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1
I N T R O D U C T I O N

1.1 motivation

How is it possible that COVID-19 could spread so quickly around the
world? What are the main reasons that can make a (fake) message go
viral? Although these two questions are of a very different nature, they
are similar from a mathematical perspective. A way to model information
diffusion (or disease spreading) in a real-world network mathematically,
is by representing the topological structure of the underlying network as
an (un)directed graph G = (V ,E), where the vertices V represent people,
and two vertices are connected by an edge e ∈ E ⊆ V × V if they see
each other regularly, or are friends in the social network. Each edge has a
non-negative weight attached to it, standing for the time that it takes to
transmit a message from one side of the edge to the other.

Since the underlying networks are often unknown (let alone the weights),
random graph models can be used that share topological properties with the
original network [201]. To qualitatively understand processes in real-world
networks (such as information diffusion), one can model the process on a
random graph, and translate the results back to the original network. An-
other advantage of modelling real-world networks as (weighted) random
graphs, is that many networks are believed to share universal properties,
that we highlight in the following paragraphs. As a result, by studying a
simplistic random graph model that shares the same universal properties
as real-world networks, one could gain qualitative insight in structures in
multiple real-world networks at once. We highlight four properties that
many real-world networks are believed to share.

Scale-free degree distribution. The degree sequences are scale-free, i.e., the
number of connections (degree) per vertex decays as a power law: there
exists τ > 1 such that, writing pk for the proportion of vertices with degree
k,

pk ∼ k−τ. (1.1.1)

Here, pk ∼ k−τ means that k−τ−ε <pk <k−τ+ε for any ε > 0 when k is
sufficiently large. For example in the WWW, social networks, and protein
networks, the power-law exponent τ is estimated to be in (2, 3), see e.g.
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2 introduction

[7, 8, 201]. When τ ∈ (2, 3), the asymptotic degree distribution has infinite
second moment. In this case, the degree dispersion is very high, which
indicates the presence of hubs in the network.

Supercriticality. Typically, a large proportion of nodes are part of the
same connected component C(1): the largest set of nodes in a network such
that for all u, v ∈ C(1) there is a path of edges in the network from u to v.
Mathematically, we consider sequences of graphs (Gn)n⩾1 for which the
number of vertices in Gn tends to infinity, and say that the graph sequence
(Gn)n⩾1 is supercritical if a linear-sized connected component exists with
probability tending to one.

Small-world property. Although real-world networks may contain billions
of nodes, the graph distances, i.e., the minimal number of edges to connect
two nodes, is very small compared to the size of the network [15, 191,
201, 222]. We say that (Gn)n⩾1 satisfies the small-world property if the
graph distance between two vertices chosen uniformly at random from
the largest connected component in Gn, also called typical graph distance,
grows at most logarithmically with the number of vertices. The network
is an ultra-small world if the typical graph distance is at most of doubly
logarithmic order in the number of vertices.

Clustering. Empirically, clustering quantifies the effect commonly known
as “a friend of a friend is also likely to be my friend”. Mathematically,
clustering refers to the presence of triangles in the network. A natural way
to model a network that contains triangles, is by embedding the vertex
set in Euclidean space, such that vertices that are close to each other are
more likely to be connected. The presence of underlying geometry is easily
motivated through real-world networks: people living nearby (or having
similar interests, which could be represented by a so-called feature vector)
tend to know each other with higher probability. On the other hand, there
has been a large interest in embedding real-life networks (in which the
spatial embedding is less obvious than just the geographical location of
a person) into Euclidean space [111]. In this case, the spatial nearness
of two vertices represents similarity of these vertices in the (partially)
observed network: for example, the obtained spatial location could encode
an unobserved feature vector of a node in the network. These spatial
embeddings could then be used for machine learning tasks, such as link
prediction or community detection.
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1.1.1 Aim of the thesis

In this thesis we study (theoretical and generative) supercritical random
graph models from three different perspectives.

(i) In Part i we study first-passage percolation, a model for information
diffusion and epidemic spreading, and the small-world property on
preferential attachment models: a class of random graph models that
gives a possible explanation to the emergence of the power law in
the degree sequence of real-world networks [20]. This class of model
exhibits the scale-free and small-world property, is supercritical
[71] and in some cases connected [124], but it does not satisfy the
clustering property [99].

(ii) In Part ii we study the sizes of connected components in a framework
called kernel-based spatial random graph models. Random graph models
in this class can exhibit all four properties mentioned above. The
vertices are embedded in Euclidean space and the degree distribution
has a heavy tail. When the inhomogeneity in the graph is sufficiently
large, the obtained scalings on the sizes of connected components
are vastly different from the only known scalings for spatial random
graphs, i.e., random geometric graphs and the graph obtained by
nearest-neighbour percolation on Zd.

(iii) In Part iii we conduct two simulation-based studies of spreading
processes on networks motivated by COVID-19. We demonstrate
the influence of space and the presence of long-range edges in spa-
tial networks on various spreading processes that are more realistic
than first-passage percolation. We compare characteristics of these
spreading processes to classical non-spatial models (e.g., effect of
temporary immunity, shape of the epidemic curve, number of per-
sons in quarantine over time) and illustrate how the spatial models
can be used to give intuition for qualitative implications of the in-
tervention strategies, and to model contact-tracing applications for
infection spread.

In the remainder of this chapter we introduce the random graph models
that are studied in this thesis, and explain the relations between the these
models. Moreover, we give extensive references for the random graph
models that have the main focus: preferential attachment models and
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kernel-based spatial random graphs; at the end of the chapter we summa-
rize the main contributions of the thesis. In the following chapters that
describe the detailed results, we motivate and define the properties that
are investigated in the specific chapter (e.g., graph distance, first-passage
percolation, cluster-size distribution, and spreading process characteristics)
in detail. Eventually, in Chapter 9 we discuss the main contributions and
present directions for future research.

1.2 non-spatial random graph models

Non-spatial random graph models are often used as null-models to com-
pare network data to “purely random” networks. The preferential attach-
ment model (PAM) mentioned above is an example of such a model, and
this model has the main focus in Part i. To contrast PAMs against more
classical null-models, and to motivate a new research line for PAMs, we
first introduce two more classical models: the configuration model and the
inhomogeneous random graph. Besides, the notion of inhomogeneous ran-
dom graphs will serve as motivation for the kernel-based spatial random
graphs (KSRGs) that have the main focus in Parts ii and iii. We introduce
KSRGs below in Section 1.3.

1.2.1 Configuration model and inhomogeneous random graph

The configuration model and inhomogeneous random graph allow to spec-
ify the (expected) degrees of the vertices in the resulting graph. Amongst
others, this makes it possible to mimic the scale-free degree distribution
observed in real-world networks. The configuration model is used in Part
iii as one of the underlying networks to model the spread of diseases.

Configuration model

The configuration model is a well-studied object in the mathematical
literature. It dates back to Bollobás [34] and Molloy and Reed [188, 189],
we refer to [124] for references.

Definition 1.2.1 (Configuration model). Fix n ⩾ 1 the number of vertices.
Prescribe to each vertex u ∈ {1, 2, . . . ,n} its degree deg(u) ⩾ 0, so that the
total degree hn :=

∑
u⩽n deg(u) is even. To form a graph, to each vertex u

we assign deg(u) number of half-edges and the half-edges are then paired
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uniformly at random to form edges. The resulting random multi-graph is
the configuration model.

The random pairing of the half-edges ensures that the configuration
model is a random (multi)graph, even though the prescribed degrees
might be deterministic. The configuration model naturally allows for the
scale-free property, since one specifies the degree distribution. Besides that,
the configuration model also satisfies the small-world property [129, 130]:
when the degrees follow a power law with parameter τ > 2, the typical
graph distance d(G)

n (u, v), i.e., the number of connections on the shortest
path between two vertices u, v that are sampled uniformly at random from
a graph on n vertices, satisfies

d(G)
n (u, v) =

Θ(logN), when τ > 3,

Θ(log logN), when τ ∈ (2, 3).
(1.2.1)

While the configuration model easily accommodates power-law degrees
and satisfies the small-world property, it does not contain clustering [82,
217].

1.2.1.1 Inhomogeneous random graph

Alternatively to the configuration model, one can use the Chung-Lu [50]
and the similar Norros-Reittu model [204] as null-models. These random
graph models are also referred to as rank-1 inhomogeneous random
graphs. Contrary to the configuration model, in a rank-1 inhomogeneous
random graph only the expected degrees of vertices are prescribed, rather
than their exact degree. The expected degree of a vertex u is encoded by a
non-negative mark Wu (also called weight).

Definition 1.2.2 (Chung-Lu model). Fix n ⩾ 1 the number of vertices.
Prescribe to each vertex u ∈ {1, 2, . . . ,n} a non-negative mark Wu. To form
a graph, we connect each pair of vertices {u, v} by an edge with probability

pu,v := min
{WuWv
nE[W]

, 1
}

, (1.2.2)

independently of other possible edges.

For the Norros-Reittu model, one replaces the connection probability by
the function pu,v = 1− exp

(
−WuWv/

∑
yWy

)
. Similar to the configura-

tion model, these models satisfy the small-world property [50], but violate
the clustering property [217].
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We proceed to a special case of the inhomogeneous random graph
introduced by Bollobás, Janson, and Riordan in [37]. As in rank-1 inho-
mogeneous random graphs, each vertex is equipped with a non-negative
mark Wu. However, they generalise the connection probability by replac-
ing the product of the two marks in the numerator in (1.2.2) by an arbitrary
non-negative symmetric function κ, called the kernel.

Definition 1.2.3 (Inhomogeneous random graph). Fix n ⩾ 1 the number
of vertices, and let κ(·, ·) be a non-negative symmetric function. Prescribe
to each vertex u ∈ {1, 2, . . . ,n} a non-negative mark Wu. To form a graph,
we connect each pair of vertices {u, v} by an edge with probability

pu,v := min
{κ(Wu,Wv)

n
, 1
}

,

independently of other possible edges.

Indeed, κ(Wu,Wv) =WuWv yields the same connection probability as
in (1.2.2), up to a scaling of the marks by a constant. We call this kernel
also the product kernel. In Section 1.3 below, we generalise this model to
a spatial random graph, where the vertices are embedded in Euclidean
space.

Static models

The configuration model and rank-1 inhomogeneous random graph are
examples of static random graph models. The vertex set is a fixed set, and
the degree distribution of a sampled graph is determined by the specified
degree or mark distribution. Moreover, these models are not projective:
the graph on n+ 1 vertices cannot be obtained by simply adding a vertex
and the edges emanating from this vertex to the graph on n vertices. This
is in contrast to preferential attachment models, that we introduce next,
which have the main focus in Part i of this thesis.

1.2.2 Preferential attachment models

Unlike the configuration model and the inhomogeneous random graph,
the preferential attachment model (PAM) is an example of a model where
the vertex and edge set grow dynamically over time. A model similar
to PAMs was introduced by Yule to study biological processes [229], but
the model became increasingly popular after the paper [20], that uses the
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model to give an explanation to the emergence of power-law degrees in
various real-world networks. Bollobás, Riordan, Spencer, and Tusnády
were the first ones to define and investigate the model rigorously from a
mathematical perspective [33].

We introduce the models informally. The construction of a preferential
attachment graph is initialized with a graph PA1. Arrivals of vertices
happen deterministically at times t ∈ {2, 3, ...}. We denote the graph at time
t by PAt and label all the vertices by their arrival time, also called birth
time. In the models that we study, arriving vertices favour connecting by
an edge to vertices that have a high degree. Writing {t→ v} for the event
that vertex t connects by an edge to a vertex v < t that is present in PAt−1,
we assume for some τ > 2 that

P
(
{t→ v} | PAt−1

)
=
Dv(t− 1)

t(τ− 1)
(1+ o(1)),

where Dv(t− 1) denotes the degree of vertex v directly after the arrival of
vertex t−1. As a result, the asymptotic degree distribution has a power-law
decay (as defined in (1.1.1)) with exponent τ [70, 124], that we therefore
call the power-law exponent.

We call the number of connections that a new vertex establishes upon
arrival the outdegree. We study three variants of this model: one with fixed
outdegree, which we call fixed preferential attachment (FPA), and two with
variable outdegree (i.e., random outdegree), which we call variable prefer-
ential attachment (VPA), and generalised variable preferential attachment
(GVPA), respectively.

The fixed preferential attachment model appeared formally in [23, 38],
using a parametrisation that only yields preferential attachment graphs
with τ ⩾ 3. In this thesis, we consider the model with power-law exponent
τ ∈ (2, 3). We recursively grow the graph PAt for t ⩾ 2 from a starting
graph PA1. At time t we sequentially addm outgoing edges to the arriving
vertex that has label t. After the j-th edge has been formed, the defining
connection probabilities are updated. We write D←(t,j)(v) for the indegree,
the number of incoming edges, of a vertex v right after the (tm+ j)-th
edge is added to the graph. Similarly, we write FPA(t,j) for the constructed

graph right after the moment it contains exactly (tm+ j) edges. Let {t
j→ v}

be the event that the j-th edge of vertex t ∈N is attached to v ∈ [t− 1].

Definition 1.2.4 (FPA(m, δ)). Fix m ∈N, δ ∈ (−m,∞). Let FPA1(m, δ) be
the graph with a single vertex without any edges. The model FPA(m, δ) is
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defined by the following sequence of conditional edge-connection proba-
bilities

P
(
{t

j→ v} | FPA(t,j)
)
=

D←(t,j−1)(v) +m (1+ δ/m)

(t− 2)m(2+ δ/m) + j− 1+m+ δ
, (1.2.3)

where v ∈ [t− 1]. The power-law exponent of the model is

τm,δ := 3+ δ/m. (1.2.4)

The asymptotic degree distribution in FPA decays as a power law with
exponent τm,δ in (1.2.4), see [124, 193], so that for FPA τ ∈ (2, 3) when
δ ∈ (−m, 0). The constraint δ > −m ensures well-defined probabilities in
(1.2.3). We remark that there are multiple versions of the fixed preferential
attachment model in literature, e.g., some versions allow for self-loops,
and in other versions the connection probabilities are updated only after
the formation of all m edges of a single vertex. We chose to present a
single version of the model here, in which no self-loops are allowed, but
multi-edges are allowed. This specific version allows us to re-use directly
some results from [24]. With the recent results from [98], all derived results
in Part i extend to the versions of PAMs introduced in [124], to which we
refer for an extensive overview of the fixed preferential attachment model.

In FPA the total number of edges in the graph is deterministic, making
some explicit calculations easier. On the contrary, the events {t→ v1} and
{t → v2} are negatively correlated for vertices v1 ̸= v2, yielding more
involved computations.

The next models that we introduce behave to some extent as the opposite
of FPA, as the edges are conditionally independent, leading to a random
outdegree of vertices. These two models were introduced by Dereich and
Mörters [70], and they call the graph preferential attachment with conditionally
independent edges. It appears in [124] as Bernoulli preferential attachment. Let
D←t (v) be the indegree of the vertex v right before time t.

Definition 1.2.5 (VPA(f), GVPA(f)). Let f : N → (0,∞) be a concave
function satisfying f(0) ⩽ 1 and f(1) − f(0) < 1. We call f the attachment
rule. Let GVPA1(f) be the graph with a single vertex without any edges.
Conditionally on GVPAt−1(f), vertex t connects to v ∈ [t− 1] by an edge
with probability

f (D←t (v)) /t,

independently of the other existing vertices. Important parameters of the
model are

γf := lim
t→∞ f(t)/t, τf := 1+ 1/γf, (1.2.5)
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which are well-defined by the concavity of f. We call τf the power-law
exponent. For general f, we call the model generalised variable preferential
attachment (GVPA). For affine f, i.e., f(k) = γk+ η for some γ,η > 0, we
call the model variable preferential attachment (VPA).

The asymptotic degree distribution decays as a power law with exponent
τγ in (1.2.5), see [70]. In the more restricted model VPA, calculations
become explicit and more precise results can be derived, e.g., degree
distribution in [70], or the ‘graph-distance evolution’ in Chapter 3.

The three models FPA, VPA, and (even the more general model) GVPA,
behave qualitatively similar in terms of their degree distribution and
typical graph distance when τ ∈ (2, 3) [69]. Hence, we refer to the models
by their power-law exponent τ, and to call them PA collectively. In this
thesis, we distinguish them only when different proofs are required, or
when referred to different results from literature.

1.2.3 Preferential attachment: literature overview

We recall some previous results on the three preferential attachment mod-
els FPA, VPA, and GVPA: first we reflect on the four universal properties
in real-world networks described in Section 1.1. After that, we mention
results in a wider range of preferential attachment models than FPA and
(G)VPA, identifying that a majority of the PAM literature takes a typical
approach, which we call snapshot analysis: this approach allows to compare
the dynamical PAMs to static random graph models, such as the configura-
tion model, or inhomogeneous random graphs. In this thesis, we take a
different approach: we do not aim to compare PAMs to static models, but
study the dynamical changes in the preferential attachment graph itself.

Properties of real-world networks

The models FPA and GVPA that we study in this thesis are the most
commonly used pure PAMs in the literature, i.e., in these models it is
solely the preferential attachment mechanism that drives the changes in
the graph topology. These PAMs are mathematically defined by Bollobás
and Riordan [38], and Dereich and Mörters [70]. The models satisfy the
scale-free property [70, 193], small-world property [46, 69, 81] (together
with results in Part i in this thesis), and supercriticality [71, 126]. In [97]
it is shown that FPA does not satisfy the clustering property, and it is
expected that these results extend to GVPA.
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Spatial variants where vertices have a location in an underlying Eu-
clidean space are studied in [3, 142, 143]. Here, closeness in Euclidean
distance is combined with preferential attachment. The age-dependent
random connection model [105, 109] is a recent spatial version, that we
consider also in Part ii in this thesis as a special case. In the age-dependent
random connection model, the connection probabilities are not governed
by the degree of vertices, but by their relative age compared to the arriving
vertex.

Snapshot analysis

Since the introduction of FPA in [38], many variants with more involved
dynamics and connection functions have been introduced, of which we
highlight some. In [147, 213], the vertex set is fixed and only edges are
formed dynamically. The variations introduced in [10, 65] allow for edges
being formed (or deleted in [57, 65]) between existing vertices. References
[70, 71] consider a version where the attachment function can be sublinear
in the degree. In [51, 68, 73, 94] vertices are equipped with a fitness
and in [180] the arriving vertices have a power of choice: for each edge
formed at time t, two present vertices i1, i2 are sampled with probability
proportional to the degree, after which the edge {t, i⋆} is added to the
graph, where i⋆ := arg maxi∈{i1,i2}Dt(i). Stochastic processes on PAMs
have been analysed in [23, 43] for the contact process, in [11] for bootstrap
percolation, and in Part i of the thesis for first-passage percolation.

The above mentioned results and papers provide statements about static
snapshots of the graph PAt in the large network limit: the network is
considered at a single time t as t tends to infinity. This snapshot analysis
allows for comparison to (simpler) static random graph models, such as
the configuration model [34, 188], Chung-Lu model [50], and the Norros-
Reittu model [204], and aims to classify properties of random graphs as
either universal or model-dependent.

An example of a universal property is the typical graph distance: in
the configuration model, Chung-Lu model, Norros-Reittu model, and
preferential attachment models FPA, VPA, and GVPA, with parameters
such that the asymptotic degree distribution decays as a power law with
exponent τ ∈ (2, 3), the typical graph distance grows doubly logarithmic
in the network size [46, 50, 69, 81, 129].

On the other hand, the configuration model (under mild assumptions
on the degree distribution) and fixed preferential attachment model lead
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to a connected graph as the number of vertices tends to infinity [89,
126], while the Chung-Lu and Norros-Reittu model, and the variable
preferential attachment models have several connected components [49,
71], so connectivity of the graph is an example of a model-dependent
property. We refer to [124, 126] and its references for other universal and
model-dependent properties.

Evolution of graph properties: a novel approach

We take a different approach and deviate from the snapshot analysis: we
study the temporal changes of graph properties, i.e., we fix the graph PAt
at a large time t, and study the graph sequence (PAt ′)t ′⩾t at all times t ′⩾t
from the perspective of the vertices that are present at time t.

This approach has only been considered in papers on the degree of fixed
vertices [70, 193], a local graph property. In Chapter 3, we study how a
global graph property, i.e., the graph distance between two fixed vertices
(typical vertices at time t), changes as the surrounding graph evolves over
time. Our obtained results reflect the temporal dynamics of the graph, and
this approach commences a new type of research on PAMs.

The preferential attachment is the considered random graph model in
Part i in this thesis. We proceed to the spatial random graph models that
have the main focus in Parts ii and iii.

1.3 kernel-based spatial random graphs

None of the models introduced in Section 1.2 satisfies the clustering
property that many real-world networks are believed to share [217]. In
Part ii and iii in this thesis, we study (instances of) a large class of random
graph models where the vertices are embedded in Euclidean space, i.e.,
each vertex u has a location xu ∈ Rd. In these models, the connection
probabilities are such that spatially nearby vertices are more likely to be
connected by an edge. This naturally leads to clustering in those graphs
[60, 91, 135, 217]. The models that we study are parameterized such that
both the degree distribution and the edge-length distribution can be heavy-
tailed, i.e., there is structural inhomogeneity present in the graphs. Here,
the length of the edge {u, v} refers to the Euclidean distance ∥xu − xv∥
between the vertices forming the edge.

Long-range percolation and continuum long-range percolation (LRP and
CLRP) [4, 216] are examples of classical models in which the edge-length
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distribution has a heavy tail. In these models, each potential edge {u, v} is
independently present with probability proportional to βα∥u− v∥−dα for
some α,β > 0. However, in the graphs formed by these models, the degree
distribution is light-tailed. We study long-range percolation in Chapter 6.

Our main focus in Chapter 5 and Part iii is on models where both the
degree- and edge-length distribution are heavy-tailed. Recently, several
such spatial random graph models have been introduced that gained
significant interest in the literature; they were introduced amongst oth-
ers to accommodate the need for modelling degree inhomogeneity (i.e.,
scale-free property) in real-life networks [7, 32, 83, 200, 198]. Examples
of such models include scale-free percolation (SFP) [63]; geometric inho-
mogeneous random graphs (GIRG) [40], continuum scale-free percolation
(CSFP) [67], hyperbolic random graphs (HRG) [169], the ultra-small scale-
free geometric network [228]; scale-free Gilbert model (SGM) [122], the
Poisson Boolean model with random radii [103], and the age- and the
weight-dependent random connection models (ARCM) [105, 107].

We consider a framework unifying these models, which we call Kernel-
Based Spatial Random Graphs (KSRG). Beyond the above models, our frame-
work also contains the following classical models: the graph obtained
by nearest-neighbour bond percolation on Zd (NNP), and the random
geometric graph (RGG) [182, 210]. The framework was essentially present
in [166], and then refined in [107]. A random graph model in the KSRG
class requires four ingredients to be specified:

• a vertex set V: any stationary ergodic point process embedded in a
metric space with norm ∥ · ∥; typically a Poisson point process (PPP)
Ξ on Rd or a lattice Zd.

• a mark distribution W for vertices, the mark wu of vertex u describing
its ability to form connections.

• a profile function ρ, describing the influence of spatial distance on
the probability of an edge. The choice of ρ potentially leads to a
heavy-tailed edge-length distribution.

• a kernel κ that describes how marks rescale the spatial distance be-
tween vertices.

Conditionally on the vertex set and the marks, two vertices u and v are
connected by an edge, independently of other possible edges, with a
probability given by the connectivity function, which is the composition of
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the kernel and the profile, and a parameter β > 0 that controls the edge
density (high values of β correspond to higher edge density):

P(vertex u is connected to vertex v by an edge)

= ρ
(
βκ(wu,wv)∥u− v∥−d

)
,

(1.3.1)

where P is a measure on V× V, conditionally on V and {Wv}v∈V. These
components together define a random graph model G(V,E), where E is a
random set of edges.

The role of marks. Throughout the thesis, we will assume that the marks
are power-law distributed with tail-exponent τ− 1 for some τ > 1, that is,

P(W ⩾ x) = x−(τ−1), for x ⩾ 1. (1.3.2)

We shall see that the mark distribution regulates the tail of the degree-
distribution. Marks have different names in the literature: in geometric
inhomogeneous random graph [40] and scale-free percolation [63], they
are called ‘vertex-weight’ or ‘fitness’, while for hyperbolic random graphs
[169] the mark corresponds to the ‘radius’ of the location of a vertex in
the native representation of the hyperbolic plane. For the age-dependent
random connection model [105] the mark corresponds to the rescaled
‘age’ of a vertex. For nearest-neighbour percolation, random geometric
graphs and long-range percolation marks are not used for the formation
of the graph, then we set W ≡ 1, and formally τ = ∞. Other nonnegative
mark distributions than (1.3.2) are allowed, e.g., exponential or Poisson.
However, for the problems considered in this thesis, lighter-tailed mark
distributions behave qualitatively similar as setting τ = ∞.

The role of the profile function. The profile function is generally either
threshold or long-range type in the literature, and two typical choices are as
follows:

ρthr(t) = 1{[1/R,∞]}(t), ρα(t) = min{1, tα}. (1.3.3)

Since the inverse distance 1/∥u− v∥d is used in (1.3.1), ρthr corresponds to
connecting all pairs of vertices at distance at most R1/d by an edge, while
ρα – originating from long-range percolation [216] – allows for long-range
edges. The parameter α > 1 in (1.3.3) calibrates this effect: the smaller α,
the more long-range edges, and the condition α > 1 ensures a locally finite
graph. With slight abuse of notation we say that α = ∞ when considering
a threshold profile. Both parameters α, τ regulate exceptional connectedness,
but differently: α in (1.3.3) controls the presence of exceptionally long
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edges, whereas τ in (1.3.2) controls exceptionally high-degree vertices.
Non-threshold profiles with subpolynomial tails can be considered. For
the results in this thesis, we conjecture that those models fall in the same
universality class as threshold profiles, i.e., one can set formally set α = ∞.

The role of the kernel function. The kernel function κ in (1.3.1) is a sym-
metric non-negative function that rescales the spatial distance so that
high-mark vertices experience ‘shrinkage of spatial distance’ and hence,
the connection probability increases towards high-mark vertices. It has the
same role as the kernel function in inhomogeneous random graphs, see
Definition 1.2.1.1. Models in the literature commonly use the trivial, the
product, the max, sum, min, and preferential attachment (PA) kernels, the last
one mimicking the spatial preferential attachment model [3, 142]:

κtriv(x,y) ≡ 1, κprod(x,y) = xy,

κmax(x,y) = max(x,y), κsum(x,y) = x+ y, (1.3.4)

κmin = min(x,y)τ, κpa(x,y) = max(x,y)min(x,y)τ−2,

where τ ∈ (2,∞) corresponds to the tail exponent of the mark distribution
in (1.3.2). The trivial kernel κtriv includes classical models into the class of
KSRGs, e.g., the graph obtained by bond percolation on Zd (in which each
edge between two vertices at Euclidean distance 1 is included indepen-
dently with probability p), the random geometric graph, and (continuum)
long-range percolation. The parametrisation in all nontrivial kernels in
(1.3.4) give rise to a power-law degree distribution with the same tail-
exponent τ− 1 as for the marks in (1.3.2)[107], establishing the scale-free
property often desired in complex network modelling [32, 83, 198, 200].
The choice of the kernel κ can influence the amount of correlation between
degrees of two endpoints of an edge, called assortativity, see Section 1.3.1
below.

We refer to Table 1 for an overview of models that fit into the framework
of KSRGs.

Properties of the giant component in KSRGs. Many graph properties and
processes on graphs have been studied on special cases of KSRGs with
non-trivial kernels in the past years: the degree distribution to establish the
scale-free property in [40, 63, 105, 122, 134, 179, 228]; graph distances in the
giant component in [39, 63, 67, 106, 122, 228], establishing the small-world
property for certain parameter settings; first-passage percolation on the giant
component in [136, 165, 166]; the random walk on the giant component
[52, 107, 121, 161]; the contact process on the giant component [104, 177];
bootstrap percolation in [44, 164]; the clustering coefficient in [40, 60, 91, 135,
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Model V Kernel Profile

Bond percolation on Zd [113] Zd κtriv, κ0,0 ρthr

Random geometric graph [210] PPP ρthr

Long-range percolation [216] Zd ρα

Continuum long-range percolation [4] PPP ρα

Scale-free percolation [63] Zd κprod, κ1,1 ρα

Continuum scale-free percolation [67] PPP ρα

Geometric inhomogeneous random graph [40] PPP ρα, ρthr

Hyperbolic random graph [169] PPP ρthr

Age-dependent random connection model [105] PPP κpa, κ1,τ−2 ρα, ρthr

Scale-free Gilbert graph [122] PPP κmax, κ1,0 ρthr

Ultra-small scale-free geometric network [228] Zd κmin, κ0,1 ρthr

Interpolation KSRG PPP κ1,σ ρα, ρthr

Table 1: Models belonging to the KSRG framework, their vertex sets (either the
lattice Zd, or a Poisson point process, abbreviated by PPP), kernels, and
profiles. Horizontal lines separate models with different kernels. The
Interpolation KSRG is the model that has the main focus in Part ii in this
thesis.

217]; and the existence of subcritical and supercritical phases in [63, 67,
108, 109], and subcritical phase in the more general model [144] that allows
for dependencies between edges.

Thus, the giant component in the supercritical phase is relatively well
understood. However, there are no results yet for smaller components
in the graph. This is the main topic of Part ii. In Part iii we perform
simulation studies of more involved stochastic processes than the contact
process or first-passage percolation on the giant component in geometric
inhomogeneous random graphs (a KSRG that uses the product kernel
κprod). There, we use it as a model for real-life networks.

1.3.1 The interpolation KSRG (i-KSRG)

We will study models belonging to the class of KSRGs in a unified way,
using a parameterized kernel that contains the kernels in (1.3.4) as special
cases. We call this the interpolation kernel, and the corresponding random
graph model an interpolation KSRG. Independently of this work it appeared
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before in [108, 179], and it is also used in [135]. Formally, we define the
kernel as

κσ̃,σ(x,y) := max(x,y)σ̃min(x,y)σ, (1.3.5)

for some σ̃ ⩾ 0 and σ ∈ R. Non-negativity of σ̃ ensures the fairly natural
requirement that a higher mark corresponds to a higher expected degree.
The parameters σ̃,σ affect the tail exponent of the degree distribution,
as stated in the next proposition that considers the degree distribution
of a typical vertex 0 with location at the 0 (whose mark is power-law
distributed with tail-exponent τ− 1, see (1.3.2)). For two functions f,g, we
write f ≍ g if there exist constants c,C > 0 such that cg(k) ⩽ f(k) ⩽ Cg(k)
for all k ⩾ 1.

