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A B S T R A C T

In this paper, battery overpotential model identification approaches based on local and global Linear
Parameter-Varying (LPV) input–output models are developed. Key features such as model structure, number
of local models, and type and order of basis functions are considered. The LPVcore toolbox (Boef, 2021) has
been used to solve the global identification problems. Furthermore, an iterative scheme is proposed which
identifies a complete empirical battery model, i.e., both the ElectroMotive Force (EMF), also known as open-
circuit voltage, and the overpotential model. This is achieved by iteratively obtaining an EMF realisation by
(1) subtracting the modelled overpotential from a measured terminal voltage resulting from Constant-Current
(CC) (dis)charging, and (2) using this EMF to calculate the overpotential from dynamic (dis)charging data and
identifying an overpotential model using the LPV methods. This approach results in an empirical battery model
with a precision similar (around 4 mV root-mean-square error in the range between 100% and 20% SoC) to
models identified through a common cascaded approach in which the EMF is obtained separately from, e.g.,
pulse-(dis)charge data, but requires less measurement data resulting in a reduction factor in the order of 7 to
35 in terms of required experiment time.
1. Introduction

Li-ion batteries need to be closely monitored to use them safely and
effectively. To do so, a Battery Management System (BMS) will measure
the current, voltage and temperature of the battery at all times and will
ensure that these indicators remain within safe boundaries [1]. Using
the measurements quantities, the BMS does not only ensure safety,
but also estimates internal information from the battery and make
both long- and short-term predictions of several battery states using
models which describe the relations between external measurements
and internal processes or states. These models can generally be divided
into electrochemical and empirical models, where the former focus on
accurately describing internal battery processes which can for instance
be used to minimise ageing, see, e.g., [2,3], and the latter excels
at predicting the battery terminal voltage as a result of the applied
current [4,5].

Due to their relative simplicity compared to electrochemical models,
empirical models are currently the most commonly applied type of
model in BMSs. Most popularly, they are known and used in the form
of Equivalent-Circuit Models (ECMs), see, e.g., [5,6], where the battery
behaviour is modelled by several linear [5], or nonlinear electrical
components, to ensure accuracy over a wide range of frequencies [7].
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E-mail addresses: f.s.j.hoekstra@tue.nl (F.S.J. Hoekstra), m.c.f.donkers@tue.nl (M.C.F. Donkers), h.j.bergveld@tue.nl (H.J. Bergveld).

However, for an application such as an electric vehicle, which ex-
hibits primarily low-frequency behaviour, the inclusion of nonlinear
elements may result in unnecessarily complicated models, while hardly
contributing to its overall accuracy [7]. Instead, a more meaningful
contribution is established by assuring model accuracy over a wide
range of operating conditions. An additional benefit of empirical mod-
els is also that incorporating these dependencies is also readily possible.
While a high level of accuracy can be attained by identifying an
SoC- and temperature-dependent model, see, e.g., [8,9], it is not clear
from literature how to do so in a consistent and concise manner, see,
e.g., [4,5,7,9,10].

To better understand the available options in modelling such a lin-
ear, but external-variable- or state-dependent model, note that this type
of model is known as a Linear Parameter-Varying (LPV) model [11],
where the variable on which the behaviour depends is referred to
as the scheduling variable. In terms of identification approaches, a
distinction can be made between local and global methods. The local
approach models the local system behaviour, i.e., at a fixed value
of the scheduling variable, using well-known Linear Time-Invariant
(LTI) system identification techniques. By repeating this for multiple
values of the scheduling variable and by subsequently interpolating
vailable online 30 March 2023
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between the obtained local models, one can describe the complete
battery behaviour as a function of that particular scheduling variable.
This is also a common approach in battery modelling, where model
parameters are often said to be defined by lookup tables that describe
certain dependencies, see, e.g., [7,10]. On the other hand, the global
approach directly identifies the battery behaviour as a function of the
scheduling variable. This is attractive in terms of modelling as it negates
the effect of interpolating between local models and sometimes may
even be necessary as it may be impossible to excite the battery without
significantly changing the scheduling variable, see, e.g., [12]. In terms
of global LPV identification methods, these can generally be split
into Input–Output (IO) model-based approaches, see, e.g., [13], and
State-Space (SS)-oriented approaches, see, e.g., [14,15]. The interest
in modelling batteries using global LPV approaches has been limited,
see, e.g., [16], where a general nonlinear optimisation approach was
applied and [17,18] in which sub-space methods have been used, which
is an LPV-SS method. To the authors’ knowledge, LPV-IO methods have
not been used before for modelling batteries, while these methods can
be attractive from a computational point of view.

Besides the overpotential model, the empirical battery model also
requires an ElectroMotive-Force (EMF) model, also known as open-
circuit voltage. Typically, a cascaded identification approach is applied
in which the EMF has been predetermined and can be subtracted from
the terminal voltage, thus obtaining locally linear overpotential be-
haviour, which can be modelled using the aforementioned approaches.
In these cases, the EMF has been determined through one of various
methods, such as pulse-(dis)charge experiments or extra- or interpo-
lation approaches, which rely on Constant-Current (CC) (dis)charge
experiments. Although seemingly disjoint, these approaches still im-
plicitly assume an overpotential model. For example, for pulsed ex-
periments it is assumed that the overpotential is zero at some point
after each pulse and for inter- and extrapolation-methods a polynomial
overpotential function is assumed with respect to current. Instead of
treating the modelling of the EMF and overpotential as two distinctly
disjoint parts, it could also be possible to leverage this interaction
to minimise the overall voltage prediction error of the model or to
decrease the required experiment time, which is significant for the
methods which are currently available [19].

In this paper, local and global IO-model-based LPV identification
strategies are developed for empirically modelling the overpotential
and an iterative scheme is proposed which identifies both the EMF and
the overpotential model and requires only a limited amount of data.
The LPV methods are applied for modelling the SoC dependency of the
overpotential and the effect of different choices such as model struc-
ture, number of local models and type of basis functions is considered.
By using accurate data and EMF realisations from [19], the best overpo-
tential modelling strategy is determined for the classical disjoint EMF
and overpotential modelling approach. Subsequently, these approaches
are then used in the iterative scheme and the obtained results in terms
of voltage prediction and SoC estimation error of the complete model
are compared to those achieved in [19].

The outline of this paper is as follows. In Section 2, LPV model iden-
tification approaches are discussed for modelling general overpotential
dependencies. In Section 3, the iterative scheme is proposed and its
boundary conditions are discussed. In Section 4, modelling results for
both the separate overpotential modelling and the iterative method are
presented. Finally, conclusions are drawn in Section 5.

