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OPTIMAL MORPHS OF PLANAR ORTHOGONAL DRAWINGS∗

Arthur van Goethem,†Bettina Speckmann,‡ and Kevin Verbeek.§

Abstract. We describe an algorithm that morphs between two planar orthogonal drawings
ΓI and ΓO of a graph G, while preserving planarity and orthogonality. Necessarily drawings
ΓI and ΓO must be equivalent, that is, there exists a homeomorphism of the plane that
transforms ΓI into ΓO. Our morph uses a linear number of linear morphs (linear interpolations
between two drawings) and preserves linear complexity throughout the process, thereby
answering an open question from Biedl et al. (ACM Transactions on Algorithms, 2013).

Our algorithm first unifies the two drawings to ensure an equal number of (virtual)
bends on each edge. We then interpret bends as vertices which form obstacles for so-called
wires : horizontal and vertical lines separating the vertices of ΓO. We can find corresponding
wires in ΓI that share topological properties with the wires in ΓO. The structural difference
between the two drawings can be captured by the spirality s of the wires in ΓI , which guides
our morph from ΓI to ΓO. We prove that s = O(n) and that s+ 1 linear morphs are always
sufficient to morph between two planar orthogonal drawings, even for disconnected graphs.

1 Introduction

Continuous morphs of planar drawings have been studied for many years, starting as early
as 1944, when Cairns [5] showed that there exists a planarity-preserving continuous morph
between any two (compatible) triangulations that have the same outer triangle. These results
were extended by Thomassen [9] in 1983, who gave a constructive proof of the fact that two
compatible straight-line drawings of any planar graph can be morphed into each other while
maintaining planarity. The resulting algorithm to compute such a morph takes exponential
time (just as Cairns’ result). Thomassen also considered the orthogonal setting and showed
how to morph between two rectilinear polygons with the same turn sequence. For planar
straight-line drawings the question was settled by Alamdari et al. [1], following work by
Angelini et al. [2]. They showed that O(n) uni-directional linear morphs are sufficient to
morph between any compatible pair of planar straight-line drawings of a graph with n vertices
while preserving planarity. Kleist et al. [7] have shown that the corresponding morph can be
found in O(n1+

ω
2 ) time, where ω is the matrix multiplication exponent.

In this paper we consider the orthogonal setting, that is, we study planarity-preserving
morphs between two planar orthogonal drawings ΓI and ΓO with maximum complexity n, of
∗Preliminary results have been presented at SoCG 2018 [11] and GD 2019 [10]. Bettina Speckmann and
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a graph G. Here the complexity of an orthogonal drawing is defined as the number of vertices
and bends. All intermediate drawings must remain orthogonal. This immediately implies
that the results of Alamdari et al. [1] do not apply, since they do not preserve orthogonality.
Biedl et al. [4] described the first results in this setting, for so-called parallel drawings, where
every edge has the same slope in both drawings. They showed how to morph between two
parallel drawings using O(n) linear morphs while maintaining parallelity and planarity. More
recently, Biedl et al. [3] showed how to morph between two planar orthogonal drawings using
O(n2) linear morphs, while preserving planarity, orthogonality, and linear complexity. In
this paper we improve this bound further to O(n) linear morphs. This bound is tight, based
on the lower bound for straight-line graphs proven by Alamdari et al. [1].

Paper Outline. In Section 2 we give preliminary definitions and explain how to create a
unified graph G: we add additional vertices to ensure ΓI and ΓO are orthogonal straight-line
drawings of the unified graph G. The complexity of ΓI and ΓO is still bounded by O(n) after
the unification process.

Our main tool are so-called wires which are introduced in Section 3 (see also Figure 2).
Wires capture the horizontal and vertical order of the vertices. Specifically, we consider a set
of horizontal and vertical lines that separate the vertices of ΓO. If we consider the vertices of
ΓO as obstacles, then these wires define homotopy classes with respect to the vertices of G
(for the embedding of G shared by ΓI and ΓO). These homotopy classes can be represented
by orthogonal polylines (called wires) in ΓI using orthogonal shortest and lowest paths as
defined by Speckmann and Verbeek [8].

Intuitively our morph is simply straightening the wires in ΓI using the spirality (the
difference between the number of left and right turns) of the wires as a guiding principle. In
Section 4 we show how this approach leads more or less directly to a linear number of linear
morphs. However, the complexity of the intermediate drawings created by this algorithm
might increase to Θ(n3).

In the remainder of the paper we show how to “batch” intermediate morphs. We argue
solely based on sets of wires, hence the results apply to both connected and disconnected
graphs. In particular, in Section 5 we show how to combine all intermediate morphs that
act on segments of spirality s into one single linear morph. Hence we need only s linear
morphs to morph from ΓI to ΓO. In Section 5 we also show that each linear morph can be
performed between two straight-line drawings, thereby reducing intermediate complexity and
bounding the overall complexity of all intermediate drawings by Θ(n2). Finally, in Section 6
we further refine the approach to also maintain linear complexity, but it comes at the cost of
a single additional linear morph. The final morph preserves planarity, orthogonality, and
linear complexity while using only s+ 1 linear morphs.

We implemented our algorithm and believe that the resulting morphs are natural
and visually pleasing. A short movie is available online1. We suggest that the reader first
considers the video to form an intuition of the constructed morphs.

1See https://youtu.be/JhrgFGTiB5c.
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2 Preliminaries

Orthogonal drawings. A drawing Γ of a graph G = (V,E) is a mapping from every vertex
v ∈ V to a unique point Γ(v) in the Euclidean plane and from each edge (u, v) to a simple
curve in the plane starting at Γ(u) and ending at Γ(v). A drawing is planar if no two
curves intersect in an internal point, and no vertices intersect a curve in an internal point.
In a straight-line drawing every edge is represented by a single line-segment. A drawing
is orthogonal if each edge is mapped to an orthogonal polyline consisting of horizontal
and vertical segments meeting at bends. The complexity of an orthogonal drawing is the
number of vertices and bends. Two planar drawings Γ and Γ′ are equivalent if there exists a
homeomorphism of the plane that transforms Γ into Γ′.

A linear morph of two straight-line drawings Γ and Γ′ can be described by a continuous
linear interpolation of all vertices and bends, which are connected by straight segments.
For each 0 ≤ t ≤ 1 there exists an intermediate drawing Γt where each vertex v is drawn
at Γt(v) = (1 − t)Γv + tΓ′v (Γ0 = Γ and Γ1 = Γ′). A linear morph maintains planarity
(orthogonality, linear complexity), if every intermediate drawing Γt is planar (orthogonal, of
linear complexity).

Slides. Biedl et al. [3] introduced slides as a particular type of linear morph that operates on
the segments of the drawing. A zigzag consists of three consecutive segments with endpoints
α, β, γ and δ, where β forms a left turn and γ a right turn or vice versa (see Figure 1(a)).
Assume for now that β is a left turn and γ a right turn. Let V be the set of all vertices and
bends of the drawing that are right of or on the ray originating at β and passing through α,
or strictly left of the ray originating at γ and passing through δ. We exclude γ from V . The
corresponding region is shaded in Figure 1. Note that there are no bends and vertices on the
vertical segment itself as the drawing is planar. A zigzag-eliminating slide is a linear morph
that straightens a zigzag by shifting all vertices and bends in V by the vector γ − β (see
Figure 1(b)). A zigzag-eliminating slide is a particular linear morph that by construction
maintains planarity during the morph.

In the case where β is a right turn and γ a left turn let V be the set of all vertices
and bends that are left of or on the ray originating at β and passing through α, or strictly
right of the ray originating at γ and passing through δ. Once again we exclude γ from V.

A bend-creating slide is a linear morph that introduces a zigzag in a horizontal or
vertical line (see Figure 1(c)). For similar reasoning it also maintains planarity.

β

γ

α

δ

(a)

β, γγ

V

β

V

α
δ α δ

(b)

V
V

(c)

Figure 1: (a) A horizontal zigzag. (b) A zigzag-eliminating slide is a linear morph that
straightens a zigzag. (c) A bend-creating slide is a linear morph that introduces a zigzag.
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Homotopic paths. Our algorithm relies on the concept of wires separating the vertices of
the drawings. Wires are linked up between different drawings via their homotopy classes. We
consider the vertices of a drawing as the set of obstacles B. Let π1, π2 : [0, 1]→ R2 \B be two
paths in the plane avoiding the vertices. We say that π1 and π2 are homotopic (π1 ∼h π2) if
they have the same endpoints and there exists a continuous function avoiding B that deforms
π1 into π2. That is, there exists a function H : [0, 1]× [0, 1]→ R2 such that

• H(0, t) = π1(t) and H(1, t) = π2(t) for all 0 ≤ t ≤ 1.

• H(s, 0) = π1(0) = π2(0) and H(s, 1) = π1(1) = π2(1) for all 0 ≤ s ≤ 1.

• H(λ, t) /∈ B for all 0 ≤ λ ≤ 1, 0 ≤ t ≤ 1.

Since the homotopic relation is an equivalence relation, every path belongs to a homotopy
class. The geometric intersection number of a pair of paths π1, π2 is the minimum number of
intersections between any pair of paths homotopic to π1, respectively π2. Freedman, Hass,
and Scott proved the following theorem2.

Theorem 1 (from [6] Theorem 3.3). Let M2 be a closed, Riemannian 2-manifold, and let
σ1 ⊂M2 and σ2 ⊂M2 be two shortest loops of their respective homotopy classes. If π1 ∼h σ1
and π2 ∼h σ2, then the number of crossings between σ1 and σ2 is at most the number of
crossings between π1 and π2.

In other words, the number of crossings between two loops of fixed homotopy classes
are minimized by the shortest respective loops. This theorem can easily be extended to paths
instead of loops, if we can consider the endpoints of the paths as obstacles. For orthogonal
paths the shortest path is not uniquely defined, however using lowest paths the theorem still
holds. An orthogonal path is lowest if it is shortest with respect to its homotopy class and
each staircase subpath is as low as possible (the staircase subpath follows the lower envelope
of all homotopic staircase paths between the endpoints). Refer to [8, Lemma 6] for details.

Conventions. Two equivalent drawings Γ and Γ′ may not have the same complexity (number
of vertices and bends) as the orthogonal polylines in Γ and Γ′ representing the same edge may
have a different number of segments. To simplify the discussion of our algorithm, we first
ensure that each edge has the same number of segments in Γ and Γ′. This can be achieved
by subdividing segments, creating additional virtual bends. Next, we replace all bends by
vertices. As a result, all edges of the graph are represented by straight segments in both Γ
and Γ′. We call the resulting graph the unification of Γ and Γ′. If the maximum complexity
of Γ and Γ′ is O(n) then clearly the complexity of the unification of Γ and Γ′ is O(n).

We say that two planar drawings Γ and Γ′ of a unified graph are similar if the
horizontal and vertical order of the vertices is the same in both drawings.

Observation 1. A planar orthogonal drawing can be morphed to a similar planar orthogonal
drawing using a single linear morph while maintaining planarity.

Proof. We can introduce a planarity violation only if two vertices swap in the horizontal or
vertical order, which cannot happen during a linear morph between two similar drawings.

2Reformulated (and simplified) to suit our notation rather than the more involved notation in [6].
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3 Wires

In the following we show how to morph an orthogonal planar drawing ΓI of G = (V,E) to
another orthogonal planar drawing ΓO of G while maintaining planarity and orthogonality.
We assume that ΓI and ΓO are equivalent, that G is the unification of ΓI and ΓO, and that
G contains n vertices. To morph ΓI to ΓO, our main strategy is to first make ΓI similar
to ΓO, after which we can morph ΓI to ΓO using a single linear morph (by Observation 1).
To capture the difference between ΓI and ΓO we use two sets of wires. The lr-wires W→,
going from left to right through the drawings, capture the vertical order of the vertices in
comparison to the vertical order in ΓO. The tb-wires W↓, going from top to bottom through
the drawings, capture the horizontal order of the vertices with respect to ΓO.