Proposition 1.3.1. Consider a supercritical i-KSRG model with kernel κσ̃,σ with
σ̃,σ ⩾ 0 from (1.3.5), and parameters α > 1, τ > 2 and d ∈ N. Whenever
τ− 1 > σ̃ (needed for a locally finite graph), the tail of the degree distribution is
given by

P(deg(0) ⩾ k) ≍

 k−(τ−1)/σ̃ if τ− 1 > max(σ̃,σ),

k−(τ−1)/(σ̃+σ−(τ−1)) if σ̃ < τ− 1 ⩽ σ.

We refer the reader for a proof to [179], and to similar results for specific
KSRGs in [63, 105, 122, 228].

In models with kernels κmax, κpa, κprod in (1.3.4) we set σ̃ = 1, while
for κmin we set σ̃ = 0 and σ = 1. The kernel κsum cannot be directly
expressed using the interpolation kernel. However, since max(x,y) ⩽ x+
y ⩽ 2max(x,y), and all known phase transitions regarding macroscopic
behaviour are the same for models with κsum and with κmax, we consider
this a minor restriction. By appropriately changing the mark distribution,
unless σ̃ = 0, any KSRG with kernel κσ̃,σ can be re-parameterized to have
σ̃ = 1. Even if σ̃ = 0, it can still be approximated with the kernel κ1,σ, as
we show below in Section 1.3.2. Hence, from now on we fix σ̃ = 1.

The parameter σ affects assortativity (amount of correlation between the
degrees of two vertices that are connected by an edge): a larger value of σ
increases min(x,y)σ in (1.3.5), and in turn the connection probability in
(1.3.1). In a natural coupling of these models using common edge-variables,
edges incident to at least one low-mark vertex are barely affected by
changing σ. However, edges between two high-mark vertices are created
rapidly if σ increases. Thus, changing σ gradually affects the assortativity
in the graph.
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Using the interpolation kernel allows for unified proof techniques. We
believe that i-KSRGs are of independent interest beyond the unification
they allow, because of the interpretation of σ as assortativity parameter.
Varying σ may affect the structure of the graph in different problems of
interest, e.g. clustering coefficient or the behaviour of (the mixing time of)
the simple random walk on the graph.

1.3.2 Approximating the min-kernel

We will argue now that the kernel κ0,τ (corresponding to the min-kernel
κmin in (1.3.4)) can be approximated by the kernel κ1,σ by taking an
appropriate limit in the parameter space of KSRGs. Let τ > 1 be the desired
tail-exponent for the degree distribution in (1.3.2) that is also reflected in
the parametrised kernel κmin ≡ κ0,τ in (1.3.4). We will construct a sequence
(τℓ,σℓ)ℓ⩾1 and a coupling of KSRGs, such that the edge probabilities
in a KSRG with kernel κ1,σℓ and mark-parameter τℓ tend to the edge
probabilities in a KSRG with kernel κ0,τ and mark-parameter τ as ℓ tends
to infinity. Let (τℓ)ℓ⩾1 be sequence tending to infinity. Let U denote a
Unif[0, 1] random variable, and W,Wℓ denote random variables satisfying
P(W ⩾ x) = x−(τ−1) and P(Wℓ ⩾ x) = x−(τℓ−1) for all x ⩾ 1, respectively.
Then,

U−1/(τℓ−1) d=Wℓ; U−1/(τ−1) d=W =⇒ Wℓ
d
=W(τ−1)/(τℓ−1).

Thus, letting W(1)

ℓ and W
(2)

ℓ be two independent copies of Wℓ, we can
couple them with two independent copies W(1),W(2) of W, such that
under this coupling

κ1,σ(W
(1)

ℓ ,W(2)

ℓ ) = max{W(1)

ℓ ,W(2)

ℓ }min{W(1)

ℓ ,W(2)

ℓ }σ

= max{W(1),W(2)}(τ−1)/(τℓ−1)

·min{W(1),W(2)}σ(τ−1)/(τℓ−1).

For a fixed value of τ > 1, the exponent of the maximum tends to zero
if τℓ tends to infinity. Hence, when choosing σ = σℓ = σℓ(τ, τℓ) as the
solution of

σℓ(τ− 1)/(τℓ − 1) = τ,

we obtain under a sequence of couplings that

κmin(W
(1),W(2)) = κ0,τ(W

(1),W(2)) = min{W(1),W(2)}τ

= lim
τℓ→∞ κ1,σℓ(W

(1)

ℓ ,W(2)

ℓ ),
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concluding that under limits the min-kernel is contained in the parameter
space (τ,α,σ,d) of i-KSRGs with kernel κ1,σ.

This finishes the introduction to i-KSRGs.

1.4 main contributions and outline

We proceed to a summary of the the main contributions of the thesis.
The thesis studies various structures and processes in/on supercritical
scale-free random graphs and is split into three parts: in Part i we study
the non-spatial preferential attachment model introduced in Section 1.2.2,
while Parts ii and iii focus on (instances of) KSRGs: instances of spatial
random graph models.

In the following chapters, we define the studied properties in more and
state the results formally, provide additional motivational context from the
literature. Eventually, in Chapter 9 we present open questions and future
research directions.

Part I: Distances in preferential attachment models.

In Chapter 2, we study three preferential attachment models (PAMs) where
the parameters are such that the asymptotic degree distribution has infinite
variance, i.e., with parameters such that the power-law exponent τ ∈ (2, 3).
Each edge is equipped with a non-negative i.i.d. weight. We study the
weighted distance between two vertices chosen uniformly at random from
the largest component, the typical weighted distance, and the number of
edges on this path, the typical hopcount. We prove that there are precisely
two universality classes of edge-weight distributions, called the explosive
and conservative class.

For edge-weight distributions in the explosive class, we show that (for
any τ ∈ (2, 3)) the typical weighted distance converges in distribution
to the sum of two i.i.d. finite random variables, that correspond to the
explosion time (originating from the study of age-dependent branching
processes, see [12, 14, 117]) of the local-weak limit.

For edge-weight distributions in the conservative class, we prove that the
typical weighted distance tends to infinity, and we give explicit expression
for the main growth term. This growth term can be tuned to be any
function g = O(log log(t)) by appropriately choosing the edge-weight
distribution L = L(g). Under a mild assumption on the edge-weight
distribution, the fluctuations around the main term are tight. Our proof
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techniques allow to obtain tight fluctuations around the main term for
the typical weighted distance in the configuration model with power-
law exponent τ ∈ (2, 3) (under the same assumption on the edge-weight
distribution), partially proving a conjecture from [2].

Chapter 3 initiates a research line that studies how graph properties
defined on a fixed set of vertices evolve as the surrounding preferen-
tial attachment graph grows. We consider the graph-distance evolution, a
discrete-time stochastic process denoted by

(
d

(G)

t ′ (ut, vt)
)
t ′⩾t. Here, ut

and vt are two typical vertices, i.e., they are sampled uniformly at random
from the vertices in the largest component in PAt. The graph distance
d

(G)

t ′ (ut, vt) is the number of edges on the shortest path between ut and
vt that uses only vertices that arrived at latest at time t ′. We identify a
function Kt,t ′ such that

(
supt ′⩾t

∣∣d(G)

t ′ (ut, vt) − 2Kt,t ′
∣∣ )
t⩾1 forms a tight

sequence of random variables. We generalise the result to a setting where
each edge is equipped with a non-negative i.i.d. weight.

Part II: Cluster-size decay in kernel-based spatial random graphs.

In this part, we study component sizes in i-KSRGs (introduced in Section
1.3.1). For nearest-neighbour Bernoulli percolation on Zd [113] it is well
known that when p > pc(Zd) – the critical percolation probability on Zd–
the number of vertices in the cluster containing the origin |C(0)| satisfies
that

P(k ⩽ |C(0)| <∞) = exp
(
−Θ(kζ)

)
, (1.4.1)

with ζ = (d− 1)/d. Intuitively, the stretched exponential decay with expo-
nent (d− 1)/d reflects that all Ω(k(d−1)/d) edges on the boundary of a
cluster C with |C| ⩾ k need to be absent: the tail decay in (1.4.1) is deter-
mined by surface tension. In Chapter 5 and the accompanying paper [151],
we study P(k ⩽ |C(0)| < ∞) for i-KSRGs where the degree distribution
and the edge-length distribution are heavy-tailed. We identify when this
structural inhomogeneity changes the surface-tension driven behaviour of finite
clusters: in those cases, the cluster-size decay in (1.4.1) is still stretched
exponential, but the exponent ζ changes. The value of ζ undergoes sev-
eral phase transitions with respect to the four main model parameters
(α, τ,σ,d). Besides establishing cluster-size decay (related to smaller com-
ponents in the graph), we also determine a law of large numbers for the
size of the largest component when the graph is restricted to the vertices
in a finite box of volume n.
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Chapter 5 presents the proof for the region in the phase diagram where
the model is a generalisation of continuum scale-free percolation and/or
hyperbolic random graphs. The component sizes depend heavily on the
amount of degree-inhomogeneity and the amount of long-range connections
in the graph. This is in large contrast to the degree distribution, typical
distance [64, 67], first-passage percolation [166], and clustering coefficient
[40, 60, 91, 135, 217], for which the main scalings are only determined by
the degree inhomogeneity and not influenced by the presence of long-
range connections when τ ∈ (2, 3).

To complement these results, we study a classical model in Chapter 6: the
graph formed by supercritical long-range percolation on Zd (LRP), where
two vertices x,y are connected by an edge with probability proportional to
∥x− y∥−αd, independently of other edges. Under the (technical) condition
that the edge density is sufficiently high, we prove that the cluster-size
decay is still determined by surface tension when α > 1+ 1/d. The proofs
for other regimes of the phase diagram (including LRP with α < 1+ 1/d)
are presented in an accompanying paper [151] that is not included in the
thesis.

Part III: Agent-based modelling: infection spreading.

Motivated by COVID-19, we conduct two simulation-based studies of
epidemics on networks: we demonstrate the influence of space and the
presence of long-range edges on various characteristics of epidemics (e.g.,
number of infected or quarantined people over time, the influence of
temporal immunity, and the time between two peaks of the epidemic) by
comparing them to more traditional models.

We present how the spatial models can be used to model intervention
strategies, which gives intuition for qualitative implications of the inter-
vention strategies in Chapter 7, and present how to model contact-tracing
applications for infection spread in Chapter 8.

1.5 notation

We conclude this chapter by introducing some notation that is commonly
used throughout the thesis.

For min{m,n} and max{m,n} we write respectively m∧ n and m∨ n.
Furthermore, ⌈x⌉ := min{y ∈ Z,y ⩾ x} and ⌊x⌋ := max{y ∈ Z,y ⩽ x}.
For n ∈ N, the set {1, 2, ...,n} is denoted by [n]. For two functions f(x)
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and g(x), we say f(x) = o
(
g(x)

)
if lim supx→∞ |f(x)|/g(x) = 0, and write

f(x) = O(g(x)) if lim supx→∞ |f(x)|/g(x) <∞.
The complement of an event E is denoted by ¬E. A sequence of events

(En)n⩾1 holds with high probability (whp) if limn→∞ P(En) = 1. Let
(Xn)n⩾0 and (Yn)n⩾0 be two sequences of random variables. We say that
a random variable X0 dominates a random variable Y0 if there exists
a coupling (X̂0, Ŷ0) such that P(X̂0 ⩾ Ŷ0) = 1. Similarly, the sequence
(Xn)n⩾0 dominates (Yn)n⩾0 if there exists a coupling of the sequences
such that P(∀n⩾0 : X̂n ⩾ Ŷn) = 1. A random graph G = (VG,EG) domi-
nates a random graph H = (VH,EH) if there exists a coupling such that
P
(
V̂H ⊇ V̂G, ÊH ⊇ ÊG

)
= 1. If a random object X dominates Y, we write

X ≽ Y. We say that (Xn)n⩾0 converges in probability to a random variable

X∞, i.e., Xn
P−→ X∞, if for all ε > 0 it holds that P(|Xn −X∞| > ε) = o(1).

If in a graph G there is an edge incident to both u and v, we write
u↔G v, and u ̸↔G v otherwise. We leave out the subscript G if the graph
is clear from the context. Similarly, for a set of vertices S, we write u↔ S

if there is a vertex v in S such that u↔ v. Moreover, for a set of vertices
(πi)i⩽n ⊆ VG we write {π0 ↔ · · · ↔ πn} := {π0 ↔ π1}∩ · · ·∩ {πn−1 ↔ πn}.
The sequence (or path) (πi)i⩽n is called self-avoiding if πi ̸= πj for all
i ̸= j.
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Based on [154]:
Weighted distances in scale-free preferential attachment models,

J. Jorritsma, J. Komjáthy,
Random Structures & Algorithms, 2020(57): 823– 859.

2.1 introduction

First-passage percolation is a model that was introduced to describe the
flow of a fluid through a porous random medium [114]. One starts with
a graph G = (V ,E) and equips each edge e ∈ E with an i.i.d. copy of a
random weight, that represents the time for a fluid to “cross” the edge. It
can also be viewed as the time to transmit a message or disease in graphs
that represent real-life networks. Natural questions for FPP are amongst
others:

(i) For two vertices u and v, what is the transmission time of a message
from u to v? How does the passage time depend on the size of the
graph?

(ii) How many edges are on the shortest weighted path from u to v? In
telecommunication networks, the signal loss increases in the number
of edges on a path.

In the last decades, first passage percolation on random graphs has gained
increasing attention, and the process is quite well understood on static
graphs, i.e., graphs that do not grow over time. It has been studied on
the Erdős-Rényi graph in [27], on configuration models (CM) with finite
variance degrees in [26, 28, 29, 74], and with infinite variance degrees in
[2, 22, 21, 74]. FPP on spatial models as scale-free percolation, geometric
inhomogeneous random graphs, and hyperbolic random graphs is studied
for infinite variance degrees in [136, 166]. In this chapter, we focus on
FPP on a dynamically growing model, the preferential attachment models
introduced in Section 1.2.2 (FPA, VPA, and GVPA). To the extent of our
knowledge, no formal results are known for FPP with non-trivial weights
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on dynamically growing models such as PA, except for the results in Part
i in this thesis. However, if all weights are equal to one, then the time to
transmit a message between two vertices ut, vt, sampled uniformly at
random from the largest component in the graph at time t, corresponds to
the typical graph distance d(G)

t (ut, vt). When the variance of the asymptotic
degree distribution is infinite, i.e., when the power-law exponent τ ∈ (2, 3),
precise asymptotics are known as shown in the next theorem.

Theorem 2.1.1 (Graph distances for PA [46, 69, 81]). Consider PAt with
power-law exponent τ ∈ (2, 3). For all ε > 0, there exists a constant M > 0 such
that for all t sufficiently large

P
(
2K∗t −M ⩽ d

(G)

t (ut, vt) ⩽ 2(1+ ε)K∗t
)
⩾ 1− ε, (2.1.1)

where
K∗t := ⌊2 log log(t)/| log(τ− 2)|⌋ .

In [190] it is shown that for VPA the upper bound in (2.1.1) can be
improved to 2K∗t +M. Corollary 2.2.7 below shows that this upper bound
can also be improved to 2K∗t +M for FPA. Little is known for graph
distances in FPA and GVPA when τ > 3. For FPA it is shown in [81] that
the diameter of the graph and the typical graph distance are of order
Θ(log(t)), but the precise main order of growth remains unknown. This is
in sharp contrast with the configuration model, where the graph distance
grows as Θ(log(t)) and the precise order is found in [131].

We introduce edge-weighted preferential attachment models.

Definition 2.1.2 (Edge-weighted preferential attachment models). Let L
be a non-negative random variable with cumulative distribution function
FL(x) := P(L ⩽ x). In the edge-weighted versions of FPA and (G)VPA from
Definitions 1.2.4 and 1.2.5, respectively, each edge e is equipped on its
creation with an i.i.d. copy of L, denoted by Le.

We assume throughout the chapter that indexed weight random vari-
ables with different indices are i.i.d. Let d(L)

t (ut, vt) denote typical weighted
distance, the sum of the weights along the least-weighted path from ut to
vt, two vertices that are sampled uniformly at random from the largest
component in PAt. We show in this chapter that there are exactly two
universality classes of weight distributions for the three edge-weighted
preferential attachment models defined in Section 1.2.2 when τ ∈ (2, 3).

The universality classes are determined by a computable characteristic
of the weight distribution L. We present the characteristic and an informal
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version of our main result here, precise results can be found in Theorems
2.2.5 and 2.2.10 below. For a random variable L, we define its cumulative
distribution function as FL(x) := P(L ⩽ x), and its generalised inverse by
F(−1)(y) := infx{x ∈ R : F(x) ⩾ y}.

Definition 2.1.3 (Explosion characteristic I1(L)). Let L be a non-negative
random variable with distribution function FL. We define the explosion
characteristic I1(L) as

I1(L) :=

∞∑
k=1

F
(−1)
L

(
e−ek

)
. (2.1.2)

We call {L : I1(L) = ∞} the conservative class, and {L : I1(L) < ∞} the
explosive class.

The term explosion originates from the study of age-dependent branching
processes, see e.g. [12, 14, 117]. In these branching processes we say that
explosion happens if infinitely many individuals are born within finite
time. The relation to explosion in trees comes from the fact that the
neighbourhood of a typical vertex in PAt converges in distribution to a
random tree, the local weak limit. Local weak convergence is shown for
the three models in [24, 71, 97]. It is interesting in its own right to study the
edge-weighted version of the local weak limit tree. We prove that infinitely
many vertices are within finite weighted distance from the root in the local
weak limit if the weight distribution is in the explosive class. This fact is
then used to show convergence in distribution for the typical weighted
distance in PAt if I1(L) <∞, the first part of our following main result.

Theorem 2.1.4 (Meta theorem). Consider PAt with power-law exponent τ ∈
(2, 3). If I1(L) <∞, then the typical weighted distance converges in distribution
to an almost surely finite random variable. If I1(L) = ∞, then

d
(t)

L (u, v) ≈ 2Qt + oP(Qt),

where
K∗t = ⌊2 log log(t)/| log(τ− 2)|⌋ ,

Qt :=
∑
k⩽K∗t

F
(−1)
L

(
exp

(
− (τ− 2)−k/2

))
. (2.1.3)

Under a mild extra condition on L, the error term oP(Qt) is tight.
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This meta theorem is formalized below in Section 2.2.1. There, we describe
the limiting random variables if I1(L) <∞ and state the computable, mild
condition on L that yields tight error terms. As a side result of the second
part of Theorem 2.1.4, when I1(L) = ∞, we show that if the weights are
of the form 1+ X, I(X) < ∞, the typical weighted distance and typical
hopcount are both tight around 4 log log(t)/| log(τ− 2)| for the models
FPA and VPA. This indicates that the addition of an excess edge-weight
X does not affect the topology of the shortest paths drastically. Constant
weights are a special case of these. So, our result extends results from [46,
69, 81, 190], by showing that the fluctuations of the typical graph distance
around 4 log log(t)/| log(τ− 2)| are tight.

Organisation

The next section formally introduces the necessary concepts to describe the
limiting random variables for the explosive case. Afterwards, we state our
main results, and discuss them by formulating some open problems and
recalling relevant results from literature. In Section 2.3, we prove upper
bounds for the weighted distance in the finite graphs by constructing a
path, and show that the local weak limit tree is explosive if and only if
the edge-weight distribution L is a member of the explosive universality
class. Then, in Section 2.4, we prove the corresponding lower bounds for
both the conservative as the explosive regime. In Section 2.5 we prove a
theorem on the hopcount. Lastly, in Section 2.6 we extend the results for
conservative distributions on finite graphs to the local weak limit.

2.2 definitions and main results

In this chapter we look at typical least weighted paths, that is, we assume that
every edge in PAt is equipped with an i.i.d. weight, and we are interested
in the sum of the weights on the least weighted path between two vertices,
and the number of edges on this path, called hopcount.

Definition 2.2.1 (Distances in graphs). Consider the graph G = (V ,E) and
assume every edge e ∈ E is equipped with a weight Le. For a path π,
we define its length as ∥π∥ := ∑

e∈π 1 and L-length as ∥π∥L :=
∑
e∈π Le.

For u, v ∈ V , let Ωu,v := {π : π is a path from u to v in G}. We define
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the distance, L-distance (also called weighted distance), and H-distance
(hopcount) between u and v in the graph G as

d
(G)

G (u, v) := min
π∈Ωu,v

∥π∥,

d
(L)

G (u, v) := min
π∈Ωu,v

∥π∥L,

d
(H)

G (u, v) :=
∥∥∥ arg min
π∈Ωu,v

∥π∥L
∥∥∥,

respectively. If Ωu,v = ∅, the above distance-metrics are defined as ∞. If
there are several paths π1, . . . ,πk minimizing the L-distance, the hopcount
is defined as mini⩽k ∥πi∥. For a letter □ ∈ {G,L,H}, the typical □-distance
of a graph G is defined as the □-distance between two typical vertices. For
q ∈ V and a set A ⊆ V , we generalise distances and define the □-diameter
of A by

d
(□)

G (q,A) := min
w∈A

d
(□)

G (q,w), diam(□)

G (A) := max
x,y∈A

d
(□)

G (x,y).

For a vertex q, its □-neighbourhood with radius r > 0 and its boundary
are defined as

B
(□)

G (q, r) := {w : d(□)

G (q,w) ⩽ r}, ∂B
(G)

G (q, r) := {w : d(G)

G (q,w) = ⌊r⌋}.

We write B̃□
G(q, r) for the induced subgraph of G on the vertex set B□

G(q, r),
with edges (u, v) from G if both u and v are in B□

G(q, r). If G = PAt, we
abbreviate (PAt) by t in the subscript.

An alternative way to look at an edge-weighted graph is to view the
weights as passage times, i.e., the time that it takes to send a message from
one side of the edge to the other. The notions of time and weight are used
interchangeably. We stress that the passage time of a single edge is not
related to the time t in the construction of the graph PAt.

We introduce the concepts of explosion time and local weak limit to
describe the limiting random variables for the typical weighted distance
in the explosive class in Theorem 2.2.10 below. We recall the definitions
of the graph neighbourhood B

(G)

G and weighted neighbourhood B
(L)

G for a
graph G from Definition 2.2.1.

Definition 2.2.2 (Explosive graph). Let G = (V ,E) be a weighted graph
that is locally finite. For the time to reach graph distance k and the time to
its n-th closest vertex in L-distance from a vertex q, we write

βG,k(q) := d
(L)

G

(
q,∂B(G)

G (q,k)
)
, σG,n(q) := inf

{
r : |B(L)

G (q, r)| ⩾ n
}

.
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If |V | = ∞, we define the explosion time of q as

βG,∞(q) := lim
k→∞βG,k(q).

If there is a q ∈ V with finite explosion time, then we call G explosive. For
G ≡ PAt, we write βt,k and σt,n if the q in PAt is a typical vertex, i.e., it is
sampled uniform at random from the largest component in the graph at
time t. If G is a tree rooted in ⊚, we abbreviate βG,k := βG,k(⊚).

The local weak limit of graphs can be used to describe the neighbourhood
of a typical vertex. For an introduction we refer to [125, Chapter 2] and its
references. Let G⋆ be the space of all (possibly infinite) rooted graphs.

Definition 2.2.3 (Local weak limit in probability). Let (Gt)t⩾0 be a se-
quence of finite random rooted graphs, and let (G,q) be a rooted random
graph following law µ. The sequence (Gt)t⩾0 converges in probability in
the local weak convergence sense to (G,q), when

Et[h(Gt,qt)]
P−→ E[h(G,q)],

for every bounded and continuous function h : G⋆ → R, where the
expectation on the rhs is w.r.t. (G,q) having law µ, while the expectation
on the lhs is w.r.t. the typical vertex qt only.

Berger et al. [24] identify the local weak limit of FPA. They give an explicit
construction of the limit that they call the Pólya-point graph (PPG), an
infinite rooted tree derived from a multi-type branching process. While
the construction of FPA in [24] is slightly different from Definition 1.2.4, it
can be related to our model for δ ⩾ 0. In [97, Chapter 4], it is shown that
the result remains valid for a wider class of models, in particular when
δ < 0.

Turning to the local weak limit of GVPA, Dereich and Mörters [71]
introduce a similar concept for the GVPA-model, the idealized neighbourhood
tree (INT). While local weak convergence is only stated briefly before [71,
Theorem 1.8], they construct a coupling similar to the PPG. Contrary
to FPA, the graph (G)VPA model is not asymptotically almost surely
connected, and the INT could consist of finitely many vertices. Throughout
the remainder, we assume that the INT is conditioned to consist of infinitely
many vertices. For our proofs it is not important how the local weak limits
can be constructed, only that they exist. In fact, we consider the PPG and
INT as a black box and yet obtain results. If a statement holds for both
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models, we refer to the INT or PPG as LWL (local weak limit). We write
LWLk for the tree restricted to vertices that have graph distance at most
k from the root. We call the vertices that are at graph distance exactly k
away from the root the k-th generation of the LWL. We state the combined
result on local weak convergence for the reader’s convenience. We call two
rooted graphs (G, x), (G ′, x ′) rooted isomorphic, and write (G, x) ≃ (G ′, x ′),
if there exists an isomorphism from G to G ′ that maps x to x ′. Recall the
graph neighbourhood B̃G from Definition 2.2.1.

Proposition 2.2.4 (Local weak convergence [24, Theorem 2.2, Proposition
3.6], [71, Section 5, 6]). The local weak limits of PA are the Pólya-point graph for
FPA(m, δ), and the idealized neighbourhood tree for GVPA(f). Moreover, let q be
a typical vertex, then for all δ2.2.4 > 0 there exists a function κδ2.2.4(t) that tends
to infinity with t, such that B(G)

t (q, κδ2.2.4(t)) and LWLκδ2.2.4(t)
can be coupled,

such that, denoting by ⊚ the root of the LWL,

P
(
B̃

(G)

t (q, κδ2.2.4(t)) ≃ LWLκδ2.2.4(t)
(⊚)
)
⩾ 1− δ2.2.4, (2.2.1)

2.2.1 Main results

Recall the explosion characteristic I1(L) from (2.1.2). We start with the
results on the typical weighted distance in PAt, where the edge-weight
distribution satisfies I1(L) = ∞. In this case, we show that the typical
weighted distance tends to infinity as the graph size tends to infinity. We
determine the first order of growth and the number of edges used on this
path. For FPA and VPA, we strengthen our results by showing that the
fluctuations around the first order term are tight under a mild condition
on L. Recall K∗t and Qt from (2.1.3).

Theorem 2.2.5 (Weighted distance, conservative case). Consider PA with
power-law exponent τ ∈ (2, 3), i.i.d. weights on the edges with distribution FL
satisfying I1(L) = ∞. Let u, v be two typical vertices. Then, for the typical
weighted distance in PAt,

d
(L)

t (u, v)
/
2Qt

P−→ 1, as t→∞. (2.2.2)

Moreover, for the models FPA and VPA from Definition 1.2.4 and 1.2.5, if
I1(L) = ∞ and FL satisfies

I2(L) :=

∞∑
k=1

1

k

(
F
(−1)
L

(
e−ek

)
− sup{x : FL(x) = 0}

)
<∞, (2.2.3)
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then (
d

(L)

t (u, v) − 2Qt
)
t⩾1

forms a tight sequence of random variables, i.e., the fluctuations are of order O(1)
whp.

We believe that (2.2.3) is only a technical condition. Only distributions L
that are extremely flat around the origin (triple exponentially) violate it.
An artificial example of such a distribution is if FL in the neighbourhood
of 0 satisfies

FL(x) = exp
(
− exp

(
ex

−β))
for some β ⩾ 1. If FL satisfies this equality for some β ∈ (0, 1), then
condition (2.2.3) is satisfied.

We proceed to the typical hopcount for a class of conservative weight
distributions.

Theorem 2.2.6 (Hopcount, weights bounded away from zero). Consider PA
with power-law exponent τ ∈ (2, 3), i.i.d. weights on the edges with distribution
FL satisfying a := sup{x : FL(x) = 0} > 01. Let u, v be two typical vertices. Then,
for the typical hopcount in PAt

d
(H)

t (u, v)
/
2K∗t

P−→ 1, as t→∞. (2.2.4)

Moreover, for the models FPA and VPA from Definition 1.2.4 and 1.2.5, if
I(L− a) <∞, then (

d
(H)

t (u, v) − 2K∗t
)
t⩾1 (2.2.5)

forms a tight sequence of random variables.

Setting the weights L ≡ 1 in Theorem 2.2.6 immediately implies the
following corollary, extending results in [46, 69] on the typical graph
distance in FPA up to tight error terms, and confirming the tight error
terms for VPA from [190].

Corollary 2.2.7 (Tight graph distances). Consider FPA or VPA with power-law
exponent τ ∈ (2, 3). Let u, v be two typical vertices. Then, for the typical graph
distance in PAt (

d
(G)

t (u, v) − 2K∗t
)
t⩾1

forms a tight sequence of random variables.

1 This implies that I1(L) = ∞.
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Before we move on to the results on finite graphs for weight distributions
satisfying I1(L) < ∞, we discuss first passage percolation on the LWL.
The following theorems show that the LWL is explosive if and only if
I1(L) <∞. We start with conservative edge weights. Afterwards we prove
explosiveness of the LWL for explosive edge weights. This is then used to
state the last theorem on the weighted distances in PAt for explosive edge
weights.

