools to
analyze execution information from logs. However, it is as yet unknown how
industry developers use logs in engineering embedded production systems.
Without understanding how developers use logs, the proposed log analysis
tools might not be able to meet developers’ expectations and needs. In this
chapter, we present our exploration about log practice in industry (the RQ1
highlighted in Figure 2.1). We first present the study conducted in ASML,
followed by a replication study conducted in four other companies.

2.1 Introduction
Execution logs, produced by software systems at runtime, capture the dynamic
aspects of the software. Log analysis tools have been proposed to aid developers
in such software engineering tasks as program comprehension [325], test
generation [88, 308], and change comprehension [19, 43, 254]. However,
researchers have provided empirical evidence that log analysis tools are
not necessarily effective and applicable when dealing with real-world
problems [258]. Legunsen et al. [217] studied the effectiveness of specifications
mined from execution traces in the context of bug-finding. The authors manually
analyzed runtime violations of the specifications for 200 open-source projects
and found that most of the violations to the specifications are false alarms (i.e.,
not real bugs). Another problem reported by Mashhadi et al. is that state-of-the-
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art log analysis tools failed in processing the large volume of logs produced by
a large-scale embedded system [258].

We believe that understanding how engineers analyze logs and what
information they need is essential to design better log analysis tools and
logging process. Li et al. [224] studied the benefits and costs of logging from
developers’ perspectives in the context of open-source software development,
suggesting better automated logging tools. Barik et al. [44] identified the
tensions that emerge in data-driven cultures as event logs are used by a variety
of roles including non-engineering roles (e.g., a program manager) at Microsoft,
calling for tools that assist non-technical team members in analyzing logs.
However, there is no empirical study on developers’ log analysis practices in
embedded software engineering. Often, embedded software engineering needs
specifically targeted tools [138]. Embedded systems are often implemented as
concurrent systems, have real-time constraints and are mapped directly on
real hardware. These features of embedded systems have raised challenges in
software testing [360], modeling [344], and architecture design [24], which opens
up questions of how these features influence log analysis practices, what kind
of challenges are raised in practices and how developers deal with these raised
challenges. Therefore, we focus on how developers analyze logs in embedded
software engineering, with the aim of identifying developers’ needs for future
research on the techniques that are applicable to aid developers in performing
their maintenance tasks.

In order to understand how we can improve analysis tools for embedded
software engineering, we need to understand what information developers
need from execution logs (RQ1.3) and what tool support could be useful
(RQ1.4). We believe that if the required information could be easily provided
by tools, developers could focus their effort and time on the maintenance
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tasks, rather than on searching for the information. However, the expectations
developers have about tools also depend on the context of use. Therefore,
first, we need to understand the types of logs developers use (RQ1.1) and the
purposes for which developers analyze logs (RQ1.2).

To answer our research questions, we first conducted an exploratory
case study at ASML, a company that develops lithography systems for the
semiconductor industry by interviewing 25 software developers. Table 2.1
summarizes the findings obtained in this exploratory case study.

Table 2.1: Findings by Research Question 1.1-4

Research Question Main findings
RQ1.1 Developers use four types of execution logs: high-

level machine actions and errors, low-level execution
details, performance data, and business-critical data.

RQ1.2 Logs are primarily used for analyzing software issues,
and also used for test code development and requirement
reverse-engineering.

RQ1.3 13 types of information are searched for in the
execution logs, with the most frequent types
being: propagation of errors across systems, timestamps
associated with log lines, data flow, interaction of software
components, and differences between multiple executions.

RQ1.4 Challenges in log analysis include: lack of domain
knowledge, lack of familiarity with code base and software
design, and presence of concurrency. Developers expect
tools to help handle complexity by adding multi-
level abstractions to logs and comparing multiple logs
on different levels of abstraction.

Our interview at ASML is a case study. As any other case studies, it
inherently suffers from threats to external validity. Hence, to increase the
external validity, we then extend this study by replicating it at four other
companies. With this replication study, we aim at understanding to what extent
our findings at ASML can be confirmed at other companies (RQ1.5). We would
like to not only confirm our previous findings, but also explore the scope of the
results. To achieve the confirmatory and exploratory goals, we conducted 14
interviews with engineers from three embedded software companies and one
company which develops general applications. By involving these two types
of companies, we attempted to identify aspects that are specific to embedded
software companies and juxtapose them with findings for companies from other
domains. The results show that the practices at ASML are not company-specific
(RQ1.5). We found that most findings obtained at ASML (e.g., the challenges
raised by concurrency) largely resonate with engineers at other embedded
software companies, while some findings are shared by all the companies
(e.g., challenges related to log quality) including the company which develops
general applications.
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We have also collected new insights from this replication study. To address
the challenges in log analysis, most of the interviewees shared that it is
important to resolve several trade-offs in logging. For example, formalized
and automatic logging on one hand can help companies govern log quality,
and subsequently facilitate the analysis of logs and the evolution of logging
code, but on the other hand, it reduces the freedom of developers in logging
what they need and want. Moreover, with this replication study, we collected
empirical evidence that the evolution of logging code has raised challenges
for maintaining the artifacts that depend on the generated logs (e.g., analytical
tools or a knowledge database based on logs).

Based on our results from the study at ASML and its replication, we
synthesize the main scenario of software logging, discuss the contextual factors
(e.g., programming languages), and formulate implications for practitioners,
researchers and tool builders about log analysis and logging practice. For
example, we suggest researchers to study the co-evolution of logs and log-
dependent entities to ease any software engineering activities and techniques
that depend on the generated logs (e.g., log-based testing, pattern recognition
and matching, and log analysis and differencing). For tool builders, we suggest
developing tools that can help developers comprehend systems in an abstract
way, categorize log differences for providing actionable insights and link
different types of logs to provide a complete picture of executions. For
practitioners, we suggest a series of logging guidelines, such as defining logged
information with the stakeholders of logs.

The remainder of this chapter is organized as follows. In Section 2.2, we
present our exploratory study at ASML. Next, in Section 2.3, we report on our
replication study at four companies. Based on these two studies, we synthesize
the findings in Section 2.4. We then discuss the implication of our work in
Section 2.5. We discuss threats to validity in Section 2.6. Finally, we conclude in
Section 2.7.

2.2 Use of Logs at ASML
In this section, we present our exploratory study at ASML about log analysis.
We start with our methodology (Section 2.2.1). The results of this study that
answer our research questions are then presented in Sections 2.2.2 (RQ1.1), 2.2.3
(RQ1.2), 2.2.4 (RQ1.3) and 2.2.5 (RQ1.4).

2.2.1 Methodology
To understand how software developers use logs in the embedded systems
industry, we conducted a case study [324]. As our research questions differ from
previous work [44, 224], we opted for an exploratory rather than a confirmatory
study.

2.2.1.1 Context
Our study is part of an ongoing collaboration with ASML who develops high-
tech production systems for the semiconductor industry. The division that we
work with is responsible for components implementing the supervisory control
and metrology of the manufacturing process. Control and metrology have
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become the backbone of many high-tech systems (e.g., optical measurement
systems and autonomous vehicles) due to the growing complexity and the
demanding precision [197].

The software components developed by this division form a paradigmatic
subsystem [117] that coordinates machine actions and measurements, as well
as calibration of the systems based on the performed measurements. The
subsystem consists of multiple processes collaborating with each other via
inter-process communication.

The division provides a typical context of embedded software engineering;
the (sub)system is implemented not only by software engineers but also
engineers from different disciplines (e.g., mechanical or electrical engineering).
Similar to other complex embedded systems [29], the execution of such software
systems requires the physical layers to be present or simulated. The in-house
execution of such software systems requires either a simulator called DevBench,
or an environment called TestBench in which physical layers are present.

The system is implemented with several languages. The interviewees use
general purpose programming languages C/C++ and Python. In addition,
the division has been adopting model-driven engineering (MDE) to design the
components that are responsible for controlling machine actions and production
processes. Developers design these components using a state-machine-based
modeling language called ASD [62]. The correctness of software components is
verified using a built-in model checker. The source code of these components is
automatically generated from these state machine models.

2.2.1.2 Semi-structured Interviews

We opt for semi-structured interviews as they allow us to discuss prepared
questions and ask follow-up questions exploring interesting topics that emerge
during interviews [53]. We start the interview with a brief introduction of our
research and provide our definition of execution logs: textual files that record
dynamic information produced by the execution of software systems.

Table 2.2 shows our interview guide. In adherence to best interviewing
practices [53], we conducted a pilot interview with a developer from the same
division to examine our interview settings and questions. The pilot interview
took one hour and led to the rephrasing of several questions. The study design
was approved by the ethical review board of the Eindhoven University of
Technology and ASML.

2.2.1.3 Interview Participants

The selected division has seven software development groups. Each group
is responsible for the development of multiple components. We contacted
the group leads from these seven groups to recruit software developers. We
encouraged the group leads to take into account the diversity of developers’
education background, development role and gender. Our invitation was
accepted by 25 software developers (see Table 2.3). In the beginning of the
interviews, to establish mutual trust, we stressed that the interviewees’ identity
will not be disclosed, and their answers will not be shared with their supervisors.
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Table 2.2: Interview guide

Background
1. What is your job title?
2. What kind of systems is your group responsible for? What is your role and
responsibility within the group?
Type of logs (RQ1.1)
3. Do you use any execution logs that capture the run-time behavior of software?
4. How are these logs commonly called in your team?
5. How do you obtain these execution logs?
Purpose of log analysis (RQ1.2)
6. For what purposes do you use them?
7. How often do you analyze logs for your purposes?
Information needs (RQ1.3)
8. What information is in log X (i.e., the log the developer has mentioned)?
9. What information in log X helps you for your work?
10. How does the information in log X help you?
11. Can you describe the procedure of a task in which log X is used?
Tool support (RQ1.4)
12. What tools do you use for analyzing execution logs?
13. How do you use these tools?
14. What are the most challenging steps in your log analysis practices?
15. How do you cope with these challenges?
16. What kind of tools would you like to have for helping you analyze logs?
17. How would you like to use these tools?
Ending
18. Having discussed some topics about log analysis, would you like to add some
thoughts?
19. What is your year’s of experience as a software developer?
20. What is your education background?

2.2.1.4 Data Collection and Analysis

We collected data by recording the audio and making the transcripts. We coded
the transcripts [53] using the ATLAS.ti data analysis software. Our coding
process consists of three steps. First, we performed open coding. We constantly
compared and refined codes that emerge from this process. Similar codes were
then grouped into categories. Second, we conducted axial coding to make
connections between codes or categories. Finally, these codes and categories
were grouped into the topics derived from our research questions. According to
Strauss and Corbin [361], theoretical saturation is reached when no new insights
emerge. Hence, instead of having a strict sequential order of data collection
and analysis, we interleaved these steps. The codes and categories emerged as
the data is analyzed and helped us to examine whether theoretical saturation
was reached. We consider that the saturation is reached when no new codes
are found. With these 25 participants, we reached the saturation as we did not
observe new codes in the last four interviews. We present our explanation of the
derived codes in the following sections. The codes are explained with quotes of
developers. We give an ID for each quote to help readers link these codes and
the explanations. An ID has a format of PX-Y where PX indicates the participant
ID and Y indicates the sequence number of quotes from the corresponding
participant.
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Table 2.3: Background of interviewees

Group ID Participant ID Years of experience Current role1 Gender2 Education3

1

1 7 D M GCS
2 10 D M GCS
3 7 A M GCS
4 6 A M GCS

2

5 11 D W GCS
6 5 D M GCS
7 30 A M UOth
8 24 T M GOth

3
9 15 A M UCS
10 5 D M GCS
11 5 A M GCS

4

12 13 T M UOth
13 1.5 D M GCS
14 25 P M UCS
15 2.5 D M UCS

5
16 4.5 D M UOth
17 9.5 A&P M GCS

6

18 3.5 D M GCS
19 2 D M UCS
20 10.5 A M GCS
21 20 A&P M GOth

7

22 3 D M GCS
23 13 D M GCS
24 9 D M GOth
25 2.5 D W GCS

1. D: developer, A: architect, T: tester, P: product owner 2. M: man, W: woman,
none of the participants identified as non-binary.
3. GCS: graduate degree in computer science, UCS: undergraduate degree
in computer science, GOth: graduate degree in other science subjects
(e.g., electrical engineering, physics and mechanical engineering), UOth:
undergraduate degree in other science subjects.

2.2.1.5 Member Checking

Coding is an interpretative process and as such there is always a risk of
misinterpretation [164]. In order to reduce this risk, we performed member
checking [64], i.e., request interviewees’ feedback to improve the accuracy of the
derived theory. We emailed each participant two artifacts, the transcript of the
interview to remind the participant what was discussed in the interview, and
the codes derived from the transcript together with the description of the codes.
We encouraged participants to correct us if they disagree with our interpretation,
and add new ideas if they would like to do so. We received 20 replies of the
participants, of which two required minor changes to the description of the
code and two added additional thoughts which did not result in new codes.

2.2.2 Type of Logs (RQ1.1)

The types of execution logs are summarized in Table 2.4.
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Table 2.4: Four types of logs (RQ1)

Type Event log (EL) Function trace
(FT)

Performance
data (PD)

Functional data
(FD)

Information Machine
event and error
message

Order
of functions and
values of
parameters

Duration
of software and
hardware
actions

Business-
critical data

Enabled by
default

Yes No Yes Yes

Physical
layers

Not necessary Not necessary Necessary Not necessary

Quote ID P20-1 P18-1 P7-1 P8-1

Event logs contain regular events created when a machine action such as
initialization has been executed as well as error messages of the systems:“you
will see errors, but also all kinds of events indicating in what state the system is or
what phase of execution is being entered”(P20-1). Developers obtain event logs
either from field productions or from in-house test executions. Interviewees use
“event log” and “error log” interchangeably.

Function trace contains the details of the program execution. The start and
the end of a function call inside components as well as the values of parameters
are logged. Compared to event logs, function traces show more details of the
execution:“In the event log you have a higher level view of the system, whereas
with component tracing you have a finer level [view] of the system" (P18-1). Due to
performance concerns, function tracing is not enabled by default. Developers
can enable it before executing in-house tests. It can be time-consuming to obtain
function traces because developers need to set up the simulation environment
for test executions and wait for their completion: “so you have to set up DevBench
plans, and they have to run the test, and sync your code. It’s already quite some work...
sometimes the tests take hours to complete" (P21-1). To obtain function traces from
field productions, developers need to negotiate with customers: “in order to see
this I need tracing from these processes and then you look into if we can at the customer
site turn on traces for such a process" (P9-1). Interviewees use “tracing”, “function
trace" or “component tracing" interchangeably.

Since the performance (e.g., production throughput) is a key business
driver of the machines, performance data logs the sequence of function calls at
component interface: “for every component interface, you can specify throughput tag,
on entry of a function or an exit of the function, both on the client and on the server side,
so you see the start and end points of real function calls ”(P7-1). The performance
data logs the duration and sequence of software and hardware actions, showing
the speed of execution. Obtaining performance data is not trivial because in
order to accurately capture the duration of software and hardware actions, the
software needs to run on the Testbench: “You need these Testbenches, which are
kind of real machines. For getting access to them you need to arrange it. And you’re
competing with other people that want to do the same thing. There’s only one person
who can use the machine at a given moment in time" (P16-1). Interviewees also refer
to “performance data” as “throughput trace”.
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Functional data logs the business-critical data that represents the functional
aspects of the systems: “it contains details like what is the average heat of wafer”
(P8-1). It can be obtained from field productions and test executions.

RQ1.1 summary

Developers use different types of execution logs that record high-level
machine actions, low-level execution details, throughput information as
well as business-critical data. Developers need to go through a non-trivial
process to obtain the logs because the execution of software for such
systems requires hardware to be available or simulated.

2.2.3 Purpose of Log Analysis (RQ1.2)

Table 2.5: The purposes of log analysis and the used logs for those
purposes. “#I” indicates the number of interviewees who mention the
purpose during interviews.

Purposes Used logs #I Quote ID

Software comprehension
Familiarizing with existing software FT 4 P9-2
Reverse-engineering software requirements FT 1 P3-1

Test development
Developing test scenarios and code FT, EL 2 P9-3

Verification and improvement
Verifying executed behavior vs expected behavior All 15 P13-1
Performance verification and improvement PD, FT

Verifying timing (throughput) performance 3 P16-2
Identifying opportunities of throughput improvement 5 P7-2

Log-quality qualification All
Identifying log pollution 1 P19-1
Verifying correctness of the logged information 3 P14-1

Test documentation FT 2 P16-3
Issue analysis

Classifying the type of issues All 3 P21-2
Identifying responsibilities EL 2 P4-1
Localizing problems All 12 P1-1
Confirming reproduced field issues EL, FD, FT 8 P3-2
Identifying root cause All

Identifying root cause of field issues 16 P1-2
Identifying root cause of regression test 11 P13-2
Identifying root cause of flaky (test) executions 2 P12-2

Analyzing occurrence and prevalence of issues EL 2 P22-1
Supporting customers EL, FD 3 P22-2

We classified 18 purposes into four categories (Table 2.5) and found our
results to be complementary to prior studies [44, 224, 436]. Our findings confirm
that developers use logs mainly for issue analysis and uncover additional
purposes not previously discussed in the literature, such as developing test
scenarios and code, reverse-engineering requirements for legacy software, and
identifying root causes of flaky executions.
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2.2.3.1 Software Comprehension
This category covers two purposes related to comprehending behavior of a
system. P3, P9, P14 and P22 use execution logs to complement the source code
when familiarizing with the software: “One of the most important things that you
need to understand [is] what the software does, you do that partially based on tracing”
(P9-2). Execution logs also complement the documentation: “The software is not
very well documented. We have to do reverse engineering to get requirements... I can
choose to run the current software and enable tracing, and from that tracing, it shows
me all the interaction between different components” (P3-1).

2.2.3.2 Test Development
When developing test cases, developers adopt an incremental approach using
logs: “We analyze the trace... Normally we will start with a very basic scenario of tests.
We checked some of the sequence of the essential parts... we continue to extend the test
scenario, probably with some pause or stop in the middle and resume it or inject some
errors to see if the errors can be handled correctly" (P9-3).

2.2.3.3 Verification and Improvement
Logs aid developers in verifying and optimizing software performance. Beyond
running tests against requirements, developers thoroughly inspect logs to
confirm expected software behavior: “I need to develop some new functionality and
we can add some tracing code to the production code then we can look into the tracing
whether the behaviors are expected” (P13-1). In particular, logs help verify that the
undesired events do not occur: “We have a list of events that we say those are not
allowed to occur during a regular test, that’s where we use the event logs" (P12-1). In
order to achieve high throughput performance, execution logs are also used to
verify if actions are finished within their time budget: “It helps us see how much
time a function takes and this throughput tracing is helping us to determine if we are
within the time budget for every action that is going on”(P16-2), and identify if any
optimizations can be done: “Often we get the request to reduce the overall timing,
so to do that, you need to know the time it takes and where to and how to reduce that”
(P7-2). Moreover, as part of quality control, developers also check the quality of
logs: “We check whether there is too much logging going on, you know, log pollution”
(P19-1), or correctness of logged information: “In a project you want to log some
events or want to look into some errors, then you need to check if those errors end up
in the log” (P14-1). Since traces and logs represent the behavior of systems, it is
also used as part of the test documentation: “Sometimes we also use this produced
trace as content for our test documents that we produced to prove that the change has
the intended behavior” (P16-3).

2.2.3.4 Issue Analysis
Execution logs play an important role in analyzing issues. The issues could be
anything that threatens the quality of production, identified by the customers
or by in-house test executions. When an issue is reported, as the very first
step, developers need to classify it in one of the predefined classes such as
functional issues, software issues, or infrastructure issues: “So it’s really first
thing what we try to do. It is to classify the issue. This classification helps us to know
how to start debugging the code” (P21-2). By inspecting logs, developers also get a
rough idea of which group or person has the expertise to fix the issue: “We still
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need to find to whom the issue is related, and then start communicating with them to
check if our assumption about the issue is correct or not” (P4-1). After the analysis
and communication, developers can localize the problems by identifying the
suspicious chunk of code that produces error messages shown in event logs:
“The event log gives me an indication that something is going wrong in this component,
in this particular file and I cannot understand more from it other than that ”(P1-1).
Problem localization helps reduce the scope of the further investigation and
answers the question of where the issue occurs. An important step then is to
reproduce the field issues in-house with simulation and testing. Based on error
messages shown in event logs, developers can confirm that the field issues are
correctly reproduced locally: “We try to mimic the scenario and try to reproduce
the error messages as much as we can” (P3-2). After reproducing the issue, to
further identify the root cause of issues (i.e., answer the question of why the
issue occurs), more execution details are needed: “So then I will turn on the
tracing for that specific component for details [of the field issue]” (P1-2). Sometimes,
to understand a certain issue better, developers analyze the occurrence rate
and the prevalence of the issues: “when you get some issues with error logs, we can
connect to our clients and you can see how many number of times this happened at all
the customers... to see if it’s really generic or something specific happens at a customer
at that point”(P22-1). There are various kinds of field issues. Sometimes, the
parameters (e.g., temperature) shown in functional data are useful to support
customers to perform corrections: “We read the functional data. We try to analyze
different kinds of parameters and try to suggest to the customer to run some certain
amount of calibration. Because it could be (that) the machine is a bit uncalibrated”
(P22-2). For issues found by testing, developers analyze logs to identify the root
cause of regressions: “Once there are some strange things that we obtain that weren’t
present in the release before, we need to be pretty sure on what kind of discrepancy is in
the error log or the trace” (P13-2), and flakiness [247]:“That means they have good
runs and bad runs on the same test case. Then we want to know where the instability
comes from” (P12-2).

2.2.3.5 Other Observations

The four types of logs serve different purposes. Event logs show high-level
events that help developers map the high-level behavior to components.
Function traces provide the low-level execution details of components. Function
data are particularly used for issue analysis, while performance data are often
used for performance-related purposes. A closer look at Table 2.5 reveals
that execution logs are primarily used to analyze issues: indeed, logs are
usually the only artifact providing the information about field issues. Applying
traditional debuggers to obtain low-level execution information (e.g., variable
values) can be infeasible; setting up debuggers for the software executed in
the simulation environment requires additional expertise and effort (P24-1).
Moreover, debuggers can interfere with timing behaviour and synchronisation
between multiple processes: “What might happen is that you have some timeout,
so some processes hanging waiting for the process you are debugging. If he doesn’t
answer in a short time, it stops. Basically, it throws an error" (P24-2). This requires
developers to log and analyze execution details in function traces to debug such
software systems.
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We observed differences between software developers. P6, P10 and P20
consider function traces as the last resort when analyzing issues: “In tracing
you can see all the steps within that component, and it can be a lot of data there... if
you really cannot see what is wrong then you enable that tracing. But that’s really the
last resort” (P6-1). P20 indicated that the use of execution logs also depends on
the type of component, e.g., analyzing components responsible for algorithms
requires different logging than to control components: “[the component developed
by] my current team is all about calculations, which is not really about control sequence
or timing. It just about the numbers. It’s a completely different domain. For example,
we need that much better [functional] data logging” (P20-2). Furthermore, the usage
of execution logs can be changed with the shift of their roles, e.g., to a product
owner: “I’m more responsible for making sure that the team is executing their work
correctly. I myself will not look at logs anymore" (P21-3).

RQ1.2 summary

Developers rely on logs to obtain low-level execution information for issue
analysis that cannot be easily obtained using traditional debuggers. Our
findings complement the literature and provide empirical evidences for
some additional purposes (e.g., test development).

2.2.4 Information Needs (RQ1.3)

We grouped information needs into five categories as shown in Table 2.6. We
observed that developers tend to have common information needs; five types of
information are mentioned by more than 10 developers (> 40% interviewees).

2.2.4.1 Context of Issues

As previously discussed, logs assist developers in issue analysis, and many
activities, such as identifying responsibilities, necessitate context understanding:
“To be able to create this picture, and later you try to somehow understand based on this
picture what went wrong with this run" (P22-3).

First, developers inspect event logs and functional data to know the settings
of the systems:“we try to look which type of machine, which type of service pack it
was, which part of and which type of patch it was”(P3-3). Second, developers need
to understand how the error propagates through the system based on event
logs: this requires knowledge of the system architecture and the error handling
mechanism. The systems that our interviewees work with employ a Client-
Server architecture [280]. ASML implements an error linking mechanism, that
is, when an exception occurs in the server component, the server component
must notify the client components. Since the same component can play the role
of a server towards a group of components, and the role of a client towards other
components, it is common that an error propagates from one component to a set
of other components that have direct or indirect dependencies on it. Developers
inspect logs for records of error propagation to identify the components that
might contain the root cause, inferring for which components they need to
further inspect low-level details:“in the error logging it has a tree. The errors are
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Table 2.6: Information needs from execution logs. “#I” the number of
interviewees who mention the information need during interviews.

Information needs and sources #I Quote ID

Context of issues (EL and FT)
What are the settings of the machines? 3 P3-3
How does the error propagate? 10 P7-3
At which time point does the error occur? What is the machine

doing when the error is raised?
12 P13-3

Data flow and executed sequence (FT)
In which order are functions being executed? 6 P22-4
What is being executed under current configuration? 4 P1-3
What are the values of variables and how do they flow from

one function/module to another?
10 P22-4

State and interaction (FT)
How do software components interact with each other? 10 P3-4
How does the function sequence change the state of software? 2 P14-2

Timing performance (PD and FT)
Is there any time gaps between actions? 2 P7-4
Is the software action finished within the time budget? 3 P16-4

Difference between executions (EL, FT and FD)
What additional errors does the change introduce? 5 P19-2
How do the control sequences of different executions differ? 12 P3-5
How do the functional data of different executions differ? 7 P7-5

linked together, so from the error, I can trace back to the root error and to see when and
where actually it happened”(P7-3).

To further understand the behavior of a component when errors occur,
developers need the timestamp associated with the error messages, which
serves as a linker between high-level information from event logs and low-level
details from function traces: “we can search the timestamp in the software trace to
find, let’s say, around that moment what had happened” (P13-3).

2.2.4.2 Data Flow and Executed Sequence

Inspecting the low-level details shown in function traces, developers identify
the parts of code that have been executed given a particular setting: “So a
machine to us is sometimes a black box, like you have so many configurations and so
many possible inputs, and that changes the output or execution. So to really understand
what is being executed under the current configuration [we looked into function traces]”
(P1-3). The order of function execution and the flow of data are important for
developers to verify software behavior against their expectations: “You check
two things. If the sequence of the function call is as you expected, given a certain case...
and second you check if the generated output which is input for other function, so data
moving from one function to another function, is as you expected” (P22-4).

2.2.4.3 Software State and Interaction

To understand the software system, developers analyze the interactions between
components based on the function traces:“Just to know how the component behaves
and what calls went through for example the external boundary of that component and



24 Chapter 2. Log Analysis Practices for Embedded Production Software

how the component reacts with other components”(P3-4). P3, P6, P14, P15 and P22
consolidate the interaction information by means of sequence diagrams.

Developers also analyze how the state of software changes based on
function traces. For the components developed with the MDSE approach,
each of them consists of multiple state machines that interact with each other.
Interactions are realized as function calls and recorded in function traces.
Working with such components, developers inspect the interactions between
state machines that change the states of the system, and compare them with
function traces: “it might go to the wrong path in the state diagram. For example,
when it should go back to initialize state, but it’s going to the different state and then
going to initialize state... so I can look at that trace to see what is the sequence and then
look at the model to see if they are matched or there’s something wrong” (P14-2).

2.2.4.4 Timing Performance
Developers analyze throughput traces to improve timing performance: “Gap
is the time between software actions. We can see that there is a gap somewhere in the
sequence [in the throughput trace] and then you need to understand where the gap
comes from... gaps can be the result of a function calling another function in another
task. If the other task is busy doing something else function execution is blocked”(P7-4),
and to verify the timing behavior:“It helps us see how much time a function takes,
and this throughput tracing is helping us to determine if we are within the time budget
for every action that is going on”(P16-4).

2.2.4.5 Differences Between Executions
Developers need the information about the differences between the logs
generated from multiple executions in order to, e.g., identify regressions,
and understand software changes. This would require one to compare error
messages:“So especially if an error seems to be not consistently appearing, like that
caused by some kind of instability, then I want to know which change set most likely
introduced it, and then it makes sense to run also older versions of the code to see if
it never occurred earlier or not”(P19-2), function traces: “Everything is inside one
module and then the only thing that we can do is to generate traces in this case, before
the change and after the change. And then we say, hey, before the change, the tracing
of the external behavior of that component says that it did 12345. But after the change
it did 123, and then it jumped into 6, and then 4 and 5 are missing.”(P3-5), and
functional data:“we will look at this reference output of the calculation and compare it
to the output that will be generated by the software after it does the implementation.
And if they match each other, we say yes indeed that the calculation and implementation
went well” (P7-5).

Often, developers compare logs generated from multiple executions of one
software version to identify the root cause of flaky tests [247]:“So for those instable
test cases, this comparison is also very helpful... so we can compare the bad run with the
good run. Then we can know where the instability comes from. Otherwise, sometimes
it’s really time costly” (P12-3).

Moreover, the differences between executions can also help identify when
machines start deviating from the expected behavior. In machines, produced
by ASML wafers move through the production line in batches. The production
machines repeatedly perform the same sequence of actions in order to process
all elements in the same way. These repeated actions are controlled by sequences
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of functions and eventually captured in the function trace. Sometimes, the issue
in the machines result in inconsistent actions for these elements. To identify
where and when the inconsistency occurs, developers need to identify the
differences between the sequences of function calls associated with different
elements.

RQ1.3 summary:

Five types of information from logs are mentioned by more than 10
developers. Inspecting the propagation of errors is essential to localize the
problem. With the timestamp information, developers can establish the
relations between different types of log. The information about data flow
and the interaction of software components is useful to comprehend the
complexity of systems. Particularly, developers need the differences between
executions for identifying the cause of flaky tests or the deviation from
expected behavior.

2.2.5 Tool Support for Log Analysis (RQ1.4)
In this section we discuss the tools developers use, the challenges they are facing
when analyzing logs, and the tools they would like to have for log analysis.

2.2.5.1 Tools Used
The interviewed developers are very similar in their choice of tools to analyzing
logs. All developers stated that text editors are commonly used. The developers
also adopt traditional approaches such as Linux grep or their own scripts: “if I
want to do a bit more smarter analysis other than grep and I can do it in Python.”(P14-
3). Although filtering and searching are commonly used to extract information
from the log data, there is no joint effort on making a generic tool: “Now you find
a lot of scripts that are used by X by Y by ZXY who don’t know each other, but they
create the script at a different time”(P21-4).

When comparing logs generated from different executions, developers
either manually inspect the two logs which “takes a lot of time and it’s not really
productive”(P23-1) or use text difference analyzers (e.g., KDiff3, Beyond Compare
and Linux diff): “Sometimes I use Beyond Compare for comparing logs. It compares
data line by line”(P2-1).

2.2.5.2 Challenges in Log Analysis
Table 2.7 summarizes the challenges identified.

Log availability and quality In order to enable log analysis, developers
first need to collect logs. As mentioned in Section 2.2.2, due to the needs of
a physical or simulated environment for software executions, log collection
can be a time-consuming process. Particularly, when it comes to log collection
from the field, logs are sometimes unavailable due to the performance concerns:
“If you turn on tracing then it slows down the system so heavily that you impact
production. It’s not something you can do at a customer [site] very easily”(P9-4); or
confidentiality: “customers are very vulnerable to expose that to us because they
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Table 2.7: Challenges in log analysis.“#I” indicates the number of
interviewees who mention the challenge during interviews.

Challenges #I Quote ID
Log availability and quality

Absence of logs 8 P9-4, P8-2
Non-standard logging 5 P12-4
Incompleteness of trace 8 P9-5
Presence of noise 18 P8-3
Unreadable format for functions with a lot of parameters 2 P24-3
Missing categorization and overview 3 P13-4
Broken error linking 4 P1-4

Complexity
Involvement of components from different groups and

domains
6 P15-1

Involvement of many state machines 2 P15-2
Presence of concurrency 8 P14-4
Presence of irrelevant differences between logs: 5

Uninitialized variables P17-2
Concurrent execution P11-1, P15-3, P17-

3
Timing variation P17-1
Refactoring P11-2
New feature implementation P11-2

Expertise
Lack of domain knowledge 10 P11-3, P22-5, P22-

6
Unfamiliar with code base and software design 9 P7-6, P15-4

don’t want that data to become visible to other customers”(P8-2). The quality of
logs is also known to influence the developers’ ability to perform the analysis
efficiently [122, 223, 446]. Indeed, we have the same observations in our context.
According to the interviewees, there is no standard way of tracing functions:
“For each software component, they [(i.e., developers)] have their own preference for the
format of the tracing. You should be able to read that trace first. Otherwise, it’s really
not easy”(P12-4). Where to log and what to log is determined by developers who
wrote the code and their peers who analyze the logs might find logging to be
excessive (P8-3) or scant (P9-5).

Moreover, working with logs generated from metrology software
components comes with a particular challenge. The function calls in such
components have numerous parameters recording measurement and modeling
data, and subsequently requiring developers to format functions and
parameters in logs: “we have functions with a lot of parameters, and often they’re big
structures and big arrays and everything is converted into text in trace... Sometimes I
really spend time formatting data in a way that I can understand it”(P24-3).

Given that logs are in the size of gigabytes, and not accompanied by any
kind of summary, developers spend a lot of effort and time navigating through
them: “right now all the error messages they are combined or mixed in one file... if the
event log can be structured in a better way, then it could improve the efficiency for us to
analyze” (P13-4). Another quality related challenge mentioned by developers
is that errors raised by servers are not always linked to their clients due to
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implementation bugs of error logging and linking: “Often what we experience
right now is that the error links are broken. And I think this misleads the developer
quite a lot "(P1-4).

Complexity The complexity of a system, including the existence of numerous
interacting components, a multidisciplinary environment, and concurrency, can
give rise to a multitude of challenges.

Indeed, P15 has indicated that “You have tracing from multiple software
components. They all talk to each other, and that makes it so difficult to understand
what was the context of the software before it got there” (P15-1). For the components
that are responsible for process control and implemented using interacting state
machines (cf. Section 2.2.4.3), analyzing logs requires tracking the change of
states in multiple state machines: “we have 200 different models. Then you need to
check, ok, this model was in this state, and then it calls that model which calls another
model and then at some point you’re looking at 10 different models and different states,
and it’s so difficult to understand all the different states.” (P15-2).

The multidisciplinary character of the software requires developers to
analyze the logs capturing the behavior of components from different technical
domains: “sometime maybe the analysis takes days... for example, especially if it is
related to other functional clusters [i.e., other functional domains]... I could say that it
is the most time-consuming part” (P5-1).

The machines developed by this company have high competence in
processing multiple elements concurrently. This high-level machine requirement
is realized by the underlying concurrent software: “all those process elements they
end up in different lists, and then the lists are emptied by different sub-processes...
and they all do their things separately, and they synchronize at certain moments.
So that makes it difficult, and that is represented and logged in the same trace
file in the sequence” (P14-4). The function trace records function calls from
different concurrent executions in a sequential manner, i.e., developers should
disentangle interleaved executions.

Complexity does not only hinder comprehension, but also introduces
irrelevant differences between logs. Such differences can be introduced by
time variation because“you can see the execution time of functions are sometimes
different for different runs”(P17-1), and uninitialized variables since the values
of these variables “will appear on the trace statement is a random, it’s garbage.
And if you put this in a tool like Beyond Compare, it will take it as a difference, but
in reality, it’s not”(P17-2) Similarly, irrelevant differences can be introduced
by concurrency: “Some events are not necessarily happening in the same order in
different executions”(P11-1), refactoring or implementation of new features: “You
could also see many differences because of refactoring or some development changes we
made”(P11-2). Excluding irrelevant differences requires domain knowledge: “So
if you understand what should be the sequences, then you can basically see, ok, in this
case the sequence was flipped, but functionally it’s the same”(P15-3), effort and time:
“more and more preprocessing until you remove the most of them... It costs time. And it
can even lead you to wrong conclusions”(P17-3).

Expertise The systems are not only complex but also multidisciplinary.
Working with logs generated from such systems requires domain knowledge
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(e.g., how machines expose wafers to the light): “We can dive into the trace files
etc. It is not enough. You have to know what is actually going on here with those traces
and what is the component doing” (P11-3). The analysis is particularly challenging
for newcomers: “Let’s say if you have really huge experience in software, but without
any ASML knowledge, I would say it is useless... I remember the first year it was really
hard for me somehow to understand what’s really happening” (P22-5). Different
from newcomers who get lost in the large amount of information in logs,
experienced developers such as P14 tend to take a top-down approach: P14 first
inspects the interactions between the components that control and coordinate
machine actions, and other components. This allows P14 to comprehend how
machines were functioning and what functionalities each component have, and
to conjecture which parts of machines exhibit faulty behavior. Only then P14
examines execution details for relevant components.

Eight developers stress importance of not only discussion with senior
software developers as well as collaboration with functional developers from
other engineering disciplines “peer working at minimum two, it really helps a lot.
Especially when one with nice software skills and the other one with nice functional
skills”(P22-6).

The lack of familiarity with the code base and software design also hinder
log understanding: “you often see a trace of code you never worked on. That’s what
consumes most of the time” (P7-6). For example, in order to understand the
interactions between software components based on function traces, developers
should be familiar with the communication mechanisms between components:
“some of the interactions are based on subscriptions. So you subscribe to event and once
that event happened there’s a callback. In software tracing you just see there’s a handler
of the event. If you are not familiar with the structure of the software, you couldn’t link
that trace [line] with the other component [that gives the callback]”(P15-4).

2.2.5.3 Expected Tools

Creating multi-level abstraction Developers would like to have a tool
that can help them inspect different levels of details from logs: “On certain levels
you can open and close those functions to see what’s internally there so that you can
maintain a high level overview and details where you need them, instead of only having
all the details now, but that’s what’s happening now, you got a whole bunch of data, and
it’s all detail”(P14-5). To provide a “bird’s-eye view”, the tool can visualize high-
level function calls with sequence diagrams, state machines or Gantt charts:
“Usually I end up with drawing the sequence diagrams myself to understand it, but
if you could drag and drop traces into a tool and then get a sequence diagram, that
would also be nice” (P9-6). The tool should allow developers to select the level
of details they would like to inspect: “I tend to do that by hand... The problem is
that if you generate it, you get everything, not interesting stuff... And then I do it by
hand, I just leave that out and only put the interesting sequences in there” (P17-4).
For example, as discussed in Section 2.2.4.3, when dealing with state machine
based components, developers inspect the function calls that change the state
of state machines. The tool should support developers performing this task by
visualizing the sequence diagrams only for these important interactions.
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Automatic log comparison Developers would like automatic log
comparison tools to provide differences at different levels of details: “I think
presenting all those [comparison] results in a single graphical user interface will be
polluting... Maybe we could have maybe multiple options or multiple levels based
on what you want to check” (P18-2). Furthermore, developers envision tools
supporting identification of the cause(s) of log differences such as concurrency,
refactoring or uninitialized variables.

Providing generic and unified facilities Instead of multiple scripts with
(partially) duplicated functionality, developers envision a tool supporting
formulation of different queries to different types of logs: “Such kind of facility
would help engineer to start talk to data instead of spending time on parsing”(P22-6),
as well as inspection of the relations between different logs generated from
the same execution: “if we can show different logs in one GUI or one window, then
it is easier for us... Currently we just manually go through these logs and find the
relationships between logs”(P2-2). For analyzing errors based on logs, developers
expect a knowledge base that stores error patterns identified from historical
logs so that the knowledge about errors can be shared across groups.

The tools envisioned should be unified with test and log generation facilities
(i.e., DevBench and TestBench) to reduce switching between tools: “I need to
connect to DevBench, fire up my test, then look at each of those files individually, write
them to my local files, open the tools like the text editor and then go through each one
of them. So basically, if you can unify all of these things at one places, which becomes
seamless to go between them, then it becomes super awesome”(P1-3).

RQ1.4 summary:

Developers mainly use text-based tools to analyze logs. In addition to log
quality concerns, concurrency and irrelevant differences between logs bring
additional challenges in log analysis. Developers indicate that they need a
tool that creates multi-level abstraction of executions, allows them to compare
logs at different levels of abstraction and provides generic facilities that can be
shared among developers.

2.3 Replication at Other Companies
In this section, we present our replication study at four companies. This
replication study aims at understanding to what extent our findings at ASML
are generalizable to other companies (RQ1.5). We start with our methodology
(Section 2.3.1) and then report our findings (Section 2.3.2).

2.3.1 Methodology
To understand to what extent our findings at ASML are transferable to
other companies, we conducted a replication study. We adopted convenience
sampling to recruit four companies. Shull et al. [342] discuss two types of
replication study, namely dependent replication and independent replication.
The dependent replication relies on the design of the original study as the
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basis for the design of the replication, controlling the variations between the
original study and the replication. In contrast, the independent replication
uses different experimental procedures to reproduce the results. The large
number of changing factors make it difficult to interpret the observed differences
between the original study and the replication. Hence, dependent replications
are recommended to come before independent replications to gain more
insights [342]. In this study, we opted for dependent replications by changing
the study context while following the same research method (i.e., interviews).

Next, we introduce the design of our interviews, context and participants
as well as data collection and analysis.

2.3.1.1 Semi-structured Interviews
We used the same research method adopted in our previous study at ASML
(Section 2.2). However, instead of asking open questions only, we asked two
types of questions during interviews. First, we asked open questions to trigger
in-depth discussion without biasing developers. These questions are the same
set of questions that were asked in our previous study at ASML (Table 2.2).

The open questions are then followed by a set of closed questions. The
goal of asking closed questions is to validate whether developers from other
companies share the experiences of their ASML peers. To this end we compiled
the codes that we derived from our previous study at ASML (i.e., codes shown
in Tables 2.4–2.7 and codes discussed in Section 2.2.5.3) with a survey-like form:
Figure 2.2 shows an example with the closed questions about the type of used
logs. During the interview, we first explained the codes to our interviewees
and then asked if they share the same experience. We note that we did not
include two challenges (i.e., Broken error linking and Involvement of many state
machines) in the validation form because they are specific to the modeling
tool and error handling mechanism adopted by ASML. We conducted a pilot
study with an industrial embedded engineer to examine whether the questions
are well phrased and presented. The engineer suggested that engineers may
tend to select all the options about possible tool support (codes discussed in
Section 2.2.5.3) especially if their current tools are primitive. Therefore, we
dropped the closed questions related to tool suggestions (codes presented in
Section 2.2.5.3). Instead, we aim at collecting more ideas about tool support with
the open questions related to the used tools, challenges, and tool suggestions.

By asking these two types of questions in this specific order, we aimed
to confirm our previous findings while still being able to trigger new insights
without biasing interviewees. This replication study was approved by the ethical
review board of the Eindhoven University of Technology and the participating
companies.