3.1 Basic properties

Since we want to match the horizontal and vertical order of vertices in ΓO, the wires W→
and W↓ are simply horizontal and vertical lines in ΓO, respectively, separating any two
consecutive coordinates used by vertices (see Figure 2(a)). Now assume that we have a
planar orthogonal morph from ΓI to ΓO (the existence of such a morph follows from [3]). If
we were to apply this morph in the reverse direction on the wires in ΓO, we end up with
another set of wires in ΓI with the following properties (see Figure 2(b)):

P1 Two wires are non-crossing if they both belong to W→ or W↓ and cross exactly once
otherwise.

P2 The order of the wires in W→ (W↓) is the same as in ΓO and the same vertices are
between consecutive wires.

P3 The wires cross exactly the same sequence of edges and links as in ΓO.

These properties follow directly from the fact that a planar morph cannot introduce
or remove any crossings, and thus these properties are invariant under planar morphs. We
refer to a set of wires in ΓI that has the above properties as an equivalent set of wires (to

W→

W↓ΓO

(a)

W↓

W→

ΓI

(b)

Figure 2: (a) The set W→ of lr-wires (red) and the set W↓ of tb-wires (blue) in the output
drawing ΓO. (b) Equivalent wires in the input drawing ΓI .
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the wires in ΓO). Interestingly, any equivalent set of wires can be used to construct a planar
morph from ΓI to ΓO. We first use a planar morph to straighten the wires. Then, by P1
and P2, for the resulting drawing Γ the wires for a grid where each cell contains at most one
vertex. By P3 the wires also intersect the same sequence of edges and links as in ΓO. As
all wires are straight-line we conclude that Γ is similar to ΓO. Hence, we can eliminate all
bends in a single morph by combining individual morphs per cell. For each cell we morph all
bends (and the vertex) to the center of the cell. The resulting drawing is similar to ΓO and
has no bends, and thus we can finish the planar morph with a single linear morph.

In the following we assume that we are given an equivalent set of wires in ΓI to the
set of straight-line wires in ΓO. To keep the distinction between wires and edges clear, we
refer to the horizontal and vertical segments of wires as links. It directly follows that every
set of wires in ΓI equivalent to straight-line wires in ΓO fulfills the following properties:

Observation 2.

• Every wire crosses an edge at most once.

• Every edge is crossed by wires from either W↓ or W→.

• All wires crossing an edge cross it in the same direction and the order of intersections
matches the horizontal (vertical) order of the wires in ΓO.

Proof. As edges are straight lines in ΓO, each edge can only be crossed once by a wire. As
edges are straight-line segments and wires straight lines in ΓO, each edge is either crossed by
wires from Γ↓ or wires from Γ→ and every wire crosses the edge in the same direction. As
equivalent wires in ΓI cross the same sequence of edges and separate the vertices identically
(and wires from the same set are non-crossing) the intersection of the edges in ΓI and ΓO

must be identical.

Without loss of generality we also make two assumptions to simplify the exposition.

Assumption 1. No two links overlap in more than a single point in ΓI .

If two links overlap in a segment along both links then by carefully ε-perturbing the links we
may prevent the overlap.

Assumption 2. A bounding box surrounds the drawing in both ΓI and ΓO and each wire
starts (ends) on this bounding box at the same place in the same orientation in ΓI and ΓO.

Our goal is to straighten the wires. As even a single wire in ΓI may have Ω(n2) links
(see Figure 3), it is inefficient to straighten the wires one link at a time. Instead we consider
the spirality of the wires. For a wire w ∈ W→, let `1 . . . `k be the links of w in order from
left to right. Let bi be the orientation of the bend between `i and `i+1, where bi = 1 for a
left turn, bi = −1 for a right turn, and bi = 0 otherwise. The spirality of a link `i is defined
as s(`i) =

∑i−1
j=1 bj . By definition the spirality of `1 is 0, and by construction the spirality of

`k is also 0. The spirality of a wire is defined as the maximum absolute spirality over all its
links. The spirality of wires in W↓ is defined analogously, going from top to bottom.

http://jocg.org/
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ΓO ΓI

Figure 3: The complexity of a wire can be Ω(n2). To satisfy property P3, the wire must
spiral through the same polygon a linear number of times. The spirality is still O(n).

Spirality is closely related to the number of convex and reflex corners in a simple
closed orthogonal curve. Particularly, if we traverse a wire as part of the boundary of a closed
orthogonal curve then for each convex corner (left turn) the spirality of the link traversed
increases by one and for each reflex corner (right turn) the spirality decreases by one. Thus,
when we trace a wire from a link with spirality s to a link with spirality t, then the curve
has t− s more convex than reflex corners along the traced segment. Symmetrically, if we
traverse a wire backwards starting from a link with spirality s′ to a link with spirality t′, then
the curve has s′ − t′ more convex than reflex corners. We repeatedly use this fact together
with the fact that a simple closed orthogonal curve has four more convex corners than reflex
corners, to prove the spirality of links in the wires.

Lemma 1. If a wire w ∈W→ and a wire w′ ∈W↓ cross in links `i and `′j, then s(`i) = s(`′j).

Proof. By property P1 w and w′ cross exactly once. Consider the bounding box B that
contains the complete drawing and intersects w and w′ in `1 respectively `′1. The wires w
and w′ subdivide B into four simple faces (see Figure 4). Consider the top-left face. Since
the face is simple and orthogonal, it contains four more convex corners than reflex corners.
Two convex corners are at the intersection of w and w′ with B, and one is a corner of B.

By definition the spirality of `1 and `′1 is zero. Thus if the spirality of `i is x, then w
contains x more convex than reflex corners. Symmetrically if the spirality of `j is y, then w′

contains y less convex than reflex corners. As the intersection of `i and `′j also forms a convex
corner, using a double-counting argument we get that x− y + 4 = 4. But then x = y.

+3

B

`1

`′1

w′

w

Figure 4: As `1 and `′1 have spirality zero
and a closed orthogonal curve has four
more convex than reflex corners, the cross-
ing links of w and w′ have equal spirality.

B`′1

σ
+2

w w′

`1

+2

Figure 5: As `1 and `′1 have spirality zero
and w and w′ must have equally many
more left turns than right turns, the two
links crossing σ have the same spirality.
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Lemma 2. All links intersecting the same segment of an edge have the same spirality.

Proof. Consider a segment σ of an edge e. Assume without loss of generality that e is
horizontal in ΓO. Only wires from W↓ intersect e (and thus σ) and all wires cross e (σ) in
the same direction. Consider two consecutive wires w,w′ ∈W↓ intersecting σ. Let B be the
bounding box of the drawing intersecting w and w′ in `1 respectively `′1. By definition the
spirality of `1 and `′1 is zero. The area enclosed by w,w′, σ, and B between the intersection
with `1 and `′1 forms a simple closed orthogonal curve (see Figure 5). A counter-clockwise
tour of the curve has two convex turns at σ and two convex turns at B, all remaining
turns are caused by w and w′. If x and x′ are the spiralities of w and w′ when intersecting
σ, then using the fact that the polygon has four more convex than reflex corners and a
double-counting argument similar to Lemma 1 we get x+ 2−x′+ 2 = 4, and thus x = x′.

3.2 Spirality bound

In Section 4 we show that we can straighten a set of wires using only O(k) linear morphs, if
the spirality of each wire is bounded by k. It is therefore pertinent to bound the spirality of
an equivalent set of wires. Let ΓI and ΓO be two equivalent planar orthogonal drawings of a
graph G. We show that we can find an equivalent set of wires in ΓI with spirality O(n) with
respect to the straight-line wire-grid in ΓO.

Below we show that we can choose homotopy classes for the wires in ΓI incrementally,
first for the lr-wires and then for the tb-wires, while maintaining the correct intersection
pattern and hence equivalence with ΓO. For each of the resulting equivalence classes we add
the shortest wire to the set of wires. It remains to argue that the resulting set of wires has
spirality O(n), despite the interdependence of the homotopy classes and despite the fact that
the arrangement of drawing and wires can have super-linear complexity. We consider only
wires in W→ and links with positive spirality. Structurally identical symmetric results for
wires from W↓ and for links with negative spirality can be setup. For a wire w let w[`i] be
the partial wire consisting of links `1, . . . , `i.

Lemma 3. Let `i be a horizontal link of a wire w ∈W→ with even spirality, and let L be a
vertical line crossing `i. The lowest link of w[`i] crossing L has spirality 0 or −2 and the
highest link of w[`i] crossing L has spirality 0 or 2.

Proof. Let `l be the lowest link from w[`i] crossing L. We can create a simple closed counter-
clockwise orthogonal curve (see Figure 6) by (1) first going down from `1 along the bounding
box, (2) going right along the bounding box until reaching L, (3) going up until reaching `l,
and (4) following w[`i] backwards until reaching the starting point of the curve. The curve
has four more convex than reflex corners, and it contains 3 convex corners by construction.
Let x be the contribution of the turn at `l (which can be left (+1) or right (−1)). Then we
get that 3 + x− s(`l) = 4, so s(`l) = x− 1, directly implying s(`l) ∈ {0,−2}.

Let `h be the highest link from w[`i] crossing L. We create a simple closed counter-
clockwise orthogonal curve by (1) following the wire from `1 to `h, (2) going up until the
bounding box, (3) going left to the corner of the bounding box, (4) going down to `1. Let x
be the contribution of the turn at `h. We get s(`h) + x+ 3 = 4, implying s(`h) ∈ {0, 2}.

http://jocg.org/


JoCG 13(1), 263–297, 2022 271

Journal of Computational Geometry jocg.org

L

`l

`i

`1

Figure 6: A partial wire
w[`i] upto link `i and a ver-
tical line L crossing `i. As
a counter-clockwise tour of
the gray region increases spi-
rality by four, the lowest
link of w[`i] crossing L must
have spirality at most 0.

L

`l

`h

(a)

L

`l

`h

(b)

L

`h

`l

(c)

`l

`i

`i

`l

(d)

Figure 7: (a) The origin of `h cannot be enclosed by the wire
from `h to `l as then the wire needs to cross L between `h
and `l. (b,c) There are exactly two configurations for link
`h (h < l) crossing directly below left-oriented link `l (for
partial wire w[`l]). Either the spirality of `h is two smaller
or four larger than that of `l. (d) Two configurations for link
`i (i < l) crossing directly above left-oriented link `l.

Lemma 4. Let `l be a left-oriented link with spirality s of a wire w ∈W→ and L be a vertical
line crossing `l. If w[`l] (the wire upto `l) crosses L below `l then the highest link from w[`l]
that crosses L below `l has spirality s− 2 or s+ 4. If w[`l] crosses L above `l then the lowest
link from w[`l] that crosses L above `l has spirality s− 4 or s+ 2.

Proof. Let `h be the highest (horizontal) link from w[`l] that crosses L lower than `l. Thus
w[`l] (and moreover w[`h]) cannot cross through L between `l and `h. But then the sub-wire
from `h to `l cannot enclose the origin of `h as this would force w[`h] to intersect L between
`l and `h (see Figure 7(a)). Thus if `h is right-oriented then the wire from `h to `l followed
by the segment along L from the intersection with `l to the intersection with `h must form a
simple closed counter-clockwise orthogonal curve (see Figure 7(b)). As this curve has two
left turns at L, there must be two more left turns than right turns along the wire from `h
to `l, leading to s(`h) = s(`l)− 2. If `h is left-oriented, then the segment along L from the
intersection with `h to the intersection with `l followed by the wire backwards from `l to `h
forms a simple closed orthogonal curve and we get s(`h) = s(`l) + 4 (see Figure 7(c)).

