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Abstract—The network slicing concept divides physical net-
works into logical networks and abstracts the network resources.
With the help of virtualization technologies, these abstracted
network resources can be allocated to service providers and
resources can dynamically be added to these slices based on
users’ demands. The infrastructure sharing model with slicing
makes it possible for services to lease the resources of the
infrastructure provider. This study considers optical network
resource allocation from a profit generation perspective with a
game, in which service providers bid to lease C-RAN fronthaul
paths via auctioning with Vickrey-Clarke-Groves outcomes. The
game aims to distribute fronthaul resources with a social-welfare
maximizing outcome. Service providers maximize their revenue
by predicting user demand and requesting bandwidth resources
from the infrastructure provider by bidding in the auction. Users
have the option to change their association and switch between
the service providers to maximize their utility. The results display
that a balanced profit and social welfare trade-off can be achieved
in converged optical and mmWave radio networks infrastructure
sharing scenario with Vickrey-Dutch auctioning and distributed
decision-making.

Index Terms—resource allocation, auctioning game, millimeter
wave, C-RAN

I. INTRODUCTION

The increasing number and diversity of services offered
by different service providers (SPs) make slicing for shared
fronthaul and radio resource allocation a complex problem
for infrastructure providers (InPs). To solve this problem,
beyond-5G and 6G networks require a distributed network
management paradigm that takes the objective functions of
stakeholders into account. Creating an efficient 6G fronthaul
structure is highly dependent on capturing the key technolog-
ical advancements in the optical networks that provide high-
capacity such as space division multiplexing (SDM) [1], [2],
and managing the increasing number of remote radio heads
(RRHs) with millimetre-wave (mmWave) radio transmission.

In this paper, we design a dynamic fronthaul path allocation
game for SPs that lease the resources from the InPs. The game
is designed as an iterative descending auction that starts with
a high price at the first iteration and the price drops at each
auction until the fronthaul path is leased. A Vickrey-Dutch
auction is a modified version of this auction, where the player
with the highest sealed-bid wins the auction; however, the
player pays the amount of the second highest bid [3].

Applying Vickrey-Clarke-Groves (VCG) outcomes to auc-
tioning for leasing provides a social-welfare maximizing re-
sults for resource allocation among self-interested services that
demand optical resources for slices. The InP uses a descending
Vickrey-Dutch auction to reach VCG outcomes with truthful
bidding for multiple homogeneous items and non-decreasing
marginal values [4]. The bid of SP k depends on its valuation
of a elements of the item set, denoted with vk(a), and this SP
has non-increasing marginal values if the requirement

vk(a)− vk(a− 1) ≥ vk(a+ 1)− vk(a) (1)

is satisfied. A similar VCG-based profit maximization problem
with infrastructure sharing for FiWi nodes [5] and a resource
allocation scheme based on Vickrey-Dutch auctioning [6]
have been proposed. This work extends these approaches by
distributing decision-making algorithms among stakeholders,
as visualized in Fig. 1. In addition to auctioning, the resource
allocation problem among SPs and users is defined as a
Stackelberg game [7].

II. SYSTEM MODEL

In this study, users are scattered inside an 400 m2 open
square area using a Poisson point process [8]. Ten mmWave
RRHs with center frequency fc = 28GHz are distributed
inside this area. The coverage zones of RRHs are separated
with Voronoi tessellation [9], and the users are connected to
the closest RRH. The 5GCM open square omnidirectional
line-of-sight (LOS) urban microcell model in Eq. (2) is used
to calculate the path loss, in which d3D represents the 3D
distance between the user and the RRH [10].

PLLOS = 32.4 + 18.5 · log10 (d3D) + 20 · log10 (fc) (2)

The data rate DRn of each user is calculated by using a simple
user bandwidth to rate conversion model with overhead and
loss factors OF and LF in Eq. (3) [11]. Both OF and LF
take values between 0 and 1. The bandwidth is assumed to
be distributed equally among all users connected to the RRH
before the SP game.

