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a b s t r a c t

In this paper, risk-constrained arbitrage trading strategies that exploit price differences arising across
short-term electricity markets, namely day-ahead (DAM), continuous intraday (CID) and balancing
(BAL) markets, are developed and evaluated. To open initial DAM positions, a rule-based trading policy
using DAM and CID price forecasts is proposed. DAM prices are predicted using both technical indicator
features and data augmentation methods, such as autoencoders and generative adversarial networks.
Meanwhile, CID prices are predicted using novel features that are engineered from the limit order book.
Using the forecasts, the direction of price movements is correctly predicted the majority of the time.
To manage open DAM positions while optimising the risk-reward ratio, deep reinforcement learning
agents trained using the advantage actor–critic algorithm (A2C) are employed. Evaluated across Dutch
short-term markets, A2C yields profits surpassing those obtained using A3C and other benchmarks.
We expect our study to benefit electricity traders and researchers who seek to develop state-of-art
intelligent trading strategies.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Motivation and background

Arbitrage opportunities frequently arise when prices deviate
rom their long-term means. Arbitrage traders try to profit from
uch opportunities without exposing themselves to any long term
hysical commitments. Arbitrage trading offers financial incen-
ives to traders and increases market liquidity and efficiency [1,
].
In this paper, we evaluate the profitability of statistical arbi-

rage trading (SAT) strategies, which leverage intelligent learning
ethods. SAT strategies employing deep neural networks, techni-
al indicators, data augmentation and the synchronous advantage
ctor–critic (A2C) algorithm are developed and analysed across
hort-term electricity markets, namely the day-ahead market
DAM), continuous intraday market (CID) and real-time balanc-
ng market (BAL). Our autonomous agents first open a position
n the auction-based DAM, before closing this position on the
ontinuous-based CID or the BAL.
To ensure the profitability of our autonomous agents, as a

irst step accurate forecasts of DAM prices must be obtained.
o attain accurate DAM forecasts, we employ neural networks,

✩ This research project is funded by Scholt Energy, The Netherlands.
∗ Corresponding author.

E-mail address: s.demir@tue.nl (S. Demir).
ttps://doi.org/10.1016/j.segan.2023.101023
352-4677/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
which have been shown to outperform statistical models in DAM
forecasting [3–5]. Additionally, we propose using technical indi-
cators and data augmentation. Demir et al. [5] highlighted how
the use of technical indicator features, such as moving aver-
ages and Bollinger bands, can improve the accuracy of machine
learning models. Technical features assist in the identification of
behavioural biases of DAM traders. Meanwhile, [6] highlighted
how data augmentation methods using autoencoders and gen-
erative adversarial networks boost forecast accuracies. To the
best of our knowledge, we are the first to employ both technical
indicator features and data augmentation to forecast DAM prices.

As a second step, we employ deep reinforcement learning
(DRL) to optimise the decision-making process of placing trades
across the CID. DRL is selected because of its numerous docu-
mented successes, such as [7,8], in solving sequential decision
problems. Among DRL algorithms, advantage actor–critic algo-
rithms have proven particularly adept at solving sequential de-
cision problems because of their ability to reduce the volatility
of gradient updates [9,10]. Yang et al. [11,12] employed A2C in
optimising trading decisions across equity markets. Meanwhile,
[13] applied A2C to optimise the decision making of a retail
electricity trader. To the best of our knowledge, we are the first
to employ A2C in the context of SAT across the CID.

1.2. Relevant literature

SAT studies have thus far predominately analysed and devel-
oped trading strategies that open a position on the DAM before
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Arbitrage Trading

σ Standard deviation of PnL distribution
Cbal Cash made on the balancing market
C cid Cash made on the continuous intraday

market
Cdam Cash made on the day-ahead market
d Day
h Delivery hour index
K Total number of CID transactions for a

contract.
N Total number of contracts in the test set
PnL Profit, agent’s cash portfolio
PnLhigh Upper profit limit for agent’s cash port-

folio
PnLlow Lower profit limit for agent’s cash port-

folio
TC Trading costs

Prices

p̂d+1 Day-ahead price forecast
p Traded price for a transaction
pahigh The highest ask price across a trading

session
palow The lowest ask price across a trading

session
pat The best ask price at time step t
pbhigh The highest bid price across a trading

session
pblow The lowest bid price across a trading

session
pbt The best bid price at time step t
pdam Day-ahead market price
pfeed Settled balancing market price for long

positions
ptake Settled balancing market price for short

positions
pvwap Volume-weighted average price of

trades for the continuous intraday
market

Quantities∑
q Total arbitraged quantity

q Traded quantity for a transaction
qa Available quantity for the best ask order
qb Available quantity for the best bid order
qhigh Maximum allowed total traded quantity
v Position, agent’s volume portfolio
vmax Maximum long position
vmin Minimum short position

Reinforcement Learning

β Learning rate for actor–critic algorithms
st State at time step t

closing it out on the BAL. Detailing some of these studies: a
stochastic optimisation approach was implemented by [14,15], a
min–max two-level optimisation model was analysed by [16], a
2

ϵ Epsilon index
γ Discount factor
π Policy
τ Threshold for rewards
τ B Threshold for buy rewards
τ S Threshold for sell rewards
θπ Parameters for the global policy
θ ′π Parameters for a local policy
θV Parameters for the global value function
θ ′V Parameters for a local value function
Aπ Advantage for the policy
at Action at time step t
B Action buy
e Episode index
emax Predefined maximum number of

episodes
f B Function for scaling buy rewards
f S Function for scaling sell rewards
H Action hold
J Total number of states
L Number of hidden layers for deep neural

networks of actor–critic algorithms
l Hidden layer index for deep neural

networks of actor–critic algorithms
nl Number of neurons for the hidden layer

l
P(B) Probability for the buy action
P(H) Probability for the hold action
P(S) Probability for the sell action
R Return, total reward
rt Reward at time step t
rBt Reward at time step t for a buy action
rHt Reward at time step t for a hold action
rSt Reward at time step t for a sell action
S Action sell
T Number of trading periods, terminal

state
t Trading period index
tmax Number of time steps to update the

global network
V Value function
W Number of agents
w Agent index

data-driven approach was explored by [17], a machine-learning
approach was implemented by [18], and an online-learning al-
gorithm was analysed by [2]. All of the above studies, evaluated
across US markets, identified profitable trading strategies.

Analysing some of the few SAT studies which have developed
trading strategies for the CID and BAL, [19] evaluated a rule-
based trading agent that used forecasts of demand and imbalance
volume to place trades on the CID. By making a decision every
30 min, with a fixed 2 MW order quantity, and closing out any
outstanding positions on the BAL, [19] obtained positive profits
across British CID and BAL markets. Recently, [20] also developed
an intelligent CID trading agent; trained using the asynchronous
advantage actor–critic (A3C) algorithm, i.e. the asynchronous ver-
sion of A2C. While DRL trading applications frequently rely on a
pre-defined set of states, [20] developed state engineering and
selection methods to identify and select states with the greatest
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xplanatory power. By making a decision after every impactful
imit order book update, with a maximum 1 MW order quan-
ity, and closing out any outstanding positions on the BAL, [20]
uccessfully obtained significantly positive profits across Dutch
arkets.
Because forecasts of DAM and CID prices are used in this

tudy to identify profitable trades on the DAM, we also describe
AM and CID forecasting studies below. Lago et al. [3] found
hat machine learning forecasting models outperform statistical
odels for the French, Belgian, German, Nordic and American
AM markets. Similar results were obtained for the Belgian and
utch DAM markets by [4–6]. Lago et al. [4] further found that
eural networks outperform long-short-term-memory networks
nd gated recurrent units. Several studies, such as [5,21,22], in-
estigated the importance of various features. They found that
ome of the most important predictors for forecasting DAM prices
ere neighbouring country DAM prices. Lago et al. [21], for in-
tance, tested this across the Belgian and French markets, and [5]
or the Belgian and Dutch markets.