Symmetrically for the lowest link `i from w[`l] crossing L above `l it follows through
a case distinction that if `i is left-oriented then s(`i) = s(`l)− 4 and if `i is right-oriented
then s(`i) = s(`l) + 2 (see Figure 7(d)).

Lemma 5. Let `r be a right-oriented link with spirality s of a wire w ∈ W→ and L be a
vertical line crossing `r. If w[`r] crosses L below `r then the highest link from w[`r] that
crosses L below `r has spirality s+ 2 or s− 4. If w[`r] crosses L above `r then the lowest
link from w[`r] that crosses L above `r has spirality s+ 4 or s− 2.

Proof. Using a similar case distinction as Lemma 4 but mirroring the cases.
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Lemma 6. For each right-oriented link `→
of a wire w ∈ W→ with spirality s > 0 and
each vertical line L crossing `→ there exists
a subsequence S of Ω(s) links of w crossing
L, such that the spiralities of the links in se-
quence are (0, 2, 4, . . . , s− 2, s), and when or-
dered top-to-bottom along L form the sequence
(2, 6, 10, . . . , s− 2, s, s− 4, . . . , 4, 0).

`15`→

`3

`5

`13

Figure 8: Lemma 6 for a link `→ and
sequence S = (`3, `5, `13, `15, `→).

Proof. Consider a vertical line L through `→. We inductively find the desired subsequence S
of w by constructing it in reverse order starting from `→. Let `i ∈ S be the unique link
with spirality 0 ≤ i ≤ s in S. We maintain the following stronger induction hypothesis for
0 ≤ t ≤ s and t (mod 2) = 0. The first two sub-hypotheses form our claim.

IH1 A subsequence St of w exists where the links have spiralities (t, t+ 2, . . . , s− 2, s).

IH2 When the links from St are ordered top-to-bottom along L the resulting sequence is a
monotone increasing sequence of all left-oriented links (with spirality s(`i) (mod 4) = 2),
followed by a monotone decreasing sequence of all right-oriented links (with spirality
s(`j) (mod 4) = 0).
(Specifically this gives rise to the sequence (t+2, t+6, . . . , s−2, s, s−4, . . . , t+4, t) when
t (mod 4) = 0 or (t, t+ 4, t+ 8, . . . , s− 2, s, s− 4, . . . , t+ 6, t+ 2) when t (mod 4) = 2.)

IH3 For every two links `u and `u−2 from St, where u (mod 4) = 2 and t < u ≤ s, link
`u−2 is the highest link with spirality u− 2 from w[`u] that crosses L below `u.

IH4 For every two links `u and `u−2 from St where u (mod 4) = 0 and t < u ≤ s, link `u−2
is the lowest link with spirality u− 2 from w[`u] that crosses L above `u.

In the base case we use Ss = (`→) which trivially satisfies all requirements. For the inductive
step we may assume a subsequence St = (`t, . . . , `→) of w exists meeting the requirements.

Case 1 `t is left-oriented: (t (mod 4) = 2)
As `t has spirality t (mod 4) = 2, by IH2 link `t is part of the initial monotone increasing
subsequence in St when ordered top-to-bottom along L. Moreover, also by IH2, as `t has
the smallest spirality from all selected links in St, link `t must be the first link in St and
hence be the highest link that crosses L. We show that (1) a link from w[`t] that crosses L
below `t and that has spirality t− 2 exists and (2) the highest such link can be added to St
while maintaining all properties of the induction hypothesis.

We first prove that a link with the desired properties exists (1). Starting with `i = `t

we repeat the following search. Find the highest (horizontal) link from w[`i] that crosses L
lower than `i. By Lemma 3 such a link must exist while s(`i) ≥ 2. Let this link be `j . If
s(`j) 6= t− 2 then repeat the search with `i = `j . If s(`j) = t− 2 then, as `j ∈ w[`i] ⊂ w[`t],
link `j has the desired properties. It remains to show that such a link must be found.

Assume for contradiction that no link of spirality t− 2 was found. As each next link
found occurs strictly lower along L the search must terminate. By Lemma 3 the lowest link
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L
`t

`b = `t+2

`a = `t−2

(a)

L

`a

`b

`m

(b)

`a

`b

`m

L

(c)

L
`t

`←

`t−2

`t+2

(d)

Figure 9: (a) The highest link `t−2 with spirality t− 2 from w[`t] crosses L above `t+2. (b)
Potential situation in which s(`a) ≤ s− 2, s(`b) ≥ s+ 2, `a ∈ w[`b] and s(`m) ≥ s+ 2. (c)
Potential situation in which `b ∈ w[`a] and s(`m) ≤ s− 2. (d) Link `← has spirality s, hence
`t is not the lowest link from w[`t+2] crossing L above `t+2, contradicting IH4.

of w[`i] that crosses L has spirality at most 0. Thus the search must terminate with a link of
spirality at most 0. Moreover, by Lemma 4 if s(`i) (mod 4) = 2 then link `j has spirality
s(`i)− 2 or s(`i) + 4. Similarly, by Lemma 5, if s(`i) (mod 4) = 0 then link `j has spirality
s(`i) + 2 or s(`i)− 4. But then it must be that at some point during the search s(`i) = t
and s(`j) = t− 4 as initially the spirality is t ≥ 2 and at termination the spirality is at most
0. Contradiction as t (mod 4) = 2 and thus by Lemma 4 s(`j) ≥ t− 2.

As a link from w[`t] exists that crosses L below `t and that has spirality t− 2, the
highest link `t−2 with these properties also exists. Adding `t−2 to St trivially maintains IH1,
IH3, IH4. We show that it also maintains IH2. Particularly we show that `t−2 crosses L
lower than all links from St. If St = {`t} this is trivially true. Otherwise, by IH1 there
exists a link `t+2 in St with spirality t + 2. Link `t+2 is right-oriented and, as it has the
smallest spirality of all right-oriented links in St, it is the link from St that crosses L in the
lowest point. We show `t−2 crosses L in an even lower point.

Assume for contradiction that `t−2 crosses L above `t+2 (see Figure 9(a)). We
maintain an interval on L bounded from above by a link `a that crosses L and from below by
a link `b that crosses L. We show that within this interval a link from the subwire w[`t+2] with
spirality t exists. Initially `a = `t−2 and `b = `t+2. We have s(`a) = t− 2 and s(`b) = t+ 2,
and both `a and `b occur on w before (or at) `t+2. During our search we maintain stronger
conditions. Particularly, s(`a) ≤ t − 2 if s(`a) (mod 4) = 0 and s(`a) ≤ t − 4 otherwise.
Moreover, s(`b) ≥ t+ 2 if s(`b) (mod 4) = 0 and s(`b) ≥ t+ 4 otherwise.

We make a case distinction on whether `a ∈ w[`b] or `b ∈ w[`a]. Initially `a ∈ w[`b].

Case 1a `a ∈ w[`b]: (see Figure 9(b))
If s(`b) (mod 4) = 0 (`b is right-oriented) then by Lemma 5 the lowest link from w[`b] crossing
L above `b has spirality s(`b)− 2 or s(`b) + 4. If s(`b) (mod 4) = 2, and thus s(`b) ≥ t+ 4,
then by Lemma 4 this link has spirality s(`b)− 4 or s(`b) + 2. In each case the spirality is
at least t. As s(`a) ≤ t− 2, there must be a different link `m from w[`b] that intersects L
between `a and `b. We have either s(`m) = t, or s(`m) ≥ t+ 2 and s(`m) (mod 4) = 0, or
s(`m) ≥ t+ 4 and s(`m) (mod 4) = 2. If s(`m) ≥ t+ 2 then let `b = `m.
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Case 1b `b ∈ w[`a]: (see Figure 9(c))
If s(`a) (mod 4) = 0 then by Lemma 5 the highest link from w[`a] crossing L below `a has
spirality s(`a) + 2 ≤ t or s(`a)− 4 ≤ t. If s(`a) (mod 4) = 2, and thus s(`a) ≤ t− 4, then
by Lemma 4 this link has spirality s(`a) + 4 ≤ t or s(`a) − 2 ≤ t. As s(`b) ≥ t + 2, there
must be a different link `m from w[`a] that intersects L between `a and `b, such that either
s(`m) = t, or s(`m) ≤ t− 2 and s(`m) (mod 4) = 0, or s(`m) ≤ t− 4 and s(`m) (mod 4) = 2.
If s(`m) ≤ t− 2 then let `a = `m.

As we can repeat case 1a and 1b as long as s(`a) 6= t and s(`b) 6= t, and as `a and `b
have fewer links crossing L between them after each iteration, at some point we must have
that either s(`a) = t or s(`b) = t. As both `a and `b are part of w[`t+2], and as `a and `b
both cross L lower (or at) `t−2, we reach a contradiction with the fact that by IH4 `t is the
lowest link from w[`t+2] with spirality t that crosses L above `t+2 (e.g., see Figure 9(d)).

Case 2 `t is right-oriented: (t (mod 4) = 0)
This case is symmetric to case 1, we abbreviate the argument for conciseness. As `t has
spirality t (mod 4) = 0, by IH2 the link `t is part of the monotone decreasing subsequence
in St when ordered top-to-bottom along L. Moreover `t is the lowest link that crosses L. Let
`j be the lowest (horizontal) link from w[`t] that crosses L higher than `t. By Lemma 5 we
have s(`j) = t − 2 or s(`j) = t + 4. If s(`j) = t − 2 then the claim is proven. Otherwise,
we continue the upwards search from `j . As by Lemma 3 the highest link crossing L has
spirality at least 0, we can repeat the upwards search until a link of spirality t− 2 is found.
As we continuously search earlier along the wire this link must also be part of w[`t].

Adding the lowest link `t−2 with these properties to St trivially maintains IH1, IH3,
IH4. We show that it also maintains that `t−2 crosses L higher than all other links from St
(IH2). Assume for contradiction that `t−2 crosses L below the previously highest link `t+2.
Then a link `m must exist that crosses L between `t−2 and `t+2 because as a consequence of
Lemma 4 `t−2 cannot be the highest link from w[`t+2] crossing below `t+2. Using `m we can
repeatedly shrink the search interval along L until we find a link with spirality t that is part
of w[`t+2] and that crosses L higher than `t contradicting IH3.

Let `→ be a right-oriented link on a wire w and w.l.o.g. let s > 0 be the spirality
of `→. Further, let L be a vertical line through `→ and S a subsequence from w with the
properties guaranteed by Lemma 6. Finally, let `i ∈ S be the unique link with spirality
0 ≤ i ≤ s in S. We define the i-core for S (for 4 ≤ i ≤ s and i (mod 4) = 0) as the region
enclosed by the wire w from the intersection between `i−4 and L to the intersection between
`i and L and the line segment along L connecting them (see Figure 10(a)). We define a
layer of S as the difference between the i-core and the (i+ 4)-core, for 4 ≤ i ≤ s− 4 and i
(mod 4) = 0 (see Figure 10(b)). There are Θ(s) layers surrounding a link of spirality s ≥ 8.

Lemma 7. An equivalent set of lr-wires with spirality O(n) exists in ΓI with respect to a
straight-line wire-grid in ΓO.