DRn = (1−OF ) · bn · log2(1 + (1− LF ) · SNR) (3)

Users try to optimize their utility by comparing their utility
to the average utility of all users, and switch their SP based



Fig. 1: High level resource allocation architecture representing the stakeholders of the game and the information flow between
them.

on a probabilistic function if they are below the average. The
probability to switch increases with the difference between
user utility and average utility. The utility of user n is given
in Eq. (4) [12], where DRn represents user data rate, dn is
the transmission delay, and pn is the price set by the SP for
the users to connect to the service.

Uuser,n = ln (α1 ·DRn)− α2 · dn − α3 · pn (4)

As given in Eq. (3), data rate DRn is a function of the
user bandwidth bn, calculated as bn = bk

nk
; bk represents the

fronthaul bandwidth allocated by SP k, and nk is the number
of users connected to this SP. α1, α2, α3 are the weights
of the utility function that can be adjusted depending on the
data rate and delay requirements of the service, and the cost
requirements of the user.

The study is based on an SDM-enabled C-RAN network
architecture where many RRHs are connected with a cen-
tralized BBU pool [13]. The transport network provides a
number of optical paths per RRH in a square area. The
increased fronthaul capacity requirement is covered with a
mixed stage spatial-spectral tree connection topology, in which

the inner SDM tree provides the required capacity expansion
in the paths from central office (CO) to the switch nodes and
wavelength division multiplexing (WDM) paths reach from
the switch nodes to the RRHs [14]. The bidding takes place
only for the WDM paths that reach the RRHs, the rest of the
slice paths is provided automatically. The losses of the network
elements in optical paths and the splitting losses are neglected
so that each path in the auction is the same.

The InP network slice manager is responsible for creating
slices for SPs [15]. The logically centralized BBU pool pos-
sesses data forwarding functionalities with the transport SDN
controller and orchestration framework having a complete
view of the fronthaul topology and the optical resources. The
network slice manager on top of the orchestrator creates end-
to-end network slices and assigns the optical resources by
running distributed auctions for each fronthaul path reaching
the RRHs.

The fronthaul topology is divided into sub-graphs for these
slices and the paths are leased with an iterative descending
auction. As demonstrated in Figure 1, the auction runs over
distributed agents that represent each RRH, and when the



auctions for all paths are finalized the resulting SP path
allocation is forwarded to the control plane. The control plane
keeps the virtual topology information and divides the network
into sub-graphs to isolate SPs as tenants. To reach a socially
optimal solution in this auctioning game, InP payments of an
SP increase when it gains more paths than other SPs. The
payment Ck for SPk is given in Eq. (5) [6], where i represents
the auction round, ω is the expected bid of SP in round i, and
R−k is the residual demand of all SPs other than SP k.

Ck = Ck(i) + ω(i) · (R(ω(i))−k −R(ω(i− 1))−k) (5)

R(ω(i))−k = min(Nk
path,

∑
j ̸=k

Dj(ω(i)−N j
path) (6)

As seen in Eq. (6), R(ω(i))−k calculation includes number of
allocated paths Nk

path by SP k, and maximum demand D of
SPs other than SP k. The utility function of SP k is:

USP,k = β1 · pn · nk − β2 · Ck (7)

where pn · nk is the revenue of provider k, calculated by
multiplying the SP price pn for users with the number of users
nk connected to SP k; Ck is the SP’s total VCG payment to
InP for the allocated paths at the end of auction; β1 and β2

are the weights of revenue and cost, respectively.
Exponential reinforcement learning is used by the SP agents

to predict future utilities calculated by using USP,k, Nk
path,

bk, pk and total available paths in auction [16]. SPs do not
need to know the topology of the system; hence the algorithm
is regarded as stateless [12]. SPs make a bid by calculating
their maximum path request for the next auction round. The
following constitutes SP learning algorithm:

Zk(m+ 1) = Zk(m) + γm · lk(bk(m)) (8)

bk(m+ 1) = Bk
eZk(m+1)

1 + eZk(m+1)
(9)

Equation (8) predicts the optimal bids at the next auction,
where k represents the k-th SP and m is the iteration of the
association game between users and SPs; Zk(m) represents
the recursive score calculated by adding the SP marginal utility
lk(bk(m)) to the score at iteration m, where bk(m) is fronthaul
bandiwidth allocated to SPk fronthaul bandwidth; γm is the
step size equal to γm = 1

m . The calculated score Zk(m + 1)
for m+ 1 is then used in a sigmoid function given in Eq. (9)
to determine the optimal bandwidth request for the next game
iteration bk(m+1), which is a proportion of the total available
bandwidth in all fronthaul paths, represented with Bk.