2.3.1.2 Context and Participants
In this study, we involved three companies which develop different types of
embedded products and one company which develops code quality checkers.
By interviewing both embedded software companies and the company which
develops non-embedded products, we would like to get a better idea of the
scope of our previous findings.

In this replication study, we aim for reaching a broader audience from
several companies. Therefore, we opt for recruiting a smaller number of
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Figure 2.2: Closed question about type of logs used in practice

developers from each company. This replication study is different from our
previous in-depth study of a single company (Section 2.2) where a larger number
of developers (i.e., 25 developers) are interviewed to ensure that the theoretical
saturation is reached. Following the same recruitment procedure as the previous
study at ASML, we contacted the managers in the software development
division of these companies. We encouraged the managers to recommend
six developers to us, while taking into account seniority and diversity of
software engineering roles. If the company prefers to provide a smaller
number of developers due to the availability of developers, we encouraged the
managers to recommend the developers who are experienced with log analysis
and knowledgeable of company practices. In total, 14 developers accepted
our interviews. Table 2.8 shows the overview of the invited companies and
participants.

Company A Company A is a manufacturer of essential components that
are required by electronic designs. To produce a high volume of electronic
components, the company has built control systems to handle customer orders,
logistics and process control. We interviewed six engineers of different seniority
levels and roles working on these control systems. The interviewed engineers
use the Ada programming language in their development work.

Company B Company B develops various kinds of electronic products which
include but are not limit to consumer electronics. In this study, we recruited
three engineers. The three engineers work as architect, product owner, and
quality engineer, providing different perspectives on the use of logs. The system
is mostly developed using C# and C++.

Company C Company C is specialized in developing a certain mechatronic
produtc . Two engineers were recruited. One of them is responsible for a
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Table 2.8: Participants

Company (product) ID Role4 Experience5 Focus

A
(Control systems)

26 D 2 Vision components27 D <1
28 A 1.5 Motion control systems29 A 5
30 D <1 Data collection

platform
31 A 38 Real-time control

systems

B
(Electronic
products)

32 Q 28 System-wide quality
control

33 A&P 2 Supervisory controller
34 A&R 10 System-wide design

and reliability
C
(Consumer
electronics)

35 A 3 Data
collection platform &
test automation

36 A 24.5 Controller and system
interfaces

D
(Code quality
checker)

37 S 14 System-wide service
38 D 21 Back-end
39 D 9 Front-end

4. D: developer, A: architect, P: product owner, S: service engineer, Q: quality
engineer, R: reliability engineer
5. Years of experience at the company

data platform that collects data generated from the machines. Meanwhile,
the engineer also contributes to the investigation of potential test tooling by
studying the state-of-the-art and attending academic conferences. The other
engineer is responsible for the software layer for high-level action control and
error handling. The system is mostly developed using C# and C++.

Company D Company D is developing code quality checkers that are used
in various kinds of software systems. We recruited three engineers. Two of
them are responsible for developing the back-end and front-end of the system,
respectively. The other engineer is responsible for making sure that products at
customer side are working as expected. The front-end of the system is developed
using Java and the back-end is developed using Perl.

2.3.1.3 Data Collection and Analysis
To collect and analyze the data, we applied the same method as our study
at ASML (Section 2.2.1.4). We collected data by recording audio and making
transcripts available. We then applied closed coding, which is a process of
identifying and marking interesting information using a pre-established coding
scheme [335]. In this study, we used the coding scheme established in our
previous study at ASML. We created new codes if the information related to
our research questions cannot be labeled with the established codes. We present
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our explanation of the derived codes in the following sections. The codes are
explained with quotes of developers. We give an ID for each quote to help
readers link these codes and the explanations. An ID has a format of PX-Y
where PX indicates the participant ID and Y indicates the sequence number of
quotes from the corresponding particiapnt.

2.3.2 Generalizability (RQ1.5)
In this section, we present the results of the replication study. As discussed,
the study has both exploratory and confirmatory in nature, supported by both
open and closed interview questions. By asking these questions, we explore
the generalizability of the findings we obtained from ASML with respect to the
types of logs (RQ1.1), information needs (RQ1.1.2), challenges (RQ1.3) and tool
support (RQ1.4).

2.3.2.1 Types of Logs
As identified in ASML (Section 2.2.2), developers use event logs, function traces,
functional data and performance data which are generated separately to support
different maintenance activities. Each type of log has its own logging policy and
format. In the replication study, we learned that event logs and functional data
are commonly generated by companies from ES domain (company A, B and
C). Similar to ASML, event logs in these ES companies are generated in a loose
text format, while functional data is usually formally defined and formatted
through the discussions between software and functional engineers.

However, not all companies generate and use function traces and
performance data as ASML. In company A, the functional data and performance
data can be generated with an in-house instrumentation technique: “Developers
can put statements in the code where they log certain variables in their ring buffer and
that ring buffer is visualized by means of a graphical interface. So you can see how
certain, for instance, the X&Y position of a motor or piece of equipment is changing, and
also software signals how long certain messages take to get from A to B. All kinds of user
defined signals can be in there. There you can see the performance of the machine”(P29-
1). Function traces are not logged at company A due to performance concerns:
“The machines we make are typically very fast. They produce 20 products per second. I
estimated (that) each line of log introduces maybe 100 nanoseconds overhead”(P31-1).

Similar to ASML, company B generates event logs, function traces,
and functional data with separate logging formats and mechanisms. The
performance data is not logged as a separate type of log. However, according
to the interviewed developers from company B, when needed, the duration of
actions and events can be inferred from other types of logs (e.g., event logs)
based on the recorded timestamps.

The developers from company C shared that the company used to generate
one single log file containing different kinds of data in a loose format.
But in recent years, the company has separated functional data from the
debugging logs. The logged functional data is well formalized and automatically
instrumented, and hence can be further analyzed with built-in tools: “We created
the metamodel, so we actually modeled the data that should be logged and how the data
relates with each other, and we are trying to define that more accurately by creating
a domain specific language and then within that domain specific language we will
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specify what logging we expect. So in that way it is formalized. We have also the
logging API that’s actually integrated into the embedded software and then used by the
software developers”(P35-1). In contrast, the debugging log is manually created by
software developers in a loose format: “There’s also no structures, just a string. So,
basically all the information that they can come up with, they can just log there”(P35-2).
The free and flexible logging mechanism of this debugging log makes automatic
analysis very difficult.

Different from these ES companies where functional data is systematically
logged, logging is less formal in company D. The developers at company D
manually insert logging statements that capture information, such as events,
memory consumption and function invocations, that software developers
consider useful. The information is then logged in a single log file at runtime.

RQ1.5-a summary:

Event logs and functional data are commonly generated by embedded
software companies. Similar to ASML, the embedded software companies
usually formalize functional data for further domain-specific analysis.
Not all the embedded software companies log function traces due to
performance concerns. Contrary to the separate logging for different kinds
of data, company D logs various kinds of useful information into one
single file.

2.3.2.2 Purpose of Log Analysis
Figure 2.3 shows the results obtained from the closed questions about the
purposes of log analysis. It can be seen that 8 out of 14 purposes have
been selected by more than ten developers, and 11 by more than half of
the developers, indicating the purposes identified in the study at ASML
largely resonate with the developers from other companies. Among these
purposes, problem localization and performance improvement are selected by all the
interviewees (=14). Such purposes as test documentation, log-quality qualification,
developing test scenarios and code, identifying responsibilities, reverse-engineering
requirements, and familiarizing with existing software are mentioned less often
(<10). Figure 2.4 shows the distribution of votes for these less frequent purposes
over the companies. We can observe the differences between companies; all
developers from company B have reported that log quality qualification before
delivery is one of the reasons for inspecting logs, while none of the developers
from company C recognized it as a common practice. We conjecture that this
difference may be due to the different quality control policies implemented
at different companies. Furthermore, it can be observed that none of the
participants from company D use logs for responsibility identification and
code familiarization. As explained by the participants, they can easily perform
these tasks by communicating with colleagues because the code base of their
system is maintained by a small group of developers.

As seen in ASML (Section 2.2.3.5), logs are widely utilized for issue analysis
to recover execution details as breakpoints can introduce synchronization errors,
rendering traditional debuggers unsuitable. Our replication study validates
the crucial role of logs in issue analysis for embedded systems with stringent
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Figure 2.4: Infrequent purposes of log analysis over companies

timing requirements: “We typically have a watch dog running, so that gives you like
a couple of seconds and then the system will automatically reboot, so breakpoint is not
an option... not trying to debug with breakpoints but always with logging”(P36-1).

With the discussion triggered by open questions, we identified three
purposes not previously discovered in our study at ASML. Participant P34
shared that Company B has gradually started using logs for more data-driven
activities such as liability analysis: “we also started using it to derive some
utilization related information, liability related information and also look at obsolescence
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of certain parts. If some old PC is there in the field, you know that that PC doesn’t
support a newer version of the software or the operating system. Then you should also
need to understand how many of those getting obsolete, how should we program the
replacement and what is the cost... And then we can also correlate and say how long it’s
been running. Is it meeting what the vendor is promising in terms of reliability?”(P34-
1). As shared by all participants (P32-34) from company B and participant P35
from company C, use case analysis is emerging as a purpose of analyzing logs:
“if you have let’s say 1000 machines at customers, they would want to see what are now
the typical applications that run on the machines. And so that information is gathered
by data analysis from the functional data to see what the customers are doing actually
and then to be able to improve our products for that” (P35-3). Additionally, according
to participant P35, logs are also used for testing: “ in our testing, we write down a
couple of steps with synchronization points. So if we have a machine action. We know
that if we send a machine action, we first have to wait until the machine is heated up,
and then we do the machine action and then maybe the machine needs to cool down,
and then we are done. So what you see now with test cases is that we send a command
to execute the action. And then in a test case, it says wait until in the logging it shows
that the machines are warmed up and then say OK now do the action”(P35-4).

At company D, we do not see these extra uses. Thus, we speculate that
utilizing logs for liability analysis, use case analysis, and testing may be
exclusive to embedded software firms with complex machines composed of
various hardware components, interacting with operators, and executing actions
based on machine state.

RQ1.5-b summary:

The objectives of log analysis from the prior research are commonly
adopted by other ES firms. All participants rated problem localization
and performance enhancement as important purposes. This confirms the
previous finding that a conventional debugger is frequently unsuitable for
ES, highlighting the significance of logs in issue resolution. Moreover,
we discovered that embedded software companies employ logs for
liability analysis, use case analysis, and testing, which were not previously
detected.

2.3.2.3 Information Needs

Figure 2.5 shows the results obtained from the closed questions about
information needs. Out of 13 information needs, 10 have been voted for by
at least 10 developers, indicating that the information needs identified in the
previous study (Section 2.2.4) are greatly generalizable to other companies.
These most voted information needs are related to context of issues, state and
interaction and timing performance. It can also be observed that configuration of
executed systems, component interactions and duration of software actions against
time budget are voted by all the developers. By discussing the procedure of
log inspection, we have also confirmed the findings at ASML that experienced
developers often adopt a top-down approach to first get an overview of the
execution flow and then drill down to the details.
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Figure 2.5: Frequency of information needs

We also found that not all developers inspect the difference between executions
in practice; there are seven developers comparing logs in their practice for
investigating regression problems or verifying the correctness of behavioral
changes. Particularly, three developers from company A shared that they are
not only comparing the sequences of function calls and the values of functional
data but also the timing behavior. We identified that obtaining information of
how the timing behaviors from different executions vary is important for
embedded systems used in a fast manufacturing process: “We have fast machines,
so you want actually the variants of the cycle6 also be minimum, because if something
is intervening sometimes, and you don’t know, that is difficult to oversee. You can
measure the cycle. How long does it take? How does that fluctuate? Usually this is very
valuable information to see if the responsiveness inside the system is not tampered by
something special”(P31-2).

RQ1.5-c summary:

More than 10 out of 14 interviewees need information related to context of
issues, state and interaction and timing performance in their practice. Half of
the developers compare logs in their practice for regression investigation
and behavioral verification. In addition to the information needs related
to difference between executions identified in the previous study, we further
identify that developers extract the variants of timing behavior among
executions when comparing logs.

2.3.2.4 Used Tools
The used tools by the interviewees in companies A-D are similar to the used
tools identified at ASML. When it comes to information inspection, searching,
extraction and comparison, the text-based tools such as a text editor and Linux

6cycle time is the time spent on producing an item
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Figure 2.6: Frequency of challenges

grep are most commonly mentioned. In-house tools have also been developed
in the companies to inspect logs that capture domain-specific information (e.g.,
functional and performance logs). For example, company A has developed a
tool that can visualize the value of variables over time, which for instance can
help developers understand how the temperature of materials in production
changes over time. Similarly, company C has also provided tools for developers
to analyze the measurements collected in their machines. As explained by
developer P35, it is easier to provide tools for functional logs as the collected
functional data is usually well-defined against the requirements of systems
and the interests of customers. In contrast, it is difficult to provide analysis
tools for event logs because these logs are usually loosely formatted as natural
language text and cannot be easily parsed automatically. Similar to what we
identified at ASML, individual efforts have been made by developers in all
these companies to develop customized scripts for parsing and processing
these loosely formatted logs. These customized scripts are usually used by an
individual developer:“I made some tooling for myself where I can just visualize the
interaction with the controller in sequence diagrams”(P39-1), or shared in a small
group of developers who deal with logs with consistent logging format and
similar types of software issues.

RQ1.5-d summary:

Consistent with the observations at ASML, text-based editors and self-
made scripts are dominant when it comes to tooling in log analysis
practice.

2.3.2.5 Challenges
It can be seen that the challenges recognized by ASML developers (presented
in Table 2.7) are not specific to ASML. As shown in Figure 2.6, almost all
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interviewees (13 out of 14) consider incompleteness of logs as a challenge in log
analysis. According to these interviewees, the challenges of log analysis are often
rooted in the challenges of log composition and generation, i.e., if a suitable
logging strategy is not applied in the log composition and generation process,
then developers have to work with bad quality logs that hinder developing or
adopting log analysis tools. Furthermore, the challenges related to expertise
and complexity are recognized by more than half of the interviewees (>7). With
the open questions, we identified challenges related to logging trade-off, lack of
abstraction layer for logging, and co-evolution problems in logging, which were not
discussed in our previous study at ASML. We further identify that the coupling
between hardware and software in embedded systems has contributed to the
complexity of systems.

Logging trade-off. The developers shared several trade-offs in logging.
Similar to the challenges reported at ASML, it is often the case that necessary
information is missing or incomplete in the log files:“I encountered a lot of
scenarios that there was just no logging available, and I could not conclude what happens
here”(P36-2). A possible solution could be adding more logging statements, but
this may lead to an overwhelming amount of information:“ the problem is you
never know which part is going to be relevant beforehand, so that’s why we put in a lot of
logging and then hope when there is a problem that we have captured the correct logging
and the correct detail and the correct state. But this can lead to a lot of data and moving
around to get to the relevant part”(P36-3). Moreover, adding more logging code
might not be trivial due to project organization: “you need to formalize request
change... it can take years before adding extra logging code due to project organization
(P32-1), long release cycle: “If you want to insert logging code, you have to go through
the software release process ”(P33-1), or performance concern (see a quote from
P31 in Section 2.3.2.1). As pointed out by the interviewees, this problem reflects
the questions of what-to-log and where-to-log that developers need to answer
when logging.

Developers have also reported the trade-off related to logging policy and
governance: “The other challenge, I think, is to have the right balance between complete
freedom for the developer to log whatever they want and there’s something restricting
formalized on the other side”(P35-5). On the one hand, giving the complete freedom
of logging without restriction on the information and format could cause bad
log quality such as incomplete logging, non-standard logging format and
inconsistent granularity, which results in great difficulties in comprehension
and automated analysis. On the other hand, enforcing a strict formalization on
logging on what-to-log and where-to-log disallows developers flexibly to add
information that they consider useful, which subsequently may also result in
missing needed information.

Lack of abstraction layer for logging. Automated logging is considered by
developers as one of the ways to avoid mistakes and inconsistencies introduced
by manual logging. However, as elaborated by interviewee P29, automated
logging requires developers to find a right level of abstraction in the system:
“You may want to automate the generation of log files on the interface level. Then of
course, in order to not drown into too many log files at low level interfaces, you have
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to have a certain right abstraction level”(P29-2). The participant further explained
that in order to automate logging at the right level of abstraction, the right level
of interfaces has to be clearly defined in the architecture of the systems: “There’s
no properly defined abstraction level at Company A, where we can do that logging. That
is also a challenge because you do not want to do that at very high level or very low level
interfaces. You have to find the sweet spot there. We do have interfaces between modules
or packages. They’re very granular to very low level. Somewhere you have to find a
bit of a higher-level to define your interface, so you can trace them without generating
too much noise, but still have enough information to follow the internal state of your
program”(P29-3).

Co-evolution problems in logging. Three companies (B, C and D) have
shared the challenges regarding logging evolution. Indeed, not only is code
that realizes the functionalities of software products evolving, but also the
logging code. As a consequence, when logging code is changed, the related
entity might require adaptions to preserve its consistency or correctness. For
example, as indicated by interviewees P32 and P34, the evolution of logging
code affects the maintenance of behavioral patterns that they derived from logs
for characterizing known software issues. Developers from company B have
been deriving log patterns of the known issues, and storing the log patterns
and the corresponding solutions into a knowledge base. The log pattern could
be any information that characterizes the issue, such as a sequence of events
that manifest the issue. The knowledge database is then shared with developers
across different groups and teams for quickly identifying the existence of the
known issue in the subsequent versions of software by automatic pattern
matching. That is, if an instance of the pattern is detected in the logs generated
from the subsequent versions of software, then an issue is found and needs
to be resolved with the recommended solution. However, evolution of the
software and the logging code threatens to invalidate the patterns derived
from a previous version of software: “Typically these pattern models are affected
because of accidental changes in the log statements in the code, or because developers
refactored the existing implementation, redesigned components, merged components, or
introduced a new feature... these things are quite challenging for the maintenance of the
models and patterns”(P34-2). Moreover, the evolution of logging code also raises
the challenges in updating analytical tools: “data analysis scripts are affected by
the change in the logging” (P35-6), updating customer about new releases: “We
cannot tell our external stakeholders that in this release these are the new logs, these are
the existing logs, and these logs we have made obsolete, so stop using them”(P34-3),
and comparing logs: “so if more logging was added or log statements were changed,
then you get these differences. But these are not a reason for different behavior or a
failure”(P35-7).

Coupling between hardware and software. In our previous study
(Section 2.2.5.2), we identified that log comparison is difficult in practice due
to the presence of differences that are irrelevant to their software engineering
tasks. These irrelevant differences could be introduced by concurrent execution,
subtle timing variations, refactoring, uninitialized variables and new feature
implementation. In the replication study, we learned that the coupling between
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hardware and software in embedded systems introduces additional challenges
in log comparison. As indicated by the developers from company A, the status
of hardware can influence the behavior of software:“The difference does not always
indicate a problem because there is some natural difference in hardware. If you’re
comparing a log from a machine that was just started between one that has been
running for some time, then the motor signals would be different”(P26-1). Similarly,
the variations of software behavior can also influence the behavior of hardware:
“If the software takes too long to do something, then the hardware has to correct it by
turning back or stopping... that will change the sequence of function calls from the point
on”(P26-2). As a result, the coupling between software and hardware results in
a lot of irrelevant differences in logs generated from different executions.

RQ1.5-e summary:

We identified additional challenges related to the coupling between
hardware and software, logging trade-off, lack of abstraction layer for
logging, and co-evolution problems in logging.

2.3.2.6 Expected Tools
As a result of the open questions posed during the discussion, we are able to
uncover three suggestions for tool development that had not been previously
discussed in our interviews at ASML.

Identifying and visualizing dependency between events. As agreed
by interviewees from both ASML and companies A-D, comprehending
the interleaving of events introduced by concurrency in logs is difficult.
Constructing the dependency between events requires a lot of manual efforts :
“It all relies on the mental model. There is no explicit dependencies in logs. You cannot
infer the exact temporal dependency. You see a lot of interleaving but do not know
the causality between actions”(P29-4). This is agreed by not only developers of
embedded systems but also a web-developer from Company D who indicated
the difficulty of grouping events based on their dependencies: “The difficulty is
that sometimes a certain request is not handled by one thread but multiple. And there
are many user requests interleaving. So, it is hard to automatically group a certain
request and its response for each user” (P38-1). Not only concurrency, but also
the composition of actions introduces the dependency between events: “Based
on our architecture we also have an action administration, so you could imagine for
example if you have a machine action then actually a lot of things need to happen. So
maybe in the end point the action is decomposed over 500 sub-actions. ” (P35-8). To
solve the problems, developers suggest developing a tool that can automatically
identify and visualize the dependency between events.

Deriving behavioral fingerprints. As we identified at ASML, developers
often manually sketch behavioral models from logs, using them as a vehicle
for team communications and software comprehension (Section 2.2.5.3). In the
replication study, developers from multiple ES companies consistently suggest
that deriving behavioral fingerprints such as behavioral models for known
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issues or expected behavior could be very useful for anomaly identification
and analysis: “It’s a temporal process that’s repeating. It’s a cyclical process. So you
can easily create a model that we can visualize behavior of the normal execution. So
there could be the fingerprint of the process because the same processes are repeatedly
occurring” (P29-5). In fact, as we discussed in Section 2.3.2.5, company B has
been deriving patterns for known issues to build a knowledge database that is
shared across groups within the company. These patterns serve as fingerprints of
known issues. However, developers face the maintenance problem introduced
by the evolution of logging code when adopting pattern recognition and
matching. To facilitate the use of behavioral fingerprints, there is a need to
develop and implement a logging strategy and policy.

Strategic logging. The developers suggest that the process of logging should
be defined and governed with company-wide strategies and policies, and tools
are required to facilitate the following activities:

(a) Creating parsable logs. As observed, these companies are still widely
adopting a conventional logging approach [154] where logs are loosely
formatted. Loosely formatted logs cannot be easily parsed automatically,
and are subsequently hard to be processed and analyzed by automatic
tools. Indeed, as indicated by the interviewees, it is currently difficult to
create generic parsers that can be used by different groups. Therefore,
a better approach could be formatting the contents of log messages in
the logging code to generate parsable logs. For large-scale companies,
the conventional logging approaches and libraries have often been used
for decades in a large code base. Hence, it requires tremendous efforts
to manually format all the logging code or migrate to a new logging
mechanism: “our logging library is flexible enough that people have used
it in different ways and there is no one pattern to look at how the logs are
written in the code”(P34-4). Therefore, interviewees expect tools that can
automate the re-engineering activity. As interviewee P34 suggested, the
re-engineering activity may require applying code analysis techniques
(e.g., static analysis) to recognize the logged information (e.g., parameters
in each event) and migrating an old logging library to a new one
automatically.

(b) Identifying logging changes. To cope with the problems during the evolution
of logging code, identifying the changes that developers made to logging
code becomes essential. Developers expect a tool that can identify the
changes in logging code and generate an overview of the made changes:
“Did you accidentally remove the entire logging? Did you just change the
meaning of the log itself? So every bit of information in the log should be
checked. And that should be checked at the development time itself. So when
you deliver your code, you should be able to quickly check and say you are
breaking an existing log. They should be able to go back and, revert the change
and provide justification if they want to go ahead with changes. ”(P34-5). The
generated overview of logging changes can enable further analysis, such
as interpreting the differences in the logs generated from two versions of
software.
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(c) Impact analysis of logging changes. As identified, developers face co-
evolution problems in logging. The entities such as analytical tools,
behavioral fingerprints, and knowledge databases are impacted by the
changes in logging code. In order to evolve these entities to preserve their
consistency and correctness, developers expect a tool that can analyze the
dependency between the changed logging code and these log-dependent
entities, suggesting the required adaptions to developers.

RQ1.5-f summary:

In order to tackle the challenges, the interviewees suggested tools that
can identify dependencies between events in logs, derive behavioral
fingerprints from logs and support strategic logging. In particular, tools
are suggested to support the adaptions of log-dependent entities that are
affected by the evolution of logging code.

2.4 Result Synthesis
In this section, we synthesize the two studies presented in Sections 2.2

and 2.3. We first discuss the main scenarios of software logging identified in
these two studies. As presented in Section 2.3, the findings about types of logs,
and purposes, information needs, and challenges of log analysis identified
in ASML are applicable in other companies. However, we also observe that
some contextual factors (e.g., different types of components and programming
languages) may lead to variations of logging and log analysis practices (e.g.,
using a certain type of logs more often). In this study, with a limited number
of interviewees from different development groups and companies, we do not
focus on the exploration of these influencing factors. Instead, we report our
observations and formulate our hypotheses that can further be validated later
by a survey or repository mining study.

2.4.1 Main Scenarios of Software Logging
By synthesizing the data collected from 39 engineers, we observe a main
scenario of logging. As we discussed in Sections 2.2.3 and 2.3.2.2, Issue analysis
is the main purpose for which engineers analyze logs. We observe that this
purpose often appears with information needs Context of issues, State and
interaction, Data flow and executed sequence and Difference between executions.
The co-occurrence indicates that these types of information are most essential
for analyzing software issues. This is aligned with the general procedure that
developers often follow to analyze software issues. Understanding the context
of issues is an important step to recognize the symptoms and localize the issues
(i.e., identifying the suspicious components). This involves the inspection of
error propagation shown in the event logs with a top-down approach: “so
usually we start with the error message that is important on the highest layer... It
might be that always something went wrong there and there is no lower layer involved.
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And if it’s indeed going down one layer... and then we go to hardware layer, what’s
going on there” (P11-4). As indicated by developers, understanding the context
of issues requires developers to have a very broad knowledge of systems and
their architecture. Once the suspicious layer and components in the layer are
identified, the interactions between these components (shown in function traces)
are inspected by filtering function traces on the function calls across components.
This activity helps developers inspect the external behavior of components,
requiring them to have a mental model of how a cluster of components interacts
with each together. If the interactions between components deviate from the
expected high-level system behavior, developers further dive into the internal
behavior of components by inspecting Data flow and executed sequence shown
in function traces and functional data. We can observe that the architectural
knowledge of systems plays an essential role in scoping and localizing the issue
for such complex and heterogeneous systems, while knowledge of low-level
code behavior is essential for identifying the root cause of issues.

Frequently, developers, especially those who are new to the companies, may
lack the necessary architectural and coding expertise to conduct a thorough
root cause analysis. To pinpoint the location and underlying cause of problems,
comparing the logs generated during failed and successful executions is an
effective method. This comparison is often performed for different types of
logs, as discussed in Section 2.2.4. For example, by comparing the function
sequences that show component interactions of two executions, one can
identify if the issue is caused by the violations of interaction protocols between
components. The comparison practice, however, is challenging due to the large
number of irrelevant differences returned by text-based tools (as discussed
in sections 2.2.5.3 and 2.3.2.6). Log comparison is particularly effective for
analyzing the root cause of flakiness. In this case, logs are generated from
multiple executions of one software version (see quote P12-4). The comparison
result between them does not contain the differences caused by software
modifications, but only the differences that are likely to uncover the non-
deterministic runtime behavior.

Apart from log comparison, junior developers leverage additional
information to complement their partial knowledge of the domain and
architecture. As discussed in Section 2.2.5.2, peer-working with functional
engineers is useful to interpret log information. Moreover, correlating the
log information with the development activities can help them identify the
cause and effect. The interviewees often check the software repositories to
identify recent code changes that may introduce the issues. Being aware of the
development activities of other groups that are responsible for the interfaced
components is also useful for developers to quickly identify the possible
violations of the interaction protocol.

It is worth noting that, as the interviewees indicated, there is no fixed way to
analyze software issues. Depending on the types of issues, the pre-knowledge
developers have about the issues, and the type of software components which
cause the issues, the procedure and needed information may vary.
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2.4.2 Contextual Factors in Logging Practice

Based on our interviews with the developers from different companies, domains
and development groups within a company, we hypothesize that types of
systems, types of components, architecture and complexity of systems, and used
programming languages are contextual factors that may influence developers’
practices. In this subsection, we provide observed evidence that support this
hypothesis, which should be further explored and validated with a systematic
empirical approach.

2.4.2.1 Types of Systems
To explore the scope of our findings, we involved four embedded software
companies (i.e., ASML and companies A-C) and one company that develops
general applications (i.e., company D). Since no new insights about the types
of logs, purposes of log analysis, information needs, challenges and expected
tool support are identified from the interviews with company D, we conjecture
that most of our findings from embedded software companies are not specific
to the context of embedded systems. However, we expect that companies that
develop different types of systems may perceive the severity of these challenges
differently. As observed, on the one hand, log analysis is essential because it
is often the only way to inspect the internal states and execution details of
embedded systems. Logs are heavily used by developers for such systems
because of the difficulties of using a traditional debugger. This observation
concurs with the theory of probe effects—traditional debuggers are ill-suited for
concurrent systems because the injection of breakpoints (i.e., delays) may change
the system behavior [124]. On the other hand, logging statements introduce
overhead that may violate the critical timing requirements of embedded systems.
On top of that, it can be a very iterative, and resource and time consuming
process to execute the systems and collect logs (as discussed in Section 2.2.2). It
is therefore considered by most interviewees a challenging task to log minimal
but sufficient information for embedded systems. This paradoxical observation
emphasizes the importance of effective logging techniques and guidelines for
embedded systems. In contrast, developers from company D stress less concern
about performance overhead but more about identifying relevant information
from a large amount of log information.

2.4.2.2 Types of Components
An embedded system is composed of many types of components. Often,
different types of components have different logging strategies and for
analyzing the issues caused by them a different log analysis practice is followed.
For example, P20 has worked in two different groups of the company. According
to P20, different types of components require different testing strategies to
expose issues, use different logging approaches, and rely on different kinds
of log information, and use different logging approaches and strategies. The
previous group is responsible for the control actions of the machines, while the
current group is responsible for the algorithmic applications (e.g., calibration
algorithms) running on the machines: “it is a completely different domain with
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different problems. Their way of testing is very different. They usually need some
online system tests where you actually expose wafers in order to find problems in
testing. And in my current team it’s all about calculations, which is not really about
asynchronicity or timing. It is just about the numbers...we tried to set things up as
like small modules without any external dependencies, like standalone stuff and that
does allow us to make more unit tests”(P20-3). Due to the differences, the previous
group relies on event logs, funtion traces and performance data which show
action synchronization and timing while the current group relies on functional
data produced by the calculations and measurements (see quote P20-2). The
properties and requirements of components also influence how much logging a
component allows without impacting the overall performance of machines.

2.4.2.3 Architecture and Complexity
Different embedded systems may have different architectural designs, and
exhibit different levels of complexity. P29, who is currently working in Company
A, has worked at ASML before. The interviewee shares views about the systems
developed by these two companies: “The architecture of ASML systems definitely
makes tracing easier because they have a natural interface. They explicitly defined their
interfaces for components, and that makes a very natural boundary for tracing... But
ASML systems are much bigger. So it’s easier for our company in that sense because
our systems are less complicated” (P29-6). Indeed, ASML defines the interface
between components and traces the function calls at the interface, which
allows developers to inspect the interactions between components. In contrast,
Company A has interfaces at a more granular level, which may generate
too many details (see quote P29-3). This comparison shows that architectural
design and complexity of systems are important factors that contribute to the
difficulties of software logging practices. It emphasizes the importance of taking
logging into account at the design phase of systems, and properly defining the
abstraction level for software logging.

2.4.2.4 Programming Languages
Embedded systems can be implemented by different programming languages,
which may lead to different software logging practices. P30 from Company A,
who uses the Ada programming language, shares that the ability of specifying
constraints in the language may lead to less logging: “ so, I was grown up
with C and C++. But Ada is way better in its type system. Now you can define
all the constraints on the type, and then you can always be sure that your type is
correctly constructed and then if you set these pre-conditions or post-conditions for
your function correctly, then there is no need to log these parameters and functions
in my perception”(P30-1). We observed similar ideas in ASML where a state
machine modeling language is adopted to verify the correctness of software
behavior. P14, who adopted this modeling language in their project, expects the
verification will reduce the needs for software logs: “Maybe the question is how
relevant are event logs and traces? Because it’s expected that there will be fewer issues,
in the sense that it prevents the developer from adding logic errors in software, but we
are not sure yet if that is indeed the case. Let’s say, at least from a practical point of view,
we need to live with it for a while and see what happens”(P14-6). This hypothesis is
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supported by P3 and P7, who have used the modeling language for a while:
“we use state machine models and these state machine models are formally verified. We
are let’s say 95% sure that the problem is not in the generated code”(P3-6).

2.5 Discussion
There are two lines of work in the field of software logging. One line of

work is empirical studies which aim to help researchers understand developers’
practices, gaining design knowledge for the development of techniques that
can solve real-world problems. This line of work collects empirical evidence
by mining software repositories or surveying developers. Another line of work
focuses on proposing techniques that solve a certain problem in software
logging. Our work, collecting the perceptions from industrial developers,
contributes to the first line of software logging research.

We study the relevant empirical studies about software logging practices
that appear in several literature studies about software logging [77, 132, 154]. In
particular, we compare our work against recent empirical studies on software
logging practices. We compare our work against the relevant empirical work in
three ways. First, we summarize the context and topic of the relevant studies
and discuss the complementary nature of our work to the existing body of
research (Section 2.5.1). Second, we provide the refined taxonomy obtained
from our work and compare the taxonomy with relevant work (Section 2.5.2).
Third, we highlight the main findings of our work and discuss their alignment
with relevant empirical work (section 2.5.3 and 2.5.4).

Finally, we discuss the recent research about log analysis techniques at
ASML (Section 2.5.5) since the completion of our exploratory study at ASML.
These research studies confirm the usefulness of our findings and implications
for researchers and tool builders. Furthermore, they demonstrate how the
research outcome of our study can be transferred by other researchers to solve
real-world problems.

2.5.1 Topic and Context of Relevant Work
Table 2.9 summarizes the research approach, type of research, context, and type
of application. Our work is complementary to existing literature.

First, our work focuses on a different phase of software logging
practices. Chen et al. [77] conduct a systematic literature review on software
instrumentation and divide software logging into two main phases: log
instrumentation and log management. Log instrumentation refers to the steps
of the integration of a logging library and the composition of logging code. Log
management refers to the steps where logs are generated, collected and used for
the analysis of system behavior. The majority of existing work focuses on the
phase of log instrumentation (e.g., where-to-log, what-to-log and how-to-log).
Our study focuses on log management phase, where log collection and analysis
are involved to achieve developers’ intentions with logging. We focus on this
phase because we believe that by understanding the challenges that developers
(as end users) face in log analysis, we can better recognize the problems that lie
in the phase of log instrumentation (as presented in Section 2.2.5.3 and 2.3.2.5)
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and identify the techniques that can aid developers in the log management (as
presented in Section 2.2.5.3 and 2.3.2.6).

Second, our study contributes to the understanding of log analysis practices
for embedded systems. We can see from Table 2.9 that previous studies are
conducted for various types of systems (e.g., cloud applications and Mobile
App). As identified by Gholamian et al. [132], who conduct a comprehensive
systematic review on the subject of software logging, including practices and
analysis techniques, domain-specific studies about software logging practices
are needed because different types of systems may require different practices
(e.g., recording different types of information).

Table 2.10: Refined taxonomy for log analysis. “∗” indicates the codes that are
newly discovered in the replication study. “Ref./New” indicates the
reference of related literature that is aligned with the corresponding
code or a new code that has not been observed in prior work.

Types of logs Ref./New Quote ID

Event log [295] P20-1

Function trace [295] P18-1

Performance data New P7-1

Functional data [295] P8-1

Purposes Ref./new Quote ID

Software comprehension

Familiarizing with existing software [224] P9-2

Reverse-engineering software requirements New P3-1

Test development

Developing test scenarios and code New P9-3

Verification and improvement

Verifying executed behavior vs expected behavior [44, 224] P13-1

Performance verification and improvement

Verifying timing (throughput) performance [436] P16-2

Identifying opportunities of throughput improvement [436] P7-2

Log-quality qualification

Identifying log pollution New P19-1

Verifying correctness of the logged information New P14-1

Test documentation New P16-3

Testing* [44] P35-4

Use case analysis* [44] P35-3

Liability analysis* New P34-1

Continued on next page
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Table 2.10: Refined taxonomy for log analysis. “∗” indicates the codes that are
newly discovered in the replication study. “Ref./New” indicates the
reference of related literature that is aligned with the corresponding
code or a new code that has not been observed in prior work.
(Continued)

Issue analysis

Classifying the type of issues New P21-2

Identifying responsibilities [224] P4-1

Localizing problems [436] P1-1

Confirming reproduced field issues New P3-2

Identifying root cause

Identifying root cause of field issues [44, 76,
224, 322,
436]

P1-2

Identifying root cause of test issues [44, 224] P13-2

Identifying root cause of flaky (test) executions New P12-2

Analyzing occurrence and prevalence of issues New P22-1

Supporting customers [44, 224] P22-2

Information needs Ref./new Quote ID

Context of issues

What are the settings of the machines? New P3-3

How does the error propagate? New P7-3

At which time point does the error occur? What is the
machine doing when the error is raised?

New P13-3

Data flow and executed sequence

In which order are functions being executed? New P22-4

What is being executed under current configuration? New P1-3

What are the values of variables, and how do they flow
from one function/module to another?

New P22-4

State and interaction

How do software components interact with each other? New P3-4

How does function sequence change the state of software? New P14-2

Timing performance

Is there any time gaps between actions? New P7-4

Is the software action finished within the time budget? New P16-4

Difference between executions

What additional errors does the change introduce? New P19-2

How do control sequences of different executions differ? New P3-5

Continued on next page
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Table 2.10: Refined taxonomy for log analysis. “∗” indicates the codes that are
newly discovered in the replication study. “Ref./New” indicates the
reference of related literature that is aligned with the corresponding
code or a new code that has not been observed in prior work.
(Continued)

How do functional data of different executions differ? New P7-5

How do timing behavior of different executions differ?* New P31-2

Challenges Ref./new Quote ID

Log availability and quality

Absence of logs [224] P9-4,P8-2

Non-standard logging [295, 321] P12-4

Incompleteness of log [224] P9-5

Presence of noise [224] P8-3

Unreadable format for functions with a lot of parameters New P24-3

Missing categorization and overview New P13-4

Broken error linking New P1-4

Complexity

Involvement of components from different groups and
domains

[44] P15-1

Presence of concurrency New P15-2

Presence of various kinds of differences between logs
caused by:

Uninitialized variables New P17-2

Concurrent execution [146] P11-1,P15-3,P17-3

Timing variation [146] P17-1

Refactoring [146] P11-2

New feature implementation [146] P11-2

Coupling between software and hardware* New P26-1, P26-2

Change of logging code* New P35-7

Expertise

Lack of domain knowledge New P11-2,P22-5,P22-6

Unfamiliar with code base and software design New P7-6,P15-4

Logging*

Logging trade-off* [224, 295] P35-5

Lack of abstraction layer for logging* New P29-2,P29-3

Co-evolution problems in logging* New P34-2,P35-6,P34-
3,P35-7

Continued on next page
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Table 2.10: Refined taxonomy for log analysis. “∗” indicates the codes that are
newly discovered in the replication study. “Ref./New” indicates the
reference of related literature that is aligned with the corresponding
code or a new code that has not been observed in prior work.
(Continued)

Tool support Ref./new Quote ID

Creating multi-level abstraction New P14-5,P9-6,P17-4

Automatic log comparison [146] P18-2

Providing generic and unified facilities New P2-2,P1-3

Identifying and visualizing dependency between events* New P29-4,P38-1,P35-8

Deriving behavioral fingerprint* New P29-5

Strategic logging* [224, 295,
322]

P34-4,P34-5

2.5.2 Refined Taxonomy for Log Analysis
Our study overlaps with existing work in several areas, such as logging
purposes and challenges. We provide a detailed discussion of this alignment
in Table 2.9. We refined the taxonomy presented in Section 2.2 based on the
results of the replication study in Section 2.3. The refined taxonomy, shown
in Table 2.10, includes three additional purposes related to verification and
improvement, one information need related to differences between executions,
two challenges related to various kinds of log differences, three challenges
related to logging, and three suggestions for tool support.

Our study contributes new codes to the existing empirical literature
on logging practices, including types of logs, purposes, information needs,
challenges, and tool support. Table 2.11 summarizes our main findings and their
alignment with existing literature. Our findings cover both log instrumentation
and log management phases. We will discuss the findings in more detail next.
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Table 2.11: Major findings and implications of our study. In the bracket in implication column, “R” indicates implications
for researchers, “T” for tool builders, and “P” for practitioners.

Log instrumentation Literature Implication

Logging in embedded systems, on one hand, often suffers
from the probe effect if logging is excessive, and on the
other hand, is essential for issue analysis because traditional
debuggers are often not feasible.

Logging overhead has been discussed by many empirical
studies [144, 154]. Our study emphasizes the criticality of
the problem in the context of embedded systems.

Conducting studies of logging practice in embedded
systems: 1) the impact of logging on different parts
of embedded systems (R), and 2) to what extent the
current logging practice satisfies embedded developers’
information needs (R).

Shifting logging decisions to design time of systems is
championed by different roles of embedded engineers who
all experience missing essential log information for their tasks.
Particularly, systems need to be well-architected to support
logging at a suitable level of abstraction.

The idea of making logging decisions in the design phases
is aligned with a suggestion from Rong et al. [322]. Based
on the perception of embedded engineers with different
roles, our study stresses that making logging decisions at
design phase with stakeholders is particularly essential in
the embedded domain which is multidisciplinary by nature.

Developing a suitable logging strategy at the early phase
of system development with stakeholders of logs (P).

Log management Literature Implication

Multiple types of logs are used by developers to extract
information most related to context of issues, state and
interaction and timing performance in their practice.

The use of multiple types of log information is also observed
in the studies by Pecchia et al. [295], Harty et al. [153], and
Shang et al. [340] performed in different contexts. Our study
shows the importance of timing information in the context
of embedded systems.

Linking multiple types of logs to obtain a comprehensive
picture of systems (T).

Log comparison is practiced by developers for various
activities such as investigation of software regression and
flakiness. However, comparing logs is difficult due to the
presence of many irrelevant differences.

The need for log comparison has been also identified in
Microsoft [44] and Google [146]. In our study, we detail the
type of information developers compare and the challenges
they face in practice.

Identifying the sources of log differences to support
maintenance tasks (T).

Log comprehension is often hindered by the lack of code and
domain knowledge, and the presence of concurrent executions
of systems. Experienced developers tend to adopt a top-down
inspection approach, and obtain abstraction by sketching
behavioral models based on logs.

Little empirical study has reported findings about log
comprehension.

1) Creating multi-level abstraction of executions to support
log inspection and comparison (T), and 2) augmenting logs
with additional information (T&R).

The problem of co-evolution between logs and log-dependent
entities occurs due to the evolution of logging code.

Many studies show that logging code is modified by
developers [76, 184, 432]. However, no previous study
provides evidence of co-evolution problems.

Supporting co-evolution in log analysis (R)

Manual analysis with text editors are a common practice in
the studied companies.