Proof. We prove the statement constructively by induction on the size of the constructed
set. Assume a set S of k lr-wires with spirality O(n) exists, that is equivalent to a subset T
of the wires from W→ in ΓO. Moreover, assume that each wire in S is shortest with respect
to the previously inserted wires in ΓI . In the base case S = T = ∅.
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Figure 10: (a) The i-core of a spiral for a link `i ∈ S (gray). (b) The i-layer of the spiral
(gray). (Shape simplified for exposition.) (c) Each edge can cross through (at most) the two
layers directly adjacent to the crossing with L. (d) A layer cannot only contain wires as then
all wires can be shortened.

For the inductive step consider an arbitrary wire wO ∈W→ from ΓO where wO 6∈ T .
Find the Euclidean shortest lr-wire w in ΓI such that S ∪w is equivalent to T ∪wO. Consider
a right-oriented link `→ ∈ w with maximum absolute spirality s. Based on Lemma 6
we conclude that there are Θ(s) layers surrounding `→. We bound the number of layers
surrounding `→ to O(n). Thus, it must also be that s = O(n) and the spirality of w is O(n).
To achieve this we classify the layers of the spiral by their containment of the drawing: (1) a
layer contains a vertex, or (2) a layer is crossed by an edge, or (3) a layer contains no part of
the drawing (but may contain wires).

There are at most O(n) layers that contain a vertex of the drawing. If a layer contains
no vertex but does intersect an edge, then that edge must cross through the layer. As each
edge is crossed at most once by w (Observation 2), an edge can only exit the layer on one
side by crossing through w. Hence each edge crossing a layer must cross L exactly once.
Each edge can at most cross through the (two) layers directly adjacent to the crossing with
L in this way (see Figure 10(c)). Thus only O(n) layers intersect an edge.

We now show that these are all layers, by showing every layer must contain a part
of G. Assume for contradiction a layer R exists that does not contain any part of G. The
boundary of R is formed by w and two straight-line segments along L. We refer to the two
segments along L as the gates of the layer.

The layer R may still contain (subsections of) lr-wires, including w itself. Lr-wires
do not cross and hence must enter and leave R through the gates. As R contains no part of
the drawing and the lr-wires are each shortest with respect to the previously inserted wires
they cannot consecutively enter and leave R through the same gate. Moreover, as lr-wires do
not cross or self-intersect, the order of the wires at both gates must be identical.

Disconnect all lr-wires at the gates of R. Also disconnect w at the lower link adjacent
to each gate. Remove all disconnected components. Reconnect the remaining parts locally
along L ensuring no crossings occur and all wires visit the remaining links in the same
order (see Figure 10(d)). All wires crossing R are shortened by this. Contradiction, because
particularly the rerouted wire that was inserted first was not shortest with respect to the
previously inserted wires. We conclude there are at most O(n) layers, and thus the maximum
absolute spirality of any link of w and thereby w is O(n).
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Theorem 2. Let ΓI and ΓO be two unified planar orthogonal drawings of a (potentially
disconnected) graph G. There exists a set of wires in ΓI that is equivalent to the straight-line
wires in ΓO and that has spirality O(n).

Proof. By Lemma 7 we can insert all lr-wires with spirality O(n). By Lemma 1 intersecting
links have equal spirality. Thus when a tb-wire intersects a lr-wire it has spirality O(n) and
we can consider the regions between two consecutive lr-wires independently. Within the
region between two consecutive lr-wires no pair of wires intersect. Using the same proof
as Lemma 7 we conclude that within the region between two lr-wires the spirality of each
tb-wire may increase (decrease) by at most O(n), but the spirality will be O(n) again when
crossing the second lr-wire. Thus the maximum spirality of the tb-wires is also O(n).

4 Basic algorithm using a linear number of morphs

We now describe our algorithm to morph ΓI to ΓO using O(s) = O(n) linear morphs, where
s is the spirality of an equivalent set of wires in ΓI . The complexity of the intermediate
drawing may rise to O(n3). In Section 5 we refine the algorithm by batching linear morphs
to reduce the required number of linear morphs to s. Finally, in Section 6 we describe an
extension to the algorithm to ensure the complexity of intermediate drawings remains O(n)
at the cost of a single extra linear morph. Thus using s + 1 linear morphs we maintain
planarity, orthogonality, and linear complexity of the drawing during the morph.

For our analysis of the initial spirality we required ΓI and ΓO to be straight-line draw-
ings of the unified graph. For the morph itself we let go of this stringent requirement. During
the morph we introduce bends in the edges to change their orientation while maintaining
orthogonality. We will show that the spirality of the wires only decreases during the morph.

The idea of the algorithm is to reduce the maximum spirality of the wires using only
O(1) linear morphs. Then, by Theorem 2 we need only O(n) linear morphs to straighten
the wires. The resulting drawing can be made similar to ΓO, by adding additional bends
in ΓO, after which we can morph the resulting drawing to ΓO using a single linear morph
(Observation 1). We show how to reduce the spirality of wires in W→ without increasing
the spirality of wires in W↓ and vice versa. In the description below, we limit ourselves to
straightening the wires in W→.

`∗

(a)

`∗

(b)

`∗

(c)

Figure 11: Different slide-types used on the wires. (a) The slide from [3] executed on a
wire. (b) A bend-introducing slide splits the link without increasing the overall spirality.
(c) A single crossing edge (link) causes the introduction of new bends in the edge (link).
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To straighten the wires we use zigzag-eliminating slides (see Section 2). Consider a
link `∗ with maximum absolute spirality. We consider two cases. In the first case `∗ is not
crossed by any link or segment. As `∗ is a link with maximum absolute spirality, the links
before and after `∗ are on opposite sides of the line through `∗ and hence `∗ is the middle
link of a zigzag in the wire. Performing a zigzag-eliminating slide on `∗ eliminates `∗ and
consequently may lower the spirality of the wire containing `∗.

In the second case, `∗ is crossed by one or more links or segments. We describe two
additional steps to account for this by introducing additional bends in the wires.

Step 1: (only if `∗ intersects multiple segments and/or links)
We split `∗ into several links each crossing exactly one segment/link by performing a bend-
introducing slide on `∗ inbetween each pair of crossings (see Figure 11(b)). We can pick
a direction for the bend-creating slides to ensure only links are created with an absolute
spirality smaller than or equal to the maximum absolute spirality.

Step 2:
Note that `∗ intersects exactly one segment (link) (u, v). Before executing the zigzag-
eliminating slide we first introduce two bends in (u, v) at the intersection of (u, v) and `∗ (see
Figure 11(c)). Without loss of generality assume that `∗ is a vertical link. We symbolically
offset the first bend to be left of `∗ and the second to be right of `∗. Segment (u, v) is now
split into three segments, the first and last being completely on one side of the zigzag and
the middle being a degenerate segment. Upon performing the linear slide all three segments
will stay (degenerately) horizontal or vertical during the slide. A zigzag-eliminating slide
eliminates `∗ and may thereby lower the maximum absolute spirality of the wire containing
`∗. In the next part we show that these slides also maintain the spirality of all other wires.

To reduce the number of linear morphs, we combine all slides of the same type into
a single linear morph. For all links with the same spirality, all bend-creating slides are
combined into one linear morph, and all zigzag-eliminating slides are combined into another
linear morph. For convenience of argument, links with positive spirality and links with
negative spirality are combined into separate linear morphs. Thus, using at most 4 linear
morphs, we can reduce the maximum absolute spirality of all wires in W→ by one.

Analysis. We first show that performing slides on links in W→ does not have adverse effects
on wires in W↓. This is easy to see for bend-creating slides, as wires in W→ and wires in W↓
never overlap in more than a point.

Lemma 8. Performing a zigzag-eliminating slide on a link with maximum absolute spirality
in W→ does not increase the spirality of a wire in W↓.

Proof. Let `∗ be the middle link of the zigzag causing the zigzag-eliminating slide. The
zigzag-eliminating slide can only change a wire w′ in W↓ if `∗ crosses a link `′ in w′. By
Lemma 1 s(`′) = s(`∗) before the linear slide is performed. The slide does not change the
spirality of any existing link in w′ as the introduction of a left and right bend in w′ has an
overall neutral effect on the spiralities of w′. A new link is created however and this link
crosses the link formed by the merging of the link before and after `∗, which both have
absolute spirality |s(`∗)|−1. By Lemma 1 the new link in w′ must also have absolute spirality
|s(`∗)| − 1, and thus the spirality of w′ has not been increased.
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Lemma 9. Multiple bend-creating or zigzag-eliminating slides on links of the same spirality
in W→ can be combined into a single linear morph that maintains planarity and orthogonality.

Proof. As bend-creating slides and zigzag-eliminating slides operate similarly, we restrict our
argument to the latter. As all zigzag-eliminating slides operate on links of the same spirality,
they are either all horizontal or all vertical. Without loss of generality, assume that all
zigzags are horizontal. Then all vertices in the drawing are moved only vertically and vertical
edges remain vertical. Furthermore, since we introduce bends at edges that intersect the
middle segment of zigzags, horizontal edges are either subdivided or remain horizontal during
the linear morph. As the horizontal order of vertices and bends is maintained, planarity can
only be violated if there exists a vertical line where the vertical order is changed. However,
by construction of the slides, on any vertical line points with higher y-coordinates are moved
up at least as far as points with lower y-coordinates, maintaining the vertical order.

Theorem 3. Let ΓI and ΓO be two orthogonal planar drawings of G, where G is the
unification of ΓI and ΓO, and ΓI and ΓO are equivalent. Then we can morph ΓI to ΓO using
O(n) linear morphs, where n is the number of vertices of G.

Proof. Let W→ and W↓ be an equivalent set of wires for ΓI , with respect to the straight-line
wire-grid in ΓO, having maximum spirality O(n). By Theorem 2 such a set exists. By
Lemma 8 the wires in W→ (W↓) can be straightened without affecting the spirality of the
wires in W↓ (W→). By Lemma 9, we can reduce the maximum spirality of all wires in W→
(W↓) by one using at most four linear morphs. Hence, all wires can be straightened with at
most O(n) linear morphs. Afterwards, the resulting drawing Γ is similar to ΓO except for
additional bends. After adding matching bends in ΓO, we can use a single linear morph to
morph Γ to ΓO (Observation 1).

5 Batching linear morphs

In the previous section we have shown that a morph that maintains planarity and orthogonality
exists that consists of O(n) linear morphs. However, the intermediate complexity of the
drawing could increase to O(n3) as each of the O(n) morphing steps may reduce O(n) links
each of which crosses O(n) edges, thus adding an additional O(n2) bends per step of the
morph. Before we show how to also maintain O(n) complexity of the drawing (Section 6), we
first further strengthen the result. The proof of Theorem 3 implies that a morph between two
unified planar orthogonal drawings ΓI and ΓO exists using O(s) linear morphs, where s is the
spirality of ΓI . In this section we show how to effectively combine consecutive linear slides,
resulting in a planarity and orthogonality preserving morph using only s linear morphs.

In this section we initially consider the previously defined morph without any merging
of linear slides. Thus each linear morph is directly defined by a single zigzag-eliminating
or bend-introducing slide. This sequence of linear slides can be encoded by a sequence of
drawings, starting with ΓI and ending with ΓO, such that every consecutive pair of drawings
is caused by a linear slide. For notational convenience let Γi −−I Γj indicate that Γi occurs
before Γj during the morph and Γi =I Γj that Γi −−I Γj or Γi = Γj .
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Let the spirality of a drawing, with respect to a given set of wires, be defined as the
maximum spirality over all wires. Note that spirality of a drawing Γ is always relative to
another drawing Γ′ and dependent on the set of wires selected for Γ. There may be multiple
potential sets of equivalent wires in Γ for a given drawing Γ′. Still, whenever the drawing Γ′

and the matching set of wires are clear from the context, then by abuse of notation we will
speak of the spirality of Γ. Unless stated otherwise, we consider spirality relative to ΓO.