2. Linear parameter-varying overpotential modelling

The battery model assumed in this paper is given by

𝑝 𝑢
2

𝑦̂𝑘 = 𝑔(𝑠𝑘) + ℎ(𝑝𝑝𝑘, 𝑢𝑢𝑘, 𝛩) (1)
with time 𝑘 ∈ N, the predicted terminal voltage 𝑦̂𝑘 with the hat
indicating prediction, the Electromotive-Force (EMF) 𝑔(𝑠𝑘), the SoC 𝑠𝑘
iven by

𝑘 = 𝑠0 +
𝑘
∑

𝑖=0

𝜏𝑢𝑖
𝐶0

, (2)

with 𝐶0 [As] the cell capacity, 𝑢𝑘 the model input, which is the current
applied to the battery and 𝜏 is the model sampling time. Furthermore,
ℎ(𝑝𝑝𝑝𝑘, 𝑢𝑢𝑢𝑘, 𝛩) is the overpotential model with 𝑝𝑝𝑝𝑘 = {𝑝0,… , 𝑝𝑘} the collec-
tion of one or multiple scheduling variables of the current and past
time instances making (1) a Linear Parameter-Varying (LPV) model,
𝑢𝑘 = {𝑢0,… , 𝑢𝑘} is the collection of model inputs, and 𝛩 the set of model
parameters. A common choice for ℎ(𝑝𝑝𝑝𝑘, 𝑢𝑢𝑢𝑘, 𝛩) is to make it a solution
of a difference equation in the shape of an SS model, as given by

𝑜𝑘+1 =
⎡

⎢

⎢

⎣

𝜃1,1(𝑝𝑘) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜃1,𝑁 (𝑝𝑘)

⎤

⎥

⎥

⎦

𝑜𝑘 +
⎡

⎢

⎢

⎣

𝜃2,1(𝑝𝑘)
⋮

𝜃2,𝑁 (𝑝𝑘)

⎤

⎥

⎥

⎦

𝑢𝑘, (3a)

𝑦̂𝑜𝑘 = 𝐶𝑜𝑘 + 𝜃3(𝑝𝑘)𝑢𝑘, (3b)

with 𝑜𝑘 ∈ R𝑁×1 the dynamic part of the overpotential with 𝑁 the
system order, 𝑦̂𝑜𝑘 the total predicted overpotential, 𝜃1,𝑖(𝑝𝑘) with 𝑖 ∈
{1,… , 𝑁} the overpotential relaxation rate, 𝜃2,𝑖(𝑝𝑘) the overpotential
increase due to applied current, 𝐶 = [1,… , 1] ∈ R1×𝑁 and 𝜃3(𝑝𝑘) which
represents the Ohmic resistance and all high-frequency impedances,
i.e., higher than the model sampling frequency. The applied model is
the same as an ECM, but without transforming the parameters to R and
C values, see, e.g., [20], for details on their equivalence. In this paper,
it is assumed that the model order 𝑁 = 1, such that (3) is a first-order
model with 𝜃1,1 = 𝜃1 and 𝜃2,1 = 𝜃2. However, note that the presented
methods are also valid for higher-order systems. The choice for 𝑁 = 1
is often considered sufficient, as was demonstrated in [21].

The battery overpotential model (3) is presented in State-Space (SS)
form, as this is also the representation used for common battery model
applications such as state estimation or model-predictive control. Iden-
tifying the LPV overpotential model can be done using a broad range
of approaches, see [11] for an overview. Typically, these approaches
either rely on LPV-SS or LPV-IO model representations, which in turn
are associated with different identification algorithms. For instance, for
LPV-SS modelling there are gradient-based methods, see, e.g., [14],
but also subspace-based methods, see, e.g., [15]. On the other hand,
for IO representations there are linear-regression-based approaches,
see, e.g., [22], which are computationally attractive. The need for
direct identification of LPV-SS models is often motivated from a control
perspective, as most LPV control-design strategies are based on SS
models, see, e.g., [23]. Besides this, the use of direct-SS approaches
can be desired if a specific SS model structure needs to be preserved,
for instance in grey-box modelling, which is similar to the motivation
for LTI SS models [24].

For electrical modelling of batteries, the focus is often on accurate
modelling of the battery terminal voltage, where no specific model
structure or knowledge on the internal state is desired. This allows the
use of black-box modelling, specifically the use of IO-based approaches.
Due to its computational benefits, the focus of this paper will be on
model identification using IO-based representations. The general LPV-
IO model equivalent of the overpotential SS model in (3) is given by

𝐴(𝑞, 𝑝𝑘)𝑦𝑜𝑘 =
𝐵(𝑞, 𝑝𝑘)
𝐹 (𝑞, 𝑝𝑘)

𝑢𝑘 + 𝑒𝑘 (4)

where 𝑞 is the shift operator, i.e., 𝑞−1𝑥𝑘 = 𝑥𝑘−1, 𝑒𝑘 is the noise and the
measured’ overpotential 𝑦𝑜𝑘 given by

𝑦𝑜𝑘 = 𝑦𝑘 − 𝑔(𝑠𝑘), (5)
where 𝑦𝑘 is the measured terminal voltage.
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2.1. IO model structures

The exact realisation of (4) depends on the selected model structure,
i.e., which noise model is applied. In this paper, two specific structures
are considered, namely AutoRegressive with eXogenous input (ARX),
which is given by

𝐴(𝑞, 𝑝) = 1 + 𝑎1(𝑞−1𝑝) 𝑞−1, 𝐹 (𝑞, 𝑝) = 1,

𝐵(𝑞, 𝑝) = 𝑏0(𝑝) + 𝑏1(𝑞−1𝑝) 𝑞−1, (6)

and secondly, Output-Error (OE), which is given by

𝐴(𝑞, 𝑝) = 1, 𝐹 (𝑞, 𝑝) = 1 + 𝑓1(𝑞−1𝑝) 𝑞−1,

𝐵(𝑞, 𝑝) = 𝑏0(𝑝) + 𝑏1(𝑞−1𝑝) 𝑞−1. (7)

In (6) and (7), the parameters depend dynamically on 𝑝, i.e., the time-
shifted version of 𝑝. This ensures that the IO parameters map to SS
parameters according to

𝜃1(𝑝) = −𝑎1(𝑝), 𝜃2(𝑝) = 𝑏1(𝑝) − 𝑎1(𝑝)𝑏0(𝑝), 𝜃3(𝑝) = 𝑏0(𝑝), (8)

and

𝜃1(𝑝) = −𝑓1(𝑝), 𝜃2(𝑝) = 𝑏1(𝑝) − 𝑓1(𝑝)𝑏0(𝑝), 𝜃3(𝑝) = 𝑏0(𝑝), (9)

for ARX and OE, respectively, where 𝜃1, 𝜃2 and 𝜃3 only depend on 𝑝
as in (3), and not the shifted version of 𝑝, i.e., 𝑞−1𝑝, see [25] for the
derivation. Assuming a static dependency on 𝑝 in (4) and ignoring the
consequent dynamic dependency after transformation to SS leads to an
approximation error, as explained in [25]. For batteries, this error is
small as long as the model sampling time is relatively low with respect
to the slow changing scheduling variables, such as SoC or temperature.