Theorem 2.2.8 (FPP on the LWL, conservative case). Consider a PPG or INT
rooted in ⊚ with power-law exponent τ ∈ (2, 3) with i.i.d. weights on the edges
with distribution FL satisfying I1(L) = ∞. If FL satisfies (2.2.3), then, for FPA
and VPA,(

βLWL,k(⊚) −
k∑
i=1

F
(−1)
L

(
exp

(
− (τ− 2)−i/2

)))
k⩾1

(2.2.6)

is a tight sequence of random variables. Regardless of (2.2.3), for FPA, VPA, and
GVPA, as k tends to infinity,

βLWL,k(⊚)

/
k∑
i=1

F
(−1)
L

(
exp

(
− (τ− 2)−k/2

)) a.s.−→ 1. (2.2.7)

Observe the similarities between Theorem 2.2.5 and Theorem 2.2.8. In fact,
the proof of Theorem 2.2.8 heavily relies on couplings between the LWL
and PAt, which are possible by Proposition 2.2.4. These couplings allow for
the intermediate lemmas and propositions to consider whichever object,
i.e., PAt vs. LWL, is more suitable and lead to the similarities between the
two theorems.

We now proceed to the universality class of weight distributions satisfy-
ing I1(L) <∞. This holds for most well-known distributions with support
starting at 0, e.g. the exponential distribution. After stating that for these
weight distributions the LWL is explosive, we proceed with a theorem on
the typical weighted distance in finite graphs. Recall Definition 2.2.2 of an
explosive graph.

Theorem 2.2.9 (FPP on the LWL, explosive case). Consider a PPG or INT
rooted in ⊚ with power-law exponent τ ∈ (2, 3) with i.i.d. weights on the edges
with distribution FL satisfying I1(L) <∞. Then the explosion time of the LWL
is an almost surely finite random variable, i.e.,

P (βLWL,∞ <∞) = 1.
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Theorem 2.2.10 (Weighted distance, explosive case). Consider PA with
power-law exponent τ ∈ (2, 3), i.i.d. weights on the edges with distribution FL
satisfying I1(L) < ∞. Let u, v be two typical vertices. Then, for the typical
weighted distance in PAt

d
(L)

t (u, v) d−→ β(1)∞ +β(2)∞ , as t→∞,

where β(1)
LWL,∞ and β(2)

LWL,∞ are two i.i.d. copies of the explosion time of the LWL.

It is remarkable that the limiting random variable does not depend on t
and thus the graph distance is of much larger order than the weighted
distance. The underlying intuition is that in the graph neighbourhoods
of u and v there is a vertex with sufficiently high degree. The weighted
distances to these vertices converge in distribution to β(u)

LWL,∞ and β(v)
LWL,∞.

There are many paths connecting these high degree vertices, where the
number of edges on these paths is similar to the graph distance, allowing
to bound its total weight from above and show that it tends to zero.

2.3 upper bound on the weighted distance

In this section we prove the upper bounds for Theorems 2.2.5 and 2.2.10,
respectively. The upper bound of Theorem 2.2.8 which follows from the
same proof techniques, is postponed to Section 2.6. Recall I1(L) from
(2.1.2), and Qt from (2.1.3).

Proposition 2.3.1 (Upper bound on the weighted distance, conservative
case). Consider PA under the same conditions as Theorem 2.2.5. Recall I1(L) =∞. Then for every δ, ε > 0, when t is sufficiently large

P
(
d

(L)

t (u, v) ⩽ (1+ ε)2Qt
)
⩾ 1− δ.

Moreover, for the models FPA and VPA from Definition 1.2.4 and 1.2.5, if FL
satisfies (2.2.3), there exists a constant M2.4.1 = M2.4.1(δ) such that for t
sufficiently large

P
(
d

(L)

t (u, v) ⩽ 2Qt + 2M2.4.1
)
⩾ 1− δ.

Proposition 2.3.2 (Upper bound on the weighted distance, explosive case).
Consider PA under the same conditions as Theorem 2.2.10. Recall I1(L) < ∞.
Then, there is a coupled probability space, such that for every δ, ε > 0 there exists
a constant N ∈N such that for t sufficiently large

P
(
d

(L)

t (u, v) ⩽ βLWL(u),N +βLWL(v),N + ε
)
⩾ 1− δ, (2.3.1)
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Figure 1: The constructed five-segment path from u to v, via vertices with suffi-
ciently high degree u ′ and v ′ and Innerα.

where LWL(u), LWL(v) are the LWL trees coupled to the neighbourhood of u, v,
respectively.

Throughout this section, we look at the graph at times t and t ′ := αt, for
some α ∈ [12 , 1). For the upper bound on d(L)

t (u, v) it is enough to construct
a path between u and v, and study its weight. The path that we construct,
consists of five segments of three different types. First, for q ∈ {u, v}, we
construct a path, consisting of one segment of type (a) and one of type (b),
to

Innerα := {w ∈ [αt] : Dαt(w) ⩾ (αt)
1

2(τ−1) log(αt)−
1
2 }, (2.3.2)

i.e., vertices with a very large degree, also called inner core, see Figure 1.
The total weight of one path contributes almost half of the total weight of
the entire path from u to v. The segment of type (a) connects q ∈ {u, v} to
a vertex q ′ that has degree at least s0 ∈N. It only passes through vertices
that arrived before time αt, old vertices. To do so, we shall condition on
q < αt, which happens with probability close to one if α is close to one.
The segment of type (b) connects q ′ to the inner core and alternatingly
passes through old vertices and α-connectors, vertices that arrived after
time αt. Similarly for segment type (c), see Figure 1, we construct a path
with negligible total weight that connects two vertices in the inner core,
by alternatingly using α-connectors and other vertices in the inner core.
By construction, all edges on segments of type (a) arrived before time αt,
while on types (b) and (c) all edges arrived after αt.

We present now three segment-specific propositions, used in both the
explosive and conservative case. Afterwards we introduce some necessary
notation to construct the path. Lastly, we show how these propositions
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together prove Propositions 2.3.1 and 2.3.2. Starting with segment (a), we
show that the number of edges on the path between q and q ′ is bounded,
for q ∈ {u, v}. In the conservative case, its total weight is negligible com-
pared to Qt. In the explosive case, this part is the main contributor and
later we show that its total weight tends in distribution to the (finite)
explosion time of the LWL.

Proposition 2.3.3 (Bounded graph distance to a vertex with degree at least
s). Consider PA with power-law exponent τ ∈ (2, 3), i.i.d. weights on the edges
with distribution FL and fix δ2.3.3 > 0. Let q be chosen uniformly at random
from [t]. For any s2.3.3 ∈ N, there is a constant C2.3.3 = C2.3.3(s2.3.3, δ2.3.3)

such that for t sufficiently large

P

( ⋂
q ′∈[t]:Dt(q ′)⩾s2.3.3

{
d

(G)

t (q,q ′) ⩾ C2.3.3
})
⩽ δ2.3.3.

We write E(t)
2.3.3(q, s2.3.3) for the complement of the above event between brackets.

The proof for FPA follows from a minor adaptation of the proof of [81,
Theorem 3.6]. For GVPA it follows from an adaptation of [190, Proposition
5.10]. We refer the reader to the cited paper and thesis to fill in the details.
We emphasize that we apply Proposition 2.3.3 at time αt, rather than t.

From the vertex q ′ with degree at least s0 at time αt, we construct a
path to the inner core, corresponding to segment (b). We show that there
are many such paths, allowing to bound the weight. The next proposition
is the main (technical) contribution of the chapter. Due to this statement,
we obtain tight bounds for the various distances in FPA, improving upon
existing results [46, 69]. Its proof can easily be adapted to obtain tight
fluctuations on the typical weighted distance in the configuration model if
condition (2.2.3) is satisfied, improving results in [2].

Proposition 2.3.4 (Upper bound on the weighted distance to Innerα).
Consider PA with power-law exponent τ ∈ (2, 3), i.i.d. weights on the edges
with distribution FL. Fix δ2.3.4, ε2.3.4 > 0, α ∈ [1/2, 1). There exists s0 =

s0(δ2.3.4) ∈N and a constant M2.3.4, such that for s > s0, and any q ′ ∈ [αt]

with Dαt(q ′) = s, if t is sufficiently large, for FPA or VPA, if FL satisfies (2.2.3),

P
(
d

(L)

t (q ′, Innerα)⩾M2.3.4 +

K∗t+⌊hτ(s)⌋+4∑
k=⌊hτ(s)⌋

F
(−1)
L

(
exp

(
−(τ− 2)−k/2

)))
⩽ δ2.3.4, (2.3.3)
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where hτ(s) = 2 log log(s)/| log(τ− 2)|+ cτ for some constant cτ. Without
(2.2.3), it holds that

P
(
d

(L)

t (q ′, Innerα)⩾(1+ ε2.3.4)

K∗t+⌊hτ(s)⌋+4∑
k=⌊hτ(s)⌋

F
(−1)
L

(
exp

(
−(τ− 2)−k/2

)))
⩽ δ2.3.4, (2.3.4)

where the constant cτ in the function hτ might be different and can depend on
ε2.3.4.

This part of the path is the main contributor to the upper bound in the
conservative case. If I1(L) < ∞, it follows that the value of the sum in
(2.3.3) can be made arbitrarily small by increasing s, because hτ(s) tends
to infinity. For the conservative case, comparing the sum in Qt in (2.1.3)
to the sum in (2.3.3), one sees that they are identical up to a shift of the
summation boundaries.

In the next proposition we bound the graph and weighted distance
within the inner core, segment (c) in Figure 1.

Proposition 2.3.5 (Inner core has negligible weighted distance). Consider PA
with power-law exponent τ ∈ (2, 3), i.i.d. weights on the edges with distribution
FL. Recall Innerα from (2.3.2) and fix δ2.3.5 > 0,α ∈ [1/2, 1). Then there exists
C2.3.5 > 0, such that for all sufficiently large t, and for any two fixed vertices
w1,w2 in Innerα,

P
(
d

(G)

t (w1,w2) ⩾ C2.3.5
)
⩽ δ2.3.5. (2.3.5)

Moreover, if FL satisfies FL(x) > 0 for all x > 02, then for any ε2.3.5 > 0, if t is
sufficiently large,

P
(
d

(L)

t (w1,w2) ⩾ ε2.3.5
)
⩽ δ2.3.5. (2.3.6)

Proof of Proposition 2.3.5. We give a proof similar to [81, Proposition 3.2].
We construct a path from w1 to w2 via a subset of the inner core, in which
we can bound the weighted distance between two vertices whp. We show
the latter first, after which we show that if w1 or w2 is not contained in
this subset, the (weighted) distance to this subset is also small.

By Lemma 2.3.9, there are at least nt = ⌊
√
t⌋ vertices in the inner

core. Let I be the set of the first nt vertices that have degrees at least

2 This constraint holds whenever I1(L) <∞, but might not hold when I1(L) = ∞.
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(αt)1/(2(τ−1)) log(αt)−1/2. We construct a graph Ht on these vertices as
follows. Recall the definition of an α-connector from Definition 2.3.6. Let
i, j be connected in Ht if there exists an α-connector y. The weight on the
edge (i, j) is L(i,y) + L(j,y). As explained in the proof of [81, Proposition
3.2] for the model FPA, Ht stochastically dominates a dense uniform
Erdős-Rényi graph G(nt,pt), where

pt :=
t
1
τ−1−1

2 log2 t
.

Here, we say that a random graph G dominates a random graph H if
there exists a coupling such that every edge in H is also contained in G.
Using [70, Theorem 1.1], one can verify that the same holds for GVPA. In
[36, Chapter 10.2] the diameter of the dense ERRG is discussed, and it
is shown that the diameter is bounded. Hence, the first assertion (2.3.5)
follows. From now on, we assume that FL(x) > 0 for all x > 0. Let ∆ = ∆(τ)

denote the diameter of the G(nt,pt). The proof techniques in the above
mentioned book chapter rely on the exploration around two vertices. In
particular, it can be derived that the number of disjoint paths between two
vertices of length ∆ tends to infinity with the size of the graph. Hence,
there is a function rt tending to infinity with t, such that there are at
least rt disjoint paths between u and v. The weight on the i-th path is
distributed as L(i)⋆ := L

(i)
1 + ... + L(i)2∆. As FL(x) > 0 for any x > 0, the same

holds for FL⋆ . Thus,

lim
t→∞ P

(
min
i∈rt

L
(i)
⋆ > ε

)
= 0,

for any ε > 0. Hence, for w ′1,w ′2 ∈ I and any ε2.3.5, δ2.3.5 > 0,

P
(
d

(L)

t (w ′1,w ′2) ⩾ ε2.3.5/3
)
⩽ δ2.3.5/3. (2.3.7)

Assume that there is an i ∈ {1, 2} such that wi /∈ I, and observe that we are
done if we prove

P
(
d

(L)

t (wi, I) ⩾ ε2.3.5/3
)
⩽ δ2.3.5/3. (2.3.8)

Analogously to the proof of Lemma 2.3.10, one can verify that whp the
number of α-connectors between wi and I tends to infinity with t. Hence,
the weighted distance becomes small, and we conclude by a union bound
over (2.3.7) and (2.3.8) twice (for both w1 and w2) that the result (2.3.6)
follows for t large.
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Before outlining the proof of Proposition 2.3.4, we state the formal
definitions of notions that are of particular importance throughout the
proof.

Definition 2.3.6 (Layers, α-connectors, and the greedy path). Fix α ∈
[1/2, 1). Let for k ∈N

sk := min
{
s
(1−εk−1)(τ−2)

−1

k−1 , (αt)
1

2(τ−1) log(αt)−
1
2

}
, (2.3.9)

Kt := min
{
k : sk ⩾ (αt)

1
2(τ−1) log(αt)−

1
2

}
, (2.3.10)

where s0 > 1 and (εk)k⩾0 is a sequence that tends to 0 for FPA and VPA
under condition (2.2.3), and εk ≡ εG for some small constant εG > 0

otherwise. For (sk)k⩾0, we define the k-th layer as

Lk := {x ∈ [αt] : Dαt(x) ⩾ sk}.

A vertex y in [t]\[αt] is called an α-connector of (x, z) if it is connected both
to x and z. Let Ak(x) := {(y, z) ∈ [t]\[αt]×Lk : x ↔ y ↔ z}. For a vertex
π0 := q

′ ∈ L0, we construct a greedy path

πgr = (π0,y1,π1,y2,π2, ...,yKt−1,πKt)

of length 2Kt by sequentially choosing

(yk,πk) = arg min
(y,z)∈Ak(πk−1)

{
L(πk−1,y) + L(y,z)

}
if it exists. If Ak(πk−1) = ∅, we say that the construction of the greedy
path fails at step k.

Note that on the greedy path πgr, πk ∈ Lk and yk is an α-connector of
(πk,πk+1).

Outline of the proof of Proposition 2.3.4

The idea of Proposition 2.3.4 is to construct a greedy path to the inner core
and use its total weight as an upper bound for the actual shortest path.
We outline the proof for FPA and VPA under condition (2.2.3). The other
cases follow by similar steps.

(I) The greedy path consists of Kt cherries, i.e., of 2Kt edges. Recall K∗t
from (2.1.3). We show for a specific choice of εk that

2Kt ⩽ K∗t + 4.



40 weighted distances

(II) We show that the sizes of the sets Ak(πk−1) are bounded from below
by a doubly exponentially growing sequence (nk)k⩾0, i.e., for δ > 0,
there is an s0 such that for large t

P

( ⋃
k∈[Kt]

{|Ak+1(πk)| ⩽ nk}

)
⩽ δ. (2.3.11)

As a result, the greedy path actually exists, with probability at least
1− δ. To prove this, the choice of the exponent of (sk)k⩾0 in (2.3.9) is
crucial, and in particular the choice of (εk)k⩾0. In [81, Theorem 3.1]
and [69, Proposition 3.1] similar constructions of greedy paths are
used. In those proofs, the exponent of (sk)k⩾0 is equal to 1/(τ− 2)
and every term is corrected with a log(t)-term to ensure that every
vertex in layer Lk has at least one t-connector. In contrary, we correct
the exponent by −εk/(τ− 2), implying that (sk)k⩾0 grows slower. In
return, every vertex in Lk has many t-connectors whp, that allows for
small weighted distances.

(III) By the construction of πgr, the weighted distance between π0 and πKt
can be bounded by

d
(L)

t (q ′,πKt) ⩽
∑
k∈[Kt]

min
(y,z)∈[Ak(πk−1)]

{
L(πk−1,y) + L(y,z)

}
. (2.3.12)

As the minimum is non-decreasing if we consider less elements,
conditionally on the complement of the event in (2.3.11), we may
weaken the bound to

d
(L)

t (q ′,πKt) ⩽
∑
k∈[Kt]

min
j∈[nk]

{
L
(k)
j1 + L

(k)
j2

}
. (2.3.13)

We show that the generalised inverse F(−1)L1+L2
can be related to the gen-

eralised inverse F(−1)L . This allows us to bound the rhs of (2.3.13) and
obtain the asserted bound (2.3.3) from Proposition 2.3.4 as we make
the error probabilities arbitrarily small by choosing s0 sufficiently
large.

We start with Step (I) by proving an upper bound for Kt.

Lemma 2.3.7. Let Kt be as in (2.3.10), K∗t as in (2.1.3), τ ∈ (2, 3), α ∈ [1/2, 1).
For FPA and VPA, if (2.2.3) holds, set

εk := (k+ 2)−2, k ∈N.
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There exists a constant c2.3.7 > 0 such that for s0 sufficiently large

sk ⩾ s
c2.3.7(τ−2)

−k

0 , 2Kt ⩽ K
∗
t + 4. (2.3.14)

For FPA and VPA if (2.2.3) does not hold and GVPA, set εG > 0 such that

log
(
1/(τ− 2)

)
log
(
(1− εG)/(τ− 2)

) = 1+ ε2.3.4. (2.3.15)

Then for s0 sufficiently large

2Kt ⩽ (1+ ε2.3.4)K
∗
t + 4. (2.3.16)

Proof. First we consider FPA and VPA under condition (2.2.3). Recall the
definition of (sk)k⩾0 from (2.3.9). By iterating the recursion, we obtain

sk = s
∏k−1
j=0 ((1−εj)/(τ−2))

0 .

By our choice of εk = 1/(k+ 2)2, the product
∏∞
j=1(1− εj) > 0, which

yields the first bound in (2.3.14) for some constant c2.3.7 > 0. Hence, by
the definition of Kt in (2.3.10),

Kt ⩽ min
{
k : s

c2.3.7(τ−2)
−k

0 ⩾ (αt)
1

2(τ−1) log(αt)−
1
2

}
.

By taking logarithms twice in the inequality between brackets above, we
obtain

Kt⩽


log
(

1
2(τ−1) log(αt)− 1

2 log log(αt)
)
− log log(s0) − log(c)

| log(τ− 2)|

. (2.3.17)

If s0 is sufficiently large, the numerator of Kt above is smaller than
log log(t) for t sufficiently large. Bounding the rounding operations yields
by the definition of K∗t in (2.1.3)

2Kt ⩽ 2
log log(t)
| log(τ− 2)|

+ 2 ⩽ K∗t + 3.

For proving (2.3.16) for GVPA, and FPA and VPA without condition (2.2.3),
we use a similar reasoning. By taking logarithms twice in the definition
of Kt in (2.3.10), we obtain a similar formula to that in (2.3.17), and after
bounding the numerator as before, as well as using the implicit definition
of εG in (2.3.15) and that of K∗t in (2.1.3), we arrive to

2Kt ⩽ (1+ ε2.3.4)K
∗
t + 3+ ε2.3.4 ⩽ (1+ ε2.3.4)K

∗
t + 4,

finishing the proof.
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We recall two preliminary lemmas from [81] that help us control the
error probability in (2.3.11).

Lemma 2.3.8 (Probability on being a α-connector for an arbitrary set [81]).
Consider PA under the same conditions as Proposition 2.3.4. Let α ∈ [1/2, 1). For
x ∈ [αt], a set V ⊂ [αt], conditionally on PAαt, the probability that y ∈ [t]\[αt]

is an α-connector of (x,V) is at least

η2.3.8Dαt(x)Dαt(V)

(αt)2
=: pαt(x,V), (2.3.18)

where η2.3.8 > 0 is a constant, and Dαt(V) :=
∑
z∈VDαt(z). Moreover, with

probability at least pαt(x,V), the event {y is an α-connector of (x,V)} happens
independently of other vertices in [t]\[αt].

We use the above lemma for layers V = Lk and a vertex x ∈ Lk−1. The
following lemma allows us to bound the total degree of vertices in Lk,
Dαt (Lk), from below. Although it assumes for the model GVPA(f) that
the function f(x) needs to be affine for x sufficiently large, we show below
that this restriction does not propagate to the requirements of Proposition
2.3.4.

Lemma 2.3.9 (Impact of high degree vertices [81, Lemma A.1], [70, Theorem
1.1(a)]). Let PAt satisfy the same conditions as Proposition 2.3.4, and additionally
for GVPA(f), assume that the function f(x) is affine for all x larger than some
x0 ∈ R. Let α ∈ [1/2, 1), and ϕ ∈ R satisfy x0 ⩽ ϕ ⩽ (αt)

1
2(τ−1) (log(αt))−

1
2 .

There exists a constant c2.3.9 > 0 such that

P

( ∑
z:Dαt(z)⩾ϕ

Dαt(z) ⩾ c2.3.9αtϕ
2−τ

)
= 1− o(t−1).

Moreover, whp the number of vertices with degree at least ϕ is at least
√
αt.

Our version of the above lemma is slightly different from [81, Lemma
A.1], as we do not assume that ϕ = ϕ(t) tends to infinity with t, while
[81] does. We refer the reader to the proof of [81, Lemma A.1] to see that
the proof is also valid for constant ϕ. Also [70, Theorem 1.1(a)] is slightly
different from the statement here, as it states convergence of the degree
distribution in total variation norm. However, especially in combination
with [70, Example 3.1], it is easy to check Lemma 2.3.9 is an immediate
corollary. We continue with the main lemma of Step (II). Recall Kt, (sk)k⩾0,
and {Lk}k⩾0 from Definition 2.3.6 and εk from Lemma 2.3.7.



2.3 upper bound on the weighted distance 43

Lemma 2.3.10 (Lower bound on the number of α-connectors). Consider FPA
or VPA under the same conditions as Proposition 2.3.4. Let α ∈ [1/2, 1). There
exists constant c2.3.10 > 0, c ′ > 0, such that for an arbitrary set {π0, ...,πKt−1},
where πk ∈ Lk, and s0, t sufficiently large

P

( ⋃
k∈[Kt]

{
|Ak(πk−1)| ⩽ c2.3.10s

εk−1/2
k−1

})
⩽ 2 exp

(
−
c2.3.10

4
sc
′
0

)
=: δ

(s0)
2.3.10. (2.3.19)

Proof. First, we show a stochastic domination argument of GVPA to VPA.
Afterwards, we prove the existence of a binomial random variable A that
is dominated by |Ak(πk−1)|. Lastly, we apply Chernoff’s bound to A and
show that the result follows.

In order to apply Lemma 2.3.9, f(x) must be an affine function for large
x. Recall γf from (1.2.5) and assume f is non-affine. For any γf1 ∈ (1/2,γf),
there are x0 ∈N, η ∈ R, such that

f(x) ⩾ f1(x) :=

{
f(x) x ⩽ x0

γf1x+ η x > x0,

which is concave and affine for x > x0. Hence, the model GVPA(f1) is
well-defined and is stochastically dominated by GVPA(f). Assume that
s0 > x0 so that we can apply Lemma 2.3.9 on GVPA(f1). As γf1 can be
chosen arbitrarily close to γf, we can choose it such that the power-law
exponent τf1 is close to τf, in particular so that the inequality

1− εG/2

1− εG
⩾
τf1 − 2

τ− 2
(2.3.20)

holds with εG from (2.3.15). Assume that s0 > x0, and write εk ≡ εG for
the model GVPA. Define

τ ′ :=

{
τ for FPA, VPA,

τf1 for GVPA.

Let πk−1 ∈ Lk−1 for some k ∈ [Kt]. By Lemma 2.3.8, the probability
that y ∈ [t]\[αt] is an α-connector of (πk−1,Lk) is at least pαt(πk−1,Lk),
independently of other vertices in [t]\[αt], see (2.3.18). Since there are
in total (1− α)t possible α-connectors, the random variable |Ak(πk−1)|

stochastically dominates a binomial random variable, i.e.,

|Ak(πk−1)| ≽ Bin ((1−α)t,pαt(πk−1,Lk)) =: Ak. (2.3.21)
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Here, the notation ≽ is used for stochastic domination. Conditioning on
DLk(αt) yields by Lemma 2.3.9 for τ ′,

E[Ak]⩾E
[
Ak |DLk(αt)⩾c2.3.9αts

2−τ ′

k

]
P
(
DLk(αt)⩾ c2.3.9αts

2−τ ′

k

)
,

where the latter factor equals 1− o(t−1). Since πk−1 ∈ Lk−1 and thus
Dαt(πk−1) ⩾ sk−1 by the construction of Lk−1 in Definition 2.3.6, we
substitute the value of pαt(πk−1,Lk) in (2.3.18) to bound the expectation
of the binomial random variable Ak further to obtain

E[Ak] ⩾ (1−α)t
η2.3.8c2.3.9αts

2−τ ′

k sk−1

(αt)2
(
1− o(t−1)

)
⩾ 2c2.3.10s

2−τ ′

k sk−1

⩾ 2c2.3.10s
1−(2−τ ′)

(
1−εk−1
τ−2

)
k−1 ⩾ 2c2.3.10s

εk−1/2
k−1 (2.3.22)

for some constant c2.3.10 ∈ (0, (1− α)c2.3.9η2.3.8/(2α)) if t is sufficiently
large, by the recursive definition of sk in (2.3.9). The last inequality is a
consequence of (2.3.20). Next we apply Chernoff’s bound, see e.g. [186], in
the following form: for ψk > 0,

P(Ak ⩽ (1−ψk)E[Ak]) ⩽ exp
(
−ψ2kE[Ak]/2

)
.

Choosing ψk = (1− c2.3.10s
εk−1/2
k−1 /E[Ak]), yields by (2.3.22) that ψk ⩾ 1/2.

Hence, we can bound ψ2kE[Ak] ⩾ c2.3.10s
εk−1/2
k−1 /2, so that

P
(
Ak ⩽ c2.3.10s

εk−1/2
k−1

)
⩽ exp

(
−c2.3.10s

εk−1/2
k−1 /4

)
.

Applying a union bound over k ∈ [Kt] and switching back to the dominat-
ing random variable |Ak(πk−1)| as in (2.3.21) results in

P
( ⋃
k∈[Kt]

{
|Ak(πk−1)| ⩽ c2.3.10s

εk−1/2
k−1

})
⩽

∑
k∈[Kt]

exp
(
−c2.3.10s

εk−1/2
k−1 /4

)
.

(2.3.23)

Because εk is a constant for GVPA, the asserted bound in (2.3.19) follows
immediately for s0 sufficiently large. For FPA and VPA, it remains to
bound the sum on the rhs. We apply the lower bound on sk from (2.3.14)
and observe that (τ− 2)−k grows much faster than (k+ 2)2, so

s
εk−1/2
k−1 ⩾ sc2.3.7(τ−2)

−k(k+2)−2

0 ⩾ sc
′ck
0 ,
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for some c, c ′ > 0, whence the asserted bound (2.3.19) follows for all
sufficiently large s0.

The above lemma ensures that there are many α-connectors. However, we
still need to bound the probability that the weighted distance between
πk−1 and Lk is sufficiently small, given that there are enough α-connectors,
as described in Step (III) of the outline.

Lemma 2.3.11 (Minimum of i.i.d. random variables). Let L1, ...,Ln be i.i.d.
random variables having distribution FL. Then for all ξ > 0

P
(

min
j∈[n]

Lj ⩾ F
(−1)
L

(
n−1+ξ

) ) (⋆)

⩽ e−n
ξ

,

P
(

min
j∈[n]

Lj ⩽ F
(−1)
L

(
n−1−ξ

) ) (∗)
⩽ n−ξ.

(2.3.24)

Proof. Since the random variables are i.i.d.,

P
(

min
j∈[n]

Lj ⩾ z(n)
)
= (1− FL(z(n)))

n,

We substitute z(n) = F
(−1)
L

(
n−1±ξ), so that applying (1− x)n ⩽ e−nx

yields (⋆) in (2.3.24), and applying (1− x)n ⩾ 1−nx yields (∗).

We are ready to prove Proposition 2.3.4.

Proof of Proposition 2.3.4. Consider the greedy path πgr starting from some
q ′ = q ′(s0) as defined in Definition 2.3.6. The definition of Kt in (2.3.10)
ensures that πgr ends in Innerα. By construction of πgr, its total weight
is bounded by the formula in (2.3.12). Lemma 2.3.10 ensures that with
probability at least 1 − δ(s0)2.3.10, the number of α-connectors (nk)k⩾1 in
(2.3.11) is at least

nk := c2.3.10s
c2.3.7(τ−2)

−(k−1)εk−1/2
0 .