Manual analysis with text editors has been observed in other
companies [44, 292].

Identifying gaps between the state-of-practice and state-of-
the-art of log instrumentation and log management (R).
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2.5.3 Log Instrumentation
Among the challenges identified in Table 2.10, seven are related to log
availability and quality. The interviewed companies largely follow the method
of conventional logging [77] that gives developers a lot of freedom to manually
place logging statements scattering across the code base and generates free-
formed logs, which subsequently introduces difficulties in the analysis steps.
This observation triggers the difficult question of to what extent and how
logging policies should be enforced. Indeed, as discussed by the interviewed
developers, when logging software systems, developers need to make several
trade-offs. A lot of effort has been made in the research community to study
such questions as where to log [122, 223], what to log [446], how to log [76] and
how to use logs [148]; and such challenges as absence of logs [224], non-standard
logging [295], and presence of noise and incomplete logging [224].

2.5.3.1 Logging in Embedded Systems
As we discussed in Section 2.4, the major challenges of software logging faced
by developers from Company D and Companies A-C are different. Performance
overhead remains the major concern when it comes to logging for embedded
systems. Indeed, it has been shown that different types of systems have different
logging practices. Zeng et al. [436] find that logging in mobile apps is less
pervasive and modified than server and desktop applications. By comparing
the app performance between enabling and disabling logging, they find that
logging can induce a statistically significant performance overhead. Another
example can be seen in the mining study conducted by Gholamian et al. [133]
where the impact of different logging granularities are evaluated in the context
of distributed systems. As a result, they observe on average 8.01% and 268X
overhead in the execution time and storage when the trace log level (e.g., the
more detailed logging level) is enabled versus the info level (e.g., the coarser
logging level).

There is little quantitative study (e.g., repository mining) on the logging
practice for embedded systems. The relevant questions remain unanswered:
what developers actually log in their systems, to what extent logging impacts
the performance of such systems, and whether the logged information satisfies
developers’ information needs that are identified in this study. Getting insights
into these questions can help researchers propose techniques and guidelines to
resolve the logging trade-off for embedded systems. Our study further suggests
that the type of components and programming languages should be taken into
account while conducting such studies.

As observed in our study, different types of components in an embedded
system and different used programming languages lead to different logging
needs (see Section 2.4.2). It is conjectured in the literature that OSS projects with
a different programming language may have different logging practices: Chen
and Jang [76] conducted a replication study with Java projects and obtained
quite different results from the original study which was conducted with C/C++
projects by Yuan et al. [432]. With the evidence shown in our study and the



2.5 Discussion 55

literature, we suggest researchers to deepen the understanding of software
logging for embedded systems by taking these contextual factors into account.

2.5.3.2 Logging Decisions at Design Phase
The interviewees suggest that the design and implementation of logging
approaches should be considered at the design phase of system development.
This suggestion is aligned with a suggestion from Rong et al. [323]. Moreover,
missing logging guidelines that systematize the logging process have been
reported by existing studies [295, 323]. Indeed, this follows the conventional
wisdom in data-intensive activities: garbage in, garbage out. We compile two
suggestions for practitioners about logging practices based on our observations
in this study.

By nature, embedded systems are developed and maintained by
multidisciplinary groups of engineers. As observed, not only software
developers but also engineers who are responsible for function design, customer
service and quality assurance also use logs in their daily work. These engineers
with different roles have experienced difficulties in log analysis, such as
information missing in logs. This observation emphasizes the need for defining
what-to-log and where-to-log with the stakeholders who use logs for their
engineering tasks. Furthermore, a set of terms and their semantics should
be defined through discussions to represent the domain-specific concepts.
Furthermore, consistent with a suggestion provided by literature [77], the
developers suggest considering automatic logging at certain locations (e.g.,
interfaces of software modules) following designated rules. As further discussed
by the interviewees, in order to automatically instrument software with an
appropriate and consistent granularity, the systems need to be well-architected
with an appropriate level of abstraction. This idea concurs with the widely
accepted software engineering practice that various stakeholders should be
actively involved in requirement engineering activities [272, 292]. That is, the
requirements of logging should be considered as system requirements which
are discussed at the phase of system design with stakeholders. Particularly,
the heterogeneous nature of systems and logging needs also lead to questions
about how to standardize software logs generated from components using
different logging libraries in different programming languages. Moreover, to
ensure the quality of logs, methods and practices such as automatic checkers
or code review should be adopted to identify and govern the modification of
logging code.

2.5.4 Log Management
In addition to the findings about log instrumentation, we have several findings
related to the management and analysis of logs.

2.5.4.1 Multiple types of logs
As shown in Table 2.10, we observed that developers use four types of
execution logs and five categories of log information in their embedded software
engineering practice. Pecchia et al. [295] analyzed the codebase of an industrial
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critical system and found that developers logged the value of critical variables,
invocations of functions, and occurrence of events of interest, which corresponds
to the event logs, function traces and functional data identified in our study.
Harty et al. [153] identified four types of information are usually logged in
Mobile Apps: business events, user interface events, failures and/or unexpected
situations, and other information. By analyzing 15 email inquires and 73
inquiries from web searches for three open source systems, Shang et al. [340]
identified five types of information (i.e., meaning, cause, context, solution and
impact) that users needed about logs. The users, who are not necessarily familiar
with the underlying details of the systems, query diagnostic information about
the unexpected log lines while monitoring the health of systems. We have taken
a complementary perspective and focused on information needs of an engineer.
As opposed to users, engineers, responsible for maintaining the systems, not
only need the diagnostic information (e.g., the context of error messages) but
also execution details (e.g., interactions between components). Moreover, our
study identified that performance data, which captures the duration of software
and hardware actions, is essential for improvement and verification on timing
performance for embedded systems.

We observe that developers often need to manually recover the links
between different types of logs (see Section 2.2.4.1 and 2.2.5.3) to gain a more
comprehensive understanding of an execution. Tool builders can consider
recovering the links between different types of logs, e.g., using timestamps. Such
tools would allow developers to inspect what functions and software actions are
executed, and what critical functional data are produced when a specific high-
level event occurs. In addition, we suggest tool builders to leverage semantic
information (i.e., the textual elements in logs) to recover the links. Establishing
links between software artifacts using the concept of semantic coupling (i.e.,
the semantic similarity between entities) has been demonstrated for many
maintenance tasks such as traceability [33] and change impact analysis [186].

2.5.4.2 Log Comparison

Our study suggests that developers inspect not only one single log, but also a set
of logs generated from multiple executions. To support developers in comparing
logs, techniques have been developed to compare behavioral models extracted
from logs generated from multiple executions [19, 43, 135, 254]. However, these
techniques may not meet our developers’ expectations because these tools
require non-trivial configuration, e.g., the length of the minimal “interesting”
sequence that differentiates two logs. For example, 2KDiff [19] compares two
logs by highlighting the sequences of length k that belong to one log but not
the other. All the differences based on the user-defined k are visualized on
the models. Given the size of industrial logs (in gigabytes), inspecting such
differences for two large executions might require significant cognitive effort
to identify interesting information. Having concerns that it might require
a lot of cognitive effort to identify interesting information from all the k-
differences, Bao et al. [43] extend 2KDiff by taking the frequencies of behavior
found in logs into account. The proposed tool visualizes statistically interesting
differences by requesting users to set the target distance between probabilities,
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and the statistical significance value, in addition to the parameter k. However,
configuring such tools properly might be difficult and require iterations of
parameter tuning because these parameters are related to the underlying
statistical differencing model rather than to the nature of the software.

Based on the interviews, we believe that linking log differences to their
sources and providing automatic categorization can help developers perform
evolution tasks: whether a log difference is introduced by change of software
code, logging code or variants of runtime behavior (e.g., concurrency). For
example, when identifying a root cause of regression based on logs, developers
can ignore the differences belonging to the categories of concurrency because
these differences are not expected to influence the final outcome. To recognize
the differences caused by code modifications such as refactoring and functional
modifications, tool builders may consider to leverage existing tools from the
fields of code differencing [116] and refactoring detection [371]. Chen et al. [76]
demonstrate how to identify the change of logging code among all kind of code
changes using regular expressions to match the source code. To identify log
differences related to concurrency, tool builders can leverage previous work on
log analysis that identifies interleaving events by logging the partial ordering
relations between events [50, 106, 235]. The partial ordering relation between
events can be captured with logical clock timestamps [113, 260] with which
logical timestamps are generated for events in the system, and their causal
relationship is determined by comparing those timestamps. Tool builders can
consider adopting the methods from these studies to identify the differences
caused by concurrency. The obtained information can be incorporated into log
comparison to help developers recognize the useful log differences for their
tasks.

2.5.4.3 Log Comprehension

Little research has investigated what hinder developers to comprehend logs. As
discussed, Shang et al. [340] identified information needs of system users who
monitor the health of systems and often need to query diagnostic information
about unexpected log lines. Our study discusses the information needs by
developers.

As discussed in Section 2.2.5.2, lack of familiarity with existing code
and lack of domain knowledge can hinder log comprehension, especially for
multidisciplinary systems: interpreting information from logs might require
expertise from multiple engineering disciplines, while communicating with
engineers of different disciplines is the commonly used method to obtain
the expertise. Indeed, as observed (Section 2.2.5.2), working with logs from
such systems requires software engineers to work with colleagues from other
engineering disciplines to understand functional requirements of the systems
and to interpret the information shown in logs. This observation is consistent
with earlier findings [138]: the combination of software engineering with other
engineering disciplines requires communication between engineers of different
disciplines. In addition, we learned from the study at ASML (Section 2.2.5.2)
and other ES companies (Section 2.3.2.2) that concurrent design and time-
out mechanisms, implemented in embedded systems to optimize and limit
software execution time [161, 345], also hinder log comprehension. We further
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observed that interleaving of concurrent executions incurs challenges not
only in program comprehension [28, 115] but also in log comprehension (see
Section 2.2.5.2). Indeed, when inspecting logs, developers need to reconstruct
the logical relations and order between interleaved function executions, as well
as identify the differences between multiple executions that affect the execution
outcome.

To cope with the complexity, we learned that experienced developers
tend to adopt a top-down approach when inspecting logs. This concurs
with a study on the relevance of application domain knowledge in program
comprehension [339]—developers who are familiar with the application domain
use a top-down approach to conserve efforts, developing a global hypothesis
about the overall program based on high-level information, and then verify their
hypotheses with more program details. The top-down method is known to be
effective for system comprehension, which requires developers to understand
the structure of the system: the main components and the communication paths
between these components [221]. As opposed to code comprehension, system
comprehension shifts the focus from the code to its structure, which is essential
to comprehend large volumes of code. This is in line with our observation
on developers’ information needs—to understand the behavior of large scale
software systems based on logs, developers need both structure information
such as interactions between modules, and low level execution details (see
Section 2.2.4).

Another coping
strategy experienced developers adopt for log comprehension is to sketch
and derive behavioral models based on logs. The derived models and patterns
abstract the details of execution away, and are subsequently used for system
comprehension, communications between team members and issue detection.
There has been a lot of studies on automatically inferring models and patterns
from logs [50, 52, 243, 259, 395, 406] for various software engineering activities.
Beschastnikh et al. [50] designed a tool that helps developers comprehend
distributed systems by visualizing the communication patterns between hosts.
To help the debugging process, Mashhadi et al.[259] proposed a semi-automated
technique that automatically abstracts the control flow from an execution trace
with state machines, and then asks developers to interactively configure the tool
to abstract the data-specific behavior. The empirical evidence collected from our
study emphasizes the practical value of model inference techniques, and calls
for more industrial applications of these existing techniques.

Our findings about log comprehension have two implications. First,
our findings stress the importance of establishing multi-level abstraction of
executions to support log inspection and log comparison. Many tools aim at
abstracting away details from execution logs by deriving state machines [195,
240, 395], sets of temporal properties [219], and execution patterns [434]. These
kinds of trace abstraction tools often rely on heuristics to create abstraction.
For example, in order to extract a compact state machine model from traces,
the underlying algorithms iteratively merge similar states based on heuristics,
which can result in overgeneralization (e.g., containing behavior that is not
observed in the trace) or under-generalization (e.g., without abstraction) in
models [424]. Moreover, these tools provide only one level of abstraction, not
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meeting the expectations of the interviewees (see Section 2.2.5.3) because the
important information might be lost by showing only a certain level of detail.
Several studies addressed this limitation [50, 112, 179] by allowing developers
to inspect information at different levels of detail. However, these tools do
not guide developers in information navigation, e.g., one needs to manually
identify the relevant component interactions when analyzing issues with tools
that generate sequence diagrams [50, 179].

This leads us to the second implication that tool builders may take domain
knowledge into account, incorporating information from other sources (e.g.,
source code or bug reports) to guide developers to navigate through information
at different abstractions for their tasks. In literature, the knowledge obtained
from different software artifacts, e.g., source code and documentation, has been
leveraged to assist software maintenance tasks, such as de-duplicating bug
reports [11], ranking relevant files for bug reports [430], mining requirement
knowledge [227] and code summarization [261].

We believe that a similar research effort is required to understand what
code and domain knowledge developers need for log analysis and to leverage
code and domain knowledge in log analysis tools. An example of such domain
knowledge required for log analysis is the communication mechanism between
components (see quote P15-4 in Section 2.2.5.2). We expect that augmenting
logs with additional knowledge derived from source code and documentation,
can reduce the time that developers spend in searching for information that is
currently spread over multiple sources such as source code and documentation.

2.5.4.4 The Problem of Co-evolution

Our work extends the discussion of the evolution of logging code [76, 184, 432].
Kabinna [185] mined four open source projects and found that 20-45% of the
logging statements are modified by developers at least once during their lifetime.
Our study further provides empirical evidence on the co-evolution problems
in software logging (Section 2.3.2.5), such as the challenges in maintaining
the behavioral fingerprints of software issues derived from logs. Our finding
implies the need for a deeper understanding of evolution of logging code and
supporting the co-evolution of log-dependent entities. There have been some
studies focusing on evolution of logging code. Studies of Yuan et al. [432]
and Li et al. [225] have shown that most of the modifications of logging code
are made to the content of log messages such as verbosity, variables and text.
Li et al. [225] further discovered that logging code with similar context may
need similar modifications. Therefore, the authors trained a machine learning
model to predict modifications of logging code based on logging revisions,
achieving a promising result. Unlike co-evolution of other software artifacts
such as production and test code [435], metamodels and models [79, 265], and
requirements of different components [108] that have been widely studied to
help developer adapt these co-dependent artifacts, co-evolution of logging
code and log-dependent artifacts is rarely addressed in the scientific literature.
Research efforts are needed to aid developers in co-evolving log-dependent
entities (e.g., behavioral fingerprints). Moreover, researchers should take the
evolutionary nature of software logging into account when designing log
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analysis techniques (e.g., to what extent would the accuracy of the machine
learning models be affected by the evolution of logging code?).

2.5.4.5 Manual Analysis With Text Editors

Consistent with the previous study at Microsoft [44], we found that developers
mainly use text editors for their log analysis activities. Given that many log
analysis tools have been proposed, the observation implies a gap between
research prototypes and industrial practice. The reason why developers use
text-based tools could be that 1) practitioners are not aware of other existing
techniques, 2) the existing techniques proposed by researchers cannot address
the challenges that developers face, 3) the techniques that address the challenges
have not been turned into products by tool builders, or 4) the tool adoption is
hindered by extensive training and additional cost. To address these problems,
we propose three types of studies for researchers to further identify and bridge
the gaps between the state-of-practice and state-of-the-art.

First, we propose researchers to gain more insights into current practice of
software logging. As collected by He et al. [154], over the years, commercial
(e.g., Splunk [350]) and open-source tools (e.g., GrayLog [1]) have been made
available for practitioners. Empirical studies should be conducted to get a
comprehensive overview of the technical and non-technical influencing factors
in the adoption of log analysis tools. One of the possible obstacles implied
in our study is the difficulty of obtaining structured logs to enable the use
of advanced analysis tools (i.e., the cost of parsing logs or migrating logging
code for a large code base). The observation shows that many challenges stem
from other steps of software logging (e.g., log instrumentation). Therefore, we
believe research efforts should also be made to dive into the industrial practice
of log instrumentation (e.g., logging approach and library) and management
(e.g., log collection and analysis). For example, interesting research questions
about log instrumentation could be: What logging methods and libraries do
companies use? What is the rationale behind their decisions? What kind of
challenges are they facing with the used methods? We believe that gaining more
understanding about the practice, challenges and tool adoption is the first step
toward solving the problems.

Second, we suggest researchers to create a mapping of the industrial
challenges and the existing techniques that could potentially address the
challenges. To achieve this goal, it is essential to obtain an overview
of the state-of-the-art techniques that support log instrumentation and
management through a literature study (e.g., systematic literature review and
systematic mapping study). Many literature studies have been conducted to
understand different activities in software logging and log analysis, such as
log instrumentation [77] and log abstraction [107]. However, a systematic and
in-depth mapping of current practice and existing techniques is still missing. We
believe such mapping studies are important for researchers and tool builders to
understand the gaps and the potential useful techniques that deserve further
explorations and improvements.

However, the mapping studies may only give indications on promising
techniques. In order to transfer the state-of-the-art techniques to practice,



2.5 Discussion 61

it is important to conduct experimental studies in the field [359] where
researchers can apply the techniques in a natural software development
setting and study the possibility of integrating the techniques into the existing
development process and infrastructure. To understand the impact of different
solutions and environment settings, researchers can consider to conduct field
experiments [359], which allows them to controls certain aspects of the setting
(e.g., human factors). For example, to explore whether the state-of-the-art log
comparison techniques can help developers efficiently identify the root cause
of regressions, researchers can design a field experiment which involves the
comparison of the promising techniques to the text-based comparison tools that
developers used in their natural development setting. By experimenting with
the techniques in the field, researchers can better understand the limitations
of the techniques and the additional cost (e.g., training) the techniques may
require. Iterations of refinement and experiment should be expected before the
techniques are matured enough to be integrated into the development process.

With these three types of studies, we can better understand the nature of
challenges in logging and log analysis, and the real-world design contexts,
producing design knowledge to guide the development or improvement of
techniques that address the identified challenges.

2.5.5 Technique Development at ASML

ASML has been developing techniques that address some of the challenges
presented in our exploratory study at ASML (Section 2.2). Hooimeijer et
al. [166] present a technique that infers multi-level state machine models
from execution logs generated by component-based systems. Instead of using
heuristics that often don’t match system characteristics and are difficult to
configure for practitioners, the technique learns multi-level state machine
models that represent the behavior of systems, using the knowledge of the
component-based software architecture. By showing the learned models to
ASML developers, the authors validate that the models adequately provide
ASML developers the software behavior abstraction that they currently lack
(see discussion in Section 2.2.5.3).

As suggested by the interviewees in our study, such learned models can
be used for software comprehension or serve as behavioral fingerprints of
systems. To utilize the potential benefits of the learned multi-level state machine
models, Hendriks et al. [159] extended this technique with a methodology that
allows developers to automatically compare state machine models learned
from execution logs, e.g., from different software versions, and to inspect the
comparison results at various levels of details. By comparing software logs at six
levels of abstraction with this methodology, developers can zoom in on relevant
differences, and manage the complexity of large systems. The effectiveness
of this methodology is demostrated with several case studies using ASML
(sub-)systems. It is shown that the root cause of software regressions can be
identified with the comparison methodology. Based on our study, we further
suggest researchers to extend this methodology to categorize the behavioral
differences obtained from the comparison, and to provide developers with
actionable insights (as discussed in Section 2.5.4.2).
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The fact that these techniques exist and have been validated through
positive empirical evidence serves to confirm the value of our findings and
implications in addressing log analysis challenges for embedded systems.
Additionally, they serve as an illustration of how the results of our research can
be applied to practical problem-solving.

2.6 Threats to Validity
As any empirical study, ours is subject to threats to validity.

Threats to construct validity examine the relation between the concept
being studied and its observation. One threat could be that developers have
different definitions of logs. To migrate this risk, we provided our definitions of
software logs.

Threats to internal validity concern factors that might have influenced the
results. First, developers might have misunderstood our interview questions.
For the first study, we mitigate this risk by conducting a pilot interview with a
developer who works at ASML, and rewording the questions as necessary. For
the second study, we piloted both open and closed questions with an industrial
embedded software developer and provided the explanation of individual
options (i.e., codes) in the closed questions.

Second, our interviewees might hesitate to discuss the difficulties in their
current practice or the issues in the tools they use. For example, it could be
because that they were aware that the result will be published. We reduced
their concern by explaining data privacy rights and guaranteeing them full
anonymity. Third, the coding we applied to the interview transcripts is an
interpretive procedure. Moreover, the coding tasks were single-handedly
performed by the author of this thesis. This decision was made because of
the technical knowledge, such as the state machine modeling language used by
developers, required to interpret the information shared by our interviewees.
To limit the researcher bias, we performed member checking. Developers
were encouraged to correct our interpretations and add additional thoughts.
In addition, the recent research at ASML related to log analysis techniques
has shown the usefulness of our suggestions for researchers, increasing our
confidence in our findings.

Threats to external validity concern the generalizability of our conclusions
beyond the studied context. For our first study at ASML, we opted
for convenience sampling, selecting the company that we have ongoing
collaboration with. We expect that this company provides a representative
context because the products of this company have been considered as a typical
example of complex embedded systems in many studies [138]. In this study,
we explored log analysis practices for control and metrology software, which
is a typical module in complex embedded systems. To select interviewees
from the division that is responsible for the module, we opted for purposive
sampling [41] by encouraging each group lead from this division to recommend
developers with different education backgrounds, genders, and roles. However,
there is a risk that group leads might prioritize other factors (i.e., developers’
availability) over diversity. To ensure saturation, we conducted interviews and
coding tasks in an interleaved manner. We made a detailed report on the study
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context to support the transfer of results to other similar contexts. To increase
external validity of our findings, we conducted a dependent replication study at
multiple companies using the same method (i.e., interviews). Convenience
sampling is adopted to recruit companies that we have contact with. The
selected companies from embedded domain are developing different kinds
of embedded products. We discussed the contextual factors of logging in
embedded systems (Section 2.4) that deserve further investigation to increase
external validity and build theories. A future work could be conducting an
independent replication study which uses different experimental procedures
and involves more changing factors.

2.7 Conclusion
We explored how developers use logs in embedded software engineering by
conducting an exploratory study at ASML. To refine the findings, the study
was then replicated at four other companies. As the final result obtained by
interviewing 39 developers in total, we identified four types of logs developers
use, 21 purposes for which developers use logs, 14 types of information
developers search in logs, 17 challenges faced by developers in log analysis,
and six suggestions on tool support. The most prevalent information needs
are related to context of issues, state and interaction and timing performance. We
observed that text-based tools (e.g., Notepad++ and Linux diff) are commonly
used by these embedded system companies for inspecting and comparing
logs, despite that many academic and commercial log analysis tools have been
proposed. Our study identifies that major challenges arise in log analysis due
to poor log quality, insufficient expertise, and the high complexity of systems.
Moreover, our study provides evidence that the evolution of logging code also
introduces challenges. For example, log-dependent entities (e.g., log analysis
tools) are affected by the change made to logging code.

Our study offers practical suggestions for logging practices, tool builders,
and researchers. We recommend that practitioners design a systematic logging
process that involves stakeholders, and that tool builders create advanced log
comparison tools that categorize log differences to provide actionable insights
for developers. Our study also highlights the need for further research in
supporting the evolution of log-dependent entities.





3
Log Comparison:

Understanding the State of
the Art

Software logs capture the runtime behavior of systems and are analyzed by
developers for various purposes, including root cause analysis and behavioral
verification. Despite the availability of log comparison techniques, Chapter 2
discusses that developers often use text editors and face challenges. For
instance, root cause analysis can be difficult due to an overwhelming number
of differences resulting from concurrent executions, which may mask actual
software bugs. To provide an overview of existing log comparison techniques
and their limitations, we conduct a systematic literature review (the RQ2-3
highlighted in Figure 3.1 and present our findings in this chapter. Based on our
analysis, we suggest further research to address the identified limitations.

3.1 Introduction
To facilitate various maintenance activities, software developers instrument
software systems by adding logging statements in their software [44, 80, 224].
The generated software logs capture a rich amount of execution information of
systems and are used for varied analyses, such as root cause analysis and
liability analysis. In Chapter 2, we have identified that ASML developers
compare logs generated from multiple versions of systems in their practices.
The need for comparing logs is also identified in other big companies, e.g.,
Google [146] and Microsoft [44]. A typical purpose of log comparison is to
analyze the root cause of software regressions. Developers generate execution
logs from the passing and failing version of software. By comparing the



66 Chapter 3. Log Comparison: Understanding the State of the Art

Embedded production 
systems

SW developers

Generate Log analysis practice (Chapter 2, RQ1)LOG

Behavioral models

Log comparison 
literature

Finding 2: developers often 
manually sketch behavioral models 

based on logs

Finding 1: comparing multiple logs 
can be challenging due to a large 

number of differences

Figure 3.1: Research overview (RQ2-3)

generated logs, developers attempt to answer various questions that might
help them identify the deviations and their causes, such as which events
have executed in one execution but not the other, which sets of events have
executed in different order in these two executions, and which set of events
have consumed much more time in the failing execution.

According to our study presented in Chapter 2 and other empirical
studies [146, 445] in literature, developers commonly use text-based comparison
tools such as notepad++ 1 and Beyond Compare 2, while many log comparison
techniques have been developed in literature over the years. These comparison
tools treat two logs as textual files and compare them line by line without
taking the semantics of logs, and the complex and evolving nature of software
systems into account. Logs generated from two subsequent versions of systems
could be different because of the changes made to the systems (e.g., refactoring
and implementation of new features) or the natural differences of software
executions (e.g., events occurring in different orders in different runs due to the
concurrent nature of software). As reported in literature [146] and in Chapter 2,
the overwhelming amount of irrelevant differences overshadows the difference
that points to the actual software bugs. To tackle these problems, developers
provide several suggestions for log comparison tools. For example, comparing
logs and presenting log differences at different levels of abstraction is suggested
as a way to deal with the large amount of log details. In order to help researchers
improve log comparison techniques, we believe it is important to understand
the existing techniques. Do the existing log comparison techniques target to help
the software engineering (SE) activities where developers often need to compare
logs? What are the characteristics of these techniques? Are these techniques

1https://notepad-plus-plus.org/downloads/. Accessed: September 2021
2https://www.scootersoftware.com/ Accessed: September 2021

https://notepad-plus-plus.org/downloads/
https://www.scootersoftware.com/
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thoroughly evaluated to address real-world problems? Can these techniques
address the challenges faced by developers in using text-based comparison
tools? Understanding these questions can help researchers improve the existing
techniques or propose new techniques to address the challenges reported by
developers. To this end, we conducted a systematic literature review of log
comparison techniques.

Our contributions are: (1) We provide an overview of log comparison
techniques that are developed for different software engineering tasks; (2)
We summarize these comparison techniques by analyzing the steps taken in
comparison; (3) We report on the results of the technique evaluation, which
shows the considered quality criteria in the evaluation and the maturity of these
techniques; (4) We analyze whether these techniques can potentially address
industrial challenges and meet developers’ expectations.

The rest of the paper is organized as follows: Section 3.2 presents the
research questions. In Section 3.3, we discuss the methodology we used in
our research. Section 3.4 discusses the results and findings of our research. We
then provide implications for researchers, tool builders, and practitioners in
Section 3.5. In Section 3.6, we discuss related work. Threats to the validity of
our research are addressed in Section 3.7. Finally, we conclude and summarize
the results of our work in Section 3.8.

3.2 Research Questions
This literature study aims at providing an overview of state-of-the-art log
comparison techniques and an in-depth analysis of these log comparison
techniques for addressing industrial challenges. In this section, we discuss
our research questions.

In this study, we consider logs as textual files that record dynamic information
produced by the execution of a(n instrumented) software system. We do not provide
a formal definition of a log, since papers vary greatly in how they describe
the logs they consider. For example, Alcocer et al. [14] visualizes sequences of
dynamic call graphs without elaborating on how these call graphs should be
obtained, while in [442] the definition of a log remains implicit.

Comparing such logs is not only researched in software engineering, but
also in various other areas of computer science, such as process management.
For example, by comparing logs generated from medical information systems,
a deviation in the executed process can be identified and further investigated.
Although log comparison techniques from other research domains of computer
science might not be directly applicable for software engineering tasks, an
overview of the research fields for log comparison can help SE researchers
apply log comparison techniques for supporting software engineering activities
or apply their log comparison techniques in other problem domains. Therefore,
we ask this question:

RQ2.1: Which research fields in computer science are applying and developing log
comparison tools?

Next, we answer research questions to understand the development and
application of techniques for SE activities. Developers may compare logs in
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different problem contexts. As Gulzar et al. [146] indicated, Google developers
compare logs after conducting differential testing for identifying the root cause
of bugs. Our previous study at ASML (Chapter 2) found that developers
compare logs not only for identifying the root cause of regression and flakiness,
but also for verifying their software behavior with respect to their expectations.
We aim to understand which SE activities the log comparison techniques from
literature aim to help, assessing the alignment of practice and scientific literature.
We study:

RQ2.2: For which SE activities are log comparison techniques developed and applied?

Different techniques may compare different kinds of information shown in
logs and may use different methods to compare the same type of information. In
the absence of an overview of methods used in these techniques, (1) practitioners
and researchers have difficulty in selecting proper techniques for their problem
scenarios, and (2) the existing methods might be reinvented while leaving
key challenges less studied. We would like to study the methods of these log
comparison techniques such as the form of inputs these techniques take, and
the preprocessing steps these techniques require, and the log information these
techniques compare. Therefore, we ask:

RQ2.3: What methods do these log comparison techniques use?

In order to transfer the state-of-the-art techniques to tools that can be
used in the software engineering process, it is important for tool builders and
practitioners to understand how and to what extent the techniques have been
evaluated. We aim at gaining insights into the maturity of these techniques.
Therefore, we ask:

RQ2.4: How have log comparison techniques been evaluated?

According to our study presented in Chapter 2 and other empirical
studies [146, 445] in literature, the difficulty of log comparison stems from the
complex nature of software systems and its evolution. To tackle the complexity,
the developers involved in our previous study provide several suggestions for
log comparison techniques (Chapter 2). First, these developers would like to
inspect log differences with different levels of details. The multi-abstraction
visualization can help developers comprehend complex information and guide
them to inspect important low-level details. Second, concurrent executions can
result in interleaving of events in logs. The differences caused by interleaving
might be overwhelming and irrelevant for developers’ analysis activities such as
root cause analysis. Therefore, a way to recognize these irrelevant differences is
required. Third, these developers expect advanced log comparison tools which
leverage information from different sources (e.g., code) to help them interpret
and comprehend the differences. Based on the challenges and suggestions
derived from the empirical study, we ask:

RQ3: How do log comparison techniques address industrial challenges identified in
the literature?
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Figure 3.2: Process of literature study

• RQ3.1: How do log comparison techniques enable multi-abstraction comparison?
• RQ3.2: How do log comparison techniques handle interleaving of events shown

in logs?
• RQ3.3: How do log comparison techniques leverage additional information from

other sources?
By asking these question, we aim to gain a better understanding of to what

extent the real-life challenges are addressed by state-of-the-art log comparison
techniques. With this knowledge, we can then identify possible improvements
for existing log comparison techniques.

3.3 Methodology
We follow the guidelines by Kitchenham and Charters [192] to perform the
literature review. Figure 3.2 shows the process of this literature study. The
process contains five high-level steps: database query, automated filtering,
manual filtering, snowballing and analysis. Kitchenham and Charters focused
on systematic literature review (SLR). In SLR, database search with keyword
can lead to missing papers due to the choice of keywords and databases. In this
study, we combine SLR and snowballing to compensate this shortcoming. In
this section, we explain the methods used in these steps.

3.3.1 Database Query

To systematically collect relevant papers, we use the following digital libraries
that are widely used in SE literature review: ACM Digital Library [2],
Scopus [334], IEEE Xplore Digital Library [171], Springer Link Online
Library [352], Wiley Online Library [412], and Elsevier ScienceDirect [333].
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Table 3.1: Tokens in search queries

Token set Tokens
Artifact (singular) log, trace, execution
Artifact (plural) logs, traces, executions
Verb (plural) differ, compare, difference, differentiate
Verb (singular) differs, compares, differences, differentiates
Deverbal noun (singular) comparison, difference
Deverbal noun (plural) comparisons, differences
Gerund differencing, comparing

To develop the queries, we take the terms used in queries and the ways to
compose queries into account. To familiarize with the terms used to describe
the techniques, we first studied 10 papers about log comparison techniques
that we collected and considered to be relevant studies. We learned that trace
and execution are often used as synonyms of the artifact log and comparison
and differencing are used interchangeably to refer to the action of looking for
similarities and differences between the logs. Based on this observation, we
formulate the queries for database search. Table 3.1 shows the tokens that
represent action and artifact. We have seven token sets and each of the token set
contains multiple tokens that represent the synonyms of a token. Furthermore,
we also take the form of token (e.g., plural) into account.

There are many ways to compose a search query. Table 3.2 shows how the
query is composed with these tokens in this study. As indicated by Landman et
al. [202], forming a search query with operator OR may result in fewer results
in some databases (e.g., IEEE Xplore). That is, query “log comparison” OR
“log differencing” may return fewer papers than the results returned by
separate queries “log comparison” and “log differencing”. Therefore, we
compiled multiple separate queries and each query is composed of tokens that
represent the artifact (e.g., logs) and action (e.g., comparison). We then merged
the search results to form the repository of papers. There are also multiple ways
to compose the tokens that represent the artifact and action. The artifact and
action can be glued with operator OR, e.g., “log” OR “comparison”, which
allows the other words to come between the artifact and action. However, since
log is also a widely used mathematical term for representing logarithm, the
search engines of these databases return a lot of irrelevant papers. For example,
query “log” OR “comparison” results in more than 518K papers3 in Springer
Link Online Library and most of them are false positives. To minimize the noise,
we decided to concatenate the tokens of artifact and action without operator OR.
As shown in Table 3.2, a query can be constructed by concatenating a token from
a set before operator * with a token from a set after operator *. We are aware
that by concatenating tokens, we may miss the papers that state the artifact
(e.g., log) and the action (e.g., comparison) separately (e.g., compare a set of
logs). We mitigated this with a snowballing step explained later in Section 3.3.4.
Following the query composition method, we obtained in total 78 queries.

3https://link.springer.com/search?facet-discipline=%22Computer+
Science%22&query=%22log%22+OR+%22comparison%22&flanguage=%22En%22.
Accessed: April 2021

https://link.springer.com/search?facet-discipline=%22Computer+Science%22&query=%22log%22+OR+%22comparison%22&flanguage=%22En%22
https://link.springer.com/search?facet-discipline=%22Computer+Science%22&query=%22log%22+OR+%22comparison%22&flanguage=%22En%22
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Table 3.2: Composition of search queries. “*” represents concatenation.
For two sets of token T1 and T2, the concatenation T1T2 consists of all
tokens of the form vw where v is a token from T1 and w is a token from
T2, or formally T1 ∗ T2 = {vw : v ∈ T1,w ∈ T2}.

Concatenation Example #Queries
Artifact (singular) * Deverbal noun (singular) log comparison 6
Artifact (singular)* Deverbal noun (plural) log comparisons 6
Artifact (singular) * Gerund log differencing 6
Gerund * Artifact (singular) differencing log 6
Gerund * Artifact (plural) comparing logs 6
Verb (plural) * Artifact (singular) compare log 12
Verb (plural) * Artifact (plural) compare logs 12
Verb (singular) * Artifact (singular) compares log 12
Verb (singular) * Artifact (plural) compares logs 12

Table 3.3: Results of database query

Database #Papers Used filter

ACM 258 Content type: Research article
IEEE 116 Publication type: Conferences and Journals
Scopus 854 Publication type: Conferences and Journals
ScienceDirect 378 Article type: Research article; Subject: Computer science
Springer 1286 Discipline: Computer science; Language: English
Wiley 119 Publication type: Journals; Subjects: Computer science

Total: 3011
Total (excluding duplications): 2618

We conducted the full-text query using the default search box on the
databases. To reduce noise and exclude the papers not of interest, we applied
filters when it is possible. We set publication type to conference and journal,
research field to computer science, and language to English. Table 3.3 shows the
query results. We identified the duplicated papers based on their DOI and titles.
After removing duplicates, we obtained 2618 papers. We finished this round of
paper collection in May 2021.

3.3.2 Automated Filtering

We manually inspected 50 papers from these 2618 papers and found that there
are still many papers that are completely irrelevant to log comparison (e.g.,
papers from the field of Ultra-Wideband). To reduce the manual efforts required
to select papers, we further applied an automated filtering approach proposed
by Landman et al. [202].

The intuition behind this automated filtering approach is that if the paper
is relevant to the studied topics, the related keywords should be frequently
appearing in the introduction and conclusion of the paper. We implement this
approach with five steps, as shown in Figure 3.3. First, we downloaded all the
PDF files for the 2618 papers that we obtained from the database search. We
extracted the text from the PDF files, and excluded the reference section. Next,
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we extracted the first and last 15% of the text with the assumption that the
introduction and conclusion of papers should be covered by the head and tail
of the text. We then tokenized the extracted text and computed the frequency of
each token. A paper is included for the subsequent manual filtering steps if its
head and tail meet one of the criteria below:

• Head or tail contains at least one instance of the search query, i.e.,
{q ∈ Q|head.count(q) > 0 ∨ tail.count(q) > 0} ̸= ∅ where Q is the set
of search queries that we formulated based on Table 3.2.

• Both action and artifact tokens appear more than once in head and
tail, i.e., {at ∈ AT ∧ ac ∈ AC|head.count(at) > 1 ∧ head.count(ac) > 1 ∧
tail.count(at) > 1 ∧ tail.count(ac) > 1} ̸= ∅ where AT and AC are the
sets of artifact and action tokens, respectively.

After filtering based on the criteria above, we obtained 810 papers. To check
whether the approach is reliable, we randomly sampled 50 papers that are
excluded by the filter. The author of this thesis checked the abstracts of these
papers. It turned out that these 50 papers are indeed irrelevant to log comparison
techniques, which increases our confidence on the applied approach.

Download papers

Extract text from 

pdf files and 

exclude reference 

section

Extract the first 

15% of the text 

and the last 15% 

of the text

Identify relevant 

papers based on 

frequency of 

keywords

Examine 50

excluded papers

Figure 3.3: Steps in automated filtering

3.3.3 Manual Filtering
After automated filtering, we started with the manual filtering process, which
requires us to manually collect information from papers to decide the relevance
of papers. Three raters are involved in this manual process. We defined a set
of inclusion and exclusion criteria for this manual filtering process (Table 3.4).
Note that we include only offline log comparison techniques (IC4 in Table 3.4)
because the challenges under study (RQ3) are identified in industrial settings
where developers usually collect logs from executions and then compare [424].

As shown in the Figure 3.2, the manual filtering process contains steps that
check the relevance of papers (i.e., relevance of papers based on title, abstract
and full text) and quality of papers (i.e., page count, types of venues and rank
of venues). Next, we explain these steps.

Relevance of papers We filtered on the relevance of papers to log
comparison. First, we selected the relevant papers based on their title and
abstract. We adopted a web application developed by Lin et al. [230] to facilitate
the manual filtering process. Using this app, we assigned a batch of papers to
three raters. For each paper, the raters need to select from options “included”,
“discarded” or “secondary study”. The secondary study is the meta-analysis
of the studied topic, e.g., literature review, which may refer to relevant papers.
The obtained secondary studies have been used in the snowballing process
to identify additional papers. We included the papers for the next round if
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the information shown in abstract and title is not sufficient to determine its
relevance. To reduce the chance that a paper was discarded by mistake, each
paper has been labeled by at least two raters. To develop agreement on the
relevance of papers, each of the raters labeled a same batch of 30 papers
individually. The raters then resolved the disagreements together. With the
discussion, the common understanding of the relevance of papers and the
selection criteria was established. We repeated this process three times and
labeled in total 90 papers together with the three raters. In the last iteration, we
reached a Fleiss Kappa value of 0.83 which is considered to be almost perfect
by the commonly used standard [262]. We then continued with the rest of the
papers. Each paper has been labeled by two raters. When a conflict occurs, the
third rater is involved for resolution. We further determined the relevance of
papers based on the information shown in the full text of papers. Similarly
to the previous step, each paper has been considered by two raters, and the
conflicts are resolved by the third rater.

Quality of papers We determined the quality of papers based on three
properties: page count, type of venue and rank of venue. To include only the full
research publication for analysis, we exclude the papers that have fewer than 4
pages [392]. Further, we manually examine the types of venue and included only
the papers published at academic conferences or journal. To further control the
quality of the selected papers, we filtered papers based on the rank of the venues.
To mitigate the bias of a single venue ranking system, we extracted the ranks
of venues from multiple ranking systems: Conference Ranks 4 and GGS 5 GGS
collects ranks from The CORE 2021 Conference Rating, Microsoft Academic,
and LiveSHINE. After collecting the rank information from different sources,
we post-processed the information based on several rules. First, we normalized
the ranking into classes A, B and C. That is, a conference is considered to be A
rank if the rank for a conference is A+,A++,A or A− in these ranking systems.
Second, we labeled a venue as “unranked” if we cannot find its rank in these
systems. Third, a conference or journal might be ranked differently in different
systems. We adopted the majority rule to decide the final rank of the venue. For
example, conference Fundamental Approaches to Software Engineering is ranked
as class B in CORE, and as A in both LiveSHINE and Microsoft Academic.
Therefore, the final rank of this conference is A. Finally, we included all the
papers that are ranked A, B or unranked. We include unranked venues because
a venue could still be primary even though it is not ranked in these systems.

As shown in Figure 3.2 after relevance assessment, exclusion of short papers,
and the venue-based filtering we kept 77 papers.

3.3.4 Snowballing
To mitigate the risk of missing relevant papers, we conducted snowballing to
get papers that are cited by the papers in our paper repository (i.e., backward
snowballing) and the papers that cite the papers in our paper repository (i.e.,
forward snowballing). As can be seen in Figure 3.2, we took 105 papers that we

4http://www.conferenceranks.com/. Accessed: July 2021
5https://scie.lcc.uma.es:8443/gii-grin-scie-rating/. Accessed: July 2021

http://www.conferenceranks.com/
https://scie.lcc.uma.es:8443/gii-grin-scie-rating/
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Table 3.4: Inclusion and exclusion criteria

Inclusion Rationale

IC1 The paper must be Peer-reviewed and published at
conferences, or journals.

Quality

IC2 The traces/logs should be generated from instrumented
software systems and capture the execution of software
systems. Scope of study

IC3 The study must adopt or develop at least one log
comparison technique.

IC4 The adopted or developed technique must be an offline
technique, i.e., logs are collected from executions and
compared offline for analysis.

IC5 The adopted or developed techniques are used for
computer science applications.
Exclusion Rationale

IE1 The paper is written in a language other than English. Generalizability
IE2 The paper has been extended to a journal article. Redundancy
IE3 The paper is not a full research publication (e.g., abstract,

doctoral symposium articles, presentations, posters,
book, chapter, technical report and white paper etc.)