While these models share the same plant model, they differentiate
themselves through the way that they deal with the presence of noise.
In case of battery modelling, which is a complex electrochemical sys-
tem, noise should be interpreted as all parts of the behaviour of the
battery which cannot be captured by (4) and thus represents unmod-
elled dynamics. There are two consequences to this observation with
respect to which model structure would be most suitable for modelling
battery behaviour. First, we should consider the nature of that part of
the behaviour of the battery that cannot be captured, i.e., the nature
of the noise. Second, as the models can only describe a part of the full
battery dynamics, their approximate modelling characteristics need to
be considered.

Let us first consider the battery behaviour that cannot be modelled.
When modelling the overpotential 𝑦̂𝑜, one should recognise that an
SoC-dependent offset can occur through the use of an incorrect EMF
𝑔(𝑠𝑘), as can be deduced from (5). As shown in [19], the validity of
the applied realisation 𝑔(𝑠𝑘) has a large impact on the overall model
accuracy. These errors are most pronounced in the relaxation behaviour
of the overpotential, which is modelled by 𝐴 or 𝐹 in (4). With respect
to the choice of type of IO model, the reasoning is that the behaviour
of the model errors is similar to that of the relaxation of the battery.
Hence, ARX, where the noise model is given by 1

𝐴(𝑞,𝑝) , is deemed to be

more suitable compared to OE, whose noise model equals 1 and thus
assumes that the output is directly affected by white noise.

Secondly, when applying the Prediction-Error Minimisation (PEM)
framework to identify models, see [24], which cannot fully describe the
true system, also known as approximate modelling, it is known that
ARX and OE have a different modelling focus. Since the noise model
for OE equals 1, this means that all frequencies are weighed equally.
However, the noise model of the ARX structure results in a high-pass
filter, thus emphasising the high-frequency content of the model. Re-
membering that most errors are likely to be in the relaxation behaviour,
which is low-frequency, it could be that OE is more susceptible to this
type of error. On the other hand, low-frequency behaviour does have a
dominant share in the prediction error. Thus, if the EMF is correct, OE
could potentially focus more strongly on the low-frequency behaviour,
3

thus resulting in a lower prediction error.
2.2. Local approach

In terms of the parametrisation of (4), one can use either the local
or the global modelling approach, as discussed in the introduction. For
a comprehensive overview of both of these methods for the case of
IO models, see [13]. The local approach relies on the principle that if
the scheduling variable of the system is (approximately) constant while
the system is excited, then its behaviour can be modelled as LTI. By
repeating this for different values of the scheduling variable, multiple
LTI models can be identified which together represent the system
behaviour over the whole range of the scheduling variable. From an
experimental perspective, this can mean that the battery is excited
at distinct operating points, for example at different temperatures.
However, it is also possible to apply continuous excitation while the
scheduling variable changes slowly. By dividing this data into several
segments, where the change in scheduling variable is minor within each
segment, it is also possible to approximate the behaviour at each piece
using an LTI model.

More formally, for total data length 𝐾, we can have individual
ata segments 𝑚 = {𝐾𝑚−1,… , 𝐾𝑚 − 1} with 𝐾𝑚−1 < 𝐾𝑚, 𝐾0 = 0,

𝐾𝑀 = 𝐾, and 𝑚 = {1,… ,𝑀} is the interval number with 𝑀 the total
number of intervals. Subsequently, at each local data set we consider
the one-step-ahead predictor 𝑦̂𝑜𝑘|𝑘−1, see [24] for the derivation, given
by

𝑦̂𝑜𝑘|𝑘−1 =
𝐵𝑚(𝑞)
𝐹𝑚(𝑞)

𝑢𝑘 +
(

1 − 𝐴𝑚(𝑞)
)

𝑦𝑜𝑘, (10)

hose parameters 𝛩𝑚 = (𝑎1,𝑚, 𝑓1,𝑚, 𝑏0,𝑚, 𝑏1,𝑚) are estimated by solving
he least-squares problem

in
𝛩𝑚

∑

𝑘∈𝑚

(

𝑦𝑜𝑘 − 𝑦̂𝑜𝑘|𝑘−1
)2

, (11)

hich can be solved using LTI system identification techniques. By
olving (11) subject to (10) for each interval of the experimental data
𝑚, a collection of local models is obtained. The remaining step is

o link these models to their corresponding value of the scheduling
ariable, thus obtaining a set of 𝑝-dependent parameters. Therefore, the
verage value of 𝑝 of the corresponding interval, given by

𝑝𝑚 = 1
𝐾𝑚−𝐾𝑚−1

∑

𝑘∈𝑚

𝑝𝑘, (12)

here 𝐾𝑚 − 𝐾𝑚−1 is the number of elements of set 𝑚, is assigned to
ach set of parameters 𝛩𝑚, thus describing the complete parameter set
= (𝛩1,… , 𝛩𝑀 ) over 𝑝. The transformation of the ARX structure to SS

parameters used in (3), is given by

𝜃1(𝑝) = {−𝑎1,1,… ,−𝑎1,𝑀},

𝜃2(𝑝) = {(𝑏1,1 − 𝑎1,1𝑏0,1),… , (𝑏1,𝑀 − 𝑎1,𝑀𝑏0,𝑀 )}, (13)

𝜃3(𝑝) = {𝑏0,1,… , 𝑏0,𝑀},

where substituting 𝑎1,𝑚 with 𝑓1,𝑚 yields the SS parameters for the OE
structure. The values in between the scheduling points are found by in-
terpolating between the local LTI models with respect to the scheduling
variable. Alternatively, one could also interpolate the inputs or outputs
of the different LTI models, but for batteries the common choice is
to interpolate the model parameters. Note that 𝑀 = 1 yields an LTI
model and is thus omitted from the interval options. A benefit of the
local approach is that (11) can be solved using well-known LTI system
identification techniques, which for an ARX model structure yields a
convex optimisation problem that can be solved analytically, and for
OE, which results in a non-convex problem, well-known gradient or

subspace-based methods can be applied.
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2.3. Global approach