By Lemma 2.3.7, nk ≫ 1 for all k ⩾ 0 when s0 is sufficiently large. We
bound the total weight on the greedy path using (2.3.13). Applying (⋆) in
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(2.3.24) from Lemma 2.3.11 and a union bound over k ∈ [Kt], we obtain
for some ξ > 0 and all s0 sufficiently large

P

( ⋃
k∈[Kt]

{
min
j∈[nk]

(
L
(k)
1j + L

(k)
2j

)
⩾ F(−1)L1+L2

(
n
−(1−ξ)
k

)})

⩽
∑
k∈[Kt]

exp
(
−cξ2.3.10s

ξεk−1/2
k−1

)
⩽

∑
k∈N

exp
(
−cξ2.3.10s

ξεk−1/2
k−1

)
=: δ

(s0)
(2.3.25), (2.3.25)

which can be made arbitrarily small by choosing s0 large enough, similar
to the reasoning below (2.3.23). We can choose s0 so large that the error
probabilities fulfil δ(s0)(2.3.25) + δ

(s0)
2.3.10 ⩽ δ2.3.4. As we recall the formula for

(sk)k⩾0 from (2.3.9) and the weakened upper bound on the total weight
(2.3.13), we obtain for any q ′ such thatDq ′(αt) ⩾ s0, with error probability
at most δ2.3.4,

d
(L)

t (q ′,LKt)

⩽



∑
k∈[Kt]

F
(−1)
L1+L2

(
c
−(1−ξ)
2.3.10 s

−(1−ξ)c2.3.7(τ−2)
−(k−1)(k+1)−2/2

0

)
, (FV),

∑
k∈[Kt]

F
(−1)
L1+L2

(
c
−(1−ξ)
2.3.10 s

−(1−ξ)c2.3.7((1−εG)/(τ−2))
−(k−1)εG/2

0

)
, (G),

where we annotated the lines with (FV) if it holds for FPA and VPA under
condition (2.2.3), and with (G) otherwise. We continue to do so below.
Using (2.3.14), there exists a constant c, such that

d
(L)

t (q ′,LKt)

⩽


∑
k∈[Kt]

F
(−1)
L1+L2

(
exp

(
−c log(s0)(τ− 2)−k(k+ 1)−2

))
, (FV)

∑
k∈[Kt]

F
(−1)
L1+L2

(
exp

(
−c log(s0)(1− εG)k(τ− 2)−kεG

))
, (G)

(2.3.26)

with probability at least 1− δ2.3.4 if s0 is sufficiently large. We bound the
above sums, so that the terms match the terms of Qt in (2.1.3): first we
remove the convolution, then we switch to an integral, apply a variable
transformation, and eventually switch back to a sum. The sum in (2.3.26)
is taken over F(−1)L1+L2

, while the summand in Qt is taken over F(−1)L . We
relate the two inverses for x < 0 by

FL1+L2(x) = P(L1 + L2 ⩽ x) ⩾ P (max{L1,L2} ⩽ x/2) = (FL (x/2))
2 .
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Hence, for any z > 0, it holds that F(−1)L1+L2
(z) ⩽ 2F(−1)L (

√
z). Applying this

to the rhs of (2.3.26), we obtain for a different constant c

d
(L)

t (q ′,LKt) (2.3.27)

⩽


2

∑
k∈[Kt]

F
(−1)
L

(
exp

(
−c log(s0)(τ− 2)−k(k+ 1)−2

) )
, (FV),

2
∑
k∈[Kt]

F
(−1)
L

(
exp

(
−c log(s0)(1− εG)k(τ− 2)−kεG

) )
, (G).

For technical convenience, we define a := inf{x : F
(−1)
L (x) > 0} and L ′ :=

L− a, so that for (FV)

d
(L)

t (q ′,LKt) (2.3.28)

⩽ 2aKt + 2
∑
k∈[Kt]

F
(−1)
L ′

(
exp

(
−c log(s0)(τ− 2)−k(k+ 1)−2

))
.

Observe that for monotone non-increasing functions g, g(1) <∞
⌊b⌋∑
k=⌊a⌋

g(k)
(∗)
⩾

∫b
a

g(x)dx,
∫b
a

g(x)dx
(⋆)

⩾
⌊b⌋∑

k=⌈a⌉+1

g(k). (2.3.29)

We apply (⋆) to switch in (2.3.28) from a sum to an integral. We discuss FPA
and VPA under condition (2.2.3) first. We apply the variable transformation

y

2
= x+

log log s0 + log (c) − 2 log(x+ 1)
| log (τ− 2) |

, (2.3.30)

that has a solution for all x ⩾ 1 if s0 is sufficiently large. Now the integrand
matches the summands of Qt in (2.1.3). Differentiating both sides and
rearranging terms gives an implicit formula for dx, that by (2.3.30) can be
bounded by a function that only depends on y for some C > 0, i.e.,

dx =
1

2

(
1+

2/| log (τ− 2) |

x+ 1− 2/| log (τ− 2) |

)
dy ⩽

1

2

(
1+

C

y

)
. (2.3.31)

Thus, (2.3.28) and (2.3.31) together yield

d
(L)

t (q ′,LKt)

⩽ 2aKt+
∫hτ(s0)+2Kt− 4 log(Kt+1)

| log(τ−2)|

hτ(s0)

(
1+

C

y

)
F
(−1)
L ′

(
exp
(
−(τ− 2)−y/2

))
dy.
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where hτ(s0) = 2(log log s0 + log (c))/| log (τ− 2) | and s0 is chosen so
large that (2.3.31) holds for all x,y in the integration domain. When condi-
tion (2.2.3) on L holds, there exists M > 0, such that∫hτ(s0)+2Kt

hτ(s0)

C

y
F
(−1)
L ′

(
exp

(
−(τ− 2)−y/2

))
dy < M.

We apply (∗) in (2.3.29) to switch back to a sum. As this sum contains at
most 2Kt + 1 terms, there exists a larger M, recalling that L = L ′ + a, so
that

d
(L)

t (q ′,LKt) ⩽ 2aKt +
⌊hτ(s0)+2Kt⌋∑
k=⌊hτ(s0)⌋

F
(−1)
L ′

(
exp

(
−(τ− 2)−y/2

))
+M

⩽
⌊hτ(s0)+2Kt⌋∑
k=⌊hτ(s0)⌋

F
(−1)
L

(
exp

(
−(τ− 2)−k/2

))
+M.

Application of the bound (2.3.14) on 2Kt yields the assertion (2.3.3) for
FPA and VPA under (2.2.3).

For FPA and VPA if (2.2.3) does not hold, and for the model GVPA, we
use a similar variable transformation to (2.3.31) for the integral in (2.3.28),
i.e.,

y

2

| log (τ− 2) |

log ((1− εG)/(τ− 2))
= x+

log log s0 + log (cεG)

log ((1− εG)/(τ− 2))
,

which yields combined with the second line in (2.3.27)

d
(L)

t (q ′,LKt)⩽(1+ ε2.3.4)

∫ h̃τ(s0)+ 2
1+ε2.3.4

Kt

h̃τ(s0)
F
(−1)
L

(
exp

(
−(τ− 2)−x

))
dx,

where h̃τ(s0) = 2 (log log s0 + log (cεG)) /| log (τ− 2) |. After applying the
bound (2.3.16) on Kt and switching back to a sum using (∗) from (2.3.29),
we obtain the desired bound (2.3.4).

This establishes all prerequisites. We turn to the upper bound for the
conservative case.

2.3.1 Conservative case

Proof of Proposition 2.3.1. We first show the result for FPA and VPA under
(2.2.3). At the end of this proof, we argue how to adapt the proof for GVPA
and VPA or FPA if (2.2.3) does not hold. Fix δ > 0, and let δ2.3.3 = δ2.3.4 =

δ/8, α = 1− δ/16. We can choose t sufficiently large, such that
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(i) by Proposition 2.3.3 for s2.3.3 = s0 that we choose below in (ii), there
exists a constant C2.3.3 = C2.3.3(δ, s0), such that for q ∈ {u, v} there is
a vertex q ′ ∈ [αt] with degree at least s0 within graph distance C2.3.3

with probability at least 1− δ/8.

(ii) by Proposition 2.3.4 there is an s0 = s0(δ, ε2.3.4) > 0, such that for
q ′ ∈ [αt] with Dαt(q ′) ⩾ s0, the weighted distance to the inner core
is not too large. As the terms in the sum in (2.3.3) are decreasing, we
shift the summation bounds to match the bounds from Qt in (2.1.3),
so that

P
(
d

(L)

t (q ′, Innerα) ⩾M2.3.4 +Qt

)
⩽
δ

8
. (2.3.32)

(iii) by Proposition 2.3.5 for δ2.3.5 = δ/8, the graph distance between
w1,w2 ∈ Innerα is smaller than C2.3.5 with probability at least 1− δ/8.

(iv) for (Lj)j⩾0 i.i.d. copies of L, the sum of constantly many weights is
negligible compared to the diverging sequence Qt defined in (2.1.3),
i.e., there exists M ′ > 0 such that

P

( ∑
j∈[2C2.3.3+C2.3.5]

Lj ⩾M
′
)
⩽
δ

8
. (2.3.33)

Conditionally on the intersection of the complements of the events in
(2.3.32) and (i) for q ∈ {u, v}, we can construct greedy paths from u and v
to the inner core. Hence,

P

( ⋃
q∈{u,v}

{
d

(L)

t (q, Innerα) ⩾ Qt +M2.3.4 +
∑

j∈[C2.3.3]

L
(q)
j

}∣∣∣u, v < αt
)
⩽
3δ

4
,

(2.3.34)
where the sum between brackets in (2.3.34) represents the weighted dis-
tance from q to some vertex with degree at least s0. By (iii), we can bound
the distance between two vertices in the inner core, and thus we have
constructed a path from u to v. Hence, by a union bound over the events
in (iii) and (2.3.34), we can bound the total weight on this path, i.e.,

P

(
d

(L)

t (u, v) ⩾ 2Qt +
∑

j∈[2C2.3.3+C2.3.5]

Lj

∣∣∣ u, v < αt
)
⩽
7δ

8
. (2.3.35)

Combining (2.3.33) with (2.3.35) yields by our choice of α = 1− δ/16 that

P
(
d

(L)

t (u, v) ⩾ 2Qt + 2M2.3.4 +M
′) ⩽ δ, (2.3.36)
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finishing the proof for FPA and VPA under (2.2.3). For the more general
case, only (2.3.32) does not hold, which can be replaced by

P
(
d

(L)

t (q ′, Innerα) ⩾ (1+ ε2.3.4)Qt

)
⩽
δ

8
.

Propagating the rhs between brackets through (2.3.34) and (2.3.36) yields
the result for GVPA.

2.3.2 Explosive case

Similarly to the conservative case we create a path from u to v and use
the total weight on the path as an upper bound for the weighted distance.
Again, by applying Propositions 2.3.3, 2.3.4, and 2.3.5, this path goes from
q ∈ {u, v} to a vertex q ′ with degree at least s0, after which we connect
this vertex to the inner core. The total weight on the segments to the
inner core can be made arbitrarily small for large t and s0. However, it is
not straightforward to see that the weight on the first parts of the paths
converge to the explosion times of two LWLs, as we increase the degree
s0. We start by showing that the explosion time of the LWL is finite, for
which we use Propositions 2.3.3 and 2.3.4. Recall the formal statement of
Theorem 2.2.9.

Proof of Theorem 2.2.9. Fix δ > 0. Recall Kt from (2.3.10) and C2.3.3 for
δ2.3.3 = δ/4 from Proposition 2.3.3. Let a(t) := min{κ(t), 2Kt + C2.3.3},
where κ(t) denotes the maximum number of generations in the LWL to
maintain a coupling with PAt with probability at least 1− δ/4, from (2.2.1).
As κ(t) and Kt tend to infinity with t, the same holds for a(t). Denote the
first k generations of the LWL rooted in ⊚ by LWLk(⊚). Define

Xt := d
(L)

t

(
q(t),∂B(G)

t (q(t), 2Kt +C2.3.3)
)

,

Yt := d
(L)

t

(
q(t),∂B(G)

t (q(t),a(t))
)
1{coupling succesful}

= βLWLa(t)(q(t)),a(t)1{coupling succesful}.

Observe that Xt can be viewed as an upper bound of the weighted distance
to Innerα. By the choice of a(t), Xt stochastically dominates Yt, i.e., P(Yt ⩽
Xt) = 1. Consider the subsequence of times, defined recursively as

ti :=

{
1, i = 0,

min{t : a(t) > a(ti−1) and K∗t > K
∗
ti−1

}, i > 0.
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By construction of Yt and (ti)i⩾0,

P(βLWL,∞ ⩽ y) = lim
i→∞ P(Yti ⩽ y).

Since Xti dominates Yti ,

P(βLWL,∞ = ∞) = lim
M→∞ P(βLWL,∞ ⩾M)

= lim
M→∞ lim

i→∞ P(Yti ⩾M)

⩽ lim
M→∞ lim

i→∞ P(Xti ⩾M). (2.3.37)

Below we find a bound on P(Xti ⩾ M) that does not depend on t or i
to obtain the result. Recall Qt from (2.1.3) and define Q∞ := limt→∞Qt,
which is finite since I1(L) < ∞. By a union bound on the events in
Proposition 2.3.3 and Proposition 2.3.4, for any δ, ε > 0, if i is sufficiently
large,

P

(
Xti ⩾ (1+ ε)Qti +

∑
j∈[C2.3.3]

Lj

)
⩽
δ

2
.

Note that (1+ ε)Qti ⩽ (1+ ε)Q∞. Choose M ′ = M ′(δ) so that M ′/2 ⩾
(1+ε)Q∞ and

∑
j∈[C2.3.3]

Lj ⩾M ′/2with probability at most δ/2, similarly
to (2.3.33). Hence,

lim
i→∞ P(Xti ⩾M

′) ⩽ δ.

Recall (2.3.37) to obtain P(βLWL,∞ = ∞) ⩽ δ. Since δ > 0 was arbitrary,
βLWL,∞ <∞ almost surely.

Recall the definitions of the graph neighbourhoods in Definition 2.2.1
and the explosion time in Definition 2.2.2. Using the finiteness of the
explosion time, we bound the weight on a path to a vertex with degree at
least s0. To do so, we need the following general lemma.

Lemma 2.3.12 (Reaching a high-degree vertex in an explosive tree). Con-
sider a (possibly random) locally finite tree T , rooted in ⊚, where every edge is
equipped with an i.i.d. edge-weight from distribution L, where FL(0) = 0, such
that T is explosive. Write D(x) for the degree of vertex x. Fix δ2.3.12 > 0. For
any s ∈N, there exists N = N(δ2.3.12, s) <∞ such that

P
(
B

(L)

T (⊚,σT ,N)∩ {x ∈ T : D(x) ⩾ s} ̸= ∅
)
⩾ 1− δ2.3.12. (2.3.38)

Proof. The event in (2.3.38) means that among the N closest vertices to ⊚,
there is a vertex with degree at least s. We argue by contradiction. If the
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tree T is explosive and the vertices contained in
⋃
n∈N B

(L)

T (⊚,σT ,n) would
all have degree at most s, then the forest restricted to vertices in T with
degree at most s is also explosive. This forest consists of trees with at most
exponentially growing generation sizes. Hence, [166, Lemma 4.3] applies
and explosion is impossible, i.e.,

P

( ⋂
n⩾1

{
B

(L)

T (⊚,σT ,n)∩ {x ∈ T : D(x) ⩾ s} = ∅
})

= 0.

Since
⋃
n∈[N]B

(L)

T

(
⊚,σTn

)
=B

(L)

T

(
⊚,σTN

)
by definition, we obtain the result,

i.e.,

lim
N→∞P

({
B

(L)

T (⊚,σT ,N)∩ {x ∈ T : D(x) ⩾ s} ̸= ∅
})

= lim
N→∞ P

( ⋃
n∈[N]

{
B

(L)

T (⊚,σT ,n)∩ {x ∈ T : D(x) ⩾ s} ̸= ∅
})

= 1,

hence, the lhs will have probability at least 1− δ2.3.12 for a sufficiently
large N.

In the next lemma, we exploit the coupling to LWL to find a vertex with
sufficiently high degree. This lemma can be viewed as an extension of
Proposition 2.3.3.

Lemma 2.3.13 (Weighted distance to a vertex with degree at least s).
Consider PA under the same conditions as Theorem 2.2.10 at time t. Let q be a
typical vertex. For any δ2.3.13, s0 > 0, there exists N2.3.13 ∈N, such that when
t is sufficiently large

P

(
B

(L)

t (q,σt,N2.3.13)∩ {x ∈ [t] : Dt(x) ⩾ s0} = ∅
)
⩽ δ2.3.13.

Proof. From Lemma 2.3.12 for δ2.3.12 = δ/2, we obtain that in the limiting
object LWL(⊚) for a root ⊚, there is an N such that a vertex of degree
at least s0 is reached before time σN with probability at least 1− δ/2. By
Theorem 2.2.9 the LWL is explosive. By applying Proposition 2.2.4, we can
assume t is so large that we can maintain a coupling between with proba-
bility at least 1− δ/2 up to graph distance N, so B̃

(G)

t (q,N) ≃ LWLN(⊚).
As the N-th closest vertex in L-distance is within the G-neighbourhood of
size N, we obtain the result.

We are now ready to prove the upper bound for the explosive case.
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Proof of Proposition 2.3.2. Let s0 be the constant we obtain from Proposition
2.3.4 when setting δ2.3.4 = δ/8, α2.3.4 = 1− δ/16 and ε2.3.4 = ε/3, such
that the sum in (2.3.3) is smaller than ε/6. Abbreviate t ′ := ⌊αt⌋. Observe
that

P
(
{u /∈ [t ′]}∪ {v /∈ [t ′]}

)
⩽ δ/8. (2.3.39)

We call the above event between brackets E1. Recall σn from (2.2.2). Let
for q ∈ {u, v}

N∗(q) = min{n : ∃x ∈ B
(L)

t ′ (q,σt ′,n) : Dt ′(x) ⩾ s0}.

Let u ′ be the vertex in B
(L)

t ′

(
u,σt ′,N∗(u)

)
that has degree at least s0, and v ′

analogously. The key observation is that, conditionally on Ec1, we can use
a sprinkling argument and look at the graph at two moments in time, i.e.,

d
(L)

t (u, v) ⩽ d(L)

t ′ (u,u ′) + d(L)

t ′ (v, v
′) + d(L)

t (u ′, v ′).

The above is true, since for fixed vertices the weighted distance between
them is non-increasing in time. Conditionally on the event Ec1, u and v are
uniform vertices in [t ′], so that we can still apply Lemma 2.3.13 for s0 and
δ2.3.13 = δ/8, i.e., for t sufficiently large and some N2.3.13 = N2.3.13(δ, s0),

P

( ⋃
q∈{u,v}

{N∗(q) ⩾ N2.3.13}

)
⩽
δ

4
. (2.3.40)

We call the above event between the P-sign E2. By the choice of u ′ and v ′,
we obtain that

P
(
d

(L)

t (u, v) ⩽ σ(t
′)

N2.3.13
(u) + σ

(t ′)
N2.3.13

(v) + d(L)

t (u ′, v ′) | Ec1 ∩ Ec2
)
= 1.

Assume t ′ is so large that we can maintain a coupling with LWL with
probability at least 1− δ/8 for q ∈ {u, v} up to generation N2.3.13, possible
by Propositions 2.2.4. If the coupling is successful, then for q ∈ {u, v} we
have σt ′,N2.3.13(q) ⩽ βLWL(q),N2.3.13

, where the two random variables are
independent copies of βLWL,N2.3.13 . Thus, combining the coupling error
and the error probabilities on E1 and E2 in (2.3.39) and (2.3.40),

P
(
d

(L)

t (u, v) ⩽ βLWL(u),N2.3.13
+βLWL(v),N2.3.13

+ d(L)

t (u ′, v ′)
)
⩾ 1− 5δ/8,

(2.3.41)
where P denotes the probability measure on the coupled probability space.
Recall (2.3.1), we observe that we are left with proving

P
(
d

(L)

t (u ′, v ′) ⩾ ε
)
⩽ 3δ/8. (2.3.42)
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By our choice of δ2.3.4 = δ/8 and ε2.3.4 = ε/3 above, we obtain by Proposi-
tion 2.3.4

P

( ⋃
q ′∈{u ′,v ′}

{
d

(L)

t (q ′, Innerα) ⩾ ε/3
})
⩽ δ/4. (2.3.43)

It is important to note that although u ′ and v ′ are special vertices at
time αt, (2.3.43) holds independently of N2.3.13, as the path to inner core,
constructed in the proof of Proposition 2.3.4, uses only edges that arrived
after αt. To apply Proposition 2.3.5, we let δ2.3.5 = δ/8 and ε2.3.5 = ε/3.
By a union bound over the events in Propositions 2.3.4 and 2.3.5 there is
a path from u ′ to v ′ of weight at most ε/3, yielding (2.3.42). Combining
(2.3.41) and (2.3.42) yields the desired bound (2.3.1).

2.4 lower bound on the weighted distance

The next propositions state the lower bounds for Theorem 2.2.5 and 2.2.10,
which are the counterparts of Propositions 2.3.1 and 2.3.2. The lower
bound of Theorem 2.2.8 which follows from the same proof techniques, is
postponed to Section 2.6.

Proposition 2.4.1 (Lower bound on the weighted distance, conservative
case). Consider PA under the same conditions as Theorem 2.2.5. Recall I1(L) =∞. Let u, v be two typical vertices. Then for every δ, ε > 0, if t is sufficiently
large,

P
(
d

(L)

t (u, v) ⩾ (1− ε)2Qt
)
⩾ 1− δ. (2.4.1)

Moreover, for the models FPA and VPA from Definition 1.2.4 and 1.2.5, there
exists a constant M2.4.1 =M2.4.1(δ) such that for t sufficiently large

P
(
d

(L)

t (u, v) ⩾ 2Qt − 2M2.4.1
)
⩾ 1− δ. (2.4.2)

Proposition 2.4.1 gives a tight lower bound on the weighted distance for
any distribution, i.e., it does not depend on the tightness condition (2.2.3).
Thus, only the upper bound in (2.3.1) needs be improved to prove (2.2.2)
regardless of (2.2.3).

We proceed to the main proposition for the explosive edge-weight
distributions.

Proposition 2.4.2 (Lower bound on the weighted distance, explosive case).
Consider PA under the same conditions as Theorem 2.2.10. Recall I1(L) < ∞.
Let u, v be two typical vertices. Then, there is a coupled probability space, such
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that for any δ > 0, there exists some function a(t) that tends to infinity with t,
such that

P

(
d

(L)

t (u, v) ⩾ β
LWL(u)

a(t)
,a(t)

+β
LWL(v)

a(t)
,a(t)

)
⩾ 1− δ,

where β
LWL(u)

a(t)
,a(t)

and β
LWL(u)

a(t)
,a(t)

are the times to reach graph distance a(t)

in the LWLs coupled to u, v, respectively.

As the proofs of the propositions are partly based on the same principles,
we outline the proofs simultaneously, after which we prove the required
lemmas, and then give a separate proof for the above propositions. For
notational convenience, we only outline the models FPA and VPA.

Outline of the proofs

Let u, v be two typical vertices. Recall K∗t from (2.1.3). From [69, Theorem
2] it follows that any path connecting u and v has whp at least 2K∗t −M

′
t

edges with probability close to 1, for some function M ′t = o(K
∗
t). The idea

of the proof of Proposition 2.4.1 is to show that any path starting from u

or v that has K∗t −M
′
t edges, has total weight at least Qt −M2.4.1, or total

weight at least βLWL,a(t), for some function a(t) that tends to infinity, for
the conservative and explosive case respectively. The main steps that make
this succeed, which we formalize further below, are as follows, where (I-III)
apply for the conservative case, while the explosive case follows from (I).

(I) We use results from [69, 81] to conclude that the neighbourhoods
B

(G)

t (u,k), B(G)

t (v,k) are disjoint whp for k < K∗t −M
′
t. These neigh-

bourhoods up to graph distance a(t) are coupled to two independent
LWLs, from which the lower bound for the explosive case will follow.

(II) We show that ∂B(G)

t (u,k) has whp at most exp
(
B(τ− 2)−k/2

)
vertices,

for B sufficiently large and k < K∗t −M
′
t, by counting the number of

paths of length k starting from q ∈ {u, v}. The number of such paths
is an upper bound for the number of vertices in ∂B(G)

t (q,k).

(III) From (I) it follows that d(L)

t (u, v) is at least the weighted distance
from u to ∂B(G)

t (u,K∗t −M
′
t) plus the weighted distance from v to
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∂B
(G)

t (v,K∗t −M
′
t). Along the same reasoning as shown by Adriaans

and Komjáthy [2, Lower bound (2.11)], we obtain the lower bound

d
(L)

t (u, v) ⩾ d(L)

t

(
u,∂B(t)

G (u,K∗t −M
′
t)
)

+ d(L)

t

(
v,∂B(t)

G (v,K∗t −M
′
t)
)

⩾
∑

q∈{u,v}

⌊K∗t−M ′
t⌋−1∑

i=0

min
x∈∂B(G)

t (q,i),y∈∂B(t)
G (q,i+1)

L(x,y). (2.4.3)

The weight L(x,y) is the weight attached to the edge (x,y) in the graph
if it is present. Otherwise, it is a new i.i.d. copy of L. Note that this is
a valid lower bound, as the minimum is non-increasing when adding
more edges. Using the bounds established in (II), we show that this
sum of minima is at least 2Qt − 2M2.4.1.

Before proving Proposition 2.4.1 and 2.4.2, we formally introduce the
lemmas and proposition that correspond to Step (I-III). We start with a
proposition from [69] that implies the first part of (I).

Proposition 2.4.3 (Typical graph distance [69, Theorem 2]). Consider PA
with power-law exponent τ ∈ (2, 3). Let u, v be two typical vertices. For any
δ2.4.3 > 0, there exists a function M2.4.3(t) such that if t is sufficiently large,
then

P
({
d

(G)

t (u, v) > 2K∗t − 2M2.4.3(t)
})
⩾ 1− δ2.4.3, (2.4.4)

where the function M2.4.3(t) is of order O(1) for the models FPA and VPA, and
o(K∗t) for the model GVPA. We denote the above event between brackets by E

(t)
2.4.3.

Indeed, as a result of Proposition 2.4.3, on the event E(t)
2.4.3,

B
(G)

t (u,k)∩B(G)

t (v,k) = ∅ for k ⩽ K∗t −M2.4.3(t),

establishing (I). We continue with the lemmas implying (II) and (III) from
the outline and prove the conservative case first. We make use of some
results from Dereich, Mönch, and Mörters [69, Theorem 2] where they
prove lower bounds on graph distances for random graphs. They work
under the following general condition and prove that it holds for FPA and
GVPA.
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Proposition 2.4.4 (PA(γ) [69, Proposition 3.1, 3.2]). We say that PA satisfies
the condition PA(γ2.4.4) for some γ2.4.4 ∈ (0, 1), if there exists a constant
ν2.4.4 > 0, such that for all t and pairwise distinct vertices v0, ..., vl ∈ [t]

P(v0 ↔ v1 ↔ v2 ↔ · · · ↔ vℓ) ⩽
ℓ∏
k=1

p(vk−1, vk) =: p(v0, ..., vℓ) (2.4.5)

where p(m,n) := ν2.4.4(m∧ n)−γ2.4.4(m∨ n)γ2.4.4−1 . The above condition is
satisfied for FPA or VPA, with γ2.4.4 = 1/(τ − 1); and for GVPA for any
γ2.4.4 > γf.

Step (II) in the outline follows from the next lemma.

Lemma 2.4.5 (Small probability of too large neighbourhoods). Consider
PA under the same conditions as Proposition 2.4.1, that satisfies Proposition
2.4.4 for some γ2.4.4 ∈ (1/2, 1). Let q be a typical vertex. There exist a constant
B2.4.5 = B2.4.5(γ2.4.4,ν2.4.4) > 0, such that for any δ2.4.5 > 0, there exists a
sequence of events E(t)

2.4.5(q), such that for all t sufficiently large

P
(
E
(t)
2.4.5(q)

)
⩾ 1− δ2.4.5, (2.4.6)

and for any B > B2.4.5, γ ∈ [γ2.4.4, 1) and M2.4.3(t) from Lemma 2.4.3 with
parameter δ2.4.3 = δ2.4.5,

P

( ⋂
k∈[K∗t−M2.4.3(t)]

{
|∂B

(G)

t (q,k)|⩽ exp
(
2B (γ/(1− γ))k/2

)} ∣∣∣∣ E(t)
2.4.5(q)

)
⩾ 1− 2 exp(−B). (2.4.7)

Proof. For notational convenience we abbreviate γ = γ2.4.4 and Aγ =

γ/(1 − γ). We use a path counting technique similar to [69, Theorem
2], see also [46, Proposition 4.9]. Consider paths π = (π0,π1, . . . ,πK)
of length K < K∗t −M2.4.3(t), such that π0 = q,πK = w, and where
K ⩽ K∗t −M2.4.3(t). For a non-increasing sequence (ℓk)⩾0, we call a path
π good if πk ⩾ ℓk for all k ⩽ K, and bad otherwise. Let δ ′ := δ2.4.5/3,
ℓ0 := ⌈δ ′t⌉. We define for a vertex q ∈ [t] the event

Ebad(q) := {q < ℓ0}∪
{∃ bad path of length K from q,

for some K ⩽ K∗t −M2.4.3(t)

}
. (2.4.8)

The event {q < ℓ0} occurs with probability at most δ ′ + 1/t. The second
event in the union of (2.4.8) occurs with probability at most δ ′, which
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follows from [69, first inequality after (18)] for a given choice of ℓk that we
also use here, see (2.4.14) below. Hence, for a vertex q chosen uniformly at
random from [t]

P(Ebad(q)) ⩽ 2δ
′ + 1/t ⩽ δ2.4.5,

when t ⩾ 3/δ2.4.5. Let E(t)
2.4.5(q) := (Ebad(q))

c . The key element is to prove
that for B large enough

E[|∂B(G)

t (q,k)| | E(t)
2.4.5(q)] ⩽ exp

(
BA

k/2
γ

)
. (2.4.9)

Indeed, once we have shown that (2.4.9) holds, applying Markov’s inequal-
ity yields

P
(
|∂B

(G)

t (q,k)| ⩾ exp
(
2BA

k/2
γ

)
| E

(t)
2.4.5(q)

)
⩽ E[|∂B(G)

t (q,k)| | E(t)
2.4.5(q)] exp

(
− 2BA

k/2
γ

)
⩽ exp

(
−BA

k/2
γ

)
. (2.4.10)

Given (2.4.9), applying a union bound on (2.4.10) leads to the result in
(2.4.7):

P

( K⋃
k=1

{
|∂B

(G)

t (q,k)| ⩾ exp
(
2BA

k/2
γ

)
| E

(t)
2.4.5(q)

})
⩽

∑
k∈[K]

exp
(
−BA

k/2
γ

)
⩽ 2 exp(−B).

We are left with proving (2.4.9). We use the number of paths to ∂B(G)

t (q,k)
as an upper bound for the number of vertices in ∂B

(G)

t (q,k). For k ⩽
K∗t −M2.4.3(t), conditionally on E

(t)
2.4.5, there are only good paths of length

k emanating from q. Let Π(g)
k,t(q) be the set of such paths. Recall Proposition

2.4.4, and observe that we can bound

E[|∂B(G)

t (q,k)| | E(t)
2.4.5(q)] ⩽ E

[∣∣∣Π(g)
k,t(q)

∣∣∣ | E(t)
2.4.5(q)

]
⩽

1

1− δ2.4.5
E
[∣∣∣Π(g)(q)

k,t

∣∣∣] .