In [23–25], it was demonstrated that hybrid models outper-
ormed individual benchmark models. In [24], a wavelet trans-
ormation, an autoregressive moving average model, a kernel
xtreme learning machine (KELM), and self-adaptive particle
warm optimisation (SAPSO) were used to harmonise the hybrid
odel. Meanwhile, deep belief networks, SAPSO, SARIMA, and
ariational mode decomposition were used to build the hybrid
odel in [24]. In [24], forecasting model accuracies were eval-
ated for three separate DAMs. However, exogenous variables
ere not examined in this study. In [25], a local forecasting
aradigm, a generic regression neural network, coordinate delay,
nd a harmony search method were used to form the hybrid
odel. Exogenous variables were used in this work, unlike [24].
owever, in [25], model accuracies were only evaluated for one
AM. Applications of spike forecasting were examined in more
etail in [26]. [26] improved the DAM predicting accuracy by
alancing the number of samples in the various target classes,
.e. by increasing the amount of spike samples in the training data,
sing the Borderline-SMOTE approach.
Examining price forecasting studies focusing on the CID, [27]

ompared neural network-based forecasting models for the Turk-
sh market and [28] utilised principal component analysis for the
erman market. Narajewski et al. [29–32] investigated various
eatures, such as forecast errors and seasonal dummy variables.
niejewski et al. [30] discovered that the most recent CID prices
nd the DAM price are the most important predictors of forecast-
ng CID prices for the German market. Hagemann [31] found wind
ower forecast errors as the most important for the same market.

.3. Contributions and organisation

While SAT studies have thus far focused on exploiting oppor-
unities arising between the DAM-BAL or CID-BAL, to the best of
ur knowledge no study has yet developed or analysed a trading
trategy capable of simultaneously exploiting arbitrage opportu-
ities arising across all short-term electricity markets. Given the
enefits SAT confers on markets and traders, we investigate the
rofitability of SAT across the DAM-CID-BAL.
We propose employing a rule-based trading agent, which uses

orecasts of DAM and CID prices to open a position on the DAM.
o predict DAM prices, we propose using both technical indicator
eatures and data augmentation methods, such as autoencoders
nd generative adversarial networks, together. While these meth-
ds have been applied separately by [5,6] to the forecasting of
AM prices, to the best of our knowledge they have yet to be
sed together in, for instance, ensemble models.
To predict CID prices, we propose using novel features, en-

ineered from the limit order book, as inputs. To date, readily
3

available features, such as lagged CID prices and seasonal features,
have been used as inputs in CID price forecasting studies. How-
ever, detailed statistical information from the limit order book
has not been tested.

For the CID and BAL, we propose developing an agent trained
utilising A2C. The asynchronous version of A2C, A3C, has al-
ready been employed by [20]. Using A2C, however, is more cost-
effective. To the best of our knowledge, we are the first to employ
A2C in the context of SAT across the CID and BAL.

Note that to improve training stability further, unlike [20], we
additionally use gradient clippings, different reward thresholds,
additional behaviour cloning methods, more goal-based explo-
rations, more flexible constraints and no early episode termina-
tions. Moreover, our A2C agents start trading on the CID with
a volume position of ̸= 0 which is opened earlier on the DAM
and a profit-and-loss of ̸= 0 which is paid or received earlier on
the DAM. This is in contrast to [20] which did not allow for DAM
trading.

Summarising the contributions of the study, to the best of our
knowledge, we are the first to:

• investigate the profitability of SAT across the DAM, CID, and
BAL for a purely financial trader,
• predict DAM prices by combining technical indicators and

data augmentation methods,
• utilise A2C to develop a risk-constrained arbitrage trading

algorithm for the CID and BAL.

Outlining the structure of this paper, short-term electricity
markets and arbitrage trading are described in Section 2. In Sec-
tion 3, our rule-based trading method for the DAM is outlined.
Section 3 details proposed forecasting methods for DAM and CID
prices. In Section 4, our advantage actor–critic trading methods
for the CID are introduced. The case study and results are pre-
sented in Section 5. Finally, in Section 6 we conclude and discuss
potential methods for extending our research.

2. Arbitrage trading for electricity markets

2.1. The short-term electricity markets

There are a variety of ways to trade electricity: ranging from
week-ahead or year-ahead maturities on futures markets to day-
ahead maturities on the DAM to hour-ahead maturities on the
CID. Fig. 1 presents trading timelines of the hourly electricity
contracts, h ∈ {h0, h1, . . . h23}, for the DAM and the CID. To
participate in an auction-based DAM, orders must be placed be-
fore noon on day d. Hourly DAM clearing prices (in e/MWh) are
alculated using a matching engine that aggregates all submitted
rders, setting a price where supply and demand curves intersect.
s a result, a single DAM price, pdam, is set for each hourly elec-
ricity contract. More information about the DAM can be found
n [3,33].

Starting from 15:00 on day d to one hour prior to physical
eliveries on day d + 1, orders can be continuously submitted
o and cleared by the CID. The CID matching engine prioritises
he best price and early submission. The best ask price pat (in
/MWh) is the lowest price among available ask orders and the
est bid price pbt (in e/MWh) is the highest price among available

bid orders at time step t ∈ [1, T ], where T is the last time step of
the CID trading session. Available quantities of the best ask order
and the best bid order are qat and qbt (in MWh) respectively. When
new ask (or bid) order is submitted, the CID engine matches
rders immediately if the submitted ask (or bid) price is higher
or lower) than the best bid (or ask) price. Transaction price and
uantity, which is the lower quantity between matched orders,
re announced immediately. The remaining quantity of one of
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Fig. 1. The trading timelines for all hourly contracts. Blue bars are deliv-
ery periods. Black circles represent the auction-based DAM. Black bars are
continuous-based CID trading sessions, starting at 15:00 on day d+ 1.

the matched orders is stored as an active order in the limit order
book (LOB). If the submitted order has no match, it is stored as an
active order in the LOB until it is matched or cancelled. The LOB
consequently constitutes all active orders at time t .

When the above-mentioned CID engine matches orders, the
trade book (TB) stores the traded price, quantity and timestamp
for each hourly contract. At the end of a trading session, we can
extract the volume weighted average price of trades, pvwap (in
/MWh) calculated by

∑K
k=1(pk × qk)/

∑T
k=1 qk, where K is the

total number of transactions for a contract, and qk and pk are
traded quantity and price for a transaction k. More information
about the CID can be found in [34–36].

2.2. Arbitrage trading

By trading across the DAM, CID and BAL, arbitrage traders aim
to maximise profits, PnL, without taking or unwinding long-term
physical commitments. Diving into the decisions an arbitrager
faces, a trader can open a DAM position v0 (in MWh) either by
buying of vmax > 0 or short selling vmin < 0, where vmin and vmax

are pre-defined limits for short and long positions respectively.
A trader pays −vmax

× pdam for a long position and receives
−vmin

×pdam for a short position. This represents the cash received
or spent on the DAM: Cdam.