A drawback to the local approach is that this method, depending on
the system or type of scheduling variable, may not always be feasible.
For instance, if the scheduling variable is also a system state, it may
not be possible to excite the system without significantly changing the
scheduling variable. In that case, the global approach provides a good
alternative, as it estimates the parametric dependency of the model
based on a single data set in which the scheduling variable changes
continuously. For the global approach, we consider the one-step-ahead
predictor 𝑦̂𝑜𝑘|𝑘−1, similar to (10), given by

𝑦̂𝑜𝑘|𝑘−1 =
𝐵(𝑞, 𝑝𝑘)
𝐹 (𝑞, 𝑝𝑘)

𝑢𝑘 +
(

1 − 𝐴(𝑞, 𝑝𝑘)
)

𝑦𝑜𝑘, (14)

with 𝐴(𝑞, 𝑝𝑘), 𝐹 (𝑞, 𝑝𝑘) and 𝐵(𝑞, 𝑝𝑘) according to (6) or (7), where its
corresponding parameters are estimated by

min
𝛩

∑

𝑘∈

(

𝑦𝑜𝑘 − 𝑦̂𝑜𝑘|𝑘−1
)2

, (15)

subject to (14), with 𝛩 =
(

𝑎1(𝑞−1𝑝), 𝑓1(𝑞−1𝑝), 𝑏0(𝑝), 𝑏1(𝑞−1𝑝)
)

the pa-

rameters obtained via the global approach and where  = {0,… , 𝐾}
denotes the complete data set in which 𝑝 changes dynamically. Opposed
to the local problem (11), solving (15) is not trivial. In this paper,
the LPVcore toolbox of [26] is used to solve the global identification
problem, which in turn applies the approach of [22].

For the global approach, one is required to select basis functions
which describe the structure of the dependency of the parameters
𝑎1(𝑞−1𝑝), 𝑓1(𝑞−1𝑝), 𝑏0(𝑝) and 𝑏1(𝑞−1𝑝) on the scheduling variable 𝑝𝑘. For
most global modelling algorithms to work, the basis function should be
linear-in-the-parameters [13]. Therefore, a common choice is to assume
that the parameters have a polynomial dependency, according to
(

𝑎1(𝑞−1𝑝), 𝑓1(𝑞−1𝑝), 𝑏0(𝑝), 𝑏1(𝑞−1𝑝)
)

=
𝑁
∑

𝑛=0
𝜙𝑛𝑝

𝑛, (16)

with the polynomial index 𝑛 = {0,… , 𝑁} with 𝑁 the polynomial order
and 𝜙𝑛 its free parameters. While this does not require any knowledge
on the model dependency, it may not be an efficient parametrisation
because relatively high-order polynomials could be required to accu-
rately describe the dynamics. For batteries, it is also been successful to
apply exponential basis functions
(

𝑎1(𝑞−1𝑝), 𝑓1(𝑞−1𝑝), 𝑏0(𝑝), 𝑏1(𝑞−1𝑝)
)

= 𝜙0 + 𝜙1𝑒
𝛽𝑠, (17)

for modelling the SoC dependency [27] or temperature dependency
[12]. Determining whether or not a basis function is suitable can
readily be done by first applying the local approach to see what the
general trend of the dependency looks like. In case of modelling the
temperature dependency, one can also reason from a physics-informed
point of view/use a grey-box approach. Namely, a battery is an electro-
chemical system and its internal processes are temperature-dependent
according to an Arrhenius (exponential) type of relation and hence
exponential basis functions (17) could be effective. The only caveat
here is that 𝛽 in (17) is not an linear parameter, and therefore it
must be estimated a priori. In practice, this can be done by fitting the
exponential relation on a number of local realisations of the model, as
will be shown in Section 4. Overall, the exponential basis functions can
reduce the number of parameters, while increasing or maintaining the
accuracy of the model, as will also be shown in Section 4.

3. Iterative complete battery model identification

In Section 2, a model of the EMF 𝑔(𝑠𝑘) is required to model the
overpotential behaviour ℎ(𝑝𝑝𝑝𝑘, 𝑢𝑢𝑢𝑘, 𝛩). As discussed in [19], the iden-
tification of an accurate 𝑔(𝑠𝑘) through conventional approaches is
time-consuming, while also modelling the EMF typically requires some
4

model of the overpotential. In this paper, we propose to set aside
Fig. 1. Illustration of the iterative modelling approach, with 𝑔̂(𝑠𝑐𝑐𝑘 ) = 𝑦𝑠𝑠𝑘 −ℎ(𝑠𝑠𝑠𝑐𝑐𝑘 , 𝑢𝑢𝑢𝑐𝑐𝑘 , 𝛩𝑖)
and 𝑦𝑜,𝑑𝑘 = 𝑦𝑑𝑘 − 𝑔𝑖+1(𝑠𝑑𝑘 ), as given in Step 3.3 and 4.3 of the algorithm, respectively.

the decoupled modelling strategy, in which first the EMF is identified
and subsequently the overpotential model. This leads to a speedup, as
leveraging this relationship allows us to use data which requires less
experiment time. Therefore, we propose a direct identification of the
complete battery model, as given by

min
𝑔(𝑠𝑘),𝛩

∑

𝑘∈

(

𝑦𝑘 − 𝑔(𝑠𝑘) − ℎ(𝑝𝑝𝑝𝑘, 𝑢𝑢𝑢𝑘, 𝛩)
)2

. (18)

Problem (18) is hard to solve due to the large degree of freedom that
the combination of 𝑔(𝑠𝑘) and ℎ(𝑝𝑝𝑝𝑘, 𝑢𝑢𝑢𝑘, 𝛩) gives. For this reason, it cannot
be readily solved using standard nonlinear optimisation algorithms, as
for instance attempted in [16].

To understand the approach that will be proposed in this section, let
us first briefly consider the hypothetical case in which the overpotential
model parameters 𝛩 are known, but the EMF model 𝑔(𝑠𝑘) is not. The
EMF could be determined by simply reversing the order of (5), such
that we have

𝑔(𝑠𝑘) = 𝑦𝑘 − ℎ(𝑝𝑝𝑝𝑘, 𝑢𝑢𝑢𝑘, 𝛩), (19)

where 𝑦𝑘 could be any terminal voltage measurement where the cor-
responding current 𝑢𝑢𝑢𝑘 should establish a significant coverage of the
domain of 𝑠𝑘 according to (2), i.e., the SoC on which the EMF depends.
By considering (19), (5) and either (11) or (15) in an iterative fashion,
one can come to successive estimates of 𝑔(𝑠𝑘) and 𝛩. Based on this
principle, we propose the iterative identification scheme as provided
by Algorithm 1, where we update the EMF model based on the over-
potential model (Step 3.3) and subsequently update the overpotential
model based on the improved EMF model (Step 4.4). A schematic
representation of this is shown in Fig. 1. Due to the primary dependency
of 𝑔(𝑠𝑘) on the SoC, it is vital that 𝑝𝑘 in ℎ(𝑝𝑝𝑝𝑘, 𝑢𝑢𝑢𝑘, 𝛩) at least includes SoC.