We can bound E[|Π
(g)(q)
k,t |] using (2.4.5), with p defined in (2.4.5), as

E
[∣∣∣Π(g)(q)

k,t

∣∣∣] ⩽ t∑
w=⌈ℓk⌉

t∑
π1=ℓ1

· · ·
t∑

πk−1=ℓk−1

p(q,π1, ...,πk−1,w)

=:

t∑
w=⌈ℓk⌉

fk,t(q,w).
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Intuitively, when w ⩾ ℓk, fk,t(q,w) is an upper bound for the expected
number of good paths from q to w of length k. From [69, Section 4.1] it
follows that for q ⩾ ℓ0 there is a majorant of the form

fk,t(q,w) ⩽ αkw−γ + 1{w>ℓk−1}βkw
γ−1, (2.4.11)

where the sequences αk,βk, ℓk are defined recursively as

αk :=

{
ν2.4.4(δ

′t)γ−1 if k = 1,

c
(
αk−1 log(t/ℓk−1) +βk−1t2γ−1

)
if k > 1,

(2.4.12)

βk :=

{
ν2.4.4(δ

′t)−γ if k = 1,

c(αk−1ℓ
1−2γ
k−1 +βk−1 log(t/ℓk−1)) if k > 1,

(2.4.13)

ℓk :=


⌈δ ′t⌉ if k = 0,

arg max
x∈N\{0,1}

{
1

1− γ
αkx

1−γ ⩽
6δ ′

π2k2

}
if k > 0,

(2.4.14)

with a constant c = c(γ,ν2.4.4) > 1 chosen in [69, Lemma 1]. Recall
γ ∈ (1/2, 1). Using the above definitions and majorant in (2.4.11), we
return to the bound (2.4.5), and see

E
[∣∣∣Π(g)(q)

k,t

∣∣∣] ⩽ t∑
w=ℓk

(
αkw

−γ + 1{w>ℓk−1}βkw
γ−1

)
(2.4.15)

= αk

(
ℓ
−γ
k +

t∑
w=ℓk+1

w−γ
)
+βk

t∑
w=ℓk−1+1

wγ−1.

Observe that for a,b > 0, µ ∈ (0, 1)

b∑
w=a+1

w−µ ⩽
∫b
a

w−µdw ⩽
b1−µ

1− µ
,

so that we can bound (2.4.15) from above by

E
[∣∣∣Π(g)(q)

k,t

∣∣∣] ⩽ αkℓ−γk +
αkℓ

1−γ
k

1− γ
(t/ℓk)

1−γ +
βk
γ
tγ

=: T1 + T2 + T3. (2.4.16)

As a result of (2.4.14), we obtain for the first term, since ℓk ⩾ 1,

T1 = αkℓ
−γ
k ⩽

6δ ′

π2k2
(1− γ)ℓ−1k ⩽

3δ ′

π2k2
(1− γ) ⩽ δ ′. (2.4.17)
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To bound T2 and T3, we use a claim from [69, Theorem 2, (19)] that the
sequence t/ℓk does not increase too fast, i.e., there exists B∗(γ,ν2.4.4) such
that for t sufficiently large

t/ℓk ⩽ exp
(
BA

k/2
γ

)
(2.4.18)

for any B ⩾ B∗(γ,ν2.4.4). Consider T2, and substitute the bounds from
(2.4.14) and (2.4.18)

αkℓ
1−γ
k

1− γ
(t/ℓk)

1−γ ⩽
6δ ′

π2k2
exp

(
B(1− γ)A

k/2
γ

)
⩽ δ ′ exp

(
BA

k/2
γ

)
.

(2.4.19)

For T3, we substitute (2.4.13) for βk to obtain

T3 =
1

γ
βkt

γ =
c

γ
αk−1(t/ℓk−1)

γℓ
1−γ
k−1 +

c

γ
βk−1t

γ log(t/ℓk−1)

=: T31 + T32. (2.4.20)

We use (2.4.14) and (2.4.18) to bound

T31 =
c

γ
(t/ℓk−1)

γαk−1ℓ
1−γ
k−1 ⩽

6cδ ′(1− γ)

γπ2(k− 1)2
exp

(
BγA

(k−1)/2
γ

)
⩽
cδ ′

γ
exp

(
BA

k/2
γ

)
. (2.4.21)

Observe that by (2.4.12), βk−1 ⩽ t1−2γαk/c. Hence, the second term in
(2.4.20) is bounded by

T32 =
c

γ
βk−1t

γ log(t/ℓk−1) ⩽
1

γ
t1−γαk log(t/ℓk−1).

By (2.4.14), if δ ′ < π2/6, then αk ⩽ (1/ℓk)
1−γ. After substituting (2.4.18)

for B sufficiently large

T32 ⩽
1

γ
(t/ℓk)

1−γ log(t/ℓk−1) ⩽
B

γ
A

(k−1)/2
γ exp

(
B(1− γ)A

k/2
γ

)
.

As the first factor grows exponentially in k, by increasing B, we obtain
T32 ⩽ exp

(
BA

k/2
γ

)
. Combining this with (2.4.16), (2.4.17), (2.4.19), (2.4.20),

and (2.4.21) gives us that there exists a constant B2.4.5 > B
∗(γ,ν2.4.4) > 0

such that for B ⩾ B2.4.5 we obtain the desired bound (2.4.9).
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We are ready to prove the lower bound of the conservative case.

Proof of Proposition 2.4.1. We recall E(t)
2.4.3 and E

(t)
2.4.5(q) and their error prob-

abilities δ2.4.3, δ2.4.5 in (2.4.4), (2.4.6). First we introduce some notation to
work with the models FPA, VPA, and GVPA simultaneously. Eventually
we dinstinguish GVPA vs. FPA and VPA again. Recall ε from the statement
of Proposition 2.4.1. Observe that if t is sufficiently large, by Proposition
2.4.3,

P
(
d

(G)

t (u, v) ⩾ 2(1− ε/2)K∗t
)
⩾ 1− δ2.4.3.

In order to apply Lemma 2.4.5, relying on Proposition 2.4.4, for GVPA we
set γ2.4.4 as the solution of

log (γ2.4.4/(1− γ2.4.4))

| log (τ− 2) |
=

1

1− ε/2
, (2.4.22)

so that indeed γ2.4.4 > 1/(τ− 1) as required for Proposition 2.4.4. For FPA
and VPA, we set γ2.4.4 = 1/(τ− 1), where τ is the power-law exponent of
the considered model, as defined in Definition 1.2.4 and Definition 1.2.5.
To avoid double notation, we define

K ′t :=

{
⌊(1− ε/2)K∗t⌋, for GVPA(f),

K∗t −M2.4.3(t), for FPA and VPA.
(2.4.23)

Apply Proposition 2.4.3 and Lemma 2.4.5 for δ2.4.3 = δ2.4.5 = δ/6 so that
with probability at least 1− δ/6 the neighbourhoods are disjoint and not
too large for k < K ′t. Assume that t is so large that

P
(
E
(t)
2.4.3 ∩ E

(t)
2.4.5(u)∩ E

(t)
2.4.5(v)

)
⩾ 1− δ/2, (2.4.24)

by a union bound on the complements of the events between brackets.
Throughout the remainder of this proof, we write A = γ2.4.4/(1− γ2.4.4)

and condition on the above event between brackets. On this event, the
bound in (2.4.3) holds. We now bound the minimal weights in (2.4.3).
Assume B > B2.4.5. By (2.4.7) in Lemma 2.4.5, for q ∈ {u, v}, between
∂B

(G)

t (q,k) and ∂B(G)

t (q,k+ 1) there are at most

|∂B
(G)

t (q,k)| · |∂B(G)

t (q,k+ 1)| ⩽ exp
(
2B
(
1+
√
A
)
Ak/2

)
=: nk
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edges with cumulative error probability (over k) at most 2 exp(−B) =: δ
(1)
B .

By (∗) in (2.3.24),

P

( ⋃
k∈[K ′t

{
min
j∈[nk]

Lj,k ⩽F
(−1)
L

(
n−1−ξ
k

)})

⩽
∑
k∈[K ′t]

exp
(
− 2Bξ

(
1+
√
A
)
Ak/2

)
⩽ 2 exp

(
− 2Bξ

(
1+
√
A
))

=: δ
(2)
B , (2.4.25)

following from a union bound over k ∈ [K ′t]. Combining (2.4.3) and (2.4.25)
gives for q ∈ {u, v}

P

(
d

(L)

t (q,∂B(G)

t (q,K ′t))⩽
∑
k∈[K ′t]

F
(−1)
L

(
exp

(
− 2B(1+ξ)

(
1+
√
A
)
Ak/2

)))
⩽ δ(1)B + δ

(2)
B , (2.4.26)

when B > B2.4.5. In particular, we choose B so that δ(1)B + δ(2)B ⩽ δ/4. Recall
(2.4.24) and the reasoning before (2.4.3), so that by the law of conditional
probability and a union bound for q ∈ {u, v} on the event in (2.4.26), we
obtain with probability at least 1− δ that

d
(t)
L (u, v) ⩾ 2

∑
k∈[K ′t]

F
(−1)
L

(
exp

(
− 2B(1+ ξ)

(
1+
√
A
)
Ak/2

))
=: 2SK ′t .

(2.4.27)
It remains to show that 2SK ′t is larger than the rhs between brackets in
(2.4.1) and (2.4.2) for the corresponding models. Similarly to the upper
bound, we rewrite the sum in SK ′t to match the summands in Qt in (2.1.3),
then we bound the sum from below by switching to integrals, apply a
variable transformation, and go back to sums. Applying (∗) in (2.3.29) to
SK ′t yields

SK ′t ⩾
∫K ′t
1

F
(−1)
L

(
exp

(
− 2B(1+ ξ)

(
1+
√
A
)
Ax/2

))
dx. (2.4.28)

For the models FPA and VPA, A = 1/(τ − 2), while for GVPA, A =

(1+ ε ′)/(τ− 2), for some ε ′ = ε ′(ε). After the variable transformation
2B(1+ ξ)(1+

√
A)Ax/2 = (τ− 2)−y/2 on the rhs of (2.4.28), the function

over which we integrate matches the function in the sum in Qt in (2.1.3),
i.e.,

SK ′t ⩾
1

r

∫rK ′t+s(B)
r+s(B)

F
(−1)
L

(
exp

(
− (τ− 2)−y/2

))
dy, (2.4.29)
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where s(B) := 2 log
(
2B(1+ ξ)(1+

√
A)
)
/| log (τ− 2) |, and by our choice

of γ in (2.4.22)

r :=


log(A)

| log (τ− 2) |
=

1

1− ε/2
, for the model GVPA,

1, for the models FPA, VPA.
(2.4.30)

We abbreviate ak := F
(−1)
L

(
exp(−(τ− 2)−k/2

)
. Applying (⋆) from (2.3.29)

to the rhs of (2.4.29) gives

SK ′t ⩾
1

r

⌊rK ′t+s(B)⌋∑
k=⌈r+s(B)⌉+1

ak.

For FPA and VPA, using r = 1 and K ′t in (2.4.23), we bound

SK ′t ⩾
K∗t−M2.4.3(t)+⌊s(B)⌋∑

k=⌈s(B)⌉+2

ak =: Q̃t.

Up to a shift in the boundaries, the above summands match the summands
in Qt in (2.1.3). To obtain (2.4.2), we should choose M2.4.1 such that
Qt −M2.4.1 ⩽ Q̃t, which is equivalent to

M2.4.1 ⩾ Qt − Q̃t =
K∗t∑
k=1

ak −

K∗t−M2.4.3(t)+⌊s(B)⌋∑
k=⌈s(B)⌉+2

ak

=

⌈s(B)⌉+1∑
k=1

ak +

K∗t−M2.4.3(t)+⌊s(B)⌋∑
k=K∗t+1

ak,

where we define the second sum as 0 if ⌊s(B)⌋−M2.4.3 < 1. The first sum
on the rhs can be bounded by a constant. As the sequence ak is decreasing,
we shift the summation boundaries of the second sum on the rhs and
choose

M2.4.1 :=

⌈s(B)⌉+1∑
k=1

ak +

−M2.4.3(t)+⌊s(B)⌋∑
k=1

ak.

Observe that we can bound the second sum here by a constant, since
M2.4.3(t) = O(1) for FPA and VPA by Proposition 2.4.3. As a result, we
bound the lhs (2.4.27) from above and obtain the result

P
(
d

(L)

t (u, v) ⩾ 2(Qt −M2.4.1)
)
⩾ P

(
d

(L)

t (u, v) ⩾ 2Q̃t
)

⩾ P
(
d

(L)

t (u, v) ⩾ 2SK ′t
)
⩾ 1− δ.
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We turn now to GVPA. Recalling K ′t from (2.4.23) and r from (2.4.30), we
bound rK ′t in the upper summation boundary in (2.4.27) from below by

1

1− ε/2

⌊(
1−

ε

2

)
K∗t

⌋
⩾

1

1− ε/2

((
1−

ε

2

)
K∗t − 1

)
⩾ K∗t −

1

1− ε/2
.

Thus, we further bound SK ′t by

SK ′t ⩾ (1− ε/2)

⌊K∗t−1/(1−ε/2)+s(B)⌋∑
k=⌈1/(1−ε/2)+s(B)⌉+1

ak.

We rewrite the boundaries of the sum and use that ε < 1 and hence
1/(1− ε/2) ⩽ 2, so

SK ′t ⩾ (1− ε/2)

( ∑
k∈[K∗t]

ak +

⌊K∗t−1/(1−ε/2)+s(B)⌋∑
k=K∗t+1

ak

−
∑

k∈[⌈1/(1−ε/2)+s(B)⌉]

ak

)

⩾ (1− ε/2)

( ∑
k∈[K∗t]

ak −
∑

k∈[2+⌈s(B)⌉]

ak

)
, (2.4.31)

As the second sum in (2.4.31) is a constant, it can be bounded by ε/2 times
the first sum in (2.4.31) when t is sufficiently large. Thus, we have that

d
(t)
L (u, v) ⩾ 2(1− ε/2)2

∑
k∈[K∗t]

ak ⩾ 2(1− ε)
∑
k∈[K∗t]

ak = 2(1− ε)Qt

with probability 1− δ, for any fixed B and t sufficiently large. This is the
asserted bound in (2.4.1).

To finish the section, we prove the lower bound for the explosive class.

Proof of Proposition 2.4.2. Recall K∗t from (2.1.3) and let M2.4.3(t) be the
function we obtain by applying Proposition 2.4.3 for δ2.4.3 = δ/2. As a
result, we obtain for any K ⩽ K∗t −M2.4.3(t),

P

(
d

(L)

t (u, v) <
∑

q∈{u,v}

d
(L)

t (q,B(G)

t (q,K))
)
⩽
δ

2
.

Let a(t) := min{κδ/6(t),K∗t −M2.4.3(t)}, where κδ/4(t) denotes the maxi-
mum number of generations in LWL to maintain a coupling with PAt with
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probability at least 1− δ/4, as in Proposition 2.2.4 and 2.2.4. Hence, we
obtain d(L)

t

(
q,∂B(G)

t (q,a(t))
)
= β

LWL(q)
a(t)

,a(t)
if the coupling is successful

for q ∈ {u, v} and thus

P

(
d

(L)

t (u, v) <
∑
i∈{1,2}

β
LWL(i)

a(t)
,a(t)

)
⩽ δ,

which finishes the proof.

2.5 hopcount

In this section we prove Theorem 2.2.6. It follows from an adaptation of
the proof of Theorem 2.2.5.

Proof of Theorem 2.2.6. Since the hopcount is at least the graph distance,
Proposition 2.4.3 implies that for any ε > 0

P
(
d

(H)

t (u, v) ⩾ 2(1− ε)K∗t
)
−→ 1, as t→∞, (2.5.1)

for the model GVPA(f), and shows lower tightness for FPA and VPA. It
suffices to prove the matching upper bounds. By rescaling the weights to
L/a, all weights are at least one. For any two vertices u and v, the shortest
path with the unscaled weights uses the same edges as the shortest path
with the scaled weights. Hence, d(H)

t (u, v) ⩽ d
(L/a)

t (u, v). Observe that
for any x > 0, F(−1)

L/a
(x) = 1 + F

(−1)
L/a−1(x). Fix a small δ > 0 and recall

steps (i), (iii), and (iv) from the proof of Proposition 2.3.1. Analogously
to the reasoning leading to (2.3.36), for any s0 there exists constants
C2.3.3,C2.3.5,M such that for t sufficiently large

P

(
d

(L/a)

t (u, v)⩽ 2K∗t + 2
hτ(s0)+K

∗
t∑

k=hτ(s0)

F
(−1)
L/a−1

(
exp

(
τ− 2

)−k/2)
+M

)
⩾ 1− δ/2,

where we used the upper bound in (2.3.3) from Proposition 2.3.4 on the
weight of the segment reaching the inner core. Thus, we did not shift
the summation bounds as in step (ii) in the proof of Proposition 2.3.1. If
I(L/a− 1) <∞, then the above sum is finite and thus yields the result for
tightness in (2.2.5). If the sum is infinite, we choose s0 so large that all
the terms are bounded by a fixed ε/2 > 0, hence the sum is bounded by
εK∗t/2. As K∗t is increasing in t, for t sufficiently large, εK∗t > M. Thus,

P
(
d

(H)

t (u, v) ⩽ 2(1+ ε)K∗t
)
⩾ P

(
d

(L/a)

t (u, v) ⩽ 2(1+ ε)K∗t
)
⩾ 1− δ.
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Combining this upper bound with the lower bound (2.5.1) yields the
desired asymptotics in (2.2.4).

2.6 conservative weights on the lwl

We are left with proving Theorem 2.2.8.

Proof of Theorem 2.2.8. We prove (2.2.6) in Theorem 2.2.8 for the LWL of
FPA and VPA such that the weight distributions satisfies (2.2.3). At the
end of the proof we describe briefly how to prove (2.2.7). The proof is split
in an upper bound and a lower bound. Both bounds rely on a coupling of
the LWL to the finite graph for some large t and follow from adaptations
of the results in Section 2.3 and Section 2.4. Fix k and δ > 0.

For the upper bound we show that there exists M =M(δ), not depend-
ing on k, such that

P
(
βLWL,k(⊚) ⩽ Q

(k) +M
)
⩾ 1− δ/2, (2.6.1)

where

Q(k) :=

k∑
i=1

F
(−1)
L

(
exp

(
− (τ− 2)−i/2

))
.

Recall Qt in (2.1.3) and observe that Qt = Q(K∗t). Set δ2.2.4 = δ2.3.3 = δ/12,
δ2.3.4 = δ/6, and α = 1− δ/12. Let t be sufficiently large such that all the
following hold.

(i) By Proposition 2.2.4 the LWL and the graph neighbourhood of a
typical vertex q can be coupled up to generation k with probability at
least 1− δ/12. Recall βLWL,k(⊚) from Definition 2.2.2. Conditionally
on the event that the coupling is successful,

βLWL,k(⊚) = d
(L)

t (q,∂B(G)

t (q,k)).

Thus, the upper bound in (2.6.1) follows if we show that

P
(
d

(L)

t (q,∂B(G)

t (q,k)
)
⩽Q(k) +M | coupling successful

)
⩾1− 11

12δ.

Since q is a typical vertex, the event {q < αt} holds with probability
at least 1− 11δ/12. By a union bound, the event

E(i) := {q < αt}∩ {coupling successful}

holds with probability at least 1− 5δ/6, leaving to show that

P
(
d

(L)

t (q,∂B(G)

t (q,k)
)
⩽ Q(k) +M | E(i)) ⩾ 1− δ/3. (2.6.2)
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(ii) By Proposition 2.3.3 for s2.3.3 = s0 that we choose below in (iv), there
exists C2.3.3 = C2.3.3(δ, s0), such that, for

E
(ii)
1 := {∃q ′ ∈ B

(G)

(1−α)t(q,C2.3.3) : D(1−α)t(q
′) ⩾ s0},

P(E
(ii)
1 | E(i)) ⩾ 1− δ/12. All edges on a possible path of length C2.3.3

from q to q ′ are equipped with i.i.d. copies of L. Hence, there exists
M(ii) =M(ii)(δ,C2.3.3) > 0 such that

P

(C2.3.3∑
i=1

Li ⩽M
(ii)
)
⩾ 1− δ/12.

Let

E(ii) :=
{
∃q ′∈B(G)

(1−α)t(q,C2.3.3) :d
(L)

(1−α)t(q,q ′)⩽M(ii)
}
∩ E(ii)

1 .

By a union bound we obtain that

P(E(ii) | E(i)) ⩾ 1− δ/6.

(iii) With Kt in (2.3.10), the inequality C2.3.3 + 2Kt ⩾ k holds for all suffi-
ciently large t. Then, we construct a greedy path to the inner core as
described in the proof of Proposition 2.3.4.

(iv) By Proposition 2.3.4 there is an s0 = s0(δ, ε2.3.4) > 0, such that for
q ′ ∈ [αt] with Dαt(q ′) ⩾ s0, the weighted distance to the inner core
in PAt is not too large. The graph PAt is coupled to LWL for at
least k generations. Hence, if the coupling succeeds, then any path
of k− C2.3.3 many edges emanating from q ′ is also present in the
LWL, as q ′ is at graph distance at most C2.3.3 from q by (ii). Hence,
we can use the first k−C2.3.3 edges of the greedy path described in
Definition 2.3.6 and follow the proof of Proposition 2.3.4 to estimate
its total weight. By (iii), k ⩽ 2Kt +C2.3.3, so ultimately, we obtain that
for some that M(iv) > 0, that is not dependent on k, that

P
(
d

(L)

t

(
q ′,∂B(G)

t (q ′, 0∨ (k−C2.3.3))
)
⩽ Q(k) +M(iv)

)
⩾ 1− δ/6.

Denote the above event between brackets by E(iv).

On the event E(i) ∩ E(ii) ∩ E(iv), there is a path from q to a vertex in
B

(G)

t (q ′,k), whose total weight is bounded from above by Q(k) +M(ii) +
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M(iv). If the coupling succeeds, this path is also present in the LWL by
Proposition 2.2.4.

To conclude the proof of (2.6.1), we recall that showing (2.6.1) was
reduced to showing (2.6.2), which holds for M = M(ii) +M(iv), since
P(E(ii) ∩ E(iv) | E(i)) ⩾ 1− δ/3 by a union bound.

We proceed to the lower bound of Theorem 2.2.8, i.e., we show that for
some M =M(δ)

P
(
βLWL,k(⊚) ⩽ Q

(k) −M
)
⩾ 1− δ/2. (2.6.3)

Let δ2.4.5 = δ/8, and let B in Lemma 2.4.5 be sufficiently large. Let t be so
large that

1. K∗t −M2.4.5(t) ⩾ k.

2. by Proposition 2.2.4 the local weak limit can be coupled to the
neighbourhood of radius k of a typical vertex q with probability
at least 1 − δ/8. Conditionally on the event that this coupling is
successful, βLWL,k(⊚) = d

(L)

t (q,∂B(G)

t (q,k)).

Hence, by (2) it is for (2.6.3) sufficient to show that there exists M such
that

P
(
d

(L)

t

(
q,∂B(G)

t (q,k)
)
⩽ Q(k) −M | {coupling successful}

)
⩾ 1− 3δ/8.

This follows from easy modifications of the proof of Proposition 2.4.1. We
leave it to the reader to fill in the details.

Now that (2.6.1) and (2.6.3) have been established, (2.2.6) follows for
weight distributions satisfying (2.2.3). For other weight distributions, (2.2.7)
can be proven for FPA and VPA using the same steps. For the model GVPA,
one can prove (2.2.7) using the same couplings from GVPA to VPA as in
the proofs of Proposition 2.3.1 and Proposition 2.4.1. We leave it to the
reader to fill in the details.



3
D I S TA N C E E V O L U T I O N S

Based on [153]:
Distance evolutions in preferential attachment models,

J. Jorritsma, J. Komjáthy,
The Annals of Applied Probability, 32(6), 4356-4397, 2022.

3.1 introduction

In 1999, Faloutsos, Faloutsos, and Faloutsos studied the topology of the
early Internet network, discovering power-laws in the degree distribution
and short average hopcounts between routers [88]. Undoubtedly, the Inter-
net has grown immensely in the last two decades. It would be interesting
to investigate what has happened to the graph structure surrounding the
early routers (or their direct replacements) that were already there in 1999,
ever since. Natural questions about the evolving graph surrounding these
early routers are:

• How did the number of connections of the routers gradually change?
Did the early routers become important hubs in the network?

• Can we quantify the number of hops needed to connect two early
routers? Particularly, did the hopcount decrease or increase while
their importance in the network changed, and more and more con-
nections arrived? If so, how did the distance gradually evolve?

These kinds of questions drive the mathematics in the present chapter.
We initiate a research line that studies how certain graph properties de-
fined on a fixed set of vertices evolve as the surrounding graph grows.
We consider the weighted-distance evolution in two classical preferential
attachment models (PAMs), the fixed preferential attachment model (FPA)
and the variable preferential attachment model, both defined in Section
1.2.2. Studying the evolution of a property on fixed vertices may sound as
a natural mathematical question. Yet, only the evolution of the degree of
fixed vertices has been addressed so far in the PAM literature [70, 193].

The graph-distance evolution is a discrete-time stochastic process that we
denote by

(
d

(G)

t ′ (ut, vt)
)
t ′⩾t and define formally in Definition 3.3.2 below.
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Here, ut and vt are two typical vertices, i.e., they are sampled uniformly at
random from the vertices in largest component in PAt. The graph distance
d

(G)

t ′ (ut, vt) is the number of edges on the shortest path between ut and
vt that uses only vertices that arrived at latest at time t ′. The distance
evolution

(
d

(G)

t ′ (ut, vt)
)
t ′⩾t is nonincreasing in t ′, since new edges arrive

in the graph that may form a shorter path between ut and vt. We will
now state our main result for the graph-distance evolution. To describe
the graph distance we define for t ′ ⩾ t, writing a∨ b := max{a,b},

Kt,t ′ = 2

⌊
log log(t) − log

(
log(t ′/t)∨ 1

)
| log(τ− 2)|

⌋
∨ 1. (3.1.1)

A sequence of random variables (Xn)n is tight if limM→∞ supnP(|Xn| >

M) = 0.

Theorem 3.1.1 (Graph-distance evolution). Consider the preferential attach-
ment model with power-law exponent τ ∈ (2, 3). Let ut, vt be two typical vertices
in PAt. Then (

sup
t ′⩾t

∣∣d(G)

t ′ (ut, vt) − 2Kt,t ′
∣∣ )
t⩾1

(3.1.2)

is a tight sequence of random variables.

Theorem 3.1.1 tracks the evolution of d(G)

t ′ (ut, vt) as time passes and the
graph around ut and vt grows, since in (3.1.2) the supremum is taken over
t ′. Below, in Theorem 3.3.3, we extend Theorem 3.1.1 to a general setting
and consider the so-called weighted-distance evolution

(
d

(L)

t ′ (ut, vt)
)
t ′⩾t.

There, we equip every edge in the graph with a weight, an i.i.d. copy of a
random variable L. We consider the evolution of the weighted distance,
the sum of the weights along the least-weighted path from ut to vt that is
present at time t ′. We obtain results for any non-negative random variable
L that serves as edge-weight distribution.

As a consequence of Theorem 3.1.1, we obtain a hydrodynamic limit,
i.e., a scaled version of the distance evolution converges under proper time
scaling uniformly in probability to a non-trivial deterministic function.

Corollary 3.1.2 (Hydrodynamic limit for the graph-distance evolution).
Consider the preferential attachment model with power-law exponent τ ∈ (2, 3).
Define Tt(a) := t exp(ε loga(t)) for a ⩾ 0 and arbitrary ε > 0. Let ut, vt be
two typical vertices in PAt. Then, as t tends to infinity,

sup
a⩾0

∣∣∣∣∣d
(G)

Tt(a)
(ut, vt)

log log(t)
− (1− min{a, 1})

4

| log(τ− 2)|

∣∣∣∣∣ P−→ 0. (3.1.3)
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This can be verified by computing the value of Kt,Tt(a) using (3.1.1),
substituting this value into (3.1.2), and then dividing all terms by log log(t).

Observe that in Corollary 3.1.2 all log log(t)-terms have vanished when
a = 1. The following consequence of Corollary 3.1.1 illustrates the rate
at which smaller order terms appear and vanish. In particular, the graph
distance is of constant order as soon as t ′/t is of polynomial order in t.

Corollary 3.1.3 (Lower-order terms). Consider the preferential attachment
model with power-law exponent τ ∈ (2, 3). Let ut, vt be two typical vertices
in PAt. Let g(t) be any function that is bounded from above by 2Kt,t, and set
Tg(t) := t

1+(τ−2)−g(t)/4 . Then, for two typical vertices ut and vt in PAt,(
d

(G)

Tg(t)
(ut, vt) − g(t)

)
t⩾1

is a tight sequence of random variables.

Indeed, setting any g(t) that tends to infinity with t results in a time
scale Tg(t) ∼ t1+εg(t) for some εg(t) → 0 as t tends to infinity.

Remark 3.1.4. Using a similar martingale argument as in Lemma 3.5.3 below for
the degree of the vertices ut and vt, one can show that when t ′ = Θ(t2/(3−τ)),
there will be a vertex that connects to both ut and vt. Hence, the distance evolution
settles on two.

3.2 methodology

The proof of Theorem 3.1.1 and Theorem 3.3.3 below consist of a lower
bound and an upper bound. For the upper bound we prove that at all times
t ′ ⩾ t there is a path from ut to vt that has length at most 2Kt,t ′ +MG

(from (3.1.1)) for some constant MG and contains only vertices born, i.e.,
arrived, before time t ′. We first heuristically argue that the scaling for
the graph distance in (3.1.3) is a natural scaling. After that, we turn to
the difficulties that arise in handling the dynamics. The degree Dqt(t

′)

of a vertex qt ∈ {ut, vt} at time t ′ is of order (t ′/qt)
1/(τ−1). Writing

t ′ = Tt(a) := t exp(loga(t)) and approximating the birth time of the
uniform vertex qt by t, we have that

Dqt
(
Tt(a)

)
≈ exp

(
loga(t)/(τ− 1)

)
=: s(a).