Quality

IE4 The study does not describe the approach unless it is a
secondary study.

obtained after filtering based on full text as the seed papers for snowballing,
rather than the 77 papers we finally obtained with all filtering steps. The
rationale is that, although the excluded papers do not meet our criteria in
terms of quality, they may still cite or be cited by some relevant quality papers.

We used Semantic Scholar [336] to facilitate the process of snowballing.
Semantic Scholar is an artificial-intelligence backed search engine for academic
papers, that has been empirically shown to be suitable for literature studies in
SE [150]. Hannousse [150] conducted a coverage test using 20 SE systematic
literature studies and found that Semantic Scholar covers 98.88% of the papers
included in these literature studies. With Semantic Scholar, the author can
replicate 13 studies fully and more than 90% for the 7 remaining studies.
Moreover, it leverages artificial intelligence techniques to provide more
information about the relations between a paper and its cited and citing papers.
For each seed paper, Semantic Scholar provides meta-data,6 including a list of
references (i.e., cited papers) and citations (i.e., citing papers). Each reference
and citation is further labeled as background, method, or/and results, indicating
its relation with the seed paper.7 For example, a cited paper with label method
is cited by the seed paper to describe methods, while a citing paper with label
method means it cites the seed paper to describe methods. Furthermore, based on
features such as where the citation appears in the body of the paper, Semantic
Scholar labeled a reference or citation as a highly influential paper if it highly
influences the seed paper or is highly influenced by the seed paper [385]. In
our study, for each seed paper, we included the citing and cited papers that are

6https://api.semanticscholar.org/graph/v1#tag/paper. Accessed: July 2021
7https://www.semanticscholar.org/product/tutorials. Accessed: July 2021

https://api.semanticscholar.org/graph/v1#tag/paper
https://www.semanticscholar.org/product/tutorials
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Table 3.5: Result of snowballing

#seed papers 105
#cited papers 4175
#citing papers 2014
#unique papers 4267
#selected papers 2494

labeled with method, results or highly influential paper. We excluded the papers
labeled with background because such papers only provide the background
information of the topic or study, and are less likely to present log comparison
techniques. Furthermore, we further excluded papers from the fields other than
computer science based on the field classification provided by Semantic Scholar.

We used the APIs 8 provided by Semantic Scholar to query the data. Table 3.5
shows the number of papers we obtained from snowballing. After merging
citing and cited papers, and removing duplications, we obtain additional 4267
papers from backward and forward snowballing. By applying the criteria
based on the filters provided by Semantic Scholar, we ended up with 2494
papers. We then followed the automated and manual filtering process (See
Section 3.3.2 and 3.3.3) to select relevant papers from this set of snowballing
papers. Figure 3.2 shows the number of papers we included in each step. As
surveyed by Wohlin et al. [415], the most common way of paper search in
software engineering is the database search followed by the manual search.
Snowballing is less adopted according to Wohlin et al., however, a single
iteration of snowballing is shown to be effective. Since we do not plan on
another iteration of snowballing, we applied the quality filter (i.e., page count,
type of venue and rank of venue) before the relevance filter based on full text to
reduce the manual efforts in inspecting the full-text of papers.

3.3.5 Data Extraction and Analysis
With the methods of database query, filtering and snowballing described above,
we obtained 180 papers in total; 77 papers from the first round and additional
103 papers from snowballing. To assess the quality of our dataset, we examined
whether the 10 papers that we studied for familiarizing the terms used in log
comparison papers are found by our paper search. The assessment shows that
all these 10 papers are included in our dataset.

We compiled a list of sub-questions with which we analyze each paper
to answer our research questions. Table 3.6 lists these sub-questions and the
corresponding research questions.

3.3.5.1 Field Classification (RQ2.1)
We classified the field of log comparison techniques based on ACM Computing
Classification System9 (CCS) which is a subject classification system for the
computing field. It is a tree with 13 first-level nodes representing high-level
fields, and each node has multiple child nodes representing subfields. For

8https://www.semanticscholar.org/product/api. Accessed: July 2021
9https://dl.acm.org/ccs. Accessed: September 2021

https://www.semanticscholar.org/product/api
https://dl.acm.org/ccs
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Table 3.6: Sub-questions for paper analysis

Research field (RQ2.1)
1. For which research field are log comparison techniques applied and developed?
SE activities (RQ2.2)
2. What SE activities does the proposed technique intend to support?
Methods (RQ2.3)
3. What are the inputs of the comparison technique?
4. What log preprocessing steps does the technique perform?
5. What log information is represented in the step of log representation?
6. What intermediate log representations does the technique use?
7. What post-processing steps does the technique perform?
Evaluation approach (RQ2.4)
8. What research methods are used in evaluation?
9. Which groups of practitioner participates in the evaluation if human is involved in
evaluation?
Industrial challenges (RQ3)
10. How does the technique provide multi-abstraction comparison?
11. How does the technique deal with the interleaving caused by non-determinism?
12. What additional information is used to aid in log comaprison?
13. How does the technique use the additional information?

example, field Software and its engineering is a six-level tree. We would like to
classify the papers into the 13 first-level nodes. We first examined all the papers
to check for CCS concepts added by the authors of the papers. We extracted
CCS concepts if they were available for a paper. A paper could be assigned
multiple CCS concepts. In such cases, we considered the first CCS concept as
the most relevant concept, as authors of ACM publications are suggested by
the guideline about the use of ACM CCS 10 to rank CCS concepts based on
their relevance. For the papers that do not contain CCS concepts, we labeled
them manually. First, two raters familiarized themselves with the classification
tree. Second, for each paper, these two raters independently read the title and
abstract, and then selected a first-level node of the classification scheme which
is most relevant to the paper by looking at the lower levels under each first-level
node. Any disagreements were resolved by a discussion between the two raters
who were involved in this classification task.

3.3.5.2 SE Activities (RQ2.2)

In our previous study of log analysis practice in industry [427], we derived
a set of SE activities for which developers analyze logs. We use this set of SE
activities as the initial classification schema and extend it when a new activity
appears in the collected papers. The author of this thesis analyzed the papers
to classify the collected papers based on the SE activities that the developed
techniques attempt to help.

3.3.5.3 Methods (RQ2.3)

We studied the inputs of techniques and workflow of log comparison.

10https://www.acm.org/binaries/content/assets/publications/
article-templates/ccs-howto-v6-12jan2015.docx. Accessed: September 2021

https://www.acm.org/binaries/content/assets/publications/article-templates/ccs-howto-v6-12jan2015.docx
https://www.acm.org/binaries/content/assets/publications/article-templates/ccs-howto-v6-12jan2015.docx
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Inputs of Techniques There is a considerable overlap between the fields of
log comparison and model comparison. The papers in the intersection of these
two fields present techniques that consider models as a representation of logs:
while models are typically stored in a different format, and are often visual,
they still encode the software behavior observed in logs. That is, for this subset
of log comparison techniques, their inputs could be models derived from logs.
We classified the inputs of these techniques into the following groups:

• Log-log: the techniques that belong to this category perform comparison
at the level of logs. Therefore, the inputs of techniques are multiple logs.
The logs could be stored as a raw textual file or with a certain structure in
a database.

• Model-model: the techniques that belong to this category assume that
models derived from logs are given as inputs. The comparison is
performed at the level of models.

• Log-model: the techniques that belong to this category compare logs
against models that were derived from logs.

Workflow of log comparison We focus on several important steps in log
comparison. A typical workflow is presented in Figure 3.4.

The typical steps in this workflow are:

Log preprocessing
Log representation 

and abstraction
Comparison

Result 
postprocessing

Figure 3.4: Workflow of log comparison. Note that log pre-processing,
log representation and abstraction, and result post-processing might not
be described in the studied papers.

• Log pre-processing. The amount of information to be compared is reduced
in this step, easing the comparison step. In the pre-processing step, the
textual form of logs is not changed.

• Log representation and abstraction. To further ease comparison by providing
a formal structure for log information, logs might be abstracted. This step
abstracts log information with models (i.e., a different form of representation
than text).

• Comparison. In this step, logs are compared, either in the form of text or
other representations obtained from the previous step.

• Result post-processing. The result of log comparison could contain an
overwhelming amount of differences. To reduce, prioritize or aggregate
information, a post-processing step is sometimes performed.

Note that log pre-processing, log representation and abstraction and result
post-processing are not necessary steps and might not be described in the
studied papers. The techniques that take model-model as input assume models
are given. In this case, log pre-processing, and log representation and abstraction
is not required. Furthermore, for the techniques that take log-log or log-model
as input, the log pre-processing step might be omitted. The author of this thesis
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analyzed the papers to check if these steps are explained and how the steps are
taken to answer questions 4-7 (shown in Table 3.6).

3.3.5.4 Evaluation (RQ2.4)
We employed a research strategy framework described by Storey et al. [359].
The research strategy framework provides a classification schema for empirical
strategies:

• Data strategies. Data strategies refer to evaluation methods that rely
primarily on generated or simulated data.

• Lab strategies. Lab strategies typically involve hypothesis testing with
controlled experiments in lab or experimental simulation that rely on an
environment that mimics a real-life environment. Human participants
are often involved in these experiments.

• Field strategies. Field strategies involve technique evaluation in a
natural software development setting. In these strategies, researchers
may observe developers using the techniques without any explicit
interventions or set up controlled experiments that require developers to
use the techniques solving real-world problems.

• Respondent strategies. Respondent strategies are used to gather insights
from developers about the techniques under evaluation. The strategies
may employ survey and interviews to gather opinions from developers
about the effectiveness of the log comparison technique.

We chose this framework for categorizing evaluation methods (for Question
8 shown in Table 3.6) because each empirical strategy has strengths and
weaknesses to consider in terms of research quality criteria [359]. Field strategies
provide a higher realism while sacrificing generalizability. Data strategies have
a strength of precision and generalizability, but a weakness of low control
over human factors. Lab strategies allow researchers to control influencing
factors at the price of realism and generalizability. Respondent strategies may
increase generalizability (e.g., if a wide sample is recruited) at the expense of
lower realism. Therefore, a mixed method (e.g., using field and data strategies
to achieve both high realism and generalizability) is recommended [359]. By
categorizing evaluation methods based on this framework, we aim to provide
insights into the quality criteria considered in the evaluation of log comparison
techniques. Next, we answer question 9 (shown in Table 3.6) to understand
which groups of participants are involved in the evaluation. Answering this
question further provides some insights into realism and generalizability of
the technique evaluation. The analysis for these questions is conducted by the
author of this thesis.

3.3.5.5 Industrial Challenges (RQ3)
As we discussed in Section 3.2, comparing logs at multiple levels of abstraction
is favored. We answer Question 10 (shown in Table 3.6) by studying whether
the technique compares and presents log information at different levels of
abstraction, while preserving the link between information shown in different
abstraction layers so that developers can drill down to the log details. Non-
determinism results in interleaving of logging events, therefore, it is one of the
main sources of irrelevant differences when comparing logs for troubleshooting
functional issues [146, 427]. We study whether and how these log comparison
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techniques take non-determinism into account (Question 11). Another industrial
challenge in log comparison is leveraging additional information to aid in log
comparison. The information shown in logs is limited to the runtime behavior of
systems. Often, inspecting log differences does not sufficiently help developers
comprehend the changes of software systems. We, therefore, identify what types
of additional information are used and how they are used in these techniques
(Question 12 and 13). The author of this thesis analyzed the discussion related
to these questions. Note that we only examine the papers that explicitly discuss
these topics. It could be that the proposed technique can potentially handle
event interleaving, while not explicitly mentioned in the paper.

3.4 Results
In this section, we present the answers to the research questions.

3.4.1 Research Fields (RQ2.1)
Table 3.7 shows the classification obtained for RQ2.1. In total, 180 relevant
papers are classified into 6 categories from ACM CCS. Nearly half of the
papers (45%) are from the field of Software and its engineering. In this field,
log comparison techniques have been mostly developed to support software
engineering activities such as testing or issue analysis. In Section 3.4.2, we
present our answer to RQ2.2 for which we detail the software engineering
activities these log comparison techniques are developed for.

Table 3.7: Field classification

Fields (#papers) References

Software and its engineering (81) [14, 15, 16, 17, 19, 27, 36, 42, 43, 47, 50, 73, 78, 89,
94, 97, 98, 104, 106, 121, 135, 141, 142, 143, 145,
147, 151, 152, 155, 163, 172, 173, 200, 209, 231,
232, 242, 245, 253, 256, 263, 266, 268, 269, 270,
271, 276, 283, 284, 294, 302, 307, 310, 314, 315,
326, 327, 328, 338, 351, 362, 363, 367, 369, 375,
396, 398, 399, 400, 402, 403, 417, 420, 440, 441,
444, 445, 449]

Information systems (63) [3, 7, 8, 18, 34, 40, 51, 55, 56, 57, 58, 59, 63, 66, 67,
74, 91, 92, 93, 99, 100, 102, 110, 118, 130, 131, 139,
165, 211, 213, 214, 215, 216, 222, 233, 234, 236,
237, 248, 249, 277, 278, 281, 299, 303, 304, 317,
337, 349, 366, 373, 374, 381, 384, 387, 389, 397,
404, 405, 416, 423, 437, 443]

Applied computing (16) [6, 9, 13, 61, 86, 198, 220, 251, 257, 286, 288, 289,
301, 316, 364, 368]

Security and privacy (14) [10, 26, 35, 120, 126, 149, 181, 191, 226, 252, 267,
279, 422, 447]

Human-centered computing (3) [160, 244, 305]
Networks (3) [194, 290, 341]

Around 35% of papers are from the field of Information systems. Log
comparison techniques have been used for studies of database or process
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management. Typically, such studies propose techniques to compare process
models generated from logs collected from the execution of information systems
such as banking systems. Such logs often capture how users interact with an
information system. The papers from this field tend to focus on presenting
generic techniques for processing such logs or by a demonstration of the
feasibility with a certain application. An example is the work by De Leoni
et al. [91] where an alignment-based approach for log comparison is proposed,
and its feasibility is demonstrated with an example. In this example, logs are
electronic patient records that describe processes of hospital organizations. The
comparison of logs helps improve and optimize the hospital system. Different
from log comparison techniques in the field of Software and its engineering,
techniques from Information systems compare logs to analyze the differences
of business and organizational processes rather than the behavioral differences
of software systems.

The rest of papers (20%) are from the fields of Applied computing,
Security and privacy, Human-centered computing and Networks. In Applied
computing, log comparison techniques are applied to identify the variants of
workflows or processes of information systems. Different from log comparison
techniques in the field of Information systems, studies belonging to the Applied
computing field focus on solving problems with existing process comparison
techniques rather than proposing new techniques. For example, Martínez-
Carrascal et al. [257] applied process mining techniques to analyze differences
between passing and failing students in a blended-learning course. In the
field of Security and privacy log comparison is used for malware analysis.
Typically, the stakeholder of techniques is a security analyst. For example, Li
et al. [226] built intrusion detection systems (IDSs). IDSs compare traces with
models derived from event logs that are generated during the applications’
normal operation and detect traces of malicious activities targeted against the
network and its resources. Log comparison techniques have also been further
developed in the field of Human-centered computing where visualization of
log differences is the focus. For example, Low et al. [244] propose a visualization
technique to provide targeted analysis of resource reallocation and activity
rescheduling. With the proposed visualizations, resource- and time-related
changes can be identified, and subsequently actionable items can be derived for
business process management in practice. Finally, three papers are related to log
comparison for Network simulation. For example, Kremer et al. [194] leverage
root cause analysis technique from software engineering for comparing traces
issued from different simulations and real experiments.

RQ2.1 summary:

The majority of log comparison techniques are developed in the research
field of software engineering and information systems.

3.4.2 Software Engineering Activities (RQ2.2)
Log comparison is used for multiple software engineering activities. Table 3.8
shows the SE activities derived from the 81 SE related papers. Note that a
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Table 3.8: Software engineering activities that log differencing techniques
address

SE activities definition #papers

Issue analysis In this category, techniques aim to help developers
perform activities related to analyzing software issues
(e.g., fault localization and debugging performance
issues).

48

Verification and
improvement

In this category, techniques aim to help developers
verify and improve software systems for better quality
(e.g., software modernization).

20

Comprehension In this category, techniques aim to help developers
comprehend the behavior of software systems.

13

Testing In this category, techniques aim to help developers
perform activities related to software testing (e.g.,
improvement of test code).

9

Research In this category, techniques are used by researchers in
software engineering research.

3

Deployment In this category, techniques aim to help developers
deploy software on a target device.

2

Program repair In this category, the technique is used to determine
the correctness of automatic program repair.

1

paper might be related to more than one SE activity because the presented log
comparison technique might be applicable for multiple SE activities. It can be
seen that more than half of papers (n=48) have considered issue analysis as the
application for the developed log comparison techniques. Issue analysis is an SE
activity that involves several sub-activities, such as fault localization [98], error
propagation analysis [327] and debugging [145]. Most papers position their
techniques in a general context of analyzing software issues, while only a small
share of papers explicitly discuss the type of applications and software issues
the log differencing techniques aim to address. Six studies [50, 121, 209, 235,
270, 328] develop techniques for analyzing issues in distributed systems. Two
studies [403, 440] specifically investigate concurrency bugs (e.g., race condition
and flaky bugs). Seven studies [14, 47, 104, 283, 302, 328, 402] focus on log
differencing for analyzing performance issues.

There are 20 papers presenting log differencing techniques for verification
and improvement activities, such as software modernization [94], anomaly
detection [36, 42, 121, 135, 152, 189, 256, 263, 268, 269], and performance
evaluation [47, 245, 276, 351]. 13 papers present techniques for software
comprehension activities such as localizing features [106, 266] and
understanding evolution of software [43, 172, 253, 396]. There are nine
papers presenting log differencing techniques for testing activities, such as
improvement of test code [268, 398] and prioritization of test cases [269].
Interestingly, log differencing techniques are used not only for SE activities
but also SE research. Ardimento et al. [27] use logs to record how developers
perform coding activities and compare logs to identify behavioral similarities
and differences between developers. Pradel et al. [307] propose an approach
that evaluate the state-of-the-art specification mining techniques. The approach
compares models learned from logs with reference models to examine the
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accuracy of the learned models by these specification mining techniques.
Similarly, Walkinshaw et al. [396] develop a model-based comparison approach
which can be used not only for comprehending the evolution of software
systems but also for evaluating the accuracy of specification mining techniques.
Furthermore, two papers motivate the use case of their techniques with
deployment. As an example described in [375], when tuning a deployment of
an email server, it is useful for engineers to identify the previous deployments
with similar operational profile for solving workload problems (e.g., slow
response time under a particular workload) encountered in the deployment
activity. Lastly, log comparison has also been used to select patches generated
by automatic program repair techniques. By comparing the logs obtained before
and after the patch for each test, Xiong et al. [420] determine the correctness of
the generated patches.

RQ2.2 summary:

Issue analysis is considered as the main use case for log differencing in the
literature. Interestingly, log differencing techniques have been applied for
SE research to study how junior and senior developers differ in terms of
their coding behavior.

3.4.3 Log Comparison Methods (RQ2.3)
Next, we discuss our analysis of log comparison methods. We start with
the inputs of these comparison techniques and then continue with log pre-
processing, compared log information, log comparison, and result post-
processing.

3.4.3.1 Inputs of Log Comparison
The result shows that majority of the papers (n=68) present techniques
belonging to category log-log. A small share of papers present techniques
that take log-model (n=8) and model-model (n=5) as inputs. Among the log-log
papers, four papers [141, 145, 269, 375] present techniques that compare a
single log against a set of logs and output a single log or a subset of logs as
the comparison result. These papers describe techniques that share a practical
purpose—identifying reoccurring patterns with historical dataset. For example,
Gu et al. [145] use a bug trace to exhaustively search its database for similar
bugs and return their bug reports by comparing the bug trace with a set of
traces that are associated to known bugs.

3.4.3.2 Log Pre-processing
To reduce the amount of information being compared, textual logs should be
pre-processed. Through reviewing the literature, we identified three categories
of preprocessing activities, namely, parsing, segmentation, and noise reduction.

Parsing. Parsing is the process of structuring log data into chunks of
information that are easier to manipulate. Typically, this process involves the
identification of the static and dynamic components in log statements. The
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dynamic information, such as usernames, IP addresses and job IDs, may vary
for each occurrence of a particular execution event. To reduce the noise in
comparison, it is essential to remove the dynamic information considered
irrelevant. The traditional way of parsing is often done with handcrafted regular
expression [42, 121, 135, 256, 284], requiring domain knowledge and constant
update of regular expressions. To reduce the manual efforts of creating regular
expressions that specify how to separate the constant part, several studies apply
automatic parsing techniques. Syer et al. [367] and Thakkar et al. [375] use a code
clone technique to identify for each log line the variation points relative to their
log lines. Fu et al. [121] apply a log clustering technique to group log messages
printed by the same statement together, and then find their common part as the
static information. Tak et al. [369] apply two methods, source code analysis and
log clustering techniques, to discover log templates. Identifying log templates
is challenging because of the dynamic nature of the system development [135]
where logging format might not be standardized. Moreover, modern systems
are heterogeneous, consisting of many components implemented with different
program languages. The format of log statements in different components can
be different (see discussion in Section 2.2.5.2).

Segmentation. A log file collected from the field often contains day-long
executions. To tackle the problem, a log file should be segmented into multiple
execution logs, and each of them represents the execution of individual
system tasks. The segmented log is the basic unit for the subsequent activities,
such as log abstraction or comparison. To distinguish multiple executions
in a long trace, Doray and Dagenais [104] employ Linux kernel events
syscall_exit_accept (generated when a connection is accepted on a socket) and
syscall_entry_shutdown (generated when a connection is closed) as markers
of the start and end of executions. For the same purpose, Bao et al. [42]
extract traces from a log according to the reachability relations revealed in
reachability graph obtained from code analysis. Often, a single execution may
contain several phases and repeated behavior patterns. Wang et al. [400] and
Mohror et al. [276] use control structure boundaries such as procedure calls
and loop boundaries as markers to identify the phases and repeated patterns.
Modern software systems often consist of multiple entities (e.g., components,
threads, tasks or user actions) that produce interleaving events, and different
entities often aggregate their execution logs into a single log file. To segment
a log into chunks that represent the behavior of single entities, the logged
identifiers [121, 163, 256] are used. For example, Fu et al. [121] obtain logs
from Hadoop systems where log messages for different tasks are interleaved.
By segmenting based on the task IDs, sequential log message sequences are
obtained. However, as discussed by Mariani et al. [256], the comparison of
the logs divided by identifiers is effective in identifying differences related
to single entities (e.g., single components or single user actions), but is not
effective in identifying important differences related to the interaction and
synchronization between multiple entities (e.g., interleaving of events from
multiple components). Therefore, dedicated methods have been developed to
deal with event interleaving. We elaborate on them in Section 3.4.5.
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Noise reduction Some events are considered irrelevant for behavior
comparison. To further reduce noise, these events are removed from logs [17, 47,
141, 172, 444]. For example, Idris et al. [172] and Alimadadi et al. [17] remove
library method calls based on naming conventions. Hashing has also been
considered as a method to reduce the volume of information. For example,
Ramanathan et al. [314] use hashes to reduce the amount of space required to
store the trace being proportional to the number of instructions executed rather
than being proportional to the number of lines in the program.

3.4.3.3 Compared Log Information
We identify five categories of log information that are being compared by these
techniques. Figure 3.5 shows the number of papers presenting techniques that
compare each type of information. Note that a technique may compare more
than one type of information. It can be seen that the majority of techniques
compare ordering information such as the order of events, methods, or executed
statements shown in logs. The ordering information reveals the execution flows,
and its differences between executions reflect different execution paths that
a software system takes at runtime. The second most frequently compared
information is occurrence and frequency. These techniques consider log as a
sequence of events, where the occurrence and frequency of each log event,
words in log events, or a sequence of events is counted (i.e., with n-gram where
ordering information is considered up to the length of n). The distributions
of events in logs are then compared to identify deviations. For example, in
the work by Zhou et al. [444], logs are treated as an unordered collection of
individual lines (where the ordering information is ignored) for comparison.
In this work, log lines are considered similar if they share words that are
uncommon in the collection or corpus of all lines. Resource consumption
and value information is compared by techniques presented in 18 papers.
Particularly, resource consumption information (e.g., execution time of methods
and CPU consumption) reveals the performance aspect of systems, therefore, is
often used to identify performance deviations and regression of two executions.
Value information includes the value of variables, return value of methods,
and evaluation of branches. By comparing the value information obtained
from two executions, differences that lie in the execution results, decisions and
states of a certain execution point can be identified. For example, in the work
by Sumner et al. [363], the value of a set of pre-defined variables is recorded
to examine program states at each execution point of two executions. Less
often, one compares data dependency information, which includes the data
dependency between execution statements. For example, Tonella et al. [403]
compare data dependency of passing and failing executions to produce a causal
execution path that leads from the program point representing the root cause of
failure to the program point at which the failure is detected.

3.4.3.4 Log Comparison
Table 3.9 shows the identified categories and the papers that belong to these
categories. Note that a paper can present a hybrid technique based on multiple
approaches, indicating the orthogonal nature of these approaches. Figure 3.6
shows the number of papers for each approach and hybrid solutions. From
Table 3.9 and Figure 3.6, it can be seen that nearly half of the papers present
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Figure 3.5: Number of papers presenting techniques that compare
different kinds of log information

techniques that are based on Alignment and matching (n=40) or Metric (n=34). A
significant number of papers present techniques that are based on Behavioral
model inference (n=17). Moreover, Figure 3.6 shows that approaches based on
Alignment and matching are often combined with approaches based on Metric or
Behavioral model inference.

In this section, we present the six identified categories of approaches,
and briefly describe representative example papers. We then continue with
discussing the hybrid solutions.
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Table 3.9: Categories of approach of log comparison

Method (#Papers) Papers

Behavior model inference
State machine inference (8) [19, 36, 43, 121, 135, 256, 284, 294]
Invariant, predicate and pattern inference (10) [89, 143, 200, 209, 242, 294, 315,

338, 398, 401]
Alignment and matching

String alignment (25) [17, 36, 98, 104, 141, 142, 145, 147,
163, 253, 266, 269, 271, 276, 310,
314, 327, 351, 369, 399, 400, 402,
403, 420, 440]

Graph alignment (12) [14, 15, 36, 50, 73, 135, 263, 283,
362, 363, 396, 441]

String-graph alignment (4) [27, 121, 256, 294]
Metric

Similarity and distance metric (28) [14, 15, 17, 36, 42, 73, 97, 104, 141,
142, 145, 147, 172, 231, 268, 269,
270, 276, 307, 326, 367, 369, 375,
396, 399, 402, 420, 444]

Importance and relevance index (6) [16, 106, 151, 173, 442, 449]
Statistical analysis (8) [43, 47, 78, 245, 302, 328, 367, 375]
Clustering (5) [73, 97, 231, 269, 367]
Machine learning (3) [152, 155, 183, 417]

Behavioral model inference. As found in our previous study (Chapter 2),
developers often manually sketch models based on logs to obtain abstraction
for comprehension and analysis. The papers that belong to this category present
techniques that apply model inference techniques and perform comparison at
the level of models. The identified differences can be linked to the graphical
representations or the properties of system behavior. The models identified in
these papers are classified into state machine models, and invariants, predicates
and patterns. The state machine models can represent the ordering information.
The majority of the papers in this category present techniques based on the
model inference algorithm Ktails [52] which extracts a behavioral model from a
set of execution traces, based on the set of sequences of k consecutive events
found in the traces. Amar et al. [19] develop a comparison technique, so-called
k-diff, which identifies sequences of length k or less that appear in one of the
two logs. The sequence differences are visualized in the inferred models. The
parameter k is configured by users to decide the length of sequence differences
that they are interested. Another existing example can be found in the work
by Ohmann et al. [284] where models are learned from logs and then resource
utilization information is used to differentiate behaviorally similar executions
that differ in resource consumption by detecting property violations. Invariants,
predicates and patterns can represent various type of information such as value
of variables, ordering information, frequency of events. An example can be seen in
Lam et al. [200] that mines predicates that evaluate the state of the method call at
different points in execution. The two sets of predicates inferred from two logs
are then compared to narrow down the root cause of flakiness. By abstracting
log information for comparison, techniques based on this category may reduce
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the information to be compared, and help developers interpret the results with
available models. However, the effectiveness of techniques depends on the level
of details preserved. If important log details are abstracted away, identifying
important differences between executions becomes difficult.

Alignment and matching. In this category, alignment and matching
algorithms are adopted or developed for comparison. There are three types
of alignment algorithms: string alignment, graph alignment and string-graph
alignment. The string alignment algorithms consider logs as string sequences
and align two logs event by event. Ordering information of logs is being compared
in alignment. Existing alignment algorithms borrowed from information theory
and bioinformatics have been used in log comparison. For example, algorithms
for identifying the longest common subsequence (LCS) are seen in papers [163,
266, 314, 351]. Alignment approaches often suffer from scalability issues. As
discussed by Hoffman et al. [163], the algorithm for computing the LCS requires
a huge amount of memory and time when applied to longer logs. There are
several ways to mitigate this problem. One of the ways, as presented in the
work from Hoffman et al. [163], is to compress and categorize the information
shown in log sequences before applying LCS. Another way, as demonstrated
in literature, is presenting logs with graphs such as program dependency
graph [362, 441], call tree [263, 363], state machines [396] and timeline graph [50,
283] and align the obtained graphs. Although the graph representation of
logs abstracts some unnecessary details away, graph alignment still can suffer
from the scalability issues. For example, as reported in [263], the computation
of the edit distance of two trees could be expensive. Another problem that
alignment algorithms often neglect is that they do not take log semantics
into account. For example, LCS may blindly correlate neighboring entries in
one log with entries very far apart in the other log [163]. To mitigate this
problem, two studies [362, 363] adopt an execution alignment technique, so-
called execution indexing [418], where call tree [363] or dependency graph [362]
are extracted from traces and compared. However, it is machine undecidable
whether the point in one execution corresponds to a given point in another
execution (i.e., establishing matching points in two executions). Different
from the traditional alignment algorithms (e.g., LCS), execution indexing
aims to establish meaningful correspondence among points across multiple
executions based on program structure and state, which reduces the risk
of misalignment. The same challenge is also faced in graph alignment. As
discussed by Walkinshaw et al. [396], comparing two state machines involves
establishing correspondence of states and transitions in two state machines. One
way to establish this correspondence is using state labels that are usually missing
in the learned models from logs. The correspondence has to be established by
taking the surrounding states and transitions into account (i.e., if two states
are considered as a pair of matching states, then their surrounding states
and transitions should be similar), which can become very expensive. The
authors developed a state machine comparison algorithm which establishes the
correspondence and computes the structural differences of two state machines
efficiently. As shown in the evaluation of this algorithm, the accuracy of
comparison could be affected by the extent to what one state machine is different
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from another. Another group of alignment techniques aligns a string (i.e., a
sequence of log events) against a graph (i.e., a graph representation of logs).
An example can be seen in [27] where deviations between a log and a process
model are identified by replaying the sequences of log events on the process
model [215]. Through the literature review, we identified that the challenges
of alignment techniques lie in establishing meaningful and precise alignment
in a scalable manner. The techniques that take the semantics of log statements
into account can potentially mitigate the problems. This also requires alignment
techniques to deal with interleaving events introduced by non-determinism.
That is, if event interleaving is not taken into account by alignment techniques,
there is a risk of misalignment.

Metric. In this category, metrics are defined to quantify to what extent logs
are different from each other (e.g., similarity and distance metric) or how
important a trace statement it is compared to others (e.g., importance and
relevance index). Existing metrics that quantify the edit distance between two
strings are adopted in log comparison literature. For example, Levenshtein,
Hamming and Minkowski distances are seen in several studies [142, 145, 276]
to quantify the similarity of log sequences. Another example can be seen in
Mirgorodskiy et al. [270] where execution time of function calls is extracted
from traces of two hosts and represented using vectors. Manhattan distance
is then used as a measure of behavioral distance between two hosts. If the
behavioral distance between two hosts is small, each function will consume
similar amounts of time on both hosts. The metrics from the field of information
retrieval are borrowed to quantify the similarity between executions [307, 396].
For example, in [396], the distance between two sets of traces that represent the
behavior of two executions are quantified using Precision, Recall, F-Measure,
Specificity and Balanced Classification Rate (BCR). Precision and recall metrics
provide the proportion of traces exercised in one execution but not in the
other, quantifying to what extent two executions are different from each other.
Instead of quantifying the similarity between two traces directly, six studies
propose to use importance and relevance metrics that quantify how important
a trace statement it is compared to others. Typically, in these studies, traces are
generated from a set of passing and failing executions similarly to debug the
failed executions. The importance of a trace statement is evaluated based on
the occurrence and frequency of the trace statement in the passing and failing
executions. For example, Hao et al. [151] propose a metric which is based on
the intuition that statements mainly appearing in failing execution are viewed
as highly suspicious. The advantage of these metric-based approaches is that it
may give a quick idea of how similar the executions are, which could be useful
when comparing a set of execution traces with each other. However, metrics
might not be intuitive for developers to interpret the differences. The decision of
which metric best reflects the similarity or dissimilarity requires more research
efforts, to align with developers’ perceptions [172].

Statistical analysis. In order to identify significant differences, some
researchers consider log comparison as a statistical problem, using existing
mature methods in the field of statistical analysis. Various statistical tests
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are used to examine how different the distribution of execution time and
frequency of events across multiple logs are. For example, Lu et al. [245]
analyze sampling distributions of tasks’ response time and execution time
in traces using a proposed algorithm based on the non-parametric two-sample
kolmogorov-smirnov test. The advantage of statistical approaches is that
they help developers identify significant behavior variations, which may
help developers prioritize their inspection. However, statistically significant
differences are not necessarily meaningful differences [47]. It may hide the
subtle but real symptoms of a problem. Moreover, they cannot explain why a
difference occurs and what are the underlying problems.

Clustering. When dealing with a large set of logs, researchers apply
clustering algorithms to categorize them based on their similarity and distance.
That is, clustering approaches are naturally based on similarity and distance
metrics. An example can be seen in the work by Lin et al. [231] where each
log sequence is transformed into a vector and each event in the vector is
assigned a weight that quantifies the importance of the event for problem
identification. Cosine similarity between vectors (which represent two log
sequence) is then computed. Having computed the similarity between every
pair of log sequences, Agglomerative Hierarchical clustering technique [137] is
applied to group the similar log sequences into clusters. Clustering approaches
are suitable for comparing a large set of logs and can be used to reduce
the number of logs that require a more detailed one-to-one comparison. The
effectiveness of the approaches, however, depends on the choice of similarity
metrics and underlying parameters of the used clustering algorithms (e.g.,
stopping criteria) [231, 367].

Machine learning. Machine learning algorithms are applied to train models
that can classify execution logs for anomaly detection. He et al. [155] evaluate
six machine learning algorithms including decision tree, log clustering, logistic
regression, principal component analysis, invariant mining and support
vector machine, aiming to provide guidance for developers to select proper
algorithms. This work summarizes several challenges in log-based anomaly
detection. First, the existing techniques extract event count from logs as feature.
Other interesting features such as execution time of events and the ordering
information are not considered. The reason that the ordering information is
rarely considered is that it is challenging to extract a reliable ordering feature
from logs which contain interleaving events. This challenge emphasizes the
importance of identifying interleaving events in logs, which will be further
discussed in Section 3.4.5. Second, these models may not provide intuitive
insights, and developers often cannot understand what the anomalies are from
log classification, which is a well-known research problem in machine learning
- interpretability of results.

Hybrid solutions. Hybrid solutions have been identified in the literature,
as shown in Figure 3.6. As we discussed, clustering approaches are by nature
based on metrics, and metrics are often combined with alignment and matching
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algorithms to compare the ordering information shown in logs. Interestingly,
we observe that behavioral model inference is often combined with Alignment
and matching as a hybrid solution. This hybrid solution is different from
the techniques only based on Behavior model inference where comparison is
integrated into the inference and the subsequent refinement process. Typically,
this hybrid solution first infers a model from a set of logs and then aligns the
model with either another set of logs (i.e., String-graph alignment) or a model
inferred from another set of logs (i.e., Graph alignment). An example of the
previous case can be found in [256] where a matching process between a trace
and a finite state machine is developed on top of the Ktails extension mechanism.
The trace is used to extend the finite state machine. All the extension points
in the state machine are then considered as differences to be inspected by
developers. Goldstein et al. [135] show an example for the latter case. In their
work, finite state machines are inferred from logs with the Ktails algorithm and
aligned to identify the groups of common, added and removed states. On top
of Behavior model inference and Alignment and matching, Metric can be used to
quantify the similarity between models. An interesting example can be seen in
the work by Walkinshaw et al. [396] where state machines learned from logs
are taken as inputs for graph alignment. In the alignment, states from two state
machines are matched based on their similarity scores (i.e., common incoming
and outgoing transitions of each pair of states). The precision and recall metrics
are formulated to quantify the differences of state machines in terms of their
structures and languages. A technique that combines Behavior model inference
with Statistical analysis is identified in the work by Bao et al. [43] where not
only the ordering information but also the frequency information is represented
in probabilistic state machines. The work is based on Ktails algorithm, where
important log sequences with a length of k that differentiate two sets of logs are
identified with statistical tests.

3.4.3.5 Result Post-processing

As a result of log comparison, there may still exist a large number of differences.
It could be overwhelming for software developers to inspect these differences
and reason about them. Therefore, post-processing is often done to reduce the
amount of information that developers have to analyze. We identified that
filtering and ranking are the methods used in the literature.

Filtering is a process of removing irrelevant or less important information.
Seven studies [271, 294, 315, 440, 449] define rules to reduce the number of
differences presented to developers. For example, Mirgorodskiy and Miller [271]
reduce the number of sequences that developers need to examine by merging
the call sequences that share a prefix. Often, these rules are pre-defined by
researchers with design knowledge of the techniques. For example, to remove
duplications, Ranganath et al. [315] remove complex patterns and keep the
simpler constituent patterns. Another example can be seen in the technique
developed by Pastore et al. [294] where events that do not occur in every failure
are removed. Several studies design metrics based on frequency of events [135,
367, 369] to quantify the importance of changing events and filter out the events
that are scored lower than a certain threshold. The risk of applying metrics
and pre-defined rules is that they might not align with developers’ perceptions
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and may require a threshold that could filter important log differences out. In
addition to rules and metrics, slicing techniques [142, 400, 403] have been used
in the literature to prune comparison results. For each trace difference, Tonella
et al. [403] use dual slicing to construct a chain of trace differences by identifying
control and data dependencies between trace differences. Instead of filtering
out irrelevant information, some studies rank the comparison results based on
heuristics. Similarly to filtering, metrics [14, 141, 151, 209, 270, 328] and rules [89,
246] are defined for ranking. For example, in the method developed by Alcocer
et al. [14], components that present behavioral differences at each hierarchical
level are sorted based on their execution time. Similarly, Luo et al. [246] rank
modified methods based on the difference of execution time of these methods.

RQ2.3 summary:

Most log comparison techniques require log-log as input. We found that
the ordering, occurrence and frequency, resource consumption and value are
the information type compared most by log comparison techniques. The
majority of techniques are based on the approaches of Alignment and
matching, Metric and Behavioral model inference.

3.4.4 Evaluation Methods (RQ2.4)

In this section, we discuss the used evaluation strategies and participants
involved in the evaluation of the log comparison techniques identified in the
examined papers.

3.4.4.1 Strategy of Technique Evaluation
We employed a research strategy framework by Storey et al. [359] (explained in
Section 3.3.5.4) to analyze the evaluation strategies used in the collected papers.
The result is shown in Figure 3.7. Note that there are five papers applying
a mixed approach (i.e., using more than one strategy). All papers contain a
section of technique evaluation. Among them, 17 studies demonstrate their
techniques with examples. In such papers, the expected effect of techniques
is not or implicitly operationalized. The used examples are not necessarily a
real-life, but often an artificial application. An example can be seen in the work
by Maoz et al. [253]. The authors briefly describe their experience in using their
techniques to visualize differences of execution traces for several applications.

Data strategies refer to evaluation methods that rely primarily on generated
or simulated data. As the most frequently used method, they have been
identified in 59 papers. The construct and operationalization are explicitly
formulated and stated in these papers. The effects of techniques are evaluated
with archival, generated or simulated data. Data strategies are often used to
assess the performance of the techniques. An example can be seen in the work
from Ramanathan et al. [314] where the overhead of instrumentation and log
comparison is evaluated using a dataset collected from seven OSS projects (i.e.,
logs generated from two versions of these projects). Data strategies can also
be used for assessing the accuracy of log comparison techniques for a certain
software engineering task. An example can be seen in the work from Lam et
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al. [200] where a dataset consisting of 44 flaky tests that belong to 22 software
projects from 18 Microsoft products is used. For each test, the dataset contains
100 execution traces which are compared using the developed techniques to
identify the root cause of the flakiness.

Seven papers have described the used lab strategies in which hypotheses
are explicitly formulated and validated in highly controlled situations with
human participants. Lab strategies are only used in the papers published in
recent years; one paper in 2014, two papers in 2018, three papers in 2019 and
one paper in 2020. For example, in the work from Alimadadi et al. [17], a
controlled experiment conducted with 14 participants on a set of real-world
comprehension tasks (e.g., understanding the addition of a new feature) is
presented. The results show that using their technique helps developers perform
program comprehension tasks 54% more accurately than other tools.

Two studies applied respondent strategies, with which developers were
surveyed and provide feedback to researchers. An example from Pinto et
al. [302] began with a data strategy and then asked for professional feedback
on the results: “We would like to verify if developers were aware of the performance
issues that our approach has found. We collected feedback from eight developers through
surveys for each target system.”

The evaluation of techniques in a natural software development setting is
referred to as field strategies. They have been identified in only two papers
published in 2016 [231] and 2020 [50] respectively. Beschastnikh et al. [50] apply
a mixed method which consists of lab, data and field strategies to evaluate a
log analysis tool designed for comprehending distributed systems; 39 students
are involved in a controlled experiment, and 70 students are involved in a field
study where the computer science students used the tool for an undergraduate
distributed systems course. Moreover, the tool has been evaluated by two
researchers for debugging distributed systems that they are working on. Lin et
al. [231] also apply a hybrid approach of data and field strategies. Their field
study at Microsoft demonstrates the potential of applying the techniques in a
real-world setting.

Next, we examine the mixed methods that have been applied. Our review
identified several studies that used different combinations of strategies. For
instance, we found a study that used data and respondent strategies [302],
another that used data and field strategies [231], two studies that used lab and
data strategies [19, 43], and a study that used lab, field, and data strategies [50].
While it is not yet a widespread practice, combining data strategies with
other methods such as field strategies can add realism, lab strategies can
provide control over influencing factors, and respondent strategies can enhance
generalizability.