Having opened a DAM position, an arbitrager can subsequently
fully or partially close out the position on the CID. Elaborating, a
trader can buy the best ask order (B), sell the best bid order (S), or
hold (H) at any time step t ∈ [1, T ] during the CID trading session.
Fig. 2, for example, shows a trader who starts with v1 = vmax - the
open position brought forward from the DAM - and continuously
trades on the CID, performing {H , S, S, S, S, H , B, B, H, . . . }. This
trader pays pat × qat for buy decisions and receives pbt × qbt from
sell decisions. The total cash paid or received by trading on the
CID is C cid. Note that the total arbitraged quantity is:

∑T
t=1 qt =

min{
∑T

t=1 q
a
t ,

∑T
t=1 q

b
t }. Meanwhile, the outstanding quantity and

final position is
∑T

t=1 q
a
t −

∑T
t=1 q

b
t = vT .

When the CID trading window closes at time step t = T ,
any outstanding open position the arbitrager holds is automat-
ically settled on the BAL. The hourly BAL purchase and selling
prices, ptake and pfeed respectively, are computed by averaging four
quarter-hourly BAL purchase and selling prices. The cash made on
the BAL, Cbal, is calculated as vT ×ptake or vT ×pfeed. More detailed
information about the BAL can be found in [37,38].

Summarising the above, the profit PnL of the arbitrage trader
is calculated according to (1).

PnL = Cdam
+ C cid

+ Cbal
− TC, (1)

where

Cdam
=

{
−vmax

× pdam, if v0 > 0
min dam
−v × p , otherwise

4

Fig. 2. An example of arbitrage trading for an example hourly contract h. The
continuous trading timeline of CID is split into discrete time steps t ∈ [1, T ].

cid
=

T∑
t=1

pbt × qbt −
T∑

t=1

pat × qat

bal
=

⎧⎨⎩
vT × ptake, if vT < 0
vT × pfeed, if vT > 0
0, otherwise

TC = 0.116×
( T∑
t=1

qat +
T∑

t=1

qbt
)

Note that TC is the trading cost assumed to be charged by a
market operator. We assume that the arbitrage trader is charged
e0.116 for trading 1 MWh of electricity by, for example, Nord
Pool, a nominated electricity market operator. This parameter
could be adjusted in future research to reflect higher or lower
trading costs across other market operators.

3. Rule-based approach to day-ahead market trading

To open a position on the DAM, we implement a rule-based
trading agent using forecasts of pdam and pvwap. If the forecast of
pdam is lower than the forecast of pvwap, we open a long position,
i.e buy vmax MWh. Otherwise, we open a short position, i.e. sell
vmin MWh. The methods employed to predict DAM prices and CID
rices, i.e. the volume-weighted average price of trades (vwap),
re described below.

.1. Forecasting day-ahead market prices

Following [5,6], two deep DAM forecasting models are evalu-
ted. Elaborating, the forecasting accuracies of a two-layer neural
etwork (2NN), consisting of two intermediate fully connected
ayers, and a joint three-layer network (2CNN_NN), consisting of
wo intermediate convolutional layers and a single intermediate
ully connected layer, are assessed. Parameters and features, such
s neighbouring country prices, are used as in [5,6]. L2 regu-
arisation, ReLU activation functions and Adam are employed to
mprove training stability.

The aforementioned forecasting models are evaluated with
echnical indicator (TI) [5] feature inputs, and with the addition of
ugmented data [6]. Following [6] three augmentation methods
sing autoencoders (AE), variational encoders (VAE) and Wasser-
tein generative adversarial networks with a gradient penalty
GAN) are evaluated. Note that ensemble forecasts, obtained by
veraging the forecasts from multiple methods are assessed as
ell. Eq. (2) is an example ensemble forecast:

ˆ
2NN
= 1/2(p̂2NN + p̂2NN), (2)
AE+TI AE TI
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here p̂2NNTI is the 2NN forecast using TI features as inputs, and
ˆ2NNAE is the 2NN forecast obtained using augmented data gener-
ted by an autoencoder. To acquire the final DAM price forecasts,
he model and method, yielding the best result, are selected.

.2. Forecasting the volume-weighted average price of trades

CID prices, pvwap, are predicted using machine learning models
that take novel features as inputs. The features are generated by
extracting statistical information from the LOB and TB.

3.2.1. Feature engineering
Information that captures significant price drivers for contin-

uous CID trading can be extracted using the LOB of each hourly
contract. Features, such as the total number of submitted ask/bid
orders, the lowest best ask price, the highest best bid price, the
first quantile of best ask/bid prices, the total ask/bid quantities,
the first quantile of cumulative ask/bid quantities and the av-
erage mid-price for hour index-1/2/3/4, should capture relevant
information required to accurately forecast CID prices.1

Using the TB of each hourly contract, information about trades
can be extracted. Detailing example features, the highest traded
price (high price), the lowest traded price (low price), the first
traded price (open price), the last traded price (close price), the
standard deviation of pvwap, pvwap of imports, pvwap of exports,

binary feature showing whether a country heavily imports
r exports (import), and a binary feature showing whether a
ountry trades during hour index-1/2/3/4 (trade-1/2/3/4) can all
e extracted.
Additionally, other possible price drivers can be obtained by

dding exogenous and seasonal features to the input space. Ex-
genous features, for example, are forecasts of pdam, wind speed
nd temperature. Seasonal features meanwhile include days of
he week, delivery hours of the day, holidays, etc. Such categorical
easonal features are processed using one-hot encoding.

.2.2. Feature selection
Feature selection commences by removing highly correlated

ariables. Specifically, features with a Pearson correlation higher
han 0.8 are removed. This initial step speeds up run time and
educes the potential impacts of multicollinearity.

Known electricity market characteristics are accounted for
y adding day-lagged and hour-lagged features. For instance, to
orecast pvwap of hd+1

16 , a fourteen-day-lagged period hd−13
16 , . . . hd

15,
d
16, h

d
17 is considered for each feature.

The feature selection process is finalised by removing features
ith the lowest explanatory power from the data set using the

east absolute shrinkage and selection operator (LASSO) [39].

.2.3. Forecasting
The ability of regression models, such as LASSO, random forest

RF) [40], gradient boosting (GB) [41] and deep neural networks
DNN), to predict pvwap is evaluated. Each model has a unique
yperparameter set to be optimised by minimising the forecast
rror across the validation set. For example, LASSO has the alpha
nd tolerance, RF has the number of estimators, and GB has the
aximum depth. Similarly, DNN has the number of hidden layers,

he size of these layers and the learning rate. Note that DNN mod-
ls are constructed with fully connected layers, ReLU activation
unctions and Adam optimisers. Additionally, L2 regularisation is
mplemented to reduce the possibility of overfitting.

1 Hour indices refer to specific time intervals of the trading session. For
nstance, hour index-1 is the last hour of the trading session, i.e. [T − 1 h, T ].
our index-i is [T − ihour, T − i+1hour]. Moreover, the mid-price is calculated
y averaging the best ask price and the best bid price. The average mid-price
or hour index-i is calculated by averaging all mid-prices of hour index-i.
5

Fig. 3. The best ask/bid prices for h16 on 10/08/2020.

An ensemble method, which averages all evaluated forecasts,
s shown in (3), is further considered.