Generally, a vertex of degree s is at graph distance two from many vertices
that have degree approximately s1/(τ−2). This allows for an iterative two-
connector procedure that starts from an initial vertex with degree at least
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Figure 2: Construction of a path from qt to the inner core at the times (ti)i⩽3,
where t0 = t. The y-axis represents the degree of vertices at time ti and
the connected dots the vertices on the path segments from qt via qt,0
to the inner core. The x-axis represents graph distance from qt,0. The
black dashed horizontal lines represent the degree-threshold sequence,
while the continuous black lines represent the maximal degree in the
graph at time ti. The degree of qt,0, the maximal degree in the graph
and the degree threshold for the inner core all increase over time. The
degree of vertex qt,0 satisfies the inner-core threshold at time t3. The
red dashed segment from qt to qt,0 is the same for all i, while the blue
segment from qt,0 is constructed at the times (ti)i⩽3.

s(a) and reaches in the k-th iteration a vertex with degree approximately
(s(a))(τ−2)

−k

. We call k 7→ (s(a))(τ−2)
−k

the degree-threshold sequence.
At each iteration, we greedily extend the path by two edges, arriving
to such a higher-degree vertex. In the edge-weighted version, these two
edges are chosen to minimize the total edge-weight among all such two
edges. This two-connector procedure to vertices with increasing degree
is iterated until the well-connected inner core is reached. The inner core
is the set of vertices with degree roughly Tt(a)1/(2(τ−1)) at time Tt(a).
Hence, for a < 1, the total number of iterations to reach the inner core is
approximately

min
{
k : (s(a))(τ−2)

−k
⩾ Tt(a)

1/(2(τ−1))
}
≈ (1− a)

log log(t)
| log(τ− 2)|

. (3.2.1)

By construction, the graph distance from ut and vt to the inner core is two
times the right-hand side (rhs) in (3.2.1). The graph and weighted distance
between vertices in the inner core are negligible, yielding the scaling in
(3.1.3), as well as the upper bounds in Theorems 3.1.1 and 3.3.3.

There are three main difficulties in the outlined procedure. Firstly, it
is not good enough to start the two-connector procedure from ut (or
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vt) because the error terms coming from controlling the growth of the
degree of ut (or vt) at t ′ close to t are too large. To resolve this, we start
the procedure from a vertex – say qt,0 – that has degree at least s(0)0 at
time t for some large but universally bounded constant s(0)0 . The segment
between qt and qt,0 is fixed for all t ′ ⩾ t, so that we only have to account
for a possible error once. Secondly, we need to bound the degree of the
vertex qt,0 from below over the entire time interval [t,∞), not just at a
specific time t ′. For this we employ martingale arguments. Lastly, to make
the error probabilities summable in t ′, we argue that the two-connector
procedure does not have be executed for every time t ′ ⩾ t, but only along
a specific subsequence of times (ti)i⩾0, where

ti ∈
[
t exp

(
(τ− 2)−i+1

)
, t exp

(
(τ− 2)−i−1

)]
.

This sequence is chosen such that at time ti+1 one iteration less than at
time ti is needed to reach the inner core from the initial vertices, and these
are exactly the times when Kt,t ′ crosses an integer and hence a previously
present path is no longer short enough. See Figure 2 for a sketch. On the
time scale Tt(a), the number of iterations scales linearly in a ∈ [0, 1].

For the lower bound we first bound the probability that the graph
distance d(G)

t ′ (ut, vt) is ever too short and then extend it to weighted
distances. To estimate the probability of a too short path being ever present,
we develop a refined truncated path-counting method inspired by [69]. Let,
for a fixed t, (ℓ(t)k,t ′)k⩾0,t ′⩾t be an array of birth times, i.e., arrival times of
vertices. The path-counting method first excludes possible paths from ut
to vt that are unlikely to be present in PAt ′ , called bad paths. A bad path
of length k reaches a vertex born before time ℓ(t)k,t ′ using only vertices born
before t ′. The longer a path is, the more likely it is that an old vertex can be
reached. Moreover, as the graph grows, it becomes more likely that there
is a short path to an old vertex. The array of birth times (ℓ(t)k,t ′)k⩾0,t ′⩾t

is therefore nonincreasing in both parameters. Among the other possible
paths that are too short, the good paths, the method counts the expected
number of paths from ut to vt that are present in PAt ′ . More precisely, the
expected number of these paths of length at most 2Kt,t ′ −MG is shown to
be much smaller than one for some MG > 0. The decomposition of good
and bad paths is done for every t ′ > t, in an interlinked way. The crucial
observation is that if there is no too short path present at time t ′, but there
is a too short path present at time t ′ + 1, then the vertex labelled t ′ + 1
must be on this connecting path and thus it must be either on a bad path
or on a too short good path. This trick allows us to develop a first moment



74 distance evolutions

Figure 3: Good and bad path decomposition for the lower bound. The y-axis
represents arrival time of vertices and the x-axis the graph distance
from ut. Bad paths are displayed in red, good paths are green and
dashed. The blue dotted paths represent possible paths that are absent
at time t1. Let t2 > t1 and k > j. The black tiny-dotted horizontal lines
represent the birth-threshold array (ℓ(t)

k,t ′)k⩾0,t ′⩾t which is decreasing
in t ′ at the times t1, t2 and also decreasing in k. At time t1 there is
neither a bad path of length at most k present, nor a good path of
length 2k that connects u and v. Then, if u and v are at time t2 at
graph distance 2k, there must be either a bad path of length at most k
emanating from u or v that traverses a vertex in (t1, t2], or there must
be a short good path traversing such a vertex. Observe that the good
path is allowed to traverse a vertex in [ℓ(t)k,t2

, ℓ(t)k,t1
). In particular, this

holds for t2 = t1 + 1.

method much sharper than a union bound simply over t ′, since we only
need to bound the expected number of bad or too short good paths that
are restricted to pass through the newly arrived vertex t ′. These bounds
are a factor 1/t ′ smaller than similar bounds without the restriction. As a
result, the error bound is summable in t ′ and tends to zero as t tends to
infinity. See Figure 3 for a sketch of the argument.

To extend the result from graph distances to weighted distances for
Theorem 3.3.3 below, we observe that if the graph distance between ut
and vt is at least 2Kt,t ′ −MG/2, then the graph neighbourhoods of radius
Kt,t ′ −MG/2 must be disjoint. A path that connects ut to vt must cross
the boundaries of these graph neighbourhoods. We bound the number
of vertices at distance precisely k from qt ∈ {ut, vt} from above, for
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k ⩽ Kt,t ′ −MG/2. This allows to bound the weight of the least-weight
edge between vertices at distance k and k+ 1 from qt from below. The
sum of these minimal weight bounds is then a lower bound to reach the
boundary. However, the error probabilities are not summable in t ′. To
resolve this, we show that it is sufficient to consider only a subsequence of
times, similarly to the upper bound.

Organisation

In the next section we rigorously state the results. The lower bound is
proven in Section 3.4. In Section 3.5 we present the proof of the upper
bound.

3.3 general results

We now formalize the notion of paths for (PAt)t⩾1. This definition is used
below to define distance evolutions.

Definition 3.3.1 (Paths). We call a vertex tuple (π0, . . . ,πn) =: π a q-path
if π0 = q, and we call it a (u, v)-path if π0 = u, πn = v, and u ̸= v. Let
t ′ ∈N. The path π is called t ′-possible if maxi⩽n πi ⩽ t ′ and t ′-present if
it is t ′-possible and all edges {(π0,π1), . . . , (πn−1,πn)} are present in PAt ′ .

For ut, vt ∈ Vt, let Ω(t ′)(ut, vt) := {π : π is a t ′-present (ut, vt)-path}
denote the set of t ′-present paths. Since the edge set and vertex set are
increasing in t ′, new paths between ut and vt emerge. Hence, we have
that Ω(t ′)(ut, vt) ⊆ Ω(t̃)(ut, vt) for t̃ ⩾ t ′. Similar to Chapter 2, we equip
every edge with a weight, an i.i.d. copy of a non-negative random variable
L. Recalling the definitions of graph distance d(G)

t ′ and weighted distance
d

(L)

t ′ from Definition 2.2.1, we define distance evolutions.

Definition 3.3.2 (Distance evolutions). Consider the edge-weighted graph
PAt = (Vt,Et) where every edge e is equipped with a weight Le. Let ut
and vt be two typical vertices, i.e., they are sampled uniformly at random
from the largest component in PAt. We call the discrete-time stochas-
tic processes

(
d

(G)

t ′ (ut, vt)
)
t ′⩾t and

(
d

(L)

t ′ (ut, vt)
)
t ′⩾t the graph-distance

evolution and weighted-distance evolution, respectively.
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The following function will be used to describe the weighted distance
evolution. Define for a,b ∈N

Q(a,b] :=
b∑

k=a+1

F
(−1)
L

(
exp

(
− (τ− 2)−k/2

))
, (3.3.1)

so that Q(a,b] is a sum consisting of b− a terms. Recall Kt,t ′ from (3.1.1)
that describes the graph distance. We define for t ′ ⩾ t its weighted-distance
counterpart

Qt,t ′ := Q(Kt,t −Kt,t ′ ,Kt,t]. (3.3.2)

Lastly, we recall for the edge-weight distribution FL the explosion char-
acteristic I1(L) from (2.1.3), and the tightness-criterion I2(L) from (2.2.3).
We are mostly interested in distributions satisfying I1(L) = ∞ to observe
how the distance decreases from Θ(log log(t)) to constant order: by The-
orem 2.2.10 the typical weighted distance is already of constant order if
I1(L) <∞, making it less suitable to study evolutions. Observe also that
in this case Qt,t ′ in (3.3.2) is bounded from above by some constant.

Theorem 3.3.3 (Main result). Consider the preferential attachment model with
power-law exponent τ ∈ (2, 3). Equip every edge upon creation with an i.i.d. copy
of the non-negative random variable L. Let ut, vt be two typical vertices at time t.
If I2(L) <∞, then (

sup
t ′⩾t

∣∣d(L)

t ′ (ut, vt) − 2Qt,t ′
∣∣ )
t⩾1

(3.3.3)

is a tight sequence of random variables. Regardless of the value of I2(L), for any
δ, ε > 0, there exists ML > 0 such that

P
(
∀t ′ ⩾ t : 2Qt,t ′ −ML ⩽ d

(L)

t ′ (ut, vt) ⩽ 2(1+ ε)Qt,t ′ +ML

)
⩽ δ. (3.3.4)

Theorem 3.3.3 tracks the evolution of d(L)

t ′ (u, v) as time passes and the
graph around u and v grows, since in (3.3.3) the supremum is taken over
t ′ and t ′ is inside the P-sign in (3.3.4). It is the (1+ ε)-factor in the upper
bound in (3.3.4) that makes (3.3.4) different from (3.3.3). Thus, the lower
bound is tight for any non-negative weight distribution. A special case
of Theorem 3.3.3 is when the edge-weight distribution L ≡ 1. Then the
weighted distance and graph distance coincide, yielding Theorem 3.1.1,
since I2(1) = 0.

Observe that 2Qt,t ′ = 2Q(Kt,t − Kt,t ′ ,Kt,t] in (3.3.2) could be seen as
two sums, each consisting of Kt,t ′ terms: the number of terms in Qt,t ′ is
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equal to the number of edges on the shortest graph-distance path. The
additive constant ML ensures that there will be many almost-shortest
paths, from which we are able to choose one with low edge-weight. As
time passes, the degrees of ut and vt increase, so that it becomes more
likely that there are edges close to ut and vt that have small edge-weights.
Since the terms in Qt,t ′ are decreasing in k, this intuitively explains that
Qt,t ′ consists of the smallest Kt,t ′ terms of Qt,t, rather than the largest
Kt,t ′ terms of the sum defining Qt,t. However, if L ≡ 1 + X for some
random variable X that satisfies I1(X) <∞ (e.g., X exponential, gamma, or
a power of uniform on [0, 1]), then |Kt,t ′ −Qt,t ′ | ⩽M for some constant M.
Consequently, the graph distance and weighted distance are of the same
order (up to additive constants). This phenomenon has also been observed
for the Configuration Model [21]. As a result, for weight distributions
with I1(X) <∞ the location of the summation interval in (3.3.2) does not
influence the main result: there exists a constant M1 such that Q(0,Kt,t ′ ] −
Q(Kt,t − Kt,t ′ ,Kt,t] ⩽ M1 for all t ′ ⩾ t ⩾ 0. For the other case, if L =

1 + X such that I1(X) = ∞, such a constant does not exist. For such
distributions, the fact that the lower summation boundary in (3.3.2) is
shifted to Kt,t − Kt,t ′ from 0 matters and influences the growth rate. As
an example, we set L such that the terms in the sum in (3.3.1) are equal to
1+ 1/k, yielding Q(0,Kt,t ′ ] ≈ Kt,t ′ + log(Kt,t ′), while for t ′ large enough
that Kt,t −Kt,t ′ ≫ 1:

Q(Kt,t −Kt,t ′ ,Kt,t] ≈ Kt,t ′ + log(Kt,t) − log(Kt,t −Kt,t ′)≪ Q(0,Kt,t ′ ].

We now recall the hydrodynamic limit for the graph-distance evolution in
Corollary 3.1.2. A similar limit can be derived for the weighted-distance
evolution if the weight distribution satisfies I1(L) = ∞. The proper scaling
and the constant prefactor, similar to (3.1.3), can be determined through
studying the main growth term of Qt,t ′ in (3.3.2) if F(−1)L is explicitly
known.

Like Remark 3.1.4, one can show that at the time scale Θ(t2/(3−τ)) the
weighted distance between ut and vt tends to 2b where b := inf{x ∈
R : FL(x) > 0}. At this time scale, many vertices connect to both ut and
vt, allowing to bound the weighted distance from above by 2(b+ ε) for
arbitrarily small ε > 0.
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3.4 proof of the lower bound

Now we prove the lower bound of Theorem 3.3.3, i.e., we show that with
probability close to one there is no too short path between ut and vt for any
t ′ ⩾ t. The main contribution of this section versus Chapter 2 and existing
literature, e.g. [46, 69], is the following proposition concerning the graph
distance. In its proof we develop a path-decomposition technique that uses
the dynamical construction of PAt in a refined way to get strong error
bounds that are summable over t ′ ⩾ t. After the notational and conceptual
set-up of the argument, we state and prove some technical lemmas. In
the end of the section, we extend Proposition 3.4.1 to the edge-weighted
setting, using refinements of the error bounds in Chapter 2. We abbreviate
u := ut and v := vt, respectively.

Proposition 3.4.1 (Lower bound graph distance). Consider the preferential
attachment model with power-law exponent τ ∈ (2, 3). Let u, v be two typical
vertices in PAt. Then for any δ > 0, there exists MG > 0 such that

P
(
∃t ′ ⩾ t : d(G)

t ′ (u, v) ⩽ 2Kt,t ′ − 2MG

)
⩽ δ. (3.4.1)

Observe that t ′ is inside the P-sign. Hence, (3.4.1) tracks the evolution of
d

(G)

t ′ (u, v) as time passes, and the graph around u and v grows. To estimate
the probability of a too short path, we use a truncated path-counting
method similar to [69]. This method first excludes possible paths that are
unlikely to be present, called bad paths. Then, among the rest, the good
paths, it counts the expected number of paths that are too short and present
in PAt ′ . More precisely, the expected number of paths between u and v of
length at most

2Kt,t ′ := 2Kt,t ′ − 2MG (3.4.2)

is shown to be much smaller than one. We do this decomposition in an
interlinked way that ensures that paths are only counted once.

3.4.1 Set-up for the graph-distance evolution

Recall that the arrival time of a vertex is also called birth time. The decom-
position of good and bad paths is based on an array of birth times (ℓ(t)k,t ′)

for which we make the following assumption throughout this section.

Assumption 3.4.2. The array of birth times (ℓ(t)k,t ′)k⩾0,t ′⩾t is a positive integer-

valued array that is nonincreasing in both parameters and satisfies ℓ(t)0,t ′ ⩽ t. We
call it the birth-threshold array.
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Recall the definition of paths in Definition 3.3.1.

Definition 3.4.3. Let (ℓ(t)k,t ′)k⩾0,t ′⩾t be an array satisfying Assumption 3.4.2.
A t ′-possible q-path (π0, . . . ,πk) is called t ′-good if t ′ ⩾ πj ⩾ ℓ

(t)

j,t ′ for all
j ⩽ k, otherwise it is called t ′-bad. A t ′-possible (u, v)-path (π0, . . . ,πn)
is called (n, t ′)-good if πj ∧ πn−j ⩾ ℓ

(t)

j,t ′ for all j ⩽ ⌊n/2⌋, otherwise it is
called t ′-bad.

This definition calls any path bad if it has a too old vertex, where the
threshold ℓ(t)k,t ′ depends on the distance from π0. Thus, all vertices on a
good path are sufficiently young. We decompose t ′-bad paths according to
their first vertex violating the threshold.

Definition 3.4.4. Let (ℓ(t)k,t ′)k⩾0,t ′⩾t be an array satisfying Assumption
3.4.2. We say that a π0-path (π0, . . . ,πn) of length n is (k, t ′)-bad if the
path is t ′-possible and πj ⩾ ℓ

(t)

j,t ′ for all j < k, but πk < ℓ
(t)

k,t ′ .

Observation 3.4.5. Let (ℓ(t)k,t ′)k⩾0,t ′⩾t be an array satisfying Assumption 3.4.2.
Then

1. if a path is t ′-good, then it is t̃-good for all t̃ ⩾ t ′.

2. if a path is t ′-bad, it is possible that it turns t̃-good for some t̃ > t ′.

3. if a path (π0, . . . ,πn) is t ′-bad, then it is t̃-bad for any t̃ ∈ [max{πi}, t ′].

4. if for all i ⩽ k no (i, t ′ − 1)-bad path is present in PAt ′−1, then a (k, t ′)-
bad path can only be present in PAt ′ if it passes through vertex t ′.

All four observations follow directly from the definitions of good and bad
paths, and the fact that (ℓ(t)k,t ′)k⩾0,t ′⩾t is decreasing in both parameters,
see Figure 4(A-B). The fourth observation turns out to be crucial in our
decomposition argument. We define the events whose union implies the
event between brackets in (3.4.1). We start with the event of having a bad
path emanating from q ∈ {u, v} for k ⩾ 1, i.e.,

E
(q)
bad(k, t) :=

{
∃(k, t)-bad q-path

}
, (3.4.3)

and for t ′ ⩾ t

E
(q)
bad(k, t ′) :=

{
∃(k, t ′)-bad q-path, ∀i⩽k : ∄(i, t ′ − 1)-bad q-path

}
(3.4.4)

Here the sign ∃ indicates that a path is present. For completeness, we
define for t ′ ⩾ t, k = 0,

E
(q)
bad(0, t

′) :=
{
q < ℓ

(t)

0,t ′
}
⊆ E

(q)
bad(0, t), (3.4.5)
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(a) (b) (c)

Figure 4: Good and bad path decomposition for the lower bound. Bad paths are
displayed in red, the green dashed lines are the good paths, and the
blue dotted lines represent possible paths that are absent. The y-axis
represents the birth time of the vertices and the x-axis the graph distance
from q and u, respectively. In Figure (A) we see that if a path is t1-good,
then it is also t2-good since t ′ 7→ ℓ

(t)

k,t ′ is decreasing. However, the red
(k, t1)-bad path turns (k, t2)-good. Figure (B) shows that if there is no
(k, t1)-bad path, a red (k, t2)-bad path must pass through a vertex in
(t1, t2]. Note that the green path in Figure (B) is t2-good. Although it
violates a birth threshold valid at time time t1, the path is not t1-bad
because it is not t1-possible. Figure (C) shows that if there is neither a
good, nor a bad t1-present (u, v)-path of length 2k, then a t2-present
(good) (u, v)-path must pass through a vertex in (t1, t2]. We apply the
observations in these figures for t2 = t1 + 1.

where the inclusion follows since t ′ 7→ ℓ
(t)

0,t ′ is nonincreasing. By the

additional restriction on bad paths in (3.4.4), the events E
(q)
bad(k, t ′) are

disjoint in both parameters. For E
(q)
bad(k, t ′) and t ′ > t, as a result of

Observation 3.4.5(4) and the restriction in the definition (3.4.4) of not
having a bad path at time t ′ − 1, we only have to consider paths that pass
through the vertex t ′. This motivates to decompose the (k, t ′)-bad paths
passing through vertex t ′ according to the number of edges between the
initial vertex q ∈ {u, v} and t ′. Indeed, consider a (k, t ′)-bad q-path where
t ′ is the i-th vertex, i.e., it is of the form (q,π1, . . . ,πi−1, t ′,πi+1, . . . ,πk).
Then, by Definition 3.4.4, the constraints that this path satisfies is that
for j < k, πj ⩾ ℓ

(t)

j,t ′ . This means that on the segment (πi+1, . . . ,πk) =:

(σ1, . . . ,σk−i) the indices of the constraints have to be shifted by i, giving
rise to σj ⩾ ℓ

(t)

i+j,t ′ for j ⩽ k − i. Hence, we introduce good paths on a
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segment. Recall that {π0 ↔ · · · ↔ πn} means that (π0, . . . ,πn) is t ′-present
for t ′ = maxi⩽n πi.

Definition 3.4.6. Given an array (ℓ(t)k,t ′)k⩾0,t ′⩾t satisfying Assumption 3.4.2,
let

{
x
[i,n)
⇝ y

}
t ′
:=

{
disjoint(πi, . . . ,πn−1)

∣∣∣∣ x = πi ↔ · · · ↔ πn−1 ↔ y

∀j<n : πj ∈ [ℓ(t)j,t ′ , t
′]

}
.

If
{
x
[i,n)
⇝ y

}
t ′
̸= ∅, we say that there is a t ′-good x-path on segment [i,n).

We write {
x
[i1,n1)⇝ y

}
t ′
◦
{
y
[i2,n2)⇝ z

}
t ′

for the set of self-avoiding (x, z)-paths that are t ′-good on the segment
[i1,n1) from x to y and t ′-good on the segment [i2,n2) from y to z.

Note that there is no birth restriction on the last vertex on the segment,
explaining the half-open interval superscript [i,n). Thus, if πk < ℓ

(t)

k,t ′ , then

∣∣{q[0,i)
⇝ t ′

}
t ′
◦
{
t ′

[i,k)
⇝ πk}t ′

∣∣ ⩾ 1
precisely means that there is a (k, t ′)-bad q-path from q to πk that has t ′

as its i-th vertex. For notational convenience we omit the subscript t ′.
Having set up the definitions for the bad paths, we define the events

that allow to count the expected number of too short good (u, v)-paths.
Let, for n ⩾ 1, and t ′ = t

E
(u,v)
short (n, t ′) :=

{
∃(n, t)-good (u, v)-path

}
, (3.4.6)

and for n ⩾ 1, t ′ > t

E
(u,v)
short (n, t ′) :=

{∃(n, t ′)-good (u, v)-path,

∀t̃<t ′ : ∄(u, v)-path of length n

}
, (3.4.7)

setting for completeness

E
(u,v)
short (0, t

′) := {u = v}.

Observe that in (3.4.7) we require that at previous times there was neither
a good, nor a bad path of length n between u and v. This is a stronger
requirement than the one in (3.4.4), where we do not put any restrictions
on good paths at a previous time, but there only one endpoint of the path
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(u or v) is fixed. By definition, for a fixed n, the events E
(u,v)
short (n, t ′) are

disjoint. Moreover, we observe that if E(u,v)
short (n, t ′) holds, then there is a

t ′-present (u, v)-path of length n connecting u and v that traverses the
vertex t ′, which is a similar observation to Observation 3.4.5(4), see Figure
4(C). Using the definitions of the events Ebad and Eshort, we can bound the
event between brackets in (3.4.1), and hence its probability of occurring,
as stated in the following lemma.

Lemma 3.4.7. Let (ℓ(t)k,t ′)k⩾0,t ′⩾t be an array satisfying Assumption 3.4.2. Then

P
(
∃t ′ ⩾ t : d(G)

t ′ (u, v) ⩽ 2Kt,t ′
)

⩽
∑

q∈{u,v}

∞∑
t ′=t

Kt,t ′∑
k=0

1{k⩾2 or t ′=t}P
(
E
(q)
bad(k, t ′)

)
(3.4.8)

+

∞∑
t ′=t

2Kt,t ′∑
n=0

1{n⩾2 or t ′=t}P
(
E
(u,v)
short (n, t ′)

)
. (3.4.9)

Proof. To prove the assertions in the statement, we will first bound the
event between brackets on the left-hand side (lhs) in (3.4.8). Eventually,
the bound then follows by a union bound.

Bounding the events. We write σ(u, v) := {(u, v), (v,u)}. We aim to show
that if (ℓ(t)k,t ′)k⩾0,t ′⩾t is an array satisfying Assumption 3.4.2, then

{
∃t ′ ⩾ t : d(L)

t ′ (u, v) ⩽ 2Kt,t ′
}
⊆

∞⋃
t ′=t

((Kt,t ′⋃
k=0

⋃
q∈{u,v}

E
(q)
bad(k, t ′)

)

∪
2Kt,t ′⋃
n=0

E
(u,v)
short (n, t ′)

)
. (3.4.10)

Moreover, for k,n ⩾ 2 and t ′ > t

E
(u)
bad(k, t ′) ⊆

ℓ
(t)

k,t ′−1⋃
x=1

k−1⋃
i=1

{∣∣{u[0,i)
⇝ t ′

}
◦
{
t ′

[i,k)
⇝ x

}∣∣ ⩾ 1}, (3.4.11)

E
(u,v)
short (n, t ′) ⊆

⋃
(q1,q2)
∈σ(u,v)

t ′−1⋃
x=ℓ

(t)

⌊n/2⌋,t ′

⌊n/2⌋−1⋃
i=1

(3.4.12)

{∣∣{q1[0,i)
⇝ t ′

}
◦
{
t ′

[i,⌊n/2⌋)
⇝ x

}
◦ {q2

[0,⌈n/2⌉)
⇝ x

}∣∣ ⩾ 1}
∪
{∣∣{q1[0,⌊n/2⌋)

⇝ t ′
}
◦
{
q2

[0,⌈n/2⌉)
⇝ t ′

}∣∣ ⩾ 1}.
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We first prove (3.4.12). Let π be any path of length n ⩾ 2 whose presence
implies E

(u,v)
short (n, t ′) for some t ′ > t, so that π is a t ′-good (u, v)-path by

the definition of E(u,v)
short (n, t ′) in (3.4.7). From (3.4.7) it also follows that t ′ is

on π, as there was neither a good, nor a bad (u, v)-path of length n before
time t ′. Thus, the t ′-good (u, v)-path π can be decomposed in a t ′-good
u-path of length ⌊n/2⌋ and a t ′-good v-path of length ⌈n/2⌉. Considering
all possible positions of t ′ on the path, the presence of π implies the
event on the rhs in (3.4.12). There, we denoted by x ̸= t ′ the vertex at
distance ⌊n/2⌋ from q1 that satisfies the constraint x ⩾ ℓ(t)⌊n/2⌋,t ′ . Thus,
x is at distance ⌈n/2⌉ from q1, and since j 7→ ℓ

(t)

j,t ′ is nonincreasing also
x ⩾ ℓ(t)⌈n/2⌉,t ′ . So the inclusion in (3.4.12) holds, since π was an arbitrary
path.

Similarly, let π = (q, . . . ,πk) be any path of length k ⩾ 2 whose pres-
ence implies E

(q)
bad(k, t ′) for some t ′ > t,q ∈ {u, v}, so that πk < ℓ

(t)

k,t ′ . By
Observation 3.4.5(4), vertex t ′ must be on π and by a similar reasoning as
before we obtain (3.4.11).

Lastly, we prove (3.4.10) for which we rewrite the lhs as a union over
time and paths, i.e.,{
∃t ′ ⩾ t : d(L)

t ′ (u, v) ⩽ 2Kt,t ′
}

=

∞⋃
t ′=t

2Kt,t ′⋃
n=0

⋃
(π1,...,πn−1)
∈[t ′]n−1,

disjoint

{
u↔ π1 ↔ · · · ↔ πn−1 ↔ v

}
.

Let π := (π0, . . . ,πn) be any self-avoiding path from π0 := u to πn := v

in this set. The smallest time t ′ at which π can be present in the union
on the rhs is at t ′ := t∨ maxi⩽n πi. Then, n ⩽ 2Kt,t ′ must hold due to
the fact that t ′ 7→ Kt,t ′ is nonincreasing. We will show now that the event
that π is t ′-present is captured in either E(u,v)

short (n, t ′) or E(q)
bad(k, t̃) for some

t̃ ⩽ t ′,k ⩽ n/2, q ∈ {u, v}. For any length n ⩾ 0, if u∧ v < ℓ
(t)

0,t ′ , then

{π present} ⊆ E
(u)
bad(0, t)∪ E

(v)
bad(0, t),

since t ′ 7→ ℓ
(t)

0,t ′ is nonincreasing. From now on we assume that u∧v ⩾ ℓ(t)0,t ′ .
If n ⩽ 1, that is when {u = v} or {u↔ v}, then π must already be present
at time t, i.e.,

{π present} ⊆ ∪i∈{0,1}E
(u,v)
short (i, t).
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From now on we assume that the length n ⩾ 2. Moreover, if π is a t ′-good
path, then

{π present} ⊆ Eshort(n, t ′).

Assume π is not a t ′-good (u, v)-path. Consequently, there is a t ′-bad
path emanating from either u or v, which is a subpath of π. So, recalling
Observation 3.4.5(1) and (2), the first time that this bad subpath is present,
i.e.,

t̃ := min
{
t̂ ⩽ t ′

∣∣∣∣ ∃m ⩽ n/2 s.t. (u,π1, . . . ,π⌊n/2⌋) or

(v,πn−1, . . . ,πn−⌊n/2⌋) is (t̂,m)-bad

}
is well-defined and at most t ′. By Observation 3.4.5(3), π is bad at t̃, so
that for some m ⩽ n/2

{π present} ⊆ ∪q∈{u,v}E
(q)
bad(m, t̃).