The score calculation in Eq. (8) aims to calculate the
Stackelberg equilibrium of the user association game. Stack-
elberg equilibrium can be solved with backward induction
method [7], meaning that first solving the optimal outcome
for the users and then computing the optimal choice of
SPs provides the desired solution. Applying this method and
starting with the follower game, it can be stated that user
side equilibrium is reached when the utility of all users are
equal, i.e. Uuser,n = Uuser,n′ , for all n, n′ ∈ S [12]. This user

Fig. 2: Game sequence diagram between InP, SP and users.

TABLE I: Simulation parameters.

User α1 = 2, α2 = 1, α3 = 1

SP β1 = 1, β2 = 2, puser = 1

Path bmax = 100MHz, duser = 5ms

Rate LF = 0.5, OF = 0.2

side equilibrium distribution is indicated with n∗. Given n∗,
a profile is the Stackelberg equilibrium for service providers
when USP,k(b∗, n∗) ≥ USP,k(b, n∗) for all SPk, where b ∈ Ψ
is any bandwidth vector that contains bandwidth requests of
each service provider, Ψ is the set of all bandwidth vectors,
and b∗ ∈ Ψ indicates the bandwidth vector that satisfies
the equilibrium condition b∗ = argmaxUSP,k(bk, b∗−k, n∗).
Finally, the sequence diagram of the game that includes both
InP auction and user association is given in Fig. 2.

III. RESULTS

To evaluate the proposed resource allocation and auction
mechanisms, the game is played with one InP and three SPs.
The total number of iterations i and auction rounds t are equal
to ten, with the price descending one unit price from ten to
one. Each fronthaul path to RRH has a maximum bandwidth of
100 MHz. The transmitter power Ptx is set to 30 dBm [17], and
overhead and loss factors OF and LF are used in the SINR to
rate conversion [11]; Table I lists the simulation parameters.

In order to observe the convergence behavior of the game
in a path distribution that cannot be allocated equally by all
SPs, the game is played with 100 users and 7 fronthaul paths.
We assume that the users do not disconnect or hand over to
other RRHs during the game. The price and delay values for
the users are kept constant. As for the weighting parameters,
in α1 in Eq. (4) is given a higher value to be able to observe
the impact of the data rate on the switching behavior of users.
Similarly, β2 in Eq. (7) is higher than β1 for SPs to avoid
high payments from SPs to the InP. Figure 3 displays the
distribution of the paths allocated by each SP, users connected
(nk) to each SP, and the recursive score (Zk(m)) values of SPs
at each game iteration. Fig. 4 shows the data rate distribution
of all users and the total number of users changing their SP
association at each game iteration.



Fig. 3: SP path allocation, user number, and marginal utility
values.

The SPs have an initial user association distribution of
[34, 33, 33]. One extra user increases the recursive score of
SP1 when compared to SP2 and SP3, as shown in Fig. 3.
As an expected outcome, SP1 bids more for the paths and
gets 3 paths at the end of the first iteration, with overall path
allocation distributed as [3, 2, 2]. The user distribution at the
end of the first iteration is recorded as [36, 31, 33]. As seen
from the first iteration in Fig. 3, there is a negative difference
between the proportion of allocated paths and the number
of users of SP1, resulting in a higher negative difference in
the recursive score of SP1, as score is calculated for the n∗
profile of the Stackelberg game. The difference between the
n∗ profile and the actual user distribution is due to the fact that
switching the association is a probabilistic function; therefore
a user might remain connected to the same SP despite having
a lower utility than the average utility. The difference between
the average user utility and the user’s current utility determines
the probability to switch, and this probability is low in the
first round as the game starts with a nearly uniform user-SP
distribution.