Let an iteration of the original morph consist of all linear slides that jointly reduce
spirality of the drawing by one. Let the first drawing of iteration s be the first drawing in
the original morph with spirality s and the last drawing of iteration s be the first drawing
with spirality s− 1. Consecutive iterations overlap in exactly one drawing. These drawings
in the overlap of iterations are the intermediate steps of the final morph. Within this section
let ΓI =I Γa −−I Γb =I ΓO, where Γa is the first drawing with spirality s and Γb is the first
drawing with spirality s− 1.

We prove that within one iteration for any two vertices the relative order along at
most one axis can be changed. We use this to show that the spirality of Γa with respect
to Γb is one. We then show that we can also find a drawing Γ′b, based on Γb, such that Γa

has spirality one to Γ′b, Γ′b has spirality s− 1, and Γ′b is a straight-line drawing. Finally we
show that any two drawings Γ,Γ′ where Γ has spirality one relative to Γ′ can be linearly
interpolated without violating planarity of the drawing during the morph. Together this
implies we can reduce spirality by one using only a single linear morph while maintaining a
straight-line intermediate drawing (though each individual morph may temporarily increase
complexity by O(n2)). Consequently using only s linear morphs we can morph ΓI into ΓO

while maintaining planarity and orthogonality.

As bend-introducing slides (Section 4, Figure 11(b)) can trivially be offset to not
have any vertices along the vertical (horizontal) link that is split, we can prevent them from
changing the x or y-order of any pair of vertices in the drawing. Therefore, we leave them
out of consideration in this section.

5.1 Staircases

Consider two distinct vertices v and w of the drawing. Define an x-inversion (y-inversion)
of v and w between Γa and Γb when the sign (+,−,0) of v.x− w.x (v.y − w.y) differs in Γa

and Γb. In that case we say two vertices are x-inverted (y-inverted), or simply inverted. Two
vertices v and w are separated in a drawing by a link ` when they are both in the vertical
(horizontal) strip spanned by `, and v and w are on opposite sides of `.

Lemma 10. Let Γa be a drawing and Γb be obtained from Γa by a zigzag-removing slide
along link `. If two vertices v and w are inverted, then v and w were separated by ` in Γa.

Proof. W.l.o.g. assume ` is vertical and the spirality is positive (see Figure 12). Let V be the
set of vertices moved by a zigzag-removing slide on `. If v, w ∈ V or v, w 6∈ V then v, w are
moved equally in the same direction and cannot have been inverted. Hence either v ∈ V or
w ∈ V; assume v ∈ V. All vertices in V move up by the length of `. To be inverted we need
that initially w.y > v.y, but also that w 6∈ V. Then v and w must be separated by `.
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V

`

(a)

v

w

`

(b)

Figure 12: (a) Motion of the vertices in V (gray) defined by the (horizontally extended)
zigzag containing `. (b) To change the order of v and w along the y-axis, both must be in
the horizontal strip defined by ` (blue) and separated by `.

w

vA downward horizontal staircase is a sequence of horizontal links where:
(1) the left-endpoints are x-monotone increasing and strictly y-monotone
decreasing, (2) the projection on the x-axis intersects for a pair if and only if
they are consecutive in the sequence, and (3) all links have positive spirality.
Two vertices v and w are separated by a downward staircase if v is in the
vertical strip spanned by the first link of the staircase and above it and w
is in the vertical strip spanned by the last link and below it. Similar concepts can be defined
for upward horizontal staircases and for vertical staircases.

Lemma 11. Two vertices v and w whose order during a morph from Γa to Γb is x-inverted
(y-inverted) before it optionally is y-inverted (x-inverted), are separated by a horizontal
(vertical) staircase of maximum spirality links in Γa.

Proof. Assume w.l.o.g. that only one inversion occurs and it occurs from Γb−1 to Γb, otherwise
consider the submorph from the start until the first slide causing an inversion. Assume that
v.x < w.x, v.y > w.y in all drawings from Γa to Γb−1 and v.x > w.x, v.y > w.y in Γb. We
prove the claim inductively in backwards direction. For convenience of the argument we will
treat v as the right endpoint of an initial link of the staircase and w as the left endpoint of a
final link.

The base case is Γb−1, where v and w are separated by a single maximum absolute
spirality link (Lemma 10). As v.y > w.y and v.x < w.x in Γb−1 and v.x > w.x in Γb, this
link has positive spirality and trivially (together with the imaginary initial and final links)
forms a downward staircase.

For the step let the sequence S compose a downwards staircase in Γi, where Γa −−I
Γi =I Γb−1. Let `i−1 be the link in Γi−1 of maximum absolute spirality that specified the
linear slide from Γi−1 to Γi. We define four rectangular regions A,B,C,D surrounding `i−1
that partition the plane in Γi−1. In the case where `i−1 is horizontal in Γi−1 we define region
A as the halfspace left of the left endpoint of `i−1, region D as the halfspace right of the
right endpoint of `i−1, and the remaining strip is split in region B above `i−1 and region C
below (e.g., see Figure 13(a)). In the case when `i−1 is vertical we define A to be above, D
below, B left of, and C right of `i−1. During the linear slide from Γi−1 to Γi all four regions
are maintained. Moreover, two new regions F and G appear in Γi. As regions A,B,C,D are
maintained and together contain all vertices, regions F and G do not contain any vertices.
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Figure 13: (a) Regions surrounding `i−1 in Γi−1 and the matching regions in Γi. Regions
A,B,C,D are maintained between the two drawings. (b) A vertical slide may merge two
links from staircase S in Γi−1. (c) If S is split in Γi−1 then it can be extended to a staircase
(white outline) by adding `i−1. (d) If non-adjacent links from S overlap in Γi−1 then we can
select a subsequence from S forming a staircase in Γi−1 (white outline).

Assume S is not a downwards staircase in Γi−1, for otherwise we are done. A staircase
is defined solely by the x- and y-order of the endpoints of the links. Thus, as S is not a
downwards staircase, there must be at least two endpoints of links in S whose x- or y-order
is different in Γi−1 from Γi. The respective endpoints are separated by `i−1 in Γi−1, for
otherwise their order could not change (Lemma 10). Hence at least one link from S intersects
region B and one link intersects region C. (As B and C are not horizontally or vertically
adjacent in Γi these must be two different links.)

Let S1 be the subsequence of S up to the last link `1 that intersects, or is contained
in, region B. Let S2 consist of the remaining links. The first link `2 of S2 must intersect
or be contained in region C. The endpoints of the links in S are monotone decreasing in y
(respectively monotone increasing in x) in Γi. As region C is below (respectively right) of B,
no link in S1 intersects C and no links from S2 intersect B. Hence, within S1 and S2 there
are no changes in the x- and y-order of the endpoints. Any staircase properties must be
broken by the interaction between S1 and S2. We make a case distinction on the orientation
and spirality of `i−1.

Case 1: (`i−1 is vertical – Figure 13(b))
Then `i−1 must have positive spirality. Assume for contradiction that `i−1 has negative
spirality. Then in Γi, in mirror to the displayed case, the top of region B is at the same
height as the bottom of region C. But then `1 must have a lower or equivalent y-coordinate
to `2 in Γi. This contradicts the fact that S was a valid staircase in Γi.
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Thus `i−1 has positive spirality. As the x-projection of `1 and `2 touches (overlaps)
in Γi and regions F and G contain no vertices, it must be that `1 ends at the right border of
B and `2 starts at the left border of C. As link `i−1 can only be crossed by a single edge,
the right endpoint of `1 must be equal with the left endpoint of `2 in Γi−1 forming a single
link. The order of all other pairs of links is maintained as a vertical slide does not affect the
x-order and on each vertical line the order of all points is maintained. We conclude that the
sequence S is also a valid staircase in Γi−1.

Case 2: (`i−1 is horizontal and has positive spirality – Figure 13(c))
A horizontal slide can falsify the x-monotonicity or the overlap of links. As S is a valid
staircase in Γi the projection on the x-axis of any two non-adjacent links is non-overlapping.
Then `1 and `2 cannot be fully contained in B respectively C as otherwise either `1 is
contained in `2 or vice versa, and therefore at least one pair of non-adjacent links must
overlap. Moreover, from S only `1 enters B and only `2 enters C. In Γi−1 only the right
endpoint of `1 and the left endpoint of `2 may be inverted. If so, then by Lemma 10 `1 and
`2 are separated by `s. Thus (S1, `s, S2) forms a downwards staircase in Γi−1.

Case 3: (`i−1 is horizontal and has negative spirality – Figure 13(d))
As S is a valid staircase in Γi link `1 must intersect both region B and D. As `2 intersects
region C, and as only for adjacent links in S the projection on the x-axis can overlap, link `1
is the only link intersecting region B and D. Similarly only `2 intersects region C. However,
in Γi−1 the projection on the x-axis of several links from S1 may overlap with the projection
of `2. Select a subsequence from S satisfying all constraints by removing all links from S1
after the first link from S1 that overlaps `2.

5.2 Inversions

We show that every pair of vertices is inverted along at most one axis during the morph from
Γa to Γb. We then prove that Γa has spirality one relative to Γb. This will be used in the
next sections to prove a single linear morph is sufficient to morph from Γa to Γb.

Lemma 12. Two vertices v and w can be inverted along only one axis during any sub-morph
of the morph from Γa to Γb.

Proof. Suppose for a contradiction, that a pair of vertices v, w exists that is inverted along
both axes during the submorph from Γi to Γj , where Γa =I Γi −−I Γj =I Γb. Assume they are
inverted along both axes exactly once, otherwise consider the smaller submorph where this is
the case. W.l.o.g. let v.x < w.x, v.y < w.y in Γi, v.x < w.x, v.y > w.y in all drawings from
Γi+1 to Γj−1, and v.x > w.x, v.y > w.y in Γj .

By Lemma 11, and the relative position of v and w, there exists a downwards staircase
separating v and w in Γi+1. By Lemma 10 and the inversion of v, w from Γi to Γi+1, the
morph from Γi to Γi+1 is defined by a vertical maximum-spirality link separating v and w in
Γi. The resulting vertical slide cannot break a downward staircase (see Case 1 in the proof
of Lemma 11) and hence if a downwards staircase separating v and w was present in Γi+1

then there is also a downwards staircase separating v and w in Γi. But then it must be that
v.y > w.y in Γi. Contradiction.
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Figure 14: (a) Sets SL and SR in Γa and Γi. (b) A vertical edge e ∈ SR cannot cross L→ left
of a vertical edge f ∈ SL as vertex u must be x- and y-inverted with one of the endpoints of
f during the morph. (c) The y-monotone line cannot cross the edges in the wrong order as
then vertex u must be x- and y-inverted with an endpoint of f .

Lemma 13. For any drawing Γi where Γa −−I Γi =I Γb, each vertical (horizontal) straight-line
wire in Γi not crossing a vertex has an equivalent y- (x-)monotone wire in Γa.

Proof. Let L↓ be a vertical line in Γi not crossing any vertex. Line L↓ partitions the set of
vertices and vertical edges in Γi into two subsets SL,SR (see Figure 14(a)). Let L→ be an
arbitrary horizontal line in Γa. We first prove that on L→ every element from SL comes
before every element from SR. It follows that a y-monotone wire must exist in Γa that
correctly partitions the vertices and vertical edges.

