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Summary

This thesis considers mobile robot localization, for which robots must be able to
adequately detect and understand the world around them from onboard sensor
data in order to relate that data to a map of the environment. In many cases, these
maps do not represent the world exactly as it is perceived by the robot’s sensors. If
the localization strategy is not able to handle this mismatch by using hypotheses
and being able to recover from false associations, the task will not succeed. This
work considers indoor environments, for which only static elements and objects
have been modeled on a map. The main objective of this thesis is to augment
geometric maps with symbolic representations and to devise association-based
algorithms that exploit these representations for robust localization, monitoring
and recovery.

The contributions in this thesis consider a reference robot platform equipped
with planar LiDAR and wheel encoder odometry. The first contribution is presented
in Chapter 2, in which a method is proposed to use Building Information Models
(BIM) from the built environment domain for robot localization. A graph-based
model of the environment is created that connects the entities from a BIM model to
geometric representations for the specific sensor. These representations are queried
by the robot from a database and used for pose tracking using a factor graph. This
graph contains explicit associations between the geometric features from the sensor
and features on the map. The approach is experimentally demonstrated inside a
university building for which a BIM model is available.

The second contribution is concerned with the question: When and how should
a robot associate its sensor data with the map for global localization? A solution is
proposed that splits the localization problem into two activities: 1) Maintaining a
local map in the vicinity of the robot with features that can be reliably associated
locally and 2) Evaluating the global associations whenever a new local stable feature
enters the local map. The result is a feature association hierarchy in which explicit
hypotheses are maintained to deal with ambiguous local features with respect
to the global map. These hypotheses are evaluated and pruned by expanding a
hypothesis tree and determining the lack-of-fit over a horizon of local features. The
method is compared with a particle filter that relies on pose sampling and grid
representations, and it is found that the proposed method successfully localizes in
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more experimental runs.
In Chapter 4, this approach is extended with the exploitation of geometric

patterns to better differentiate building elements from unmapped clutter. The asso-
ciation hierarchy is expanded by incorporating collinear and right-angled patterns
that are represented as symbolic relations on the global map. These patterns occur
naturally in many buildings and it is shown how they can help to discriminate be-
tween local observations and clutter observations. During localization, the patterns
are extracted from a local map of individual features and are added to a hypothesis
tree that is adapted to contain hypotheses on feature sets. It is shown how a basic
set of spatial constraints can be used to find patterns and how relative feature
distances within the pattern can be used to efficiently retrieve candidate patterns
on the global map. An experiment with a fully autonomous robot is performed that
prioritizes patterns in circular concrete columns over other structures. Furthermore,
free space is used to monitor localization and to trigger recovery behavior that
re-initializes the pattern search.

The approach to localization suggested in this thesis allows robots to perform
robustly in cluttered environments by recognizing structure via explicit association
with features and patterns. The result is a significant reduction in the amount
of hypotheses needed. Furthermore, this explicit approach results in more self-
explainable system behavior, which is a relevant property of an autonomous system
that has to be accepted and understood in environments that are shared both with
other systems and with humans.
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Chapter 1

Introduction

1.1 Autonomous Mobile Robots

The field of robotics is concerned with designing and building systems that display
a certain degree of autonomy in making decisions. These systems interact with
the physical world and are therefore also known as cyber-physical systems, as
they combine sensor inputs and actuators with software algorithms. In this thesis,
the focus is on mobile robotics, which entails robot systems that are not fixed
at some physical location, but can move around freely. Specifically, this thesis
considers Autonomous Mobile Robots (AMRs), that use wheels to drive around
in environments that have not been altered specifically for the robot. This sets
AMRs apart from Autonomous Guided Vehicles (AGVs), which require special
infrastructure such as sensor beacons, guiding strips or visual cues to be placed
in the environment. In this section, the background, applications and challenges
associated with this kind of system are introduced. A brief overview of the main
parts of a mobile robot navigation stack is given together with relevant prior work
and research questions, which are finally related to the contributions of this thesis.

1.1.1 Early days of mobile robotics

While mechanical systems that can run without intervention for periods of time
have been envisioned and built for centuries, it was the invention of the computer
(often attributed to Charles Babbage, see, e.g., [45]) that lead to the possibility
of making these systems run programs that form the basis of sophisticated robot
behaviors. One of the earliest conceptions of what would today be considered a
robot (omitting science fiction works), is Shakey the robot [95]. What sets Shakey
apart from other machines is its ability to plan for a sequence of actions that allows
it to complete its task, whereas these actions would otherwise have to be supplied
manually. The Shakey project lead to a number of important advances such as the
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(a) (b) (c)

Figure 1.1. (a) Shakey the robot. (b) An autonomous robot driving in crowded
pedestrian zones [78]. (c) A service robot competing in the RoboCup tournament
[130]

A-star algorithm for planning and the Hough transform for detecting geometric
features from sensor data, which are still widely used in robotics today. Figure
1.1 shows Shakey the robot, together with two more contemporary examples of
research platforms. The platform in Figure 1.1b was used by researchers in Freiburg
[78] to show robust outdoor navigation in dynamic city areas. It combines GPS with
occupancy mapping for navigation. Figure 1.1c shows a Toyota Human Support
Robot that is used for research in service robotics to assist people with daily tasks.
For an overview of the history of mobile robots see, e.g., [23].

1.1.2 Real-world applications

The market for industrial mobile robots is projected to grow from USD 1.97 billion
in 2021 to USD 8.70 billion by 2028 according to [5]. The current potential
of wheeled robotics is mostly found in the ability to handle repetitive, dirty or
dangerous tasks that otherwise would have to be performed by humans. Examples
of domain where AMRs are already applied are transportation and warehouse
automation [29], [26], inspection of large objects [2] or areas such as oil and gas
sites [39] and cleaning automation. The latter has even emerged in consumer
applications (e.g., iRobot [67]) next to the many existing industrial floor cleaning
robots. Examples of modern industrial applications are shown in Figure 1.2; a
robotic platform for luggage transportation and an automatic feed distributor inside
a barn. Moreover, Figure 1.2c shows an example of a robot in a public space that is
shared with humans. The multitude of applications has lead to a growing scientific
interest in the area of field robotics, which is concerned with the challenges that
robots have to face in the real world, as their tasks become more complex and
their environments less predictable [80], [137]. Researched topics in this area
range from perception and control to interaction and acceptance of humans that
have to interact with mobile robots. The latter is an important part of many robot
applications, as collaboration requires adequate interaction mechanisms [9] and
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(a) (b)

(c)

Figure 1.2. (a) A robot from Vanderlande moving luggage inside an airport [131].
(b) A feed-pushing robot from Lely operating on a farm [82]. (c) A cleaning robot
from Taski, driving around in a public space [124].

awareness of the personal space of people [3], [93]. Moreover, collaboration hinges
on adequate mental models of the robots behavior because explainable behavior is
an important prequisite for trust and effectiveness in human-robot collaboration
[123].

1.1.3 Challenges and research questions

Robots have to know where they are in the environment and have to determine
which actions to perform to achieve their navigation task. The focus of this thesis
is robot localization: The robot associates the data from its sensors to objects
represented on a map. That map is made beforehand, manually and/or based
on previously processed sensor data. In both cases, a map can contain objects
that might be relocated or are not present anymore, such as pieces of furniture.
Similarly, the sensor data can come from objects that are not on the map. The
following questions regarding localization motivate the work in this thesis:

(i) How can we interface mobile robots with existing building models from the
built environment domain, such that these maps do not have to be created
and maintained for a specific robot?
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(ii) How can we make mobile robot localization robust against objects that are
not represented on this map, but are visible in the robot’s sensor data, if no
prior estimate of location is available?

(iii) How can we add a layer of symbolic relations onto a map, that can help the
robot differentiate between relevant observations and clutter.

In this thesis, the semantic map is considered as the central container for knowledge
about the environment relating to localization and navigation. On this map,
symbolic relations are added on top of a layer of geometric entities. Symbolic
representations have several added values: (i) They allow computer programs
to reference labels and relations from within relations, hence replacing to some
extent "programming" by "modelling"; (ii) they improve algorithms that make data
associations by providing information regarding data processing that is added a
priori and (iii) they improve explainability and the ability to interact with other
systems, operators and bystanders. They do so by condensing models and data into
referable units. For example, the range readings from a Light Detection and Ranging
(LiDAR) scan can be combined to form a line segment, which is hypothesized to
be a wall, that is part of a building. This knowledge has implications for the
hypothesized robot position with respect to the map, and possible actions that can
be performed safely. In this thesis it is argued that the semantic map should not only
be used to model the world, but also to configure the perception and motion of the
robot via these declarative symbolic relations. This leads to increased explainability,
by which we mean that a robot system can 1) provide insight into what it is doing
and why it is doing it and 2) leverage this notion to reconfigure its own subsystems
when necessary. These capabilities are still, however, far from realistic to expect
from a modern robotic system [107], [18], and start with making representations
more symbolic and hierarchical. This thesis takes a number of concrete steps in
that direction for localization, taking the semantic map as a starting point.

1.2 Localization

The focus of this thesis is on robot localization in indoor environments. The methods
are demonstrated using planar LiDAR and wheel encoder odometry, but can be
generalized to other sensor configurations. In general, requirements for successful
localization depend on task and environment; while some tasks require high metric
accuracy in a global reference frame, many tasks only require accuracy with respect
to certain locally defined reference frame or a rough notion of correct heading.
An example of the latter is a robot that navigates through a hallway for which it
only needs to align its heading, until it passes through a narrow door by using
motion control and local sensing. Moreover, accuracy does not only depend on the
sensors and algorithms, but also on the global map representation. Therefore, a
locally consistent view of the world based on sensor data is useful for both local
motion control and global positioning, in which the latter is obtained by making
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associations. The localization component of a mobile robot has to interact with
components that perform planning and motion control of the platform. These
components must interface with the sensor and actuators and these interfaces
are described in hardware and software architectures. An overview of relevant
concepts can be found in works such as [111], [18]. This section briefly introduces
relevant concepts for robot navigation architectures, followed by a more specific
overview of localization approaches and literature.

1.2.1 Hardware and software

The capabilities of mobile robots have increased significantly due to the sensors and
processing algorithms that have become available in recent years. Firstly, sensors
such as cameras and Light Detection And Ranging (LiDAR) devices have become
widely available at low cost, incorporating large field-of-views with high accuracy
and resolution. These sensors allow robots to accurately perceive the world around
them, both in terms of geometry and in terms of attributes such as color. Secondly,
computers have become increasingly powerful, enabling complicated software stacks
consisting of multiple sensor processing and decision making algorithms to run
concurrently on inexpensive embedded computers with small footprints and yet
high communication bandwidths. Finally, information processing paradigms have
been invented that allow robots to deal with uncertain information, originating
from sensors and models of the world and of the outcome of actions that are
performed. The probabilistic paradigm [127] is concerned with modeling this
inherent uncertainty in prior knowledge and perception. Additionally, graph-based
techniques have become popular for semantic world modeling and knowledge
representation, and as a means to manage the complexity of probabilistic techniques
[98]. The output of a planar LiDAR and a three-dimensional LiDAR are shown in
Figure 1.3, together with the research platform that is used in these thesis and
contains these sensors. It is evident that as sensors become more high-resolution,
the amount of information becomes higher, requiring more processing power. One
of the most popular software ecosystems in applied robotics that is used to manage
information exchange between sensors and algorithms is the Robot Operating
System (ROS) framework [106]. Besides providing a messaging system and an
orchestration system for executable programs (ROS nodes), it also incorporates
a package system with many (open source) implementations of popular sensor
drivers, algorithms and map representations. The ROS ecosystem has played a
significant role in making robotics research results readily available to anyone by
providing relatively easy to use templates in the form of the ROS navigation stack.
The applications in this thesis use the ROS middleware for communication with
sensors and for visualization purposes.

There are many approaches to the design of a navigation stack or navigation
architecture that closes the loop between sensing and control, as in Figure 1.4 (see,
e.g. [17], [66]). An autonomous platform has to determine its actions based on
its task, sensors and internal representation of the world. This is often achieved
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(a) (b)

Figure 1.3. (a) The robot platform used in this thesis, consisting of a holonomic
(i.e., unidirectional) moving based and a separate sensor module mounted on top.
(b) A visualization of sensor data from a planar LiDAR (Hokuyo utm-30lx) in red
and from a 3D LiDAR in blue (Velodyne VLP-16). This thesis focuses on the planar
sensor.

World 

Robot 

World Model

ActuateSense

Figure 1.4. The most basic conceptual model of a robot acting in an environment.
The robot software contains an abstract world model, that is used to relate relevant
information from sensor data to the state of the world. This state is then used to
plan and perform actions that move the robot in the real world.
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by composing behaviors via a high-level coordination mechanism, such as a state
machine or behavior tree. These behaviors (or states) are, for example, responsible
for receiving task input, requesting a plan from a route planner and performing
task-specific actions such as docking or other maneuvers. Such behaviors depend
on perception and control components that often run as continuous processes
that are interacted with via asynchronous communication. Many commonly used
architectures heavily rely on planning based approaches for determining robot
motion, whereas localization is often implemented as a continuous activity that
provides the planning and execution modules with the robot pose in the map
coordinate frame. An often made assumption here is that a reasonable initial
estimate can be supplied (for example by the user or by a global positioning
system), and keeping track of the robot location in the world model reduces to
incremental tracking, using a proprioceptive sensor such as IMU or odometry and
exteroceptive sensor to correct for the drift. The situation where no initial estimate
is available is often referred to as global localization. Furthermore, an explicit
connection between motion planning and localization is made in the field of active
localization (see, e.g., [43], [110], [91], [76]). In active localization, robot actions
are determined that take the uncertainty of the robot location into account. This
thesis mainly focuses on global localization and heuristic policies that connect
local sensor data to motion behaviors. Planning-based active localization is most
relevant in environments where many locations appear highly similar in sensor
data (such as environments with many similar looking connected hallways). In
these cases, planning optimal motion actions to discriminate between locations
within acceptable time is a relevant topic which is, however, outside the scope of
this thesis.

1.2.2 Map representation

In this work, we define the map as a central instance-level representation of
geometry and symbolic information about a particular indoor environment in
which the robot is expected to perform its task. In general, this map can be a
prior map or it can be built (over a chosen horizon) by the robot, using sensor
data during Simultaneous Localization and Mapping (SLAM, [20]). Throughout this
thesis the word map refers to a prior map, whereas we use the term local map for
a map that is being constructed on the fly using only sensor data and for the robot’s
direct vicinity only. Local maps are constructed using SLAM algorithms and in this
work, their main purpose will be to support global localization in the (prior) map.

Map representation plays an important role in the effectiveness and generality
of localization methods. Four major classes of map representations are identified in
literature: 1) sensor-data based representations, 2) feature representations, 3) cell
decomposition representations and 4) object-based representations. Sensor data
representations are popular for SLAM and localization and are often built from point
clouds from LiDAR sensors (Figure 1.5e) or camera images that are stitched together
into a consistent map [103]. Feature-based maps are a common representation
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that contain primitive features either extracted from, or modeled for a specific
sensor. Examples include visual features [112] or geometric features such as lines
(Figure 1.5c) and planes. Such maps do not directly contain information about
occupied and free space (which can be obtained if the pose of the imaging sensor
is known for each raw sensor image). Cell decomposition methods do contain such
information and are also very popular for indoor robotics, especially the grid map
[37] representation and the voxel representation [69] (Figure 1.5a-b). These maps
have the advantage that they can model both geometry as perceived by the sensor
and traversable space for the robot. In their simplest form, such representations are
relatively easy to generate from sensor data but do not model object instances. The
object-based map is a very general and loosely defined concept that does model
these instances, which can then be related to their geometric representations. These
representations can consist of volumetric shapes or meshes, polygonal or curved
geometries or collections of raw sensor data [105], [113], [31], [83], [92], [129].
In recent years, graph-based data models have received increasing attention as a
mechanism for representing relations between geometric concepts and semantic
information. An example is the addition of topological information about places on
the map, the metric information associated with them and the connections between
them that can be used for navigation [71], [8]. An example of this can be seen in
Figure 1.5f where planes are extracted from LiDAR scans and are referenced in a
semantic and topological layer.

For a comprehensive overview of graph-based modeling for the robotics domain,
see [18]. In this thesis, we use both geometric models and graph models in order to
describe objects and their sensor features. These representations are also popular
in other domains, such as building representations [141], [140], [65].

1.2.3 Localization algorithms

Localization of a mobile robot requires a representation of the state space of robot
locations. This state can be represented either continuous (i.e., 2D or 3D pose
in a map frame) or discrete. Furthermore, topological representations represent
localization by a combination of more loosely defined spaces and their connections,
as opposed to a pose with respect to a map. Finally, association-based approaches
handle localization via matches between sensor data and a map (or database) of
reference images, scans or features. As these methods progress, their distinction
may become less clear, as states are often used for determining likely associations
and topological relations and vice versa.

A popular sample-based localization method that is often used for continuous
state spaces is particle filter localization (also known as Monte Carlo localization),
in which a set of hypotheses is maintained on the robot pose in the map [33],
[89], [61], [6], [38]. The advantage of particle filters is that they can represent
arbitrary distributions if enough samples are maintained and each sample can
make a different data association between observations and the map. Handling
these kinds of multi-modal distributions is essential for global localization. A
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(a)

(b)

(c) (d)

(e)
(f)

Figure 1.5. (a) A gridmap representation of an environment that contains free
and occupied cells (b) A voxel-based representation that contains three-dimensional
occupancy information [69] (c) A vector-based representation consisting of line
segments [4] (d) An object-based representation using volumetric shapes [31] (e) A
pointcloud representation of a large lobby made by a SLAM algorithm [139] (f) A
three-layered situational graph created by a SLAM algorithm [8]
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sensor model is used to describe the likelihood of the actual observation, given
the expected observation for a particle. This sensor model is very general, and
practical implementations for LiDARs can use beam-based models, likelihood field
models, or feature based models. The latter requires the extraction of features
from the LiDAR points, such as lines, corners, or other keypoint features. Particle
filter methods can cope with significant initial uncertainty and global localization if
the amount of particles is sufficient and the model of the environment is accurate
enough. However, large particle sets are also associated with high computational
cost and often contain many (approximately) duplicate hypotheses. They rely on the
Markov Assumption, which means that all past sensor information is summarized in
a current state estimate. Often, sensor readings result in highly symmetrical pose
distributions (for example, a circle of possible locations around a point feature), for
which sample-based representations are not a natural candidate, and associations-
based representations would avoid sampling. Particle filters are a mature concept
and recent research focuses on initialization methods based on precomputation of
sensor readings [6], [88].

In contrast to particle filters, Kalman filters [121], [22] and graph optimization
methods [86], [135] rely on continuous probabilistic representations of the pose
that are optimized for while taking uncertainty of detections and odometry into
account. For Kalman filters, a Gaussian distribution is used to represent the robot
pose and measurement error. Since the assumption of Gaussian distributions can
be too restrictive, multi-hypotheses Kalman (MHKF) filters have been applied
([108], [68]) that can handle multiple distinct locations (resulting in a multi
modal distribution). Graph based methods represent the poses of the robot (and
possibly landmarks in the environment) by a connected network of nodes and
edges, where the edges represent uncertain relations due to measurements, such as
range measurements and odometry. A factor graph is a hypergraph that introduces
the concept of a factor to relate more than two node variables to a measurement.
Graph based optimization methods do not rely on the assumption of Gaussian
uncertainty for the optimization variables. Instead, they often optimize for the
maximum a posteriori (MAP) of the distribution (i.e., the most likely state given
the measurements) without representing the distribution explicitly. Factor graphs
are extensively used in SLAM [20] and incorporating uncertain data associations
has been an active research topic [96], [122]. However, factor graph solvers are
not guaranteed to converge to the global optimum and factor graphs are therefore
still considered a local method that needs additional algorithms to handle highly
ambiguous data associations.

All methods discussed so far rely on a notion of detection that can take many
forms. For LiDAR based methods, both raw scan matching and feature based
detection are popular. Iterative closest point (ICP) [133] is a popular method for
determining relative poses between scans and between a scan and the map. On the
other hand, feature based approaches first extract features from the sensor data
(such as lines, corner, planes or cylinders) and relate those features to the map.
The main benefit of features is that they can be locally descriptive and thereby less
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sensitive to association error if the initial estimate of the feature location (based on
a prior estimate of the robot location) is not accurate.

Finally, pattern recognition methods have become popular that work directly
on sensor data by finding matches between local sensor data and a database of
sample data that represents the map. Methods include bag-of-words based methods
and machine learning approaches [48], [60], [7]. Place recognition methods
have become popular in SLAM methods for loop closures and can also be used to
initialize hypotheses for localization methods [10], [49].

In this thesis, the focus is on global localization with planar LiDAR which, in
practice, is often solved by particle filters. A downside of particle filters is the limited
control over the amount of particles needed and the lifetime of particles, which
are obtained from sampling algorithms. Variants of MHKF have been suggested
to deal with this problem more effectively, by generating hypotheses based on
creative features found in individual laser scans and splitting hypotheses based on
mismatch criteria [68], [4]. However, in cluttered environments this approach
may also lead to generation of a large amount of hypotheses. Furthermore, many
localization approaches rely on maps that have been made beforehand via SLAM
methods, thereby representing the environment exactly for the SLAM platform.
Generating SLAM maps can be time consuming, as a robot has to be manually
operated throughout an entire building, but also can lead to the representation of
temporary objects on the map. Global localization that is robust to disturbances
and uses static object geometry representations of the environment is a topic that
has received attention (e.g., [56]). However, both the representation and use of
semantic maps for global localization and the addition of patterns to discriminate
actively between clutter and structural objects remain relevant research topics;
especially if they expand the domain of robots to larger environments.

1.2.4 Symbolics and semantics

Adding semantics to robotic world models has attracted much attention in recent
years, both as a method for increasing robustness, and as a means of increasing
reasoning abilities for more deliberated behavior (see, e.g., [46], [105], [77], [98],
[25], [75]). A distinction can be made between symbolic representations that add
symbolic identifiers to objects and relationships, and semantic representations that
are concerned with the meaning of objects and relations. For example, adding a
class label (e.g., Door, Wall, Human) to every point in a point cloud adds meaning
(semantics) to the points, but is less symbolic than instance-level representations (in
which we can, for instance count the number of unique doors). In [46], a distinction
is made between shallow semantic representations and deep domain knowledge that
links hierarchical (spatial) representations to general semantic knowledge. This
semantic knowledge can contain information on topology and purpose of areas
based on objects (e.g., a kitchen contains a fridge) from which inferences can be
made. These inferences can then fill in the missing details when planning for a
task. Reasoning capabilities have been researched especially in the domain of
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Figure 1.6. An explicit view of the hierarchy as described in [18] that is used to
relate sensor data to objects. This perception hierarchy is complementary to the
control hierarchy that is used to perform actions related to objects.

service robotics [46], [55], [125], [98]. In this thesis, we are most concerned with
semantics that use this symbolic anchor as an argument in relations that connect to
perception and motion algorithms (Figure 1.6). For instance, a column detection
can be linked, via its circle representation, to a feature detection algorithm that tries
to specify the type of column. Or it can be linked to a motion that takes sufficient
safety distance into account. In this thesis, automated reasoning mechanisms are
not considered; however, symbolic representations and their use for localization
are. The main focus is on how we can exploit symbolic map representations
by domain-specific decision processes such that they can be used by solvers (i.e.,
tree traversals and factor graphs) for localization. These decision processes are
still largely hardcoded in the current demonstrators; however, they provide the
symbolic handles that enable these kinds of reasoning mechanisms for increased
deliberation and explainability. For our representations, we apply graph-based
modeling concepts that are explained in [18].