𝑝 𝑠
For clarity, we will denote 𝑝𝑝𝑘 = 𝑠𝑠𝑘, with 𝑠𝑘 according to (2).
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This approach requires the selection of an initial guess of the
overpotential model 𝛩0 which can be a simple LTI model to start off,
step size 𝛼 ∈ (0, 1] which controls the convergence rate, with 𝛼 = 1
onstituting a full step, i.e., direct adaptation of a new estimate, and
< 1 a blend with previous estimates, and termination criterion

. In order to obtain meaningful results using this approach and to
olve Problem (18), we first consider the applied data on which the
odel is identified. Two different measurements of 𝑦𝑘 are used in Steps
.3 and 4.3, namely Constant-Current (CC) (dis)charge, denoted by
uperscript 𝑐𝑐, and dynamic (dis)charge data, denoted by superscript
, respectively. These data sets are associated with SoC windows 𝑠𝑐𝑐𝑘
nd 𝑠𝑑𝑘 , respectively. The resulting 𝑔(𝑠𝑘) has SoC range 𝑠𝑘∈ ∈  =
min({𝑠𝑐𝑐𝑘∈}∩{𝑠

𝑑
𝑘∈}),max({𝑠𝑐𝑐𝑘∈}∩{𝑠

𝑑
𝑘∈})]. The use of CC (dis)charge

ata is important as this results in a smooth and often monotone realisa-
ion of 𝑦𝑐𝑐𝑘 −ℎ(𝑠𝑠𝑠𝑐𝑐𝑘 , 𝑢𝑢𝑢𝑐𝑐𝑘 , 𝛩), thus simplifying Step 3.4 of the algorithm. On
he other hand, the dynamic (dis)charge cycle is required to sufficiently
xcite the dynamics of the overpotential, which is critical for correctly
stimating 𝛩𝑖+1.

Besides selecting the data, we also restrict the freedom in 𝑔(𝑠𝑘) to
imit susceptibility to overfitting. Three constraints are imposed on the
nitial realisation of 𝑔(𝑠𝑘) obtained through (19), namely:

1. An upper- or lower-bound is imposed on the EMF, according to
𝑔(𝑠⋆) = 𝑦⋆, with 𝑦⋆ a relaxed terminal voltage at SoC-point 𝑠⋆ =
max({𝑠𝑐𝑐𝑘∈}∩{𝑠

𝑑
𝑘∈}) after charging or 𝑠⋆ = min({𝑠𝑐𝑐𝑘∈}∩{𝑠

𝑑
𝑘∈})

after discharging, respectively. The voltage bound 𝑦⋆ is given
by the relaxed voltage after (dis)charging corresponding to the
data with the most restrictive SoC window. In the top window of
Fig. 1, it is shown how a point (𝑠⋆, 𝑦⋆) is used as a lower bound
for a discharging EMF.

2. 𝑔(𝑠𝑘) must be a monotonically increasing function of SoC, i.e.,
𝑔(𝑠1) < 𝑔(𝑠2) for all 𝑠1 < 𝑠2.

3. The enforced upper- or lower-bound must preserve the shape of
the EMF according to
𝑔(𝑠𝑗 ) − 𝑦⋆

𝑠𝑗 − 𝑠⋆
≥

𝑔(𝑠𝑗+1) − 𝑔(𝑠𝑗 )
𝑠𝑗+1 − 𝑠𝑗

, (20)

for discharging and
𝑦⋆ − 𝑔(𝑠𝐽−𝑗 )
𝑠⋆ − 𝑠𝐽−𝑗

≥
𝑔(𝑠𝐽−𝑗 ) − 𝑔(𝑠𝐽−𝑗−1)

𝑠𝐽−𝑗 − 𝑠𝐽−𝑗−1
, (21)

for charging, where 𝐽 is the maximum number of partitions
of 𝑔(𝑠). Enforcing the constraints is done by simply stepping
from 𝑗 = 1 to 𝐽 , until (20) or (21) is satisfied after which
𝑔(𝑠) = {𝑦⋆ 𝑔(𝑠𝑗 ),… , 𝑔(𝑠𝐽 )} or 𝑔(𝑠) = {𝑔(𝑠1),… , 𝑔(𝑠𝐽−𝑗 ) 𝑦⋆}, for
discharging and charging, respectively. In the top window of
Fig. 1, the part of the green line (𝑔𝑖+1(𝑠𝑐𝑐𝑘 ) connecting (𝑠⋆, 𝑦⋆)
and the dashed red line is the result of forcing monotonicity on
the gradient according to (21).

Lastly, note that the absolute values of the SoC range underpinning
the obtained model are somewhat arbitrary, i.e., as long as 𝑔 and ℎ
are characterised with respect to the same frame of reference, which
is ensured by choosing 𝑠𝑑1 based on 𝑔 in Step 4.2, the model produces
accurate voltage predictions, no matter what the selected initial SoC
𝑠𝑐𝑐1 in Step 3.2 is. However, to operate within the commonly accepted
frame of reference that 𝑠 = 1 equals fully charged, we can set 𝑠𝑐𝑐1 =
1 for CC-discharge curves, thus assuming a fully charged condition
before commencing discharging. For CC-charging, it is possible to
track the level of discharging that occurred before the CC-charging
started. If this discharging commenced from a fully charged condition,
i.e., 𝑠 = 1, one can simply track the SoC using (2) and assume that
the final SoC equals 𝑠𝑐𝑐1 . If 𝑔 and ℎ need to be characterised for both
charging and discharging, one can align these models by assuming
that, e.g., a Constant-Current Constant-Voltage (CCCV) charge leads-to
a fully charged condition, i.e., 𝑠 = 1.
5

i

Algorithm 1: Iterative modelling approach
Input: 𝛩0, 𝛼, 𝜖, 𝑦𝑐𝑐𝑘 , 𝑢𝑐𝑐𝑘 , 𝑦𝑑𝑘 , 𝑢𝑑𝑘
Output: 𝑔(𝑠𝑘), 𝛩

1 𝑖 = 0
2 repeat
.1 Identification of 𝑔
3.2 Compute 𝑠𝑐𝑐𝑘 according to (2) with 𝑠𝑐𝑐1 ∈ [0, 1]
3.3 Approximate EMF:

𝑔̂(𝑠) = 𝑦𝑐𝑐𝑘 − ℎ(𝑠𝑠𝑠𝑐𝑐𝑘 , 𝑢𝑢𝑢𝑐𝑐𝑘 , 𝛩𝑖)