Assume for contradiction that there exist elements e ∈ SR and f ∈ SL, with e.x < f.x
in Γa and e.x > f.x in Γi, that lie on a horizontal line in Γa. As e and f are x-inverted,
they (or their endpoints) cannot be y-inverted between Γa and Γi (Lemma 12). Assume e, f
are vertical edges in Γa and an endpoint u of e is in the horizontal strip defined by f (see
Figure 14(b)). The case where e or f are vertices is analogous. As the morph is planar u
cannot move through f while morphing to Γi. But then u changed in the y-order with one
of the endpoints of f during the morph. Contradiction.

We now show that a y-monotone polyline separating SL and SR in Γa intersects the
horizontal edges in the same order as L in Γb. Consider an arbitrary pair of horizontal edges
e, f that is intersected by L↓ in this order in Γi. If e, f have the same vertical order in Γa

then the claim trivially holds. Otherwise the end-points of e, f are y-inverted in Γa (see
Figure 14(c)) and thus by Lemma 12 the x-order of the end-points is the same in Γa and Γi.
Using the same argument as in the previous paragraph there must exist an endpoint of e and
an endpoint of f that have also changed in the x-order during the morph. Contradiction.

Lemma 14. Drawing Γa has spirality one relative to Γi, where Γa −−I Γi =I Γb.

Proof. The spirality of Γa relative to Γi is one if there exists a wire grid of spirality one in Γa

that is equivalent to a straight-line wire grid in Γi. A wire with spirality one is, by definition,
equivalent to a monotone wire. Thus, it is sufficient to show a wire grid exists where each
wire is monotone. To this end, consider a new straight-line wire grid in Γi. By Lemma 13 we
can find an equivalent x- (y-) monotone wire in Γa for each straight wire in Γi. We show that
there is also a set of monotone wires in Γa that form an equivalent set to the wires in Γi.
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Figure 15: (a) The area enclosed by two y-monotone wires between the top-most two crossings
(light blue) cannot contain vertices. (b) Each enclosed region contains an xy-monotone path
π. (c) If w↓ crosses w→ first in p2 then it must enter the gray area through p1, but it cannot
leave it. (d) An x-monotone lr-wire and a y-monotone tb-wire cannot cross three times.

Let W be a set of wires in Γa with the following properties. Firstly, every wire is
monotone. Secondly, each wire is individually equivalent to a distinct straight wire in Γi.
Thirdly, W has the minimum number of intersections over all sets satisfying the previous
requirements. We show that W is equivalent to the wire-grid in Γi. That is, each pair of tb-
(lr-) wires does not intersect and each pair of a tb- and a lr-wire intersect exactly once.

Assume for contradiction that a pair of y-monotone tb-wires intersect at least twice
in W (see Figure 15(a)). Consider the top-most two intersections. The region enclosed by
the wires cannot contain vertices as both wires partition the vertices equivalently to Γi. As
the enclosed region is simple and every edge is intersected at most once by a single wire,
the order in which edges are intersected along both sides is the same. Locally reroute both
wires along the enclosed region to remove both intersections. Contradiction as W has the
minimum number of intersections. Thus, each pair of y-monotone tb-wires in W does not
intersect. A symmetric argument show no pair of x-monotone lr-wires can intersect.

Assume for contradiction that an x-monotone lr-wire w→ and a y-monotone tb-wire
w↓ intersect more than once. As they must intersect an odd number of times, they intersect
at least three times. Consider a region R enclosed between consecutive intersections p1, p2.
Assume w.l.o.g. that w→ intersects w↓ left to right in p1 (see Figure 15(b)). If R does not
contain vertices, then consider the left-most, lowest x-monotone increasing path π through R.
As the boundary right of π is y-monotone decreasing, π must also be y-monotone decreasing.
Reroute both wires along π between p1 and p2 to remove the intersections. Contradiction as
W has the minimum number of intersections. Each enclosed region must contain a vertex.

Consider the leftmost three consecutive intersections p1, p2, p3 along w→ . We have
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p1.x ≤ p2.x ≤ p3.x. Assume for contradiction w↓ crosses through p2 first. Then w→ upto
p2, w↓ upto p2, and the bounding box B surrounding the drawing (and wires) enclose a
simple region (see Figure 15(c)). Wire w↓ enters this region through p1, but cannot exit it
without intersecting w→ somewhere before p2. Contradiction, as p1, p2, p3 are the first three
intersections along w→. Similarly, if w↓ crosses through p2 last then w→ between p1 and p3,
and w↓ between p1 and p3 enclose a simple region, which w↓ enters through p2. However,
then there must be another intersection between w↓ and w→ occuring along w→ before p2,
which contradicts our assumption. Thus either p1.y ≤ p2.y ≤ p3.y or p1.y ≥ p2.y ≥ p3.y.

Assume w.l.o.g. p1.y ≥ p2.y ≥ p3.y (see Figure 15(d)). The wires between these
intersections enclose two disjoint regions R1, R2. Each region contains at least one vertex,
let u ∈ R1 and v ∈ R2. Subdivide the plane into four axis-aligned quadrants at p2. Region
R1 lies in the top-left quadrant and R2 in the bottom-right quadrant. Thus, u.x < v.x and
u.y > v.y in Γa. As the wires are equivalent to Γi, by construction u.x > v.x and u.y < v.y
in Γi. Contradiction, as vertices u, v cannot be inverted along both axes (Lemma 12). Thus
W cannot contain a lr-wire and a tb-wire that intersect each other more than once.

We conclude that W is an equivalent set of x- respectively y-monotone wires that
matches the straight-line wire-grid in Γi. As all wires are monotone they have spirality one
and thus, by definition, Γa has spirality one relative to Γi.

The claim that Γa has spirality one relative to Γb follows directly by choosing Γi = Γb.

5.3 Simplification

In the previous subsection we showed that the spirality of Γa relative to Γb is one, where
Γa is the initial drawing of an iteration and Γb the last drawing. Let s be the spirality of
Γa and, therefore, s− 1 the spirality of Γb. As the morph from Γa to Γb inserts additional
bends in the edges the complexity of Γb may be superlinear. In this section we show that an
alternative drawing Γ′b exists that has linear complexity, has the same spirality as Γb, and
such that Γa has spirality one relative to Γ′b.

For future use (Section 6) we discuss the results in a more general case for a drawing
Γh, where Γh is a drawing resulting from Γa by performing linear slides on a subset of
the maximum absolute spirality links in Γa. This subset must contain at least one of the
crossing links for each segment in Γa crossed by maximum absolute spirality links. Trivially
Γb satisfies this requirement.

Let ε be a suitably small value such that for each vertex v in Γh, a 6ε-sized square
box centered at v contains only v and a 3ε-part of each outgoing segment from v. A rotation
for edge e leaving v rightwards, is a redrawing of e within the 6ε-box centered at v using the
coordinates (v, v + (0,−ε), v + (2ε,−ε), v + (2ε, 0), v + (3ε, 0)) (see Figure 16). Analogous
rerouting can be done for edges leaving v in other directions. For an edge crossed by a
negative spirality link invert the left and right turns. An edge rotation is a rotation at both
endpoints of the edge. We use the following technical lemma to prove that this redraw step
can safely be done without introducing planarity violations.

http://jocg.org/


JoCG 13(1), 263–297, 2022 286

Journal of Computational Geometry jocg.org

v
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Figure 17: (a) Configuration in ΓO with e left-oriented and f up-
oriented. (b) A configuration in Γa when e is counter-clockwise
adjacent to f in ΓO. (c) A configuration when e is clockwise adjacent
to f in ΓO. (d) A configuration when e and f are horizontal in ΓO.

Lemma 15. Let v be a vertex with at least two outgoing edges e, f and let c be the turn
made at v going from e to f , where c = −1 for a right turn, c = 1 for a left turn,
and c = 0 otherwise. Let `e be a link crossing e and `f be a link crossing f . We have
s(`e) + c− 1 ≤ s(`f ) ≤ s(`e) + c+ 1.

Proof. In ΓO edges e and f are either both horizontal (vertical) or they have different
orientations. For the case where the edges have different orientations, w.l.o.g. assume that
in ΓO e is a left-edge for v and f a top-edge for v. By construction e and f are intersected
by a pair of wires w ∈W→ and w′ ∈W↓, and they cross before crossing e respectively f (see
Figure 17(a)). Wires w and w′ together with edges e and f enclose a simple region in ΓO.
As the wires in Γa form an equivalent set this simple region also exists in Γa, though its
shape and the orientation of the outgoing edges at v may be different.

By construction the border of this region contains a left turn at the intersection
between the wires and two left turns at the intersection of the wires with the respective
edges e and f (Figure 17(b)). The turn at v depends on the configuration of e and f in Γa.
Let `e, `f be the links of w,w′ crossing e and f . Furthermore, let k be the spirality of the
links of w and w′ at the crossing between w and w′. As the number of left turns is four
larger than the number of right turns when traversing a cycle counter-clockwise we have
(k − s(`e)) + (s(`f ) − k) + 3 + c = 4, simplified s(`f ) = s(`e) + c − 1. When, in ΓO, e is
clockwise adjacent to f at v then we get s(`f ) = s(`e) + c+ 1 (Figure 17(c)).

In the case where both edges are horizontal (vertical) a similar argument holds, but
now the cycle is formed by two wires from W↓ and one wire from W→ resulting in one more
left turn. We find s(`f ) = s(`e)+c (Figure 17(d)). Combining all bounds gives the result.

Lemma 16. We can rotate all edges in Γh that were crossed by a maximal spirality link in
Γa, without causing planarity violations and without changing the cyclic order.

Proof. Trivially planarity violations occur only inside the 6ε-boxes at the endpoints. There are
two possible cases causing a planarity violation when redrawing Γh. First, two perpendicular
edges leaving v coincide internally after the redraw step. This occurs if one of the edges is
crossed by links of absolute spirality s and the other is not. Second, two edges leaving v in
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opposing direction coincide internally after the redraw step. This occurs if one of the edges
is crossed by links of spirality s and the other by links of spirality −s.

For the first case, w.l.o.g. assume e is a right-edge of v and f a bottom-edge. Let `e
be a link crossing e and `f a link crossing f in Γa. Assume w.l.o.g. s(`e) = s and s(`f ) < s.
By Lemma 15, using c = 1, in Γa we have s(`e) ≤ s(`f ) ≤ s(`e) + 2. As s(`e) = s and no
larger spiralities exists in Γa, we must have s(`f ) = s(`e). Contradiction.

For the second case, w.l.o.g. assume e is a right-edge of v and f a left-edge. Let `e be
a link crossing e and `f a link crossing f , where s(`e) = s and s(`f ) = −s. Using Lemma 15,
with c = 0, we get −s < 0 ≤ s(`e)− 1 ≤ s(`f ). Contradiction.

The cyclic order can only change when there are two perpendicular edges e, f in Γa

that are redrawn in opposing directions and hence are crossed by a link of positive respective
negative spirality. W.l.o.g. let the turn from e to f at v be a left-turn. To change in the
cyclic order e must be crossed by a link of spirality s and f must be crossed by a link of
spirality −s. However, by Lemma 15 s(`e) ≤ s(`f ). Contradiction.

Lemma 17. There exists a straight-line drawing Γ′h with spirality equal to Γh.

Proof. Consider an edge e that in Γa is crossed by links of maximum absolute spirality s.
Without loss of generality let s > 0. For the case where s < 0 exchange left and right turns
in the following argument. All links crossing e have positive (equivalent) spirality (Lemma 2),
therefore a linear slide along any such link `s introduces a right bend followed by a left bend
in e. Thus e has an odd number of segments in Γh and the turns along e are alternating right
and left turns, starting with a right turn (see Figure 18(b)). Moreover, at least one linear
slide was performed on a link crossing e and hence in Γh at least one link of spirality s− 1
crosses e and it crosses e in a segment started by a right bend and followed by a left bend.