ˆ
ENSEMBLE

= 1/4(p̂LASSO + p̂GB + p̂RF + p̂DNN) (3)

4. Advantage actor–critic approach to continuous intraday
market trading

4.1. Background: Reinforcement learning

Following [42], below, the fundamentals of reinforcement
learning (RL) are introduced. In the context of RL, a decision-
maker is an agent, and a decision is an action. The state is a vector
that encapsulates all available information about an environment.
After obtaining a state measurement st , an agent performs an
action at at time step t ∈ [1, T ]. The agent receives instantaneous
scalar feedback in the form of a reward rt+1 ∈ R. Starting
from the initial state s1 the above-described process is repeatedly
performed until the termination state sT is reached. This loop
constitutes one episode (e).

A policy function defines the agent’s behaviour, mapping states
to actions: π (a|s) = P[at = a | st = s]. A stochastic policy
function outputs a probability for each action. The agent decides
whether to exploit — by choosing the action with the highest
probability - or explore — by choosing a random action. An
optimal policy is identified by maximising the total expected
reward across a predefined number of episodes (emax). The value
function Vπ for policy π is the expected total reward. Formally,
under the policy π , Vπ (s) = E[Rt | st = s], where Rt = rt+1 +
γ rt+2 + · · · + γ T−1rT is the return and γ ∈ [0, 1] is the discount
factor. The policy yielding argmax

π

Vπ is considered optimal.

4.2. Discrete time steps

In the existing literature, the interval ∆t between t and t + 1
is frequently defined using a fixed time window. In [43] a fixed
15-minute interval was used to discretise the continuous intraday
trading period, while in [44] a 1-minute interval was used. In
contrast with these studies, we avoid discretising t ∈ [1, T ] into
fixed intervals. Instead, we follow a more flexible approach we
previously developed in [20], using revision numbers from the
LOB to discretise the trading period. A revision number is updated
when the LOB changes, e.g. a new order is received. To reduce
model training time, we only use revision numbers that change
either the best ask price or the best bid price. Fig. 3 visualises the

evolution of the best ask and bid prices for an example contract.
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.3. Actions

Actions at are defined over a discrete set. The action set is
onstrained to minimise risk. Firstly, the volume position vt is
estricted by the maximum allowed positions for short and long
ides, vmin and vmax respectively. Following this strategy, if B is
hosen, the agent buys qat ≤ vmax

− vt MWh of electricity at time
tep t ∈ [1, T ]. If S is chosen, the agent sells qbt ≤ −vmin

+ vt
Wh of electricity at time step t . Additionally, similar to [20],

he total bought quantity until time step t , i.e.
∑t

i=1 q
a
i , and the

total sold quantity until time step t , i.e.
∑t

i=1 q
b
i , are restricted by

the maximum allowed total quantity qhigh. Eq. (4) summarises our
constrained action set.

at ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{H}, if
t∑

i=1

qbt = qhigh and
t∑

i=1

qbi = qhigh

{B,H}, if vt = vmin or
t∑

i=1

qbi = qhigh

{S,H}, if vt = vmax or
t∑

i=1

qai = qhigh

{B, S,H}, otherwise

(4)

4.4. Rewards

Negative rewards motivate agents to learn how to avoid pun-
ishment. Similarly to [20], we employ negative reward functions
to ensure the stability and efficiency of the learning algorithm.
Note, however, that different reward thresholds are used. Addi-
tionally, we avoid using the end of contract reward as in [20].
Only three different reward functions are needed to span the
action space of our agent.

Focusing on rewards for buying electricity, the immediate buy
reward function is calculated by measuring the distance between
a buy action – buying at pat - and both the best and worst
possible buy actions across a trading session – buying at the
lowest and highest prices palow/pahigh . The buy reward function is
bounded: rBt ∈ [−2, 0]. Eq. (5) formalises the buy reward function
employed:

rBt = 1/2
(
f B(pdam, pat )+ f B(pbhigh , pat )

)
, (5)

where

f B(τ B, pat ) =
{
−1−

(
(pat − τ B)/(pahigh − τ B)

)
, if pat > τ B

−
(
(pat − palow )/(τ B

− palow )
)
, otherwise

and τ B is the buy threshold separating gains and losses. A reward
of rBt = −1, attained at τ B, marks where profit can at best equal
0 over a trading session. When an agent purchases electricity for
less than τ B positive profits are attainable and rBt > −1. Equally,
when the agent purchases electricity for more than τ B a loss is
guaranteed and rBt < −1. To separate the gains and losses of
trading between the DAM and CID, we firstly consider τ B

= pdam.
To separate the gains and losses of trading within the CID, we
secondly consider τ B

= pbhigh .
Similarly to the above, the immediate sell reward function

is calculated by measuring the distance between a sell action –
selling at pbt - and both the best and worst possible sell actions
across a trading session – selling at the most expensive and least
expensive prices pbhigh/pblow . The sell reward function is intrinsi-
cally bounded: rSt ∈ [−2, 0]. The more expensive the bid price at
which the agent sells electricity the higher the sell reward. Eq. (6)
formalises the sell reward function employed:
S ( S dam b S alow b )

rt = 1/2 f (p , pt )+ f (p , pt ) , (6)

6

Table 1
Features encoding the state.
minutes to end of trading session
spread between pbt and pat
spread between (pat + pbt )/2 and its average forecast
spread between pbt and pdam

spread between pbt and average pb forecast
spread between pbt and pfeed forecast
spread between pbt and 1/6

∑d−1
d−3

∑h
h−2 p

take

spreads between pbt and its lags [pbt−8 : p
b
t−1]

best bid quantity qbt
number of bid orders
third (upper) quantile of cumulative bid quantities
best ask price pat
first (lower) quantile of ask prices
second quantile (median) of ask prices
third (upper) quantile of ask prices
spread between pat and 1/6

∑d−1
d−3

∑h
h−2 p

take

best ask quantity qat
total ask quantities
number of ask orders
categorical trade rule
scaled total bought quantity

∑t qat /q
high

scaled total sold quantity
∑t qbt /q

high

scaled volume position (vt + vmax)/(2× vmax)
scaled profit (PnL− PnLlow)/(PnLhigh − PnLlow)

where

f S(τ S, pbt ) =
{
−2+

(
(pbt − pblow )/(τ S

− pblow )
)
, if pbt < τ S

−1+
(
(pbt − τ S)/(pbhigh − τ S)

)
, otherwise

Sell thresholds of τ S
= pdam and τ S

= palow are considered to
separate the gains and losses of trading between the DAM and
CID, and within the CID.

Finally, the hold reward function is determined by quantifying
the opportunity cost of a buy/sell action. Eq. (7) formalises the
hold reward function.

rHt =
{
0, if rBt & rSt < −1
−1−max{rBt , rSt }, otherwise

(7)

bserve that the agent receives a hold reward of rHt = 0 when
uy and sell actions lead to losses. The agent receives a hold
eward rHt ∈ [−1, 0) if either a buy action or a sell action is
rofitable. The more profitable the buy or sell action is, the lower
he hold reward is.

.5. States

The features presented in Table 1 are used to encode the state
pace. They are comparable to the features used in [20]. The
ategorical trade rule feature, in contrast with [20], uses pdam in
lace of CID and BAL price forecasts. Formally, when pat < pdam
he feature takes the value buy. When pbt > pdam the feature takes
he value sell. Otherwise, the feature takes the value hold.

.6. Advantage actor–critic algorithms

In the context of actor–critic (AC) algorithms, a DRL agent is
n AC worker, the value is updated by the critic and the policy
s updated by the actor using the critic’s feedback [42]. The AC
lgorithm uses a single global network but multiple AC workers,
.e. w ∈ [1,W ], where W is the number of local networks.
C workers update the global network asynchronously in A3C,
hereas synchronously in A2C. Each AC worker collects different
xperiences by independently interacting with the environment.
sing multiple workers results in a greater exploration of the
tate space.
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Fig. 4. An example AC worker, w ∈ [1,W ].