3.4 Set upper- or lower-bound 𝑔(𝑠⋆) = 𝑦⋆, and ensure
monotonicity of 𝑔(𝑠) for all 𝑠 ∈  and ∇𝑠𝑔(𝑠) near 𝑠⋆

using (20) or (21).
3.5 Compute step:

if 𝑖 = 0, 𝑔𝑖+1(𝑠) = 𝑔̂(𝑠)
else 𝑔𝑖+1(𝑠) = 𝛼𝑔̂(𝑠) + (1 − 𝛼)𝑔𝑖(𝑠)

.1 Identification of ℎ
4.2 Compute 𝑠𝑑𝑘 according to (2) with 𝑠𝑑1 such that

𝑦𝑑𝑘 = 𝑔𝑖+1(𝑠𝑑1 )
4.3 Compute dynamical overpotential:

𝑦𝑜,𝑑𝑘 = 𝑦𝑑𝑘 − 𝑔𝑖+1(𝑠𝑑𝑘 )

4.4 Identify overpotential model using (15):

𝛩𝑖+1 = argmin
𝛩𝑖+1

∑

𝑘∈𝑑

(

𝑦𝑜,𝑑𝑘 − ℎ(𝑠𝑠𝑠𝑑𝑘 , 𝑢𝑢𝑢
𝑑
𝑘 , 𝛩𝑖+1)

)2

5 Compute error with ℎ a solution to (4):

𝑒𝑖 =
∑

𝑘∈𝑑

(

𝑦𝑑𝑘 − 𝑔(𝑠𝑑𝑘 ) − ℎ(𝑠𝑠𝑠𝑑𝑘 , 𝑢𝑢𝑢
𝑑
𝑘 , 𝛩𝑖+1)

)2

6 until |𝑒𝑖+1 − 𝑒𝑖| < 𝜖

4. Results

In this section, the performance of both local and global LPV mod-
elling approaches discussed in Section 2, and the iterative algorithm
proposed in Section 3, will be considered. In this paper, we only
consider SoC dependency for the overpotential model, i.e., 𝑝 = 𝑠, as
this is crucial for the iterative algorithm where the EMF primarily
depends on SoC. Although other dependencies have not been explored,
it is assumed that extension to, e.g., temperature can be readily made,
albeit with different basis functions or polynomial orders. The data
used in this paper is the same as in [19], measured on two cells,
namely one Lithium Nickel-Manganese-Cobalt (NMC) cell and one
Lithium-iron-Phosphate (LFP) cell. The data consists of pulse-charge
and -discharge experiments, CC-charge and -discharge curves at C-rates
{0.05, 0.1, 0.15, 0.2, 0.3, 0.5} and various drive cycles. An impression
f the applied data is given in Fig. 2, which shows the discharge cycle
sed to identify the discharge overpotential models for NMC and LFP.
or the full data, the reader is referred to Fig. 4.2 in [19].

.1. Comparison of local and global LPV approaches

For the comparison of the local and global LPV overpotential mod-
lling approaches, the following setting has been considered. First of
ll, for brevity, we have only considered the discharging case for this
omparison. From [19], we have found that this is the most challeng-
ng, as the most significant SoC dependency of the overpotential model

s encountered during discharging. Different from Section 3, we have
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Fig. 2. Dynamic discharge data used to identify the overpotential models. Both the
dynamic identification and validation cycles are based on drive cycles, which are
suitable as they excite the battery over a wide frequency range, for more details see,
e.g., [28].

first assumed the classical approach in which 𝑔(𝑠) has been obtained
up-front. In this case, two realisations from [19] have been applied,
namely one obtained using the extrapolation-based method (EMF1),
and secondly an EMF realisation corresponding to the pulse-discharge
experiment (EMF2), with 56 and 62 relaxation points for NMC and
LFP, respectively. Results in [19] showed that EMF1 yields the most
accurate results. For the local approach we have considered the number
of local models 𝑀 = {10, 15,… , 60} in intervals of 5 and for the global
approach we have used polynomial dependency according to (16) with
order 𝑁 = {4,… , 10}.

The overpotential models have been identified on one discharging
drive cycle with time steps 𝑘 ∈  and have been validated on a
second drive cycle. To validate the performance of the IO overpotential
models, where the reader should recall that the current is the input
and the overpotential voltage the output, we evaluate (18), where
the EMF 𝑔(𝑠𝑘) remains equal but different realisation of ℎ(𝑝𝑝𝑝𝑘, 𝑢𝑢𝑢𝑘, 𝛩)
are evaluated. This means that the error between the measured and
predicted overpotential, i.e., 𝑦𝑜𝑘 and 𝑦̂𝑜𝑘, is evaluated. Specifically, the
Root-Mean-Square Error (RMSE) is considered, as this is the error term
which is also minimised by the PEM framework. The validation results
reported as RMSE are shown in Fig. 3. In this figure, the upper 6 sub-
figures are NMC and the lower 6 are LFP, and show the results for the
local and global approach. Errors on both the full range, i.e., for the
complete drive cycle, and the limited range, i.e., excluding the last 1%
and 9% that have been removed for NMC and LFP, respectively, are
considered. In these last parts, where the EMF is steepest, most of the
errors occur and this can thus obscure the model performance over the
largest portion of the battery operating range. The exclusion percentage
is larger for LFP due to its relatively large steep section of the EMF.
There are two likely causes of the increase in error. First of all, when the
EMF is steep, any errors in the EMF model quickly produce relatively
large errors in terms of predicted voltage. Secondly, at low SoC some
parts of the overpotential are weakly nonlinear [29]. This means that
the linear structure of (4) will not be able to describe all the behaviour.

Let us first consider the results for the local approach in Figs. 3(a)
and 3(d). It is observed that for SoC dependency this approach yields
consistent results if the number of local models is sufficiently large
(𝑀 ≥ 40), i.e., the full-range errors remain approximately the same,
where the limited-range errors continue to drop slightly. This approach
does not provide consistent results for 𝑀 < 40, where especially
6

OE models produce erratic results. Overall, the local approach does
establish the lowest RMSE for the limited range, when compared to
the global approach. Secondly, the results for the global approach using
polynomial basis functions are considered, as shown in Figs. 3(b) and
3(e). In this case, the influence of the polynomial order is much stronger
for the NMC cell, which has RMSEs above 75 mV for 𝑁 = 4 and 𝑁 = 10
for the full range, whereas the LFP cell attains decent performance for
almost all polynomial orders. However, also here, an error increase is
observed for 𝑁 > 6. On the other hand, the error keeps decreasing
for the limited range, which is similar to the local approach. This
shows that a large degree of freedom is required to accurately model
the overpotential dynamics over the limited range, whereas too much
freedom results in higher errors for the full range. Optimal performance
is attained for 𝑁 = 6 and 𝑁 = 7 for the NMC cell, and for 𝑁 = 5 and
𝑁 = 6 for the LFP cell.