3.4.4.2 Participants

Nine studies involve human participants in their evaluation; seven studies [14,
17, 19, 27, 43, 50, 284] involve university students, three studies [14, 231, 315]
involve professional software developers in the field, and one study [50]
involves researchers. The involvement of both students and software developers
can be seen in Alcocer et al.’s [14] study where 8 postgraduate students,
3 software developers and 1 undergraduate student are recruited in a lab
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experiment. There are two papers involving human participants, while no
background information of the participants is explicitly provided. For example,
Ohmann et al.[284] recruit a total of 10 students and 3 additional participants
to voluntarily perform tasks in a lab experiment. The background of these 3
additional participants is not explicitly provided.

RQ2.4 summary:

Data strategies are the most frequently used method for evaluating log
comparison techniques. Field and lab strategies are used few times in
recent years. Data strategies have been combined with other strategies to
increase quality of evaluation, although it is not yet a common practice.
Most human participants in the evaluation are students.

3.4.5 Industry Challenges (RQ3)
In this section, we present how log comparison techniques from the literature
address the industrial challenges presented in Chapter 2, i.e., enabling multi-
abstraction comparison, handling interleaving events, and using additional
information. There is only one study [17] that explicitly addresses all these
challenges. Table 3.10 presents the papers that attempt to address at least one
of the industrial challenges. It can be seen that the majority of studies (21 out
of 25) develop log comparison techniques for issue analysis, requiring log-
log as input. The most frequently compared information in these techniques
are ordering and resource consumption (e.g., execution time). Most of the
comparison methods are based on Alignment and matching. The commonality
between these techniques in terms of activity, input, types of information and
comparison methods suggests the possibility to combine or integrate different
techniques to address the industrial challenges. Next, we discuss how these
techniques address each of the challenges.
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[294] log-log ✓ ✓ ✓ ✓ ✓ ✓
[78] log-log ✓ ✓ ✓ ✓
[14] log-log ✓ ✓ ✓ ✓ ✓ ✓
[449] log-log ✓ ✓ ✓ ✓
[338] log-log ✓ ✓ ✓ ✓
[42] log-log ✓ ✓ ✓ ✓ ✓
[200] log-log ✓ ✓ ✓ ✓ ✓ ✓
[400] log-log ✓ ✓ ✓ ✓
[402] log-log ✓ ✓ ✓ ✓ ✓ ✓
[17] log-log ✓ ✓ ✓ ✓ ✓ ✓ ✓
[440] log-log ✓ ✓ ✓ ✓ ✓
[403] log-log ✓ ✓ ✓ ✓ ✓ ✓
[16] log-log ✓ ✓ ✓ ✓ ✓
[310] log-log ✓ ✓ ✓ ✓ ✓
[163] log-log ✓ ✓ ✓ ✓
[369] log-model ✓ ✓ ✓ ✓ ✓
[327] log-log ✓ ✓ ✓ ✓ ✓
[302] log-log ✓ ✓ ✓ ✓ ✓
[269] log-log ✓ ✓ ✓ ✓ ✓ ✓ ✓
[98] log-log ✓ ✓ ✓ ✓ ✓ ✓
[328] model-model ✓ ✓ ✓ ✓ ✓ ✓
[106] log-log ✓ ✓ ✓ ✓
[15] log-log ✓ ✓ ✓ ✓ ✓ ✓
[271] log-log ✓ ✓ ✓ ✓
[50] log-log ✓ ✓ ✓ ✓ ✓
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3.4.5.1 Enabling Multi-level Comparison

Comparing logs at different levels of abstraction and guiding developers to drill
down to differences at low level details with visualization are envisioned by
the developers interviewed in our study presented in Chapter 2. We identified
seven papers [14, 17, 163, 269, 369, 400, 402] that present techniques to allow
comparison at different levels of abstraction.

The advantages of a multi-level comparison are twofold. First, it
eases computation by considering more compact artifacts at higher levels
of abstraction (i.e., keeping running times and memory requirements
reasonable) [163, 269]. Second, multi-level log comparison with information
linked at different levels can assist software developers in understanding the
differences between software executions from a high-level of abstraction to the
low-level details with the ability to identify and focus on particular parts of
the differences individually. As an example that provides the first advantage,
Miranskyy et al. [269] develop a log comparison technique that compresses
traces into multiple levels of abstraction to speed up computation. These traces
are compared iteratively from the highest level (i.e., set of function calls) to
the lowest level (i.e., a sequence of function calls). The conjecture is that if two
traces are dissimilar at a high level of compression, they will also be dissimilar
at the corresponding lower level of compression. For example, if two traces
have different sets of function calls, then the sequence of function calls would
also be different. In this work, the compression techniques at different levels are
independent of each other as long as the distance between compressed traces
can be measured with metrics. Therefore, the log information at these levels
is not automatically linked to each other, which may make comprehension
difficult. Another six papers [14, 17, 163, 369, 400, 402], however, explicitly
state that the multiple-level comparison is performed to ease comprehension by
preserving the links between higher-level and lower-level information.

In four studies [14, 163, 369, 402], abstraction is defined based on the
structure of software systems (e.g., components, classes, and call stacks),
providing a semantics-aware way to structure and compare traces. Weber et
al. [402] implement a hierarchical display of the trace differences based on call
trees, which facilitates understanding of trace differences for root cause analysis.
A timeline is designed to show sequences of function calls over time, visualizing
at which depth of call stacks a deviation occurs between two executions. A
similarity metric is calculated over time, allowing developers to easily detect
areas with high dissimilarity. Moreover, a performance view that compares the
duration of events from two executions is provided with a timeline. Alcocer
et al. [14] help developers identify performance deviations across multiple
executions with a hierarchical display of project, package, class and methods
as well as the caller-callee relations between methods. With the developed
tool, developers can easily identify code and performance changes at different
levels of granularity, drilling down to the root cause of performance issues
with the available link between code and performance changes. Tak et al.[369]
develop three views for problem diagnosis of cloud applications. An overview is
provided with a dashboard that shows the trend of log volumes, list of requests
issued by the users, request types and list of log entries collected in real time. A
model differencing view shows how the failed user request deviates from the
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reference model. In this view, developers can pinpoint which components and
at which time frames deviations occur. By tracing down further, developers can
inspect a log differencing view, where deviations and potential problematic log
lines are highlighted. Hoffman et al. [163] propose to abstract traces into several
views that naturally arise in object-oriented programs (e.g. objects, methods,
threads, etc.), and then compare the view-based traces. Views are linked among
each other to capture program semantics in a scalable manner by identifying
the common execution points in these views.

Different from abstracting based on the structure of software systems,
Alimadadi et al. [17] introduce a new approach to software system abstraction
based on configured tolerance of small variations. They define motifs, which
encode entity sequences and allow high-level behavior inspection while
preserving low-level details when needed. This is achieved by tolerating small
variations in different manifestations of each motif. By definition, motifs are
composite entities, which can contain other (sub-)motifs as their members. The
approach discovers hierarchical and temporal relations between motifs using
an algorithm and displays high-level system behavior overview with the ability
to zoom in for details.

3.4.5.2 Handling Interleaved Events

Notoriously, interleaving caused by concurrency often introduces difficulties
in comprehending the behavior of systems. Analysis of log differences in
the presence of interleaving requires extra efforts because developers have
to know if a log difference indicates functional differences. Fu et al. [121] obtain
sequential logs by splitting original logs generated from distributed systems
by thread ID or request ID. However, as argued by Tak et al. [369] who also
develop log comparison techniques for distributed systems, global IDs rarely
exists: The scope of IDs carrying the identity of requests, users, sessions, resources
and credentials is limited to a subset of cooperating S/W components. Where the scope
of one ID ends, there could be other IDs in the log line that carry over the identity
of current request processing. The authors proposed a so-called log correlation
algorithm, which identifies the relation between observed IDs. Unfortunately,
the algorithm is omitted by the authors due to page limits.

Table 3.11: Methods of handling interleaved events

Methods Ref Limitations

Logging
Partial ordering relations
using logical clock

[50, 106, 338] High
performance
overheadVariables that represent

program states
[98, 440]

Memory allocation or/and
thread activity

[327, 403]

Domain
knowledge

Pre-defined events that are
interleaving

[200] Low scalability

Defined rules that distinguish
request flows

[271]

Heuristic Configured thresholds that
tolerate small variations

[17, 328] Low accuracy
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Essentially, the way to deal with interleaving is abstracting it away.
We identified 11 studies which take interleaved events into account while
developing their log comparison techniques and reported their solutions.
Table 3.11 summarizes the methods used to identify interleaved events and
their limitations. Seven studies log additional information that is used for
abstracting irrelevant interleaving away. Three studies [50, 106, 338] use logical
clock timestamps [113, 260] to capture the partial ordering of events. Using
logical clocks (e.g., vector clocks and Lamport clocks), logical timestamps are
generated for events in the system, and the causal relationship of events is
determined by comparing those logical timestamps. However, capturing all
partial ordering relations could be prohibitively expensive. Beschastnikh et
al. [50] evaluate the overhead of applying logging framework XVector which
implements vector clocks to capture interactions between hosts in a network
system, and conclude that the overhead imposed by XVector makes it a feasible
tool during development, but not in production. The authors therefore suggest
investigating tracing frameworks X-Trace [119] and Dapper [343] that are
designed for production use. Two studies [98, 440] log program states and use
this information to determine whether the appearance of events in a different
order leads a program to a distinct state. If this is not the case, the order of
these two events does not indicate functional differences. The program state
is represented by the values of a set of predefined variables. As discussed by
both studies, the choice of what program variables to log and where to log
them involves a trade-off. Capturing more variables would result in a more
precise analysis, but introduce more logging overhead [98]. Different types of
system may vary in the required number of variables to represent program state.
For example, as discussed by Zhang et al. [440], for a typical client-side web
application, the number of fields can be extremely large, resulting in a large
performance overhead. Capturing partial ordering of events and program state
is a generic solution for identifying different sources of nondeterminism.

We also identified two studies that focus on nondeterminism caused by
memory address allocation or/and thread scheduling. Saissi et al. [327] track the
order in which memory addresses are allocated and the order in which threads
are spawned relatively to their spawning threads, and name them accordingly
to achieve consistent IDs across multiple executions. The memory objects and
thread identities are then abstracted across multiple logs. Similarly, Tonella et
al. [403] obtain so-called lossless traces [208] which contain a program’s entire
control flow, including loop iteration and thread spawning. A canonical order
of execution statements is obtained by taking the structure and state of the
software program into account via indexing.

Domain knowledge is used in the literature to address interleaving. Lam
et al. [200] use a predefined set of methods that return non-deterministic
values (e.g., System.Random.Next), and allow developers to remove and add
methods that they expect to be interleaved. Mirgorodskiy and Miller [271]
decompose a trace into a collection of per-request traces based on defined rules.
Each per-request trace is user-meaningful and more deterministic than the
original trace, easing the comparison of multiple traces. The defined rules can
be application-independent or application-specific. For example, one of the
rules is the communication-pair rule that dictates the causal relation between
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pairs of matching communication events (e.g., send and receive events). The
methods based on domain knowledge may require the intensive involvement
of software developers, making it hard to handle complex and heterogeneous
systems.

In addition, heuristics based on the concept of threshold are used to reduce
the large number of differences caused by event interleaving. Although this kind
of methods is easy to implement without consuming extra resources, it suffers
from low accuracy. Sambasivan et al. [328] compare a faulty period of execution
with a non-faulty period of execution to identify mutations that manifest the
root cause of fault. A mutation is identified if the difference of number of user
requests in the faulty period and the non-faulty period exceeds a certain value.
As discussed by the authors, choosing an appropriate threshold is challenging
- a value that is too small will result in more false positives (i.e., obtaining
more differences that are irrelevant). Similarly, Alimadadi at al. [17] handle the
variations introduced by interleaving events with a penalty mechanism that
tolerate small alterations in the patterns mined from traces. The technique also
provides a hierarchical display of patterns. Minor variations are not presented
at a higher level of abstraction, but a lower level of abstraction. Although the
hierarchical comparison and display with a tolerance of variations can help
developers focus on major differences, it does not distinguish interleaving
differences from functional differences, and would still require developers to
decide the relevance of variations.

3.4.5.3 Using Additional Information

Apart from the information shown in logs, information from other sources
have been extracted and used for different purposes. We identified that ten
papers use additional information, including results of software analysis and code
repositories.

There has been an ongoing research topic about answering questions of
what-to-log, how-to-log and where-to-log in software instrumentation. We
identified four papers that use information from other sources to generate logs
for comparison. There are several challenges in generating logs for root cause
analysis. First, developers need to identify the inputs that trigger the normal
behavior of systems that could be compared with the failing execution. Symbolic
execution, which analyzes programs to determine what inputs cause each part
of a program to execute, is used in the literature to solve this problem. Zuddas et
al. [449] use a guided symbolic execution technique [180] which generates both
failing and passing executions that mimic the observed failure. Similarly, Qi et
al. [310] generate passing executions by using concrete and symbolic execution
to synthesize new inputs that differ marginally from the failing input in their
control flow behavior.

Another challenge is that a set of code locations that can differentiate
behaviors between passing and failing executions should be identified to
minimize performance overhead of excessive logging. This is particularly
essential for systems that have critical timing requirements (e.g., embedded
systems). Zuddas et al. [449] use symbolic execution to compute suspiciousness
values of code lines and select execution points with high suspiciousness
values to monitor program behavior. Chilimbi at al.[78] apply static analysis to
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identify coupling between suspicious program paths and other parts of code,
reducing the number of functions instrumented. Pastore et al. [294] compute
code differences and log methods that contain at least a modified line of code.
Bao et al. [42] perform source code analysis which extracts log templates, which
are then used for log parsing. Moreover, to segment a large log file into multiple
execution traces, the code analysis generates the reachability graph to reveal
the reachability relations for any two log messages.

After the comparison, it is important to help developers interpret log
differences. One of the ways to explain log differences is to augment log
differences with additional information. Linking log difference to code changes
has been implemented by log differencing techniques [14, 15, 16, 17, 302]. For
example, with the technique developed by Alcocer et al. [14], source code
differences are shown as a pop-up window when hovering over a method
that differentiates two executions as shown in logs. Pinto et al. [302] mine
software repositories to identify the commit that introduces the differences
shown in logs, which guides developers to look into the relevant commit and
the corresponding code changes.

RQ3 summary:

Out of 81 papers, seven studies take the needs for multi-abstraction
comparison into account; twelve studies explicitly discuss their methods
of handling interleaving events; ten studies extract additional information
from other sources including the result of software analysis and code
repositories; only one study explicitly addresses all these three challenges.

3.5 Discussion and Implication
Table 3.12 summarizes the main findings and implications. In this section, we
discuss them in detail.

3.5.1 Use Cases
As shown in Chapter 2 and other studies conducted in industry [44, 146], logs
are typically used for analyzing software issues, verification and improvement,
and comprehension. In particular, logs are often compared when a software
regression occurs. In this use case, logs are generated from the failing and
passing runs, and compared to localize the problems and identify the root
cause of regressions. Moreover, logs are also compared for verification and
improvement purposes; when a change is made to software, developers need
to verify whether the behavior of software has been changed as expected. Logs
are then generated from two subsequent revisions and compared to verify the
changes. As shown in Section 3.4.2, these major use cases from industry are
aligned with the log comparison literature; nearly half of the papers motivate
their log comparison techniques with a use case of issue analysis, behavior
verification and comprehension. The alignment between industrial needs and
research focus indicates that the research efforts have been made to solve
major problem scenarios from industry. Researchers are encouraged to continue
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Table 3.12: Main findings of literature review

Use cases (Section 3.4.2) Implications

(1) The most frequent use cases of log comparison
presented in the literature are aligned with the
use cases in practices identified in our previous
study [427]. That is, issue analysis, verification
and improvement, and comprehension are the
main use cases identified in literature of log
comparison techniques.

The research efforts on log comparison
techniques for software engineering have
targeted the major problem scenarios in the
industry.

Methods (Section 3.4.3) Implications
(2) Alignment and matching, Metric and Behavioral
model inference are the most commonly used and
combined methods in log comparison techniques.
Each of them has its limitations, suggesting
possible improvements (e.g., methods based on
Alignment and matching might only be useful if
interleaving of events is considered in the context
of concurrent executions).

The limitations of these methods should be
overcome by taking industrial challenges into
account and proposing hybrid solutions.

Maturity of techniques (Section 3.4.4) Implications
(3) We observed a high use of data strategies
and a low use of field, respondent and lab
strategies in the evaluation of log comparison
techniques. Only nine studies involve human in
their evaluation, and most of human participants
are students.

The
strategies that involve human participants
in industrial settings should be applied to
increase the realism of the evaluation of log
comparison techniques.

Industrial challenges (Section 3.4.5) Implications
(4) Only a small share of papers explicitly
consider the challenges identified in our previous
study in industry.

More research efforts should be made
to address industrial challenges in log
comparison.

(5) Only one study explicitly considers all the
three challenges.

Researchers should consider ways
of combining or integrating the techniques
that address different challenges.

(6) An accurate identification of interleaved
events relies on logging more information in
source code, which might introduce performance
overhead.

More research is required to investigate
the methods of capturing partial ordering
relations between events and their impact on
performance of systems.

(7) Logs can be abstracted in multiple ways,
such as based on the structure of systems, or the
tolerance of small variations.

The effectiveness of these abstraction methods
should be evaluated to understand which
abstraction methods can provide developers
the most insights by taking different contexts
into account. We conjecture that semantic-
aware abstraction methods are essential for
comprehension, and they can be combined
with other abstraction methods to address the
complexity of behavioral differences.

(8) Information from source code and software
repositories has been integrated by several
studies to help developers comprehend log
differences.

To effectively utilize and extract additional
information from other sources, an in-depth
study is required to study what additional
information developers use while inspecting
log differences for their tasks in practices.
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improving techniques that help with issue analysis, behavior verification
and comprehension. Our finding about using log comparison techniques for
researching developers’ coding behavior [27] is interesting. This suggests the
potential use of log comparison techniques in other SE comparative studies
(e.g., junior and senior developers’ bug fixing practices).

3.5.2 Methods of Log Comparison Techniques

As shown in Figure 3.6, most log comparison techniques are based on Alignment
and matching, Metric and Behavioral model inference. Several hybrid solutions,
such as the combination of Metric and Alignment and matching, have been
proposed to overcome the limitations of the individual method. Apart from
combining different methods, we suggest researchers to extend their techniques
by taking industrial challenges into account. First, when developing comparison
techniques based on behavioral model inference, choosing the right level of
abstraction is essential for easing the computation of log differences for a
computer program and the comprehension and interpretation of log differences
for humans. However, it is still challenging to avoid missing important log
differences. In the field of model inference, creating the right level of abstraction
is still challenging [259]. To address this challenge, domain knowledge has
been injected manually or automatically in some model inference techniques.
Mashhadi et al. [259] develop a technique that allows users to iteratively define
abstraction levels for the learned models used for debugging. It allows the
user to create different models from the same set of execution traces, making
a high-level state machine for initial understanding of the context and then
zooming-in to the defective area by selecting the set of variables and function
calls. Hooimeijer et al. [166] construct multi-level state machine models from
logs by using knowledge of the software architecture, its deployment and
properties. The multi-level state machine models inferred by these techniques
can be further used for comparison. Indeed, comparing models at a single
abstraction level may miss important behavioral differences. As favored by the
software developers interviewed in our previous study, log information should
be presented and compared at different levels of abstraction (as discussed in
Section 2.5.4.3). It can be seen from Table 3.10 that the techniques based on
behavioral model inference do not provide multi-level comparison, suggesting
the need for extensions of these techniques. An example can be seen in a recent
work (published after the studied papers have been collected) from Hendriks et
al. [159] where a methodology is proposed to compare logs. In this methodology,
multi-level state machine models that represent the behavior of multiple
executions are obtained using the model inference technique developed by
Hooimeijer et al. [166], and then compared using a model comparison technique
developed by Walkinshaw et al. [396] which is studied in this literature review.
By applying the existing model inference and model comparison techniques,
this methodology allows developers to inspect execution differences in a top-
down manner, supporting the localization of software components that behave
differently in multiple executions, and the further investigation of behavioral
differences of the components in detail.

In the presence of concurrent executions, approaches based on Alignment
and matching might only be useful if the dynamic nature of complex systems
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is taken into account (see discussion in Section 3.4.3). This idea is aligned
with developers’ experience with text-based comparison tools as discussed
in Chapter 2. For example, when using text-based comparison tools for
understanding functional differences of two software versions, a lot of
interleaving events caused by concurrency are highlighted, overshadowing
important differences related to functional changes. This alignment emphasizes
the importance of explicitly dealing with interleaving events in log comparison.
It can be seen from Table 3.10 that 8 out of 40 studies based on Alignment and
matching [17, 50, 98, 121, 271, 327, 403, 440] have taken interleaving of events
into account. We suggest researchers to take interleaving into account while
using approaches based on the concept of Alignment and matching.

Approaches based on Metric, Clustering and Statistical analysis may lack an
intuitive explanation of underlying problems indicated by a single value or
resulting clusters. Additional information can help developers interpret results
produced by log differencing techniques. As shown in Table 3.10, seven out
of 41 studies based on Metric, Clustering or Statistical analysis [14, 15, 16, 17,
42, 78, 449] use further information in addition to logs for the developed log
comparison techniques. Among these studies, four [14, 15, 16, 17] extract code
changes to augment the resulting log differences.

3.5.3 Maturity of Log Comparison Techniques

In Section 3.4.4, we study the maturity of log comparison techniques by
identifying their evaluation strategies and participant groups. We observe a
high use of data strategies and a low use of field, respondent and lab strategies.
Moreover, the mixed methods are also rare in log comparison research. The
data strategies are often used to assess the performance (e.g., consumed time
and memory) of the techniques. The rare use of field, respondent and lab
strategies suggest that the effectiveness of techniques in assisting developers
in their analysis tasks (e.g., software comprehension) might not be thoroughly
evaluated. It is important to study how techniques could be applied in a real
setting (e.g., with field strategies), how developers use or interact with the
provided techniques (e.g., with field, respondent or lab strategies), and whether
the techniques are better than other techniques in providing actionable insights
for developers (e.g., with lab strategies).

This finding is not exclusive to log comparison research but aligned with
general software engineering research, as shown in a study from Storey et
al. [359] where 151 papers from two top SE venues are examined and the
majority of papers adopted data strategies. It is not surprising that data
strategies are more common than other evaluation strategies in log comparison
research. Data strategies are suitable for evaluating some aspects of techniques,
such as performance and scalability [359]. Moreover, data strategies can
contribute to high generalizability of the findings if logs from various types
of systems are used in the evaluation. The lack of field, respondent and lab
strategies indicates the lack of human participants in the evaluation, threatening
other quality criteria such as realism and control over human factors. In
practices, log comparison is, however, an activity performed by humans. Human
involvement in the evaluation is especially important for the techniques that
promise to help developers ease the analysis activities. As shown in Section 3.4.3,
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only nine studies have involved human participants, and the majority of
participants in these studies are students. The difficulty of adopting field
strategies is well-recognized in software engineering research [359]. To attract
developers’ and companies’ interest in providing a study context and subject,
we suggest researchers to propose a demanding and common use case (e.g.,
analyzing software regression and flakiness) for evaluation. Prioritizing and
selecting the use cases of companies’ interest is considered as the best practice
to involve companies and ease the communication with them [129].

3.5.4 Addressing Industrial Challenges

In Section 3.4.5, we discuss to what extent the existing log comparison
techniques take the identified industrial challenges (identified in Chapter 2)
into account. With the goal of bringing techniques which are practically useful,
the industrial challenges should be explicitly considered in the research work,
as otherwise, the effectiveness of techniques cannot be validated. To answer
our RQ3, we examine whether these log comparison techniques address
the identified industrial challenges (i.e., providing multi-level comparison,
handling interleaved events and augmenting log differences with additional
information). Our results show that 25 of 81 studies (that we studied for RQ2.2-
5) considered and explicitly handled at least one of the industrial challenges.
Moreover, only one study considered all three challenges.

3.5.4.1 Identification of Interleaved Events

As presented in Table 3.11, there are multiple ways to handle the interleaved
events. The methods based on logging additional information are more accurate,
but introduce performance overhead to the system [50, 98, 440]. A trade-off is
involved when using the methods that rely on logging. For example, when using
the logged variables to distinguish program states, the accuracy of identification
is higher when more variables that characterize program states are logged.
That is, the methods based on logging additional information have to face the
common challenges in software logging: what-to-log, where-to-log and how-to-
log. In this study, we limit our investigation to the log comparison techniques
that explicitly handle interleaved events.

We suggest researchers to study the large body of software logging methods:
What are the existing logging methods that capture the causal relations
between events? How accurate are the existing methods for the identification
of interleaved events? How much performance overhead do the required
logging methods introduce to the systems? Various tracing systems have been
developed to track requests in distributed systems where concurrent executions
inevitably occur, such as Zipkin [448], Canopy [187], X-Trace [119], Dapper [343],
and Jaeger [177]. We suspect that the trade-off between performance of systems
and accuracy of interleaving identification has to be investigated for different
types of applications that have different system properties. For example, for
embedded systems which often have strict timing requirements, one may have
to sacrifice accuracy to ensure system performance. We suggest researchers to
investigate the trade-off between the accuracy of identifying interleaved events
and the introduced performance overhead for different types of applications.
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3.5.4.2 Abstraction Methods for Multi-abstraction Log Comparison
We identified seven papers that compare log information at different levels of
abstraction. As discussed in Section 3.4.5.1, researchers define abstraction of log
information based on the structure of software systems or the tolerance of small
variations.

We suggest researchers to focus on two directions. First, there are multiple
studies [14, 369, 402] that abstract logs based on software structure. A more
in-depth study that involves developers is necessary to identify which way
of abstraction provides most insights. To evaluate the existing solutions, one
can consider performing controlled experiments requiring developers to solve
a certain software engineering task (e.g., to identify the root cause of flaky
tests) with different log comparison techniques that provide a multi-abstraction
comparison.

Second, researchers can consider combining different abstraction methods.
According to an interview study conducted by Levy et al. [221] about
comprehending large scale software, the key to understanding larger volumes
of code is understanding abstractions and concepts. System understanding
relies on the structure (architecture) such as the components, their connections,
data flow, and also the design decisions, which is detached from low-level
code details required by program understanding. The comprehension strategies
are aligned with our study presented in Chapter 2 about log comprehension
for large scale software. Hybrid solutions that combine or integrate multiple
techniques can be proposed to provide multi-level comparison. For example,
the technique developed by Tak et al. [369] can show how the communication
patterns between software components differ in two executions, which help
developers target the components for the inspection of internal low-level
execution details (i.e., how the function sequences executed by a certain
component differ in two executions). The differences in internal behavior of
each component in the system can be obtained by integrating the work from
Alcocer et al. [14] where a so-called performance Evolution Matrix is developed
to hierarchically show the internal structure of software components (packages,
classes, and methods) and the dependencies between these components. The
differences that lie in the execution time and dependencies of methods are then
visualized for multiple software versions, with the changes identified in source
code. By combining the techniques from Tak et al. [369] and Alcocer et al. [14],
both the communication patterns that represent high-level system behavior, and
the performance and internal dependency that represent local behavior of each
host can be hierarchically compared. Moreover, it could happen that there exists
an overwhelming number of low-level differences. In this case, the method
that infers the abstractions based on the tolerance of small alternations [17] can
be applied to hierarchically display the internal differences for the component
under inspection.

3.5.4.3 Additional Information for Comprehending Log Differences
As shown in Section 3.4.5.3, ten studies use further information from additional
sources. Among them, five studies augment information from source code
and software repositories to explain the identified log differences. However, it
remains unclear what kind of additional information is useful and effective for



3.6 Related Work 105

developers to interpret log differences. One way to investigate this question
could be conducting observation studies to learn how developers compare
logs when performing a certain task (e.g., root cause analysis), what additional
sources of information they use, and how they extract the needed information.
Understanding developers’ information needs from difference sources can
help researchers develop techniques that can automatically extract needed
information. Information needs of various software engineering tasks, such as
code review [293], design meetings [162], and team collaboration [193], have
been studied in various contexts. Tao et al. [372] conducted an empirical study
on how developers understand code changes. By gathering quantitative data
from 180 survey participants, the authors collect questions developers asked
when comprehending software changes, and the possible sources to obtain
the information. For example, the question:“Is this changed location a hotspot for
past changes? How many times has this location been changed?” could be answered
by mining software repositories, while the question: “Which documentation is
linked to this code change?” could be answered by leveraging requirement tracing
techniques. We conjecture that the questions that developers ask in inspecting
log differences may overlap with questions asked in inspecting code changes.
A systematic research study is required to collect the information needs of
developers for interpreting log changes and map the information needs to the
existing techniques that automatically extract the information.

3.6 Related Work
In this study, we focus on existing literature about log comparison. To the
best of our knowledge, there is no systematic literature review focusing on the
comparison of logs. However, there are some literature review studies about
log generation and analysis. In this section, we discuss these literature review
studies and compare our study against them.

There are various literature review studies that have focused on log analysis
techniques for different maintenance tasks. For instance, some studies have
examined log generation and preprocessing techniques, which are critical in
determining the quality of logs. El-Masri et al. [107] surveyed log abstraction
techniques that transform raw log data into high-level information by analyzing
17 papers. Similarly, Chen et al. [77] surveyed log instrumentation techniques
by studying 69 papers, with a focus on logging approaches, libraries, and
integration, suggesting improvements for software logging techniques.

Other studies have examined log analysis techniques for specific
maintenance tasks, such as reliability engineering. For example, He et al. [154]
provided a comprehensive overview of automated log analysis techniques for
reliability engineering by analyzing 158 papers. They focused on techniques that
assist in three reliability engineering tasks: anomaly detection, failure prediction,
and failure diagnosis. Similarly, Das et al. [90] examined the research trend of
log analysis in failure prediction by examining 30 studies. Additionally, Svacina
et al. [365] conducted a systematic literature review that examined recent trends
in vulnerability and security log analysis, analyzing 34 papers and identifying
the limitations of logging mechanisms in software systems. Our study focus on
the comparison of multiple logs, which requires an input of multiple logs and
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analyzes the differences between logs. Candido et al. [71] study 96 papers on
logging techniques for software monitoring by examining work related to log
engineering, infrastructure and analysis.

Our work differs from existing literature studies in several ways. Firstly,
we concentrate on log comparison, which is based on our observation that
developers frequently need to compare logs in their daily work (Chapter 2),
whereas most of the previous literature studies focus on the broader use of
logs. Different from some of the studies that focus on log analysis for specific
maintenance tasks (e.g., [154]), we study what maintenance tasks that existing
log comparison techniques attempt to assist. We identify that logs are frequently
compared to analyze issues, which is consistent with the single log use case
identified in the literature. This is also aligned with our previous finding
(Chapter 2) that comparing logs generated from different software versions
can often assist developers in identifying the root cause of regression problems.
Secondly, we explore the evaluation strategies used to assess the techniques,
emphasizing the lack of involving human participants in the evaluation of
log comparison techniques. Moreover, one of our main contributions is that
we evaluate the log comparison techniques against the industrial challenges
identified in our interview study (Chapter 2), highlighting the need to improve
these techniques to meet developers’ expectations. In terms of the industry
challenges we examine, a related systematic literature review [68] focused on
techniques that match information from logs and stack traces back to source
code. This review analyzed 16 papers and concluded that log-source matching
techniques are primarily designed for fault localization, anomaly detection, and
performance analysis. However, only two of the 16 studies reviewed combined
additional information, such as bug reports and Stack Overflow, with logs and
source code. This study addressed a research question similar to one of the
industry challenges that we discuss in our study, where we investigate what
additional information is used to aid in log comparison. We found that in our
study, results of software analysis (such as symbolic execution) and source code
are often combined with log information to interpret log differences. Despite our
study having a different focus, we arrived at the same conclusion that additional
information is rarely combined with log information by these log analysis and
comparison techniques, which calls for more research into extracting useful
information from other sources to help developers analyze logs.

3.7 Threats to Validity
This chapter provides a systematic overview of the state-of-the-art log
comparison techniques, which is based on the analysis of 180 primary studies
(81 SE related studies were analyzed for RQ2.2-5). In this section, we discuss
the threats to the validity of this study.

3.7.1 Construct Validity
Construct validity is concerned with the extent the object of study truly
represents the theoretical construct behind the study. First, the suitability of
research questions determines whether the research objective can be addressed.
To mitigate this threat, we took iterations to refine the research questions
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through discussion. Furthermore, we formulated the questions related to
industrial challenges, based on our previous qualitative study in industry.
Second, the choice of keywords decides which set of papers are selected.
We carefully select the keywords by studying the relevant papers about log
comparison. We reduced the risk of missing papers that use keywords that
mean the same (e.g., comparing and differencing) by querying the synonyms of
these words. As explained in Section 3.3.1, we constructed a search query by
concatenating keywords, which has a risk of missing papers that mention these
keywords separately. We reduced this risk by performing snowballing. Third,
we collected papers from selected data bases. There could be some relevant
papers in other databases. We minimized the risk of missing relevant papers
by performing one-round backward and forward snowballing. It could be that
multiple rounds of snowballing are required to reach saturation. One-round
snowballing is a practical solution in software engineering research. Fourth, the
quality of papers may influence the results of our study. We select the primary
papers based on the ranking of the venues, which reduces the risk of involving
bad quality papers.

3.7.2 Internal Validity

Internal validity examines the cause-and-effect relationship between a cause
and an outcome. In our study, the main threats to the internal validity arise
from the limitation of the search engines. The databases are ever-changing, and
constantly including more papers. Moreover, the underlying search algorithms
could also be changing. This means that the same search queries may result in a
different set of papers. However, with the performed snowballing, we consider
our retrieval to be nearly complete to derive the classification schema discussed
in this study.

3.7.3 External Validity

External validity is concerned with to what extent the results can be generalized.
We collected the primary papers that are written in English. There could some
relevant studies written in other languages. Another concern is that some
studies might be described in gray literature (e.g., blog) or shared internally in
companies. In this study, we focus on the resources that are easily accessible
to a broad audience. A follow-up study could be studying the gray literature
or performing a survey to collect the log comparison techniques developed
in-house.

3.7.4 Conclusion Validity

Conclusion validity is a measure of the reasonable degree to which a research
conclusion can be trusted. In our study, due to the large number of false positives
we obtained from database search, we adopted automatic filtering based on the
frequency of keywords in papers. There is a risk that we missed the papers that
do not frequently mention the keywords but are still relevant. We mitigated this
risk by randomly sampling 50 papers that are excluded by the automatic filter
and manually validating their irrelevance. In the manual filtering process, two
raters were involved for each paper, and the disagreements were resolved by the
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third rater. Additional threats were introduced by using the ACM classification
and by manual analysis (for RQ2.1). To limit the impact of the latter, we have
used multiple raters and resolved the disagreement. The selected papers were
analyzed only by the author of this thesis (for RQ2.2-5) due to the large number
of papers studied in this work. The author of this thesis took iterations to
examine information extracted from each paper and recheck the analysis while
writing the paper.

3.8 Conclusion
In this study, we report on a systematic literature review of log comparison
techniques. By combining keyword search and snowballing, we obtained
180 papers that are further classified into 6 categories based on the field
of computing they belong to: most papers are related to software and its
engineering (n=81) and information systems (n=63). By further analyzing papers
related to software and its engineering, we identified that issue analysis is the
main use case for log comparison in the literature. The ordering, occurrence
and frequency of log events as well as the resource consumption and value
information are the types of information compared most by log comparison
techniques. The majority of techniques are based on the approaches of Alignment
and matching, Metric and Behavioral model inference. The existence of hybrid
approaches suggests possible ways to overcome the limitations of individual
approaches. By examining the used evaluation methods, we found that data
strategies, that rely on generated or simulated data, are most frequently
used and combined with other strategies to increase quality of evaluation.
Only nine studies involve human participants in the evaluation, and most
human participants are students, indicating the need for increasing realism of
the evaluation methods for log comparison techniques. Our previous study
identified three industrial challenges of log comparison techniques: comparing
log information at multi-level abstraction, handling interleaving events in logs,
and extracting additional information to aid log comparison. We found that
only a small share of techniques explicitly consider these industrial challenges.

Based on the result, we suggest researchers to further investigate approaches
for addressing industrial challenges. For example, to handle interleaving events,
we suggest a further investigation on the logging methods for capturing partial
ordering relations between events, and their impact on the performance of
systems.



4
Model Inference: Combining
Active and Passive Learning

In chapters 2 and 3, we learned that developers and researchers use models
to abstract log information. This observation is in line with the shift from
code-based to model-driven engineering (MDSE) in the embedded industry.
However, MDSE adoption faces the challenge of dealing with existing codebases.
To address this, re-engineering activities, such as inferring behavioral models
(e.g., state machines), are crucial. Model inference techniques can be classified
as active or passive learning, but their practical application is hindered by
limitations such as learning time and limited logs. In this chapter, we address
RQ4 (highlighted in Figure 4.1), presenting a hybrid technique that extends
active learning with execution logs and passive learning results. We evaluate
the proposed technique on eighteen components used in ASML TWINSCAN
lithography machines to infer models from the existing codebase and logs.
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Figure 4.1: Research overview (RQ4)

4.1 Introduction
Unlike the traditional software development process, Model-Driven Software
Engineering (MDSE) uses models as the main software artifacts. MDSE promises
that presence of models will facilitate early verification of correctness and hence
earlier defect detection, reducing development cost [136].

In order to benefit from the promises of MDSE, existing software systems
have to be migrated. To tackle this problem, model inference techniques have
been proposed in the literature. These techniques infer behavior using a running
system, a so called SUL (system under learning), rather than modeling from
scratch. The inferred models (e.g. state machines) can then be verified, simulated,
transformed or used to generate new code.

Model inference techniques can be categorized into active and passive
learning techniques. Active learning techniques [23, 174, 320] are based on the
query-response mechanism. They iteratively interact with a running system
by sending inputs (queries) and observing outputs (responses), and infer
hypothesized models based on the interactions. Such techniques guarantee
to learn the complete behavior under the assumption that the counterexamples
differentiating the hypothesized model from the system can be found via
conformance testing. However, as discussed by Vaandrager [383], the required
number of test sequences grows exponentially with the size of the system.
Executing such a large set of test sequences is very time-consuming. In practice,
the learning process has to be stopped at some point. In such a case, one can
never be sure whether the learned model represents the complete behavior of
the running system. Hence, application of active learning in practice induces a
trade-off between efficiency and behavioral coverage.

Passive learning techniques [52, 395, 406] infer models from a set of execution
logs. Since the logs correspond to a limited number of use cases, the learning
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results are also incomplete [134, 394]. Moreover, these techniques introduce
overapproximation [65, 203, 238] making it hard to learn the complete behavior
of the system.

To get a better understanding of how testing hinders active learning to scale
in real settings, we conducted an exploratory pilot study at ASML, provider of
lithography systems for the semiconductor industry. We applied active learning
to 218 components from the TWINSCAN lithography machine and observed
that when the total active learning time increases, the learning is dominated by
the time spent in testing the correctness of the hypothesized models. This
observation confirms the discussion of Vaandrager [383] that the required
number of test sequences grows exponentially with the size of the system.
Moreover, we also find that it is particularly hard to learn the complete behavior
of systems where earlier choices restrict the behavior much later on. We name
the early choice behavior problem as far output distinction behavior. Indeed,
active learning requires counterexamples that distinguish the hypothesized
model from the system, to achieve completeness. For systems with the far
output distinction behavior, the counterexample is a long sequence of inputs
capable of reaching the system states where different outputs can be observed.
It requires a lot of time for the conformance testing algorithms to explore all
possible input sequences of a certain length and find the counterexamples. The
far output distinction behavior is one of the reasons why in our pilot study
active learning could not finish learning all the 218 components within 1 hour.
By inspecting these components, we find that the unlearned behavior occurs
frequently during system execution. Artifacts created during system execution,
such as logs, and subsequently passive learning results obtained from them,
can thus be expected to contain this unlearned behavior. Hence, additional
information derived from logs or passive learning results is expected to speed
up finding the counterexamples, improving the efficiency of active learning.

Based on the pilot study we explore whether active and passive learning can be
combined to improve the efficiency of learning, while guaranteeing a certain minimum
behavioral coverage. From the passive learning perspective, active learning can be
used to find the exceptional behavior that is not captured by the execution logs.
For active learning, the logs and passive learning results can be used to learn the
behavior efficiently. A certain minimum behavior coverage can be guaranteed;
the observed behavior captured by the execution logs will be included in the
learned result. To evaluate whether combining active and passive learning can
improve the efficiency of active learning, we applied the combined approach
to 18 components from 218 components of our pilot study. We observe that
active learning finishes significantly faster and results in complete behavior.
In particular, the combined approach helps to distinguish states that were
hard to distinguish with the existing setup, without exhaustively exploring all
combinations of input actions state by state.

The main contributions are the investigation of the scalability of active
learning and the causes of time-consuming testing (the pilot study), and an
improved active learning technique that integrates execution logs and results of
passive learning.

Outline. After discussing the background in Section 4.2, we present the pilot
study in Section 4.3. Then we introduce the combined approach in Section 4.4
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and evaluate it with industrial components in Section 4.5. Finally, we discuss
related work and conclude our paper in Sections 4.6 and 4.7.

4.2 Background
Most model inference techniques learn state machines. Several algorithms [23,
52, 174, 395] have been proposed over the years to implement active and passive
learning. Since we focus on the conceptual weaknesses of active and passive
learning, we introduce only the generic concepts underlying the algorithms.
For a more detailed explanation of different algorithms, the reader is referred to
the paper by Vaandrager [383] for active learning, and the one by Stevenson et
al. [357] for passive learning. Below we introduce the necessary concepts and
definitions that are used in this chapter.

4.2.1 State Machines

We choose Mealy machines to represent the results of model inference because
Mealy machines provide the notion of input and output actions that are often
used to model reactive systems.

Definition 1 — Mealy machine. A (deterministic) Mealy machine is a tuple
M = ⟨S,Σ,Ω,σ,λ, ŝ⟩, where S is a set of states, Σ is a set of input actions, Ω is a
set of output actions, σ : S × Σ → S is a transition function, λ : S × Σ →Ω is an
output function and ŝ ∈ S is the initial state.

Definition 2 — Deterministic Finite Automaton. A Deterministic Finite
Automaton is a tuple DFA = ⟨S,Σ,σ, F, ŝ⟩, where S is a set of states, Σ is a
set of input actions, σ : S × Σ → S is a transition function, F ⊆ S is a set of
accepting states, and ŝ ∈ S is the initial state.

Given a set of input traces, a prefix tree acceptor PTA is a tree-like DFA
where each input trace in the set is represented by a path from the initial state
to an accepting state, and no state has multiple incoming transitions.

Example 1 The Mealy machine in Figure 4.2 implements functions ai and bi
with return values ao and bo, respectively. The PTA corresponding to the set of
execution traces {aiaoaiaobibobibo, aiaobibo} is shown in Figure 4.3.