In this study, each actor is stochastic and approximated by
eep neural networks that use softmax functions in the out-
ut layer. Fig. 4 shows an example AC worker. For simplicity,
one-layer neural network is visualised. Note that in practice,
yper-parameters, such as the number of hidden layers L and
he number of neurons nl for each hidden layer l ∈ [1, L], are
ptimised.

Algorithm 1 Pseudocode for each AC worker.
Require: hyper-parameters, γstart , γend , ϵstart , ϵend , tmax , emax, β; global parameters,

θπ , θv ; thread parameters, θ
′

π , θ
′

v ; global counter, e← 1; and t1 ← 1
nsure: dθπ , dθv
1: while e < emax do
2: reset gradients dθπ ← 0, dθv ← 0

3: synchronise thread parameters θ
′

π = θπ , θ
′

v = θv

4: calculate episode index ei = 1− (e/emax)
5: calculate discount γ = (γstart − γend) ∗ ei + γend
6: calculate epsilon ϵ = (ϵstart − ϵend) ∗ ei + ϵend
7: t = t1
8: get state st
9: while st ̸= sT and t − t1 < tmax do
0: constrain the action space
1: if e = 1 then
2: clone behaviour at

13: else
14: if ϵrandom < ϵ then
15: if trandom < t < trandom + tmax then
6: clone behaviour at

17: else
18: explore: random at according to π (at |st ; θ

′

π )

9: end if
0: else
1: exploit: max at according to π (at |st ; θ

′

π )

2: end if
3: end if
4: receive reward rt+1 and new state st+1
5: t ← t + 1
6: end while

7: Rπ =

{
0, for terminal sT
Vπ (st , θ

′

v ), for non-terminal st
8: for i ∈ {t − 1, . . . tstart } do
9: Rπ ← ri + γ Rπ

0: Aπ ← Rπ − Vπ (si, ; θ
′

v )

31: dθπ ← dθπ + β ▽
θ
′

π
logπ (ai | si ; θ

′

π )(Aπ )

2: dθv ← dθv + β ∂(Aπ )2/∂θ
′

v

33: end for
34: e← e+ 1
35: update θπ using dθπ , and θv using dθv
36: end while

Algorithm 1 formalises the update procedure of each AC
orker. Describing the algorithm, firstly, the AC worker resets
radients and synchronises thread parameters (lines 2 and 3). The
7

worker then calculates the episode index (line 4), ascending dis-
count rate (line 5) and descending epsilon (line 6). Subsequently,
it receives its first state (line 8). Next, the worker interacts with
the environment and collects experiences (lines 9 to 26). The
action space is constrained following Section 4.3 (line 10). Each
worker clones behaviours during the first episode. It also clones
behaviours tmax/T of the time over the rest of the episodes (lines
12 and 16). Note that to spur exploration, each worker clones
different behaviours. Elaborating, the first worker, w1, clones (8),
to learn to effectively arbitrage between the DAM and the CID.

at =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

B, if pat < pdam & vt < vmax &
t∑

i=1

qai < qhigh

S, if pbt > pdam & vt > vmin &
t∑

i=1

qbi < qhigh

H, otherwise

(8)

The second worker, w2, meanwhile clones (9) to learn to arbitrage
well within the CID.

at =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

B, if pat < pbhigh & vt < vmax &
t∑

i=1

qai < qhigh

S, if pbt > palow & vt > vmin &
t∑

i=1

qbi < qhigh

H, otherwise

(9)

he third worker, w3, clones (10) to arbitrage well between the
ID and the BAL.

t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

B, if pat < pfeed & vt < vmax &
t∑

i=1

qai < qhigh

S, if pbt > ptake & vt > vmin &
t∑

i=1

qbi < qhigh

H, otherwise

(10)

inally, the rest of the workers, w ∈ [4,W ], clone (11) with
ifferent reward thresholds τ ∈ [−1, 0) to learn to reach higher
ewards.

t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

B, if rBt > τ & vt < vmax &
t∑

i=1

qai < qhigh

S, if rSt > τ & vt > vmin &
t∑

i=1

qbi < qhigh

H, otherwise

(11)

Following the decayed epsilon greedy exploration method, the
orker explores ϵ − (tmax/T ) of the time and exploits 1 − ϵ of
he time (lines 18 and 21). The worker collects experiences until
he number of time steps to update the global network tmax or
he last state in the training set sT is reached. Using collected
xperiences, the critic estimates the value of a state (line 27).
he advantage function [10] Aπ is calculated by the difference
etween the estimated value of this state and the value of the
tate–action (line 30). The actor and critic are updated using Aπ

lines 31 and 32). Consequently, the global network is updated
synchronously for A3C and synchronously for A2C (line 35). Note
hat the smooth L1 loss and gradient clipping are implemented
o avoid exploding gradients. Updating process continues until a
redefined maximum number of episodes emax is reached.
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Table 2
Summary statistics for DAM prices in e/MWh.

Mean Standard deviation

Train Test Train Test

Belgian DAM 43.95 31.04 22.93 16.38
Dutch DAM 41.31 31.46 14.67 15.08

Fig. 5. Historic DAM prices, covering the training and test periods. The dashed
lack line represents the training/test split.

. Numerical case study

.1. Forecasting day-ahead market prices

The data gathering and processing steps employed in the fore-
asting of DAM prices are outlined below. Additionally, the evalu-
tion procedure is described, and the DAM forecasting results are
nalysed.

.1.1. Data
Dutch and Belgian DAM prices, spanning from 01/01/2016 to

1/12/2020, are collected together with load and generation day-
head forecasts from the ENTSO-E Transparency Platform [45].
his data is subsequently split into training and test data. Data
rom 01/01/2016 to 01/01/2020 are used for training, while data
rom 01/01/2020 to 11/12/2020 are used for testing. Note that
yperparameter optimisation is not performed. Instead, features
nd optimised parameters from [5,6] are used directly. No vali-
ation set is thus required.
Training and testing DAM prices are presented in Fig. 5. Sum-

ary statistics of DAM prices for the training and test sets are
hown in Table 2. From Table 2 we discern that Belgian DAM
rices in the test set have a lower standard deviation than historic
AM prices. A lack of outliers across the Belgian DAM test set, as
ig. 5 highlights, explains this observation.
Analysing train and test set differences further, note that Ta-

le 2 additionally highlights differences in mean DAM prices. The
eans of Belgian and Dutch DAM prices are higher across the

raining set than the test set.
8

Table 3
MAE results on the train set for DAM price forecasting methods.

AE VAE GAN TI

Dutch 2NN 9.84 9.79 9.86 5.28
2CNN_NN 10.18 10.21 10.04 5.31

Belgian 2NN 13.68 13.83 13.60 8.32
2CNN_NN 13.52 13.51 13.06 7.93

average 11.81 11.84 11.64 6.71

5.1.2. Data processing
Min–max scaling is applied across a 30-day rolling window to

scale features. A 30-day window is selected to counteract market
seasonalities.

5.1.3. Modelling
Per Section 3.1, the forecasting accuracy of two neural network

architectures (2NN and 2CNN_NN) is evaluated. The models are
trained with TI features, and with augmented data separately.