Instead of using purely polynomial basis functions for the global
approach, which, as Figs. 3(b) and 3(e) show, can be sensitive to the
applied polynomial order, we also apply the exponential basis func-
tions proposed in Section 2.3. However, let us consider the parametric
dependency of 𝜃1(𝑠), 𝜃2(𝑠) and 𝜃3(𝑠), identified using the local and
lobal approach, with 6th-order polynomial basis functions, for the
MC cell in Fig. 4. A strong resemblance for these two approaches can
e observed for 𝜃2(𝑠) and 𝜃3(𝑠), while the difference on 𝜃1(𝑠) is much
arger. In this case, an exponential basis function is employed only for
1 as given by

1(𝑠) = 𝜙0 + 𝜙1𝑒
𝛽𝑠 or 𝑓1(𝑠) = 𝜙0 + 𝜙1𝑒

𝛽𝑠, (22)

here 𝜙0 and 𝜙1 are linear parameters and 𝛽, which dictates the
urvature of the exponent, is predetermined using the local approach.
hile the resulting dependency in Fig. 4 is close to linear, it can occur

hat 𝜃1(𝑠) sharply increases or decreases at low SoC, as for instance
ncountered in [27]. The benefit of this parametrisation is that the
mount of freedom in 𝜃1(𝑠), which describes the overpotential relax-
tion behaviour, is restricted. Since errors in the relaxation behaviour
re strongly linked to errors in the EMF, as described in Section 2.1,
estricting freedom in 𝜃1(𝑠) can prevent overfitting. Meanwhile, by
eeping 𝜃2(𝑠) and 𝜃3(𝑠) as polynomial functions, we do allow enough
reedom to capture subtle differences in impedance at higher SoC. The
orresponding RMSEs of this parametrisation in Figs. 3(c) and 3(f) show
hat the exponential parametrisation of 𝜃1(𝑠) results in higher errors on
verage, as is expected when restricting freedom, but does yield a wider
ange of acceptable polynomial orders.

Lastly, the performance difference between ARX and OE is consid-
red. The most notable difference between the two occurs for the local
pproach at 𝑀 < 40, where OE either establishes poor performance,
s observed for the NMC cell, or highly variable performance for the
FP cell, depending the exact EMF realisation. The difference with ARX
ould be explained by the frequency content of the data partitions
sed to identify the local models in (11), i.e., as the number of local
odels becomes smaller, the data length per partition 𝑚 increases. As
result, the magnitude of low-frequency behaviour becomes relatively
ominant and the OE model mainly captures this behaviour. However,
ue to the high-frequency focus of the ARX structure explained in
ection 2.1, it maintains a stable trend as 𝑀 increases.

.2. Iterative battery model identification

Let us now discuss the performance of the iterative algorithm pro-
osed in Section 3. First of all, note that in this case both the charging
odel and the discharging model are identified, where CC charging

r discharging data paired with charging or discharging drive cycles,
esult in models valid for charging or discharging, respectively. In terms
f inputs, the measured CC-charge and -discharge curves are used for
𝑐𝑐
𝑘 and 𝑦𝑐𝑐𝑘 , and the overpotential model is identified on the drive-
ycle charge- and discharge-data, the latter of which is the same as
pplied for identification in the previous section. The initial LTI model

is selected to be 𝜃 = 0.98, 𝜃 = 6 ⋅ 10−4 and 𝜃 = 0.035, where
0 1 2 3
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Fig. 3. Voltage RMSE for the validation drive cycle.
especially 𝜃1 and 𝜃2 are typical values for a battery model and where 𝜃3,
which models all rapid impedances for times below the model sampling
time and also the Ohmic resistance, differs more strongly per cell form
factor or chemistry. However, these values are used as initial model
for both the NMC and the LFP cell, so exact knowledge of the model is
not required. Furthermore, termination criterion 𝜖 = 0.1mV, and step
size 𝛼 = 1 for the NMC cell and 𝛼 = 0.5 for the LFP cell, which is
necessary to ensure convergence for the flat EMF corresponding to this
chemistry. To solve Step 4.4 of the algorithm, the global approach with
ARX model structure is employed. In case of a poor EMF, it is likely that
poor local models are identified using the local approach, which again
motivates the use of the global approach. ARX is employed because the
performance difference with OE was found to be small in Section 4.1,
but the algorithm used to identify it is more reliable, especially when
the EMF is poor. It is also faster, which is convenient when multiple
iterations are done.

In order to quantitatively judge the performance of various retrieved
battery model realisations, we propose to consider both voltage pre-
diction and SoC estimation accuracy in this paper, as in [19]. While
the link between voltage prediction accuracy and performance of the
battery model is clear, which now comes down to evaluating (18) for
different realisations of both 𝑔(𝑠𝑘) and ℎ(𝑝𝑝𝑝𝑘, 𝑢𝑢𝑢𝑘, 𝛩), the necessity for
evaluating SoC estimation performance is less obvious. Before moti-
vating this further, let us first note that evaluating the battery model
performance, and in particular the quality of retrieved EMF, based
on SoC estimation accuracy only makes sense when a model-based
7

approach is applied, i.e., when the model is actually involved in the
estimation process. The reason why SoC estimation is interesting is that
many model-based approaches, such as a Kalman Filter, see, e.g., [30]
for details, depend on derivatives of the different model components
with respect to the SoC. Having pronounced derivatives becomes es-
pecially important when the EMF is very flat, as, e.g., encountered
with LFP or Lithium-Titanate-Oxide chemistries. In that sense, SoC
estimation highlights a different aspect of the battery models. However,
one should always consider a combination of voltage prediction and
SoC estimation accuracy, as tuning of the SoC estimation algorithm can
influence which part of the model is highlighted.

For SoC estimation, the different obtained battery models have been
paired with an Extended Kalman Filter (EKF) with forgetting factor
as introduced for SoC estimation in [20]. Instead of tuning individual
process and output covariances, this approach exploits the structure of
the overpotential model to be able to use only one tuning parameter,
i.e., the forgetting factor. This parameter determines the extent to
which the error between measured and predicted output is used to
update the state estimate, i.e., a low level of forgetting means stronger
reliance on state prediction (which means the SoC predicted through
Coulomb counting), whereas stronger forgetting results in larger update
steps based on the error between predicted and measured terminal
voltage. To judge the quality of the model based on SoC estimation, the
forgetting factor is tuned towards the latter, as accurate SoC estimates
are linked more strongly to model accuracy. For details on the exact
model, identification approach and the exact EKF applied here, the

reader is referred to previous work of the authors [27].
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Fig. 4. Example of parametric dependency found through the different approaches for
he NMC cell.