1start 2 3

ai/ao ai/ao

bi/bobi/bo

Figure 4.2: A Mealy machine of a SUL. The notation i represents a
function call, while the notation o represents the return value of the
function call.
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1start 2 3 4 5 6 7 8 9

10 11

ai ao ai ao bi bo bi bo

bi

bo

Figure 4.3: PTA for a set of traces t = {aiaoaiaobibobibo, aiaobibo}. The
notation i represents a function call, while the notation o represents the
return value of the function call

4.2.2 Completeness of Learning Results

Completeness requires that the learning results contain all the behavior that is
allowed by the SUL and nothing more than that. Completeness can hence be
violated by overapproximation or underapproximation. Overapproximation
means that the learned model allows behavior that is not allowed by the SUL.
Underapproximation indicates that some of the behavior of the SUL is absent
from the learned model.

Example 2 The model in Figure 4.4(a) overapproximates the SUL from
Figure 4.2. In fact, this model allows any sequence of inputs. The model shown
in Figure 4.4(b) underapproximates the SUL. It misses the occurrence of input
sequence aiaibibi which is allowed by the SUL. The model shown in Figure 4.4(c)
both overapproximates and underapproximates the SUL. This model allows
input sequence aibibi which is not allowed by the SUL, while it disallows aiaibibi
present in the SUL.

1start

ai/ao,bi/bo

(a) Model with
overapproximation

1start 2

ai/ao

bi/bo

(b) Model with
underapproximation

1start 2

ai/ao
bi/bo

bi/bo

(c) Model with overapproximation and
underapproximation

Figure 4.4: Model (a) overapproximates the SUL from Figure 4.2,
(b) underapproximates it and (c) both overapproximates and
underapproximates it. The notation i represents a function call, while the
notation o represents the return value of the function call
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Learner

SUL
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Figure 4.5: Active learning framework

4.2.3 Active Learning

In 1987, Angluin proposed the L* algorithm which implements a well-known
active learning framework [23]. The original L* algorithm was designed to
construct DFAs and was later adapted to learn Mealy machines, enabling
learning for reactive I/O systems [255]. The active learning framework
(Figure 4.5) assumes the presence of a teacher, which consists of the SUL and an
equivalence oracle. It also assumes that the SUL can be represented by a regular
language.

Initially, the learner only knows the set of input actions Σ and output actions
Ω of the Mealy machine that represents the behavior of SUL. When learning,
the learner iteratively executes two steps. In the first step, the learner asks
membership queries (MQs) to the SUL to obtain sequences of output actions in
response to sequences of input actions. For example, for the SUL represented
in Figure 4.2, output sequence aobo is the response to input sequence aibi. The
learner then proposes a hypothesis model in the form of a Mealy machine, based
on the output sequences. In the second step, the learner verifies the correctness
of the derived hypothesis model by posting the hypothesis as an equivalence
query (EQ) to the equivalence oracle (EO); the oracle composes test queries (TQs)
which are sent to check the equivalence with respect to the SUL. A TQ, similar to
a MQ, checks whether the system’s response to an input sequence agrees with
the response expected from the hypothesis. If there is a mismatch between the
responses to the TQ from the hypothesis and the SUL, then the input sequence
is considered as a counterexample. Based on the counterexample, the learner
refines the hypothesis with further MQs. The learning process continues until
the equivalence oracle cannot find a counterexample anymore to distinguish
the hypothesis from the behavior of the SUL.

The learning algorithm guarantees the completeness of the learned
model under the assumption that the equivalence oracle always returns a
counterexample, given a counterexample exists. Peled et al. [296] proposed to
use conformance testing to approximate the equivalence oracle. The partial
W-method (Wp-method) [123] is a conformance testing technique that, given
an upper bound m on the number of states of the target model, constructs a set
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of TQs to find the difference between the hypothesis and the SUL. Hence, if
such a bound m is known for the given SUL, the equivalence oracle based on
the Wp-method guarantees to find a counterexample if one exists.

However, in practice finding m is non-trivial as it requires a comprehensive
understanding of the SUL [347]. Furthermore, the number of TQs increases
exponentially in m − n where n is the number of states of the hypothesis [383].
Underestimation can cause incompleteness while overestimation can cause
scalability issues. Limited by time, in practice one has to stop testing the
hypotheses at some point, sacrificing completeness. The last hypothesis,
proposed before stopping, can overapproximate the SUL, underapproximate
it or both overapproximate and underapproximate it for different parts of the
behavior.

4.2.4 Passive Learning
Different from active learning, passive learning algorithms learn a model based
on a provided set of traces. The majority of passive learning algorithms are
based on state merging [201, 380]. By merging equivalent states, the behavior is
generalized (i.e., allowing more possible traces). However, a greedy merging
strategy will over-generalize the allowed behavior in the learned models. One
of the ways to avoid overgeneralization is to provide negative traces which
provide counterexamples to invalidate aggressive state merges. Therefore, many
passive learning algorithms, such as RPNI [285], expect both positive traces (i.e.,
traces accepted by the SUL) and negative traces (i.e., traces rejected by the SUL).

Below, we explain the concept of state merging with a well-known RPNI
algorithm. Many algorithms were later developed on top of it. RPNI starts from
positive traces to build up a PTA. Next, the algorithm iteratively merges pairs
of states. Passive learning algorithms are often different in how they select a
pair of states to merge. RPNI merges states based on the concept of quotient
automaton. For more details about the concept, we refer to the original paper
of this algorithm [285]. An important property of this merging strategy is that
the resulting model is the superset of the original model (i.e., the resulting
model accepts the language of the original model). State merging might cause
non-determinism, which is then removed by merging additional states. For
example, given the PTA in Figure 4.3, RPNI might decide to merge states 3 and
7, hypothesizing aiao(aiaobibo)∗bibo. Next, the validity of the merge is checked:
merges that accept negative traces are disallowed to avoid poor generalization.
This process continues until no further merges are possible. Upon termination,
the algorithm has learned a model that accepts all positive traces and rejects all
negative traces. The language of the PTA, representing the exact behavior of the
set of positive traces, is a subset of the language of the model resulting from
passive learning.

The passive learning algorithms guarantee to learn a complete model given
a complete set of traces. Notions of completeness for a trace set differ for
different algorithms: e.g., RPNI requires that the positive trace set visits every
state and transition in the behavior of the SUL, and the negative trace set
distinguishes every pair of states in that same behavior.

In practice, execution logs consisting of traces are used as the inputs
to passive learning algorithms [239]. The execution logs usually only cover
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limited use cases, and contain only positive traces [5]. This means that the
negative traces are practically absent [239], although such traces are needed to
avoid overgeneralization as proven by Gold [134]. In the absence of negative
traces, heuristics are typically used to prevent over-generalization [201]. These
heuristics can vary, but typically still lead to overapproximation of some parts
of a system. Together with the incompleteness of the logs, the passive learning
result presents the same drawback as the active learning result, that is, both
overapproximation and underapproximation can exist in the learned models.

4.3 Pilot Study
As introduced in Section 4.2.3, active learning can suffer from scalability issues
due to the number of TQs required for validating hypotheses. However, there
has little empirical evidence that shows the scalability of the technique in
practice. To better understand the scalability challenges of active learning and
the role of the testing phase, we conduct a pilot study at ASML, provider
of lithography systems for the semiconductor industry. Our approach to be
presented in Section 4.4 is inspired by the findings of the pilot study.

Smeenk et al. [346] applied active learning to learn an industrial component
and reported that they did not learn the complete behavior of the component,
having used more than 263 million queries over a learning period of 19 hours.
Their study evidently supports the claim that the low learning efficiency
reduces the scalability of active learning. However, they did not study (1)
to what extent testing is the bottleneck in the active learning process and (2) which
distinguishing behavior between hypothesis and SUL is time-consuming to find via
testing. Answering these two questions is a prerequisite to developing more
scalable solutions. Hence, we design a pilot study to answer these questions.

4.3.1 Study Design
In this section, we discuss our study design.

4.3.1.1 Study Objects
To apply active learning as described above, we need to identify the upper
bound on the number of states m. In general, this step requires profound
knowledge of the SUL and precise estimation of the upper bound. Therefore,
we opt for components that originally were developed using traditional
engineering practices and later manually migrated to MDSE, while preserving
the functionality. Since these components are MDSE-based, we can use the
number of states from the behavior of the MDSE models (i.e., reference models)
as m. Moreover, since the components were first developed in a traditional way,
they can be expected to exhibit a level of control-flow complexity comparable to
other components developed using a traditional software engineering approach.
Based on these criteria, we select the logistics controller of ASML’s TWINSCAN
lithography machine. This controller is in charge of scheduling the logistical
process within a wafer scanner, making sure that each wafer is processed
according to a specified recipe. In 2012, it was manually redesigned using
an MDSE technology called Analytical Software Design (ASD) [390]. Over the
years, 28 developers have performed more than 1,500 commits to the master
branch of the version control repository of the controller. The resulting software
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consists of 218 communicating ASD components. Each component is modelled
as a Mealy machine. The number of states in the Mealy machines varies between
1 and 18,229. The generated code consists of more than 700 KLOC.

4.3.1.2 Active Learning Setup
We opt for the state-of-the-art active learning algorithm TTT [174] together
with the Wp-method for testing. The TTT algorithm improves L* algorithm
by optimizing the internal data structure of the algorithm and reducing
redundancies in counterexamples. As a result, the TTT requres fewer MQs
to learn models. Active learning consists of two steps, learning or refining of
the hypotheses using MQs and testing these hypotheses using EQs and TQs.
For each component, we separately measure the learning time and the testing
time. We run the learning process with a timeout of 1 hour. In case of a timeout,
we consider the last hypothesis constructed by the learner as the learned model.

4.3.1.3 Model Comparison
Since we apply active learning to the components for which code is generated
from models, we have the reference model to examine whether the learned
models are correct or not. Following the comparison framework proposed by
Aslam et al. [32], we consider a learned model to be complete if it holds a certain
formal relation with its corresponding reference model. The used formal relation
in this framework is called weak trace inclusion. According to the authors, this
formal relation is used because the theory of active learning is based on traces.
If a mismatch exists between the learned model and its reference model, we use
the structure-based comparison method of Walkinshaw et al. [396] to identify
the differences. We then analyze why the differences between the hypothesis
and the SUL are hard to find via conformance testing, and what improvements
might be beneficial to make this process efficient.

4.3.2 Results

In this section, we discuss the results of this pilot study, which applies active
learning to the 218 components from ASML. We measure the total time of
active learning, which includes learning time and testing time. Among the 218
components, 112 have been learned within 1 hour. For these components, when
the total learning and testing time is small, learning is responsible for more than
half of the total time of active learning (see Figure 4.6). However, as the total
time of active learning increases, the ratio drops: when the total time of active
learning exceeds 1 minute, the learning time is less than 3% of the testing time.

Next, we take a closer look at one of the remaining 106 components. The
reference model for this component is a Mealy machine with 14 states and 144
input actions. In this model, we identify a pattern which cannot be learned by
active learning within one hour.

We call this behavioral pattern as far output distinction behavior, as
shown in Figure 4.7. Note that Figure 4.7 presents only the states that show
the structural differences between the last hypothesis constructed for this
component and the component itself (SUL). The reference model in Figure 4.7(a)
shows that output actions c1 and d1 can only occur in the upper path, following
the input action a1 (as shown in bold). Similarly, output actions c2 and d2 can
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Figure 4.6: Learning time and testing time in active learning

only follow the input action a2 in the lower path (also shown in bold). However,
the learner only successfully learned the path starting with input action a2,
as shown in Figure 4.7(b). It also tried to explore input action a1 from state
11, but failed to distinguish the paths because no different output action was
immediately observed. As a result, output actions c2 and d2 can follow input
action a1 (as shown in blue). This means that the input sequence a1b2b4b6 was
not explored, as otherwise the counterexample that distinguishes state 2 from
state 6 would have been found. Searching for such a counterexample requires
the equivalence oracle to test all combinations of the input actions, to explore
the behavior from state 2 to state 5 (in green) with sequences that consist of
3 input actions. Recall that the component is much bigger than suggested by
Figure 4.7, which focuses only on the structural differences between the last
hypothesis constructed and the component itself; the component has 14 states
and 144 input actions. Exploring sequences of 3 input actions requires exploring
1443 (i.e., 2,985,984) combinations in the worst case, while only one of them
is relevant and can refine the model. Furthermore, the equivalence oracle not
only considers behavior between states 2 and 5, but between other pairs of
states as well. Even with a timeout of 8 hours, those two paths could not be
distinguished.

We inspected other unfinished learning cases. The far output distinction
behavior often appears in the reference models. Discussing this observation
with the developers of the logistics controller we learned that such behavior is
common in the controller due to non-stop parallel processing in TWINSCAN
systems: for maximum accuracy and productivity a TWINSCAN measures one
wafer while imaging another one. Hence, the controller has to, for instance,
schedule the movement of two chucks which hold the measured and imaged
wafers respectively. This system requirement is reflected by different control
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(a) Reference model
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Figure 4.7: Example showing the far output distinction behavior problem
in the testing part of the active learning process. The actions in bold
distinguish two paths that are not learned by active learning. The states
and transitions in green show a path that is not explored by testing, while
the states and transitions in blue highlight the execution path disallowed
by the reference model. The numbers shown in states are labels and do
not suggest ordering.

outputs given similar input sequences in the components of the controller.
However, the far output distinction behavior is typically missing from the
learned models.

4.3.3 Conclusion
This pilot study confirms that testing is the bottleneck of active learning as
previously discussed in literature [346, 383]. It also shows that most of the
testing time is spent on finding counterexamples that distinguish the states
differentiated by an output action on a (far) future state.

In the pilot study, we took the advantage of MDSE components for
which the number of states is known, and hence the Wp-method can be
suitably configured. However, in practice users usually know little about a
legacy SUL that was developed using traditional engineering practices. The
underestimation of the upper bound m removes the guarantees the Wp-method
provides, i.e., the learned models might be incomplete, even though we run the
learning till it ends. Given the difficulty of estimating the upper bound m and
the large amount of required testing time, obtaining a model that is far from
complete is not unusual.

Furthermore, Figure 4.7 suggests that if one can find the counterexample
a1b2b4b6 faster, then the model can be completely learned in a shorter amount
of time. Since ASML developers recognize far output distinction behavior as
part of their regular system behavior, we expect that artifacts produced during
system execution, such as logs, capture this far output distinction behavior.
Hence, next we design the sequential equivalence oracle extending the Wp-method
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conformance testing to generate counterexamples based on execution logs and
passive learning results.

4.4 Sequential Equivalence Oracle
We start by presenting the overall architecture of our sequential equivalence
oracle which has been briefly sketched [30], and then focus on its individual
components.

4.4.1 Architecture
The idea behind the sequential equivalence oracle is similar to the idea behind
hierarchical memory in computer architectures, i.e., expensive operations are
used only when necessary. In computer architectures, different levels of caches
are serving as staging areas, to reduce the needs of visiting relatively slow main
memory and disk, when the CPU searches for data.

We can compare the traditional active learning approach to a computer
architecture without caches. In the traditional active learning approach, when
the learner requests a counterexample using an EQ, the Wp-method searches
for the counterexample by asking the generated TQs to the SUL. This is an
expensive operation as shown in the pilot study. To reduce the frequency of this
expensive operation, we insert “caches”, i.e., cheaper oracles, into the active
learning process, as shown in Figure 4.8.

Acting as the first “cache”, the Log-based oracle starts searching for a
counterexample when the hypothesis arrives. It returns a counterexample if
found, otherwise the hypothesis is forwarded to a PL-based oracle. Similarly,
the PL-based oracle returns a counterexample if it finds one, otherwise the
hypothesis is forwarded to the Wp-method oracle. The role of the Wp-method
oracle is comparable to that of main memory and disk where the data can always
be fetched if it exists, at the price of time. We do not modify the Wp-method
oracle; it works in the same way as in traditional active learning.

4.4.2 Log-Based Oracle
The Log-based oracle is based on the observation that logs represent actual
behavior of the system. Hence, counterexamples can be found by identifying
traces present in the log that cannot be generated by the hypothesis model
H. To implement the Log-based oracle we collect execution logs for the SUL
and construct a PTA, MPTA, from these logs. Then, we compute the difference
automaton for MPTA \ H. If the resulting automaton has at least one accepting
trace, which shows the language is not empty, the Log-based oracle generates
a trace and returns it as a counterexample. Otherwise H is forwarded to the
PL-based oracle.

4.4.3 PL-Based Oracle
Most passive learning algorithms ensure the inclusion of the input logs in their
learned models. Hence, the execution logs are accepted both by the result of a
passive learning algorithm and by the hypothesis H, that is, they are accepted
by the intersection of the DFA representing the result of passive learning and
H. The behavior represented by this intersection is more likely to belong to the
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SUL than behavior represented solely by the result of passive learning (but not
H) or solely by H (but not the result of passive learning).

The PL-based oracle is based on the conjecture that passive learning
generalizes the logs, potentially overapproximating the behavior, and that
the behavior learned solely by passive learning (but not H) might contain valid
generalization that belongs to the SUL.

As opposed to the Log-based oracle, the PL-based oracle is based on a
conjecture. This is why in addition to computing the difference automaton for
the hypothesis DFA and the DFA representing the passive learning result, and
generating a trace from that difference, we need to check whether the generated
trace is a valid counterexample or not. The oracle posts the generated trace as a
TQ to the SUL. If the trace is accepted, it is valid and should be included in the
behavioral model, so the trace is sent to the learner as counterexample to refine
the learning. If the trace is rejected, it is excluded from the passive learning
result as invalid generalization. This process continues until a counterexample
is found or all generated traces are examined. The hypothesis is then forwarded
to the Wp-method oracle if no counterexample can be found anymore.

4.4.4 Implementation
The sequential equivalence oracle is developed on top of LearnLib [311], an
open-source framework providing the implementation of several active learning
and testing algorithms.

As our target model is a Mealy machine, we use the learning algorithms
provided by LearnLib for learning Mealy machines. We choose Mealy
machines to represent behavioral models because Mealy machines are a good
representation for reactive systems as they fit seamlessly with function calls
and return values. When implementing the Log-based and PL-based oracles,
we first convert hypotheses represented as Mealy machines to DFAs, and only
then compute difference automata. The worst case complexity of the conversion
and subsequent DFA operations is O(n2), where n is the number of states of
the Mealy machine. Since LearnLib does not include means of computing the
difference between two automata, we compute the intersection of one of the
automata with the complement of the other. The resulting automaton is then
minimized using a standard Hopcroft minimization [167].

In both the Log-based and the PL-based oracles, traces are generated from
the difference automata by applying a breadth-first search until an accepting
state is reached. It is worth to mention that the execution of the active learning
process is deterministic.

4.5 Evaluation of Proposed Approach
In this section, we present an experiment for the evaluation of our approach. We
report our study according to the guideline proposed by Runeson et al. [324].

4.5.1 Research Questions
The goal of this experiment is to evaluate whether, and to what extent, our
approach can improve the efficiency of active learning in an industrial setting.
We refine our goal further to the following research questions:
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Figure 4.8: Active learning with sequential equivalence oracle

RQ1: To what extent does our approach reduce the time for learning an SUL?
Although our approach was inspired by particular observations about far output
distinction behavior, we expect our approach can reduce the time for learning
any SUL, given the behavior of the SUL is deterministic and not influenced by
data parameters.

RQ2: How do the Log-based oracle and the PL-based oracle individually contribute
to the time reduction together with the Wp-method? We conjecture that both the Log-
based oracle and the PL-based oracle contribute to the improvement. However,
it is possible that one outperforms another, or one of them does not contribute
significantly. Answering this question can help us to improve the architecture
of the equivalence oracle, as well as assist in making the trade-off between
efficiency and computational complexity for the approach.

RQ3: Does combining different oracle components help? We combine Log-based
and PL-based oracles with the Wp-method oracle, as we conjecture that these
two oracles contribute different behavior to the learning. However, it is possible
that using only one of them with the Wp-method can already achieve the same
or relatively comparable performance.

4.5.2 Component Selection

We selected cases from the 218 ASD components studied in our pilot study. As
they are MDSE-based components, we know the size of the behavior of the
components, and can correctly configure the Wp-method oracle. Furthermore,
we can evaluate the industrial applicability of our approach.

We applied the following criteria to select the components:
1. Logs should be available. Our approach needs logs for the Log-based and

PL-based oracles. Unavailability of logs makes the approach inapplicable. At
ASML, software execution is logged during both normal machine production
and software testing, if logging is enabled for the component.

2. The behavior of the selected components must be deterministic and not
influenced by data parameters.

Limited by the availability of logs, we obtain 18 components (from 218) as
study subjects. We name the components A to R; G is the component discussed
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in the pilot study. Table 4.1 shows the number of states and input actions of
these components.

Table 4.1: Features of 18 MDSE-Based Industrial Components

Component Number of States Number of Inputs
A 2 3
B 6 64
C 9 18
D 9 62
E 9 123
F 11 52
G 14 144
H 14 99
I 14 13
J 14 159
K 17 102
L 17 102
M 27 152
N 30 102
O 37 115
P 37 102
Q 47 103
R 80 98

4.5.3 Experiment Setup

In this section, we introduce the setup of our experiments.

4.5.3.1 Equivalence Oracle Setup
We conduct experiments with different equivalence oracle settings. We have
four equivalence oracle settings in total. The equivalence oracle setting with
the Wp-method alone is the control group. For the experiment groups, we
have three additional equivalence oracle settings: the sequential equivalence
oracles consisting of 1) Log-based, PL-based and Wp-method oracles (EO1), 2)
Log-based and Wp-method oracles (EO2), 3) PL-based and Wp-method oracles
(EO3). For each group we measure the testing time and the total active learning
time. We configure a timeout of 1 hour for all experiments.

4.5.3.2 Logs and Passive Learning Results
Log-based and PL-based oracles require logs and passive learning results as
inputs, respectively. The used logs are collected from the execution of unit and
integration tests, containing the interactions (i.e., input and output actions)
between components and their system environment. Some post-processing,
such as parsing and renaming, is conducted for fitting the passive learning tools.
The passive learning results are obtained using the Alergia algorithm (with a
configured bound of 10) [285] provided by FlexFringe [391].

4.5.3.3 Hardware Setup
We executed all our experiments on a HP Z420 workstation, a desktop PC with
an Intel Xeon E5-1620 v2, a quad core CPU consisting of cores running at 3.70
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Ghz with hyperthreading, 32 gigabytes of memory, and running the Microsoft
Windows 7 SP1 x64 operating system.

4.5.4 Statistical Analysis
In this section, we explain the statistical analysis used for answering RQ1-3.

4.5.4.1 RQ1
To answer RQ1 given an oracle o (EO1, EO2, EO3) we formulate the following
hypotheses:

Ho
01

: There is no statistically significant difference between the total active learning
time with the Wp-method alone and with the equivalence oracle o.

Ho
a1

: The total active learning time with the Wp-method alone is more than with
equivalence oracle o.

We formulate the alternative hypothesis as a directional alternative since
testing the correctness of the hypothesis constructed by the learner is known
to be the most expensive step in the active learning process. We expect our
approach to reduce the testing time of the active learning process.

4.5.4.2 RQ2
We formulate the following hypotheses:

Ho
02

: There is no statistically significant difference between the total active learning
time with EO2 and with EO3.

Ho
a2

: The total active learning time with EO3 is less than with EO2.
The rationale behind this alternative hypothesis is that it is possible that EO3

outperforms EO2 as the passive learning results include the behavior shown
in the log and potentially some other valid generalized behavior, which might
further reduce the required testing time.

4.5.4.3 RQ3
Given an oracle o (EO2, EO3), the following hypotheses are formulated:

Ho
03

: There is no statistically significant difference between the total active learning
time with EO1 and with o.

Ho
a3

: The total active learning time with EO1 is less than with o.
This alternative hypothesis is a directional alternative since we expect that

EO1, which is the combination of EO2 and EO3, results in shorter total learning
times than when each one of the oracles is used separately.

4.5.4.4 Analysis Technique
To test the hypotheses we perform pairwise tests (RQ1: Wp-method vs. EO1,
Wp-method vs. EO2, Wp-method vs. EO3; RQ2: EO3 vs. EO2; RQ3: EO1 vs. EO2,
EO1 vs. EO3). Next, we adjust the p-values [48] to control the false discovery
rate. Since we perform 6 pairwise tests on the same set of data, we adjust the six
p-values together to control the overall Type I error rate. Finally, if the difference
is observed to be statistically significant, we report the effect sizes.

4.5.5 Results
Table 4.2 presents the results of learning components A to R with different
equivalence oracle settings. Using the Wp-method oracle alone, 12 out of 18
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components were fully learned within 1 hour. The learning for components G,
Q, K, L, R and P remained unfinished. In contrast, by applying EO1, EO2 or EO3,
all components are fully learned within 1 hour. In particular, we completely
learned component G, which exhibits far output distinction behavior, within 13
mins. This seems to be a promising result. Next, we further analyze the data to
answer our research questions.
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Table 4.2: Experiment Results (Testing Times and Total Learning Times) for 18 Industrial Components Using Wp-Method
Oracle, Sequential Equivalence Oracle, Log-Based Oracle and PL-Based Oracle

Component Wp-method Seq. equiv. oracle (EO1) Log-based oracle (EO2) PL-based oracle (EO3)
Testing [s] Total [s] Testing [s] Total [s] Testing [s] Total [s] Testing [s] Total [s]

A 0.04 0.106 0.134 0.186 0.122 0.173 0.097 0.146
B 8.676 9.328 1.230 1.820 1.120 1.704 0.814 1.407
C 2.786 3.295 1.804 3.125 2.098 3.537 1.530 4.780
D 5.813 6.671 4.615 5.326 4.286 4.965 4.570 5.268
E 319.28 322.33 131.300 134.580 130.040 132.940 111.610 115.060
F 190.46 192.57 6.565 9.685 5.782 8.456 3.554 6.414
G timeout timeout 778.990 788.200 816.010 826.800 765.310 772.960
H 245.65 249.42 97.083 100.450 90.290 93.340 897.460 931.330
I 27.433 29.687 8.098 10.603 9.407 11.167 61.263 90.950
J 2030.4 2039.0 1800.100 1811.000 1774.800 1787.800 1784.600 1792.700
K timeout timeout 3.450 7.951 3.089 7.504 4.095 8.336
L timeout timeout 4.231 9.781 3.772 8.957 3.834 8.593
M 1789.1 1808.7 26.357 52.127 23.578 43.365 27.089 50.341
N 221.37 229.19 6.779 16.552 6.319 15.823 7.009 16.728
O 2768.6 2783.9 719.340 735.650 718.820 733.800 718.670 734.400
P timeout timeout 16.528 35.635 14.817 35.234 18.456 34.503
Q timeout timeout 971.510 1007.600 1007.900 1038.300 984.010 1006.100
R timeout timeout 54.812 92.438 45.388 83.794 44.147 79.708
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4.5.5.1 RQ1
To what extent does our approach reduce the time for learning a SUL? Figure 4.9
shows the total learning times for different oracles. While it clearly suggests
that overall the Wp-method oracle is by far the slowest, this does not necessarily
mean that for each individual component, the Wp-method oracle is slower than
the other oracles. To answer this question we performed pairwise tests. Since
the distribution of the learning times is skewed (cf. Figure 4.9) we opt for the
pairwise Wilcoxon rank sum tests, and for Cliff’s delta as the effect size measure.
We interpret the Cliff’s delta according to the guidelines of Cohen [83].

We observe that for all pairs of oracles Ho
01

can be rejected in favour of
Ho

a1
(p ≃ 7.6 ∗ 10−6,1.9 ∗ 10−5,1.6 ∗ 10−3 for EO1, EO2, EO3, respectively).

Furthermore, the effect of replacing the Wp-oracle with EO1 or EO3 is medium
(δ ≃ 0.47,0.46, respectively) and with EO2 it is large (δ ≃ 0.48).

Wp-method Oracle EO1 EO2 EO3
0

20

40

60

80

100

To
ta

l l
ea

rn
in

g 
tim

e 
[m

in
]

Figure 4.9: Violin plots of the total learning times with different oracles

4.5.5.2 RQ2
How do the Log-based oracle and the PL-based oracle individually contribute to the
time reduction together with the Wp-method? We find that Ho

02
cannot be rejected

(p ≃ 0.62).

4.5.5.3 RQ3
Does combining different oracle components help? The p-values are 0.96 and 0.93 for
EO2 and EO3 respectively. Therefore, Ho

03
cannot be rejected.

4.5.6 Discussion
Our results show that the sequential equivalence oracle and its simplified
versions, the Log-based and PL-based oracles, all significantly improve the
performance of active learning. However, we could not observe a significant
difference in the performance of the Log-based and PL-based oracles. The
conclusion one would like to derive is that integrating log data (either in the
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form of a log, or in the form of a model inferred from the log using passive
learning techniques) in active learning is beneficial. However, it is not yet clear
whether enhancing active learning with passive learning is always beneficial or
not.

Next, we perform a closer inspection of the performance of the different
oracles on individual components. To this end, we show a bar chart (Figure 4.10)
of the ratios of the total learning time with other oracles with respect to the
total learning time with the Wp-method alone. For the cases where learning
was not finished within 1 hour with the Wp-method, we use 1 hour as the total
learning time. As expected, EO1, EO2 and EO3 perform better than the Wp-
method oracle alone, for most of the cases. Particularly, the total learning time
for relatively large components M, K and L were significantly reduced. This
suggests that our approach can potentially address the challenges of learning
large systems. However, some exceptions exist. For example, for component A,
the Wp-method oracle alone results in the shortest total learning time. This is
because component A has only two states and three input actions (as shown
in Table 4.1). In such cases, the computation required in the Log-based and PL-
based oracles costs more time than sending very few TQs with the Wp-method
oracle. Moreover, for components C, H and I, EO3 costs more time than the
Wp-method oracle. This likely indicates the presence of a significant amount
of invalid generalization in the passive learning result; therefore, extra time
was spent on validating the generated traces even though no counterexample
was eventually found. Based on the observations, we can expect that the
performance of the PL-based oracle is influenced by the used algorithms
and heuristics that generalize the logs in different ways. The completeness
of behavior shown in logs (e.g., the number of traces that capture different
behaviors of software) also influences the performance of both the Log-based
and PL-based oracles.

An advantage of the sequential equivalence oracle is the ease with which
additional components based on behavioral evidence can be integrated, further
reducing the need for testing. For example, as sub-oracles, one can integrate
manually crafted models or multiple models learned by different passive
learning algorithms to enrich the behavioral sources. Furthermore, similarly to
what we did to answer RQ2, users can analyze which sub-oracles contribute
more to refining active learning, and adapt the sequential equivalence oracle to
their context.

4.5.7 Threats to Validity

In this section, we discuss the limitations and threats to validity.

4.5.7.1 Limitation
The main limitation of our evaluation is that we applied our approach to
18 components for which logs are available. The unavailability of logs for
a larger set of components hindered us to evaluate our approach with a better
distribution in the size of components and a wider diversity of component
behavior. However, as the preliminary evaluation, the promising results
motivate us to evaluate our approach on a larger set of software components in
the future.
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Figure 4.10: Ratios of the total learning time with 1) EO1 (black), 2) EO2
(dark grey) and 3) EO3 (light grey) with respect to the total learning time
with the Wp-method alone (shown with dashed lines)

4.5.7.2 Construct Validity
This validity examines whether what we measured can quantify the efficiency of
active learning. We measured the total learning time, as it intuitively measures
the efficiency. However, the efficiency can possibly be quantified by such metrics
as the number of MQs and TQs, since time might not be the only costly resource.

4.5.7.3 Internal Validity
In order to control the variables of our experiments, we only change the
equivalence oracles in each experiment, and keep the remaining settings the
same. In this study we do not consider the types of execution logs (e.g., test and
production logs), the features of traces (e.g., long or short traces) in logs and the
heuristics of passive learning algorithms as variables, although they can greatly
influence the performance of the Log-based and PL-based oracles. Moreover,
we only run the experiments once, although the time spent in different runs
might slightly differ.

4.5.7.4 External Validity
This validity questions whether our conclusions are valid in a more general
context. We find two threats to this validity. First, as stated, the limited number
of study subjects is the main limitation of our work. We expect that the Log-
based oracle can help for other systems as well because it finds counterexamples
without costing any test query. Second, our study subjects are a group of
components used to perform control logic of systems. A further study is
required to evaluate our approach on different types of system from different
companies.
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4.6 Related Work
The idea of combining different techniques to solve theoretical and practical
model learning problems is not new. Some hybrid learning techniques aim at
enabling learning on a larger set of systems. Walkinshaw et al. [395] introduced
a way to combine data mining techniques with a passive learning algorithm to
learn the behavior that is influenced by data parameters. For the same purpose,
Howar et al. [168] opened the black-box of the SUL by applying symbolic and
static analysis techniques to iteratively refine the active learning result. Different
from these approaches, our work combines techniques to improve the efficiency
while guaranteeing a certain minimum behavioral coverage for deterministic
and non-parameterized systems.

Smetsers et al. [347] combined conformance testing with mutation-based
fuzzing methods, to enhance the equivalence oracle in active learning. This
work uses a fuzzer to mutate the program tests, monitors the code coverage of
the generated tests, and uses the mutated tests as a source of counterexamples.
The authors experimentally showed that the hybrid approach can discover
states that were not learned by using conformance testing alone. However,
making use of the full potential of this approach requires the source code to be
available; a 2.5 times efficiency degradation was observed when the source code
was not available. Differently, our approach still treats the SUL as a black-box
and therefore can be applied independently of the availability of the source
code and programming language in which it was written.

To improve the quality of the models resulting from active learning,
Smetsers et al. [348] used a metric to measure the distance between hypotheses
and the behavior of the SUL. The proposed approach promises that the
measured distance does not increase, i.e., the behavioral coverage does not
decrease over time. This means that when users stop the learning, the current
hypothesis is the best model the active learner has ever constructed, in terms
of behavioral coverage. Our approach makes a different promise about the
behavioral coverage, i.e., the learned models at least cover the execution logs.

Previous work has also shown that combining different techniques can
reduce the need for testing hypothesized models with respect to SUL in active
learning. Howar et al. [168] adopt partial order reduction to reduce the number
of required sequences in testing. This work relies on static analysis to determine
mutually independent functions (input actions), and only a single order is
constructed for these functions. Instead of using white-box techniques such as
partial order reduction, our approach reduces the need for testing by searching
counterexamples from the execution logs and the generalization of passive
learning results. As stated, finding counterexamples faster is the key to reducing
the number of tests. Smeenk et al. [346] used manually crafted counterexamples
to reduce the testing time. However, constructing counterexamples manually
requires domain knowledge, which is not necessarily available. We use logs
and passive learning results instead, and do not rely on domain knowledge.

Several approaches use logs to refine learning. Smetsers et al. [60] claimed
their approach ensures that learned models cover the behavior of the logs, yet it
is not clear how logs were integrated into the learning framework. Their work
also suffers from limited evaluation and the use of artificial logs. Differently,
we explicitly integrated the logs as an equivalence oracle and evaluated our
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approach on a larger scale in an industrial setting. Bertolino et al. [49] proposed
to build up a framework for updating the hypothesis while a networked
system is evolving. This framework integrates a continuously running monitor
that collects system traces at runtime, examines the mismatch between the
hypothesis and the target system, and then refines the learning. However,
this continuously running mechanism can be very expensive in terms of time,
memory resources and infrastructure cost, thus making it less applicable. Our
approach integrates pre-collected logs into the learning process. In addition, our
approach enables combining logs from different sources (e.g., test execution and
production), which can potentially enrich the behavioral coverage, as different
logs might represent the execution of completely different use cases of the
systems.

In this study, we demostrate the hybrid learning technique with the
controller of embedded production systems. Since the original active learning
tecchniques have been applied to various types of software systems (e.g.,
telecommunication systems), we believe this enhanced technique can be applied
to other types of systems as well. However, as discussed by Vaandrager
et al. [383], the family of active learning techniques is still limited to a certain
class of software systems due to some foundamental challenges (e.g., difficuties
to learn behavior with data operations). To address this problem, some progress
has been made by Isberner [175] to infer register automata with which a stack
with a finite capacity storing values from an infinite domain can be learned.

4.7 Conclusion and Future Work
In this Chapter, we started with a pilot study that evaluates the performance
of a state-of-the-art active learning setup on a collection of 218 MDSE-
based components provided by ASML. We observed that the active learning
converged for 112 components in one hour or less. For these components, we
have observed that as the total learning time increases, active learning becomes
dominated by the testing phase (as shown in Section 4.3.2). Active learning
did not converge for 106 models. By inspecting one of these components, we
observed that the lack of convergence can be attributed to the presence of far
output distinction behavior in the SUL. As far output distinction behavior is
part of the regular system behavior, we expect to observe it in the execution
logs.

To improve the efficiency of active learning we have proposed the sequential
equivalence oracle integrating information from the execution logs and passive
learning results. The sequential equivalence oracle has been evaluated on 18
industrial components. The results show that our approach can significantly
reduce the total active learning time. Evaluation of the individual oracles
suggests that using the Log-based oracle with the Wp-method might be
sufficient to achieve good efficiency. However, considering other variables,
such as the completeness of the logs and the level of generalization introduced
by different passive learning algorithms, we suggest conducting a more
comprehensive experiment that takes all these factors into account.

We suggest several directions for future work. First, it is valuable to conduct
a more comprehensive study with the sequential equivalence oracle on a richer
set of components (i.e., more components from different types of systems).
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By investigating more variables, researchers can provide users a guideline to
adapt the techniques in their own context. An example can be seen in Aslam’s
work [31] which extended the experiment with 208 model-based components
from ASML using several different testing algorithms. The work has not only
validated the effectiveness of the sequential equivalence oracle presented in
this study, but also provided insights on the performance of different testing
algorithms for the equivalence oracle of active learning. More research work
is needed to study what features of traces can complement the Wp-method
better, and which passive learning algorithms work best for our PL-based
oracle. Researchers are suggested to investigate state-of-the-art passive learning
techniques based on machine learning [188, 210]. The high precision of the
learned models from these techniques can potentially help active learning infer
valid behavior faster. Second, while in this study we apply the techniques
to MDSE-based software, it is important to apply active learning to legacy
software. Moreover, the current approach is limited to the class of systems
where values of data parameters do not influence the behavior. Learning data-
dependent behavior is still a challenge for model inference techniques in terms
of scalability [330]. It might require researchers to open the black-box of the
SUL (cf. Howar et al. [168]) and integrate static analysis techniques. Third,
although we have demonstrated that the hybrid technique outperforms the
state-of-the-art active learning algorithm, we suggest researchers to conduct
benchmark studies to compare the hybrid technique against various kinds
of model inference techniques. Existing datasets with ground truth models
constructed from industrial software [178] and open-source software [87, 307]
can be leveraged to conduct the comparison.



5
Modeling Practice: Why

Developers Violate
Guidelines

Models, as the main artifact in model-driven engineering, have been extensively
used in the area of embedded domain for code generation and verification.
Chapter 4 introduced a hybrid technique that infers state machines from existing
codebase. We discussed the challenges that impede the practical application of
active learning techniques. Due to these fundamental and practical challenges,
the industry currently still relies on manual model creation by developers. In
this chapter, we present our study about modeling practice (the RQ5 highlighted
in Figure 5.1).

Many state machine modeling guidelines recommend that a state machine
should have more than one state in order to be meaningful. Single-state state
machines (SSSMs) that violate this recommendation, however, have been used
in modeling cases reported in the literature. We aim for understanding the
phenomenon of using SSSMs in practice, as understanding why developers
violate the modeling guidelines is the first step towards improvement of
modeling tools and practice.

We present an exploratory study that investigated the prevalence and role
of SSSMs in the embedded domain, the reasons why developers use them, the
advantages and disadvantages that developers perceive, as well as when SSSMs
have been introduced to the systems. We present the result obtained from a
repository mining study of 1500 state machines from 26 components at ASML,
and interviews with developers.
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Figure 5.1: Research overview (RQ5)

5.1 Introduction
Models play a central role in model-driven software engineering (MDSE) [407].
While models are typically used to facilitate team communication and serve as
implementation blueprints, in the area of embedded systems modeling, models
have been widely used for such goals as code generation, simulation, timing
analysis and verification [228]. One of the most popular modeling techniques
used to specify the behavior of software are state machines.

Many guidelines have been proposed on how one should model system
behavior using state machines [20, 95, 309, 331]. One of the recommendations
commonly repeated both in books [20, 95, 329] is that a state machine model is
only meaningful if it contains more than one state, and if each state represents
different behavior. The intuition behind this guideline is that a model should
contain non-trivial information, otherwise it merely clutters the presentation
of ideas [20]. Single-state state machines (SSSMs)—affectionately known as
“flowers” due to their graphical representation shown in Figure 5.2—violate this
recommendation. From the growing body of software engineering literature,
we know that software developers do not always follow recommendations or
best practices and often have valid reasons not to do so [69, 291, 382].

We believe that understanding why a widespread recommendation is not
followed in practice is the first step towards improvement of modeling tools
and practices. In this work, we conduct an exploratory case study at ASML, the
leading manufacturer of lithography machines to gain a deeper understanding
of modeling practices. We employ the sequential explanatory strategy [105]
which applies qualitative and quantitative analyses sequentially to explain a
phenomenon. We first mine the archive for 26 components totaling 1500 models
to understand the prevalence of SSSMs (RQ5.1) as well as the role played by SSSMs
(RQ5.2). Then we discuss our quantitative findings with software architects to
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Figure 5.2: A flower model (SSSM). The circle represents the single state,
and the arrows going from and to the same state represent the transitions.
The incoming arrow indicates the initial transition into this state.

understand why they opt for SSSMs (RQ5.3), what advantages and disadvantages
of SSSMs they perceive (RQ5.4). We then further study the question of when
these SSSMs were introduced to the system (RQ5.5). Answering this question can
help us better understand the challenges developers are facing. For example,
do developers introduce SSSMs in the early phase of development or in the
maintenance phase of development?

We observe that SSSMs make up 25.3% of the models considered. These
SSSMs are often used with other models as design patterns to achieve developers’
goals. We identified five such design patterns that are repeatedly used in
multiple components. The used SSSMs and design patterns provided industrial
evidence on how developers deal with the existing code base and tool
limitations, which are the common problems in MDE adoption [228]. Given
ASML has a large portion of its code base developed with the traditional
software engineering practices, 20.3% of SSSMs are used on the boundary of
“model world” to interface model-based components with the existing code-based
components. Most SSSMs (64.7%) are used to circumvent the limitations of the
modeling tools used by ASML. Apart from dealing with the common MDSE
challenges, around 7.6% of SSSMs are designed to ease long-term maintenance
of the models. Our interviews also reveal that SSSMs, as the extreme cases
that remove all state information away, can pass verification easily, which is
considered as both an advantage and a disadvantage by developers. It is a great
challenge to design models with sufficient amount of behavioral information
so that not only development but also maintenance and verification can be
eased. This implies the trade-off between the effort spent on designing a model
that maximizes the advantage of verification and the extra cost caused by
downstream problems due to inadequate verification.