1.2.5 Model-based and data-driven methods

Data-driven approaches have become very popular in robotics in recent years. The
benefit of these methods over model-based approaches lies in the fact that they can
learn parameters by optimization, using large data sets. Especially neural networks
have shown great potential in detection and tracking tasks that seemed impossible
before [24], [138]. These methods have also been applied successfully to robot
perception, both as front-end detectors [34] and approaches that replace (parts
of) the localization system [36], [134]. While effectiveness of these methods has
been shown, explainability and generalization of the reasoning capabilities beyond
training data is still limited [115], making it difficult to incorporate new knowledge
regarding task, robot or environment. This thesis does not apply deep learning
and instead focuses on model-based approaches. It is, however, important to note
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the potential of combining learning approaches with the model based approaches
suggested in this work. For example, deep-learning based image processing can
provide semantically labeled detection as input for the local mapping strategy that
is proposed, and data-driven optimization can potentially be of use in finding the
model parameters, such as the probability that a detection is clutter. This discussion
is left to the recommendations section.

1.3 Objectives and Contributions

The research contribution of this thesis to the state of the art is a methodology that
enables and improves localization by adding relations to a map between objects and
features, features and sensors, and feature patterns. This section further introduces
the contributions for each of the three main chapters of this thesis.

1.3.1 Prior sources of world information

Making and maintaining maps for large indoor environments is a time consuming
and error-prone task. Furthermore, scenarios exist where making maps beforehand
is not possible. This makes the use of external sources of information attractive,
especially if they are standardized and widely used. Chapter 2 considers the use
of Building information Modeling (BIM) representations for localization. BIM
models are widely used in architecture and construction to exchange semantic and
geometric data of a building. Furthermore, they play an increasingly important role
in the maintenance of digital twins of buildings [116] as up-to-date representations
for facility management. The objectives of this chapter are the following:

1.1 Convert the entities of a BIM model to a representation that contains explicit
object-features for use in robot localization

1.2 Implement a pose tracking algorithm for a robot equipped with planar LiDAR
that maintains data associations with these object-features.

The first contribution of this chapter is that we propose a strategy to convert
walls and columns from a BIM model to a graph-based world representation. This
representation links BIM entities to geometric features for a specific sensor. The
second contribution is a moving window factor-graph localization algorithm that
extracts line segments and corners from planar LiDAR data and associates them
with these static building features. The approach is demonstrated using a BIM
model of part of the ATLAS building (Eindhoven University of Technology) in which
the robot pose is tracked by querying local geometry from a spatial database (Figure
1.7).

1.3.2 Association-based localization

In Chapter 3, we consider global localization, which is a relevant capability for a
mobile robot in order to recover and continue its task autonomously. We propose
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(a) (b)

Figure 1.7. Tracking experiment in the Atlas building using a BIM model to supply
the perceivable geometry.

an answer to the second research question, by determining when and how a robot
should associate its sensor data with the map. The objectives of Chapter 3 are:

2.1 Maintain hypotheses on associations between local features that are extracted
from sensor data and features on the global map

2.2 Score and prune the hypotheses in order to retrieve the correct robot location,
while being robust to objects that are not on the global map.

2.3 Compare the results with a Monte-Carlo method that relies on sampled pose-based
hypotheses and a grid-based representation of the world.

The contribution of this chapter is a solution that splits the localization problem into
two activities: 1) Maintaining a local map in the vicinity of the robot with features
that can be reliably associated locally and 2) Evaluating the global associations
whenever a new local stable feature enters the local map. The approach associates
local measurements into local features and associates local features to global features
on the map using association hypotheses, resulting in an association hierarchy
(Figure 1.8). Location hypotheses are maintained by explicitly representing a set of
plausible local-to-global associations, which we evaluate by expanding a hypothesis
tree. The lack-of-fit is assessed using a horizon of these features that includes the
new candidate association. The method does, therefore, not rely on Gaussian or
randomly sampled belief approximations for the pose. The benefits of this approach
as compared to particle filter approaches is that it quickly initiates a much smaller
set of plausible hypotheses based on the local map, which decreases the amount
of hypotheses needed and increases robustness. Furthermore, the approach is
symbolic in its associations and uses unmatched local features to prune unlikely
hypotheses. To show the performance of the approach, we run experiments in the
model that we introduced in the previous chapter, which is manually corrected
for geometric deviations. We add disturbances to the environment in some of the
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Figure 1.8. The approach suggested in Chapter three.

test scenarios and compare our method with the popular ROS AMCL particle filter
implementation, to show the advantages and trade offs of each method.

1.3.3 Patterns and association hierarchy

In Chapter 4, we further extend the association hierarchy to incorporate patterns
into the local map. A major challenge in localization is the differentiation between
structural building elements and false detections or items that are not represented
on the map. Taking into account unmapped items results in a rapid growth of the
number of hypotheses that must be maintained between the local and global map.
Therefore, the objectives of this chapter are:

3.1 Add a layer of geometric pattern relations to a map a priori that can help a robot
to differentiate between clutter and structural building features.

3.2 Extract these patterns from local sensor data and exploit them while making data
associations.

3.3 Disambiguate patterns in the case of repeating structure, by incorporating local
motion primitives and the absence of expected features.

The first contribution of this chapter is that we add a layer of collinear and right-
angled pattern relations found in concrete columns to the map. The rationale
behind this approach is that indoor environments often exhibit a distinctive grid-like
structure (Figure 1.9) The second contribution is that these geometric constraints
are used in the local map to find pattern candidates which are then prioritized
in the making of data associations, by using their relative pattern dimensions.
The third contribution is that the ambiguity found in these patterns is dealt with
by performing a local rotation action while evaluating an association tree that is
initialized with the pattern. In the evaluation of this tree, we use all matching
primitive features in the environment of the pattern, as well as a free space check
to effectively find which pattern on the global map is supported. The method is
experimentally demonstrated using a closed loop autonomous robot, showing both
initialization and recovery behavior using patterns.
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L-pattern

Collinear pattern

Distance pattern

Parallel pattern
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Collinear pattern

Figure 1.9. Discriminating patterns that occur in indoor environments and can be
exploited.

1.4 Research Project

The work in this thesis has been carried out as part of the New Frontiers in Au-
tonomous Systems (FAST) project. The FAST project consists of a consortium of five
private companies (Vanderlande, Lely, EXRobotics, Rademaker and Diversey) and
Eindhoven University of Technology. The goal of the project is to develop semantic
world models for mobile robots that enable increased flexibility in industrial sce-
narios as well as socially aware navigation capabilities. The project was carried out
collaboratively by a multidisciplinary team of four PhD candidate researchers and
company R&D engineers. The project received additional funding from TKI-HTSM
[62].

1.5 Outline

The main chapters of this thesis are based on research results that have been
published or submitted for publication. Starting with Chapter 2, the application
of BIM models for localization is introduced and demonstrated by experiments
in a campus building. Next, Chapter 3 considers global localization in the same
environment, based on associations between a local and global map. Chapter 4
elaborates on this approach by introducing and evaluating feature patterns in a
second indoor scenario. Finally, Chapter 5 summarizes the relevant conclusions
considering all main chapters and provides a final discussion with recommendations
for future work.
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Chapter 2

Connecting Semantic Building Information Models
and Robotics

Abstract
This chapter proposes a method to integrate the rich semantic data-set provided
by Building Information Modeling (BIM) with robotics world models, taking as
use case indoor semantic localization in a large university building. We convert a
subset of semantic entities with associated geometry present in BIM models and
represented in the Industry Foundation Classes (IFC) data format to a robot-specific
world model representation. This representation is then stored in a spatial database
from which the robot can query semantic objects in its immediate surroundings.
The contribution of this work is that, from this query, the robot’s feature detectors
are configured and used to make explicit data associations with semantic structural
objects from the BIM model that are located near the robot’s current position. A
graph-based approach is then used to localize the robot, incorporating the explicit
map-feature associations for localization. We show that this explainable model-
based approach allows a robot equipped with a 2D LiDAR and odometry to track
its pose in a large indoor environment for which a BIM model is available.

This chapter is based on:

R. W. M. Hendrikx, P. Pauwels, E. Torta, et al., “Connecting Semantic Building Information Models and

Robotics: An application to 2D LiDAR-based localization”, in Proceedings - IEEE International Conference
on Robotics and Automation, 2021, pp. 11 654–11 660
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2.1 Introduction

Mobile robots are deployed more and more in dynamic environments shared with
and familiar to humans such as hospitals [109], restaurants [118] or nursing homes
[27]. Due to the familiarity of the environment, there is an expectation that mobile
robots will not only robustly perform long-term autonomous tasks, but that they do
so using the same semantics that operators, bystanders and engineers use. To this
end, adding semantics to existing geometric representations used for localization is
an extensively researched topic. We present a case study for leveraging an existing
standard and available models for semantic building representation from the built
environment domain for indoor localization. These models, when available, can
provide an alternative to robot-specific map creation. In this study, we use a robot
equipped with a conventional 2D laser range finder, which is still to be found on
many existing platforms. We show how semantic building information models can
be used for explainable 2D LiDAR based localization in environments where other
sensor modalities may be infeasible due to cost or privacy-by-design requirements.

2.1.1 Contribution and Contents

In our work, we identify the following contributions:

• Proposing a workflow to leverage the semantic and geometric information
in building models for indoor robot localization, via composition with a
robot-specific property-graph representation in a spatial database.

• Demonstrate the feasibility of the approach for a location tracking task based
exclusively on static semantic building feature associations.

The chapter starts by discussing related work from both the robotics domain
and the built environment domain in the next section. Hereafter, we introduce
the property graph approach for world representation, followed by the step of
populating this world model with BIM entities. This is followed by a concise
treatment of our localization approach, which uses existing graph optimization
techniques to obtain the robot pose from semantic data associations. In section V,
an indoor experiment is then presented in which a robot localizes indoor based on a
BIM model. Finally, the technical challenges that arise when using existing building
models for localization are discussed, and topics for future work are identified.

2.2 Related Work

Semantic indoor maps for robotics

Among the various representations for indoor semantic maps used in practice
(see, e.g., [77] and [83] for a review), we focus on object-oriented representation
standards that have been used for robot localization. OpenStreetMap (OSM) is an
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opensource crowd-sourced mapping initiative that has been extended for indoor
robot navigation in [92]. The authors propose an indoor tagging schema to rep-
resent the indoor domain hierarchically using the OSM primitives. Objects such
as walls and doors are tagged, and related to rooms and hallways. Furthermore,
specific areas are represented and tagged to define, e.g., traffic lanes for naviga-
tion. The authors show an example of a hospital environment that was modeled
and tagged manually using architectural drawings as a reference. The authors
acknowledge that the manual creation of the maps using the available Geographic
Information Systems (GIS) tools is tedious and that the choice of georeferenced
(latitude/longitude) coordinates is not obvious for indoor geometry. Another impor-
tant initiative for building modeling is indoorGML [74], which specifically targets
indoor spaces and represents geometry, topology and semantics in a multi-layered
space model. While indoorGML provides many relevant modeling concepts for
indoor navigation, existing work is limited to automatic extraction of indoorGML
models from occupancy grid maps in [126]. A different representation of semantic
maps in spatial databases is suggested in [31] in the form of the SEMAP framework.
In their work, the authors represent semantically annotated 3D object models in
a PostGIS database. The models are geometrically represented in PostGIS’ own
3D extension of the "Simple Feature Access" [120] specification with the addition
of a spatial ontology for map queries. The authors show multiple applications,
including topological location queries of the map for an agricultural harvesting
scenario. The authors do not focus on metric robot localization from on-board
sensor data. Another work that has similarities to ours is [14], in which the authors
perform robust indoor localization with a laser scanner starting from architectural
floor plans. They augment the floor plans using pose graph SLAM techniques and
robust matching criteria. This makes their approach able to perform long-term
navigation in the presence of map mismatches and environmental disturbances.
Contrary to the approach we present, the authors do not focus on semantics or
standardized map formats in their work. Furthermore, they propose a method to
provide an updated scan-based map that is consistent with the prior floor plan and
contains all geometry, which is not within the scope of our work.

In the above works, there is a strong reliance on maps with a geospatial back-
ground (e.g. GML, GIS), or architectural floor plans. These sources are not widely
available, nor fully reliable. Yet, for many buildings, detailed Building Information
Models (BIM) ([35], [16]) are currently available, which include 3D geometry as
well as detailed semantic data (materials, object properties, etc.). In this work,
we want to take advantage of the increasing availability of building information
models as digital twins to propose an alternative approach to semantic map creation
and representation for the robotics domain. We do so by creating an explicit link
between the semantic information contained in Building Information Models (BIM)
and robotics semantic maps. Our approach allows to automatically populate a
semantic map, avoiding the manual effort cited by [92]. In addition, the robot’s
semantic map and the BIM model use the same semantics and the same reference
coordinates to indicate features in the environment, which we consider an im-
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Figure 2.1. Example of the geometry present in a BIM model (here shown as part of
a storey). The model shown is part of the ATLAS building at TU Eindhoven and is
used in this work. It is extracted from a larger BIM model.

portant step in reaching shared semantic understanding of indoor environments
between humans and robots.

BIM models

3D BIM modelling software and BIM modelling processes are increasingly taking
over the Architecture, Engineering, and Construction (AEC) industry. In many
countries, newly built buildings are modelled in BIM software, and delivered to the
client as an as-built model. The operational phase of the building predominantly
relies on Facility Management Information Systems (FMIS), which typically have
considerably less detailed 3D geometric data, and instead focus heavily on the
collection of sensor data (access, temperature, air quality, ventilation, etc.). This
collection of data is often termed ‘digital twin’: the digital counterpart of the
physical building. A dominant data standard in the AEC industry is the Industry
Foundation Classes (IFC) [65]. This standard focuses heavily on the interoperable
exchange of 3D data across BIM authoring tools. An open and neutral IFC file
can be exported from a BIM modelling tool, making semantic and 3D geometric
data openly available (human- and machine-readible). Although this data source is
used less often for existing buildings [132], it still provides an invaluable resource
of information if it is available. Whereas IFC has always been available in the
EXPRESS information modelling language, recent works have aimed elaborately
at enabling XML, JSON and RDF formats for the same data. An XML format has
been supported since the early 2010s, the RDF format for IFC data is available
since 2016 [100], and a simplified JSON format is under construction at the time
of research and writing [64].
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Previous research has tried to leverage BIM models to tackle the challenge of
path planning and localization. With respect to localization, BIM models have
been mostly used for indoor image-based localization. Acharya et al. [1] generate
a data-set of synthetic images with associated known 6-DOF camera locations
and orientations from BIM models. The synthetic data-set is used to train a
Deep Convolutional Neural Network (DCNN) which is used for indoor localization.
Similarly, [54] generates a data set of synthetic images from the BIM model and
trains a DCNN to extract features from the generated synthetic data set. Features
extracted from the synthetic data are compared with features extracted from images
of the physical environment and used to select the synthetic image (with known
6-DOF pose) that is closer to the physical image. Both works differ from what we
present in this chapter because the localization method is based on camera and a
DCNN that has to be trained on the specific building model. Additionally, these
papers do not focus on describing a methodology to automatically extract such
information from the BIM models. Our approach differs because (a) the BIM model
directly provides the features to look at without the need for training the DCNN and
(b) we present a methodology to automatically extract relevant information from
the model avoiding much of the error-prone manual effort. Other work has focused
on using the BIM model to derive the topology of an indoor environment from
which a path can be planned. In this case, localization is not further elaborated, as
opposed to what we aim at in this article. In [114], the authors propose to extract
information from BIM models to set-up a simulation environment (VEROSIM) for
robotics development. The environment can connect the OMPL (Open Motion
Planning Library) to the imported BIM model to generate collision free paths. On a
similar line [97] derives a topological graph from BIM models upon which an A*
planner can retrieve the optimal path. Although they are valuable and important
reference works, our work aims precisely at a live localisation based on a current
model of the building model and matching of geometric features.

2.3 Connecting Bim Data to the Robot’s
World Representation

2.3.1 World model representation

We use the term world model to describe the robot’s internal representation of itself
and its surroundings (i.e., the map) in relation to its sensors. To accommodate this
representation, we use a property graph data model (Figure 2.3) which enables
composition of different domain models. This general data model has been used
extensively in knowledge representation for robotics (see [98] for a review). In this
work, we focus only on the semantic map and its relation to available sensors. To
represent the property graph we use the JSON-LD host language, which provides the
mechanisms for attaching a unique symbolic id (@id), model id (@type) and names-
pace reference (@context) to every entity in the world model. For the geometric
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Figure 2.2. Conversion of the BIM line-with-offset representation of a wall (left)
to a representation consisting of two polylines for each wallsegment with a shared
Point on the corner connecting two wallsegments (right).

primitives in this work, we use 2D "Simple Feature Access" [120] representations.
We augment these primitives by giving each point that belongs to a composition
(such as polygons) an individual id, allowing to maintain topological consistency
(e.g. walls that share a point which resembles a corner). These geometric represen-
tations are then associated with the semantic entities by represented_by relations,
allowing to loosely couple different representations when desired. Furthermore,
we explicitly relate representations of objects to the sensors through which they
can be perceived. We introduce the ObjectFeatureRepresentation relation that
connects the geometry representation, the object and the sensor, allowing the robot
to query for features that it can perceive using its sensors.

The property graph model for localization has to be generated from the BIM
model for all relevant objects. This procedure is schematically depicted in Figure
2.5. First, the BIM model is queried for relevant objects, which can appear at
different positions in the model hierarchy (e.g., an IfcWall can be declared as part
of a space, or as a connected attribute of another IfcWall). For this reason, the
BIM model of a floor of the building is exported to an IFC-JSON representation
[64] which is then made into valid JSON-LD by adding a @context specifier for
the types and relations. This JSON-LD representation can then be "framed" by
the JSON-LD API [73], turning it into a tree structure where objects of interest
are at the root for processing without requiring a graph database. In this chapter,
we use the IfcColumn and IfcWall entities from the IFC model for localization.
These entities are queried from the model together with their representation and
objectPlacement relations. For the columns, the sweptArea 2D representation
is converted into a polygon profile, for which the local coordinates are converted
into global coordinates using the column’s objectPlacement. For the walls, an
IfcPolyline represents the center line, together with an offset for the thickness.
This representation is converted into a slightly different representation with two
(inner and outer) polylines, that connect to adjacent wall segments using corner
points (see Figure 2.2). This preserves the topology of wall segments and corners.
The final result is exported as a JSON-LD property graph, which is partly visualized
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Figure 2.3. Graph representation of the semantic entities from the BIM model and
the geometry representations that are perceivable by the sensor, in this case the 2D
LiDAR. Different domains (i.e., simple feature geometry, IFC entities and navigational
relations) are shown in different colors. The id of entities that are not part of the
BIM model are randomly generated.

in Figure 2.3. A small section of the resulting map of a floor of the building
considered later in this work is represented in Figure 2.4.

2.3.2 Spatial database and queries

For querying the spatial features and their semantic relations, we use the well-
known PostgreSQL database with the PostGIS spatial extension. We store the
property graph representation in the database as well, making it possible to query
for relations and entities using the SQL query language. The database is queried
for spatial features that are close to the robot. The sensor type is part of the query,
resulting in features that are part of an ObjectFeatureRepresentation perceiv-
able by the given sensor. The query returns the feature id, feature type, object id
and object type for each feature, together with the spatial object that contains the
actual coordinate data structure. For example, a query for perceivable features with
a 2D LiDAR near the current position, may return the object {type:"IfcColumn",
id:"96033e"}, together with its representation {type:"Polygon", id:"553236"}.
This explicit symbolic link between the geometry, its interpretation and the object
will be maintained in the association-based localization approach.

2.4 Localization

While the robot is tracking its location, it queries semantic map features from the
database that are perceivable by its on board sensors and are currently within a
certain radius around the robot’s location on the map. We refer to these as map
features. Our approach then tries to match them with features found in its sensor
data, so called sensor features. This map-query-first approach allows to extract only
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Figure 2.4. The map considered in this work, as generated from the BIM model,
with static features relevant for the LiDAR sensor. The features are annotated with
the types of the objects they represent. The paths driven by the robot are shown, as
determined by our localization approach, starting at different positions. All three
paths finish at their respective starting positions. The final trajectory was recorded
while three actors were actively obscuring the laser field of view. Notice that at
some points small jumps occur in the map position, because of new associations with
structural elements of the building.

Export IFC-JSON

add JSON-LD @context

Query Semantic objects (JSON-LD API)

Transform Objectplacement to Storey coordinates  

Convert to toplogically consistent simple geometry

export JSON-LD property graph

Populate PostgreSQL (all entities) and 

PostGIS (geometry entities) tables

Building Model

Figure 2.5. Conversion from the BIM model to the representation used by the robot,
stored in a database, as used in this work. This database contains both the property
graph entities and the geometric entities (using PostGIS).
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(a)

(b) (c)

Figure 2.6. (a) Picture of the indoor environment with the robot. (b) The same
location showing the localization output. Matched semantic features are indicated
by grey lines originating from their corresponding robot pose. LiDAR points are
in green. (c) An example of the mismatch between the BIM model and the actual
environment, making localization more difficult. The location of the square space
showed a significant mismatch with reality, causing the robot location to jump while
making correct associations. Furthermore, due to glass and doors, not all walls are
always perceivable.
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Query perceivable ObjectFeatures nearby

Split-and-merge feature extraction

map -> sensor feature association

Add pose and measurements to factor graph

Truncate horizon to N objects

Optimize maximum a posteriori pose estimate 

Spatial-Semantic Database

Onboard sensors

== {2D LiDAR}

Current pose

LiDAR data

Odometry

Figure 2.7. Visualization of the localization approach that queries features from the
database, matches sensor features to them and optimizes the resulting factor graph.

sensor features that are currently of interest. The current implementation supports
the extraction of line features, corner features and box features from the sensor
data, based on a split-and-merge weighted line fitting implementation from [102],
[47]. The corner and box features are obtained by checking if the lines support the
well-known L-shape used often for rectangular objects. In the configuration of the
detectors, we demand that the line segments used for wall and corner detection are
sufficiently long to be insensitive to open doors. While this threshold is currently
manually set to 1.2m, it could be derived from the IfcDoor representations in the
BIM model if these are present.

The measurements are added to a factor graph containing the robot poses over
a variable horizon, as well as range-bearing measurements to perceived objects. For
columns and corners we use the well-known range-bearing measurement model.
For walls, we use a model that constrains the angle and distance to the wall, but
not the position alongside it. If a match in the sensor data is found based on
the features suggested by the map (e.g., a line segment that falls within the line
segment of the wall representation up to a threshold), the feature and measurement
get added to the factor graph. We explicitly reference the id of the features in the
factor graph, making the data associations with the map explicit. This feature-based
approach has benefits over scan matching based approaches such as ICP, because it
first checks if the sensor data supports the primitive feature suggested by the map
to be usable. This also allows to disable individual features without removing them
from the map by modifying their perceivable_by relation.