Fig. 5. Relation between voltage prediction error and measurement time required for
each EMF.

In terms of results, the relation of required measurement time, and
voltage simulation and SoC estimation RMSE achieved on the valida-
tion drive cycles by the complete identified models are shown in Figs. 5
and 6. Here, the Pareto-fronts mark the best achieved results, in terms
of lowest voltage or SoC estimation RMSEs combined with the shortest
required measurement time, obtained in [19], which considered the
8

cascaded approach where first the EMF and then the overpotential
model have been identified. Note that the different measurement times
at which the results are plotted, directly correspond to the inverse
of the associated CC-curve C-rate, e.g., 0.1C corresponds to 10 h of
measurement time. Before considering the results in more detail, note
that for the discharge model both the polynomial and exponential basis,
as in (22), have been employed, while for charging only polynomial
basis functions have been used, as there the exponential basis function
did not constitute any improvement. Overall, Fig. 5 shows that firstly
the results from [19] can be improved significantly, especially in terms
of required measurement time, by employing the iterative scheme to
essentially upgrade the CC-charge and -discharge curves to accurate
EMF models. Secondly, by comparing these results to those in Fig. 3,
it has been found that the best results are again achieved by the same
polynomial orders for the basis functions. In terms of SoC estimation
results in Fig. 6, the results are consistent with those in Fig. 5, i.e., lower
voltage RMSE also corresponds to lower SoC estimation RMSE. The only
outlier is found in Fig. 5(d), where lower C-rates (higher measurement
times) correspond to higher errors instead of vice versa. In this case the
retrieved realisation of the EMF fails to accurately capture the slope at
high SoC and as a result the EKF also fails to estimate the SoC at this
point. The slope is more pronounced for CC-charge curves with a larger
C-rate and therefore the accuracy increases as the C-rates increases.
Overall, the retrieved errors, with voltage prediction errors in the order
of 2 to 5 mV in the SoC range excluding the very low end and SoC
estimation errors in the order of 0.2 to 1% SoC, are consistent or slightly
better than those retrieved in literature, see, e.g., [8,19,20].

Apart from considering the voltage simulation and SoC estima-
tion errors, the retrieved EMF realisations 𝑔(𝑠) itself have also been
examined. In Fig. 7, an example of the retrieved EMF realisations
corresponding to the 0.1C CC-charge and -discharge curves is shown
together with the 0.1C CC-curves used in the iterative scheme and
the EMF curves obtained through the extrapolation method in [19].
For both cells, the EMF curves are similar to a large extent. However,
the extrapolation-based EMFs are derived from the CC-curves with C-
rates {0.05, 0.1, 0.15, 0.2}𝐶 corresponding to approximately 120 to 140 h
of measurement time including intermediate charging or discharging,
while the EMFs obtained through the iterative approach only require
one CC-(dis)charge curve. Overall, this establishes a measurement time
reduction of a factor of 7 to 35 depending on the desired C-rate, thus
lowering the overall required experimental efforts to obtain a battery
model significantly, while achieving similar accuracy.

4.3. Time-domain showcase

Finally, we want to show the performance that is now achieved
by the different presented models in a more intuitive way than only
reporting the achieved RMSEs. While this is effective for comparing
large quantities of variables, it may not quite convey the level of
precision that these models achieve. To do this, we have selected
the best realisation for each model type, i.e., corresponding to their
lowest voltage RMSE, and we have plotted the predicted voltages on
the discharge validation cycle in the time domain together with the
measured terminal voltage for both chemistries, as shown in Fig. 8.
To put things in perspective, we have also provided the prediction
produced by a non-SoC-dependent LTI model which was fitted on
identification data spanning an SoC window between 0.5 and 0.95.

Comparing the performance of the different LPV models and the
LTI model at the right hand side of Figs. 8(a) and 8(b), it is clear
why the SoC dependency needs to be included. However, upon closer
inspection, we can see that, although the LPV models significantly
increase the accuracy, they still diverge from the measurement at the
very end of the cycle, which could be due to nonlinear behaviour
encountered in [29]. Nevertheless, the rise in error at low SoC is
consistent with errors found in literature, see, e.g., [8]. What is less

obvious, but already hinted on by high SoC insets in Fig. 8, is that the
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Fig. 6. Relation between SoC estimation error and measurement time required for each
EMF.

inclusion of SoC dependency also improves the performance at higher
SoC levels. To show this, we have computed the RMSEs achieved by the
selected models in the first 10 000 s (𝑘 < 10 000 s) and the remaining
time (𝑘 > 10 000 s) of the cycle and have listed these in Table 1. This
shows that a significant reduction in error is achieved by incorporating
the SoC dependency for the higher SoC regions, especially when using
the local approach. Secondly, the RMSEs corresponding to 𝑘 > 10 000
s show that the global approach performs better for modelling the
stronger dependency at low SoC. To summarise, empirical models are
incredibly good at predicting voltage behaviour for batteries and LPV
methods allow us to easily capture the required SoC dependencies.
Extensions to temperature-dependency have been made in [12].

5. Conclusion

In conclusion, we have developed local and global LPV-IO modelling
approaches and proposed an iterative scheme which identifies both
the EMF and the overpotential model based on data resulting from
short experiments as compared to traditional cascaded approach which
requires long experiments, especially for the EMF. By testing the LPV
9

Table 1
RMSEs in mV corresponding to the models in Fig. 8.

RMSE (mV) 𝑘 < 10 000 s 𝑘 > 10 000 s

NMC LFP NMC LFP

LTI 4.9 4.6 67 89
local 1.7 2.7 17 25
global poly 3.9 3.1 22 18
global exp 4.0 3.1 17 18
iterative 2.3 3.2 20 26

approaches on data gathered from two different cells, we have found
that LPV-ARX yields accurate results for both the local and global
approach, where the model obtained through the global approach
performs slightly better at low SoC. Moreover, by comparing obtained
EMF realisations to those obtained through widely used approaches, we
have confirmed that the iterative approach yields models with accuracy
comparable or slightly better than to those obtained through traditional
approaches, but using an EMF experiment which is 7 to 35 times faster.
Moreover, the consistency of the results between the two cells provides
confidence that this approach will also perform well for other celltypes
or chemistries. Overall, the proposed iterative scheme is a cost-effective
approach for accurate empirical battery modelling. Since the required
data can potentially be gathered during normal use, it could be possible
to both initiate and update battery models of battery packs in operation.
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