Rotate e within the 6ε-boxes near the endpoints to create two left turns and a right
turn at the start of the edge, and one left turn and two right turns at the end of the edge
(see Figure 18(c)). We can do this while maintaining planarity of the drawing (Lemma 16).
Thus the bends in e in Γh can be encoded as LLR (RL)+ LRR, where L encodes a left turn,
R a right turn, and (RL)+ is the alternating sequence of turns starting with a right turn
and ending with a left turn. Split differently we have LLRR (LR)∗ LLRR, where (LR)∗ is
the possibly empty alternating sequence of left and right turns starting with a left turn and
ending with a right turn. Two turns in this sequence enclose a segment of e.

We can remove a pair of consecutive bends LR by performing a zigzag-removing slide
on the segment σ between the bends. As every link with spirality s− 1 crosses a segment
started by a right bend, any link crossing σ must have spirality s. If multiple wires intersect
σ, then we can first split σ using a bend-introducing slide. Thus, assume σ is crossed by at
most one link. Removing σ with a zigzag-removing slide introduces a single new link in the
crossing wire and it crosses e. After removing every pair of consecutive LR bends, the edge
forms a single straight-line segment (see Figure 18(d)). This segment is crossed by at least
one link of spirality s− 1, and by all newly introduced links. As all crossing links must have
the same spirality (by Lemma 2) all newly introduced links have spirality s− 1. Thus this
operation does not increase the spirality. The result is a straight-line version Γ′h of Γh with
equal spirality.
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Figure 18: (a) Drawing Γa (black) and the maximum absolute spirality links (red, blue)
crossing the edges of Γa. (b) Drawing Γh that results by performing linear slides along all
maximum absolute spirality links except the top-left link. (c) The drawing after locally
redrawing incoming edges that are not a straight-line segment. (d) Straightening the drawing
removes all bends from the edges. Additional segments are introduced in remaining maximum
spirality links, however this does not increase the maximum absolute spirality.

Lemma 18. Drawing Γa has spirality one relative to Γ′h.

Proof. Consider a straight-line wire grid in Γ′h. We revert Γ′h to Γh using bend-introducing
slides to re-insert the additional bends in the edges. During this process we move the
wires from Γ′h along. As bend-introducing slides do not create any additional bends in the
straight-line wires, there exists a set of equivalent wires in Γh, to the straight-line wire-grid
in Γ′h, that are also straight lines. This set of equivalent wires in Γh must be a subset of the
complete straight-line wire-grid in Γh, and thus by Lemma 14 there must exist an equivalent
set of wires in Γa that is monotone. But then Γa has spirality one relative to Γ′h.

As trivially Γb can be created from Γa by performing linear slides along a suitable
subset of the maximum spirality links (viz. the complete set), we conclude that a straight-line
drawing Γ′b exists such that Γa has spirality one relative to Γ′b, and Γ′b has spirality s− 1.

5.4 Single linear morph

We have shown that given a straight-line drawing Γa with spirality s, we can find a straight-
line drawing Γ′b with spirality s− 1 such that Γa has spirality one relative to Γ′b. We now
show that any two planar (unified) orthogonal drawings Γi and Γj , where Γi has spirality
one relative to Γj , can be morphed using a single linear morph while maintaining planarity.

Two drawings are shape-equivalent if for each edge the sequence of left and right
turns is identical and the initial segment is horizontal (vertical) in both drawings. We say
two drawings are degenerate shape-equivalent if edges may contain zero-length segments but
an assignment of orientations to the segments exists that is consistent with both drawings.
Two (degenerate) shape-equivalent drawings are per definition also unified. We discuss how
to make Γi degenerate shape-equivalent to Γj such that the linear interpolation from Γi to
Γj is planar. To achieve this we use the intersections of the drawing with the wires (with
spirality one). Note that we need not concern ourselves with planarity of the wires during
the morph as this is not required for planarity of the final morph (of the drawing).
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Figure 19: Drawing Γi with spirality one to Γj made degenerate shape-equivalent by adding
segments ab and cd. (Vertices offset slightly for visualization purposes.) All bends and
vertices in ΓO that are between a pair of consecutive vertical (horizontal) wires have the
same x- (y-)coordinate.

Lemma 19. Let Γi and Γj be two unified planar orthogonal drawings, where Γi has spirality
one to Γj. There exists a single linear morph from Γi to Γj that maintains planarity and
orthogonality.

Proof. We say two points p and q on a drawing are split by a wire when p and q lie on
different sides of the wire. The partition of the drawing by all wires defines cells; regions of
the plane not split by any wire.

We first make Γi degenerate shape-equivalent to Γj . Consider all intersections in
Γi between a maximum-spirality link and a segment of the drawing. For each intersection
between an edge e and a maximum-spirality link `s we add a zero-length segment in Γi at the
intersection of e and `s. We symbolically perturb the endpoints of the zero-length segment
such that each endpoint is in a different cell. To ensure that Γj remains unified we also add
an additional segment in Γj . However here we place the endpoints strictly inside the cells of
the drawing while ensuring that in Γj : (1) the endpoints of the segment are in the same cells
as the (symbolically perturbed) endpoints in Γi, (2) all bends and vertices enclosed by two
consecutive horizontal wires have the same y-coordinate, (3) all bends and vertices enclosed
by two consecutive vertical wires have the same x-coordinate (see Figure 19).

For each cell containing at least one bend or vertex, linearly interpolate all vertices
and bends in Γi to the unique vertex or bend location in Γj . This directly defines a linear
interpolation for each point (not necessarily a vertex or bend) between Γi and Γj .

First, we prove that the described linear morph maintains orthogonality. The
endpoints of all (zero-length) segments crossing a tb-wire have the same y- coordinates in Γi

and Γj , hence they remain horizontal. Symmetrically all segments crossing a lr-wire remain
vertical. All other segments morph to a single point and, as the x-coordinates (y-coordinates)
of the endpoints are equivalent at both the start and end of the linear morph, they remain
equivalent throughout the interpolation as well.

Second, we prove that during the described linear morph the drawing remains planar.
Assume for contradiction there exist two distinct points p, q on an edge or vertex of the
drawing that coincide during the linear interpolation (excluding Γi,Γj). By linear motion
the x-coordinates and y-coordinates of p and q change linearly. To be identical at a time
0 < t < 1 during the morph we need that either p and q have identical x-coordinates in
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Figure 20: (a) Two points p and q on the same vertical line in Γi and Γj require spirality at
least two. (b) Two points p and q on vertical segments of the drawing that are inverted along
both axes imply wires in Γi that are not equivalent to Γj . (c) Points p and q on a horizontal
and vertical segment. (d) Points p and q on horizontal segments.

Γi and Γj but are y-order inverted, p and q have identical y-coordinates but are x-order
inverted, or p and q are inverted along both axes.

Case 1: (p and q have identical x-coordinates but are y-order inverted)
We prove by contradiction that this cannot be the case. Assume w.l.o.g. that p.y < q.y in Γi

and p.y > q.y in Γj . Note that if p.y = q.y in either Γi or Γj , then by linear motion there
can not be an intersection during the linear morph itself as there already is an intersection
at one of the endpoints of the morph.

Points p and q cannot be on the same segment as the orientation of each segment is
(degenerately) maintained. Thus p and q must be on different segments. Let s be a lowest
endpoint of the segment containing q and r a highest endpoint of the segment containing
p (see Figure 20(a)). We must have either r.y < s.y in Γi and r.y > s.y in Γj or r.y = s.y.
The assumption r = s results in a contradiction as in Γj we need that r.y ≥ p.y > q.y ≥ s.y.
Thus we must have that r.y < s.y in Γi and r.y > s.y in Γj . But if r.y > s.y in Γj then r
and s (and thus p and q) are split by a horizontal straight-line wire. This wire passes below p
and above q. However, there exists no x-monotone wire in Γi that passes below p and above
q. Contradiction as Γi has spirality one.

Case 2: (p and q have identical y-coordinates but are x-order inverted)
This case is symmetrical to case 1.

Case 3: (p and q are inverted along both axes)
Assume w.l.o.g. that p.x < q.x and p.y < q.y in Γi. We distinguish whether p and q are on
a horizontal or vertical segment. We will work out the first case in detail and indicate the
setup for the other cases, which are analogous.
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Case 3a: (p and q are both on a vertical segment in Γj – Figure 20(b))
Let r be the top endpoint of the segment containing p and s the bottom endpoint of
the segment containing q. In Γj we have r.y > s.y and r.x > s.x. As r and s have
distinct x- and y-coordinates they are split by at least one tb-wire and one lr-wire
in Γj . As pr and qs are also vertical segments in Γi we must have r.x < s.x. The
matching (monotone) tb-wire in Γi splits p and q identically and, similarly to Γj

does not cross the segments pr and qs. Due to the relative position of p and q, the
monotonicity of the tb-wire, and r.x < s.x, it must also be that r.y < s.y in Γi. But
then the lr-wire splitting r and s must cross the tb-wire at least three times in Γi.
Contradiction.

Case 3b: (p is on a horizontal segment and q on a vertical segment – Figure 20(c))
Let r be the right endpoint of the segment containing p and s be the bottom endpoint
of the segment containing q. Once again we reach the contradiction that the tb-wire
and the lr-wire splitting r and s must cross at least three times in Γi.

Case 3c: (p and q are both on a horizontal segment – Figure 20(d))
Let r be the right endpoint of the segment containing p and s be the left-endpoint of
the segment containing q.

We conclude there do not exist two distinct points p, q on the edges (vertices) of the drawing
that coincide during the linear morph.

To reduce the need for a final linear morph from a drawing similar to ΓO to ΓO itself
we make one more observation.

Corollary 1. If a morph from a drawing Γa with spirality one to a drawing Γb is planar,
then the morph from Γa to any drawing similar to Γb is planar.

Proof. Two similar drawings have the same x- and y-order. The planarity of a linear morph
remains intact if the x- and y-order of the vertices and bends does not change.

Theorem 4. Let ΓI and ΓO be two unified planar orthogonal drawings of a (potentially
disconnected) graph G, where ΓI has spirality s to ΓO. We can morph ΓI into ΓO using exactly
s linear morphs while maintaining planarity and orthogonality, and keeping the intermediate
complexity of the drawing reduced to O(n2).

Proof. By Lemma 14 for every iteration the initial drawing Γs has spirality one relative
to the first drawing Γs−1 of the next iteration. By Lemma 17 and 18 there also exists a
straight-line drawing Γ′s−1 such that Γs has spirality one to Γ′s−1 and Γ′s−1 has spirality s− 1
(to ΓO). By Lemma 19 we can morph Γs to Γ′s−1 with a single linear morph, reducing the
spirality by one. After repeating this process s times the spirality is reduced to zero and the
resulting drawing must be similar to ΓO. A final single linear morph simplifies the drawing
to ΓO. We can slightly improve this as by Corollary 1 we can merge the last two morphs
without affecting the planarity of the morph.

As each single linear morph can increase the intermediate complexity by at most
O(n2) and after each single linear morph we have a straight-line drawing again (of complexity
O(n)), the maximum intermediate complexity during the morph is O(n2).
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6 Maintaining linear complexity

The approach from Section 5 maintains planarity and orthogonality and reduces complexity
of the drawing to O(n) after each linear morph. However, during a single linear morph
complexity may increase to Θ(n2) as each edge may be crossed by O(n) wires each introducing
two additional bends. We refine the approach to ensure that the drawing also maintains
O(n) complexity during the morph. For each edge intersected by links of maximum absolute
spirality, we perform a linear slide along only one of the intersecting links. Thus at most two
bends are introduced in each edge, directly ensuring the linear complexity of the drawing is
maintained.