Detailing the TI training process, the best-performing TIs, as
identified by [5], are assessed. Specifically, the exponential mov-
ing average (EMA) indicator, with a span of 22 days, is used as a
2NN input. Meanwhile, the rate of change (ROC) indicator, with
a 9-day lag factor, is used as a 2CNN_NN input. Specifying model
hyperparameters, following [5], a 2NN with [500, 250] neurons
is assessed. A 2CNN_NN employing 32 filters, a (1, 3) kernel, and
123 neurons in its NN layer, is additionally evaluated. A dropout
rate of 0.25 and a learning rate of 0.001 are also employed in both
the 2NN and 2CNN_NN.

Detailing the augmentation training process, the best-
performing augmentation models, as identified by [6], are
evaluated. Note that hyperparameters are set separately for each
DAM contract. For instance, when forecasting the Belgian 20 h,
a 2NN with [128, 128] neurons is assessed. Across all hourly
forecasting models, on average a 2NN with [270, 254] neurons,
a dropout rate of 0.01, and a learning rate of 0.001 is assessed.
Similarly, on average a 2CNN_NN, with 40 filters and a (1, 3)
kernel in its first layer, 52 filters and a (4, 4) kernel in its second
layer, and 140 neurons in its final layer, is assessed. On average a
learning rate of 0.0009 and a dropout rate of 0.01 are used with
the 2CNN_NN.

5.1.4. Software
Several Python libraries are used in the forecasting of DAM

prices. All deep neural networks, for instance, are implemented
using Keras.

5.1.5. Evaluation
The mean absolute errors (MAE) are used to evaluate fore-

casting accuracy. Additionally, to facilitate relative evaluation,
benchmark forecasts are computed according to (12):

p̂DAM-BENCH
d+1 = 1/2(pdamd + pdamd−1). (12)

The benchmark is a two-day moving average of DAM prices.

5.1.6. Results and discussion
The forecasting accuracies of evaluated models on the training

and test sets are summarised in Table 3 and Table 4 respectively.
Data augmentation and TI methods show similar performance
across the training and test sets. Note that slight deviations are
expected since the summary statistics of historic prices are not
the same across the training and test sets, as shown in Table 2.

Analysing the test results from Table 4, the benchmark, DAM-
BENCH, is observed to yield the highest average MAE of 8.07.

Meanwhile, TI is observed to yield an average MAE of 7.56;
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Table 4
MAE results on the test set for DAM price forecasting methods.

AE VAE GAN TI AE+VAE AE+GAN VAE+GAN AE+TI VAE+TI GAN+TI AE+VAE+GAN AE+VAE+GAN+TI DAM-BENCH

Dutch 2NN 5.70 5.72 5.78 6.54 5.58 5.60 5.61 5.54 5.55 5.54 5.56 5.37 7.752CNN_NN 5.62 5.69 5.65 7.61 5.53 5.52 5.55 6.04 6.12 6.08 5.49 5.62

Belgian 2NN 7.27 7.04 6.89 8.15 6.71 6.59 6.47 6.55 6.37 6.42 6.40 6.14 8.382CNN_NN 7.28 7.33 7.23 7.96 6.81 6.84 6.80 6.57 6.48 6.56 6.63 6.24
average 6.47 6.45 6.39 7.57 6.16 6.14 6.11 6.18 6.13 6.15 6.02 5.84 8.07
2

Fig. 6. An example showing Belgian DAM 2NN forecasts spanning a week: from
6/10/2020 to 13/10/2020.

.20% lower than DAM-BENCH. Improving forecasting accura-
ies further, data augmentation methods, namely AE, VAE, and
AN, are observed to yield average MAEs of 6.47, 6.45, and
.39 respectively; up to 20.82% lower than DAM-BENCH. The
igh performance of data augmentation methods highlights the
mportance of the training set size in reducing the generalisation
rror of DAM forecasts.
Combining forecasts from the above methods boosts accura-

ies even further. For example, AE+GAN, which generates fore-
asts by averaging AE and GAN forecasts, yields an average MAE
f 6.14. This is 5.10% and 3.91% lower than AE and GAN methods
espectively. Overall, AE+VAE+GAN+TI is observed to yield the
owest average MAE of 5.84. The ensemble method, using both TI
eatures and data augmentation, outperforms TI by 22.85%, and
E, VAE, and GAN on average by 9.27%.
To better understand the summary results, Fig. 6 displays

orecasts generated using the evaluated methods. While DAM-
ENCH forecasts are observed to be a lagging indicator, reflecting
rice patterns and levels from previous days, other evaluated
ethods are observed to yield more accurate leading forecasts.
ig. 6 highlights how combining predictions, by averaging slightly
verestimated and underestimated prices, increases the overall
ccuracy of DAM forecasts.
Note that, given the findings of [5,6], we postulate that aug-

entation helps in forecasting the bulk of the distribution, by
educing overfitting. Meanwhile, TI, which introduces additional
nputs, helps in forecasting the tails of the distribution by al-
owing the models to better segment the n-dimensional feature
pace. Averaging captures both these effects; improving forecast
ccuracies across the entire distribution.

.2. Forecasting the volume-weighted average price of trades

The data gathering and processing steps employed in the eval-
ation of vwap forecasts are outlined below. The feature selection
nd modelling procedures are described. Finally, the performance
f forecasting models is compared and analysed.
9

Fig. 7. Historic vwap.

5.2.1. Data
Data spanning from 01/01/2020 to 11/12/2020 is gathered

for vwap forecasting. LOB and TB data for the European single
intraday coupled market is obtained from Scholt Energy [46],
an energy supplier. Forecasts, such as forecasts of wind speed
and solar irradiance, are also queried from Scholt Energy. Engi-
neered features are generated following the methods described
in Section 3.2.

The historic vwap is presented in Fig. 7. The mean and stan-
dard deviation of the vwap are found to be 30.45 e/MWh and
4.35 e/MWh respectively.
Describing the training, validation, and testing procedures,

given a need to accumulate forecasts for the entire dataset (from
01/01/2020 to 11/12/2020) an iterative procedure is employed to
obtain test forecasts for all 49 weeks of inputs. In one iteration,
the available data is split into roughly 48 weeks of training and
1 week of test data. 48 fold cross-validation is subsequently
employed across the training data; yielding an optimised model,
which is used to generate vwap forecasts for the test data. This
process is repeated 49 times until forecasts are obtained for the
entire dataset.

5.2.2. Data processing
Min–max scaling is employed to ensure the comparability of

inputs.

5.2.3. Feature selection
Firstly, highly correlated features with a correlation higher

than 0.8 are removed. Next, LASSO is used to select features
from the remaining pool of uncorrelated features. On average, 37
features are selected.

Following the above method the most frequently selected
LOB features are: the total number of submitted bid orders,
the total number of submitted ask orders, the total number of
revisions, the lowest best ask price, and the average mid price
for hour index-4. The most frequently selected TB features are:
the pvwap for hour index-3, the pvwap of exports, the standard
deviation of pvwap, the binary feature import, trade-1, trade-2,
trade-3, trade-4, the open price, the low price, and the spread
between high and low prices. The most frequently selected ex-
ogenous features are: the wind speed forecast, the solar irradi-
ance forecast, the precipitation forecast, and the pdam forecast. The
most frequently selected seasonal features are dummy variables
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Table 5
MAE results on the test set for vwap forecasting methods.

LASSO GB RF DNN ENSEMBLE VWAP-BENCH
Dutch 8.27 8.22 8.58 7.78 7.59 12.25

for holidays, months, days of the week, and delivery hours of
the day. Fourteen-day-lagged, seven-day-lagged, two-day-lagged
and one-day-lagged LOB, TB, and exogenous features are often
selected; combating electricity market seasonality.