Since the semantic features we use can be relatively sparse, substantial drift
corrections are possible. We use graph optimization to avoid inconsistencies due
to linearization. We do not focus on the trade offs of graph-based mechanisms for
pure localization in this work (See, e.g. [136], [135] for a comparison of factor
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Figure 2.8. Example of a factor graph containing the features and measurements
within a certain horizon of robot poses.

graphs and particle filters for pure localization). Our main focus is to show that
this method makes observations explicit. Exploiting these explicit links for robust
navigation tasks or updating the BIM model real-time using SLAM is potential
future work. We use a moving-horizon approach in which the horizon is adjusted
based on the number of geometric features that have been uniquely associated with
the map. When more than N of these unique geometric map features are present in
the horizon, we remove the oldest features and their corresponding measurements
until again N features are present. We have implemented the localization in C++
using the GTSAM [32] optimization library together with our own in-memory
semantic graph model and bookkeeping functions.

2.5 Experiment with a Robot Platform

In this section, we show an experiment with a mobile robot on a floor of the
building that is shown in Figure 2.1 (Atlas building, TU Eindhoven) for which an
IFC model is available. We use a custom-made platform (Fig. 2.6a) equipped with
mecanum wheels, wheel encoder odometry and a Hokuyo UTM30-LX 2D LiDAR
scanner mounted upside down, close to the floor. Due to its mounting position,
we have a 180◦ field of view consisting of 720 scan points. We teleoperate a total
of three routes (approx. 100 meters each) with the robot, starting from different
initial poses. The latter are provided manually to our algorithm by initial pose
estimates. The environment is cluttered with both semi-static objects (furniture,
plants) and dynamic objects (chairs, carts) which are not present in the semantic
map used for localization, as shown in Figure 2.6a. In the third route, three actors
are walking around in the field of view of the robot. The robot’s feature detection
is triggered whenever a distance of 15 cm has been driven and the map is then first
queried for features that are visible to the 2D LiDAR within a range of 6 meters. The
sensor data is then processed to search for sensor features that support the object
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features on the map and the pose estimate is updated. Figure 2.4 shows the 2D map
with the features perceivable by the 2D LiDAR and the three trajectory estimates
resulting from our localization approach. The horizon length is truncated at all
times based on three semantic object references. Figure 2.6b shows an example of
the horizon in which these references are visualized by edges (grey lines). Using
our approach, the robot was able to successfully track its pose by incrementally
associating perceived features with objects on the map generated from the BIM
model. In the next section, the results are discussed in more detail.

2.6 Results and Discussion

The amount of measurements associated with the building model in the horizon at
that timestep are visualized in Figure 2.9, grouped by object type. Both the number
of associated measurements with an object of that type and newly detected objects
entering the horizon are depicted (the latter by markers). The resulting trajectories
are shown in Figure 2.4. The object types (and their features) used for localization
in our approach were selected because of their availability in the BIM model and
their saliency. No false positive association was made by the localization algorithm
in our experiments. We selected these features because we predict that their saliency
can carry over to indoor environments different than the one we targeted. In Figure
2.6 it can be seen that the wall features are very salient: once detected, they have a
high recall and are spotted multiple times within the horizon. The column features
are consistently spotted as well, but because of the L-shaped visibility requirement,
they are only detectable from certain positions with respect to them. Again, this
approach was deliberately chosen to favor precision (i.e., minimize the occurrence
of false positives). The corner features are spotted less frequent because of the
same L-shape detection requirement. Spurious corner measurements can give
rise to inconsistent matches and are avoided by this stringent shape requirement.
Furthermore, from Figure 2.6 we can see that columns and walls are both necessary
for consistently having recent features within the horizon. These features are to
be found in many buildings, making our approach applicable in many cases where
a sufficiently rich BIM model is available. However, we emphasize that also the
semantic explainability of local detections is an important feature of our work,
that will come to its full right when exploited in context of different robot tasks,
such as navigational rules (e.g. driving close to walls or using a column as natural
waypoint) and when interaction between humans (e.g., facility managers) and
robots will take place.

Another observation from our experiments is that the BIM model is not always
accurate or complete. Spatial inaccuracies were present, one of which is shown
in Figure 2.6c. Although we did not deal with these inconsistencies explicitly
(recovery mechanisms are discussed in the next chapter), our method is able to
make the right associations in the considered building model. We do note that
robustness against unmodeled dynamic clutter is not incidental, because we focus
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(a) Path 1

(b) Path 2

(c) Path 3

Figure 2.9. The amount of feature measurements in the horizon used at each time
step for pose optimization, grouped by the object type of the feature (note that there
is overlap until an object gets removed from the horizon). The markers indicate a
new object entering the horizon, after which the objects is often spotted multiple
times, increasing the measurement count. The horizontal axis is discrete, taking
steps of 15 cm (the update trigger distance).
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on features that are known to be static for localization. A final remark is that
the relative inaccuracy of the BIM model raises an important question about the
definition of accuracy. Whether we want to define accuracy as the metric deviation
of the position in a map coordinate system, or as the correctness of perceiving local
objects of interest with respect to the robot remains a relevant question. The latter
enables a definition of accuracy in the case where supplied maps are not perfect
but semantic navigation based on correct associations can be robust nonetheless.

2.7 Conclusions and Future Work

In this chapter, we showed that existing semantic building information models
can provide a robot with enough information to localize itself, providing a great
opportunity for automatic deployment in large buildings without prior work or
adaptation. We also showed how this semantic information can be translated to
explainable associations, used for localization by a robot equipped with a 2D LiDAR,
using a property graph database to let the robot query its semantic environment.
The opportunities we see for future work will consist of generalizing our approach
to different semantic entities that are present in BIM models (such as doors or
curtain walls) and using different sensors to perceive them. Furthermore, keeping
the BIM map up-to-date and consistent is an important challenge, with great
potential to be of use for maintaining digital twins in the operational phase of
buildings. To conclude, we foresee that automatic deployment of robots in buildings
can be useful in many scenarios and our work has explored important steps in
making this a possibility.
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Chapter 3

Local-to-Global Hypotheses for Robust Robot
Localization

Abstract
Many robust state-of-the-art localization methods rely on pose-space sample sets
that are evaluated against individual sensor measurements. While these methods
can work effectively, they often provide limited mechanisms to control the amount
of hypotheses based on their similarity. Furthermore, they do not explicitly use
associations to create or remove these hypotheses. We propose a global localization
strategy that allows a mobile robot to localize using explicit symbolic associations
with annotated geometric features. The feature measurements are first combined
locally to form a consistent local feature map that is accurate in the vicinity of the
robot. Based on this local map, an association tree is maintained that pairs local
map features with global map features. The leaves of the tree represent distinct
hypotheses on the data associations that allow for globally unmapped features
appearing in the local map. We propose a registration step to check if an association
hypothesis is supported. Our implementation considers a robot equipped with a
2D LiDAR and we compare the proposed method to a particle filter. We show
that maintaining a smaller set of data association hypotheses results in better
performance and explainability of the robot’s assumptions, as well as allowing
more control over hypothesis bookkeeping. We provide experimental evaluations
with a physical robot in a real environment using an annotated geometric building
model that contains only the static part of the indoor scene. The result shows that
our method outperforms a particle filter implementation in most cases by using
fewer hypotheses with more descriptive power.

This chapter is based on:

R. W. M. Hendrikx, H. Bruyninckx, J. Elfring, et al., “Local-To-Global Hypotheses for Robust Robot

Localization”, Frontiers in Robotics and AI, 2022



3

32 Local-to-global hypotheses

3.1 Introduction

Localization is an essential part of an autonomous mobile robot system. The
absence of global position sensors and the presence of map disturbances results in
challenges that are specific for indoor scenarios. There is a clear trend of deploying
robots in indoor environments where they have to be able to robustly deal with
changing environments, such as restaurants [118], hospitals [109] or nursing
homes [27]. This raises the expectation of robotic systems on multiple fronts.
First, robots are expected to leverage geometric and semantic information from
existing sources, which are already available for many indoor environments, such as
semantic building information models. This prior knowledge is sensor-independent
and can constitute building geometry (walls, corners, columns, doors) or topological
information such as room numbers. Second, robots are expected to not only track
their pose in a building, but to re-obtain their location quickly after failure or reset,
without an operator intervening. In the previous chapter, we explored obtaining
maps from industry standard building models which are already used to share
building data [59]. In this chapter we focus on global localization, proposing a
method that deals with the ambiguity and uncertainty in the environment on an
association level. We show that exploiting local structure first makes the localization
outperform a gridmap-based particle filter, while also making it inherently more
symbolic and thereby semantically insightful and configurable.

3.1.1 Requirements and scope

We focus on indoor localization in common public environments. The following
requirements have led to this work:

• An existing global map must be available with high-level features for the
sensor that is being used, which are explicitly linked to semantic instances of
static indoor features.

• The robot system consists of an odometry sensor and a sensor from which
features can be extracted that can be associated with the global map features.

• The robot must be able to recover its global location in the environment by
making explicit association assumptions, while being robust against stationary
unmapped objects.

The first requirement assumes that feature instances (e.g., walls, columns) are
linked to sensor representations (e.g. lines, corners) as described in [59]. In this
chapter we use a system equipped with wheel encoder odometry and a conventional
2D planar laser scanning device. We assume that static environment features are
resembled well by mostly straight or circular geometries on an existing feature
map.
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Figure 3.1. A graphical depiction of the method we propose in this chapter. A single
hypothesis is shown as an example.

3.1.2 Proposed method

Our method localizes globally by first combining local sensor features (geometric
features such as lines, corners and circles) from separate scans into a consistent
local feature map. These local features are then associated with global map features
using an association tree. The levels of this tree represent the local features,
and the nodes represent the possible association of the local map feature with a
global map feature. We evaluate association likelihood based on a moving horizon
strategy and prune unlikely associations based on feature description and spatial
congruency, leading to a hypothesis tracking approach where the sample space is
that of data associations. Note that our method is sensor-independent and well-
suited to function with different or multiple sensors modalities. Our methods deals
with unmapped objects on a feature association basis and does not rely on a map
containing all visible geometry. We assume that the features on the global map
are geometrically accurate and that objects that have velocity do not resemble our
static features. The method is graphically depicted in Figure 3.1.

3.2 Related Work

Dealing with multiple hypotheses, one can distinguish between location-driven
and feature-driven localization approaches as remarked by [4]. Location driven
approaches maintain hypotheses using a sample set on a continuous space, or use
an a-priori selected topological graph in which the nodes represent locations in the
environment. On the other hand, feature-driven approaches explicitly maintain
hypotheses on associations between features that are seen locally and features on
a map. The latter characterizes our method; however, relevant prior work exists
using both approaches which we will now consider.

3.2.1 Hypothesis tracking methods

A reference work for our method is [4], in which the authors perform global
localization in an environment described by geometric (line and point) models.
They maintain a tree of local-to-global data associations together with multiple
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extended information filters (EIF) to solve for the map location of the robot. They
employ both binary constraints to check if feature pairs are metrically consistent
both locally and globally and, when possible, use rigidity constraints to check the
likelihood of a new pairing given the location based on old pairings. Rather than
a Bayesian approach, they use an approach that designates hypotheses as equally
valuable options, and use a lack-of-fit measure only in their duplicate removal
strategy. They also use an explicit clutter hypothesis and verify their approach in an
experiment. [56] expand on this work by introducing a relation table that captures
the coordinate independent local structure of a map of line segments in a more
efficient way. They check the correspondence of line segments (congruency under
rotation and translation) on a local and a global map by introducing a geometric
relation comprising two lengths, an angle and two relative distances between the
segments. Using this relation they propose depth-first constraint-based search in
an interpretation tree to find matching line segments for localization without a
prior pose being available, and account for an unmapped item option (null features).
Their work first applies pair-wise constraints to balance the complexity of the search
in the tree and afterwards checks an alignment constraint of the total map based
on a least-squares solution. They limit the total number of null features allowed
in order to mitigate search time, and mention that determining this parameter is
environment-dependent. The authors also use a topological representation (e.g.,
hallway, room) of their environment with annotated visible line segments for each
location, in order to restrict relation matches to simultaneously visible pairs. They
provide a comparison of their method and Monte Carlo Localization (MCL) in a
lab environment with clutter objects added and show increased performance. Our
method draws inspiration from certain aspects of the two mentioned works, as we
will elaborate on later. Other works for different sensor modalities such as [87]
provide a camera-feature based multi hypothesis approach that searches for feature
descriptor matches in a persistent database and then applies a Kalman update to
all possible matches. Matches are Mahalanobis-distance gated and pruned based
on the relative number of observed landmarks with respect to other hypotheses.
[90] take an approach using hypotheses on submaps that are scored against the
global map based on the innovation they provide to the local odometry trajectory.
They use grid based representations and the generation of hypotheses is not within
scope of their work. [63] use a nearest neighbour filter and a computer simulation
to show global localization without unique landmarks. However, they assume that
they can initialize hypotheses by inverting the measurement function to obtain a
unique state which is not always possible. A more recent reference work is [49]
which focuses on 2D LiDAR global localization using structural unit encoding and
multiple hypothesis tracking. The authors mark certain scans from their map as
key scans and determine endpoint line features. They then form a set of structural
units, containing the relations between line endpoints and line angles which is
rotation invariant. They then quantize this set using a soft encoding scheme that
does not require training on prior data. An exhaustive search is then used to find
matching poses from candidate key scans. The authors then use a multi hypothesis
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tracking approach where they let the matching poses be the priors, and use the
odometry as a likelihood measure to prune unlikely hypotheses from the tree. They
compare with the well-known Adaptive Monte Carlo Localization (AMCL, [42],
[127]) method and find improved results. However, their method pre-processes the
map based on existing scans, while our method does not require existing scan data.

3.2.2 Data association for SLAM

Data association methods are important for Simultaneous Localization and Mapping
(SLAM), where they are required for reliable loop closures. One method to deal with
finding associations is Random sample Consensus (RANSAC) [41], which randomly
selects pairings and evaluates whether the resulting model parameters lead to an
acceptable amount of inliers. A large disadvantage is, however, the limited control
it provides over the search effort and the fact that it is not guaranteed to find a set
of hypotheses in acceptable time. A more structured method is Joint Compatibility
Branch and Bound (JCBB) [94], [117]. It searches the so-called interpretation
tree for the best correspondence between a set of features extracted from sensor
data and the map. The method is more reliable than nearest-neighbor association
or pair-wise consistency evaluation, as these methods do not take the correlation
into account between different observations from the same robot pose. JCBB is
shown to be more precise because it evaluates the compatibility of all features seen
from a current pose. While the tree structured search of JCBB is similar to our
approach, JCBB is not a hypothesis tracking approach and as such does not evaluate
compatibility over a horizon of motion while maintaining multiple viable pairings.
This makes it unsuitable for global localization where different locations appear
similar. The use of hypotheses over data associations has also been researched
extensively in the context of graph optimization frameworks, see e.g., [81], [20].
In early works such as [128] the authors discuss for a large scale SLAM approach
how earlier data associations can be evaluated based on the error they induce
on later data associations. They provide a greedy correspondence test to deal
with the correspondence problem, but note that other methods may be favourable.
Other works such as [28] and [84] focus on methods that either use expectation
maximization methods to iteratively search for the data associations or they focus
on back-end heuristic methods such as switching variables and robust error models,
which allow recovery from false associations. These methods do however generally
not provide the multi-hypothesis output on a semantic association level or are only
applicable to tracking with a good initialization. Another important work in robust
localization that also focuses on existing floor plans is [14], where the authors
show how to use these floor plans as priors for localization and maintaining an
updated map based on a pose graph framework. However, the authors do not focus
on global localization in their work.
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3.2.3 Particle filter methods

Particle filters deal with the problem of global localization by covering the location
state space with a discrete set of samples (hypotheses) generated from a proposal
distribution. They are currently a popular method for representing hypotheses in
the pose space (see, e.g., [44], [127], [38]). The combination of particle filters
with LiDAR sensors is often considered a state-of-the-practice solution to robot
navigation in indoor scenarios. Not in the least because easy-to-use reference
implementations exist. A recent work on global localization is [6], where the
authors add an initialization step to a particle filter that uses indexes generated on
the map to find suitable initial positions for the particle filter. They show that this
initialization step greatly reduces the initial number of particles needed to let the
robot localize itself. The authors pre-compute a set of laser readings in a grid map
for over a million positions and use a two-level index to retrieve initial positions
and orientations that are likely to match the sensor reading.

3.2.4 Place recognition methods

Some of the methods mentioned such as [6] incorporated ideas from informa-
tion retrieval. These methods are often used with cameras and reference image
databases (see e.g., [7]) and may be used to speed up association initialization but
are not exhaustive, and may not work well with existing maps and LiDARs because
of lack of unambiguous local context. Furthermore, they often require training
on large data sets that are processed to determine a vocabulary, and this is not
readily available in every environment. The methods also do typically not include
the motion of the robot to gather context or exploit the online recursive nature of
the localization process and are therefor significantly different from our proposed
method.

3.2.5 Contributions

The contributions of this chapter to the state of the art are the following:

1. We group measurements into local features of type line, circle and corner,
resulting in a sparse and accurate local map that is associated with the global
map.

2. We assess the lack-of-fit using a horizon of these features that includes
the new candidate association, without resolving the robot pose to a belief
distribution.

3. We perform an experimental comparison with a commonly used particle
filtering method and discuss the trade offs.

In contrast to the works [49], [6], which also perform global localization using 2D
LiDAR, we do not rely on grid maps or raw sensor data as a prior and as such do
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not leverage data-driven heuristics. We specifically aim to use object-based prior
representations that can be obtained from other sources as well (e.g. [59]) in the
form of vector maps. This makes our work more similar to [13]; however, the
authors do not focus on global localization in their work. Finally, our work draws
inspiration from [4], [56] as we consider similar map representations and features.
However, their work hypothesizes on individual measurements and [4] attaches
information filters to individual hypotheses. Furthermore, [56] uses only line
features while we incorporate more general feature types. Our approach reduces
the data association space by first associating features locally, and is more in line
with how humans reason about localization (e.g., we merge local context from
different viewpoints into local features before deciding to relate observations to a
map). Furthermore, our framework employs a Bayesian strategy to keep track of
hypothesis likelihood. Finally, we compare our work to a often used grid map based
particle filter, where the grid map only contains static geometry. The rationale
behind this comparison is that grid maps can be easily generated from prior maps
as well and provide access to the static geometry without relying on features to be
detected, which brings an important trade-off to light. In addition to quantification
of our method, we also show conceptual advantages in the form of increased insight
in the associations of the method when compared to traditional approaches. Our
implementation is available in our repository1

3.3 Preliminaries

In this section we introduce preliminary concepts and explain the rationale and
assumptions that underlie our method. We approach localization from a data
association point-of view. Our goal is to have correct associations from local (i.e.,
sensed) feature measurements to features on the global map. In general, these
associations are dependent on the global pose, and obtaining one from the other
is straight forward. We argue that the benefit of data associations is that they
form a finite discrete sample space that can indirectly represent pose distributions
efficiently that must otherwise be approximated by samples. It is possible to
calculate the belief over global pose from associations (or vice versa) from the
general probability distribution:

max
Dz,M,Xm

P (Dz,M,Xm|Z). (3.1)

Where Dz = {Dz
1 . . . D

z
nz} are the data associations of the nz individual measure-

ments Z = {z1 . . . znz} (for instance, bearing measurements) with the nm features
on the global mapM = {m1 . . .mnm}. This general representation allows to solve
over the data associations, robot poses in the map frame (Xm = {X1 . . . Xnx

})
and map features simultaneously (assuming that the global map is probabilistic).
Evaluating (3.1) over both the continuous variables and the full association space

1https://gitlab.tue.nl/s135700/semantic_graph_localization
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Dz
1 × . . .×Dz

nz is generally unnecessary because of conditional independencies. In
our method, we first reduce the data association space by forming a local feature
map Y, exploiting the fact that measurements can be combined locally into fea-
tures first and are correlated. Furthermore, we assume that the global map that
is available is accurate and that the relative local map coordinates are accurate
enough over short horizons of measurements to be independent of the global map,
given the measurements. Let Y be the local map features corresponding to multiple
measurements, and X be the local robot poses. We assume that the maximimum
a-posteriori (MAP) estimate:

X∗,Y∗ = arg maxP (X,Y|Z), (3.2)

in a local coordinate frame `, can be used to estimate the data associations Dy of
the local features with the global map. Here we assume that the data associations
between sensor features and features within the local map can be reliably made.
The resulting space of Dy is much smaller than Dz. The remaining problem then
becomes to estimate the data associations Dy given the local map estimate:

max
Dy,Tm

`

P (Dy, Tm` |Y∗,M). (3.3)

Where the local map estimate horizon is chosen small enough and Y∗ is recomputed
for different evaluated patches, such that the assumption of local metric accuracy
is met. The pose Tm` denotes the registration of the local map with the global map,
which may be of interest depending on the type of motion control that is used
(i.e., local feature-based motion control or global path following). Because we focus
on global localization, we explicitly choose to solve a local factor graph only, and
do not introduce the global priors in the estimate. This results in only a single
factor graph having to be solved as opposed to multiple. Furthermore, when global
localization is the current robot task, motion actions and local sensing can (and
should) be performed in such a way as to achieve reliable local estimates (e.g.,
slow driving and conservative detection policies).

3.3.1 Local state estimation

The state of the local feature map is represented using primitive features which
are estimated together with robot poses using a graph-based optimization, as is
common in SLAM literature. We denote the robot pose at time t as x`t = [xt, yt, θt]

T

in a local coordinate frame `. The pose of this frame is arbitrary (usually the
starting location of the robot), and is only used for intermediate representation of
numeric coordinates. We represent the state of local landmarks by the variables y`i
which are measured by feature measurements zj from the robot poses. If we denote
the current optimization horizon of robot poses and landmarks by the sets X and
Y, and the relevant set of measured variables by Z, we can write the maximum
a-posteriori estimate of the these variables given the measurements as:

P (X,Y|Z) ∝ P (Z|X,Y)P (X)P (Y) (3.4)
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Where we have assumed independence of measurements. The measurement
likelihood P (Z|X,Y) in the above equation is encoded by factors in a factor graph.
These factors take the form of nonlinear measurement functions hj of the state
where the uncertainty is represented by additive zero-mean multivariate Gaussian
error, taking the form:

P (zj|Xj ,Yj) ∝ exp
(
−1

2
‖ hj(Xj ,Yj)− zj ‖2Σj

)
(3.5)

Where ‖ · ‖Σj
denotes the Mahalanobis distance, using the measurement covariance

matrix Σj . A nonlinear least-squares problem is obtained by taking the log of the
product of factors, leading to the formulation:

logP (X,Y|Z) ∝ −
K∑
j=0

ej
TΣ−1

j ej (3.6)

where we use ej = hj(Xj ,Yj)−zj for all K measurements. The resulting problem
is a minimization over the negative log likelihood, resulting in the non-linear least
squares formulation:

min
X,Y

K∑
j=0

ej
TΣ−1

j ej (3.7)

where we assumed uninformative priors, leaving only factors in the optimization.
The resulting maximum a-posteriori (MAP) estimate contains the most likely local
map and robot poses given the measurements. Here we assume that all data
associations between local features and their measurements are correct and can
be reliably made. It is often possible to design features and feature detectors with
enough saliency and discrimination such that this assumption holds locally, given
proprioceptive sensing that is relatively accurate over short distances. We use the
GTSAM [32] library to perform the optimization.