Union bound. Having bounded the events between brackets on the lhs
in (3.4.8) and (3.4.9), the assertions follow directly from a union bound
on the events in (3.4.10). We argue now that the events where one of the
indicators in (3.4.8) and (3.4.9) equals zero, happen with probability zero.
We start with (3.4.9): 1{n⩾2 or t ′=t} = 0 when both t ′ > t and n ∈ {0, 1}.
Since no new paths connecting u and v of length one, i.e., a single edge,
can be created after time u∨ v ⩽ t we have that for t ′ > t and n ∈ {0, 1}

E
(u,v)
short (n, t ′) = ∅,

as by its definition in (3.4.7) we require that there was no path of length n
before time t ′. Similarly, bad paths of length at most one must already be
present at time t since t ′ 7→ ℓ

(t)

k,t ′ is nonincreasing and starts at a value at
most t. So for q ∈ {u, v}, t ′ > t, k ∈ {0, 1}

E
(q)
bad(k, t ′) = ∅.

3.4.2 Bounding the summands

The main goal of this section is to prove the following lemma for two
suitably chosen sequences k 7→ α[0,k), β[0,k), defined below in (3.4.22) and
(3.4.23). We will obtain bounds on the individual summands in (3.4.8) and
(3.4.9) in Lemma 3.4.7.
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Lemma 3.4.8. Let k 7→ α[0,k), β[0,k), as in (3.4.22) and (3.4.23) below, re-
spectively. Then there exists C > 0 such that for k ⩾ 2,n ⩾ 2 and t ′ > t,
q ∈ {u, v}

P
(
E
(q)
bad(k, t ′)

)
⩽ Ct ′−1(k− 1)α[0,k)

ℓ
(t)

k,t ′−1∑
x=1

x−γ, (3.4.13)

P
(
E
(u,v)
short (n, t ′)

)
⩽ 2β2[0,⌈n/2⌉)t

′2γ−2 (3.4.14)

+Cnt ′−1
t ′−1∑

x=ℓ⌊n/2⌋,t ′

(
α[0,⌈n/2⌉)x

−γ +β[0,⌈n/2⌉)x
γ−1

)2.

For t ′ = t, k,n ⩾ 1 and q ∈ {u, v}, it holds that

P
(
E
(q)
bad(k, t)

)
⩽ α[0,k)

ℓ
(t)
k,t−1∑
x=1

x−γ, (3.4.15)

P
(
E
(u,v)
short (n, t)

)
⩽

t∑
x=ℓ

(t)
⌊n/2⌋,t

(
α[0,⌈n/2⌉)x

−γ +β[0,⌈n/2⌉)x
γ−1

)2. (3.4.16)

We prove the lemma at the end of this section after having established
the necessary preliminaries and identified the sequences k 7→ α[0,k), β[0,k).
The decomposition method counting paths that traverse the vertex t ′

(for t ′ > t) yields a bound in (3.4.13) and (3.4.14) that are a factor 1/t ′

smaller than their counterparts with t ′ = t in (3.4.15) and (3.4.16). By
small refinements of the methods in [69] we obtain that the individual
sums on the rhs in (3.4.13) and (3.4.14) are of order 1/ log3(t ′). This is why
the error terms are summable in t ′. The extra factor 1/t ′ illustrates the
necessity of our decomposition method versus previous methods.

In view of (3.4.11) and (3.4.12), it is crucial to understand the probabil-
ities on having self-avoiding paths that are restricted to have specified
vertices at some positions. For this we rely on the function p from Proposi-
tion 2.4.4, that originally appeared in [69].
For k > i ⩾ 0 and a vertex πi ⩾ ℓ

(t)

i,t ′ and another vertex πk ∈ [t ′] we define

f
(t,t ′)
[i,k)(πi,πk) :=

∑
(πi+1,...,πk−1)

∈P{πi ,πk}
(i,k)

p(πi, . . . ,πk), (3.4.17)

where for a vertex set V ⊂ [t ′], PV
(i,k) denotes the set of pairwise disjoint

vertex tuples (πi+1, . . . ,πk−1) such that πj ⩾ ℓ
(t)

j,t ′ , πj /∈ V for all i < j < k.



86 distance evolutions

Intuitively, f(t,t
′)

[i,k)(πi,πk) is an upper bound for the expected number of
t ′-good paths on the segment [i,k) from πi to πk.

We derive upper bounds for the summands in (3.4.8) and (3.4.9) in terms
of f(t,t

′)
[i,k).

Claim 3.4.9. Consider the preferential attachment model with power-law parame-
ter τ > 2. Let (ℓ(t)k,t ′)k⩾0,t ′⩾t be an array satisfying Assumption 3.4.2. Then for
k,n ⩾ 2 and t ′ > t,

P
(
E
(q)
bad(k, t ′)

)
⩽

ℓ
(t)

k,t ′−1∑
x=1

k−1∑
i=1

f
(t,t ′)
[0,i)(q, t ′)f(t,t

′)
[i,k)(t

′, x), (3.4.18)

P
(
E
(u,v)
short (n, t ′)

)
⩽

∑
(q1,q2)∈σ(u,v)

t ′−1∑
x=ℓ

(t)

⌊n/2⌋,t ′

⌊n/2⌋−1∑
i=1

(
f
(t,t ′)
[0,⌈n/2⌉)(q1, x) · f(t,t ′)[0,i)(q2, t ′) · f(t,t ′)[i,k)(t

′, x) (3.4.19)

+ f(t,t
′)

[0,⌈n/2⌉)(q1, t ′) · f(t,t ′)[0,⌊n/2⌋)(q2, t ′)
)
,

while for any k,n ⩾ 1 and t ′ = t

P
(
E
(q)
bad(k, t)

)
⩽

ℓ
(t)
k,t−1∑
x=1

f
(t,t)

[0,k)(q, x), (3.4.20)

P
(
E
(u,v)
short (n, t)

)
⩽

∑
(q1,q2)∈σ(u,v)

t∑
x=ℓ

(t)

⌊n/2⌋,t ′

(
f
(t,t)

[0,⌈n/2⌉)(q1, x)f(t,t)[0,⌊n/2⌋)(q2, x)
)
. (3.4.21)

Proof. Recall the set of paths {πi
[i,k)
⇝ πk} from Definition 3.4.6. Then by

Markov’s inequality, (3.4.17), and Proposition 2.4.4

P
(∣∣{πi[i,k)⇝ πk}

∣∣ ⩾ 1) ⩽ E[|{x
[i,k)
⇝ πk}|] =

∑
(πi+1,...,πk−1)

∈P{πi ,πk}
(i,k)

P(πi ↔ · · · ↔ πk)

⩽
∑

(πi+1,...,πk−1)

∈P{πi ,πk}
(i,k)

p(πi, . . . ,πk)

= f(t,t
′)

[i,k)(πi,πk).
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Now for concatenated paths, due to the product structure in (2.4.5), and
by relaxing the disjointness of sets, we have

P
(∣∣{π0[0,i)

⇝ πi}◦{πi
[i,k)
⇝ πk}

∣∣ ⩾ 1)
⩽

∑
(π1,...,πi−1)

∈P{π0 ,πi ,πk}
(0,i)

∑
(πi+1,...,πk−1)

∈P{π0 ,...,πi}
(i,k)

p(π0, . . . ,πi)p(πi, . . . ,πk)

⩽ f(t,t
′)

[0,i)(π0,πi)f
(t,t ′)
[i,k)(πi,πk).

Recall now (3.4.11), so that (3.4.18) follows by a union bound and choosing
π0 = q,πi = t ′, and πk = x. Similarly (3.4.19) follows by union bounds
over the rhs in (3.4.12). The bounds (3.4.20) and (3.4.21) follow analogously
from their definition in (3.4.3) and (3.4.6).

We establish recursive bounds on f
(t,t ′)
[i,k) similar to [69, Lemma 1]. Let

(ℓ(t)k,t ′)k⩾0,t ′⩾t be an array satisfying Assumption 3.4.2 such that ηj,t ′ :=
(t ′/ℓ(t)j,t ′) ⩾ e for all j ⩾ 0 and t ′ ⩾ t. Define for γ := 1/(τ− 1) and some
c > 1

α
(t ′)
[0,j) :=

νℓ
γ−1
0,t ′ j = 1,

c
(
α

(t ′)
[0,j−1) log(ηj−1,t ′) +β

(t ′)
[0,j−1)t

′2γ−1) j > 1,
(3.4.22)

β
(t ′)
[0,j) :=

{
νℓ

−γ
0,t ′ j = 1,

c
(
α

(t ′)
[0,j−1)ℓ

1−2γ
j−1,t ′ +β

(t ′)
[0,j−1) log(ηj−1,t ′)

)
j > 1,

(3.4.23)

similar to the recursions in [69, Lemma 1]. The sequence
(
α

(t ′)
[0,j)

)
j⩾1

closely is related to the expected number of self-avoiding t ′-good paths
(π0, . . . ,πj) of length j from π0 ∈ {u, v} to πj such that πj−1 > πj. The
sequence

(
β

(t ′)
[0,j)

)
j⩾1 is related to those paths where πj−1 < πj. Observe

that since c > 1, ηj,t ′ ⩾ e, and α(t)

[0,1),β
(t)

[0,1) ⩾ 0, it follows that k 7→ α
(t)

[0,k)

and k 7→ β
(t)

[0,k) are non-decreasing. We define for the same constant c > 1
the non-decreasing sequences

ϕ
(t ′)
[i,i+j) :=

{
νt ′γ−1 j = 1,

c
(
ϕ

(t ′)
[i,i+j−1) log(ηi+j−1,t ′) +ψ

(t ′)
[i,i+j−1)t

′2γ−1) j > 1,

(3.4.24)

ψ
(t ′)
[i,i+j) :=

{
0 j = 1,

c
(
ϕ

(t ′)
[i,i+j−1)ℓ

1−2γ
i+j−1,t ′ +ψ

(t ′)
[i,i+j−1) log(ηi+j−1,t ′)

)
j > 1.

(3.4.25)
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These sequences are related to the t ′-good paths emanating from t ′ that
are good on the segment [i, i+ j). Observe that the recursions are identical
to (3.4.22) and (3.4.23), except that their initial values are different. This
is crucial to give summable error bounds in t ′ later on. Below, we leave
out the superscript (t ′) for notational convenience, but we stress here that
these four sequences are dependent on both t ′ and t.

Claim 3.4.10 (Recursive bounds for number of paths). Under the same
assumptions as Proposition 3.4.1, let (ℓ(t)k,t ′)k⩾0,t ′⩾t be an array satisfying As-
sumption 3.4.2. Let ηj,t ′ = t ′/ℓ(t)j,t ′ and γ = 1/(τ− 1). For sufficiently large
c = c(τ),ν = ν(τ) in (3.4.22), (3.4.23), (3.4.24), and (3.4.25), it holds that

f
(t,t ′)
[i,i+j)(t

′, x) ⩽ x−γϕ[i,i+j) + 1{
x>ℓ

(t)

i+j−1,t ′

}xγ−1ψ[i,i+j). (3.4.26)

Moreover,

f
(t,t ′)
[0,j)(q, x) ⩽ 1{x<t ′}x

−γα[0,j) + 1{
x>ℓ

(t)

j−1,t ′

}xγ−1β[0,j). (3.4.27)

We postpone the proof to Section 3.A.1, which follows by induction from
arguments analogous to [69, Lemma 1]. As a consequence of (3.4.27), we
have for q ∈ {u, v}

f
(t,t ′)
[0,i)(q, t ′) ⩽ 1{t ′<t ′}t

′−γα[0,j) +1{
t ′>ℓ

(t)

j−1,t ′

}t ′γ−1β[0,j) = t
′γ−1β[0,j).

Moreover, since x < ℓ(t)k,t ′ implies that also x < ℓ(t)k−1,t ′ since k 7→ ℓ
(t)

k,t ′ is
nonincreasing, for x < ℓ(t)k,t ′ it follows from (3.4.26) that

f
(t)

[i,k)(t
′, x) ⩽ x−γϕ[i,i+j) + 1{

x>ℓ
(t)

k−1,t ′

}ψ[i,k) = x
−γϕ[i,i+j).

Hence, we can bound the summands in (3.4.8) using Claim 3.4.10 to obtain
for k ⩾ 2, t ′ > t,

P(E
(q)
bad(k, t ′)) ⩽

ℓ
(t)

k,t ′−1∑
x=1

k−1∑
i=1

f
(t,t ′)
[0,i)(q, t ′)f(t,t

′)
[i,k)(t

′, x)

⩽ t ′γ−1
ℓ
(t)

k,t ′−1∑
x=1

x−γ
k−1∑
i=1

β[0,i)ϕ[i,k).

(3.4.28)
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Similarly to (3.4.28) we bound the summands in (3.4.9) from above using
(3.4.19) and replacing the first sum over the permutation σ(u, v) in (3.4.19)
by a factor two, i.e., for n ⩾ 2 and t ′ > t,

P
(
E
(u,v)
short (n, t ′)

)
⩽ 2t ′γ−1

t ′∑
x=ℓ⌊n/2⌋,t ′

(
1{x<t ′}α[0,⌈n/2⌉)x

−γ+β[0,⌈n/2⌉)x
γ−1

)

·
(
1{x<t ′}

⌊n/2⌋−1∑
i=1

(
β[0,i)ϕ[i,⌊n/2⌋)x

−γ +β[0,i)ψ[i,⌊n/2⌋)x
γ−1

)
+ 1{x=t ′}β[0,⌊n/2⌋)

)
. (3.4.29)

Both (3.4.28) and (3.4.29) contain convolutions of the sequence β[0,i) with
ϕ[i,k) and ψ[i,k). This motivates to bound these convolutions in terms of
the original sequences α[0,k) and β[0,k).

Claim 3.4.11. Let ϕ[i,k),ψ[i,k),α[0,k),β[0,k) be as in (3.4.24), (3.4.25), (3.4.22),
(3.4.23), respectively. Then there exists C > 0 such that for k ⩾ 2

B
ψ
k :=

k−1∑
i=1

β[0,i)ψ[i,k) ⩽ C (k− 2)β[0,k)t
′−γ, (3.4.30)

B
ϕ
k :=

k−1∑
i=1

β[0,i)ϕ[i,k) ⩽ C(k− 1)α[0,k)t
′−γ. (3.4.31)

Proof. We prove by induction. We initialize the induction for k = 2, the
smallest value of k for which the sums in (3.4.31) and (3.4.30) are non-
empty. Indeed, then (3.4.30) holds by the initial value of ψ[i,i+1) = 0 in
(3.4.25), i.e.,

B
ψ
2 = β[0,1)ψ[1,2) = β[0,1) · 0 ⩽ C · 0 ·β[0,2)t

′−γ.

For k = 2 in (3.4.31) we substitute the recursion (3.4.22) on α[0,2). Thus,
we have to show that

B
ϕ
2 = β[0,1)ϕ[1,2) ⩽ cC

(
α[0,1) log(η1,t ′) +β[0,1)t

′2γ−1)t ′−γ.

Using the initial values in (3.4.22), (3.4.23), and (3.4.24), this is indeed true
for C ⩾ ν/c, i.e.,

B
ϕ
2 = νℓ−γ0,t ′ · νt ′γ−1 ⩽ cC

(
νℓ
γ−1
0,t ′ log(t ′/ℓ1,t ′)t

′−γ + νℓ−γ0,t ′t
′γ−1).
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Now, we advance the induction. To this end, one can derive the following
recursions using (3.4.24) and (3.4.25):

B
ψ
k+1 =

{
cB
ϕ
k ℓ
1−2γ
k,t ′ + cBψk log(ηk,t ′), if k > 1

0, if k = 1,
(3.4.32)

B
ϕ
k+1 =

{
cB
ϕ
k ℓ
1−2γ
k,t ′ + cBψk log(ηk,t ′), if k > 1

ν2t ′γ−1ℓ−γ0,t ′ , if k = 1.
(3.4.33)

The first term in (3.4.33) is a result of the non-zero initial value of ϕ[i,i+1) in
(3.4.24), while ψ[i,i+1) = 0, so that there is no such term in (3.4.32). Since
the two recursions depend only on each other’s previous values, we can
carry out the two induction steps simultaneously. By the two induction
hypotheses (3.4.30) and (3.4.31), and the definition of β[0,k+1) in (3.4.23),
we have that

B
ψ
k+1 = cB

ϕ
k ℓ
1−2γ
k,t ′ + cBψk log(ηk,t ′)

⩽ Cc
(
(k− 1)α[0,k)ℓ

1−2γ
k,t ′ + (k− 2)β[0,k) log(ηk,t ′)

)
t ′−γ

⩽ C(k− 1)β[0,k+1)t
′−γ,

proving (3.4.32). For (3.4.33), we assume that cC ⩾ ν so that using the
induction hypotheses and (3.4.22) the proof is finished, i.e.,

B
ϕ
k+1 = c log(ηk,t ′)B

ϕ
k + cBψk t

′2γ−1 + νt ′γ−1β[0,k)

⩽ c log(ηk,t ′)C(k− 1)α[0,k)t
′−γ

+ ct ′γ−1C (k− 2)β[0,k) + νt
′γ−1β[0,k)

⩽ C(k− 1)α[0,k+1)t
′−γ.

We combine Claim 3.4.11 with (3.4.28) and (3.4.29) to arrive to the proof
of Lemma 3.4.8.

Proof of Lemma 3.4.8. We start with (3.4.13). We recall from (3.4.28) the
bound on P

(
E
(q)
bad(k, t ′)

)
, and observe that (3.4.31) implies (3.4.13), since

there is C > 0 such that for k ⩾ 2

P
(
E
(q)
bad(k, t ′)

)
⩽ t ′γ−1

k−1∑
i=1

β[0,i)ϕ[i,k)

ℓ
(t)

k,t ′−1∑
x=1

x−γ

⩽ C(k− 1)t ′−1α[0,k)

ℓ
(t)

k,t ′−1∑
x=1

x−γ.
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For (3.4.14), we recall the bound (3.4.29) and bound using (3.4.31) and
(3.4.30) the factor on the second line in (3.4.29) by

1{x=t ′}β[0,⌊n/2⌋) + 1{x<t ′}Ct
′−γ((⌊n/2⌋− 1)α[0,⌊n/2⌋)x

−γ

+ (⌊n/2⌋− 2)β[0,⌊n/2⌋)x
γ−1

)
.

Now (3.4.14) follows by distinguishing the summands in (3.4.29) between
x < t ′ and x = t ′, and using that j 7→ α[0,j) and j 7→ β[0,j) are non-
decreasing so that we may round up their indices to ⌈n/2⌉ to obtain the
square. Lastly, the bounds (3.4.15) and (3.4.16) follow directly from (3.4.20),
(3.4.21), and (3.4.27), where we again round up the indices to obtain the
square.

3.4.3 Setting the birth-threshold sequence

After the event decomposition in Lemma 3.4.7 and the bounds on the
individual summands in Lemma 3.4.8, we are ready to choose the birth-
threshold array (ℓ(t)k,t ′)k⩾0,t ′⩾t to ensure that the sums in (3.4.13), (3.4.14),
(3.4.15), and (3.4.16) are sufficiently small. Our choice of (ℓ(t)k,t ′)k⩾0,t ′⩾t

will make the error probabilities in (3.4.8) and (3.4.9) arbitrarily small. Fix
δ ′ = δ ′(δ) > 0 that we choose later to be sufficiently small. We define

ℓ
(t)

k,t ′ :=


⌈δ ′t⌉ k = 0, (3.4.34a)

arg max
x∈N\{0,1}

{
α[0,k)x

1−γ
(⊛)

⩽
(
k log(t ′)

)−3}
k ⩾ 1. (3.4.34b)

Since k 7→ α[0,k) is non-decreasing and 1 − γ > 0 by (3.4.34b), k 7→
ℓ
(t)

k,t ′ must be nonincreasing in both indices. Using the upper bound on
t ′/ℓ(t)k,t ′ in the postponed Lemma 3.A.1 in Section 3.A.1, one can verify
for t sufficiently large that ℓ(t)k,t ′ ⩾ 2 for all k ⩽ Kt,t ′ . This makes the
array (ℓ(t)k,t ′)k⩾0,t ′⩾t well-defined. The choice of (ℓ(t)k,t ′)k⩾0,t ′⩾t in (3.4.34)
is similar to the choice in [69, Proof of Theorem 2] for t ′ = t. The main
difference is the extra log−3(t ′) factor on the rhs in (3.4.34b). This factor,
in combination with the 1/t ′-factor from Lemma 3.4.8 yields a summable
error in t ′ in (3.4.8) and (3.4.9). We comment that the additional log−3(t ′)

factor could be changed to another slowly varying function, but the choice
has to be o((t ′)ϵ) for all ϵ > 0, otherwise the entries of (ℓ(t)k,t ′) would not
be at least two, whence the array would be ill-defined.

We are ready to prove Proposition 3.4.1.
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Proof of Proposition 3.4.1. To prove (3.4.1), due to Corollary 3.4.7, we need
to show that the rhs in (3.4.8) and (3.4.9) is at most δ, for t sufficiently large.
To keep notation light, we write ℓk,t ′ := ℓ

(t)

k,t ′ . First, we consider the terms

in (3.4.8) where t ′ = t. Recalling the definition of E
(q)
bad(0, t) from (3.4.5)

and the upper bound on its probability in (3.4.15), we have for q ∈ {u, v}

Kt,t∑
k=0

P
(
E
(q)
bad(k, t)

)
⩽ δ ′ +O(1/t) +

Kt,t∑
k=1

α[0,k)

ℓk,t−1∑
x=1

x−γ, (3.4.35)

where the term δ ′+O(1/t) comes from the probability that q, the uniform
vertex in [t], is born before ℓ0,t = ⌈δ ′t⌉. Now approximating the last sum
in (3.4.35) by an integral and using (⊛) in (3.4.34b), we have for some
c1 > 0, q ∈ {u, v}

Kt,t∑
k=0

P
(
E
(q)
bad(k, t)

)
⩽ δ ′ + o(1) + c1

Kt,t∑
k=1

α[0,k)ℓ
1−γ
k,t (3.4.36)

= δ ′ + o(1) + c1 log−3(t)

Kt,t∑
k=1

k−3 = δ ′ + o(1).

We move on to the terms on the rhs in (3.4.8) for t ′ > t and show that their
sum is of order O(δ ′). Recall for q ∈ {u, v} the bound on P

(
E
(q)
bad(k, t ′)

)
in

(3.4.13), and observe that there is C ′ > 0 such that, approximating the sum
over x in (3.4.13) by an integral gives for t ′ > t, k ⩾ 2

P
(
E
(q)
bad(k, t ′)

)
⩽ C ′t ′−1(k− 1)α[0,k)ℓ

1−γ
k,t ′ ⩽

C ′

k2t ′ log3(t ′)
.

The last inequality follows from (⊛) in (3.4.34b). The rhs is summable in k
and t ′ so that, only considering the tail of the sum,

∞∑
t ′=t+1

Kt,t ′∑
k=2

P
(
E
(q)
bad(k, t ′)

)
= O

(
log−2(t)

)
. (3.4.37)

Combining (3.4.36) and (3.4.37), this establishes that the rhs in (3.4.8) is at
most 2δ ′ + o(1) for t sufficiently large, when summed over q ∈ {u, v}.

We continue by proving that the summed error probability in (3.4.9) is
small. First we consider the terms where t ′ > t. Recall (3.4.14). We use
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now that (a+ b)2 ⩽ 2(a2 + b2) for a,b > 0, so that there exists C ′ > 0
such that

P
(
E
(u,v)
short (n, t ′)

)
⩽ 2t ′2γ−2β2[0,⌈n/2⌉) +

C ′n

t ′
β2[0,⌈n/2⌉)

t ′−1∑
x=ℓ⌊n/2⌋,t ′

x2γ−2

+
C ′n

t ′
α2[0,⌈n/2⌉)

t ′−1∑
x=ℓ⌊n/2⌋,t ′

x−2γ

=: T11(n, t ′) + T12(n, t ′) + T2(n, t ′). (3.4.38)

Approximating the sums by integrals and using that k 7→ ℓk,t ′ is nonin-
creasing, there exists a different C ′ > 2 such that, relaxing the first two
terms in (3.4.38),

T11(n, t ′) + T12(n, t ′) ⩽ 2C ′nβ2[0,⌈n/2⌉)t
′2γ−2,

T2(n, t ′) ⩽ C ′nα2[0,⌈n/2⌉)ℓ
1−2γ
⌈n/2⌉,t ′t

′−1.

For T1 := T11 + T12, by (3.4.22) we obtain

cβ[0,⌈n/2⌉) ⩽ α[0,⌈n/2⌉+1)t
′1−2γ,

yielding by (⊛) in (3.4.34b)

T1(n, t ′) ⩽ 2C ′nα2[0,⌈n/2⌉+1)t
′−2γ/c2

= 2C ′n
(
α[0,⌈n/2⌉+1)ℓ

1−γ
⌈n/2⌉+1,t ′

)2(
t ′/ℓ⌈n/2⌉+1,t ′

)2−2γ
(ct ′)−2

⩽
2C ′n

(⌈n/2⌉+ 1)6 log6(t ′)(ct ′)2
(
t ′/ℓ⌈n/2⌉+1,t ′

)2−2γ . (3.4.39)

Rewriting T2 similarly,

T2(n, t ′) ⩽ C ′n
(
α[0,⌈n/2⌉)ℓ

1−γ
⌈n/2⌉,t ′

)2(
t ′/ℓ⌈n/2⌉,t ′

)
t ′−2

⩽
C ′n

⌈n/2⌉6 log6(t ′)t ′2
(
t ′/ℓ⌈n/2⌉,t ′

)
.

(3.4.40)

Recall that ℓ⌈n/2⌉+1,t ′ ⩾ 2 as mentioned after (3.4.34b). Thus, both (3.4.39)
and (3.4.40) are summable in t ′ and n. They tend to zero as t tends to
infinity, using for (3.4.39) that 2− 2γ < 1.

We are left with verifying that the terms where t ′ = t in (3.4.9) are of
order O(δ ′) when summed over n. For this the same reasoning holds as



94 distance evolutions

above, starting after (3.4.37), where the initial bound is the one in (3.4.16)
instead of (3.4.14). Here, all terms are a factor t ′ = t larger than before.
This yields that

Kt,t∑
n=0

P
(
E
(u,v)
short (n, t)) = o(1) +

C ′

log6(t)t
(t/ℓKt,t+1,t ′)

Kt,t∑
n=1

⌈n/2⌉−6

= O(log−6(t)) = o(1).

Recalling the conclusions after (3.4.37) and (3.4.40), we conclude that the
error terms in (3.4.8) and (3.4.9) are of order O(δ ′), so that (3.4.1) follows
by Corollary 3.4.7, when δ ′ is chosen sufficiently small so that the error
probabilities are at most δ, and η0,t ′ = t/ℓ0,t ⩾ e as required by the
definition of α[0,j) and β[0,j) before (3.4.22).

3.4.4 Extension to weighted distances

We extend the result on graph distances from Proposition 3.4.1 to weighted
distances, refining the results in Chapter 2. For this we recall Qt,t ′ from
(3.3.2).

Proposition 3.4.12 (Lower bound weighted distance). Consider the prefer-
ential attachment model with power-law exponent τ ∈ (2, 3). Equip every edge
upon creation with an i.i.d. copy of the non-negative random variable L. Let u, v
be two typical vertices in PAt. Then for any δ > 0, there exists ML > 0 such that

P
(
∃t ′ ⩾ t : d(L)

t ′ (u, v) ⩽ 2Qt,t ′ − 2ML

)
⩽ δ.

Proof. Fix δ ′ sufficiently small. Define

Egood(t) :=

∞⋂
t ′=t

(Kt,t ′⋂
k=0

⋂
q∈{u,v}

¬E
(q)
bad(k, t ′)

)
∩
( 2Kt,t ′⋂
n=0

¬E
(u,v)
short (n, t ′)

)
,

for Kt,t ′ := Kt,t ′ −MG, where MG > 0 is such that the above event holds
with probability at least 1− δ ′ by the proof of Proposition 3.4.1. Define
the conditional probability measure Pg(·) := P( · | Egood(t)). On the event
Egood(t), d

(G)

t ′ (u, v) > 2Kt,t ′ for all t ′ ⩾ t. Hence, recalling the definition
of the graph neighbourhood B

(G)

t and its boundary ∂B(G)

t from Definition
2.2.1, at all times t ′ ⩾ t also the graph neighbourhoods of u and v of
radius Kt,t ′ are disjoint, i.e.,

Pg

( ∞⋂
t ′=t

{
B

(G)

t ′ (u,Kt,t ′)∩B(G)

t ′ (v,Kt,t ′) = ∅
})

= 1.
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Since any path connecting u and v has to pass through the boundary of
the graph neighbourhoods, Pg-a.s. for all t ′,

d
(L)

t ′ (u, v) ⩾
∑

q∈{u,v}

d
(L)

t ′

(
q,∂B(G)

t ′ (q,Kt,t ′)
)

⩾
∑

q∈{u,v}

Kt,t ′−1∑
k=0

d
(L)

t ′

(
∂B

(G)

t ′ (q,k),∂B(G)

t ′ (q,k+ 1)
)
,

(3.4.41)

where for two sets of vertices V,W ⊂ [t ′] we define

d
(L)

t ′ (V,W) := min
v∈V,w∈W

d
(L)

t ′ (v,w).

This leaves to show that, for some ML =ML(δ
′), q ∈ {u, v},C > 0,

Pg

(
∃t ′ ⩾ t :

Kt,t ′−1∑
k=0

d
(L)

t ′

(
∂B

(G)

t ′ (q,k),∂B(G)

t ′ (q,k+ 1)
)
⩽ Qt,t ′ −ML

)
⩽ Cδ ′. (3.4.42)

We argue in three steps: we prove that it is sufficient to consider the error
probabilities only along a specific subsequence (ti)i⩾0 of times. This is
needed to obtain a summable error bound in t ′. Similarly to Proposition
2.4.1, we prove along the subsequence (ti)i⩾0 an upper bound on the
sizes of the graph neighbourhood boundaries of u and v up to radius Kt,ti .
This allows to bound the minimal weight on an edge between vertices at
distance k and k+ 1 from q ∈ {u, v}.