We mine the historical data of the largest state-machine-based component
in the company and manually inspecting the modifications developers made
during the evolution of SSSMs. We observe that the SSSMs introduced to
ease maintenance and verification appeared in the early phase of component
development, and their number did not increase over the years. However, over
the years, more and more SSSMs are needed to deal with tool limitations, and
it has become the main reason why developers introduce additional SSSMs in
recent years. This observation suggests that practitioners should thoroughly
evaluate the strengths and limitations of modeling tools, taking the future
development of their applications into account.
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Based on our results from our study, we formulate some implications for
developers who would like to adopt state-machine-based solutions, as well as
for tool builders and researchers.

The remainder of this chapter is organized as follows. Section 5.2 presents
the preliminaries related to this study. In Section 5.3, we present our study
context. In Section 5.4, we present the research method used in this study. In
sections 5.5, 5.6, 5.7 and 5.8, we present our study aimed at understanding
the prevalence of SSSMs, the role played by them, why developers used them,
the advantage and disadvantage perceived by developers, and when SSSMs
were introduced to the system. We discuss threats to validity in Section 5.9. We
then discuss the implications in Section 5.10. The related work is discussed in
Section 5.11. Finally, the conclusions are presented in Section 5.12.

5.2 Preliminaries
We introduce the notion of SSSM and the relevant parts of the tool-chain used
at ASML.

5.2.1 Single-state State Machine
Intuitively, in its simplest form, a state machine is a collection of states and
transitions between them. Some state machine modeling languages, such as
UML state machines, have additional mechanisms (e.g., nested states and state
variables) that can represent state information. We exclude the nested states and
state variables from consideration, as the nested states and the values of state
variables can be flattened into simple states [190, 298].

In our study, we consider a state machine as a single-state state machine
(SSSM) if the state machine has syntactically only one state. It is a state machine
that accepts all its inputs, indefinitely, and in any order. We call any other state
machine a multi-state state machine (MSSM). For example, an MSSM can have
more than one state, nested states or make use of state variables.

5.2.2 A State Machine Modeling Tool: ASD
Analytical Software Design (ASD) is a commercial state machine modeling tool
developed by company Verum [390]. It provides users with means of designing
and verifying the behavior of state machines, and subsequently generating
code from the verified state machines.

5.2.2.1 Model Type and Relation
There are two types of components in a system developed with ASD, namely
ASD components and foreign components. The ASD components depend
on each other in a Client-Server manner, where a client component uses its
server components to perform certain tasks. The ASD components consist of
Interface Models (IM) and Design Models (DM). Each IM and DM contains a state
machine. The IM specifies the external behavior of a component. It prescribes
the client components of the ASD component in which order the events can
be called and what replies they can expect, i.e., interface protocol. The DM
implements the internal behavior of a component, specifying how it uses its
server components. The relation uses is realized by three types of events: call
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event, reply event and notification event (Figure 5.3, left). According to the
ASD manual, an event is analogous to a method or callback that a component
exposes. The declaration of a call event contains the event name, parameters
and the return type. A call event with a "void" return type has "VoidReply"
reply event, while the one with a "valued" return type can use all user-defined
reply events. For instance, call event task([in]p1:string, [out]p2:int):void is a void
type call event with an input and an output parameter. Notification events with
output parameters are used to inform clients in synchronous or asynchronous
ways, similar to callback functions in such programming languages as C
and Python. An IM can be implemented by multiple DMs. In cases such as
component reuse, ASD components interact with foreign components, non-model
components implemented as handwritten code. To support communication
between ASD components and foreign components, the external behavior of a
foreign component is represented by an IM. Figure 5.3 (right) shows an ASD-
based alarm module where ASD component Alarm uses ASD component Sensor
and a foreign component Siren. In the remainder of the chapter, we also refer to
foreign components as code-based components.
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Figure 5.3: Model relations. Left: type of events. Right: example of an
ASD-based system . I*** stands for an IM.

5.2.2.2 Verification and Code Generation
One of the major benefits of using ASD is the possibility to formally verify
behavior of the models.

For each component, the type of verification performed by ASD can be
summarized into two steps. First, ASD verifies whether each DM has correct
behavior, in the sense that its behavior is deterministic and does not contain
any deadlocks, or livelocks. It should also not perform illegal sequences of
calls. The role of the IM in this check is just to provide the verification tool
with information on which calls are considered illegal. For our alarm module
example, ASD checks whether DM Alarm calls occur in the order specified in
IMs ISensor and ISiren. Second, ASD verifies whether the DM of a component,
together with the interfaces of its servers, correctly refines the IM of this
component. It does this by verifying whether a formal relation, so-called
Failures-Divergence Refinement relation (FDR) [109], is preserved between
the DM and IM. Verifying this refinement relation guarantees that the IM can
be used as an abstract representation of the DMs behavior in further analysis of
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the system. For our alarm system example, ASD verifies whether DM Alarm,
together with IMs ISensor and ISiren refines IM IAlarm correctly. Code in the
selected target language (e.g., C++) can be automatically generated once the
system is free of behavioral errors.

Note that the IM and DM have different roles, not only in system modeling,
but also in the verification and code generation. The IM provides an abstract
view of the behavior of a component, while DM provides a detailed view. Both
IM and DM are used to understand software, communicate between engineers,
and verify the behavioral correctness. However, only the DM contains the
implementation details that are used to generate code.

5.3 Study Context
To get a deeper understanding of the use of SSSMs in the embedded systems
industry, we conducted an exploratory case study. Case study is an empirical
method aimed at investigating contemporary phenomena in a context [324,
431].

We follow the recommendation of Runeson and Höst and intentionally
select a case of analysis to serve the study purpose [324]. We conduct our
exploratory case study at ASML. The company uses the commercial state
machine modeling tool-chain Analytical Software Design (ASD) developed
by Verum [390], described in Section 5.2.2, to develop the control software of
their embedded systems, providing a paradigmatic context to our study. The
company uses ASD to design and verify the behavior of state machines, and
subsequently generate code from the verified state machines.

We obtain all software components developed with ASD in the system,
except for those that are not accessible due to international legislation or contain
strategic intellectual property. These 26 software components are continuously
maintained; code generated based on these models runs on the machines
produced by ASML. Each software component is formed by multiple interacting
IMs and DMs (i.e., multiple ASD components). In total, we obtained 924 IMs
and 576 DMs, with the number of IMs per software component ranging from 2
to 349, and DMs from 0 to 284. Table 5.1 gives an overview of the 26 software
components. For the sake of confidentiality, we refer to these components as
A, . . . , Z and cannot share the models. Note that, other than these 26, software
components developed with traditional software engineering still make a large
portion of the software system of the machines. Therefore, these 26 components
have to interact with the existing code-based components.

5.4 Methods
We employ a sequential explanatory strategy [105] which consists of three
phases, namely mining a snapshot of repositories, interviewing developers
and mining historical revisions of repositories. Figure 5.4 gives a high-level
overview of our research method. First, we start with a quantitative approach
by mining the latest snapshot of model repositories. To answer RQ5.1, we
study the prevalence of SSSMs by analyzing models of the 26 components. To
answer RQ5.2, i.e., to understand the role SSSMs played, we combined two
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complementary approaches. On the one hand, according to Wittgenstein [414],
the meaning is determined by use. Thus, we exploit structural dependencies
(cf. [25, 101]) to identify the implemented by and uses relations between IMs and
DMs, i.e., the use of models. On the other hand, we expect the role of the SSSM
to be reflected in its name, in the same way the names of objects have been
extensively used to uncover the responsibilities of software objects [127, 196,
282].

Mining a snapshot 
of repos

(RQ5.1 and RQ5.2)

Conducting 
interviews

Executing 
grounded theory 

process

Mining historical 
revisions of repos

(RQ5.5)

Interviewing developers 
(RQ5.3 and RQ5.4)

Figure 5.4: Overview of our research methods

In the qualitative phase, we conduct a series of interviews to answer
RQ5.3 and RQ5.4. The interviews are recorded and audio was transcribed. To
derive and refine the theory based on the obtained qualitative data, we employ
Straussian grounded theory because it allows us to ask under what conditions a
phenomenon occurs [358]. We opt for an iterative process to reach the saturation.
It is important to note that in the sequential explanatory strategy, the results
from the quantitative phase is used to inform the subsequent qualitative phase.
This means the concrete study design for RQ5.3 and RQ5.4, e.g., the interview
questions, is determined by the results of RQ5.1 and RQ5.2. For example,
depending on the number of identified SSSMs, we opt for different interview
strategies; if the number of SSSMs will be small enough, then we can request
the experts to explain the reasons behind every SSSM. Otherwise, we need to
prompt the discussion based on the findings we obtained from the analysis of
structural dependencies and names. We detail the procedures of the qualitative
phase in Section 5.7.1.

In the last phase of the study, we mine the historical revisions of models to
identify when the SSSMs were introduced in the history of the model repository
(RQ5.5).

5.5 Prevalence Analysis (RQ5.1)
We answer RQ5.1 by analyzing the frequency of SSSMs in the 26 components in
Table 5.1.
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Table 5.1: The overview of studied components, prevalence of SSSM and frequency of the identified terms for the selected
state machine based projects. “-” indicates that the percentage cannot be computed because the component does not include
DMs.

Component ID A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Overview
#IMs 19 349 22 98 15 6 22 10 10 12 29 12 29 43 3 12 16 3 41 15 49 11 2 77 3 16
#DMs 9 284 10 72 6 3 9 4 3 6 11 4 11 9 0 6 6 2 17 13 31 3 1 46 1 9
Total 28 633 32 170 21 9 31 14 13 18 40 16 40 52 3 18 22 5 58 28 80 14 3 123 4 25

Prevalence of SSSM
#SSSM-IMs 1 109 9 42 14 3 10 6 8 6 17 8 14 27 2 5 13 0 15 1 18 8 2 11 2 3
%SSSM-IMs 5 31 41 43 93 50 45 60 80 50 59 67 48 63 67 42 81 0 37 7 37 73 100 14 67 19
#SSSM-DMs 0 11 0 4 0 0 0 0 0 1 1 2 2 1 0 1 1 0 1 0 1 0 0 0 0 0
%SSSM-DMs 0 4 0 6 0 0 0 0 0 17 9 50 18 11 - 17 17 0 6 0 3 0 0 0 0 0

Frequency of the identified terms
#Exclusive 1 50 8 24 20 4 12 7 14 2 16 11 21 27 3 7 21 0 9 3 16 8 4 11 3 2
#Exclusive &
Frequent

0 0 0 3 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

#Shared 0 73 3 22 2 1 2 4 4 9 8 3 6 19 0 4 3 0 12 1 13 5 0 9 1 3
#Shared & OR>1 0 45 2 14 0 0 1 0 0 5 3 1 3 5 0 1 0 0 3 1 7 1 0 8 0 3
#Shared & OR>1
& Frequent

0 14 0 3 0 0 1 0 0 0 3 0 0 4 0 0 0 0 1 0 2 1 0 2 0 0
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5.5.1 Data Analysis
We analyze 1500 ASD models corresponding to components A–Z. We first
convert each model into an Ecore model [354] using a tool developed by ASML.
By converting ASD models into Ecore models, we can leverage EMF Model
Analysis tool (EMMA) [264] which allows users to extract information from
models and define metrics. In this study, we measure the number of states #state
and the number of state variables #sv. The conversion from ASD models to
Ecore models is lossless, i.e., the Ecore models can be converted back to the
original ASD models. An SSSM is a model with #state = 1 and #sv = 0.

5.5.2 Results
Table 5.1 shows the prevalence of SSSMs in the 26 components. 25 out of
26 components contain SSSMs, making up 25.3% of the 1500 state machines.
Component B is the largest component among the 26 components we consider.
In component B, 31% of IMs are SSSMs while only 4% of DMs.

This tendency to use SSSMs mainly for IMs can also be observed in smaller
components. In 13 out of 26 components, more than 50% of IMs are modeled as
an SSSM. On the contrary, only 26 SSSM-DMs are present, and they are present
in 11 out of 26 components. Furthermore, although SSSMs are generally popular
among IMs, different components show different degrees of usage; SSSMs make
up more than 70% of IMs in components E, I, Q, V and W while less than 10%
in components A, R and T.

RQ5.1 summary:

Developers tend to use SSSMs mainly for modeling IMs. The use of SSSMs
differs between components: component B has the largest portion of SSSM-
IMs.

5.6 Role of SSSMs (RQ5.2)
Since SSSM-IMs are the lion’s share of SSSMs, when answering RQ5.2, RQ5.3
and RQ5.4, we focus exclusively on SSSM-IMs. We start with data collection of
structural relations between models and the names of models, followed by an
analysis of results.

5.6.1 Data Analysis
To study what roles the SSSM-IMs play, we split IMs into three mutually
exclusive locations, namely:

1. disconnected (disc): IMs that are neither implemented nor used by a DM.
2. boundary (bd): IMs that are used by at least one DM but not implemented

by any DMs, or IMs that are implemented by at least one DM but not used
by any DMs. They are on the boundary of “model world” independent
from whether code is present on the other side of the boundary.

3. non-boundary (nb): IMs that are implemented by at least one DM and
used by at least one DM.
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Table 5.2: Number of SSSM and MSSM per location

SSSM-IM MSSM-IM Total

disc 3 0 3
bd 266 195 461
nb 85 375 460
Total 354 570 924

We use EMMA [264] to extract structural relations implemented by and uses
from models, and classify IMs based on these three locations.

To get complementary insights, we analyze names of models. We
follow commonly used preprocessing steps (cf. [376]) including tokenization
based on common naming conventions such as snake_case, camelCase and
PascalCase [450], stemming [411] and removal of stop words and digits
using the NLTK package [378]. We also observe that the names often contain
abbreviations with the sequence of capitals, e.g., IOStream. Hence, prior to
tokenization we manually collect a set of abbreviations from the names, compute
how frequently they are used per model and remove them from the names. As a
result, for each component, we obtain two document-term matrices with models
acting as documents. The matrices describe the frequency of terms (including
the abbreviations) that occur in a collection of the names of SSSM-IMs and
MSSM-IMs, respectively.

We conjecture that the terms appearing in the SSSM-IM set while not in
the MSSM-IM set (Exclusive), and the terms that appear in both sets (Shared)
with high frequency in the SSSM-IM set might suggest the role of SSSM-IMs.
Therefore, for each component, we further obtain the sets of Exclusive and Shared
terms. To identify the “most important” shared terms, we compute the odds
ratio of each term, i.e., ratio of the share of SSSM-IMs containing term t and the
share of MSSM-IMs containing term t.

5.6.2 Results

Table 5.2 is a contingency table showing how many SSSM-IMs and MSSM-
IMs fall into each location group. We observe that overall bd-models are more
likely to be SSSM, while nb-models are more likely to be MSSM. However, such
an overall assessment might obscure differences between the components, in
particular since component B is much larger than the remaining components.
Hence, per component, we apply statistical techniques to determine whether
for an IM being an SSSM depends on the location group it belongs to. Since
only component B has disconnected models, we exclude disc from the statistical
analysis. For each component, we construct a 2 × 2 contingency table recording
the number of SSSM-IMs and MSSM-IMs for each location. To analyze the
contingency tables we opt for Fisher’s exact test [114] rather than a more
common χ2 test: indeed, many components have few IMs and the normal
approximation used by χ2 requires at least five models in each group, i.e., at
least 20 IMs per component. The null hypothesis of Fisher’s exact test is that the
type of IM (SSSM vs. MSSM) is independent of its location (bd vs. nb). Figure 5.5
shows the p-values obtained: for 9 out of 26 components the p-value is smaller
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Figure 5.5: p-values of the Fisher’s exact test vs. number of IMs

than the customary threshold of 0.05 and the odds ratio (i.e., the ratio of the
share of SSSM-IMs from boundary and the share of MSSM-IMs from boundary)
is larger than one. This means that we can reject the null hypothesis for these
9 components, i.e., the type of IM depends on whether it is on the boundary
of the “model world”. We also observe that the components where the null
hypothesis can be rejected tend to have more IMs than those where the null
hypothesis cannot be rejected.

Next, we identify the terms frequently used in names of the IMs. In total,
we obtain 472 terms from the names of IMs for components A–Z. Table 5.1
gives an overview of the number of Exclusive terms, the number of Exclusive
terms with more than five occurrences (Exclusive&Frequent), the number of
Shared terms, and the number of Shared terms with an odds ratio larger than one
(Shared&OR>1), as well as the number of Shared terms with frequencies higher
than five and an odds ratio larger than one (Shared&OR>1&Frequent).

We observe that some terms are exclusively used in SSSM-IMs. However,
only components D, K, N and S contain exclusive terms with more than five
occurrences as shown in Table 5.1. The three such terms in component D are
“data”, “foreign” and “barrier”. Components K, N and S have one such term:
“access”. Based on this observation, we conjecture that developers might think
SSSMs particularly suit a certain functionality related to “data”, “foreign”,
“barrier” and “access”. We do not further investigate the low-frequency Exclusive
terms because we expect them to be less likely to disclose the common roles
SSSMs play.

Out of the 26 components, 22 have terms shared in SSSM-IMs and MSSM-
IMs. 15 components have shared terms with an odds ratio larger than one,
i.e., the models containing the term in their names are more likely to be
SSSMs. As shown in Table 5.1, such terms are frequent in nine components. For
component B, Figure 5.6 shows frequently occurring shared terms with an odds
ratio greater than one. We anonymize the domain-specific terms and refer to
them as t1,...,t5 for confidentiality reasons. Term “foreign” belongs to group
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Table 5.3: Terms from groups Exclusive&Frequent and
Shared&OR>1&Frequent and the number of SSSM-IMs that contains the
term

Term collector store resync event swap foreign input stream constructor

#SSSM-IMs 16 9 12 23 9 26 8 9 8

Term barrier data error servic access sequenc measur t1,...,t14

#SSSM-IMs 10 34 17 8 22 8 10 141

Shared&OR>1&Frequent in component B but to group Exclusive&Frequent in
component D. This suggests that the roles reflected by the same term might be
implemented differently in different projects. Moreover, it seems that domain-
specific terms are very important, as they are topping the odds-ratio list. In
other eight components that have a non-empty group Shared&OR>1&Frequent,
there are in total nine domain-specific terms identified as t6,...,t14 and five
non-domain-specific terms “error”, “servic”, “seqenc”, “measur” and “data".
The terms from groups Exclusive&Frequent and Shared&OR>1&Frequent, and
the corresponding occurrences in the names of the SSSM-IMs from the 26
components are summarized in Table 5.3. These are the terms repeatably used
in the names of SSSM-IMs.

RQ5.2 summary:

For larger components, developers use SSSMs particularly often on their
boundary. Furthermore, developers repeatedly prefer terms such as “data”
in the names of the SSSM-IMs.



5.7 Interview (RQ5.3 and RQ5.4) 145

We conjecture that terms in Table 5.3 encode the reasons why developers
use SSSM-IMs and use these terms to prompt discussion in the follow-up
interviews.

5.7 Interview (RQ5.3 and RQ5.4)
In this section, we present our interview methods and results for RQ5.3 and
RQ5.4.

5.7.1 Procedure
Following the sequential explanatory research strategy, we refine the concrete
steps for the qualitative phase based on the outcomes of the quantitative phase.

Iterative process: We start the process by considering the largest component
(component B) as we expect it to produce the richest theory. We conduct semi-
structured interviews with architects of the component under consideration,
perform open coding of the interview transcripts to derive categories of SSSM-
IMs, perform member check to mitigate the threat of misinterpretation [64],
and label the SSSM-IMs in all components using the categories derived. If at
this stage all SSSM-IMs have been labeled, saturation has been reached and the
process terminates. Otherwise, we select a not yet considered component with
the largest number of unlabeled SSSM-IMs and iterate. Figure 5.7 summarizes
the process we follow.

Member 
check

Interview (starting 
with component B) 

Open coding and 
axial coding 

Label SSSM-models

Figure 5.7: Steps in the qualitative phase

Interview design: The interview questions stem from the quantitative
findings. First, reflecting on the findings for RQ5.2, we ask why do developers
use SSSMs more often on the boundary of the “model world” than in other parts?
To discuss the goals of using disconnected, boundary and non-boundary
SSSM-IMs, we provide a list of SSSM-IMs for each location and ask: what
goals do you intend to achieve with an SSSM-IM in disconnected/boundary/non-
boundary parts? Next, for each term identified either as Exclusive&Frequent or as
Shared&OR>1&Frequent, we provide a list of SSSM-IMs containing the term and
ask questions: what responsibilities do the term imply?, and why and how do you use
SSSMs to implement these responsibilities? To obtain as rich information as possible,
we send a list of SSSM-IMs to our interviewees before the interviews, allowing
them to refamiliarize themselves with the models. We do not disclose the
interview questions prior to the interview. To answer RQ5.4, we ask developers
about the advantages of using single-state state machines and the disadvantages. We
have the interviews in a meeting room with a whiteboard. Interviewees can
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draw on the whiteboard for explanation. We take photos of the whiteboard after
interviews.

Coding procedures: After initial interviews, we conduct open coding
on the transcripts, identifying the goals that developers attempt to achieve,
the solutions that they employ and the location of the used SSSM-IMs
(boundary/non-boundary/disconnected). For example, when we ask questions
about term “foreign”, we obtain the following answer: “We want to create formal
models, that is why we use ASD. The problem here is the outside world is not formal. So
it can behave as expected or unexpected, we don’t know ... If people follow the rules, all
boundaries need to be armored. The important aspect is that the calls from foreign side
must be accepted by every state. As foreign IM, you cannot restrict anything because
you don’t know the behavior of foreign (components)”. Based on this answer, we
identify the developers’ goal as protecting formal models from informal and
unknown foreign behavior, the solution they employ should not restrict the
order of events from foreign side, and the location of the SSSM-IM is boundary.

The solution is augmented by details with photos that we took from
the whiteboard. We refer to the detailed solution as a design pattern which
are derived from multiple instances shown in our mining results and the
discussions with developers about these instances. Each design pattern can be
1) an SSSM-IM, 2) a combination of an SSSM-IM and the DM(s) that implement
it, or 3) a set of SSSM-IMs and other models. The open coding results in a set
of categories that consist of goals, locations and design patterns. For instance,
category armoring the boundaries of models emerges from the previous example.
Next, we perform axial coding to group these categories based on the core reason
behind, i.e., why would developers like to achieve the goal? For instance, the
core reason behind armoring the boundaries of models is that models have to work
with the existing code base. In addition, we also identify the advantages and
disadvantages from our interviewees’ answers.

Member check: The author of this thesis conducts the coding tasks. In
order to ensure that the categories are correctly identified, we perform member
check [64] with our interviewees. The member check is a validation activity that
requests informant feedback to improve the accuracy of the derived the theory.
This resulting adjustment on categories is represented by the dashed line in
Figure 5.7.

Label SSSM-IMs: The author of this thesis reviews and labels each SSSM-
IM based on the derived categories. For instance, we can determine whether a
model is an instance of category armoring the boundaries of models by checking if
it is on boundary and implements the identified design pattern.

5.7.2 Reasons of Using SSSM-IMs (RQ5.3)
We reach saturation with three face-to-face interviews and two interviews
through emails. Table 5.4 provides an overview of our results. We identify four
core reasons why developers use SSSM-IMs: 1) using models together with
existing code base, 2) dealing with tool limitations, 3) facilitating maintenance and
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4) easing verification. For each core reason, developers have at least one goal
to achieve with SSSM-IMs. 353 out of 354 SSSM-IMs can be explained by the
core reasons and goals listed in Table 5.4. Before discussing Table 5.4, we briefly
review the model that cannot be explained by it. It is a disconnected SSSM-IM
that should have been removed once it was no longer used (“dead code”). In
the remainder of this section we discuss the reasons, goals and design patterns
shown in Table 5.4.

5.7.2.1 Using Models Together With Existing Code Base
As mentioned, a large portion of the software base was developed with the
traditional software engineering methods. Hence, the model-based components
need to interact with the existing code-based components. The behavior of the
models is formally verified and can only interact with each other according
to the protocol specified in the IMs. By nature, when communicating with
foreign components, model-based components operate under the assumption
that foreign components behave as specified. However, due to the lack of formal
specification, the behavior of code-based components is not formally verified
and often unknown. This means that developers need a mechanism to “protect”
models from non-verified and unexpected behavior of code-based components.

To achieve the goal, developers come up with design pattern D1, shown in
Figure 5.8. The core idea of this pattern is to create a layer which accepts any
order of calls from the code side at first, and then only forwards the allowed
order of the calls to the model side. By implementing this idea, both code-based
components and model-based components are not aware of the presence of
each other.

Next, we discuss how the elements in the pattern work together. Developers
would like to protect Core which is a group of models from the non-verified
of code-based components Foreign Client and Foreign Server. IMs IForeign are
SSSM-models which allow any order of input events, while DMs Armor forward
the allowed calls specified in IMs IProtocol which describes the order of events
expected by Core. In order to trace the unexpected behavior from Foreign Client
and Foreign Server, DMs Armor also record protocol deviations with Logger so
that it is easier to distinguish failures caused by protocol violations from failures
caused by functional errors.
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Table 5.4: Why developers use SSSM-IMs identified from the 26 components: the core reason, goal, location, design pattern
and the number of instances (SSSM-IMs). We refer the design patterns that involve a set of models to D1,...,D5 as shown in
Figure 5.8. For the sake of generalizability, we do not explain the design pattern that is used to achieve goal EaseRefactoring
because it is specific to the semantics of the modeling language provided by ASD suite.

Core reason Goal Location Design pattern #Instances
Existing code base ModelArmor: protecting verified behavior

from non-verified behavior
boundary D1 77

Tool
limitations

Unable to specify data-
dependent behavior

DataEncapulation: encapsulating data-
dependent behavior into functions

boundary and non-
boundary

D2 183

Unable to select a subset of
notification events

EventCollector: specifying individual
interest for multiple clients

boundary D3 30

Lack of common libraries LibraryReuse: reusing libraries available in
general-purpose programming languages

boundary An SSSM-IM 31

Unable to specify global
literal values

GlobalLiteralValue: specifying global literal
values

non-boundary Combination 2

Maintenance
CallMapping: reducing coupling between
clients and servers

non-boundary D4 16

FeatureSelection: isolating product-specific
features from common features

non-boundary D5 9

EaseRefactoring: easing event renaming non-boundary - 2
Documentation: documenting events for
communication within teams

disconnected An SSSM-IM 2

Verification EaseVerfication: avoiding a large state
space

non-boundary An SSSM-IM 1
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5.7.2.2 Dealing With Tool Limitations
ASD suite has several limitations preventing developers from specifying the
intended behavior of models. As workarounds, developers have to manually
implement the behavior with general-purpose programming languages. This
also results in the use of code inside model-based components. That is, a large
part of the component is implemented using models while the part that cannot
be implemented using models is implemented using handwritten code. This
raises the need of interfacing handwritten code with models inside model-based
components.

DataEncapsulation: One of the limitations of ASD suite, is the lack of a
way to specify data-dependent behavior: one can declare parameters for the
events in models to pass data transparently from one model to the other, but
the control decision cannot be made based on a parameter value1. The pass-by
data eventually ends up in code, where the data-dependent behavior can be
programmed. To work around this limitation, developers store and manage data
in handwritten code known as data stores inside the model-based components.
The developers’ goal is to have a mechanism allowing the models to read and
write each piece of data. Design pattern D2 in Figure 5.8 is used to achieve the
goal.

In the system under study, each piece of data in a data store is associated
with an ID. For the sake of example, assume that a control decision has to
be made based on the comparison of two data values associated with ID d
persistently stored in DataStore1 and DataStore2 respectively. Because models
can only pass data transparently, there is a need to implement handwritten
code known as Algorithm which offers call events triggering the comparison
task, and returns reply events that inform about the result. To obtain the control
decision based on the comparison, DM DataFunction is used to fetch the data
corresponding to d from DataStore1 and DataStore2. Then it passes the fetched
data to Algorithm to obtain the result.

Based on the received reply, DataFunction synchronously returns a reply to
the client models that ask for a decision. For complex applications, DataFunction
needs to intensively interact with data stores and Algorithm in order to derive
results. To reduce the coupling between data-aware code and data-independent
models, IM im4 is an SSSM which only specifies the call events and the possible
replies so that the underlying data-related interactions between code and
DataFunction are hidden from the models that only expect a decision. Similar
to IM im4, IM im3 only specifies the signatures of independent functions
implemented with code.

When it comes to data access, a write operation for data associated with
a specific ID is required to be performed before a read operation for the
corresponding data. Naturally, developers would like to specify the required
order in IMs im1 and im2 so that the interaction protocol between DataFunction
and these IMs is explicitly defined, and subsequently verified before code
generation. However, since data-dependent behavior is not supported by ASD,
im1 and im2 are SSSMs which only specify the signatures of call events and

1This limitation is intentional in order to avoid the state space explosion problem.
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replies for the intended data operations. The interaction protocol, in this case, is
implicitly encoded in code for these data stores, requiring test efforts to examine
correctness.

EventCollector: Another tool limitation that influences how developers
design software is that client models cannot select a subset of notification events
to receive from their server models. This means that the client models have to
receive all notification events from their server models, even though some of
notification events are out of their interest. To model a case where multiple client
models are interested in different subsets of notification events from the same
server model, design pattern D3 in Figure 5.8 is used. Instead of interfacing with
the server model directly, clients interface with a handwritten EventCollector
which works as a router forwarding each notification event to the corresponding
client according to the events that developers specify with SSSM-IMs e1,e2 and
e3. Because each DM can only implement one IM developers have to inject the
handwritten router between models.

LibraryReuse: ASD suite provides reusable libraries, such as a timer,
implemented by models that can be used across different applications. However,
the available libraries are limited compared to their counterparts available for
general-purpose programming languages. For instance, one of the missing
libraries is timestamp library. As a workaround, developers use handwritten
code to wrap the timestamp-related operations (e.g., converting timestamp
format) into functions with output parameters (e.g., for obtaining converted
timestamp). The SSSM-IMs specify the signatures of the handwritten functions
so that the generated code from the models can seamlessly reuse these libraries.

GlobalLiteralValue: Since ASD suite does not provide means of specifying
global constants as most programming languages have, developers have to
use the actual literal values wherever they need them. For example, assume
that we would like to use a global constant Size to store the value of the buffer
size set to 100. To avoid the errors that could be introduced by hard-coding
this value, developers implement SSSM-IMs and SSSM-DMs to store the value,
which can be obtained by calling corresponding events. Developers specify an
SSSM-IM that offers call event getBufferSize([out]p:int):void. In the corresponding
SSSM-DM, the call is augmented with the corresponding output integer,i.e.,
getBufferSize(100). In this case, by calling event getBufferSize(n), other models
that need the value can obtain variable n that holds integer 100.

5.7.2.3 Facilitating Maintenance
In four cases, SSSM-IMs are used to facilitate maintenance.

CallMapping: Client models often need to call a sequence of events on
different server models. To reduce the coupling between the client model and its
server models, developers implement a mapper which consists of an SSSM-IM
and an SSSM-DM between the client and its servers (see D4 in Figure 5.8). The
SSSM-IM only specifies the signature of a void call event that can be triggered
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by the client model. The mapping of the call event triggered by the client model
to a sequence of intended call events on other server models is specified in the
corresponding SSSM-DM.

FeatureSelection: As the system under study is specified using a principle
from software product line engineering, developers separate features shared
by all products from product-specific features to be configured at runtime [72].
D5 in Figure 5.8 shows a design pattern supporting this separation. For the
sake of an example, assume a system needs to construct different sequences
of actions for the same task based on the runtime configuration of the product
type. For each product, the sequence construction is triggered by the same
call event Construct. To hide the product-specific details from the common
models, IFeatureFwd specifies the signature of Construct which is implemented
by FeatureVar1 and FeatureVar2. Common, as the common feature shared by
all products, needs to call Construct to trigger the sequence construction on
the correct variant based on the runtime configuration. However, involving
Common in this feature selection breaks the separation of concerns, i.e., Common
has to be aware of that different products exist. To avoid this, FeatureSwitch is
implemented. At runtime FeatureSwitch reads the product type from a data store
and forwards Construct to the appropriate product-specific implementation (i.e.,
FeatureVar1 or FeatureVar2).

Since IFeature has to hide the feature selection and product-specific details
from Common, it is identical to IFeatureFwd acting as an interface offering
Construct. When Common calls Construct, the feature selection is performed,
followed by the sequence construction based on the selection. Common is, hence,
not aware of any product-specific information. Developers expect that by using
this pattern, the coupling between common parts and product-specific parts can
be reduced, and the variants can be extended without modifying the common
parts.

EaseRefactoring: Developers also consider the ease of refactoring. Assume
a model repeatedly triggers a task implemented by a sequence of e1,..., e8. Hard-
coding this sequence at several invocation sites is error-prone. Moreover, any
change to the sequence, such as renaming an event, has to be performed at all
invocation sites. Hence, developers use a solution akin to procedure abstraction
to specify a sequence of events only once and reuse it wherever needed. Since
the concrete solution is specific to the semantics of ASD, we do not disclose
further details.

Documentation: IMs are sometimes used to document the signatures of
functions. In such cases, these SSSMs are disconnected to the rest of models in
components, and used only as a way to communicate the design.

5.7.2.4 Easing Verification
Efficient verification is a key concern in modeling, as tool-chains must convert
state machine specifications to a formalism before the verification step using a
model checker. Verification of models with large state spaces can take significant
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time, hindering the design and maintenance process. In our case study, we
found a situation where an SSSM-IM is used to avoid verification on a large
state space.

The intention of the developers was to create an interface such that the
number of triggers on event a should be larger than the number of triggers on
event b. The corresponding state space contains all possible combinations such
that a is triggered exactly one more time than b, two more times, etc. During the
verification step, the model checker has to visit every single state in the state
space. To ease the verification step, developers simplify the model to an SSSM
with events a and b, dropping the requirement that the number of triggers on
event a should be larger than the number of triggers on event b: “Scalability is
a good reason to not verify this explicitly, as it does not matter if the max difference
between #a - #b is 1, 2, 9 or 100. Abstracting from the exact difference makes the
verification scalable, at the cost of less guaranteed correctness.”

RQ5.3 summary:

Developers utilize SSSMs for four main reasons: 20.3% for interfacing
models with existing code, 64.7% for overcoming tool limitations, 7.6% for
facilitating long-term maintenance, and for enhancing verification efficiency.
SSSMs are commonly used in conjunction with other models as design
patterns to accomplish these objectives.

5.7.3 (Dis)advantages of SSSM-IMs (RQ5.4)
When it comes to the advantages and disadvantages of using SSSM-IMs, the
interviewees share the same opinion. The main perceived advantage of SSSMs
is the ease of verification. This advantage has been taken to interface with the
existing code base: “The main advantage is that a flower model is stateless, it imposes
no restrictions so verification passes easily and perhaps more importantly: it is easier
to implement a Foreign component faithfully”. Indeed, there is no way to formally
verify the behavior of foreign components against interface protocols. Using
SSSMs allows foregin components to work with model-based components
which are strictly verified.

Since SSSM-IMs impose no restrictions on the order of events, changes to
the calling order on the client side also easily pass the verification, reducing
the maintenance effort. However, the ease of passing verification also means
that the model “will likely always pass verification” hiding potential bugs and
compromising potential verification benefits. Taking both the advantage and
the disadvantage of SSSM-IMs into account, interviewees recommend caution
when using SSSM-IMs: “people (developers) need to have a very good reason for
it because it does not check anything”. SSSMs are the extreme case where all
the behavior details are abstracted away. When it comes to modeling for the
purpose of verification and code generation, interviewed architects suggested
that it usually takes several iterations to refine the abstraction levels of models.
As suggested by these seniors, it takes several years for developers to learn
how to design models in a way that development, maintenance and verification can be
facilitated.
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RQ5.4 summary:

The property of SSSMs—passing verification easily—is perceived as an
advantage for easier development and maintenance of models, but also a
disadvantage that might hide bugs from model checker.

5.8 When SSSMs Were Introduced to the System (RQ5.5)
In this section, we discuss data collection and analysis as well as results for
RQ5.5.

5.8.1 Data Collection and Analysis

To answer RQ5.5, we examine the availability of the historical data for 26
components from Table 5.1. After an investigation, we select component B as
our study subject because component B has been introduced to the system
for a long time, while the other components are relatively new and have little
historical data available. For example, as shared by the developers that we
contacted with, component D has been deployed at the customers’ machines,
but it does not (yet) evolve much because there is so far no issue found by the
customers and no new feature delivered.

We collect the snapshots from the Git repository of component B. The
chronological order of commits from the master branch 2 is not necessarily the
order of actual commits because the history of a Git repository is represented by
a graph of commits rather than a linear chain of commits [54]. However, in this
study, we limit our scope to the master branch due to the differences between
the master branch and the other branches. First, the master branch versions
the models that are ready to be reviewed by other developers while other
branches version the development of machine-specific features and different
releases, or the fix of certain bugs. According to the developers responsible
for the components, these branches can be deleted or merged when a certain
development task is finished. Second, the submitted models to the development
branches may not be complete or executable (e.g., exhibiting syntactic errors).
Third, developers have a different habit of committing to their own development
branches (e.g., some developers commit at the end of the working day while
some commit when a certain task is finished). These differences require different
interpretations for the mined results. As the first step, we investigate the master
branch, leaving the evolutionary differences present in other branches out of
our scope.

The snapshots of the Git repository of component B are collected based on
the order they appeared in the master branch. We applied the method discussed
in Section 5.6.1 to identify SSSMs. For each snapshot, we measure the number
of MSSM-IMs, MSSM-DMs, SSSM-IMs, SSSM-DMs as well as the number of
SSSM-IMs that are used for achieving the goals we discussed in Table 5.4. By
analyzing the growth of the number of these models over the years, we aim to

2We adhere to the terminology as used at ASML.
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understand whether the trends differ between SSSMs and MSSMs, and between
different SSSMs used by developers for achieving different goals.

5.8.2 Result
Figure 5.9 shows the number of MSSM-IMs, MSSM-DMs, SSSM-IMs and SSSM-
DMs present in the Git repository over time. The figure shows an initial surge in
2013 because the first two Git commits are two large squashes of commits from
an SVN repository which was used for the initial development of component B
and has been removed after importing the latest snapshot into the Git repository.
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Figure 5.9: Growth of the number of models in the Git repository of
component B

Overall, the total number of models in this component is growing over the
years after the deployment of the component in the machines. As we learned
from the developers of component B, component B is the central controller of the
machines, coordinating different machine actions. Therefore, the component is
likely to be extended or modified when a new feature is added to the machines.
Developers started using SSSMs before the first deployment of the component
and continuously introduced more SSSM-IMs over the years. The growth of all
these types of models slowed down noticeably after 2016. This indicates that
the component is gradually matured. In contrast, SSSM-DMs were introduced
before the first deployment and their usage remains stable throughout the
history.

With Figure 5.10, we zoom in on the trend for the SSSM-IMs that are used
by developers for the core reasons presented in Table 5.4. After the initial
development of the component, eight SSSM-IMs used for easing maintenance
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Figure 5.10: Growth of the number of SSSM-IMs used for different
reasons

and verification were introduced in June 2013, and the number of the SSSM-IMs
for these purposes did not grow significantly afterward. A closer look at the
commit that contributes to the significant increase in June 2013 reveals that
developers introduced the SSSMs when developing a machine-specific feature.
These SSSMs abstract machine-specific details away from the client models (see
pattern FeatureSelection in Figure 5.8). Differently, the number of SSSM-IMs that
are used to work with the existing code base mainly increased in the period
of 2015 and 2017. This implies that the need for interfacing component B with
foreign components increases during the period. The number of SSSM-IMs that
serves as a workaround solution to tool limitations grew continuously over the
years. By further zooming in on the trends for the SSSMs used for dealing with
different tool limitations as shown in Figure 5.11, we found that the demand
for SSSMs for different tool limitations varies over time. The implementation
of patterns EventCollector and DataEncapsulation is the main drive behind the
growth. The need for the SSSMs from pattern EventCollector grew strikingly in
2016 and became relatively stable afterward. By inspecting the related commits,
we found that the rapid growth was caused by the implementation of a system
design that requires component B to subscribes to a bunch of events, receive
the events during runtime, and perform the corresponding actions based on the
received events. The introduced SSSMs forward the events to the target parts of
component B that are responsible for the corresponding actions.

Due to another tool limitation, developers cannot specify data-dependent
behavior. The SSSMs in pattern DataEncapsulation are used to encapsulate
data-dependent behavior implemented in the foreign code. The need for data
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Figure 5.11: Growth of the number of SSSM-IM used to deal with
different tool limitations

encapsulation with SSSMs appeared from the early phase and continuously
grew as developers extend the functionalities of the component. Particularly,
it became the main reason for introducing more SSSMs to the component in
recent years.

RQ5.5 summary:

The SSSM-IMs used for the ease of implementing machine-specific features
were introduced after the initial deployment. The SSSM-IMs used for
working with the existing code base were gradually introduced as the
new features were developed. The need for SSSM-IMs to deal with
tool limitations continuously increases over the years. Particularly, data
encapsulation is the main reason why developers introduce additional
SSSMs to the component in recent years.

5.9 Threats to Validity
As any empirical study, ours is also subject to several threats of validity.

Threats to construct validity examine the relation between the theory and
observation. Since there is no clear definition of single-state state machines in
literature and guidelines, we operationalize the intuitive notion of an SSSM
and provide our own definition. To ensure that our definition corresponds to
the developers’ perception of SSSMs, we explained our definition of SSSMs to
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the interviewees and made sure that they understood it. While it is possible
that some MSSMs can be reduced to SSSMs according to some formal notions
of equivalence (e.g., trace equivalence), developers tend not to think about
those MSSMs when talking about SSSMs. This is why we exclude this case from
consideration and treat MSSMs equivalent to SSSMs as MSSMs.

Threats to internal validity concern factors that might have influenced
the results. In our interview study, we derive our interview questions and
strategy from our quantitative findings, which reduces the risk of asking
meaningless questions that potentially bias our interviewees. Moreover, to
avoid misinterpretation of developers’ ideas, we performed member checks
with our interviewees on the categories emerged from the Grounded Theory
process. To assure the completeness of the reasons of using SSSMs, we conduct
several iterations of interviews till all SSSMs from these 26 components can be
explained by the collected reasons.

Threats to external validity concern the generalizability of our conclusions
beyond the studied context. We studied 26 model-based components for RQ5.1
and RQ5.2. The study for RQ5.5 is limited to a single component because this
component has been developed and enabled in the system for a long time,
while other components are relatively new and have not evolved much since
their deployment. Studying the evolution of state-machine-based software is
still a challenging subject due to the lack of data. First, the use of MDSE with
the purpose of verification is still very limited even though the need is already
evident, as surveyed by [229]. Second, since the built-in verification tool formally
verifies the correctness of models, the number of revisions developers made
to these models might inherently lower than that they made to handwritten
code. Lacking of data can impact the generalizability of the findings. With this
preliminary study, we intend to increase the understanding of the evolutionary
aspects of state-machine-based software with the evidence from industry.