3.3.2 Geometric primitives

We use the term measurements to describe the primitive sensor features that are
extracted from raw sensor data and that are associated with features on the local
map. We refer to the latter as local map features which can be associated with
multiple measurements, and their geometry must be consistently inferred from
the sensor features belonging to the measurements. An example of a local map
feature can be a circle, which is associated with multiple circle sensor features from
different LiDAR scans. measurements also contain spatial information about the
location of the features with respect to the robot. these are in the form of range /
bearing / pose measurements. In this work we use three geometric primitives that
form the basis for landmarks in our localization approach; line segments, corners
and circles. Note that these features resemble three general geometric constraints
on the state of the robot given the measurement, by reducing the likely state to
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Figure 3.2. A small locally consistent map of line and corner features, that has been
obtained by locally associating and merging feature representations and solving the
factor graph optimization problem after each new LiDAR scan is obtained. The robot
poses are shown in blue with the current pose in black. measurement associations are
shown as grey lines and current LiDAR points in red. The line measurements include
a normal to indicate their visible side. A corner detection is shown in translucent red
when not enough measurements have been associated with it (candidate detection).
The features get assigned unique string identifiers.

either a line segment, a pose or a circle around a point measurement. These feature
types can therefore be generalized to other sensors as well. A line segment is
parametrized by two points which represent the begin and end of the line segment.
A partial line segment is any combination of two points that are contained within a
line segment, as is often the case for LiDAR measurements. A corner is modeled
by a polyline consisting of three points, i.e., two line segments sharing a common
point. A partial corner is again any corner where the outer points lie within the
actual line segments. Note that a LiDAR allows to detect approximate end-points
of lines, by evaluating whether the neighboring range extends beyond the line
segment or is visually obscured by something closer. Finally, a circle is modeled by
a center point and a radius. An example of a local map created from sensor data
can be seen in Figure 3.2. We will now proceed while assuming that such a local
map is available. A more detailed discussion on the mechanisms used to create the
local map has been deferred to Appendix A.

3.4 Localization Approach

In this section we will explain our global localization method. We will first elaborate
on how we maintain our local map in relation to our global objective and then
introduce the global association approach using a hypothesis tree.
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Figure 3.3. A basic example showing the global association tree. As the robot drives
in the real world (a), it builds a local map of features (b). The local measurements
are associated with these local features, and added to their measurement set. Nodes
are then used to represent an association between a local feature and a feature
on the global map in (f). In this example, the robot first spots a circular feature.
After spotting it multiple times, the consecutive measurements are added to a
measurement set and a local feature is instantiated. Possible pairing hypotheses with
the global map are generated based on feature type and dimensions. When a new
line segment is detected, a second layer of hypotheses is added to the tree based
on spatial consistency between the circle and line feature on the local map and the
global map. Finally, an unmapped object is spotted which has similar geometry to a
column, highlighting the importance of allowing for a unmapped object option in
the association tree, although these levels are not visualized anymore. In sub figure
(c-e) the spatial congruency is visualized, which is used together with the feature’s
descriptive component to accept or reject association hypotheses.
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3.4.1 Local mapping

The map that we maintain locally is updated for each new sensor feature. Once a
new sensor feature is extracted, the map is updated using the approach described
in algorithm 1. The sensor feature extraction is triggered by a distance monitor

Algorithm 1 The algorithm used to update the local map features when a new set
of sensor features has been extracted from a laser scan.
Input: sens. feats f1 . . . fN , factor graph L, odom Tod

update_local_map(f ,L, Tod):
1: robot pose x`t = Todx

`
t−1

2: L ←− L ∪ Tod, x
`
t

3: for fi in f1 . . . fN do
4: associated = false
5: f `

i = transform_from_sensor(fi, x`t)
6: for yi in L.features do
7: if eq_type(fi,yi) && eq_dim(fi,yi)

&& within_thres(f `
i ,yi) then

8: zi = range_bearing(fi)
9: L.update(fi,yi,zi)

10: G =set_of(yi)
11: G ←− G ∪ zi
12: associated = true
13: end if
14: end for
15: if associated == false then
16: y = create_local(f `

i )
17: zi = range_bearing(fi)
18: L ←− L ∪ y, zi
19: G =create_set(yi, zi)
20: end if
21: end for
22: L.coordinates ←− least_squares(L)
23: return L

based on wheel odometry and the latest available sensor reading is combined with
a time-stamp interpolated version of the odometry encoder reading. The updating
routine (algorithm 1) shows how a sensor feature is first checked for existing
associations with the local map. Here, the functions eq_type() and eq_dim()
check if the feature has the right type and dimension (e.g.. a circle with similar
radius). The function within_thres() checks if the feature is close enough to be
associated, where we use a Euclidean distance. If no such association exists, a
new local map feature is instantiated. For this purpose, we introduce the notion of
a measurement set Gi which contains a local map feature and all measurements
associated with it2.

2While a measurement set is technically a redundant notion, since measurements are already
associated with a single feature, it makes bookkeeping and implementation more clear
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3.4.2 Global association tree

We maintain hypotheses over the space of data associations between the local and
global map. These hypotheses will be maintained based on explicitly configurable
assumptions, while a Bayesian approach is used to update scores for hypotheses.
Consider a snapshot of a given local map with a feature yi ∈ Y. We define the
association variable Di as follows:

Di =


d1
i , yi originates (partly) from m1

. . .
dni , yi originates (partly) from mn

d∗i , yi originates from unmapped object

(3.8)

Here, unmapped object refers to something that is not on the global map. We
explicitly mention partly because we allow cases where the global feature mj is
responsible for only part of the geometry of yi, as long as the effective constraints is
the same (e.g. a wall that appears extended by an object from a certain viewpoint).
We will now consider how the association variables form the association tree that
we will refer to in the remainder of this work. Having a local map available, we
evaluate (3.3) by starting with the first feature and expanding the tree for each
consecutive feature. The levels of the association tree coincide with the local map
feature indices, i.e., nodes hij on level i pair yi with a global map feature. The leaf
nodes of the tree represent an association assignment of all local map features up
to yi, obtained by following the parents par(hij) of the nodes upwards. The leaf
nodes thereby form the hypotheses under consideration. Each node thus represents
the association between a local feature (and thereby its measurement set) and a
global feature, while pointing to a parent node that it is conditioned on3. Nodes
on a single level i can associate a local map feature yi with the same global map
features, if their parents are different. We can require a measurement set to meet
certain constraints on the measurements and local features before an association
is made or revisited. For example, we can require a certain minimal number
of measurements from different poses. The structure that we describe naturally
forms a hypothesis tree T and the current sample space is formed by the leaf nodes,
which all represent a unique set of data associations between local map features
and global map features. Note that because of the inclusion of unmapped object
associations, this sample space is exhaustive when no pruning has been applied.
An example is provided in Figure 3.3. As the robot drives, it detects a circular
feature, and a measurement set G1 is created. Based on the shape and size of the
feature, a pairing can be made with possible features on the map. Alternatively, it
can be something that is not on the map (∗). When a next line segment feature
is spotted, a new set G2 is formed and new leaf hypotheses are formed for each
old leaf hypothesis. Based on the old hypothesis, we will now consider when
associations are feasible and when they are not. Feature shape is used first to select

3Except for the root hypothesis, which only serves as a placeholder for the first layer of children, and
may hold optional prior information supplied by the user regarding location
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Figure 3.4. The global map hypotheses (bottom) corresponding to a local map (top).
Based on the local features in that figure, four possible map poses are shown (not
all hypotheses permit showing a unique pose). Note that walls have been modeled
by double line segments with visibility normals visualized by small purple segments.
The labels of the global map have been omitted in this example.

plausible candidates, after which we assess whether the spatial structure for a small
horizon of recent features is congruent with the spatial structure obtained from the
map (Fig. 3.3c). This amounts to assessing the spatial likelihood of the local map
(Fig. 3.3b) given the data associations. Depending on the specific representation
of the map, features and uncertainty, the likelihood can take many forms (e.g.
topological, semantic or spatial). But we choose to do a spatial registration step
and assess whether the resulting spatial mismatch is small enough to refrain from
rejecting the pairing hypothesis. At this stage, making as little feasible hypotheses
as possible and pruning unlikely leaves becomes necessary to avoid a combinatorial
explosion. For hypotheses marked in grey, a unique maximum likelihood pose on
the map can be determined based on the feature pairings. However, for assessing
the geometric lack-of-fit of local detections, such a pose is in general not necessary
(e.g. in the case of parallel line segments).

3.4.3 Hypothesis likelihood

Having a window of local map features available, the problem under consideration
is to determine which association hypotheses are likely and which are not. The
main mechanism to keep a small set of hypotheses is to prune unlikely associations
immediately from the tree. Scoring hypothesis likelihood recursively is not a strict
necessity to achieve this in our method, as we rather use more direct approaches
for rejection. However, maintaining likelihood is useful for three reasons: 1) it
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allows to keep the most likely hypothesis when hypotheses are similar (e.g. they
share recent associations), 2) it allows to prune the least likely hypotheses when
the number grows too large to maintain efficiently and 3) it would allow a planner
to optimize actions taking relative uncertainty into account. Regarding the second
remark, we note that our method guarantees a qualitative distinction between
hypotheses based on their data association, making rigorous pruning possible while
still keeping enough descriptive power in the remaining set.

In general, localization does not reduce to merely a lack-of-fit evaluation prob-
lem, because the likelihood of the associations we make with local map features
(including the unmapped object pairing) is also dependent on the local structure
of the feature (e.g. shape, size, semantics) which is independent of position. Fur-
thermore, the nature of disturbances in the real world and the feature density on
the map play a role in determining prior likelihood for a global association. We
now explain our Bayesian strategy for maintaining a breadth-first expansion of the
tree, allowing us to express confidence using models of both spatial and descriptive
likelihood. We employ a gating or constraint procedure based on feature description
and spatial error, leaving us with only a certain subset of hypotheses that should be
considered likely. In general, we can evaluate the association probabilities using
the product rule:

P (D|Y∗,M) =

ny∏
i=1

P (Di|Di−1:1,Y
∗,M). (3.9)

followed by Bayes rule to evaluate in terms of spatial likelihood and prior:

P (Di|D1:i−1,Y
∗,M) ∝ P (Y∗|D1:i,M)P (Di|D1:i−1,M) (3.10)

Where the spatial likelihood allows us to evaluate whether the local map that we
observe is coherent with the global map given the data associations. In other words,
once we evaluate a new feature pairing Di for a local map feature yi, we evaluate
the spatial likelihood P (Y∗|D1:i,M) of the local map, given the feature pairing and
its parent pairings up to a horizon Nd resulting in a recursive evaluation. We can
also incorporate a prior P (Di|D1:i−1,M) for this pairing, expressing confidence
based on feature description (e.g. semantics, shape, size). In practice, this prior
will be assumed independent of prior associations D1:i−1. The resulting hypothesis
likelihood is then obtained by multiplying with the likelihood of the parent node
as expressed in (3.9). We evaluate the spatial likelihood by taking a small set
Nd of recently added local features that together are enough to determine a pose
registration including the current feature yi and data association Di. This pose
registration is obtained by minimizing the squared error between the local and
global map on that horizon:

L∗ = min
1

Nd

Nd∑
k=1

wke
2
k, (3.11)
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where the error term is either the Euclidean or the projected distance:

e2
k =

{ ∑
s∈{1,2} ‖ nk · (mk − (Rysk + t)) ‖2, for lines

‖ (mk − (Ryk + t)) ‖2, for points,
(3.12)

With R and t the rotation matrix and translation vector that together form the
registration pose. The upper expression in (3.12) is used for matching line segments
to lines using the normal nk for both line endpoint y1

k and y2
k. The lower expression

is used for matching regular point positions. The feature set used in (3.11) includes
the current candidate feature, allowing us to evaluate the lack-of-fit with the new
feature influencing the registration. The errors are illustrated in Figure 3.3. We
treat corner points as points in this registration and disregard their orientation
in obtaining the registration. The unnormalized likelihood is now determined by
considering the error distance of the points, either Euclidean or projected, after
aligning them using the obtained registration:

p(e) =

Nd∏
i=1

1√
2πσ2

i

exp
{
− e2

i

2σ2
i

}
(3.13)

lnL(Y∗;Di:1,M) ≈− 1

Nd

Nd∑
i=1

e2
i

σ2
i

(3.14)

where σi is the error covariance of feature i on the local map.

3.4.4 Implementation

We use the well-known singular value decomposition (SVD) approach to obtain the
solution to (3.11), since correspondences are already provided by the hypothesis
under consideration. Figure 3.5 schematically shows how we use a pre-alignment
step based on line intersection points to first determine an approximate registra-
tion. This allows to then project the line segment endpoints onto the infinite line
extensions on the global map and incorporate them into the registration as points,
resulting in an iterative solution. We employ a very coarse gating procedure for
hypotheses based on the global pose to avoid pre-aligning and registering features
unnecessarily.
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Figure 3.5. (a) Two (partial) line segments in the local map. (b) A pre-alignment
step based on the virtual intersection point (blue) allows to acquire an initial estimate.
We also use two point-correspondences or a single corner to obtain this pre-alignment,
depending on which is most recently available. The segment endpoints are projected
onto the global map line segments (green) to include them in the registration. The
blue point is not used because it is only measured by extension. (c) Corners are
treated as points in registration, similar to circles.

For the weights in (3.12), a covariance estimate can be used from the local
mapping. However, we supply simply unit weights because the covariance matrix
obtained from the local map is, unlike the maximum a posteriori estimate, not
necessarily an accurate estimate due to linearization and assumption of measure-
ment independence. The method we propose should not be overly sensitive to
these kind of modeling decisions. Some special attention has to be paid to the
instances where the features do not permit a unique registration. In these cases, we
evaluate a similar error metric for the feature distance that can be obtained without
considering a registration. We distinguish between the following cases:

• The initial feature; in this case we only consider the descriptive prior likeli-
hood for the data association.

• Parallel line segments; in this case we evaluate the distance between the
segments.

• The unmapped object option; We use a heuristic probability that is small,
but data driven estimates may provide better results that reflect sensor and
environment characteristics.

• Any other case; where we can evaluate the likelihood as explained previously.

3.4.5 Pruning

We will now introduce the mechanisms we employ to remove unlikely hypotheses
from the tree. When considering a new local feature, first a gating step checks for
every global map candidate whether the shape and size of the feature correspond
and - if a pose estimate is available - whether the feature is roughly at the correct
location. The latter gate is to prevent unnecessary evaluation during the spatial
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congruency check. For the congruency check, a small horizon of features including
the new association candidate is registered according to criterium (3.12) and
checked for errors that exceed a spatial threshold, as shown in Figure 3.6.

Figure 3.6. The thresholds that are checked to decide if a hypothesis should be
rejected.

If any of the features exceeds this threshold the pairing hypothesis is rejected.
Early pruning will limit the tree growth and prevent combinatorial explosion.
However, it will not stop an existing hypothesis from expanding, even if there
are no new local features supporting it. This is due to the explicit not-on-map
option that is always expanded to allow delayed evidence4. To this end, we remove
redundant hypotheses by checking whether hypotheses make similar associations
in their history (excluding not-on-map) and keeping only the maximum likelihood
hypothesis among them. Formally, for every leaf node (i.e., hypothesis), we
recursively evaluate the parent nodes up to depth Nsim and consider leaf nodes
similar if and only if they do not contain ∗-associations and all associations are the
same. We then only keep the leaf node that has the highest likelihood. We also limit
the number of consecutive not-on-map associations allowed for any hypothesis to
γ∗ to prevent unbounded tree growth. This parameter balances recovery potential
with computational effort. Finally we have a pruning step that reduces the number
of hypotheses to a fixed maximum Nmax, either based on likelihood or amount of
not-on-map associations. The latter keeps at least Np hypotheses, by choosing the
smallest n∗ where any hypothesis with more then n∗ not-on-map associations is
removed. This procedure is applied after convergence of the hypotheses to leave
only a small set of back-up hypotheses remaining to recover locally from a false
association.

3.4.6 Implementation considerations

In our work we do not explicitly represent probability distributions over a global
pose. This sets our method apart from pose-based filtering methods. However,
determining a maximum likelihood pose using our methods is straight forward

4Note that we never refrain from making a not-on-map option, because erroneous pairings can appear
confident due to error. The delayed-evidence mechanism is the major reason for robustness against this
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Algorithm 2 The algorithm used to evaluate the hypotheses once a new set of local
map features is available. It assumes that the tree already contains one or more
levels. If the tree is empty, only feature shape is considered for the first local map
feature.
Input: loc. map feat. y1 . . . yN , glob. mapM hyp. tree T

evaluate_hypotheses(y,M,T ):
1: for y in y1 . . . yN do
2: for h in T .get_leaves() do
3: if h.registration_cached() then
4: Tm

` = h.registration()
5: ym = Tm

` y
6: end if
7: for m in M do
8: if shape_eq(y,m) && spat_gate(ym,m) then
9: M = get_horizon(M, T ,h,Nd)
10: Y = get_horizon(Y, T ,h,Nd)
11: Ypre = pre-align(M,Y )
12: e, Tm

` , l = regist_least_sq(M,Ypre)
13: if ¬ eval_for_outliers(e) then
14: hnew = make_hyp(y,m,h,Tm

` )
15: hnew.log_l = h.log_l + l
16: T .add_hypothesis(hnew)
17: end if
18: end if
19: end for
20: end for
21: T .add_clutter_hyp(y, h)
22: end for
23: T .prune_similar_hypotheses(Nsim)
24: T .prune_consec_*(γ∗)
25: T .keep_max_likelihood(Nmax)
26: return T
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given the data associations, and the registration obtained by (3.11) can be used
for this purpose. A consequence is, furthermore, that we have access to a locally
accurate, association-labelled map which may be used by motion planners. This
is valuable, for instance, in a hallway where two parallel sides are annotated and
permit a driving actions without relating to a pose. A consequence is that we need
to determine the length of the local horizon we consider. The local map is chosen
sufficiently large to enable considering a horizon of features for global association,
but should not be seen as a means of closing large loops, i.e., loops that require a
substantial drift to be corrected. Because this process is potentially error-prone and
unnecessary for our localization objective.

Finally, if the objective under consideration changes to metrically accurate
tracking, it may be favourable to replace our breadth-first expansion approach to
depth-first tree expansion. In that case, one can provide the local graph with global
metric priors obtained from the associations to obtain a more accurate estimate
of the map position under the assumption that the map is of reasonable metric
accuracy in the first place. backtracking in this depth-first approach based on
feature monitoring to recover quickly from false associations is a topic for future
work.

3.5 Experimental Evaluation

In this section, we evaluate our approach in an indoor environment for which a
map is available. We use this map to localize a teleoperated robot and we compare
our method to the well-known AMCL [42] particle filter implementation. AMCL
is openly available and uses a different paradigm for localization based on grid
maps and beam-hit sensor models, which can be applied to global localization. We
will validate and compare our method using criteria for success ratio, convergence
speed and metric accuracy for different starting locations and different degrees of
disturbance and prior knowledge. The real world experiments allow us to assess
the performance qualitatively in scenarios with varying levels of uncertainty that
we can add or remove in the form of prior knowledge and clutter. We use a custom-
made platform equipped with mecanum wheels, wheel encoder odometry and a
Hokuyo UTM30-LX 2D LiDAR scanner mounted upside down, close to the floor
(Figure 3.8). Due to its mounting position, we have a 180 ◦ field of view consisting
of 720 scan points. We choose this sensor type for evaluation because it is often
encountered on mid-range existing robot platforms in real world applications.

3.5.1 Indoor environment

We use a part of the Atlas building on the campus of the Eindhoven University of
Technology for the experimental evaluation. Items that are moved often such as
chairs, tables, carts and dustbins are not represented on the map that we use (sized
approx. 20 x 41 meters) and form the unmapped object that our method should be
robust against. Furthermore, in part of our data set, bystanders disturb the view
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of the robot and we place objects in the scene that either obscure or resemble the
static features that our method uses, which are likely scenarios. The map of the
environment together with the initial starting positions, and a sub-imposed grid
map is shown in Figure 3.9. Note that this is a SLAM-generated map that is only
used for illustration. Based on the static vector geometry in Figure 3.9, we will
generate a new grid map containing only the static parts used for our comparison.
In Figure 3.8 we show the environment, some added disturbances for the final
scenario and the robot platform.

3.5.2 Evaluated scenarios

We consider the following scenarios labeled A-C:

A. This scenario considers two initial positions in the map, that are all within a
starting region (sized approx. 15 x 15 meters) known to the robot, shown in
Figure 3.9.

B. This scenario considers ten different initial positions all over the map, where
the starting region is unknown to the robot, containing only encountered
disturbances (including people).

C. This scenario considers added disturbances to the environment, in the form of
deliberately obscured features.

The scenarios are evaluated for a total of 12 different starting positions. The
final scenario (C) is evaluated for two initial positions, leading to a total of 14
evaluated global localization challenges. Our localization method exploits the
initial knowledge in scenario (A) by transforming the starting position of the robot
in the local map to the global map and rejecting hypotheses that were not started
within the indicated region. For AMCL, the initial sample set is confined to the
region.

3.5.3 Comparing with monte-carlo localization

We compare the performance of our global localization approach with the monte
carlo localization (MCL) approach based on grid maps. The reason is that in this
localization paradigm, the robot does not rely on feature extraction and local
mapping, due to the grid cell decomposition and pose sampling approach. In
contrast to our proposed method, AMCL uses random (re-)sampling of hypotheses.
We will run AMCL five times for every trajectory to account for this randomness
(leading to a total of 70 AMCL runs). We choose the ROS AMCL implementation as
it is a very commonly used software package using an adaptive sampling scheme.
For this comparison, we generate the grid map for AMCL based on the vector
representation of the static geometry in the environment. This vector map was
made manually by referencing the actual environment and only includes objects on
the map that do not move (i.e., no moveable furniture, tables, carts, trash bins).
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(a)

(b)

Figure 3.7. (a) The grid map containing the static geometry as generated for AMCL
localization. (b) The initial particle spread in AMCL, consisting of 50,000 particles.
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(a) (b)

(c)

Figure 3.8. (a) The robot platform in the Atlas environment, the position is indicated
in the map in Figure 3.9 position 1 (oriented towards the left). The situation shown
is used as scenario A, where unmapped items are on the map in the form of chairs,
tables and carts. (b) Some of the disturbances added to a part of the map to purposely
obscure or mimick features for scenario C. (c) A close up of the robot platform with
the planar LiDAR sensor.
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Figure 3.9. A map of the environment, with the trajectories driven by the robot
indicated as paths and their starting locations (in different colors for clarity). The
map contains line segments, corners (blue points) and visible normals indicated in
purple. The world contains unmapped objects that are encountered during every day
use of the environment. To show how these unmapped items influence the LiDAR
readings, an occupancy grid map has been aligned to the map for visualization
purposes only. The features shown are linked to semantic object instances, but these
are omitted in the figure for clarity. The starting region for scenario A is shown in
red.
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Table 3.1. The configuration parameters used in our method for evaluating the
hypothesis tree.

param. value descr.
Nmax 200 max. # hypotheses
Nsim 2 similar associations before prune
γ∗ 3 max. consecutive not-on-map assoc.
σe 1 error covariance
p(∗) 0.1 probability not-on-map assoc.
δo, δn, δc, δp 0.5 error tolerance before prune
αc 0.5 error angle tolerance before prune

The grid map is shown in Figure 3.7 and was generated automatically from the
vector representation in Figure 3.9, by setting grid cells to occupied if they cross the
vector geometry. This way, both our approach and AMCL rely on a representation of
the environment that can be obtained from a sensor-independent source that does
not contain all the move-able geometry (unmapped objects) in the environment.