The remaining wires are rerouted to cross the newly introduced segment of the edge.
In general rerouting the wires cannot be done without increasing their absolute spirality,
which is problematic as we aim to reduce the maximum absolute spirality with each single
linear morph. We show that we can perform an initial step locally inserting windmills in
the wires adjacent to the crossed edges. Windmills introduce additional initial complexity
to the wires to prevent the need to add extra complexity to the drawing or extra spirality
to the wires during the morph itself. This initial rerouting of the wires in ΓI increases the
maximum absolute spirality by one.Thus, using Theorem 4, s+ 1 morphs are sufficient to
morph two equivalent drawings into each other while maintaining planarity, orthogonality,
and linear complexity.

Windmills. The initial rerouting step reroutes all wires in W↓ and W→ locally at each
crossed edge if the wires satisfy the following criteria: 1) the absolute spirality of the crossing
links is greater than zero and 2) at least two links cross the edge. W.l.o.g. consider a
horizontal edge e that is crossed by at least two wires in ΓI . By Lemma 2 all crossing links
have the same spirality. Assume w.l.o.g. that this spirality is positive, otherwise mirror the
rotations and replace right by left. Let ε be a small distance such that the ε-band above and
below e is empty except for the links crossing e (see Figure 21(a)). We reroute the wires
within the ε-band around e. First disconnect all crossing links within the ε-band. Then
reroute all wires below e in a parallel bundle to the left, past the left-most wire wl crossing e.

> ε

> ε

(a) (b) (c) (d) (e)

Figure 21: (a) The empty ε-band. (b) Introducing an s-windmill (s = 1). The outlined
edges form a s-windmill. The s-windmill is connected to the original wire with links of
spirality s+ 1. (c) The s-windmill after reducing all links of spirality s+ 1. Marked bends
are separated by the right-most crossing link. (d) After a linear slide along the right-most
crossing link. (e) After rerouting.
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We now insert a so-called s-windmill which is defined as follows (see Figure 21(b)).
Start by spiralling the bundle using right turns until the spirality of the links reaches minus
one. Next we unwind the bundle again within the spiral until we reach links of spirality s− 2.
We then route the wires parallel back along e to ensure each wire crosses e in its original
location and with a link of spirality s. We repeat this process above the edge, where we
reroute all wires in a parallel bundle above e to the right beyond the right-most wire wr

crossing e. Again we spiral the bundle using right turns until the links have spirality minus
one, then unwind the bundle until spirality s. This concludes the s-windmill. Finally we
reconnect the wires by routing back parallel to e to maintain the original crossing points.

The creation of the initial s-windmill locally increases the spirality by one. After the
first iteration only the s-windmill is left (see Figure 21(c)).

Morphing with rerouting. Once again consider the morph as a sequence of individual
linear slides. Specifically consider a single iteration of the resulting morph. The linear
slides performed within an iteration are all based on links of the same maximum absolute
spirality. As we have not enforced any order on these linear slides we can perform them in
any order. We now define a partial ordering on the linear slides that, indirectly, prevents
excess complexity from being introduced in the drawing during the individual morphs.

Specifically consider an ordering that first performs all slides caused by maximum-
spirality links that do not cross a segment of the drawing. Then, of the remaining maximum-
spirality links, the linear slides defined by links meeting the following criteria are performed:
For each horizontal edge e crossed by k > 1 links of maximum absolute spirality we perform
the linear slide caused by the right-most link crossing e. This slide creates a new vertical
segment (see Figure 21(d)). For each vertical edge crossed by k > 1 links of maximum-spirality
we perform the slide defined by the top-most link crossing the edge.

Let Γs be the first drawing of a given iteration and let Γs have spirality s. Furthermore
consider the intermediate drawing Γr

s−1 that results from performing all the slides defined
above. Using Lemma 14 we directly derive the following lemma.

Lemma 20. Drawing Γs has spirality one relative to Γr
s−1.

We reroute the wires by shortcutting them as a bundle across the new segment (see
Figure 21(e)).

Lemma 21. In Γr
s−1 all remaining maximum-spirality links crossing an edge e can be shortcut

across the newly created segment in e.

Proof. Assume w.l.o.g. that the spirality is positive and that e is horizontal. Let ` be the
(right-most) link that caused the linear slide introducing a new segment in e. Let w be a
wire crossing e that is not the right-most wire. Let `w be the link from w crossing e. Finally
let `w+2 be the first link along w after `w that does not share an endpoint with `w. In Γs

the start point sw of `w is separated by ` from the endpoint tw+2 of `w+2 (see Figure 21(c)).
However, the start point sw+2 of `w+2 is not separated from sw. After performing the linear
slide along `, endpoint tw+2 has a smaller y-coordinate than sw, whereas sw still has a larger
y-coordinate. But then after performing the linear slide defined by ` a rightwards ray from
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the start point of `w must cross `w+2. We can horizontally shortcut each wire. As the order
of the wires is identical on both sides we can do so without introducing new crossings.

Corollary 2. Drawing Γr
s−1 has spirality s− 1 relative to ΓO.

Proof. Rerouting the wires removes all links of maximum-spirality. Thus the resulting wires
have maximum-spirality s− 1, and are equivalent to the straight-line wire grid in ΓO. But
then Γr

s−1 has spirality s− 1 relative to ΓO.

Lemma 22. At the start of iteration s − 1 of the final morph including intermediate
simplification and rerouting, all wires crossing an edge e with links of spirality s− 1 form an
(s− 1)-windmill in an empty ε-band next to e.

Proof. As the ε-band is empty except for the windmill, every link that is not part of the
windmill cannot separate two bends that are part of the windmill. Such links by Lemma 10
cannot destroy the structure (the x- and y-order of the bends) of the windmill, so we only
concern ourselves with links that are part of the windmill. Performing a linear slide along the
right-most link ` crossing e maintains all links in the windmill except for ` (see Figure 21(d)).
Moreover, after the linear slide every wire, after crossing e, will be routed along the newly
generated segment past the newly produced intersection of e with the right-most wire.
Rerouting the remaining wires (see Figure 21(e)) removes all spirality s links, but maintains
all other links. The spirality of the resulting set of wires is at most s− 1 and they form an
(s− 1)-windmill next to e.

By Lemma 20 drawing Γs has spirality one relative to Γr
s−1. Thus by Lemma 19 we

can reduce the spirality by one using a single linear morph, while increasing the complexity
of the drawing by only O(n). By Lemma 22 this process can be repeated without increasing
spirality intermittently. All that is left is to reintroduce the intermittent simplification to
maintain O(n) complexity.

Lemma 23. Drawing Γs has spirality one relative to drawing Γ
′r
s−1 and Γ

′r
s−1 has spirality

s− 1.

Proof. By Lemma 20 Γs has spirality one relative to Γr
s−1. By Lemma 16 and 17 we can

redraw Γr
s−1 to a straight-line drawing Γ

′r
s−1 while maintaining that Γs has spirality one

relative to Γ
′r
s−1.

We conclude that given a straight-line orthogonal drawing Γs of complexity O(n) and
with spirality s to ΓO, a straight-line orthogonal drawing Γ

′r
s−1 exists with complexity O(n)

and spirality s− 1 to ΓO. Moreover, Γs has spirality one to Γ
′r
s−1 and the unified complexity

of Γs and Γ
′r
s−1 is O(n). By Lemma 19 we can morph Γs to Γ

′r
s−1 with a single linear morph

while maintaining planarity, orthogonality, and linear complexity.
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7 Final Algorithm

Including all improvements we obtain the following algorithm (Algorithm 1). Let ΓI and
ΓO be two equivalent orthogonal drawings of a (potentially disconnected) graph G. We first
unify ΓI and ΓO to ensure they are equivalent orthogonal straight-line drawings. This can
be done without increasing the complexity. Find two sets of wires W→ and W↓ that are
an equivalent set of wires for ΓI , with respect to the straight-line wire-grid in ΓO, having
maximum spirality s = O(n). By Theorem 2 such a set exists. Introduce windmills locally
at each crossed edge if 1) the absolute spirality of the edge is greater than zero, 2) at least
two wires cross the edge. This increases the maximum absolute spirality by one to s + 1.
Consider the drawing Γs+1 = ΓI together with the rerouted wire set.

We now repeat the following for each orthogonal straight-line drawing Γt with spirality
0 < t ≤ s+ 1. Perform linear slides on all maximum-spirality links that do not intersect the
drawing. Perform linear slides on all maximum-spirality links that are the right-most link
crossing a horizontal edge or the top-most link crossing a vertical edge. Reroute the wires to
remove all other maximum-spirality links. Straighten the drawing to the resulting drawing
Γt−1. Drawing Γt has spirality one relative to Γt−1 and Γt−1 has spirality t− 1 (Lemma 23)
and O(n) complexity. By Lemma 19 we can linearly interpolate Γt to Γt−1 while maintaining
planarity, and orthogonality.

Algorithm 1 Final morphing algorithm
Require: Two equivalent planar orthogonal drawings ΓI and ΓO with maximum complexity
O(n). Moreover let s be the spirality of ΓI with respect to ΓO.

Ensure: A sequence of s+ 1 = O(n) linear morphs that morph ΓI to ΓO.
Unify ΓI and ΓO. (Section 2)
Find an equivalent set of wires for ΓI compared to ΓO. (Section 3)
Let s be the maximum absolute spirality of the wires in ΓI .
Add windmills to ΓI . (Section 6)
Let Γs+1 be the current drawing and let t = s+ 1.
while t > 0 do

Based on Γt compute an orthogonal straight-line drawing Γt−1. (Section 6)
Morph Γt to Γt−1 with a single linear morph. (Section 5.4)
t← t− 1

end while

As complexity only increases by O(n) during each linear morph and each drawing
is simplified to O(n) complexity again we also maintain linear complexity of the drawing
during the morph. Thus using s+ 1 linear morphs we can morph ΓI to ΓO while maintaining
planarity, orthogonality, and linear complexity.

Thus we directly obtain the final Theorem:

Theorem 5. Let ΓI and ΓO be two equivalent drawings of a (potentially disconnected) graph
G, where ΓI has spirality s. We can morph ΓI into ΓO using s + 1 linear morphs while
maintaining planarity, orthogonality, and linear complexity of the drawing during the morph.
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8 Conclusion

We have described a morph of two planar orthogonal drawings of a (potentially disconnected)
graph G of complexity n, using O(n) linear morphs. To this end we used the spirality s of
the drawing Γ of G, which we have shown is O(n) even for disconnected graphs. We further
refined the analysis to show that not only are O(n) linear morphs sufficient, but indeed
s+ 1 linear morphs are sufficient to maintain planarity, orthogonality, and linear complexity
during the complete morph. There remain a number of open questions surrounding morphs
of orthogonal drawings.

First, it is clear that s morphs is a lowerbound for our approach. It is unclear
whether s+ 1 linear morphs are needed to maintain linear complexity though. Preliminary
investigations indicate this may be the case, but as it stands s+ 1 is just one off from a trivial
lowerbound. Second, it is not yet clear what the required time complexity is to compute
the described morphs. Our proofs are mostly constructive, but the efficiency of computing
the morph was not taken into account. Third, from a visualization perspective the reduced
number of linear morphs is satisfying, but the drawing may be arbitrarily scaled during the
morph. The final morph does not take stability of the drawing into account, something that
would be desirable for practical application.
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