5.2.4. Modelling
Four individual models, namely LASSO, RF, GB, and DNN, and

ne ensemble model are evaluated. The hyperparameters of the
ndividual models are optimised using 48-fold cross-validation.
n average, cross-validation selects an alpha of 0.21 and tolerance
f 0.06 for LASSO. 115 estimators are most frequently selected by
F. A maximum depth of 6 is most frequently selected by GB. A
earning rate of 0.007, and 2 hidden layers of size 272 and 408
re on average selected by DNN.

.2.5. Software
Several Python libraries are used to implement feature selec-

ion and obtain vwap forecasts. For instance, the scikit-learn
ibrary is used to perform LASSO feature selection, and forecast
wap prices using machine learning models.

.2.6. Evaluation
As with DAM prices, the MAE is used to evaluate the accu-

acy of vwap forecasts. Furthermore, a two-day moving average,
alculated according to (13), is computed to facilitate a relative
valuation of forecast accuracies.

ˆ
VWAP-BENCH
d+1 = 1/2(pvwap

d + pvwap
d−1 ) (13)

5.2.7. Results and discussion
Table 5 presents the forecast accuracy of the evaluated mod-

els. Overall, VWAP-BENCH is found to yield the highest MAE of
12.96. LASSO, GB, and RF meanwhile yield MAEs of 8.27, 8.22,
and 8.58 respectively; outperforming VWAP-BENCH by roughly
30.00%. DNN obtains a MAE of 7.78; outperforming VWAP-BENCH
by 36.49%. ENSEMBLE, which takes the average of all model
forecasts, further improves upon forecast accuracies; yielding the
lowest MAE of 7.59.

The results presented above can be further understood by
evaluating the example forecasts shown in Fig. 8. From the ex-
ample, we observe that DNN more successfully approximates the
non-linearities in pvwap; capturing the complex signals embedded
in the time series.

5.3. Trading on the day-ahead market

AE+VAE+GAN+TI forecasts of pdam are utilised along with EN-
SEMBLE forecasts of pvwap by our ruled-based DAM trading agent.
Defining the agent’s strategy, a long position is opened on the
Dutch DAM, vmax

= 10, if p̂2NNAE+VAE+GAN+TI < p̂ENSEMBLE. Otherwise,
a short position is opened: vmin

= −10. Dutch and Belgian
AE+VAE+GAN+TI forecasts are averaged to obtain p̂2NNAE+VAE+GAN+TI.
Averaging DAM forecasts of neighbouring countries improves
the performance of the rule-based trading agent. We postulate
that this occurs because the CID market provides quotes of pan-
European electricity prices. Taking an average of DAM prices
allows us to identify profitable opportunities arising between
neighbouring market areas.

Table 6 presents a confusion matrix summarising the per-
formance results of the DAM trading strategy. Following the
rule-based trading strategy, the direction of price movements is
10
Fig. 8. An example showing Dutch CID vwap forecasts spanning a week: from
28/07/2020 to 04/08/2020.

Table 6
Confusion matrix across 2020 for the ruled-based DAM agent.

Targets

True False

Predictions True 1781 665
False 737 2203

correctly predicted 73.97% of the time. As opened DAM positions
are used as the initial CID positions, this accuracy is important
for the performance of the upcoming CID trading agent and the
final profit. The lower the accuracy the harder for the CID agent
to yield a profit. For example, assuming no trade is made on the
CID and all opened DAM positions are closed out at the BAL, an
agent with an accuracy of 0% would yield a loss of e406419.42,
hile an agent with an accuracy of 100% would return a profit
f e231842.07. Our ruled-based DAM trading agent with an ac-
uracy of 73.97% would return a profit of e678.07. Note that this
agent will be evaluated as a benchmark, called HOLD, in the next
section.

5.4. Trading on the continuous intraday market

In this section, the data gathering and processing steps em-
ployed in developing agents for CID trading are outlined. Further,
our actor–critic hyperparameters are specified. The evaluation
procedure is described. And finally, statistical arbitrage trading
results are analysed.

5.4.1. Data and data processing
Data spanning 2020 – from 01/01/2020 to 11/12/2020 – are

collected from Scholt Energy [46]. In total the order-books of 8280
contracts are obtained. 4148 contracts are used for training and
1760 contracts for testing. The remaining contracts are excluded
from the study for failing data quality tests. The primary test
checks whether the data provider stores orders in the limit order
book. If a contract has an empty limit order book, it is excluded
from our study.

Note that because optimised parameters from [20] are used,
no contract is ascribed to a validation set. A rolling window is
used to continuously train and evaluate AC workers every month.

Finally, min–max scaling is utilised to scale states.
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.4.2. Advantage actor–critic algorithms
The RL environment is configured following Section 4. Using

yper-parameters from [20], we set: W = 8, ϵstart
= 0.9, ϵend

=

.01, γ start
= 0.29, γ end

= 0.9999, tmax
= 2906, β = 0.003, L = 2,

n1 = 216 and n2 = 193. The chosen neural network architecture
is a two-headed shared network. A tanh activation function is
used in the hidden layers. Adam is selected as an optimiser.

To scale our states, we set PnLlow = −5000 and PnLhigh =
10000. To constrain our action space, we use a more flexible
approach than [20]. While [20] sets qhigh = 40, vmax

= 3,
and vmin

= −3, we set qhigh = 50, vmax
= 10, and vmin

=

−10. While [20] additionally constrains the maximum allowed
buying/selling quantity at each time step t to 1 MW, we avoid
such a fixed constraint.

For every month of the training set, AC workers are trained un-
til emax

= 100. Eight workers are thus trained across 800 episodes.
At the end of each episode e, we calculate the performance:
i.e. the total reward accumulated across the training window.
Model weights are saved whenever performance improves. The
last saved model is used on the test set.

Training times vary across the rolling windows due to varying
monthly contract counts. For a single month, 1 − 2 days are re-
quired to train AC agents using a GeForce GTX 1080. Once trained,
the trading agent can however execute a decision immediately.

5.4.3. Software
Several Python libraries are used to train and evaluate our AC

workers. For instance, the gym library is used to build custom
trading environments for reinforcement learning and the Py-
Torch library is used to build and optimise deep neural networks
of AC workers, as visualised in Fig. 4.

5.4.4. Evaluation
Both profit (PnL and PT ) and risk-reward (PD) metrics are used

to evaluate agents’ test performances. The PT is calculated by
dividing the PnL by the total traded quantity. Formally, PT =∑N

n=1 PnLn/
∑N

n=1
∑T

t=1 qt , where N is the total number of con-
tracts in the test set. The PD, measuring the profit per unit of risk,
is calculated as

∑N
n=1 PnLn/σ , where σ is the standard deviation

of the PnL. The higher PnL, PT , and PD the better the trading
lgorithm.
To contextualise the performances of our intelligent agents,

wo rule-based benchmarks are evaluated as well. The first, in-
ended to gauge the minimal attainable profit from arbitrage
rading on short-term markets, is the HOLD benchmark. The
OLD closes out all open DAM positions on the BAL; no trade
s executed on the CID. The second benchmark (PRE-BA) follows
he rules specified in (14):

t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

B, if pat < 1/30×
t∑

i=t−30

pai & vt < vmax &
∑

qa < qhigh

S, if pbt > 1/30×
t∑

i=t−30

pbi & vt > vmin &
∑

qb < qhigh

H, otherwise

(14)

RE-BA uses the previous best bid and best ask prices to place
rades. It is developed to highlight the risk associated with CID
rading.