3.5.4 Configuration of the approaches

In our feature-based approach, we select a minimal length of 0.2 meters for corners
and 1.5 meters for line segments before taking them into account as features. The
latter is heuristically chosen to avoid the detection of open doors as line segments.
No circle shaped features are present in this environment, so they are not used. We
trigger a perception update after every 0.05 meters of driving and 0.05 radians of
rotation (which in practice is higher because of loop time constraints, which we will
consider later). We only trigger association tree evaluation when new features are
available on the local map with at least three measurement from different poses.
The tree evaluation parameters are given in Table 3.1. We show the grid map that
was generated for AMCL in Figure 3.7, with a discretization of 0.05 m. For the
AMCL configuration, the parameters that we used are in Table 3.2. We choose the
likelihood field sensor model over the beam-based model because it showed better
results by allowing to simulate more particles. We increase the initial particle count
to 50,000, which is found to be the maximum reasonable amount of particles that
our system is able to process. The particles are spread evenly over the map by
uniform sampling.

3.5.5 Performance metrics

We will run the algorithms real time on a laptop with an Intel Quadcore i7-7700HQ
CPU @ 2.80GHz × 8 processor. We evaluate the following performance metrics:

• Succes: We define success as the maximum likelihood hypothesis reaching
and maintaining an error of less than 1.0m within the 60 seconds time frame
of the run.

• ML dist: We define the maximum-likelihood (ML) distance as the distance
driven in which the previous succes criterium is met.
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Table 3.2. The configuration parameters used for running AMCL

param. value
Nmin_particles 100
Nmax_particles 50,000
Nkld_err 0.01
Nupdate_min_d 0.10
Nupdate_min_a 0.20
Nresample_interval 2
Ntransform_tolerance 0.1
Nrecovery_alpha_slow 0.0
Nrecovery_alpha_fast 0.0
Nlaser_max_range LiDAR value (30)
Nlaser_max_beams 30
Nlaser_z_hit 0.95

param. value
Nlaser_z_short 0.1
Nlaser_z_max 0.05
Nlaser_z_rand 0.05
Nlaser_sigma_hit 0.2
Nlaser_lambda_short 0.1
Nlaser_likelihood_max_dist 2.0
Nlaser_model_type likelihood_field
Nodom_model_type omni
Nodom_alpha1 0.2
Nodom_alpha2 0.2
Nodom_alpha3 0.2
Nodom_alpha4 0.2

• self-rep. distance: We define self-reported distance as the distance in which
our method reports no hypothesis that exceeds the maximum deviation of 1.0
m from the weighted average of all hypotheses that permit a pose location.
For AMCL, we use a threshold of 2 meters on the x and y pose covariance.

• ML error: We report the error after the particles have converged to the right
location, to indicate error in tracking mode.

• Max Hyp: We report the maximum number of hypotheses before and after
the particles have converged to the right location.

For AMCL, the indicated values are the average over all successful runs for
that initial positions. We will also show some selected results regarding semantic
associations and CPU usage for our approach.

3.6 Results and Discussion

The results of the localization are shown in Table 3.3. For the smaller initial
region, our method achieves localization within 1.7 and 4.9 meters for A1 and
A3 with a maximum number of 200 hypotheses, which reduces to only resp. 8
and 7 hypotheses after self-reported localization. AMCL also achieves localization
successfully when the initial pose is confined to the smaller region. When we
increase the possible initial location to the entire map (scenario B1-B10), we see
that our method still achieves localization in 9/10 runs, with distances ranging
from only 1.1 meters for B5 to 10.3 meters for B10. The output of our method
before and after localization is shown in Figure 3.12. The symmetries occurring
from the feature associations are evident. The pattern shown here consisting of
two line segments with visualized normals is already a very strong indicator of
location. After localization, the figure shows the back-up hypotheses that enable
to recover from wrong associations during tracking. Self-reported distances are
usually significantly longer because alternative hypotheses still exist that offer
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Figure 3.10. The CPU time, error and hypotheses shown for B3. The middle figure
shows the error for both the maximum-likelihood hypotheses and the average over
all hypotheses that permit a pose registration. The moment where our approach
marks itself as localized is shown in red. Below, the number of hypotheses is shown,
together with events that indicate that a new association is evaluated. The association
for the ML hypothesis is shown in text (* indicates unmapped object). The top figure
shows CPU cycle time (milliseconds) for session B3. Within a cycle, the local map is
always updated and the associations are only updated if a new stable local feature is
available. The latter causes the distinct peaks in processing time.
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alternative explanations of the local map. In some cases, such as B9, the self-
reported distance is too low. This is due to only pose-enabling hypotheses being
evaluated for convergence, and many hypotheses that do not permit a pose are
present and appear to be correct in light of later evidence. For AMCL, we see
that for some runs, such as B3, B8 and B9, successful localization is consistently
achieved. In the case of B9, AMCL is very fast to converge to the right location. In
B9, as is difficult to see in Figure 3.9, the robot rotates in place for a full round first,
then moves to a second location and rotates again, exposing significant geometry
of the environment without many disturbing elements present in the environment.
Our method takes longer to localize in this scenario, because we rely on detecting
stable features first from the geometry. In scenario B7 our method is not able to
localize whereas AMCL is able to do so in 3/5 runs. Our method, in this scene, had
trouble with the people and furniture in the open space to the left of the robot,
which caused drift in our local map. In run B2, B4, B5 and B6, we see that AMCL is
consistently not able to localize the robot. Especially in the right half of the map
(as can be seen in Figure 3.9), there is clutter present in the B-scenarios. While
our method does localize, it results in erroneous hypotheses taking longer to be
removed. Finally, in the C-level scenarios we see that AMCL is able to localize
successfully (5/5 runs) in scenario C12 and sporadically in scenario C11. For our
method, C12 is problematic because most of the objects mapped locally are actually
clutter objects that have been placed to disturb the environment (the dustbin and
the yellow board in that figure, Figure 3.8)b also shows the divider that was placed).
The middle and right image also show scenarios in which clutter appears in the
local map that has to be dealt with (i.e, a dustbin and a open door appearing as a
corner).

3.7 Associations and Computing Time

Figure 3.10 shows the number of hypotheses and error in time and illustrates an
attractive property of our approach. We maintain a smaller number of hypotheses
on the basis of symbolic associations, especially after convergence. Furthermore
we make the associations very explicit. The new associations made by the ML
hypothesis are indicated in the graph as events. The hypothesis tree is only
evaluated at these instances for the new evidence. The resulting CPU cycle time
is shown in Figure 3.10. The distinct peaks are caused by evaluation of the tree,
whereas the local map update is usually between 100 and 200 ms. Note however
that our current C++ implementation was written as a prototype with extendability
in mind and has not been optimized for execution time. We expect that computation
times of less than half the current times are obtainable.

3.7.1 Limitations

The amount of hypotheses needed was determined by considering that we have
154 concave corners on our map. If the first detection would be a corner, we can
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Table 3.3. Results of the localization using our method and AMCL. The predicate
succesfull is yes when the robot localizes accurately with respect its ML hypothesis
error stays localized for the remainder of the path. The distance needed to acquire
localization is both expressed as actual localization of ML and as self-reported
localization (by assessing convergence). Note that self-reported localization can be
reported erroneously (i.e.,. false confidence). The average ML error after localization
is also reported and the average number of hypotheses used both before and after
self-reported localization has been achieved.

Scenario A B C

Descr. Init region Total map Clutter
Path A1 A3 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C11 C12

ours

succesfull yes yes yes yes yes yes yes yes no yes yes yes yes no
actual dist ML 1.7 4.9 1.7 8.3 4.9 5.3 1.1 7.2 n/a 5.5 7.1 10.3 16.4 n/a
self-rep dist 13.2 4.9 16.3 22.0 8.4 24.1 15.7 20.9 16.9 5.5 4.0 6.0 2.9 9.1
ML avg er aft con 0.05 0.33 0.07 0.23 0.28 0.36 0.13 0.25 n/a 0.24 0.51 0.16 0.08 n/a
max # hyp bef con. 200 200 200 200 200 200 200 200 200 200 200 200 200 200
max # hyp aft con. 7 9 7 10 7 5 33 11 n/a 8 7 5 6 n/a

AMCL

succesfull 5/5 5/5 2/5 0/5 5/5 0/5 0/5 0/5 3/5 4/5 4/5 3/5 2/5 5/5
actual dist ML 5.2 6.2 3.9 n/a 9.3 n/a n/a n/a 6.5 10.3 1.2 6.3 13.1 8.0
self-rep dist 5 6.9 6.4 n/a 13.3 n/a n/a n/a 8 12.2 2.9 7.4 12.9 8.7
ML avg er aft con 0.19 0.32 0.18 n/a 0.29 n/a n/a n/a 0.2 0.17 0.25 0.36 0.42 0.22
max # hyp bef con. 5e4 5e4 5e4 n/a 5e4 n/a n/a n/a 5e4 5e4 5e4 5e4 5e4 5e4
max # hyp aft con. 5e4 44217 5e4 n/a 5e4 n/a n/a n/a 17378 28235 13527 5e4 5e4 5e4

evaluate all of them in light of the next pairing. This, however, shows a clear
limitation in terms of hypotheses needed to cover larger maps in terms of feature
count. One way to deal with this is to postpone evaluation and favor the evaluation
of more unique features first (i.e., temporally out-of-sequence) such as large line
segments, which we currently do not do. Furthermore, maintaining hypotheses
on actual object-level or even spatial object patterns can significantly reduce the
amount of hypotheses and computation time (as will be shown in Chapter 4). Of
course this computation time has to be balanced with the increased localization
success that our method can achieve. Another drawback, in our experience, is the
added complexity of our method over, e.g., Monte Carlo approaches. Our method
requires bookkeeping of a local map, a feature detector and a hypothesis tree. Each
step introduces possible failure points both inherent to their underlying assumptions
and due to programming complexity. Furthermore, because we use features, we
cannot localize when all features are obscured. For some environments that are very
cluttered this would be a likely scenario and describing the environment in terms of
our feature shapes may not be feasible. Some of these drawbacks are handled more
effectively by scan-based approaches that match features extracted specifically for
the purpose of quick association retrieval from the same scanning device. However,
these methods do not offer the same abstract notion of localization and cannot
deal with existing geometry, suggesting possible complementary strengths in for
example the area of keeping maps up to date. Our method provides the most
opportunities in cases where prior existing maps are available and multi modal
perception based semantic feature information has to be fused to localize a robot
both effectively and in a semantically explainable way. This allows the robot to
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Figure 3.11. The AMCL method failing to converge, and providing a number of
wrong hypotheses while including a maximum likelihood estimate that is incorrect
and intersects with occupied geometry. The red square in the center is the robot
position estimate and the green arrows are particles. The LiDAR points are shown in
red as well.

update which (semantic) features are salient and which should not be used in order
to keep long term localization reliable and effective.

3.8 Conclusion

We showed a localization approach that uses a local feature map and a hypothesis
tree to solve the localization problem in the association space. We compared our
method with a grid based particle filter and showed that our method is able to
localize in more cases, while in some cases the particle filter is more successful. The
grid based particle filter does not represent hypotheses on a feature association level
and requires a large amount of particles in order to localize successfully in larger
environments. The results are dependent on the initial sampled distribution, which
causes varying results in more difficult cases. Because the environment contains
unmapped clutter, convergence can not be guaranteed. In theory, increasing
the initial particle count could improve results, however with the current 50,000
particles we already run into the limits of processing capabilities. On the other hand,
the method that we propose, association-based localization, does not rely on such an
initial sampling and performs better in some of the scenarios that we investigated,
if the amount of clutter is again limited. A benefit of our method is a significant
decrease in the amount of hypotheses necessary to represent the robot’s belief about
its location. And while our hypotheses are more expensive to maintain individually
than the particles in a particle filter, the conceptual advantage of needing much less
of them is promising. We foresee benefits when we consider the interpretation of
the hypotheses by other parts of the motion stack (e.g. active localization planners)
and the insight that our approach generates into the assumptions underlying the
localization effort.
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Figure 3.12. The bottom left map shows the global hypotheses that are created
based on the local map at the top left. The correct hypothesis and feature pairings
are indicated by red squares. The local map shows the LiDAR points in orange
and the local map in green. The right figures show the global and local map after
localization is achieved. The ML hypothesis is shown in black and a number of
alternative hypotheses in gray. One of them is significantly drifted because of a
different assumption made recently. The others are covered by the ML hypothesis.
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Figure 3.13. Three situations in which the local map contains objects that are not
on the global map (marked by red circles). The camera images from the robot’s
camera have been logged for verification purposes. The first situation is scenario
C12 where disturbances have been added on purpose. The second scenario is B5
where the scene is disturbed by pedestrians walking in front of the robot. The third
scenario is B10, where the robot leaves a room and spots a dustbin and an open door
as corner features. Both are not on the global map and require sufficient not-on-map
assumptions to survive the pruning process.
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3.9 Future Work

Our work aims to provide robots with semantically explainable autonomy in en-
vironments for which prior maps are available. The next step is to include the
robot’s actions into a task-based framework for fully autonomous navigation and
recovery. We see two possible directions for extending the current work: 1) Pre
process the map and use higher-level salient feature combinations (e.g. on object
level) to improve performance and robustness and scale up to larger environments.
2) Use the association space of hypotheses in an explicit action selection policy.
The first direction considers exploiting semantic and topological relations on the
local map first, and creating indices into the global map to efficiently search for
feasible locations based on these relations. These relations can also incorporate
free space (e.g. a single column surrounded by a large area of free space) as this
provides a very strong indication of feature location when seen in the LiDAR sensor.
The second point is complementary, in the sense that actions of the robot can help
to first gather this feature context (active sensing) before deciding to expand the
hypothesis tree. In conclusion, our work provides a step in the right direction
towards recoverable and semantically insightful robot navigation that can exploit
information from multiple sensors locally first.
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Chapter 4

From Features to Object Patterns for Indoor Robot
Localization

Abstract
One of the major challenges in robot localization is differentiating between relevant
local observations of objects on the map and clutter. In this chapter, we propose a
hypothesis-based robot localization algorithm that makes the distinction by looking
for local patterns based on the assumption that the structure that appears in patterns
has a much lower probability of appearing in the clutter too. The major structure
we propose occurs due to the grid-spaced layout of buildings. We use a hierarchical
map that models collinear and L-shaped patterns found in grid-arranged concrete
columns. Our algorithm detects these patterns in a local map that is built from
sensor data. The first contribution of this chapter is the just-mentioned “semantic
layer" of building-specific object patterns. The second contribution is found in
prioritizing the semantic patterns over individual features in the data association,
where patterns are found in a locally consistent map that considers a horizon of
sensor data. And finally, we introduce an elementary local “active sensing” motion
to discriminate among multiple candidate patterns in the case of repetitive building
structure. The generic approach is experimentally demonstrated on the ground
floor of a university building, with open and cluttered spaces, with a robot driving
autonomously, and a map that only contains the static building features visible to a
planar LiDAR.

This chapter is based on:

R. W. M. Hendrikx, H. Bruyninckx, H. L. Chen, et al., “From features to object patterns for indoor robot

localization”, (Submitted for publication), 2023
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4.1 Introduction

Many environments contain structural objects in repeating patterns that are not
(always) visible from a single pose, but are easy to discriminate from spurious
clutter. They require motion actions before they are observed. Furthermore, in
large maps, direct evaluation of single primitive features may be infeasible due to
constraints on evaluation time or memory, either due to the amount of associations
possible (especially when clutter and features have similar appearance) or due
to the amount of pose hypotheses needed in the case of Monte Carlo localization
(MCL) methods. Delaying evaluations while performing actions to gather more
information on these patterns is an important trade-off to make when dealing with
finite computing resources. Furthermore, a representation of the global map should
allow the robot to switch between the evaluation and association of patterns and
individual features, as the ambiguity of the environment and the amount of possible
hypotheses changes. Symbolic representations of the feature patterns allow the
robot to configure its localization algorithm and allow operators control over which
unique parts of the environment are used by the robot to infer its location.

4.1.1 Approach

The approach is visualized in Figures 4.1 and 4.2. The first step in our approach is
that we associate and combine features detected by our on board sensors into a local
map of features, similar to Chapter 3. We proceed now with the example of features
extracted from a planar LiDAR scan, i.e., lines, circles and corners. We maintain
a consistent moving-horizon estimate of the feature coordinates in the local map
by associating measurements from different robot poses and performing state
estimation using a factor graph. We then evaluate the features on this local map for
pairs and for triples that form collinear and right angles. Figure 4.2 shows a pair of
circular columns used as a pattern instance. These pattern instances, together with
their relative dimensions, are checked for correspondence with pattern instances
on the global map. The proposed patterns have two benefits: 1) They avoid the
combinatorial complexity of relating observations of primitive features to the map
and 2) They make the candidate associations from the local map less sensitive to
clutter (increased detection precision). In this chapter, we choose the patterns based
on their detectability, which is dependent on the specific sensor and environment.
Our method differs from other methods in that we do not require the scene to be
visible from a single sensor frame. As soon as an initial pattern is found, the relative
dimensions (e.g., the distance between columns) allows for quick evaluation of
possible candidate patterns on the global map. If candidate patterns are found,
an inspection action is performed relative to the local pattern features, that finds
other features on the map in the vicinity of the pattern (Figure 4.2). This behavior
is a simple rotate behavior in the demonstrated case, that is performed after
the robot has positioned itself between the features that form the pattern. While
performing the rotation, we evaluate an association tree which is initialized with
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the pattern. In the evaluation of this tree, we use all matching primitive features in
the environment of the pattern, as well as a free space check that we will introduce
later, to effectively find which pattern on the global map is supported. The result is
that multiple hypotheses are initialized. These hypotheses are then tracked and
possibly falsified using matching features and free space, while the robot performs
its navigation task based on the best hypothesis. The scope of this chapter includes
the introduction of the feature pattern layer as a symbolic layer of feature relations
on top of an existing vector map and the introduction of a generic primitive rotation
behavior to inspect the pattern surroundings. Furthermore, we incorporate the
patterns into a hypothesis tree and show how such a tree can be represented. Our
work does not provide feature patterns for all possible use cases encountered in
practice, which is a relevant subject but is deferred to future work. We also do not
focus on motion planning or optimal decision making under multiple hypotheses;
rather, we show that, depending on the environment, simple motion behaviors can
be sufficient to find discriminating patterns and thereby significantly reduce the
amount of hypotheses that are initialized.

4.1.2 Contributions to state of the art

Our work contains the following contributions to the state of the art:

1. We add a semantic layer of feature patterns that increases the robot’s ability
to differentiate between clutter and relevant features.

2. We prioritize feature patterns in making data associations.

3. We increase the time scale of detections from instantaneous measurements to
a local map.

4. We propose an elementary active sensing motion to discriminate among
patterns.

Our work is experimentally validated in an indoor environment that contains a
significant amount of clutter. In this validation we use both binary patterns and
composite patterns of concrete columns that exploit the grid-like structure of the
environment. We also show how the pattern search procedure can be restarted as
part of a recovery procedure during the tracking phase.

4.2 Related Work

Robot localization is an active field of research. Other works have relied on
similar features for multi-hypothesis global localization [68], [4], [56]. We rely
on the local map and association tree that we described in [57]. The authors
in [4], [56] also evaluate spatial relations between features as part of a tree
search. They do not, however, impose a hierarchy on the spatial relations on
their global map and do not incorporate motion in their framework, although
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(a) (b)

(c)

Figure 4.1. The example we use in this chapter of how feature patterns can be used
to discriminate structural features from clutter objects. A binary feature pattern in
two concrete columns is shown in (a) and highlighted in blue in (b). Other relevant
features in its vicinity are shown in red and free space is shown in green. The local
map made by the robot is shown in the (c), where the same pattern is highlighted in
blue and LiDAR points are shown in red.
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Figure 4.2. A schematic depiction of the approach that we propose in this work.
First, the robot maintains a local map of features (Figure A). The association with
the global map is delayed until a pattern candidate is found in this local map. Then,
in Figure B, The pattern is used at the first level of an association tree and a simple
inspection motion is performed to incorporate the remaining part of the environment
in the association tree search. Finally the hypotheses are tracked and monitored
(Figure C). If all hypotheses are falsified we reinitialize the search for a salient
pattern.

L-pattern

Collinear pattern

Distance pattern

Parallel pattern

Collinear pattern

Collinear pattern

Figure 4.3. Many indoor environments have their structural features layed out
in a grid-like spacing (left image), leading to constraints such as collinearity and
orthogonality (right image).
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[56] does group line features based on their visibility from the same room to
increase search efficiency. The authors in [49] define a feature descriptor on
multiple line-endpoint features from reference key scans in a data set. However,
their descriptor takes a set of line segments with arbitrary orientation into account,
while our method specifically annotates collinear and right angle relations between
features that are not related to a set of key scans. Our approach considers a local
horizon and thereby permits multi-scan feature descriptors in environments that
contain grid-like structure. Furthermore, our approach initially disregards local
features that do not form patterns to increase robustness. The authors of [68]
also rely on feature based representations of doors, lines and point pairs. They
introduce creative and supportive features, where only the former initiate pose
hypotheses that are tracked by Kalman filters. They choose actions based on the
most probable hypothesis, that maximizes the amount of new features seen. Our
approach has similarities to theirs but we add a layer of discriminating patterns
on top of our representation and relate motions to these patterns. Our work
assumes that the robot can perform motion prior to detecting features and when
inspecting a pattern to collect more information for localization. The planning of
optimal motions in the face of uncertainty has been studied in literature using the
Partially Observable Markov Decision Process (POMDP) framework ([119], [43],
[110], [91], [76]). While optimizing the actions for localization is promising, the
downside is computational complexity that prevents scaling to larger environments.
Furthermore, many methods rely on grid maps or pose-based particle sets that do
not offer the object-based notion of localization that we use in our work. We do not
focus on highly self-similar environments, which may require additional planning
or heuristic policies to be dealt with. Hierarchical map representations have also
been considered in other work, most notably the addition of topological relations
as a layer on top of metric information has been investigated in works such as [79],
[70], [40], [77], [53], [71], [8]. Hierarchical models of indoor environments have
also been investigated in other domains such as in [140], where a visibility graph
is maintained for doors, corridors and intersections. These models are potential
sources of information for the algorithm that we propose. The main difference
with the works mentioned in this section is that we explicitly add a layer of feature
patterns to our map and we only evaluate the rest of the environment after a pattern
has been found. This way, our approach enables the exploitation of discriminating
structure in the environment that is supplied a priori via a hierarchical map.