The bids for the auction in iteration i = 2 is based on the
SP recursive score values in Fig. 3. The scores indicate that
SP2 and SP3 start demanding fronthaul paths at higher prices
than SP1. As a result, overall path allocation in iteration i = 2
ends as [1, 4, 2], and the user distribution. If there is a tie in
the bids of the SPs in the auction, the additional paths are
distributed at random such that the maximum demand of any
SPs is not exceeded [6]. In the given example, the ties are
randomly broken in favor of SP2. The user distribution at the
end of i = 2 is [23, 40, 37]. SP2 has a lower number of users

Fig. 4: User data rate distribution and total number of users
changing their SP association at each iteration.

than the n∗ profile of this iteration, which is theoretically close
to [14, 57, 29]. whereas SP1 and SP3 have higher recursive
scores. Consequently, iteration i = 3 ends with [2,1,4] path
allocation. The SP that has more allocated paths also cannot
reach the expected utility by reaching the n∗ profile in the user
distribution in i = 4 and i = 5. As seen from Fig. 4, the data
rate provided to users after the first round expands to a large
interval due to the changes in SP path allocation. For instance,
the data rate difference between the user that obtains the best
data rate and the worst data rate is higher than 70 Mbps at
game iteration i = 4. It can also be observed that the number
of users that change their association is high, as more than 12
users change their association in each round between i = 2
and i = 4. While not reaching their expected utility values,
SPs demand paths by increasing the price of their bids, which
can be observed in the increase in the InP revenue for 7 paths
in Fig. 6. InP revenue at each round is a direct result of the
increase in SPs payments.

The auction ends with a [3, 2, 2] distribution for seven paths
after game iteration i = 6, and the SP path demands converge
to this distribution in the following rounds, as seen in Fig. 3.
The user distribution at the end of the last iteration is [43,
27, 30], which is close to the n∗ profile for the identical
users. The total number of users switching decays after i = 6,
and the data rate difference between least well-off and the
best performing user is minimized, with all users concentrated
around the mean data rate value of 37.5 Mbps, as the game
converges to an equilibrium. Fig. 4 demonstrates that the
convergence behavior of users differs from the classical idea
of convergence at the equilibrium due to the probabilistic
switching function of users. However, a distance minimization
to a particular n∗ profile is achieved in the user distribution,
as the number of users switching after the SP path allocation



Fig. 5: The difference between average user utility and least
well-off user utility for switching and no switching scenarios.

Fig. 6: InP revenue evolution for 3 SPs and 100 users and
different numbers of paths.

convergence is sufficiently small. Hence, it can be concluded
that Vickrey-Dutch auction with VCG outcomes and Stack-
elberg game solved with exponential reinforcement learning
provide a profit—social welfare trade-off for non-cooperative
SPs in sharing fronthaul resources.

Finally, we discuss the user utility of the least well-off user
with increasing number of users and InP revenue with different
numbers of paths in auction. Fig. 5 shows the difference ∆U
between the average utility of all users and the least well-off
user utility for a range of users between 50 and 500. The utility
values with user decision-making and no decision-making are
compared, and it is shown that the utility of the least well-off
user improves with simple decision-making with increasing
number of users. Thus, the InP also increases social welfare by
sharing average user utility value with the users. InP revenue
in Fig. 6 is evaluated for cases from seven to ten paths with
100 users. The markers indicate the revenue obtained in that
iteration. InP revenue increases with the increasing number
of paths, with SP provider bids reaching an equilibrium point
after eight iterations in all cases.

IV. CONCLUSIONS

This study focuses on a distributed network management
paradigm, in which InP and SP profits are optimized with an
iterative descending Vickrey-Dutch auction. Besides, the inter-
action among users and SPs is modeled as a Stackelberg game.
SP side learning is handled with reinforcement learning, and

users change their SP association based on utility comparison.
The results show that a balanced profit—social welfare trade-
off can be achieved with distributed decision making. Different
game outcomes can be achieved by adjusting the system pa-
rameters, and these results can be exploited especially during
a pre-deployment phase in which different fronthaul topology
options can be simulated to reach a desired market solution
by choosing the optimal profit-making topology.
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