.4.5. Results and discussion
Table 7 and Fig. 9 present the test results, spanning 1760

ontracts, for all evaluated trading agents. Elaborating Table 7

ummarises the test results; showing the total traded arbitraged

11
Table 7
Traded quantity, profit and risk results on the test set.

Quantity (in MWh) PnL (in e)
Sum Mean Sum Mean PnL>0 PD PT

A2C 33805.10 19.21 97853.69 55.60 61% 190.66 2.90
A3C 29571.70 16.80 89248.52 50.71 62% 174.06 3.02
PRE-BA 52070.50 29.59 1586.07 0.90 51% 3.21 0.03
HOLD 17600.00 10.00 1395.20 0.79 52% 2.83 0.08

Fig. 9. Cumulative PnL across test contracts. Monthly rolling windows are shown
with dashed black lines.

quantity (quantity sum), the average traded arbitraged quantity
per contract (quantity mean), the total/cumulative profit-and-loss
(PnL sum), the average profit-and-loss per contract (PnL mean),
the percentage of contracts with positive PnL over the test period
(PnL>0), the profit-to-deviation (PD), and the profit-to-trade (PT ).
Fig. 9, meanwhile, displays the cumulative PnL of the evaluated
agents across the test set.

Analysing the summary results presented in Table 7, HOLD
is observed to yield the lowest PnL and PD, and the second-
owest PT . Only 52% of traded test contracts return positive profits
ollowing HOLD. Evaluated across test set contracts, Fig. 9 shows
he fluctuations in HOLD revenues. The cumulative PnL is almost
lat at around 0. By not placing trades on the CID, HOLD exposes
he importance of the CID in arbitrage trading.

Analysing the overall performance of PRE-BA, the second
enchmark spurs the highest execution of trades. 52070.5 MWh
f electricity is traded by PRE-BA. Despite this, PRE-BA yields the
econd-lowest PnL and PD, and the lowest PT . Evaluated across
est set contracts, Fig. 9 exposes persistently low revenues. Sim-
larly to HOLD, the cumulative PnL fluctuates around 0. PRE-BA
ighlights the risks of trading too frequently on the CID.
Turning to AC strategies, from the results in Table 7 we ob-

erve that 62% of traded contracts yield positive profits following
3C: 10% more contracts than HOLD and 11% more than PRE-BA.
ig. 9 further shows that A3C manages to steadily increase the cu-
ulative PnL. A3C generates 6319% more profit per contract than
OLD and 5535% more than PRE-BA. Note, however, that extra
rofit is not generated by accepting disproportionately more risk.
his is highlighted by A3C’s higher PD.
Comparing the results relative to [20], A3C also yields greater

eturns and a higher PD than the A3C implemented in [20]. Across
he same test set, the A3C in [20] yields: a total PnL of e19927.22
with an average PnL of e11.32 per contract, a PD of 142.80, and
a PT of 2.84. Relative to these results, our A3C generates 348%
ore profit, a 22% higher PD, and a 6% higher PT . Relaxing trading
uantity constraints and using the DAM in arbitrage trading thus
ppears to increase the profit and reward-risk ratios.
Finally analysing A2C results, Table 7 shows that A2C trades:

2% more MWh per contract than HOLD, 35% less than PRE-
A, and 14% more than A3C. A2C yields the highest profit per
ontract: 6938% greater than HOLD, 6078% greater than PRE-BA,
nd 10% greater than A3C. Evaluated across test set contracts,
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Fig. 10. Traded quantity distribution (blue) and total quantity (salmon) of A2C
across the test set for each delivery hour.

Fig. 11. PnL distribution (blue) and total PnL (salmon) of A2C across the test set
or each delivery hour.

ig. 9 shows that A2C gradually and broadly consistently in-
reases revenues; surpassing A3C total revenues by the final test
ontract. Despite A3C having a marginally higher PT , evaluated
sing the PnL and PD, A2C is found to be the best arbitrage trading
gent across short-term markets.
Note that despite their significant positive cumulative PnLs, it

ust be highlighted that neither A3C nor A2C offers a free lunch.
nalysing changes in the cumulative PnL across the test set, Fig. 9
xposes periods of A3C and A2C underperformance. Elaborating,
round contract 750, for example, A3C consecutively yields losses
9), precipitating a significant decline in the cumulative PnL.
imilarly, A2C yields consecutive losses (2) around contract 550.
osses result from a build-up of unprofitable positions that the
lgorithms are forced to close out either on the CID or BAL. To
ighlight both the potential risks and rewards associated with the
ost profitable strategy, below A2C trades are further analysed.

2C performance across delivery hours. Analysing A2C results fur-
her, in Fig. 10 the box plot shows the distribution of traded
uantities, while the bar graph shows the total quantity of exe-
uted trades for each delivery hour. Across a majority of hours,
2C trades between 10 and 20 MWh per contract. The total
12
raded quantity across these hours is between 1000 and 1500
Wh. Across a minority of hours, A2C trades between 20 and 40
Wh. This occurs for h7, h17 and h18. The total traded quantity

s also high for these hours, more than 1500 MWh, in line with
xpectations. A2C trades more during day delivery hours than
ight hours when liquidity is typically lower.
Finally, Fig. 11 shows that the PnL distribution of A2C is cen-

red around 0 for each delivery hour. The total PnL, however, is
ositive for all delivery hours except h12 and h16. Night hours are
ess volatile than day hours and bring around e4000. Day hours
ring roughly between e2000 and e12500. More specifically,
ours h11 − h16 are less profitable, whereas hours h5 − h7 and
17− h20 are significantly more profitable. Considering day hours
re more liquid than night hours, A2C thus manages to exploit the
iquidity across day hours – by trading more frequently and bring-
ng more profit – without receiving any trading rule regarding day
r night trading.

. Conclusion and future work

In this paper, arbitrage trading agents capable of trading across
he day-ahead (DAM), continuous intraday (CID), and balanc-
ng (BAL) markets were developed and evaluated. A rule-based
rading method, using forecasts of DAM prices and CID volume-
eighted average price of trades (vwap), was developed to open
ositions on the DAM. DAM prices were predicted utilising tech-
ical indicators (TI) and data augmentation methods, such as au-
oencoders, variational autoencoders, and Wasserstein generative
dversarial network with a gradient penalty. Vwap, meanwhile,
as predicted using an ensemble model; taking engineered fea-
ures from the limit order book and trade book as inputs. Using
he above forecasts, 74% of positions were accurately opened
cross the DAM following our rule-based trading method.
Focusing on the CID and BAL, a deep reinforcement learning

DRL) agent, employing the synchronous advantage actor–critic
lgorithm (A2C), was trained. Behaviour cloning, i.e. goal-based
xploration, was employed to increase the performance of the
gent. A two-headed shared deep neural networks was used to
etermine the agent’s policy. The performance of the agent was
ompared against three benchmark policies: HOLD, PRE-BA and
3C. A2C surpassed A3C and significantly outperformed HOLD
nd PRE-BA.
Overall, using TIs, data augmentation, ensemble model and

2C, our best agent was found to trade 33805.10 MWh of elec-
ricity across 1760 hourly test contracts; yielding significantly
ositive profits of e97853.69. We hope our findings inspire others
o utilise novel DAM price forecasting methods and DRL algo-
ithms in statistical arbitrage trading. Researchers interested in
uilding upon our work are advised to, for instance, assess other
ctor–critic versions, such as soft actor–critic (SAC).
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