4.3 Methodology

4.3.1 Feature patterns

We denote the set of primitive features on the global map byM = {m1 . . .mnm
}

which consists of nm symbolically identifiable geometric features for a specific
sensor. We will now proceed with our example of a LiDAR sensor, although other
sensors may also permit suitable features. These primitive features are of type line
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Figure 4.4. Searching for feature patterns that originate from a grid based layout
in the environment. (a) A map of the environment. One of six similar pattern
occurrences is shown (b) A local map of circular features and an L-shape detected
in the sensor data. As feature patterns are composed of more individual features,
the chance of being resembled by clutter becomes significantly smaller. (c) The
association hierarchy. (d) Hypothesis tree expansion based on individual features
and on pattern features. Not-on-map associations are indicated by ∗. The horizontal
levels in the top tree are formed by evaluating local features chronologically as they
are observed. (e) Patterns we find in the local map reduce the amount of hypotheses,
as they form composite features.
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segment, corner and circle. We add a set of feature patterns R = {r1 . . . rnr} to this
map, that reference the primitive features. A feature pattern ri = (mi, coni, si)
is a triple consisting of an ordered set of feature references mi, together with a
pattern constraint coni, which we restrict to binary, collinear or L-shape in
this work. Furthermore, we add the relative dimensions si = {si1 . . . sin} between
the individual features to the pattern. The features we assume and use in the
remainder of this work are circular shapes, although similar representations are
possible for e.g., line segments and corners if appropriate interpretations of si are
specified. The dimensions for a circle pattern are simply the distance between two
consecutive circles in the pattern. An example is shown in Figure 4.3, where some
of the patterns are shown that occur in indoor environments due to the fact that
many structural features are designed on spatial grids. The local features that are
mapped in the vicinity of the robot by its sensors are denoted by Y = {y1 . . . yny}.
The feature types are the same as in the global map. We will use rm and r` to
refer to patterns on global features and on local features, respectively. As our local
map is built, new features from sensor data become available in a queue which is
processed for the occurrence of local patterns.

4.3.2 Rationale

Consider an environment that contains eight circular features which are spaced
on an even grid consisting of two rows with four features each ( Figure 4.4a). We
would like to initiate a small set of association hypotheses that is likely to contain
the correct hypotheses. A total of twelve L-shaped signatures are added to the
global map a priori. Because of the uneven grid spacing, two sets of six similar
patterns exist (An L-shape and a mirrored L-shape). The local map that is shown
( Figure 4.4b) contains six features. Within this map we can find binary patterns
and composite patterns (i.e., patterns consisting of multiple binary patterns). To
evaluate which features on the global map correspond to locally observed features,
we could use an association tree where each level i of the tree corresponds to
a locally observed feature yi, similar to Section 3.4.2. The nodes on that level
correspond to a pairing with a global map feature and such a node is only added if
it is consistent with the associations that its parent nodes represent. In this case,
consistency means that the local spatial distances between features are the same up
to some threshold accounting for spatial uncertainty. Because we can detect clutter
or spurious feature extractions, a (∗) pairing is used to account for the not-on-global-
map possibility. If we were to evaluate our association tree for every individual
feature yi, we would generate a large amount of hypotheses, especially if we have
to account for many (∗) options, as can be seen in Figure 4.4d. A consequence of
imposing a pattern hierarchy on the map, is that we can evaluate patterns in the
local map, and initialize a first layer that is much less likely to resemble clutter.
Furthermore we do not need to maintain clutter options on the dense primitive
feature level, resulting in less hypotheses having to be maintained and evaluated.
This is shown in Figure 4.4e. Feature patterns are more discriminating, assuming
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that the robot is able to encounter them early and detect them reliably. To deal
with their non-uniqueness, our approach evaluates the subsequent layers of the
tree based on individual features in the pattern’s surroundings. We thereby split
localization in the search for a pattern that is easy to distinguish, followed by an
action to determine which of the non-unique patterns on the map it has detected
by looking at its environment.

4.3.3 local pattern extraction

Our algorithm first checks whether local binary patterns can be formed that satisfy
any existing distance requirement on the global map for those primitive features,
without maintaining any associations yet. These binary patterns are pushed to
a stack of local candidate patterns, which are also checked against new local
features. A new feature then completes a candidate triple pattern, if any of the
shape requirements is satisfied (collinear or L-shape). Only in that case, the
pattern dimensions are checked against an index of pattern dimensions on the
global map and if at least one match is found we initialize an association tree. The
procedure for extracting triple patterns is shown in Algorithm 3. The resulting
triple patterns adhere to the constraints, but their dimensions s still have to be
evaluated against the global map. During the constraint check in Algorithm 3, we
check the angle θ of the triple for deviation from a right angle (ε⊥) or straight angle
(ε|):

θ = cos−1 qT1 q2

|q1||q2|
, (4.1)

where we use:

q1 =

[
ȳu1 − ȳu2
ȳv1 − ȳv2

]
, q2 =

[
ȳu3 − ȳu2
ȳv3 − ȳv2

]
(4.2)

with ȳu2 and ȳv2 being the two coordinates of the circle in the middle. This means that
we have to assign each of the two circles of a binary pattern to ȳ2 and check (4.1)
for both assignments, as both ends possibly form the center of a completed triple
pattern. This is done in the functions is_L_pattern() and is_Col_pattern() in
Algorithm 3.

4.3.4 Association tree

We employ an association tree similar to Section 3.4.2, which we modified to
accommodate our feature pattern approach. The hypothesis tree consists of nodes
and levels, where a node nij is on level i, signifying that it makes a data association
between a local set of features and a set of global features on the map. This set of
features can contain only a single feature or it can contain multiple features (i.e.,
supporting the pattern use case). By yi we denote this ordered set of local features
and by mij an ordered set of features on the global map. A node represents a data
association Dij that assigns a global feature to every primitive feature in yi via
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Algorithm 3 The procedure of evaluating local features for patterns that adhere to
the proposed constraints
Input: processed features Yp, new features Ynew,

binary patterns R`
b, triple patterns R`

tr

find_local_patterns(Yp,Ynew,R`
b):

1: for ynew in Ynew do
2: for (ya, yb) in R`

b do
3: if is_L_pattern(ya, yb, ynew) then
4: R`

tr = R`
tr∪ Pattern(ya, yb, ynew)

5: end if
6: if is_Col_pattern(ya, yb, ynew) then
7: R`

tr = R`
tr∪ Pattern(ya, yb, ynew)

8: end if
9: end for

10: for ya in Yp do
11: if exists_in_global_patterns( dist (ya, ynew)) then
12: R`

b = R`
b∪ Pattern(ya, ynew)

13: for yb in Yp do
14: if is_L_pattern(ya, yb, ynew) then
15: R`

tr = R`
tr∪ Pattern(ya, yb, ynew)

16: end if
17: if is_Col_pattern(ya, yb, ynew) then
18: R`

tr = R`
tr∪ Pattern(ya, yb, ynew)

19: end if
20: end for
21: end if
22: end for
23: end for
24: Yp = Yp ∪ ynew

25: return R`
tr
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Figure 4.5. The hypothesis tree with the first level containing a set of local features.
A hypothesis considers the associations between a set of local features and a set of
global features, which is evaluated for spatial consistency.

mij , via corresponding indices. Note that Dij can be used to associate individual
features, by letting yi and mij contain only a single feature. Furthermore, a data
association Dij can assign yi to (∗), implying that that specific set of features
does not correspond to features on the global map. Note that this does not say
anything about whether a subset of yi is represented on the global map. Every
leaf node represents a hypothesis by taking into account all its parent nodes which
jointly assign a set of global map features to local features. The likelihood of this
hypothesis is determined in a similar way as in Section 3.4.3 by using the spatial
lack-of-fit that remains after performing a spatial registration for a horizon of local
and global features. Determining this spatial registration is straightforward because
each hypothesis fixes a set of data associations. If, after the spatial registration, any
of the feature coordinates have a spatial error that is larger than a prior defined
threshold, we omit (prune) that hypothesis immediately. The feature patterns
that were described in the previous section are incorporated in this framework by
supplying the candidate sets mij for yi, Once a spatial pattern r`i is found locally,
its distances si are checked against a list of global patterns. If matching patterns
are found with the same dimensions, a layer is added for yi together with nodes for
all mk from the global patterns rmk that match. This pattern layer then instantiates
the first layer of the tree. The consecutive individual features are then evaluated
as single features (similar to our earlier work), as is shown in Figure 4.5. In this
process we, assign lower likelihoods to hypotheses that contain features that cannot
be matched globally and remove hypotheses for which we expect to detect features
that are not seen by evaluating the local free space. In this way, we favor the
hypotheses for which features are matched (true positives) and remove those that
fail to see geometry where they must do so (false negatives).

4.3.5 Hypothesis evaluation and tracking

Because maintaining a local map can be error prone for some feature types, we
maintain a local map until a globally supported pattern is found. Since our in-
spection behavior evaluates the association tree conditioned on the local-to-global
pairings of this initial pattern, we move to a location approximately between the
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Figure 4.6. Free space polygon resulting from simplifying and buffering a polygon
formed by the LiDAR points. The result is checked for overlap against global features.

pattern features. This pattern is then partially visible during a rotation, serving
as a reliable reference for the spatial congruence check. Before rotation and tree
expansion, the local map is cleared, except for the features that form the local
pattern.

4.3.6 Falsification using free space

Absence of expected geometry is a strong indication that a hypothesis is incorrect.
Hence, we use free space from a LiDAR scan to check for overlap with geometry
on the global map. First we form a polygon by applying split-and-merge to the
LiDAR points that fall within a defined scanning radius and close it using the LiDAR
device origin. Next, we shrink the polygon with a negative buffer distance such that
the polygon moves away from its edges (using the Boost geometry library [15]).
This approach also shrinks laterally from potential hit-points that would otherwise
be very sensitive to small rotational errors of the robot pose. We generate this
polygon once locally, and then check for overlap using the pose for each hypothesis
during the association tree search (see Figure 4.6). The shrink distance is chosen
sufficiently large such that openings in walls that are not on the map (such as doors
or glass strips) do not appear as free space.

4.3.7 Tracking of hypotheses

After the inspection of the local pattern, the association tree evaluation has gener-
ated hypotheses for the individual features in the map. Because we split hypotheses
using (∗) associations, we get clusters of hypotheses at every occurrence of the
pattern in the local map. For each pattern occurrence, we maintain the hypothe-
sis with the largest likelihood and switch to a tracking approach (i.e., we never
keep more than one hypotheses for a pattern occurrence). We let the robot move
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autonomously towards the goal location, assuming that the hypothesis with the
highest likelihood is correct. Each hypothesis is tracked by associating global fea-
tures with the local features found in the LiDAR scan and using a factor graph to
update the pose estimate in the map. We apply the same free space as described
in the previous section to each hypothesis individually to remove hypothesis that
violate expected local free space. Furthermore, we update the likelihood of the
hypotheses based on the lack-of-fit of features in each scan, similar to Section 3.4.3.
Our mechanism for a change in executed behavior is based on two events: 1) A
different hypothesis that is tracked gets highest likelihood, in which case our robots
motion will change accordingly. 2) No more plausible hypotheses remain based on
the free space check, in which case we trigger our recovery behavior. Our recovery
behavior is indicated in Figure 4.2, and amounts to starting the search behavior
again. The robot will first rotate and the drive around until a pattern has been
found again, based on which new hypotheses are generated that can be tracked
again.

4.3.8 Motion primitives

Our motion behaviors consist of a kinematic trajectory predictor for pairs of forward
and rotational velocity (vx, ωz). The robot footprint is forward predicted for a time
horizon (three seconds) according to a set of velocity pairs and the resulting
future footprints are checked for overlap with LiDAR points, in which case the
specific (vx, ωz) does not satisfy the collision constraint. For the search behavior, we
choose feasible trajectories that go forward, while for the inspect and goal-oriented
behaviors we supply a way point to a local point between two pattern features, and
to the goal location, respectively. We make the assumption in this work that the
space between two features that form a pattern can be reached by the robot, to
keep the motion planning simple, while noting that this may be too simplistic for
other environments.

4.4 Experimental Validation

In this section, we evaluate our proposed method in part of the Gemini building on
the Eindhoven University of Technology campus which measures 70x17 meters. It
consists of a large open space connected to a hallway that is intermittently occupied
by building elements. The environment contains two rows of circular columns that,
together with the walls of the building, form the features that are available on the
global map. Figure 4.9 shows the environments. All move-able objects, including
large tables and sofas, are moved regularly to accommodate the changing needs of
building users. Therefore, our robot platform, which is shown in Figure 4.9, has
to rely on the structural features only. Additionally, our circle detection approach
will sometimes trigger on obstacles and bystanders, which is a scenario that our
approach is meant to mitigate. To evaluate our approach, we consider the scenario
where the robot has to drive to a goal location without having knowledge of its
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Figure 4.7. The feature map of the environment in which we test our approach.
The circular columns in the map (black) are members in three types of relations:
binary relations (yellow), collinear triples (green) and L-shape triples (blue). All
other geometry in the environment is shown in red and annotated by unique ids.
The relation identifiers have been omitted. The grey area denotes the workspace
that contains valid hypotheses.

initial position. We consider autonomous driving important during our experiment,
because the patterns should be detectable without having any notion of location
available. We consider 6 different positions from which the robot will start, as
indicated in Figure 4.9. We consider two different sets of feature patterns that are
added to the global map and evaluate the result of our strategy on both sets. The
first set consists of only binary feature relations between neighboring columns that
contain free space between them. The second set consists of collinear and L-shaped
feature relations between triples of columns. The feature sets are also shown in
Figure 4.7.

4.4.1 Generating feature relations

The feature relations are generated by a Python script that takes as input the map of
the environment and evaluates for neighbouring columns for which the connecting
line does not intersect any geometry. An example of a column expressed in our
map format is the following excerpt:

1 {
2 "@id": "ColumnCircular.008",
3 "@type": "Column",
4 "represented_by": [{
5 "@id": "8044c69b",
6 "@type": "ObjectFeatureRepresentation",
7 "perceivable_by": {
8 "@id": "PlanarLidar2D"
9 },

10 "represented_by": {
11 "@id": "ab09f461",
12 "@type": "Circle",
13 "radius": 0.33,
14 "has_placement": {...}
15 }}]}

We use the JSON-LD specification as a host language [73]. We evaluate all column
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geometry for neighbouring pairs on the grid, leading to the binary patterns that
contain there relative distance in the "s" field as shown below.

1 {
2 "@id": "bcb460",
3 "@type": "FeaturePattern",
4 "constraint": "BINARY",
5 "features": ["9c513aef","fff55efb"],
6 "s": 7.493890799037894
7 }

Note that the x- and y spacing of the column grid is not the same (7.4 and 6.2
meters. respectively). This results in different signatures, with a total of 17 similar
ones for the x-aligned pairs and 9 for the y-aligned pairs. The pairs are then
evaluated for column instances that are common, leading to the collinear and
L-shape pattern instances. Because of the grid spacing, collinear pairs have a
symmetry allowing two different pairings. For the L-shape patterns, we adopt an
L-axis convention, where the order of columns is such that the lower-right part
of the L-shape is the first column, followed by the corner point of the L and the
upper end of the L. No symmetries exist for a L-shape pattern. The distances that
represent the leg distances are added to si. The pattern representation contains
symbolic references both to the binary patterns and the individual circle features as
shown below.

1 {
2 "@id": "c4502a",
3 "@type": "FeaturePattern",
4 "constraint": "COLLINEAR",
5 "subpatterns": ["bcb460","342149"]
6 "s1": 7.493890799037894,
7 "s2": 7.3993377685546875,
8 "features": [
9 "3ed3ee02",

10 "ab09f461",
11 "552ee638"
12 ]}

4.4.2 Behavior implementation

Because we perform closed loop experiments, the robot needs behavior coordination
to perform motion actions. Our behaviors are implemented inside an open source
behaviortree framework [51]. The tree is shown in Figure 4.8. The robot task starts
with a rotational motion to scan the environment for features. It then performs
a driving motion that avoids obstacles and goes straight when possible. While
these motions are performed, our localization (which runs in a separate executable)
makes a local map that is evaluated for patterns. If a pattern is found, the robot
drives to a location between the two pattern features and performs a rotation
motion. To this end, the behavior coordination executable requests an updated
local map from the localization executable. Before this motion is performed, the
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Figure 4.8. Our implementation utilizes a behavior tree with asynchronous actions
to monitor and coordinate the localization. We use the implementation from [51].
We run our approach in two separate executables, where the motion behaviors are
implemented as asynchronous actions in the behavior tree, and the local mapping is
a separate executable with query interface.

coordinator clears the local map via a request from all features except the features
belonging to the pattern. This ensures that the map remains local and no difficult
loop closures must be evaluated. The pattern is added to the root of the hypothesis
tree and all new features that appear in the local map are evaluated by expanding
the tree, while removing hypotheses that violate the free space overlap criterium.
After rotating, all remaining hypotheses are traced back to their originating pattern
and for each originating pattern the hypothesis with the highest likelihood is used
to track and monitor while driving to the goal location indicated in Figure 4.9.

4.5 Results and Discussion

The trajectories that the robot has driven are shown in Figure 4.10 and the results
are summarized in Table 4.1. The trajectories indicate the search and inspect
behaviors by dotted lines, while tracking behaviors are marked by solid lines. The
appearances of (complete) feature patterns are marked by dots that are connected
to the initiating features. As can be seen in Table 4.1, all but a single experiment
was successful in arriving at the goal location. During the motion of the robot, we
sometimes ran into problems related to the robot not seeing legs of chairs or strips
of glass. To this end, we added tape to some areas of glass to prevent issues, and
had to put obstacles before chairs with very slim legs. This also resulted in the
correct appearance of line segments in the LiDAR readings for some of the ridges
in the environments, which otherwise would sometimes be overlooked depending
on the pose from which the robot observed them. Handling such sensor specific



4

4.5 Results and Discussion 81

Figure 4.9. The environment in which we will test our approach. The map in
Figure 4.7 contains only the static geometry, leaving a large amount of furniture not
represented on the map. The main motivation for our approach is the objective to
handle such situations robustly and symbolically explicit. Overlaying is a SLAM-built
grid map that shows the geometry visible to the LiDAR. The structural elements of
the building that the robot has access to on its map are shown in white. The starting
poses of our experiment are shown by the arrow indicators. The solid blue circle
denotes the goal destination for all initial positions.

Figure 4.10. The trajectories of the 12 experimental runs, that have been generated
from the logged data afterwards. The robot poses from which a pattern is found are
indicated by the dots that are connected to the pattern features. Dotted trajectories
indicate explore or inspect mode, while solid lines indicate tracking mode.
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challenges is beyond the scope of our work. Videos of the localization are available
online1.

4.5.1 Pattern recall

For the binary patterns, initiating column pairs are found very quickly, mostly
within the rotating phase of the search behavior. The pattern causes preemption of
the rotate behavior and the robot immediately drives to the inspection pose defined
locally between the columns. On the map in Figure 4.7 it can be noticed that on the
right, a pair of vertical columns has no free space in between. This caused an issue
for a single run (A3) which had to be restarted once, because the robot was stuck
in trying to move between the columns. However, in general, the binary pattern
is successful in recalling columns from a local map of multiple erroneous circle
detections. This can be seen in Figure 4.11 for, e.g., run A6, where only one of the
three columns is indeed truly a column. What is interesting to note is that while
the robot arrives successfully in all cases for scenario A, alternative hypotheses
remain three of six runs. It is due to the lower likelihood of these hypotheses that
they are correctly deemed false. When we look at the triple patterns in Table 4.1,
we see that they take longer to recall, as is expected. However, they still appear
in reasonable time for most cases. In run B6, a collinear pattern is first detected
that is indeed a column triple, but one column appears outside of the area that
we mapped for this experiment, through an open door. The results is that during
inspection, no feasible hypotheses remain and recovery behavior is triggered, after
which a correct L-shaped pattern is found. Interestingly, during the B1, the robot
fails to arrive at the goal location because another location appears too similar,
as can also be seen in Figure 4.10 for that trajectory. What is not visible in that
figure, is that the reason for this similarity is not the wall (which is more offset
from the columns) but a couch that has been placed against the wall, making it
appear similar to the goal location. During run B5 and B6, recovery behaviors are
triggered twice, due to the robot looking over a ridge or through an open door
from too close by. The recovery behavior does allow the robot to find a new pattern,
reinitialize and ultimately drive towards the goal location.

4.5.2 Local mapping

In Figure 4.11 we also see the scenario of B1, where clutter circles can be dis-
tinguished from columns by their pattern. The grey circles indicate circles that
are not spotted over a temporal window, and are thereby not considered stable
detections yet. While the patterns we use are detected well in most cases, it is also
important to understand the limits of the local mapping approach in the case of
false detections. Our local map uses euclidean distance thresholds for associating

1https://youtu.be/kgZcB6oX0AY
https://youtu.be/_ufP3Z4l2Lk
https://youtu.be/jEpf9RVfA_U
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local features and incorrect associations can be problematic. For example, during
run B5 (last video), a large local map was maintained during the recovery behavior
in which a false data association caused some distortion. These effects limit the
amount of false detections that our approach can handle, however, the impact
in our experiments was limited and we believe they can be further mitigated by
resorting to more robust mapping strategies such as robust error models (see, e.g.,
[101]) or by selecting only more stable features (e.g. long line segments) as error
contributions in the factor graph.

4.5.3 Differentiability and uniqueness

A relevant question is why the columns form strong feature patterns and whether
regular spacing is important. Ideally, a pattern is not only easy to discriminate
from its direct environment, but also ubiquitous enough for fast encountering and
unique among other patterns. The main benefit of the triple patterns over the
binary patterns, is that the spatial constraints itself are already discriminating.
An irregular distance between columns (in the y-direction) would result in more
unique descriptors in si, making the robot less dependent on the environment for
differentiating among patterns. This ambiguity in the environment is also reflected
in the hypotheses that are created, which are visualized in Figure 4.12. In (a), the
hypotheses that are spawned during the inspect rotation behavior are shown. In
(b), the hypotheses that remain after inspection are shown, as the tracking behavior
is initiated. The grey lines indicate features that are associated with the global map
for the hypotheses. In (c), the remaining hypotheses are shown, where the correct
hypothesis has the highest likelihood. If we used a method that would rely on all
geometry in the sensor data, setting the correct lifetime parameters of hypotheses
would be a difficult task. Instead, our approach makes the creation and evaluation
of hypotheses very explicit. The benefits are especially visible in the areas of the
building that contain much clutter, such as scenario 5 and 6 and during some of
the recovery behaviors.