Moreover, we are aware that we limited our study to the components from
a single company developed with the same modeling tool. We believe the
conclusions and observations derived from this context are complementary to
the existing literature which mainly have broad surveys on the challenges of
MDSE adoption, by providing concrete industrial examples. To increase the
generalizability, one of the future directions could be replicating our study in
other companies or using the models developed with other tools.

5.10 Discussion and Implication
As the main contribution, our study identified why developers use SSSM
models. Firstly, we delve into the relationship between the ASD tool under
study and MDSE, reflecting on the generalizability of our study and its findings
(Section 5.10.1). Based on our empirical results, we then provide implications
for developers (Section 5.10.2), tool builders (Section 5.10.3) and researchers
(Section 5.10.4). Some of the implications derived from our empirical study are
consistent with the findings provided by other surveys and interview studies
on MDSE adoption. Different from these studies that provide a broad insight
of MDSE adoption, our study aims for more in-depth insights into a certain
phenomenon in state machine modeling, by applying mixed methods (i.e.,
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interviews and repository mining) in an industry context. Therefore, we think it
is still interesting to confront their conclusions with our findings.

5.10.1 ASD and MDSE
As identified by many empirical studies [75, 138], models are not only used
as important artifact for designs but also primary artifact for various kinds of
activities such as formal verification and code generation. The rigorous use of
models is enabled by tools like ASD. Therefore, ASD represents an instance of
MDSE. Moreover, ASD employs the concept of compositional verification to
achieve scalability in verifying large software systems. Verification is carried out
at the component level of ASD, where the relationship between a design model
and its interface model, as well as the use of interface models by this design
model, are examined. The premise is that if each design model (which generates
code) adheres to its implemented and used interface models, all components
should function correctly when combined. There are some commercial modeling
tools (e.g., Cocotec[82] and Dezyne [390]) based on compositional verification.
ASD is an exemplar of them.

By studying the SSSMs used in ASD modeling, we show how developers
use such modeling tools. Our study also shows which part of systems are
made stateless by software developers and for what purposes. The identified
challenges, workaround solutions, and design patterns could be beneficial for
developers and tool builders of such modeling tools. Furthermore, the derived
knowledge can help researchers identify research challenges and directions to
further study the practices of compositional modeling tools.

Next, we discuss these implications for developers, tool builders and
researchers.

5.10.2 Implications for Developers
Consider how to integrate models with the existing code base. In
our study, we found that developers introduce armoring to interface model-
based components with code-based components for protecting models from
unexpected behavior. In addition, we observed that the usage of SSSMs for
interfacing with the existing code base is increasing as more functionalities are
implemented. Our observation (in Section 5.5) suggests that practitioners should
consider how to integrate models with the existing code base in a scalable way
if they would like to use MDSE to develop only part of their systems that
need to be integrated with handwritten code. Furthermore, practitioners may
consider taking the quality (e.g., availability, scalability and maintainability)
of the provided integration solutions into account when evaluating candidate
modeling tools. This implication concurs with one of the challenges that has
been reported to hinder MDSE adoption in companies [182, 250, 273, 353]: using
MDSE together with the existing code base.

Be aware of the trade-offs that exist between using domain-specific
and general-purpose programming language constructs. The trade-off
between general-purpose modeling languages and domain-specific ones [388]
is a frequently discussed concern about MDSE. Domain-specific languages,
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on the one hand, often offer a higher degree of specialization for a certain
modeling domain or purpose. On the other hand, they might be less flexible
and expressive [96]. We observed a large share of SSSM-IMs are used to interface
with the handwritten code for which behavior cannot be modelled with ASD
because of the tool limitations (Table 5.4). Particularly, as we observed in
our mining study of historical data (Section 5.8), due to the lack of means
to specify data-dependent behavior with the tool, the need for encapsulating
data-dependent behavior implemented with handwritten code is continually
growing over the years, and has become the main reason for using SSSMs
in recent years. Under-specifying the order of events for data manipulation
operations require additional review and test efforts. This implies that before
adopting a certain modeling language and tool, practitioners need to evaluate
the benefit gained from the domain-specificity and the cost caused by the loss
of general-purpose language constructs, based on their application domain,
while, taking their long-term development and maintenance needs into account.
This implication agrees with the suggestion provided by Corcoran [85] that
“one must determine whether a given MDSE approach reduces complexity
visible to the developer, or whether it simply moves complexity elsewhere in
the development process.”

Create reusable design using the modeling tool. Apart from developing
patterns for interfacing with the existing codebase and dealing with tool
limitations, we observed that developers also invest effort in creating patterns
that are expected to ease long-term maintenance. They use SSSM-related
design patterns to realize such software design principles as low coupling (e.g.,
CallMapping) and separation of concerns (e.g., FeatureSelection). Furthermore,
future refactoring is facilitated with SSSMs implementing the idea of “packaging
up sub-steps". We observed that these patterns were introduced in the early
phase of the maintenance of component B and widely reused in other
components. Our observation implies that practitioners can consider to build
up reusable design patterns when using a certain modeling tool, to ease their
development in future projects developed with the same tool. This implication
is inline with earlier findings on MDSE adoption [169] and software engineering
practice in general [22].

Balance modeling trade-off between the ease of modeling activity and
the verification adequacy. As discussed by Chaudron et al. [75], developers
who work with traditional UML modeling, i.e., use models merely for
analysis, understanding and communication, have to make a trade-off between
effort in modeling and the risk of problems caused by imperfections (e.g.,
incompleteness, redundancy and inconsistencies) in downstream development.
For example, when a model serves as a blueprint of the protocol between two
components, the under-specified parts in the model might be implemented
inconsistently due to different interpretations by different developers, later
incurring repair costs [75]. However, investing a lot of effort in continuously
refining such blueprints is not always possible [206]. Our results imply a
similar trade-off that developers need to make in the context of using models
for verification. Under-specifying the behavior of models might hide defects
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from the verification tools. However, spending too much effort in creating a
more precise model with a restricted order of events slows down development
process. Moreover, developers might need to spend more effort in performing
changes on such models in their maintenance activities because passing
verification becomes non-trivial.

5.10.3 Implications for Tool Builders
Help developers with integration. Our work calls for improving the
support of integration of models and code-based components. The need
to integrate models with the existing code base [170, 228, 408] and to
integrate models from different domains [377, 379] has often been mentioned.
However, not many studies propose how this integration can be facilitated
by improving modeling tools. To provide suggestions to MDSE tool builders
about integration, Greifenberg et al. survey eight design patterns proposed
for integrating generated and handwritten object-oriented code [140]. One of
the discussed design patterns is the GoF design pattern Delegation [125] which
allows generated code (delegator) to invoke methods of the handwritten code
(delegate) declared in an explicit interface (delegate interface). The ModelArmor
design pattern we identified (Figure 5.8) implements a similar idea; DM Armor
takes the role of delegator invoking methods of code-based components
specified in IM IForeign. However, as opposed to Delegation, ModelArmor
takes into account the different properties of models and code (i.e., verified
behavior vs. non-verified and unpredictable behavior), ensuring that models
are protected from the unexpected behavior of the code. Our work implies that
while selecting design patterns for integration, tool builders should consider
different properties of generated and handwritten code. Furthermore, tool
builders can (partially) automate the implementation of the integration patterns,
reducing the manual development effort.

Facilitate library reuse. Apart from interfacing with existing code-based
components, we have observed that developers have to use code to implement
what cannot be expressed by models (Section 5.7.2.2). For example. due to
the lack of reusable common libraries, developers implement in code the
behavior that requires such libraries. To address this challenge, the tool
builders can work on two directions. First, one can consider enriching common
functionalities often used in different applications with built-in models to
reduce the needs of interfacing with libraries provided by general-purpose
programming languages. Second, given rich reusable libraries in general-
purpose programming languages, tools should provide a way to easily reuse
these libraries, similar to the wrapping mechanism that allows, e.g., Python
programs to communicate with C/C++ [45].

Meet wider specification and verification needs. We have observed that
developers attempt to implement global constants with SSSMs (Section 5.7.2.2).
This practice indicates the need to support concepts shared by multiple models.
However, implementing such concepts is hindered by a well-known verification
challenge: state explosion problem [39, 81]. Such modeling tools as Uppaal [46]
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support the use of global variables (e.g., bounded integers and arrays) that can
influence the control flow in the models. However, such tools have larger risk
of facing state explosion when dealing with real-life applications [103]. This
implies that a trade-off between supporting global variables and the risk of
state explosion has to be resolved by tool designers. A possible resolution could
be adopting hybrid solutions [103, 419] that translate models from one tool to
another, to meet wider verification needs.

5.10.4 Implications for Researchers

As befitting an exploratory case study [324], we propose hypotheses about the
use of SSSMs in modeling practice. These hypotheses should be verified in a
follow-up study.

H1: The design patterns in Section 5.7 help developers to achieve the corresponding
goals. We have seen that SSSMs are extensively used for various reasons and
goals.

The studies on the effectiveness of GoF design patterns in OOP
languages [125] have shown that design patterns do not always achieve the
claimed advantages [21, 438]. Moreover, passing verification easily with SSSMs
might be a potential risk, suggesting a need to investigate effectiveness of these
SSSM-related design patterns in order to confidently apply them.

H2.1: SSSMs shorten the development time and ease modification tasks of their client
models, compared to MSSMs. H2.2: The models that use or implement SSSM-IMs
have more post-release defects compared to the models that work with MSSM-IMs.
These two hypotheses are derived from our interviewees’ perception (RQ4,
Section 5.7.3). It is, however, unknown how SSSMs actually impact development,
maintenance and verification activities. Investigating the impacts of SSSMs,
the type of model that minimizes modeling effort, is a starting point toward
better understanding of a trade-off between the effort spent on designing a
model that maximizes the advantage of verification and the extra cost caused
by downstream problems due to inadequate verification. We expect that the
investigation of this trade-off can broaden the ongoing discussion of modeling
trade-offs that is currently focusing on UML modeling [75, 312].

Beyond the specific hypotheses, we suggest researchers to further study
the evolution of models. Given the caused permissive verification is perceived
as a risk by our interviewees, we suggest proposing possible alternatives to
SSSM-IMs by investigating the order in which events are actually being called
during system operation. One can consider analyzing the execution traces of the
generated code with pattern mining techniques widely studied in the field of
model learning [32, 410], specification mining [219, 241] and process mining [4,
148, 406]. For example, researchers can consider applying log comparison
techniques discussed in Chapter 3 to compare SSSM-IMs with models learned
from execution traces. By analyzing the differences between the crafted models
and actual executions, developers can refine the models with more behavioral
restrictions.
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In this study, we utilized an explanatory sequential design to delve into
the "why" problem. However, it is important to note that this study also has
an exploratory nature, as we initiate a discussion on modeling trade-offs when
working with modeling tools powered by formal verification. Based on the
insights gained from this research, formal approaches can be employed to
analyze the level of abstraction in these models. For instance, one can investigate
the gap between design models and their interface models, as well as the amount
of detail exposed in interface models, in a mathematical way. Additionally, the
relationship between the level of abstraction and the design of systems can also
be explored. For example, it is observed that the models at the boundary are
the most abstract and are intended to provide permissiveness. By combining
formal and empirical approaches, one can investigate the impact of abstraction
decisions on subsequent maintenance activities. Such an integrated approach
can help build a deeper understanding of modeling practices from the ground
up, allowing for more effective modeling and design decisions.

5.11 Related Work
In this section, we discuss several related research topics.

5.11.1 MDSE Adoption and Practice
Our study is closely related to a series of empirical studies on MDSE adoption
and practice. Mohagheghi et al. [273] identified the need for more empirical
evidence on MDE subjects by reviewing 25 papers. Twenty-one of these papers
were experience reports from single projects, while four report comparative
studies. The review study attempted to identify the benefits and limitations
of MDE. As a result, the study found that the improvement of software
quality, productivity gains and losses are not well-reported in these papers,
making it hard to generalize the results. Therefore, the authors call for more
empirical evidence on MDSE subjects to help researchers understand MDE
adoption, practice, and experience. Since then, many empirical MDE studies
have been conducted to understand how MDSE is being adopted and applied
in practice [75, 111, 169, 170, 228, 275, 306, 407, 408]. These papers explored
different dimensions of MDE adoption and practice, using mostly interviews
and surveys.

Liebel et al. [228, 229] conducted a survey with 113 MDSE practitioners to
assess the current state of practice and the challenges in the development of
embedded systems. The study found embedded software engineers use MDSE
mainly for simulation, code generation and documentation. The overall benefits
gained from MDSE outweigh the negative effects of MDSE. The challenges
perceived by engineers mainly lie in the sufficiency and interoperability of
tools.

To understand the impact of tools on MDE adoption, Whittle et al. [408]
conducted 20 interviews with MDSE practitioners, resulting in a taxonomy of
tool-related considerations. In addition, the study also reveals that MDSE tools,
in many cases, add complexity to the development, although it was expected
to help developers deal with complexity of systems. One of the problems
that contributes to the insufficiency of tools is a lack of consideration for how
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developers actually work and think. To resolve this problem, there is a need to
study how developers model systems and what challenges they face.

Several studies investigated challenges developers face in modeling. Pourali
and Atlee [306] identified the gap between users’ expectation on UML modeling
tools and their actual experience. The study evaluates eight modeling tools by
recruiting 18 students who are experienced with UML modeling to conduct four
modeling tasks. The study found that the students mainly have difficulties in
fixing inconsistencies which are most in need of consideration from tool builders.
The inconsistencies and other forms of imperfection (e.g., redundancy and
incompleteness) might cause downstream problems, as discussed by Chaudron
et al. [75] based on a series of surveys and interviews, raising a question of how
much modeling is good enough in the context of using UML as communication
vehicle and implementation blueprint. Our study further reveals that this
question remains when extending the use of models to verification.

Furthermore, several studies went beyond the technical aspects of MDSE
adoption and practice, exploring the organizational, managerial and social
factors that lead to successful adoption of MDE [169, 170, 407]. Based on a
series of survey and semi-structured interviews with MDSE practitioners from
industry, the authors conclude that an iterative and progressive approach,
organizational commitment, and motivated users are required to successfully
adopt MDSE in industry.

Similar to these studies on MDSE adoption and practice, we aimed for
obtaining empirical evidence to help researchers and tool builders better
understand how developers use MDSE in practice. Specifically, we enriched the
existing knowledge of MDSE practice through the lens of why developers use
SSSMs that is not recommended by a widespread modeling guideline, and how
developers use SSSMs.

5.11.2 Guideline Adherence
Our study is inspired by the literature on how and why software developers
(do not) follow programming and modeling guidelines or best practices.

A large body of literature has investigated the occurrence of violations to
the common wisdom in traditional coding practice. These study observed a
phenomenon that the violations often occur when the code is first introduced to
the system. Tufano et al. [382] studied when and why code smells are introduced
by mining software repositories. The result shows that most of the time code
smells are introduced in the development phase rather than in the evolution
phase that common wisdom expects, which implies that potential poor design
can be detected by performing quality checks during commit activities to avoid
worse problems in future. Similarly, a study on Eclipse interface usage by
Eclipse third-party plug-ins found that a significant portion of Eclipse third-
party plug-ins uses “bad” interfaces and the bad usage was not removed from
the systems [70]. This phenomenon is further discovered by the study on how
code readability changes during software evolution [300]. The result shows that
unreadable code is a minority, and most of the unreadable pieces are unreadable
since their creation.

The studies on guideline adherence have also been conducted to understand
UML modeling practice. Lange et al. [204] formulated a collection of rules to
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assess the completeness of UML models, and further explored to what extent
developers violate these rules in practice. The result shows a large amount
of rule violations, suggesting that the incompleteness of models should be
addressed. Lange et al. [207] further conducted a controlled experiment to
explore the effect of modeling conventions on defect density and modeling
effort. The results show that the defect density in UML models is reduced when
using modeling conventions, although the improvement is not statistically
significant. Different from these studies, our study explored the reasons behind
the violations in state-machines modeling practice.

5.11.3 Model Repository Mining

Our study is also related to the studies that mine model repositories. Pattern
and clone detection is one of the goals to mine model repositories [37, 199, 355,
356]. Similar to our work, Stephan et al. [355] mine model repositories to detect
patterns. The study predefined a set of patterns using models and identified the
models that are similar with the patterns within a given threshold. Differently,
our exploratory study identifies the patterns by mining a type of model that is
not recommended by modeling guidelines and discussing the mined results
with developers. As one of the main findings, we discovered several design
patterns, as shown in Figure 5.8. Our study can further be extended with the
pattern mining approach to detect instances of discovered patterns in the entire
model base.

Some studies mined MDSE repositories to investigate the quality of
handwritten code and generated code from models. He et al. [156] mined 16
MDE projects and concluded that the generated code from models present more
code smells than what developers usually produce in their handwritten code.
By mining MDSE repositories and non-MDSE repositories, Rahad et al. [313]
further identified that handwritten code fragments from MDSE repositories
suffer more from technical debt and code smells, compares to handwritten code
in non-MDSE repositories. These two studies pointed out that the traditional
coding guidelines are violated by code generators and developers in MDSE
practice. Our study empirically shows that developers violate a widespread
modeling guideline in order to integrate models with the existing code base.
These studies imply that the adoption of MDSE may introduce violations to the
coding and modeling guidelines that are considered to be common wisdom in
software engineering practice. To improve the MDSE practice, guidelines and
tools, the results of these studies call for more empirical studies to discover the
workarounds and compromises that developers made when adopting MDSE.

Several studies have been conducted to mine UML models. Robles and
Hebig et al. [157, 319] contributed datasets with UML diagrams mined
from GitHub. The datasets enabled several mining studies to advance the
understanding and techniques in UML modeling. Osman et al. [287] developed
the techniques to automatically classify UML models into hand-made diagrams
as part of the forward-looking development process and the diagrams reverse
engineered from the source code. Raghuraman et al. [312] mined software
repositories and identified that the projects with UML models present in the
repositories are less prone to defects compared to projects without UML models
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present in the repositories. This finding confirms the intuition that the use of
UML models can improve the quality of software.

5.12 Conclusion
With the aim of understanding why developers violate a widespread modeling
guideline, we conducted an exploratory study to understand under which
circumstances developers use SSSMs in their practice. We first investigated the
prevalence and role of SSSMs in the domain of embedded systems, as well
as the reasons why developers use them and their perceived advantages and
disadvantages. We employed the sequential explanatory strategy, including
repository mining and interview, to study 1500 state machines from 26
components at ASML, a leading company in manufacturing lithography
machines from the semiconductor industry. Then, we explored when SSSMs
were introduced to the systems by mining the largest state-machine-based
component from the company.

We observed that 25 out of 26 components contain SSSMs. The SSSMs
make up 25.3% of the model base. Our interviews suggest that SSSMs are used
to interface with the existing code, to deal with tool limitations, to facilitate
maintenance and to ease verification. Our study with the historical revisions
of SSSMs reveals that the need for SSSMs to deal with tool limitations grew
continuously over the years.

Based on our results, we provided implications to modeling tool builders
and developers. Furthermore, we formulated hypotheses about the effectiveness
of SSSMs, the impacts of SSSMs on development, and maintenance and
verification.
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Conclusion

In this chapter, we first revisit the research questions and the main contributions
presented in this thesis (Section 6.1). We then discuss the interplay between
these studied topics in the context of engineering embedded production
systems (Section 6.2). Next, we present the lessons learned from conducting this
research (Section 6.3). Finally, we suggest future work derived from this thesis
(Section 6.4).

6.1 Contributions to Research Questions
This thesis conducted empirical studies to provide insights in engineering
practices for embedded production systems in industry, guided by the following
research question:

RQ: How do software developers engineer the software of
embedded production systems?

To study this question, we conducted several empirical studies. Let us recap
our research studies with Figure 6.1. The log analysis studies (Chapter 2) suggest
the need for advanced log comparison tools and the preference of representing
logs with behavioral models. To identify the gaps between industrial practices
and the state-of-the-art techniques for log comparison, we conducted a literature
review about log comparison techniques (Chapter 3). By conducting empirical
studies in a real life context, we witnessed the transition that companies are
experiencing to adopt MDSE. Our study about model inference techniques
(Chapter 4) zoomed in on the question of how to obtain models from the existing
codebase using logs, while the study about modeling practices (Chapter 5) dived
into how developers use models in a hybrid system where handwritten code
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Figure 6.1: Research overview (with future work)

and generated code (from models) are co-operating with each other. These
empirical studies contribute to the body of design knowledge for developing
effective software analysis techniques for embedded production systems.

Next, we summarize the main contributions answering to the corresponding
research questions of these studies.

Log Analysis Practice: The Exploratory Study. Logs capture the runtime
behavior of systems. They are widely used as input for software analysis tools
that address the complexity of software systems [439]. We are interested in how
engineers use and analyze logs, and what improvements are expected from tool
support. Therefore, we studied:

RQ1: How do developers use logs in engineering embedded
production software?

This question was addressed in Chapter 2 where an interview study with 39
developers from five companies is presented. The results of this interview study
provide empirical evidence of the challenges faced by software developers for
engineering embedded production systems in both log instrumentation and
management activities.

We observed that the major challenge in the phase of log instrumentation
lies in defining a proper logging policy which systematically formalizes
logging formats, approaches and libraries. On one hand, logs are essential
for engineering embedded production systems because traditional debuggers
are often not applicable due to the concurrent design and critical timing
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requirements of systems. On the other hand, excessive logging may greatly
impact the performance of such systems. Our observations stress the challenges
of software logging introduced by the critical timing properties of embedded
production systems, calling for more research efforts for such systems.

As learned from the study, a suitable and well-designed logging method
is the cornerstone of automatic log management and analysis for such
systems. Consistent with the literature, text editors are commonly used by
the interviewed developers from different companies, but cannot sufficiently
provide support for developers to analyze the large amount of information
shown in logs. One of the coping strategies developers adopted is to sketch
behavioral models based on logs. To effectively help with analysis, developers
further suggest that log analysis tools should ease the comprehension of
the concurrent executions of systems, analyze and compare log information
at multiple levels of abstraction, and provide actionable insights for their
maintenance tasks. The insights we collected about tool support have
been considered in the development of a log comparison tool by other
reseachers [159] for ASML developers, demostrating the usefulness of our
research outcome.

Moreover, this study also provides empirical evidence of co-evolution
problems in software logging, which is not discussed in previous studies
in literature. The evolution of logging code and the generated logs require
the adaption of log-dependent entities (e.g., analysis tools) and tasks (e.g.,
interpretations of logged information) in practice. To automate the adaption, it
therefore calls for more research to identify the changes made to logging code,
and analyze the impact of the changes on other entities and tasks.

Log Comparison: Understanding the State of the Art. In Chapter 2, we
have learned that developers use text-based tools for comparing logs and face
challenges in extracting relevant information from many log differences. This is
in contrast to the fact that many log comparison techniques have been proposed
in the literature. As the first step towards bridging the gap, it is essential to
get an overview of log comparison techniques and identify their limitations.
Therefore, we ask:

RQ2: What are the existing log comparison techniques?

By studying 81 papers related to log comparison for software engineering
activities, we found that issue analysis is the most frequent use case of log
comparison presented in the literature, which is aligned with the use cases
in practices identified in Chapter 3. This finding implies that the research
efforts on log comparison techniques have targeted the major problem scenarios
in industry. Interestingly, a significant number of techniques are based on
behavioral model inference, performing comparison between models learned
from logs, which concurs with the observation in Chapter 2 that behavioral
models are favored by developers to present and comprehend log information,
suggesting the potential usefulness of such model-based log comparison
techniques.
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Moreover, we found that the techniques presented in these papers are
evaluated in a limited way. The evaluation of log comparison techniques lacks
realism due to a high use of data strategies which rely on generated or simulated
data and a low use of other strategies that involve human participants.

With the study presented in Chapter 2, we understand what challenges
developers face in the practice of log comparison, and what tool support they
expect. To apply log comparison techniques in industry, it is essential to know
if the existing techniques have addressed the challenges that developers face.
Therefore, we ask:

RQ3: How do the existing log comparison techniques deal with
the industrial challenges?

Specifically, we examined whether these techniques take event interleaving
caused by concurrency into account to reduce noise, perform comparison at
multiple levels of abstraction, and augment comparison results with additional
information to ease inspection and comprehension. Out of 81 papers, we found
that 25 of them explicitly consider at least one of these suggestions from industry
and only one study considers all of them, suggesting opportunities to integrate
these techniques.

The existence of multiple solutions for every challenge implies the need for
empirical investigation of which solutions are most suitable for embedded
production systems. For example, as we identified, in order to accurately
identify event interleaving, more information e.g., thread activities, program
variables, and causal relations between events, needs to be logged. The solutions
based on log instrumentation introduces additional performance overhead,
which might not be suitable for systems in production.

With this literature study of log comparison techniques, we conclude that
more research effort is required to address the industrial challenges and evaluate
the techniques thoroughly in a real development setting.

Model Inference: Combining Active and Passive Learning. Our
findings presented in Chapter 2 are in line with literature that models are
extensively used in the embedded domain as implementation blueprint,
communication vehicles, and are the primary vehicle of model-driven software
engineering (MDSE) [12]. However, to gain the potential benefit that models
promise, companies are still facing the challenges to obtain models from code
and logs.

Following this industrial need, we then studied techniques that can
automatically infer models from code and logs. We explored the complementary
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nature of active and passive learning techniques by asking the following
research question:

RQ4: How to combine active and passive learning techniques to
infer models from code and logs?

We answered this question in Chapter 4. Although the scalability issue
of active learning has been widely discussed in the literature, little work has
evaluated the technique with industrial software. To bridge this gap, we first
applied active learning to 218 industrial software components to show the
empirical evidence that active learning indeed suffers from scalability issues
due to the trade-off between learning time and completeness achieved. To
tackle this issue, we proposed a hybrid technique by adding so-called sequential
equivalence oracle into the original active learning framework, which allows use
to utilize behavioral information from the execution logs and passive learning
results. We validated this hybrid solution with 18 industrial components, and
showed that the proposed solution significantly reduces the inference time and
completing the behavior that is missed by the state-of-the-art technique.

This study contributes to the field of model inference by demonstrating the
gain of hybrid solutions, calling for more explorations into the complementary
nature of different techniques and using behavioral knowledge from other
software artifacts to improve the efficiency of active learning.

Modeling Practice: Why Developers Violate Guidelines. Having
learned that there is a trend in increasing the use of models for various MDSE
purposes at ASML and other embedded companies [12], we further investigated
the transition from traditional SE to MDSE by studying modeling practices.
Different from the use of models for team communication and software design,
models in MDSE are the primary artifact for further code generation, simulation,
verification and validation. As a result of the transition, models are operating
with the existing code base in such hybrid systems. Due to the changing role
of models, the guideline formulated in a general modeling context may not
necessarily be valid and sound in an MDSE context and a hybrid context (where
both code and model exist). To gain insights into this hypothesis, we studied
the reason behind violations of a widely accepted state machine modeling
guideline, namely prohibition of single-state state machines (Chapter 5). The
use of single-state state machines is an interesting phenomenon because it is
contradictory to the common wisdom of using state machines to model the
change of software state. We studied this phenomenon by asking:

RQ5: Why do developers use single-state state machines in
practice?

By mining 1500 state machines from ASML and interviewing developers to
interpret our mining results, we have collected reasons for using single-state
state machines (Chapter 5). Our findings show that SSSMs are widely used,
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making up 25.3% of the model base. Interestingly, we found that developers
have valid reasons to violate the guideline; the majority of SSSMs is used for
interfacing models with the existing codebase and dealing with tool limitations.
In addition, we illustrated the use of SSSM and the rationale behind the design
decisions with concrete industrial examples found in the study, suggesting
researchers and tool builders with possible tool improvements, and research
directions. For example, we found that 8.8% of SSSMs were used for reusing
libraries provided by general purpose programming languages, which suggests
that tool builders should provide a mechanism to facilitate library reuse
when designing modeling tools. Interestingly, we further observed that the
need for dealing with tool limitation has become the main reason for using
SSSMs in recent years, suggesting that practitioners should take the long-term
development of projects into account while selecting and evaluating modeling
tools.

The insufficiency of MDSE tools has been identified in the literature
of MDSE adoption using broad surveys and interviews. Our study is
complementary to the existing literature with an in-depth analysis from industry.
Moreover, our study also reveals that the existing modeling theories based on
traditional modeling scenario (e.g., modeling guidelines) are not necessarily
applicable for various other modeling purposes.

6.2 Discussion
This thesis can be seen as a case study that investigates the engineering
methodologies, processes, and tools for embedded production systems.
Specifically, we presented empirical studies about logs and models in the
software engineering process of such systems, identifying the challenges of log
analysis and MDSE as well as the challenges companies faced in the transitional
step from traditional software engineering to MDSE. In this section, we turn
our attention to the interplay between the studied topics in the context of this
transition.

To transit from traditional SE to MDSE, a very important step is to
obtain models from which code can be generated to replace the code-based
components. To achieve this replacement without altering the behavior of code-
based components and changing their environment in the system, the models
should precisely capture the behavior of these components. In Chapter 4, we
focus on the technical challenge of inferring exact models from existing code-
based components Our hybrid technique that combines active and passive
learning mitigates the scalability problem of active learning. The effectiveness
of the hybrid technique is later validated by Aslam [31] with an experiment that
applies the hybrid technique in combination with various testing algorithms to
208 MDSE-based components. As discussed by Hendriks and Aslam [158],
active learning still suffers from scalability challenges and requires more
research efforts to improve its applicability in industry. Although researchers
are advancing the model inference techniques to infer exact models in a scalable
manner, companies and developers still need to heavily rely on the manual
creation of models for now. In Chapter 5, we showed that the handcrafted state
machine models might violate the modeling guidelines which were proposed
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for traditional software modeling purposes (e.g., for blueprinting design),
suggesting the need for improvement on modeling guidelines and tools.

Apart from advancing model inference techniques and improving modeling
guidelines and tools, we believe one of the ways to help developers with this
transition is to provide analysis techniques that can assist them in maintaining
the hybrid system. Based on the studies conducted in Chapter 2 and 3, we
envision that model-based log analysis techniques (i.e., analysis of models
inferred from logs) can help companies and developers address some of the
challenges. As discussed in Chapter 4, model inference techniques based solely
on logs, by nature, result in incomplete models due to the limited observed
behavior shown in logs. However, the inferred models can still be used in
various software maintenance activities.

Model-based log analysis provides a unified way of comprehending
and analyzing software behavior for a hybrid software system. Dealing
with a hybrid software system is challenging, as it consists of software
components based on different programming languages and software
engineering paradigms. For example, when debugging a system which consists
of model-based and code-based components, developers have to inspect
different types of artifacts (i.e., code and model), get familiar with the syntax
of the programming languages and apply different maintenance processes
and techniques, which introduces cost in training. Inferring models from
logs generated from code-based components allows developers to analyze
and comprehend the system that consists of code-based and model-based
software components with a unified behavioral representation, without taking
the underlying differences in programming languages into account.

Subsequently, the unified behavioral representation may enable various
model-based log analysis. An example that we have discussed in this thesis
is model-based log comparison techniques (Chapter 3) which identify log
differences at the level of models, leveraging the techniques from the field of
model comparison. An extended use case of the model comparison techniques
could be analyzing the differences between implemented and observed behavior
to assist developers in improving and refining the handcrafted models for
formal verification and code generation. By comparing the handcrafted models
and the inferred models (from logs), developers can better understand the
runtime interactions between components, refining the handcrafted models to
avoid the problem of not restricting behavior sufficiently for formal verification
(discussed in Chapter 5).

Another advantage of model-based log analysis is that it trains and prepares
developers for MDSE. As shown in several empirical studies, one of the main
hurdles in the adoption of MDSE is the additional cost that companies need
to spend in training developers. As advised by Hutchinson et al. [169], MDSE
should be introduced in a progressive manner, preparing developers with
required skills. Model-based log analysis can prepare developers who are
more familiar with traditional software maintenance with the use of models
for various maintenance activities before introducing models as the primary
artifacts.

The transition to MDSE raises the challenges of maintaining hybrid systems.
In this thesis, we have collected the challenges software developers face in the
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use of logs and models for embedded production systems that are undergoing
a transition to MDSE, providing suggestions for researchers to improve log
analysis and modeling techniques.

6.3 Lessons Learned
The studies presented in this thesis were conducted mostly in industry. In
this section, we would like to summarize what we learned from conducting
this research about research methodology, resource aquisition and practical
challenges.

Our work contributes to the design knowledge of SE techniques and tools
by gaining insights into SE practices at companies. Our work presented in
Chapter 2 shows an example of collecting such design knowledge in two
steps. We started an exploratory case study at a single company and later
extended it with a replication study at multiple companies. We found several
advantages of this approach for collecting design knowledge in industry.
Conducting an exploratory study at a single company as the first step allows us
to gain a deeper understanding of challenges faced by developers in a single
company. The in-depth knowledge we obtained from this study helped us
attract interest from other companies for our replication study. The common
interest of these companies is to understand whether and to what extent their
developers experience the same challenges, which is the first step towards
gathering research efforts to address common SE problems. By interviewing
multiple companies and synthesizing the results, we were able to discuss the
common challenges and possible solutions, as well as the contextual factors that
these companies featured. Furthermore, we believe that our case studies have
advantages over broad surveys in terms of establishing long-term collaboration
with industry. In-depth analysis of a small group of companies can help
researchers prepare the internal knowledge of each company (e.g., the terms
developers use and the SE process the company follows), which is useful to
recruit the company for follow-up research studies.

The in-depth discussion of log analysis practices at ASML has been useful
for convincing managers of ASML software development division to support
our follow-up studies. As discussed in the previous section, we envision that
the interplay between logs and models can be further explored and leveraged.
The preference of presenting log information with models and the need for
advanced log comparison tools that we observed in Chapter 2, and the category
of model-based log comparison techniques that we identified in Chapter 3
leads us to the hypothesis that model-based log comparison techniques are
promising solutions to help developers identify relevant information for their
maintenance tasks. Therefore, we attempted to conduct a field study to evaluate
a state-of-the-art model-based log comparison technique[159] for root cause
analysis in industry 1. We planned to conduct a field experiment to evaluate
this technique against software developers in a more rigorous way with control

1Visually, this field study is represented by an arrow pointing from log comparison
literature to SW developers in Figure 6.1, which would complete the diamond shape of
the research overview.
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and experimental groups. In this experiment design, we attempted to recruit
software developers from the division where we conducted our interviews
(Chapter 2), collect various resolved regression bugs and their fixes as ground
truth and generate software logs from the regression and fixed software versions.
We would like to ask software developers to investigate the root cause of the
regression bugs using the traditional log analysis tools (i.e., text editors) and
the model-based log comparison technique respectively. With this experiment
setup, we intended to measure the correctness of the bug investigation and
the time developers spent on the investigation. However, our attempt did
not succeed. The main challenge is that the technique under study requires
an integration of a log instrumentation library into the existing code base to
capture communication information between software components, and the
integration task requires extensive developers’ domain expertises and efforts
(i.e., to solve the conflicts and errors occurring in software compilations), which
are hard to obtain and arrange within the given time for completing this thesis.
This shortage of time and resources that hamper the ability to collect data has
been widely recognized as a challenge in industry collaboration [129].

In hindsight, we would suggest researchers to propose a study plan that
minimizes the resources needed from industry. In addition, it would be very
helpful if the research plan is aligned with the ongoing SE activities performed
by the development group in collaboration. For example, we learned that
developers extensively compare execution traces (currently with text editors)
to identify software bugs, when performing qualification of a new release.
Planing a field study of a log comparison technique for the qualification phase
of software releases could have potentially attracted more interest of software
developers in participation.

6.4 Future Work
In this thesis, we studied the state-of-the-practice and state-of-the-art to

understand the role and use of logs and models in practice. We suggest
researchers to further investigate into identified gaps, gaining design knowledge
and providing solutions to facilitate the use of logs and models in practice.

Consistent with studies conducted in other contexts [44, 146], our study in
the context of the maintenance of embedded systems found that text editors
are commonly used by the interviewed companies, despite the fact that
commercial (e.g., Splunk [350]) and open-source tools (e.g., GrayLog [1]) have
been made available for practitioners [154]. To further study this gap, we suggest
several research directions.

Understanding the influencing factors of the adoption of log analysis
tools. Tool adoption in companies is usually hindered not only by technical
factors, but also non-technical factors [169, 318, 413]. To inform researchers and
tool builders about the challenges companies are facing, we suggest researchers
to gain a comprehensive insight into the technical and non-technical influencing
factors that hinder the adoption of available log analysis tools. Moreover, it is
valuable to build a corpus of evidence concerning practitioners’ experience with
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log analysis tools: do the adoption of available commercial and open-source
tools lead to more effective log analysis?

Conducting field studies and experiments with log analysis techniques.
There have been many log analysis techniques proposed in the literature.
Without empirical evidence of the efficacy of these techniques, there is a danger
that efforts are being wasted. As discussed by Storey et al. [359], there are
multiple strategies to evaluate techniques. As we present in Chapter 3, data
strategies which rely on simulated and generated data are the most used
in the evaluation of log comparison techniques, which is aligned with the
observation of Storey et al. about software engineering research work. In
contrast, lab, respondent and field strategies which involve human participants
are rarely applied. In particular, only two out of 81 studies perform field studies
to evaluate their log comparison techniques. We call for field studies of log
comparison techniques in a natural development setting with some controls
over certain aspects of the setting. We believe that conducting field studies is an
essential setp towards bridging the gap between state-of-the-art and state-of-
the-pratice, as represented by the arrow shown in Figure 6.1.

By conducting our studies at ASML, we observed the transition from
traditional software engineering to MDSE and its challenges. Several research
directions can be considered to support companies to obtain and maintain
models.

Leveraging various sources of behavioral information to mitigate the
scalability issues in model inference. In Chapter 4, we showed that the
state-of-the-art active learning technique suffers from scalability issues and
demonstrated that by using behavioral information from logs, the efficiency of
techniques can be greatly improved. The proposed hybrid solution provides
a way to extend the original active learning framework, allowing the use of
information from other sources. We suggest researchers to investigate other
sources of behavioral information, such as source code, by applying static
analysis techniques. Moreover, the hybrid approach is limited to the class of
systems where values of data parameters do not influence the behavior. To
extend model inference to a larger class of systems, learning data-dependent
behavior is essential, but yet challenging in terms of scalability [330].

Refining existing modeling theories for different modeling purposes.
In Chapter 5, we showed that a general modeling guideline is violated in
the context of modeling for code generation and verification. Interestingly,
an empirical study conducted by Rahad et al. [313] found that handwritten
code fragments in hybrid systems (i.e., where generated code and handwritten
code are operating with each other) suffer more from technical debt and code
smells, compares to handwritten code in non-hybrid systems. Together, these
studies show that the adoption of MDSE may introduce violations to the
coding and modeling guidelines that are considered to be common wisdom in
software engineering practice, implying the need for refining guidelines and
improving MDSE tools to support this transitional step. This leads us to the
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hypothesis that the existing theories (e.g., modeling guidelines and training)
might require adaptions to take various modeling purposes and scenarios
into account. Having seen the growing use of models as program [38], it is
essential to understand to what extent the knowledge and theory obtained
from traditional modeling purposes (e.g., blueprint of implementation) are
applicable to other modeling purposes (e.g., code generation and verification).
Answering this question can allow researchers to identify the need for different
modeling purposes, and educators to prepare students with knowledge for
different modeling tasks that they might perform in the future in industry.
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Summary

Embedded production systems are nowadays widely used in production and
manufacturing for a more precise control of the production processes and the
quality of products. Such systems are hard to maintain due to their complex
nature. They consist of thousands of software and hardware components that
are communicating with each other, capture the concepts and designs related to
different disciplines (e.g., physics and chemistry), and are often featured with
critical performance requirements. The portion of system functionality realized
by software is increasing in such systems, rendering it increasingly complex.
According to the existing empirical studies, the general software engineering
methodologies and techniques might not be sufficient to address the challenges
raised by the properties of embedded production software, suggesting the
need for proposing tailored techniques for such systems. As the first step
towards proposing effective techniques, it is essential to understand the current
practices and the challenges developers are facing. To gain this understanding,
we conduct a series of empirical studies at ASML, a leading manufacturer of
lithography machines for semiconductor industry.

Similar to many other complex systems, systems at ASML generate a large
amount of logs that capture the runtime behavior of the systems. Due to the
presence of rich information, execution logs are considered to be essential inputs
for software analytics tools and processes that aim at addressing the complexity
of large-scale systems. To provide useful and effective software analytics tools
for complex embedded systems, it is hence necessary to understand how the
developers of such systems use logs in practice. We conduct an interview study
with 39 software developers (Chapter 2). We first perform a series of interviews
with 25 developers at ASML and then replicate the interviews at four other
companies with another 14 software developers. In this interview study, we
learn that developers often compare logs generated from multiple executions to
support their maintenance activities such as root cause analysis and behavioral
verification. While many log comparison techniques have been proposed in
the academic literature, text-based editors are the commonly used tools for
this practice. This observation leads us to study the existing log comparison
techniques and their limitations by conducting a literature review about the
existing log comparison techniques (Chapter 3). This literature study reveals
that most of the existing log comparison techniques do not explicitly take the
industrial challenges (discussed in Chapter 2) into account and were evaluated
in a limited way without involvement of human participants. To provide
software developers with effective log comparison techniques, we suggest
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researchers to improve log comparison techniques to address the industrial
challenges, and evaluate the techniques in a natural development setting.

In the interview study about log analysis practice (Chapter 2), we also
observe that developers often manually sketch behavioral models based on
logs. This preference of presenting log information with models co-occurs
with the transition ASML is taking from code-based software engineering to
model-driven software engineering (MDSE). To enable the use of MDSE, ASML
needs to create models for the existing code-based components. To facilitate the
automation of model creation, we propose a model inference technique that
can extract models by combining log analysis, and analysis of a running system
under stimuli (Chapter 4). The proposed technique significantly outperforms the
existing techniques, as evaluated with 18 ASML software components. However,
there are still many theoretical and practical challenges to be addressed in
order to apply model inference techniques in industry. Due to these challenges,
models are manually created by software developers in practice. We therefore
turn our attention to study how developers manually create models for MDSE.
Particularly, we study why developers violate modeling guidelines which
are considered as common wisdom. We focus on an extreme case, known
as flower models, consisting of only a single state. Combining qualitative and
quantitative analyses, we identify the main reasons of the guideline violations,
providing empirical evidence on the challenges in MDSE, and suggestions on
the improvements of MDSE tools and guidelines (Chapter 5).

In summary, this thesis presents a series of empirical studies conducted
in industry, which provides an overview of challenges faced by developers
when using logs and models in the context of a transition from code-based
engineering to MDSE. The empirical evidence collected from these studies
supports researchers and tool builders to develop techniques for facilitating the
transition to MDSE for embedded production systems.
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