4.6 Conclusion and Future Work

In this chapter we showed how patterns in indoor environments can be utilized
for global localization and recovery, by letting the robot focus on the grid-like
structure of an indoor environment. By delaying the evaluation of hypotheses until
a discriminating pattern of columns has been found, we can robustly initiate an
association tree search. We also showed how we can monitor localization and
trigger recovery behavior to again search for patterns if needed. The result is not
only a robust approach to localization, but also one that is intuitive and explainable.
During experiments, having access to the local map and the pattern that initiated
the robot’s assumptions on a robot-mounted display, made the process insightful
and easy to explain to bystanders. The main topic for future work is generalization
of this approach to other environments and sensors, and investigating the trade
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Figure 4.11. The local maps that initiated the inspection of feature patterns for three
different experimental runs. Images of the scenes are also shown. The bottom map
in each frame shows the local map while inspecting the feature pattern environment
for other primitive features. Lines that are highlighted in green have a match with
a line on the global map for one or more hypotheses. The free space that is used
to check against overlapping global features is shown by the blue polygon. Due to
clutter, the size of this free space within the local LiDAR reading remains often small
and the buffer distance from objects that are hit by LiDAR decreases it further. The
LiDAR points are shown in brown. Circles that have been observed less than three
times are shown in light grey and are disregarded. Circles that are observed more
than three times are shown in black.
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Figure 4.12. The global hypotheses for run A1 indicated by rectangles. (a) shows
the hypotheses (13 clusters total) that are instantiated during the tree evaluation.
The hypothesis with the largest likelihood is shown in black. (b) shows the remaining
hypotheses straight after inspection, when switched to tracking mode. The grey
lines indicate features spotted for the hypotheses. (c) shows the remaining four
hypotheses after the robot arrives at its goal location, where the correct one has the
highest likelihood.
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Table 4.1. Results for search and inspection of binary patterns and triple patterns.
The Success predicate indicates whether the robot arrives at the the target location.
The pattern types found are indicated by B(inary) L(-shape) and C(ollinear). The
number of circles on the local map at the time of the pattern appearing is also
indicated, where the parentheses denote the number of circles including candidate
circles that are not detected consistently over a temporal window. The (*) mark
was added to the final run because a correct collinear shape was found in columns
outside the mapped environment through an open door.

Binary pattern Collinear / L-shape pattern
Route 1 2 3 4 5 6 1 2 3 4 5 6

Succes yes yes yes yes yes yes no yes yes yes yes yes
Pattern type B B B B B B L L L L C/L L
Total time 0:37 0:41 0:56 1:22 1:12 2:19 na 0:39 1:22 2:30 5:19 5:29
# wrong pattern initialization 0 0 0 0 0 0 0 0 0 0 1 1∗

Time to first correct pattern 0:02 0:05 0:02 0:25 0:08 0:20 0:40 0:06 0:41 0:44 0:26 1:31∗

nr. circles in local map 2 3(5) 2(4) 3(8) 2(3) 4(9) 6(17) 3(4) 4(13) 3(14) 3(6) 4(12)
# hyps after inspect (correct pattern) 7 4 4 3 4 1 0 1 5 4 3 1
# hyps after arrival 4 4 2 1 1 1 3 1 1 1 1 1
# recovery behaviors 0 0 0 0 0 0 1 0 0 0 2 2

off between recall and discriminative power of different kinds of feature patterns.
Furthermore, we used rudimentary motion behaviors in this work in relation
to feature patterns. Localization can benefit from a stronger coupling between
the local pattern and the motion, for example by defining suggested directions
relative to the pattern and relative to features that form partial patterns. This
way, more sophisticated behaviors can be performed that explore more rapidly
for patterns and can incorporate goal-oriented planning in the exploration phase.
Environments in which we expect benefits are, for example, industrial warehouses
where the contents of racking change rapidly, but the racking structure can be
exploited. Or corridor scenarios, where the patterns are formed by the structure of
intersecting hallways. Both examples also raise the question whether free space can
be incorporated into these pattern descriptions in a way that is locally descriptive
and not dependent on the pose of the robot. This leads to more robust systems that
can configure their behavior and sensor processing based on the structure of the
environment.
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Chapter 5

Conclusions and Recommendations

In this thesis, three main chapters have been presented that provide answers to the
research questions posed in section 1.1.3. The contribution of these three chapters
are now considered in a final conclusion, which reflects on the objectives that were
formulated in section 1.3. They are followed by recommendations for future work.

5.1 Conclusions

5.1.1 Building information models and tracking

In the second chapter of this thesis, it is found feasible to use BIM models as a source
of information for localization in previously unseen indoor domains. Objective
1.1 is realized by using a graph-based data model that represents the structural
building items by sensor-specific features. The input for this model is generated
via a conversion path that relies on IFC-JSON to find walls and columns, which
are then added to a spatial database. This path relies on the JSON-LD API to
query relevant IFC entities and can be adjusted for different kinds of features.
In principle, this method also has access to other information in the graph, such
as material properties and connected spaces. This information was not used in
the demonstrator and querying this information from a graph-based IFC model
is not always straightforward. More elaborate graph query languages are useful
here and are explored in follow-up work [30], [99]. We were most interested
in the connection to objective 1.2, which is achieved by extracting features from
sensor data and using a factor graph to estimate the pose of the robot with respect
to the building floor reference coordinate system. If sufficient static parts of the
environment are visible to the LiDAR, the robot can successfully track its location
and is able to handle small deviations that may occur due to modeling errors or
missing visibility due to, e.g., glass elements or open doors. The feature length
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thresholds were deliberately chosen to be robust against the latter. Modeling errors
in the building, such as walls that were shifted up to 60 centimeter, are expected to
be more problematic. Our method was able to recover from these errors, but is not
designed to do so reliably. The level of reliability that can be achieved is evidently
dependent on the accuracy of the specific building model and may increase with
different sensor modalities. Robustness mechanisms are considered as part of a
global localization approach in the next chapter.

5.1.2 Association-based localization with local maps

In Chapter 3, a multi-hypothesis approach is demonstrated that uses explicit as-
sociations between a local map and the global map. This method builds on the
representation that was introduced in Chapter 2. Objective 2.1 is fulfilled by intro-
ducing an association tree that models hypotheses between features on a locally
consistent map and the global map. The factor graph mechanism from Chapter
2 is now used to estimate a locally consistent map, which proved reliable for the
type of features used (corners and line segments). As a result, the evaluation of
the hypotheses (Objective 2.2) is only performed for new stable local features.
The criterium used for this stability is that three detections from different poses
of the same feature must exist. This mechanism was originally designed for the
circles used in the next chapter and is less relevant for lines, as they can be more
reliably detected from single scans. The assumption of local spatial accuracy proves
justified and the evaluation of hypotheses reduces to determining the lack-of-fit
after a spatial registration step, given the associations. Whether this is always the
case will be reflected upon in the next section. The lack-of-fit evaluation using
point registration is sufficiently fast for the map considered, as shown by the CPU
time logs. The main benefit over faster constraint checking procedures (such as
parameterizing the relative distance and angle between each pair of lines) is that
this method minimizes the euclidean error over a set of points, which has a more
straightforward probabilistic interpretation. This allows the spatial rigidity assump-
tion to be slightly violated and also introduces some robustness to global map
deviations. The performance of the method was compared to the grid-based AMCL
particle filter implementation (objective 2.3), which requires a very large amount
of particles (50,000) to achieve reasonable performance. The association based
approach performed better in most runs and requires substantially less hypotheses
(200), due to the absence of random initial sampling. A small set of strong local
features is often sufficient to generate a manageable set of hypotheses. The main
Achilles-heel of our hypothesis evaluation method is a scenario where too many
clutter objects appear directly after each other. In this case, the N∗ pruning crite-
rion will remove the correct hypothesis in order to limit the tree growth. The main
lesson learned here is that other means of pruning hypotheses must be considered
to avoid the need of N∗ pruning. One example might be a threshold in likelihood,
above which no tracks are split, which is also suggested in multi-hypothesis tracking
literature. However, determining when this non-splitting is justified based on a
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spatial criterion is not straightforward, hence the current policy of postponing the
decision after future observations. A more promising strategy is the use of absence
of expected features (based on the global map) to mitigate tree growth. This is
where a LiDAR device shows it strength and we explore this in Chapter 4, together
with a feature pattern approach that selects only distinctive patterns to initiate the
association tree.

5.1.3 Feature patterns

When larger buildings are considered, or when sensor observations become less
reliable due to false detections or a cluttered environment, mechanisms are needed
that increase the ability to discriminate. The challenges associated with this are:
1) maintaining an accurate local map and 2) managing growth of the hypothesis
tree while also accounting for clutter. The latter is related to objective 3.1, which
is addressed in Chapter 4 by adding a layer of collinear and L-shaped patterns
to a map of the ground floor of a university building. These patterns turned the
columns from relatively weak features (because of an inaccurate detector) to strong
features that can be easily detected in a local map. The method focuses on the
spatial constraints first, and adds a patterns - as a whole - to the first layer of the
association tree (Objective 3.2). Objective 3.3 is then addressed by performing a
rotation action that is defined with respect to two columns to maximize visibility of
other features in the surroundings. During this step, a free space polygon is used
that is very successful in pruning hypotheses, by which it also addresses objective
2.2. Sometimes the free space was too quick to prune, such as in run B5, because a
large double sliding door opened which was modeled as static geometry. However,
this can be avoided by removing doorposts from the layer of fixed geometry. Overall,
the experimental runs show that the patterns can be reliably detected in a local map
in most cases, even when substantial clutter and spurious detections are present.
Binary patterns were detected substantially faster than triple patterns, and proved
reliable. Triple patterns, however, are even less likely to appear in false detections.
The main lesson learned from this chapter, is that while certain features may not
be unique or even reliably detectable, pattern relations can turn them into strong
hyperfeatures. The ability to dissociate these hyperfeatures is important in large
environments and can also be applied to other repetitive structures such as fences,
rackings or doors.

5.2 Recommendations

5.2.1 Building information models

The features and sensor used in Chapter 2 are straight forward to generalize to
other indoor environments. However, there will exist BIM models that are less
suitable for localization for two reasons. First, although line segments, corners and
circles are relatively common features, they may not be adequate to describe all
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indoor scenes. For example, some buildings consist of curved geometry. Second,
the approach in Chapter 2 provides some robustness against clutter, but has to
perceive enough structural features that are not resembled by unmapped objects. A
next step would be to exploit more geometric and semantic class information from
BIM models, such as the location of doors and stairs. Furthermore, the extension
of the method to 3D LiDAR detections is one that can be performed relatively
easy in the detection front-end (e.g., using vertically stacked, planar features),
providing more accurate detections of structural items such as columns and walls.
Three-dimensional information is also available in many BIM models, and can
increase robustness even further. Together with a semantic detector, this will
significantly increase performance in scenarios that contain more clutter. This also
includes the extraction of material information (e.g., glass or reflective surfaces)
and the possibility to include topological information regarding spaces and their
connecting interfaces. The IFC standard provides the user freedom in choosing the
representation of this information and this implies that the conversion path has to
be extended and generalized in follow-up work.

5.2.2 Association-based localization with local maps

The approach we suggest in Chapter 3 and extend in Chapter 4 enables global
localization and adds a level of robustness to localization that protects against
additive disturbances in the model. There are, however, two other sources of dis-
turbances that require further investigation: 1) modeling errors in the global map,
as mentioned in Chapter 2 and 2) dynamic disturbances and incorrect associations
in the local map. The latter was mitigated in Chapter 3 by including only features
that are rarely detected in moving obstacles. In chapter 4, the circles we included
would also appear in the detection of feet. In some cases this caused the local map
to become distorted because of wrong associations or violation of the static object
assumption. Solutions to this problem may include using robust error models that
can correct data associations in the local factor graph, or other detection modalities
that provide stronger features, possibly combined with semantic class information.
Despite these challenges, maintaining a local map over a spatial horizon still has
clear advantages because it provides context to features via patterns and provides
a central model in which sensor information can be fused and monitored. How-
ever, the optimal association horizon may be smaller when only a small number
of hypotheses are tracked at higher speeds or in more dynamic environments to
avoid local inconsistencies. This requires further investigation into robust tracking
policies for various feature types and environments.

The pruning of the hypothesis tree is arguably the most important part of
the localization algorithm. The approach of allowing N∗ consecutive unpairable
features is attractive because of its simplicity but can be problematic if too much
clutter is present (i.e., a row of chairs or dustbins). The addition of feature absence
by using free space in Chapter 4 provides a better basis for pruning hypotheses and
is recommended. The main challenge in the evaluation of free space is to be robust
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against small errors in the pose estimate of the robot. While our maps had high
enough feature density to reliably overlay this free space, cases may occur where it
is better to postpone this effort due to uncertainty. Future work should investigate
methods that take this uncertainty into account or evaluate free space in relation
to local features.

5.2.3 Feature patterns and the semantic map

To make the method in Chapter 4 generally applicable, a set of feature pattern
templates must be conceived of that exploit more of the grid structure found in
walls, columns, doors, rackings etc. The inclusion of free space in these patterns
is also a promising approach to navigation in symmetric environments such as
hallways. Algorithms are needed for automatically generating this layer of feature
patterns starting from a semantic map of primitive features. While these patterns
can be composed by considering only the global map, they can also benefit from
recorded sensor data. This data can be used in semi-supervised learning approaches,
that aim to optimize recall and uniqueness of patterns among typical cluttered
scenarios, by selecting among a large candidate set of features combinations.

A related challenge that advocates for the use of both local maps and feature
patterns are inaccurate building models. BIM models can serve as input for the
global localization approach in Chapter 3. However, in this thesis we were not
concerned with the effect of model errors in this specific instance of a building
model and corrected the errors before using the geometry. In future work, invariant
structures of the building (parallel, collinear and grid patterns) can be matched to
the local map in a way that relies less on the exact coordinates. The local map and
local occurrence of patterns arguably provide a better basis for localization and
determining actions then a pose with respect to an inaccurate map. Furthermore,
such a map may lead to problems when executing a path, e.g., through a door, that
is not at the exact location. A local map provides a better basis for performing this
action and the connection between the local map and motion actions is a recom-
mended topic for future work. This also includes the planning of actions that are
informative, while adhering to constraints on the global semantic map regarding
safety and predictability. Such a planner will benefit from the reduced amount
of hypotheses that our method generates and might even (partially) precompute
informative actions for locations that are known to be ambiguous.

In conclusion, the work in this thesis relies heavily on the semantic map as the cen-
tral container for both the geometry and for information on how to efficiently link
sensor data to this geometry. It is expected that even more semantic configuration
can be realized via the semantic map, thereby further increasing the explainability
and performance of robot systems. Recommended future work amounts to 1)
Generalizing the representations and patterns that are relevant to model on a
global semantic map, and 2) designing generic behaviors that allow the robot itself
to determine which representations, both on the local and global map, are relevant
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for the localization task and which are not.
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Appendix A

Local Mapping with Line Segments

A.1 Local Map Building

A.1.1 measurements and factors

In this appendix we provide a more detailed explanation of how line measurements
are used locally in our approach. First, to extract lines we use the implementa-
tion found in [102], [47]. A line sensor feature is represented by the point-pair
coordinates (pstart, pend) with respect to the robot and is extracted from a single
LiDAR scan (Fig. A.1). This line gets added to the local map (in frame `) as a
point-pair. A second partial line segment sensor feature can be associated with
the same local feature. This association is made when both points of the new
sensor feature fall within a distance dn1 from the infinite line extending from the
line on the local map and one of the points of the new line is within the segment.
To solve for the most likely position of the line in the local map given multiple
measurements, the point-pair representation is temporarily converted to an infinite
line with range-bearing parametrization (Fig. A.2.). In order to optimize over both
the robot pose and the line parameters, we create a factor for the measurement
error, which is the difference between expected and measured (ρ, φ), given by:

eρ =

{
ρ− s+ x cosψ + y sinψ,

ρ+ s− x cosψ − y sinψ
(A.1)

eφ =

{
φ− ψ + θ,

φ− ψ + θ + π
(A.2)

where the latter case needs to be used when the robot is in the halfspace of the
line that does not contain the local frame origin. Note that we need to evaluate
the angle error as being a relative orientation within [−π, π). To optimize over the
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(a) (b)

Figure A.1. (a) The robot measures a sensor feature locally in the form of a
line segment. The line segment gets added to the local map and a range-bearing
measurement is added as well. (b) When a new sensor feature is associated with the
same line segment on the local map, it is merged to form updated end points. The
new range bearing measurement is also added between the robot pose and the line
(but not shown).

Figure A.2. When the line segment is updated in the state estimate optimization,
first a temporary range-bearing parametrization is generated in the local map as
well to simplify calculation of measurement error and error Jacobians. Two possible
cases are shown for the robot pose with respect to the line.
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robot pose and line parameters, we obtain the following jacobians:

∂e

∂x
=



[
0 0 1

cosψ sinψ 0

]
,[

0 0 1

− cosψ − sinψ 0

] (A.3)

∂e

∂y
=



[
−1 0

−x sinψ + y cosψ −1

]
,[

−1 0

x sinψ − y cosψ 1

] (A.4)

again depending in which halfspace the robot is located. The implementation in
GTSAM [32] requires a custom implementation of the 2D line type with manifold
traits and a custom factor. The type needs to have the interfaces retract() and
localCoordinates() implemented to allow optimization. The retract() inter-
face adds an increment in local coordinates to the line, and contains logic to always
return a parametrization with a positive range ρ.

The line factor introduced here, together with range-bearing factors for point
measurements and relative pose factors for the odometry form are used to form a
factor graph which is locally consistent around the robot. The result can be seen
in Figure 3.2, where a number of lines, corners and circles have been measured
multiple times and given unique id’s on the local map. The measurements taken
from a certain robot pose are shown as grey lines.

A.1.2 Improving odometry with local ICP

To improve local odometry in the presence of drift and time synchronization
inaccuracies, a local Iterative Closest Point matching is used to obtain improved
odometry by using two consecutive laser scans. The rationale behind this is that
the true odometry is the one matching two scans perfectly, which is slightly different
from the encoder odometry due to drift, timing mismatch and mounting position
error. It must be noted, however, that ICP in environments where the static
assumption is violated may possibly yield worse results than exclusively using
odometry.
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Appendix B

Offline Pose Estimation

B.1 Pose Estimation

In this appendix we explain the tracking mode that was used to obtain the ground
truth trajectories against the accurate map of the building. In tracking mode,
the local graph as explained in Chapter Three is related to the global frame by
making nearest-neighbor data associations with the global map, after an initial pose
estimate has been provided by the user. These associations are then incorporated
in the graph as location priors for the local features expressed in the global map
reference frame, resulting in robot poses that are also valid with respect to the
global map. The tracking mode can be started in our implementation by providing
an initial pose estimate in RVIZ. For our ground truth, we manually supplied the
starting position of the robot for each trajectory and verified the data associations
that were made. The resulting robot poses at sample intervals were then used in
table 3.3 as ground truth.
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Figure B.1. The local map of features (green) aligned against the global map,
which serves as a prior using nearest neighbor data associations. The resulting
robot trajectory is the MAP estimate of the robot poses in the global map. We used
this method to obtain the ground truth estimates for our trajectories to verify our
hypothesis approach. The robot trajectory is indicated by the blue line and the green
and red circles and lines indicate features.
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Map Representation and Tooling

This appendix provides an overview of the concepts and software that are used to
model the maps in this thesis. The maps from the Atlas and Gemini environment are
represented in the JSON-LD [72] host language. This representation is then stored
in a PostgreSQL [104] database. The localization executable is written in C++
and uses libpqxx [85] to perform SQL queries. We used the 3D modeling software
Blender [11] to edit geometry for the world models and export JSON-LD by using
the python scripting capabilities. Some of the modeling decisions, advantages and
disadvantages are discussed in this appendix.

C.1 JSON-LD Models

JSON-LD is an open source standard for representing linked (i.e., graph) data that
comes with an Application Programming Interface (API) that allows to perform
basic queries. An example of JSON-LD is shown below:

1 {
2 "@id": "ColumnCircular.001",
3 "@type": "Column",
4 "represented_by": [{
5 "@id": "3e1e0df0",
6 "@type": "ObjectFeatureRepresentation",
7 "perceivable_by": {
8 "@id": "PlanarLidar2D"
9 },

10 "represented_by": {
11 "@type": "Circle",
12 "@id": "04ed3677",
13 "radius": 0.33,
14 "has_placement": {
15 "@id": "8a900c1a",
16 "@type": "Point",
17 }
18 }



C

100 Map Representation and Tooling

19 }]
20 }

As can be seen, JSON-LD extends JSON objects with an @id and @type specifier.
These symbolic identifiers can be used to link to other objects in the same document,
or to resources outside the document using internationalized resource identifiers
(IRI). For example, the Point object that is referenced by the Circle object can be
defined separately in the document:

1 {
2 "@id": "8a900c1a",
3 "@type": "Point",
4 "has_position": {
5 "@type": "Position",
6 "@id": "0286df6a",
7 "coordinates": [
8 {
9 "@type": "CartCoord2D",

10 "x": 0.0,
11 "y": 6.11254358291626
12 }
13 ]
14 }
15 }

This referencing capability enables both nested definitions that can be linked to
from outside the nesting scope, as well as flattened definitions where no objects
are nested at all. With this graph structure we separate geometric definitions from
their relations to objects, sensors and patterns. Furthermore, we can maintain
topological consistency in the definition of geometric entities. For example, a Point
model can be used as part of both a wall, a corner, and a polygon that is used for
navigation. The PyLD [52] Python API is used to extract relevant objects from the
models by using frames.

C.1.1 Framing queries

The JSON-LD API provides framing, which is used to extract objects of a certain
type from a document, while also nesting relations in that object according to a
specified hierarchy. An example of this is when we are interested in all geometric
objects (such as polylines) in order to visualize them, together with the objects that
they represent. A frame can be used to query for these objects:

1 {
2 "@context":{
3 "dummy:// navigation/represents":{"@reverse":"dummy:// navigation/←↩

represented_by"}
4 },
5 "@type":"dummy:// point_geometry_2d/polyline",
6 "@explicit": false,
7 "dummy:// navigation/represents": {},
8 "dummy:// point_geometry_2d/enclosing": {}
9 }
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Figure C.1. The RVIZ visualization of a robot model and the geometry of the world

This frame specifies that we want a list of Polyline objects from the document,
with nested relations that specify the object they represent and their enclosing
(i.e., on which side they enclose a volume if they do so). Note that an @context
specifier is added in which a reverse relation is defined. This allows the API to find
relations that are specified from subject to object and embed the reverse relation in
the object. IRIs can be aliased in documents to decrease the file size, but in this
frame the full IRIs are used.

C.1.2 Visualization

For visualization, the well-known RVIZ program is used which is part of ROS.
The geometric objects are queried from a JSON-LD document by the API and are
published in the map reference frame, allowing them to be overlayed with sensor
data and a robot model. This is shown in Figure C.1

C.2 PostgreSQL and PostGIS

Data from the JSON-LD graph is stored in a PostgreSQL database, from which it is
queried by the localization and motion executables. The benefit of this approach
over directly importing the JSON data is that (spatial) SQL queries are used to
access the data and (spatial) indices are supported. The latter was not critical
in the current work as the maps and features we use resulted in manageable
table sizes. The JSON-LD nodes and relations are directly inserted into database
tables and a separate table is used for the PostGIS geometry entities. The PostGIS
geometry type is a special binary type that follows the well-known-text specification
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nodes

id
type

properties

node_relations

id
type

relation

member

geom
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jsonb

varchar
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Figure C.2. The SQL tables used to store the JSON-LD. The JSON-LD graph is stored
in the nodes and node_relations table. The postgis table contains a copy of the
spatial objects in the graph.

of geometry. This specification does not consider topology (i.e., the sharing of
points between multiple geometries) and we only use it as a redundant table on
top of the geometries that were already defined as graph nodes, for spatial queries.
The geometry type only supports geographically referenced coordinate systems, so
a dummy Cartesian reference system is used to which we attribute no geographic
meaning. A benefit of this approach is that geometry can also be visualized with
PostGIS visualization tools. The schema for the database is shown in Figure C.2.

C.2.1 Queries

Spatial queries were the main reason we chose PostGIS as a database system. By a
combination of spatial queries and JOIN statements, queries can be performed that,
e.g., request geometry inside a certain region that represents, for instance, a door
or a wall. An example of such a query is shown below:

1 with
2
3 OFR as ( s e l e c t id from node_relations where type= 'dummy:// nav iga t ion / o b j e c t f e a t u r e r e p r e s e n t a t i o n ' and member= '←↩

PlanarLidar2D ' ) ,
4
5 OFRandGeom as ( s e l e c t OFR . id , node_relations . member as geoid from
6 OFR inner j o i n node_relations on OFR . id=node_relations . id where node_relations . relation= 'dummy:// nav iga t ion /←↩

represented_by ' ) ,
7
8 OFRandPostgis as
9 ( s e l e c t OFRandGeom . id as OFRid , postgis . id as postgisid , postgis . type as postgistype , ST_ASTEXT (postgis . geom ) as ←↩

geomtext ,
10 geom , st_distance (st_geomfromtext ( ' POINT(0 0) ' ,3035) , postgis . geom ) as distance from
11 OFRandGeom inner j o i n postgis on OFRandGeom . geoid=postgis . id and st_distance (st_geomfromtext ( ' POINT(0 0) ' ,3035) ,←↩

postgis . geom ) < 10 order by distance ) ,
12
13 OFRandPostgisandProps as
14 ( s e l e c t OFRid , postgisid , postgistype , geomtext , geom , distance , nodes . properties from
15 OFRandPostgis inner j o i n nodes on nodes . id = postgisid )
16
17 s e l e c t d i s t i n c t on (node_relations . id ) node_relations . type , node_relations . id , OFRandPostgisandProps . postgistype , ←↩

OFRandPostgisandProps . postgisid , geomtext , properties , geom , distance from
18 (node_relations j o i n OFRandPostgisandProps on OFRandPostgisandProps . OFRid=node_relations . member and node_relations .←↩

relation= 'dummy:// nav iga t ion / represented_by '
19 and node_relations . member = OFRid and node_relations . type= 'dummy:// nav iga t ion /door ' )
20 order by node_relations . id , distance ;

This query selects all doors and walls with their properties and geometry represen-
tations within a 10 meter radius of a reference point. The output is:
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From this query it can be seen that while the spatial capabilities are useful, declaring
the necessary graph traversals is quite cumbersome in the SQL language. Better
alternatives in the form of graph databases and graph query languages provide
more promising alternatives in this domain (see e.g., [99]). Although we are not
aware of any spatial extensions for graph databases that are similarly mature as
the PostGIS extension. For the multi-hypothesis localization implementation, the
database is only queried when the executable starts. The evaluation of feature
candidates is very domain-specific and requires high performance which can only
be achieved application-side.

C.3 Blender

Blender is a modeling tool that is used for creating, animating and rendering
static scenes and movies. It has already been applied in the robotics domain for
visualization and simulation [19]. In this thesis, it used for the creation of maps
that are exported to JSON-LD representations using the Python scripting interface.

C.3.1 Modeling

The modeling of maps is done by first importing a grid map as a reference (e.g.,
build by a SLAM method), and then placing geometric objects on top of this map
that resemble the walls, columns and doors. These objects are three dimensional,
but only the vertices with height z = 0 are extracted for every object to generate
the 2D representation for the planar LiDAR. The object type is inferred from the
name of each object (e.g. a circular column must start with "CircularColumn"). A
python script loops over all objects and extracts the corner vertices which are then
added as geometric representations to the objects that are linked to a planar LiDAR.

C.3.2 BIM models

A Blender plugin that is maintained by the BIM community [12] allows to import
IFC models into Blender. It is based on the IfcOpenShell library that can convert
the geometric entities to mesh representations. The plugin provides an alternative
to the conversion path in Chapter Two for converting BIM data from the robotics
domain. It can provide a useful addition to the workflow, especially for exporting
and working with 3D data in future work.
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Figure C.3. Modeling an indoor environment in Blender on top of grid map that is
obtained by performing SLAM.

Figure C.4. using the BlenderBIM plugin to import BIM geometry [12]
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Figure C.5. A Gazebo simulation that is used to test the localization algorithm.

C.3.3 Gazebo simulation

To test the localization in this thesis, we exported models from Blender and im-
ported them into the Gazebo simulation environment [50]. An example is shown
in Figure C.5, where objects are added to the static geometry and a model of the
reference platform is used in a closed loop simulation.
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[97] W. Palacz, G. Ślusarczyk, B. Strug, and E. Grabska, “Indoor robot navigation
using graph models based on BIM/IFC”, in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 11509 LNAI, Springer Verlag, 2019, pp. 654–665.

[98] D. Paulius and Y. Sun, “A Survey of Knowledge Representation in Service
Robotics”, Robotics and Autonomous Systems, vol. 118, pp. 13–30, Aug.
2019.

[99] P. Pauwels, A. Van Duijven, R. De Koning, R. Hendrikx, and E. Torta,
“Semantic Data from Building Digital Twins for Robot Navigation: File-
Based and RealTime Data Transfer Methods”, (Submitted for publication),
2022.

[100] P. Pauwels and W. Terkaj, “EXPRESS to OWL for Construction Industry:
Towards a Recommendable and Usable ifcOWL Ontology”, Automation in
Construction, vol. 63, pp. 100–133, 2016.



BIBLIOGRAPHY 115

[101] T. Pfeifer, P. Weissig, S. Lange, and P. Protzel, “Robust factor graph optimiza-
tion - A comparison for sensor fusion applications”, in IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA, IEEE,
2016.

[102] S. T. Pfister, S. I. Roumeliotis, and J. W. Burdick, “Weighted line fitting
algorithms for mobile robot map building and efficient data representation”,
in Proceedings - IEEE International Conference on Robotics and Automation,
vol. 1, 2003, pp. 1304–1311.

[103] F. Pomerleau, F. Colas, and R. Siegwart, “A Review of Point Cloud Registra-
tion Algorithms for Mobile Robotics A Review of Point Cloud Registration
Al-gorithms for Mobile Robotics”, Foundations and Trends in Robotics, vol. 4,
no. 1, pp. 1–104, 2015.

[104] PostgreSQL: The world’s most advanced open source database. [Online].
Available: https://www.postgresql.org/ (visited on 09/23/2022).

[105] A. Pronobis and P. Jensfelt, “Large-scale Semantic Mapping and Reasoning
with Heterogeneous Modalities”, in International Conference on Robotics
and Automation, IEEE, 2012, pp. 3515–3522.

[106] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System”, in
Workshops at the IEEE International Conference on Robotics and Automation,
2009.

[107] K. Rajan and A. Saffiotti, “Towards a science of integrated AI and Robotics”,
Artificial Intelligence, vol. 247, pp. 1–9, 2017.

[108] J. Reuter, “Scan- and featurebased multiple hypothesis tracking for mobile
robot localization: a data fusion approach”, Proceedings of the IEEE Inter-
national Conference on Systems, Man and Cybernetics, vol. 4, pp. 714–719,
1999.

[109] Ropod, 2020. [Online]. Available: https://cordis.europa.eu/project/
id/731848 (visited on 01/03/2022).

[110] N. Roy, G. Gordon, and S. Thrun, “Finding Approximate POMDP Solutions
Through Belief Compression”, Journal of Artificial Intelligence Research,
vol. 23, pp. 1–40, 2005.

[111] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots: Con-
cepts, methods, theoretical framework, and applications”, International
Journal of Advanced Robotic Systems, vol. 16, no. 2, 2019.

[112] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alter-
native to SIFT or SURF”, in Proceedings of the IEEE International Conference
on Computer Vision, 2011, pp. 2564–2571.

https://www.postgresql.org/
https://cordis.europa.eu/project/id/731848
https://cordis.europa.eu/project/id/731848


116 BIBLIOGRAPHY

[113] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and A. J.
Davison, “SLAM++: Simultaneous localisation and mapping at the level of
objects”, in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2013, pp. 1352–1359.

[114] C. Schlette and J. Roßmann, “Sampling-Based Floor Plan Analysis on BIMs”,
in Proceedings of the 33rd International Symposium on Automation and
Robotics in Construction (ISARC), International Association for Automation
and Robotics in Construction (IAARC), 2016, pp. 28–35.

[115] T. Serre, “Deep Learning: The Good, the Bad, and the Ugly”, Annual Review
of Vision Science, vol. 5, pp. 399–426, 2019.

[116] M. Shahzad, M. T. Shafiq, D. Douglas, and M. Kassem, “Digital Twins in
Built Environments: An Investigation of the Characteristics, Applications,
and Challenges”, Buildings, vol. 12, no. 2, p. 120, 2022.

[117] X. Shen, E. Frazzoli, D. Rus, and M. H. Ang, “Fast Joint Compatibility branch
and bound for feature cloud matching”, in IEEE International Conference on
Intelligent Robots and Systems, IEEE, 2016, pp. 1757–1764.

[118] T. Shimmura, R. Ichikari, T. Okuma, H. Ito, K. Okada, and T. Nonaka,
“Service robot introduction to a restaurant enhances both labor productivity
and service quality”, in Procedia CIRP, vol. 88, Elsevier, 2020, pp. 589–594.

[119] R. Simmons and S. Koenig, “Probabilistic Robot Navigation in Partially
Observable Environments”, Proceedings of the 1995 International Joint
Conference on Artificial Intelligence (IJCAI), pp. 1080–1087, 1995.

[120] Simple Feature Access - Part 1: Common Architecture | OGC. [Online]. Avail-
able: https://www.ogc.org/standards/sfa (visited on 09/28/2020).

[121] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial rela-
tionships in robotics”, in IEEE International Conference on Robotics and
Automation, IEEE, 1987.

[122] N. Sunderhauf and P. Protzel, “Switchable constraints vs. max-mixture
models vs. RRR - A comparison of three approaches to robust pose graph
SLAM”, in Proceedings - IEEE International Conference on Robotics and
Automation, 2013, pp. 5198–5203.

[123] A. Tabrez, M. B. Luebbers, and B. Hayes, “A Survey of Mental Modeling
Techniques in Human–Robot Teaming”, Current Robotics Reports, vol. 1,
pp. 259–267, 2020.

[124] Taski. [Online]. Available: https://taski.com/ (visited on 03/09/2023).

[125] M. Tenorth and M. Beetz, “Representations for robot knowledge in the
KNOWROB framework”, Artificial Intelligence, vol. 247, pp. 151–169, 2017.

[126] S. U. Tessema LS Jaeger R, “Extraction of an IndoorGML Model from an
Occupancy Grid Map Constructed using 2D LiDAR”, 39. Wissenschaftlich-
Technische Jahrestagung der DGPF, vol. 28, pp. 97–110, 2019.

https://www.ogc.org/standards/sfa
https://taski.com/


BIBLIOGRAPHY 117

[127] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005.

[128] S. Thrun and M. Montemerlo, “The graph SLAM algorithm with applica-
tions to large-scale mapping of urban structures”, International Journal of
Robotics Research, vol. 25, no. 5-6, pp. 403–429, 2006.

[129] M. F. B. Van Der Burgh, J. J. M. Lunenburg, R. P. W. Appeldoorn, L. L. A. M.
Van Beek, J. Geijsberts, L. G. L. Janssen, P. Van Dooren, H. W. A. M.
Van Rooy, A. Aggarwal, S. Narla, and M. J. G. Van De Molengraft, “Tech
United Eindhoven @Home 2022 Team Description Paper”, Tech. Rep. [On-
line]. Available: https://www.techunited.nl/uploads/Zorgrobots/
Kwalificatie/TDP2022HERO.pdf.

[130] M. F. van der Burgh, J. J. Lunenburg, R. P. Appeldoorn, L. L. van Beek,
J. Geijsberts, L. G. Janssen, P. van Dooren, H. W. van Rooy, A. Aggarwal,
S. Aleksandrov, K. Dang, A. T. Hofkamp, D. van Dinther, and M. J. van
de Molengraft, “Tech United Eindhoven @Home 2019 Champions Paper”,
in Lecture Notes in Computer Science, vol. 11531 LNAI, Springer, 2019,
pp. 529–539.

[131] Vanderlande FLEET. [Online]. Available: https://www.vanderlande.com/
evolutions/fleet/ (visited on 03/09/2023).

[132] R. Volk, J. Stengel, and F. Schultmann, “Building Information Modeling
(BIM) for Existing Buildings - Literature Review and Future Needs”, Au-
tomation in Construction, vol. 38, pp. 109–127, 2014.

[133] F. Wang and Z. Zhao, “A survey of iterative closest point algorithm”, in
Proceedings - 2017 Chinese Automation Congress, CAC 2017, vol. 2017-
Janua, IEEE, 2017, pp. 4395–4399.

[134] W. Wang, B. Wang, P. Zhao, C. Chen, R. Clark, B. Yang, A. Markham,
and N. Trigoni, “PointLoc: Deep Pose Regressor for LiDAR Point Cloud
Localization”, IEEE Sensors Journal, vol. 22, no. 1, pp. 959–968, 2022.

[135] D. Wilbers, C. Merfels, and C. Stachniss, “A Comparison of Particle Filter
and Graph-Based Optimization for Localization with Landmarks in Au-
tomated Vehicles”, in Proceedings - 3rd IEEE International Conference on
Robotic Computing, IRC 2019, IEEE, 2019, pp. 220–225.

[136] C. Wu, T. A. Huang, M. Muffert, T. Schwarz, and J. Grater, “Precise pose
graph localization with sparse point and lane features”, in IEEE International
Conference on Intelligent Robots and Systems, IEEE, 2017.

[137] G. Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full, N.
Jacobstein, V. Kumar, M. McNutt, R. Merrifield, B. J. Nelson, B. Scassellati,
M. Taddeo, R. Taylor, M. Veloso, Z. L. Wang, and R. Wood, “The grand
challenges of science robotics”, Science Robotics, vol. 3, no. 14, 2018.

[138] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, A
survey of modern deep learning based object detection models, 2022.

https://www.techunited.nl/uploads/Zorgrobots/Kwalificatie/TDP2022HERO.pdf
https://www.techunited.nl/uploads/Zorgrobots/Kwalificatie/TDP2022HERO.pdf
https://www.vanderlande.com/evolutions/fleet/
https://www.vanderlande.com/evolutions/fleet/


118 BIBLIOGRAPHY

[139] J. Zhang and S. Singh, “LOAM: LiDAR odometry and mapping in realtime”,
in Proceedings - Robotics: Science and Systems, 2014, pp. 1–9.

[140] Z. Zhou, R. Weibel, K. F. Richter, and H. Huang, “HiVG: A hierarchical
indoor visibility-based graph for navigation guidance in multi-storey build-
ings”, Computers, Environment and Urban Systems, vol. 93, p. 101 751,
2022.

[141] Q. Zhu, Y. Li, Q. Xiong, S. Zlatanova, Y. Ding, Y. Zhang, and Y. Zhou,
“Indoor multi-dimensional location GML and its application for ubiquitous
indoor location services”, ISPRS International Journal of Geo-Information,
vol. 5, no. 12, 2016.



List of Publications

Journal articles

• R. W. M. Hendrikx, H. Bruyninckx, J. Elfring, and M. J. G. Van De Molengraft, “Local-
To-Global Hypotheses for Robust Robot Localization”, Frontiers in Robotics and AI,
2022

• R. W. M. Hendrikx, H. Bruyninckx, H. L. Chen, J. Elfring, and M. J. G. Van De
Molengraft, “From features to object patterns for indoor robot localization”, (Submitted
for publication), 2023

• P. Pauwels, A. Van Duijven, R. De Koning, R. Hendrikx, and E. Torta, “Semantic Data
from Building Digital Twins for Robot Navigation: File-Based and RealTime Data
Transfer Methods”, (Submitted for publication), 2022

• H. Chen, R. Hendrikx, M. J. G. Van De Molengraft, and H. Bruyninckx, “Behavior
adaptation for mobile robots via semantic map compositions of constraint-based
controllers”, (Submitted for publication), 2022

Conference proceedings

• R. W. M. Hendrikx, P. Pauwels, E. Torta, H. J. Bruyninckx, and M. J. G. van de
Molengraft, “Connecting Semantic Building Information Models and Robotics: An
application to 2D LiDAR-based localization”, in Proceedings - IEEE International Con-
ference on Robotics and Automation, 2021, pp. 11 654–11 660

• R. de Koning, E. Torta, P. Pauwels, R. W. M. Hendrikx, and M. J. G. Van De Molen-
graft, “Queries on Semantic Building Digital Twins for Robot Navigation Citation for
published version (APA): de Koning Queries on Semantic Building Digital Twins for
Robot Navigation”, in 9th Linked Data in Architecture and Construction Workshop,
2021, pp. 32–42





Acknowledgments

Writing a thesis is an act of collaboration and i would like to thank a number of
people for their valuable contributions, ideas and support. I would like to start with
my promotors and copromotor. Herman, your expertise and enthusiasm for the
field of robotics are inspiring and i have always felt welcome to discuss ideas, no
matter how trivial or how complex. From our discussions i have learned not only
a lot about robotics, but also about the importance of sharing ideas. René, your
combination of robotics knowledge, mentoring abilities and brabantse gezelligheid
have made me feel very at home in the robotics lab. Anything could be discussed
during our meetings, from the newest ideas for lazy robotics (which, other than
the name suggests, makes robots more useful), to the hurdles that go along with
doctoral research, and how to overcome them. Jos, your mentorship, knowledge
and pragmatic approach to combining theory and practice have been very valuable,
and i have really enjoyed and learned from the discussions we have had. I would
like to thank all three of you for your guidance and patience. I would also like
to thank the members of the PhD committee. prof. dr. Daniele Nardi, Dr. Gijs
Dubbelman, and prof. dr. Maarten Steinbuch, thank you for your time and your
valuable comments.

Next, i would like to thank my colleagues from the robotics lab; Wouter, Wouter,
Cesar, Ruud, Henk, Harrie, Marzieh, Yannick, Roy, Puck, Jordy, Manuel, Robert,
Peter, Peter, Ruben, Danny, Koen, Busra and Elise. It was great to work with you
and i have really enjoyed the past years in the lab due to the great atmosphere. A
special thanks goes to Hao. We have worked a lot together over the course of our
PhD journey and your kindness and enthusiasm have been awesome! I would also
like to thank Elena, Pieter and Rens. While working at home during lockdown, i
always looked forward to our BIM meetings and really enjoyed working on that
project with you. Also, thank you Nancy and Roos for making everything run
smoothly in the CST group!

The work in this thesis was carried out as part of the FAST project, and i would
also like to thank all the people involved in that project. Within the TU/e: Margot,



122 Acknowledgments

Hao, Liang, Gijs, Peter, Raymond, Owen, Jos and last but not least Jesse. Jesse,
you started the project and have been very actively involved in making it a success.
Thank you for your effort and your enthusiasm. I would also like to thank the
company partners in the project: Thomas, Mauro, Roel, Don, Bas, Rene, Iwan,
Jan, Elwin, Erwin, Sunniva, Burak, Tim en Kasper. The bi-weekly meetings were
an opportunity to learn more about the broad field of robotics from a company
perspective. And collaborating with experienced engineers from a diverse range
of companies was very insightful. I would also like to thank the students that i
have had the pleasure of coaching; Jad, Ioannis, Joep, Laura, Rik, Joeri, Ruben,
Shubham, Bart and Spyros. Your work has provided many insights that were
invaluable in writing this thesis.

Ik wil ook graag mijn vrienden bedanken voor de gezelligheid en het helpen met
dingen in perspectief te plaatsen tijdens hikes, fietstochten en skitrips. Michiel, we
hebben samen een groot deel van onze studies doorlopen en ik heb altijd veel aan
jouw raad gehad. Joris, bedankt dat je altijd bereid bent om de hoogtepunten en
uitdagingen die bij het schrijven van een dissertatie horen te bespreken. En tot slot,
Papa, Mama, Anne, Huub, bedankt voor alles. Als we samen koffie drinken in de
woonkamer valt alles altijd weer op zijn plaats. En Kirsten, bedankt dat je altijd
voor me klaar staat, thuiskomen bij jou maakt het allemaal de moeite waard en
samen gaan we door naar nieuwe avonturen.

Bob Hendrikx
Dommelen, 2023



Curriculum Vitae

Bob Hendrikx was born on April 14th, 1990 in Wa-
geningen, the Netherlands. He studied mechanical
engineering at the HAN University of Applied Science
where he obtained his bachelor’s degree. He obtained
his master’s degree in Dynamical System Design in
2017 with a focus on control systems at the Eindhoven
University of Technology. As part of his studies he was
a research intern at Aalborg University in Denmark,
where he worked on optimal control of wave energy
converters. His master’s thesis was on the topic of
hypertermia cancer treatment and was carried out at
the Erasmus Medical Center in Rotterdam, the Nether-
lands.

In 2018, he started his Ph.D. research within the Con-
trol Systems Technology group at the department of Mechanical Engineering,
Eindhoven University of Technology. In this project he worked on mobile robot
navigation under the supervision of Herman Bruyninckx and René van de Molen-
graft. The research was carried out as part of the Frontiers in Autonomous Systems
(FAST) project, which is a multi-disciplinary collaboration between five robotics
companies and three university departments. His work focuses on robot localization
and explainable robot behavior in indoor scenarios. Since December 2022 he is
working for Avular as a robotics engineer.


	Summary
	1 Introduction
	1.1 Autonomous Mobile Robots
	1.2 Localization
	1.3 Objectives and Contributions
	1.4 Research Project
	1.5 Outline

	2 Connecting Semantic Building Information Models and Robotics
	2.1 Introduction
	2.2 Related Work
	2.3 Connecting Bim Data to the Robot's World Representation
	2.4 Localization
	2.5 Experiment with a Robot Platform
	2.6 Results and Discussion
	2.7 Conclusions and Future Work

	3 Local-to-Global Hypotheses for Robust Robot Localization
	3.1 Introduction
	3.2 Related Work
	3.3 Preliminaries
	3.4 Localization Approach
	3.5 Experimental Evaluation
	3.6 Results and Discussion
	3.7 Associations and Computing Time
	3.8 Conclusion
	3.9 Future Work

	4 From Features to Object Patterns for Indoor Robot Localization
	4.1 Introduction
	4.2 Related Work
	4.3 Methodology
	4.4 Experimental Validation
	4.5 Results and Discussion
	4.6 Conclusion and Future Work

	5 Conclusions and Recommendations
	5.1 Conclusions
	5.2 Recommendations

	A Local Mapping with Line Segments
	A.1 Local Map Building

	B Offline Pose Estimation
	B.1 Pose Estimation

	C Map Representation and Tooling
	C.1 JSON-LD Models
	C.2 PostgreSQL and PostGIS
	C.3 Blender

	Bibliography
	List of Publications
	Acknowledgments
	Curriculum Vitae