By the definition of Qt,t ′ and Kt,t ′ in (3.1.1) and (3.3.2), due to the
integer part, Kt,t ′ and the rhs between brackets in (3.4.42) decrease at the
times

ti := min{t ′ : Kt,t −Kt,t ′ = 2i}, for i ∈ {0, . . . ,Kt,t/2}, (3.4.43)

while the lhs between brackets in (3.4.42) may decrease for any t ′ ⩾ t.
Because the addition of new vertices can create new (shorter) paths, we
have for i ⩾ 1{

∃t ′ ∈ [ti−1,ti) : d
(L)

t ′

(
q,∂B(G)

t ′ (q,Kt,t ′)
)
⩽ Qt,t ′ −ML

}
⊆

{
d

(L)

ti

(
q,∂B(G)

ti
(q,Kt,ti + 2)

)
⩽ Qt,ti−1 −ML

}
,

where Kt,t ′ = Kt,ti + 2 for t ′ ∈ [ti−1, ti) follows from (3.4.43). By construc-
tion of ti and Qt,t ′ in (3.3.2), where the summands are nonincreasing,
there exists M1 > 0 such that for all t

|Qt,ti −Qt,ti−1 | ⩽M1.
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This yields that we can bound (3.4.44) further to obtain{
∃t ′ ∈ [ti−1,ti) : d

(L)

t ′

(
q,∂B(G)

t ′ (q,Kt,t ′)
)
⩽ Qt,t ′ −ML

}
⊆

{
d

(L)

ti

(
q,∂B(G)

ti
(q,Kt,ti + 2)

)
⩽ Qt,ti −ML +M1

}
.

Hence, by a union bound over i, we can bound (3.4.42), i.e.,

Pg

(
∃t ′ ⩾t : d(L)

t ′

(
q,∂B(G)

t ′ (q,Kt,t ′)
)
⩽ Qt,t ′ −ML

)
(3.4.44)

⩽
Kt,t/2∑
i=1

Pg

(
d

(L)

ti

(
q,∂B(G)

ti
(q,Kt,ti + 2)

)
⩽ Qt,ti −ML +M1

)
.

Below, in Lemma 3.A.2 in Section 3.A.1, we show that a generalisation of
Lemma 2.4.5 gives for B sufficiently large (depending on δ ′) andm(t)

i,k(B) :=

exp
(
2B(1∨ log(ti/t))(τ− 2)−k/2

)
that

Pg

(Kt,ti+2⋃
k=1

{
|∂B

(G)

ti
(q,k)| ⩾m(t)

i,k(B)
})

⩽ 2 exp
(
−B(1∨ log(ti/t))

)
.

(3.4.45)

We denote the complement of the event inside the P-sign by E
(i)

neigh(q)

for a fixed i. Define the conditional probability measure P
(i)
g,n(·) := P

(
· |

Egood ∩ E(i)

neigh(u)∩ E
(i)

neigh(v)
)
. The number of edges connecting a vertex at

distance k from q to a vertex at distance k+ 1 from q can then be bounded
for all k ⩽ Kt,ti + 2, i.e., P

(i)
g,n-a.s.

|∂B
(G)

ti
(q,k)| · |∂B(G)

ti
(q,k+ 1)| ⩽ m(t)

i,k(B) ·m
(t)

i,k+1(B)

⩽ exp
(
4B(1∨ log(ti/t))(τ− 2)−(k+1)/2

)
=: ni,k. (3.4.46)

Since all edges in the graph are equipped with i.i.d. copies of L, and as the
minimum of K i.i.d. random variables is nonincreasing in K, we have by
Lemma 2.3.11 for ξ > 0 that for k ⩽ Kt,ti + 1

P(i)
g,n

(
d

(L)

ti

(
∂B

(G)

ti
(q,k),∂B(G)

ti
(q,k+ 1)

)
⩽ F(−1)L

(
n−1−ξ
i,k

))
⩽ P(i)

g,n

(
min
j∈[ni,k]

Lj,k ⩽ F
(−1)
L

(
n−1−ξ
i,k

))
⩽ exp

(
− 4Bξ(1∨ log(ti/t))(τ− 2)−(k+1)/2

)
.
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Recall (3.4.41). We apply the inequality in the event in the first row above
for k ⩽ Kt,ti + 1 to obtain a bound on the lhs between brackets in the
second row in (3.4.44), i.e., by a union bound

P(i)
g,n

(
d

(L)

ti

(
q,∂B(G)

ti
(q,Kt,ti + 2)

)
⩽

Kt,ti
+1∑

k=0

F
(−1)
L

(
n−1−ξ
i,k

))

⩽

Kt,ti
+1∑

k=0

exp
(
− 4Bξ(1∨ log(ti/t))(τ− 2)−(k+1)/2

)
⩽ 2 exp

(
− 4Bξ(1∨ log(ti/t))(τ− 2)−1

)
. (3.4.47)

We now bound the sum in the above event from below to relate it to
the rhs between brackets in (3.4.44). We do so by modifying the proof
of Proposition 2.4.1. Afterwards, we bound the total error probability by
taking a union bound over the times (ti)i⩾0.

To bound F(−1)L

(
n−1−ξ
i,k

)
from below, we need an upper bound on ni,k

in (3.4.46) since z 7→ F
−(1)
L (1/z) is nonincreasing. We first establish a lower

and upper bound on ti. Recall the integer Kt,t ′ defined in (3.1.1), so that
we may write for t ′ ⩽ tKt,t/2

Kt,t ′ = 2
(

log log(t) − log
(

log(t ′/t)∨ 1
))
/| log(τ− 2)|− at ′

for some at ′ ∈ (0, 1) being the fractional part of the expression. Using this
notation one can verify that for i ⩽ Kt,t/2

ti ∈
[
t exp

(
(τ− 2)−i+1

)
, t exp

(
(τ− 2)−i−1

)]
=: [

¯
ti, t̄i]. (3.4.48)

Substituting the upper bound on ti into nk,i in (3.4.46), yields that there
exists C = C(ξ,B) > 0 such that

n1+ξi,k ∈
[

exp
(
(τ− 2)−i−k/2/C

)
, exp

(
C(τ− 2)−i−k/2

)]
,

which implies that, recalling Kt,ti = Kt,ti −MG for some constant MG > 0

by (3.4.2),

Kt,ti
+1∑

k=0

F
(−1)
L

(
n
−(1+ξ)
i,k

)
⩾

Kt,ti
−MG+1∑
k=0

F
(−1)
L

(
exp

(
−C(τ− 2)−i−k/2

))
.

Observe that for a monotone nonincreasing function g, g(1) <∞
⌊b⌋∑

k=⌈a⌉+1

g(k)
(⋆)

⩽
∫b
a

g(x)dx
(∗)
⩽

⌊b⌋∑
k=⌊a⌋

g(k). (3.4.49)
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Since z 7→ F
−(1)
L (1/z) is nonincreasing and bounded, we obtain by (∗) that

Kt,ti−MG+1∑
k=0

F
(−1)
L

(
n
−(1+ξ)
i,k

)
⩾

∫Kt,ti
x=0

F
(−1)
L

(
exp

(
−B(τ− 2)−i−x/2

))
dx−M.

Applying the change of variables y = x+ 2i+ 2 log(B)/| log(τ− 2)| yields
for C = 2 log(B)/| log(τ− 2)| and some constant ML ⩾M that

Kt,ti−MG+1∑
k=0

F
(−1)
L

(
n
−(1+ξ)
i,k

)
⩾

∫2i+Kt,ti+C
y=2i+C

F
(−1)
L

(
exp

(
− (τ− 2)−y/2

))
dy−M

⩾
∫2i+Kt,ti
y=2i

F
(−1)
L

(
exp

(
− (τ− 2)−y/2

))
dy−ML,

again using that z 7→ F
(−1)
L (1/z) is bounded and nonincreasing. By trans-

forming the integral back to a summation using (⋆) in (3.4.49), we obtain
by definition of Qt,ti in (3.3.2), and Kt,t −Kt,ti = 2i in (3.5.15)

Kt,ti−MG+1∑
k=0

F
(−1)
L

(
n
−(1+ξ)
i,k

)
⩾

2i+Kt,ti∑
k=2i+1

F
(−1)
L

(
exp

(
− (τ− 2)−k/2

))
−ML

=

Kt,t∑
k=Kt,t−Kt,ti+1

F
(−1)
L

(
exp

(
− (τ− 2)−k/2

))
−ML

= Qt,ti −ML.

Using this lower bound inside the event in (3.4.47), yields that

P(i)
g,n
(
d

(L)

ti

(
q,∂B(G)(q,Kt,ti + 2)

)
⩽ Qt,ti −ML

)
⩽ 2 exp

(
− 4Bξ(1∨ log(ti/t))(τ− 2)−1

)
.

(3.4.50)

Recall that we would like to show (3.4.42). Its proof is accomplished by
a union bound over the times (ti)i⩽Kt,t ′/2 if we show that there is a B
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sufficiently large such that the error probabilities on the rhs in (3.4.45) and
(3.4.50) are smaller than δ ′ when summed over i ⩽ Kt,t ′/2. For this it is
sufficient to show that for any δ̂ > 0 and C ′ > 0 there exists B > 0 such
that ∞∑

i=0

exp
(
−C ′B(1∨ log(ti/t))

)
⩽ δ̂.

This follows from the lower bound on ti in (3.4.48), since for B large

∞∑
i=0

exp
(
−C ′B(1∨ log(ti/t))

)
⩽

∞∑
i=0

exp
(
−C ′B(1∨ log(

¯
ti/t))

)
=

∞∑
i=0

exp
(
−C ′B(1∨ (τ− 2)−i+1)

)
⩽ 2 exp

(
−C ′B(τ− 2)

)
< δ̂.

3.5 proof of the upper bound

The upper bound of Theorem 3.3.3 is stated in the following proposition.

Proposition 3.5.1 (Upper bound weighted distance). Consider the preferential
attachment model with power-law exponent τ ∈ (2, 3). Equip every edge upon
creation with an i.i.d. copy of the non-negative random variable L. Let u, v be two
typical vertices in PAt. If I2(L) <∞, then for any δ > 0, there exists ML > 0

such that
P
(
∃t ′ : d(L)

t ′ (u, v) ⩾ 2Qt,t ′ +ML

)
⩽ δ. (3.5.1)

Regardless of the value of I2(L), for any δ, ε > 0, there exists ML > 0 such that

P
(
∃t ′ : d(L)

t ′ (u, v) ⩾ 2(1+ ε)Qt,t ′ +ML

)
⩽ δ. (3.5.2)

To prove Proposition 3.5.1, we have to show that for every t ′ > t there
is a t ′-present (u, v)-path whose total weight is bounded from above by
the rhs between brackets in (3.5.1) and (3.5.2), respectively. We construct
a t ′-present five-segment path π(t ′) of three segment types. We write it
as π(t ′) = −→π (t)

u,0 ◦ −→π
(t ′)
u,1 ◦ π

(t ′)
core ◦←−π (t ′)

v,1 ◦←−π
(t)

v,0. Here, we denote for a path
segment −→π = (π0, . . . ,πn) its reverse by ←−π := (πn, . . . ,π0). The path
segments are constructed similar to the methods demonstrated in Chapter
2.3. However, now we need stronger error bounds, so that the error terms
are also small when summed over t ′ ⩾ t. Let δ ′ > 0 be sufficiently small,
and (Mi)i⩽3 be suitable positive constants.
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Step 1. For q ∈ {u, v}, the path segment −→π (t)

q,0 := (q, . . . ,q0) connects q to
a vertex q0 that has indegree at least s(0)0 > 0 at time (1− δ ′)t. The
path segment uses only vertices that are older than (1− δ ′)t. The
path segments are fixed for all t ′ ⩾ t. The number of edges on −→π (t)

q,0

is bounded from above by M1 =M1(δ
′, s(0)0 ) with probability close

to one.

a) Since the number of edges on −→π (t)

q,0 is bounded, its total weight
can also be bounded by a constant. This is captured by the
constant ML in the statement of Proposition 3.5.1.

b) For the end vertex q0 of −→π (t)

q,1, for q ∈ {u, v}, we identify the
rate of growth of its indegree (D←q0(t

′))t ′⩾t. We bound D←q0(t
′)

from below during the entire interval [t,∞) by a sequence that
tends to infinity in t ′ sufficiently fast.

Step 2. For the path segments −→π (t ′)
u,1,π(t ′)

core, and←−π (t ′)
v,1 we argue, similar to the

proof of Proposition 3.4.12, that it is sufficient to construct these path
segments along a specific subsequence (ti)i⩾0, as the ti-present path
segments have small enough total weight when compared to Qt,t ′
for all t ′ ∈ (ti, ti+1]. With a slight abuse of notation we abbreviate
for the path (segments) π(i) := π(ti).

Step 3. For q ∈ {u, v}, the path segment −→π (i)

q,1 consists of at most Kt,ti +M2

edges and connects the vertex q0 to the so-called i-th inner core,
i.e., the set of vertices with a sufficiently large degree at time (1−

δ ′)ti. These path segments use only edges that arrived after time
(1− δ ′)ti and the total weight of any such path segment is therefore
independent of the total weight on the segments −→π (t)

u,0 and −→π (t)

v,0,
that use only edges that arrived before (1− δ ′)t. For the weighted
distance, we construct the path segment −→π (i)

q,1 greedily (minimizing
the edge weights) to bound the weighted distance between q0 and
the inner core from above by Qt,ti +M3.

Step 4. Denote the end vertices of −→π (i)

u,1 and −→π (i)

v,1 by w(i)
u and w(i)

v , respec-
tively. The middle path segment π(i)

core connects the two vertices
w

(i)
u ,w(i)

v in the inner core. The number of disjoint paths of bounded
length between from w

(i)
u to w(i)

v is growing polynomially in t ′. This
yields that d(L)

ti
(w(i)
u ,w(i)

v ) is bounded by a constant for all i. This
weight is captured by ML in Proposition 3.5.1.
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Figure 5: The five-segment path π(i) from u to v at a single time ti. The y-axis
represents the degree of the vertices at time ti. The connected dots form
the constructed path π(i) from u to v that is present at time ti. The top
continuous black line is the maximal degree in the graph at time ti,
while the dashed horizontal lines represent a degree-threshold sequence
(s(i)k )i⩾0,k⩾0 defined in the proof of Proposition 3.5.6 for the segments
−→π (i)
u,1 and←−π (i)

v,1.

Step 5. Eventually we glue the different path segments together and obtain
the results (3.5.1) and (3.5.2). The path segments −→π (t ′)

u,1,π(t ′)
core, and

←−π (t ′)
v,1 change at the times (ti)i⩾0, while the segments −→π (t)

u,0 and←−π (t)

v,0
stay the same for all t ′ ⩾ t.

See Figure 5 for a sketch of the constructed path and Figure 2 in the
introduction for a visualization of the construction of the subsequence
(ti)i⩾0 and the control of the degree of the vertex q0. Recall that the proof
of the lower bound was based on controlling the dynamically changing
graph neighbourhood up to distance Kt,t ′ = Kt,t ′ −MG. For the proof of
the upper bound, the dynamics of the graph are mostly captured by
controlling the degree of only two vertices, see Step 1b in the outline.

Step 1. Initial segments and degree evolution

Recall D←v (t ′), the indegree of vertex v at time t ′.

Lemma 3.5.2 (Finding a high-degree vertex). For any s(0)0 , δ ′ > 0 there exists
M > 0 such that for a typical vertex q in PAt

P
(
∄q0∈ [(1− δ ′)t] :d(L)

(1−δ ′)t(q,q0)⩽M and D←q0
(
(1− δ ′)t

)
⩾s(0)0

)
⩽ 3δ ′.

(3.5.3)
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Proof. Let Eold := {q < (1− δ ′)t}. Since q is chosen uniformly among the
first t vertices,

P(Eold) = 1− δ
′ +O(1/t).

Recall B(G)

t (x,R) from (2.2.1). From minor adaptations of the proofs of [81,
Theorem 3.6] for FPA, and [190, Proposition 5.10] for VPA it follows for all
δ ′ > 0 that there exists M1 such that

P
(
B

(G)

(1−δ ′)t(q,M1)∩ {x : D←x
(
(1− δ ′)t

)
⩾ s0) ̸= ∅ | Eold

)
⩾ 1− δ ′.

We refer the reader there for the details. Conditionally on the above event
between brackets there is a (1− δ ′)t-present path segment from q to q0,
whose edges carry i.i.d. weights. Hence, there exists M2 > 0 such that the
weight on the segment can be bounded, yielding (3.5.3).

The following lemma bounds the degree evolution from below. It uses
martingale arguments that are inspired by [193]. However, here the state-
ment only refers to the process of a single vertex that has initial degree
at least s where [193] considers a set of vertices for any initial degree in
FPA. Our statement applies to both FPA and VPA. Moreover, we consider
the degree during the entire interval [t,∞). See also [24, Section 5.1] for
results on the degree of an early vertex in FPA(m, δ), where the considered
vertex is born at time o(t).

Lemma 3.5.3 (Indegree lower bound). Consider the preferential attachment
model with power-law parameter τ > 2. Let q0 be a vertex such that D←q0(t) ⩾
s ⩾ 2. There exists a constant c > 0, not depending on s, such that for all δ ′ > 0

P
(
∃t ′ ⩾ t : D←q0(t

′) ⩽ δ ′s(t ′/t)1/(τ−1)
)
⩽ cδ ′. (3.5.4)

Proof. Let γ := 1/(τ− 1). Both for FPA and VPA, it holds by Definitions
1.2.4 and 1.2.5 that

P
(
D←q0(t

′ + 1) ⩾ D←v (t ′) + 1 | PAt ′
)
⩾ γD←q0(t

′)/t ′

for any t ′ ⩾ t. Let (Xt,t ′)t ′⩾t be a discrete-time pure birth process satisfy-
ing Xt,t = s and

P
(
Xt,t ′+1 = Xt,t ′ + 1 | Xt,t ′ = x

)
= 1− P

(
Xt,t ′+1 = Xt,t ′ | Xt,t ′ = x

)
= γx/t ′.

(3.5.5)

Then the degree evolution (D←q0(t
′))t ′⩾t and (Xt,t ′)t ′⩾t can be coupled

such that the degree evolution dominates the birth process in the entire



3.5 proof of the upper bound 103

interval [t,∞). We first show that for any k > −s and γ ∈ (0, 1), provided
that t ′ ⩾ t ⩾ kγ,

Z
(k)
t,t ′ :=

Γ(t ′)

Γ(t ′ + kγ)

Γ(t+ kγ)

Γ(t)

Γ(Xt,t ′ + k)

Γ(Xt,t ′)
(3.5.6)

is a non-negative martingale. The result will then follow by an application
of the maximal inequality for k = −1. Clearly E[|Z

(k)
t,t ′ |] < ∞, as the

arguments in the Gamma functions in (3.5.6) are bounded away from 0.
Moreover, since

Γ(x) = (x− 1)Γ(x− 1), (3.5.7)

and using (3.5.5),

E
[Γ(Xt,t ′+1 + k)
Γ(Xt,t ′+1)

| Xt,t ′
]

=
t ′ − γXt,t ′

t ′
Γ(Xt,t ′ + k)

Γ(Xt,t ′)
+
γXt,t ′

t ′
Γ(Xt,t ′ + k+ 1)

Γ(Xt,t ′ + 1)

=
Γ(Xt,t ′ + k)

Γ(Xt,t ′)

(
1+

kγ

t ′

)
,

making it straightforward to verify that the martingale property for Z(k)
t,t ′

holds for t ′ ⩾ t. Due to Kolmogorov’s maximal inequality, for any T >
t, λ > 0

P

(
sup
t⩽t ′⩽T

Z
(k)
t,t ′ ⩾ λ

)
⩽

E[Z
(k)
t,T ]

λ
=
Z
(k)
t,t

λ
=
Γ(Xt,t + k)

λΓ(Xt,t)
=
Γ(s+ k)

λΓ(s)
.

(3.5.8)

Substituting (3.5.6) and k = −1, we see, using (3.5.7),{
sup
t ′⩾t

Z
(−1)
t,t ′ ⩾ λ

}
=

{
∃t ′ ⩾ t : Γ(t ′)

Γ(t ′ − γ)

Γ(t− γ)

Γ(t)

Γ
(
Xt,t ′ − 1

)
Γ
(
Xt,t ′

) ⩾ λ

}
=

{
∃t ′ ⩾ t : Xt,t ′ − 1 ⩽

Γ(t ′)

Γ(t ′ − γ)

Γ(t− γ)

Γ(t)

1

λ

}
⊇

{
∃t ′ ⩾ t : Xt,t ′ ⩽

Γ(t ′)

Γ(t ′ − γ)

Γ(t− γ)

Γ(t)

1

λ

}
.

Since Γ(x)/Γ(x+ a) = x−a(1+O(1/x)), by (3.5.8) there exists c ′ such that
for t sufficiently large

Γ(t ′)

Γ(t ′ − γ)

Γ(t− γ)

Γ(t)
⩽ c ′(t ′/t)γ.
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Choosing λ = c ′/(sδ ′) yields

P
(
∃t ′ ⩾ t : Xt,t ′ ⩽

1

λ
c ′(t ′/t)γ

)
= P

(
∃t ′ ⩾ t : Xt,t ′ ⩽ δ ′s(t ′/t)γ

)
⩽

δ ′s

c ′(s− 1)
.

Now (3.5.4) follows, since s ⩾ 2 and
(
Dq0(t

′)
)
t ′⩾t

d
⩾
(
Xt,t ′)

)
t ′⩾t.

Remark 3.5.4. The proof of this lemma can be adapted to obtain an upper bound
on the degree evolution, by applying Kolmogorov’s maximal inequality to the
martingale Z(1)

t,t ′ .

Step 2. Sufficient to construct the path along a subsequence of times

Lemma 3.5.5 (Subsequence of times). Consider the preferential attachment
model under the same conditions as Proposition 3.5.1 and let (ti)i⩾0 be as defined
in (3.4.43). If there exists ML > 0 such that

P
(
∃i ∈ [Kt,t/2] : d

(L)

ti
(u, v) ⩾ 2Qt,ti +ML

)
⩽ δ, (3.5.9)

then (3.5.1) holds. Similarly, (3.5.2) holds if there exists ML > 0 such that for
any ε > 0 and t sufficiently large

P
(
∃i ∈ [Kt,t/2] : d

(L)

ti
(u, v) ⩾ 2(1+ ε)Qt,ti +ML

)
⩽ δ. (3.5.10)

Proof. Recall (3.3.2). The rhs between brackets in (3.5.1) only decreases
at the times (ti)i⩾0, while the lhs is nonincreasing in t ′. By (3.3.2), for
i > Kt,t/2, Qt,ti = Qt,tKt,t/2 and the asserted statements follow.

Step 3. Greedy path to the inner core

Define the i-th inner core, for ti from (3.4.43), and with t̂i := (1− δ ′)ti, as

Core(i) := {x ∈ [t̂i] : Dx
(
t̂i
)
⩾ t̂

1
2(τ−1)

i log− 1
2 (t̂i)}. (3.5.11)

Proposition 3.5.6 (Weighted distance to the inner core). Consider the prefer-
ential attachment model under the same conditions as Proposition 3.5.1. There
exists C > 0 such that for every δ ′ > 0, there exist s(0)0 ,M > 0 such that for a
vertex q0 satisfying Dq0

(
(1− δ ′)t

)
⩾ s(0)0 , when I2(L) <∞,

P

( ⋃
i⩽Kt,t/2

{
d

(L)

ti
(q0, Core(i)) ⩾ Qt,ti +M

})
⩽ Cδ ′. (3.5.12)
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Regardless of the value of I2(L), there exists M > 0 such that for every ε > 0,
there is an s(0)0 > 0 such that for a vertex q0 satisfying Dq0

(
(1− δ ′)t

)
⩾ s(0)0 ,

P

( ⋃
i⩽Kt,t/2

{
d

(L)

ti
(q, Core(i)) ⩾ (1+ ε)Qt,ti +M

})
⩽ Cδ ′. (3.5.13)

The bounds on the weighted distance in Proposition 3.5.6 are realized by
constructing the segments −→π (i)

u,1 and −→π (i)

v,1, whose total weight we bound
from above. For this we follow the same ideas as in Proposition 2.3.4,
up to computational differences. Therefore, the proof we give here is not
completely self-contained and for some bounds we will refer the reader
back to Chapter 2.

Preparations for the proof of Proposition 3.5.6

For some constants s(0)0 , δ ′ > 0, the sequence εk := (k+ 1)−2, and t̂i from
(3.5.11), define the degree threshold sequence

s
(i)

k =


δ ′s(0)0

(
t̂i/t

) 1
τ−1 k = 0, (3.5.14a)

min
{(
s
(i)

k−1

)(1−εk)/(τ−2), t̂ 1
2(τ−1)

i log− 1
2 (t̂i)

}
k > 0. (3.5.14b)

For each time ti, the initial value s(i)0 is chosen such that it matches the
bound on the degree in (3.5.4). The maximum value of s(i)k , for each fixed t̂i,
matches the condition for vertices to be in the i-th inner core, see (3.5.11).
Set

κ(i) := min{k : s(i)k+1 = s
(i)

k }. (3.5.15)

Denote by L
(i)

k the k-th vertex layer: the set of vertices with degree at least
s
(i)

k at time t̂i, i.e.,

L
(i)

k := {x ∈ [t̂i] : Dx(t̂i) ⩾ s
(i)

k }.

The path segment −→π (i)

q,1 to the inner core has length 2κ(i) and uses alter-
nately a young vertex y(i)

k ∈ [t̂i, ti] and an old vertex π(i)

k from the layer L(i)

k .
Thus, for π0 := q0, −→π (i)

q,1 has the form

−→π (i)

q,1 = (π0,y(i)

1 ,π(i)

1 , . . . ,y(i)

κ(i)
,π(i)

κ(i)
).

To keep notation light we omit a subscript q for the individual vertices on
the segments −→π (i)

q,1 for q ∈ {u, v}.
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In the next lemmas, we show that −→π (i)

q,1 exists for all i with probability
close to one, and bound its total weight. We outline the steps briefly. Using
the choice of s(i)k , we bound κ(i) in terms of Kt,ti . Then, since the number
of vertices that have degree at least s(i)k+1 at time t̂i is sufficiently large, it
is likely that there are many connections from a vertex π(i)

k via a connector
vertex y(i)

k+1 to the (k+ 1)-th layer. We denote the set of connectors by
A

(i)

k+1

(
π

(i)

k

)
, i.e., for a vertex π(i)

k ∈ L
(i)

k ,

A
(i)

k+1

(
π

(i)

k

)
:= {y ∈ (t̂i, ti] : ∃x(i)k+1 ∈ L

(i)

k+1 : π
(i)

k ↔ y↔ x
(i)

k+1}.

Given (π0,π(i)

1 , . . . ,π(i)

k ), we greedily set, if A(i)

k+1(π
(i)

k ) is non-empty,

(y(i)

k+1,π(i)

k+1) := arg min
(y,x(i)k+1)∈

[t̂i,ti]×L
(i)
k+1

{
L
(π

(i)
k ,y)

+ L
(y,x(i)k+1)

}
. (3.5.16)

If there exists k ⩽ κ(i) such that A
(i)

k+1(π
(i)

k ) = ∅, we say that the con-
struction has failed. When the construction succeeds, we can bound the
weighted distance to the inner core, i.e.,

d
(L)

ti
(π0, Core(i)) ⩽

κ(i)−1∑
k=0

d
(L)

ti
(π(i)

k ,π(i)

k+1)

⩽
κ(i)−1∑
k=0

(
L
(π

(i)
k ,y(i)

k+1)
+ L

(y
(i)
k+1,π(i)

k+1)

)
.

(3.5.17)

We show that for all i there exists a sequence (n(i)

k )k⩽κ(i) such that
|A

(i)

k+1

(
π

(i)

k

)
| ⩾ n

(i)

k for all k ⩽ κ(i) with probability close to one. This
allows to bound the minimal weight in the rhs of (3.5.16) from above, so
that eventually this yields an upper bound for the rhs in (3.5.17).

We start with a lemma that relates Kt,ti to κ(i), half the length of −→π (i)

q,1.
Also, we show that k 7→ s

(i)

k is bounded from below by a doubly exponen-
tially growing sequence.

Lemma 3.5.7. Let
(
s
(i)

k

)
i⩽Kt,t/2,k⩽κ(i) as in (3.5.14b), with s(0)0 sufficiently

large. Then

s
(i)

k ⩾
(
δ ′s(0)0

(
t̂i/t

)1/(τ−1))c ′(τ−2)−k (3.5.18)

for some constant c ′ > 0. There exists M ∈ N such that for κ(i) defined in
(3.5.15) and i ⩽ Kt,t/2

κ(i) ⩽ Kt,ti/2+M. (3.5.19)
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Proof. By our choice εk = (k+ 1)−2 before (3.5.14b), it holds that
∏∞
j=1(1−

εk) > 0. The bound (3.5.18) follows immediately from the definition of
(s(i)k ) in (3.5.14b). By Lemma 2.3.7, the bound (3.5.19) immediately follows
for i = 0, leaving to verify the bound for i ⩾ 1. By the choice of κ(i) in
(3.5.15) and (s(i)k ) in (3.5.14b), and the bound (3.5.18), for any k ⩾ κ(i) it
holds that (

δ ′s(0)0
(
t̂i/t

)1/(τ−1))c ′(τ−2)−k
⩾ t̂

1
2(τ−1)

i log− 1
2 (t̂i)

Taking logarithms twice, and rearranging gives that for k ⩾ κ(i),

k log(1/(τ− 2))+ log log(t̂i/t) + log

(
1+

(τ− 1) log
(
δ ′s(0)0

)
log(t̂i/t)

)

⩾ log log(t̂i) + log
(
1

2c ′
−
τ− 1

2c ′
log log(t̂i)

log(t̂i)

)
.

From (3.5.11) it follows for all i ⩽ Kt,t/2 that t̂i ⩾ (1− δ ′)t. Thus, the last
terms on both lines are bounded by a constant for large t. Hence, there is
M =M(τ) such that if s(0)0 ⩾ 1/δ

′, i ⩾ 1

κ(i) ⩽
log log(t̂i) − log log(t̂i/t)

| log(τ− 2)|
+M ′.

By construction of (ti)i⩽Kt,t/2 in (3.4.48), there exists b > 0 such that
t̂i ⩽ tb, for all i ⩽ Kt,t/2. This relates log log(t̂i) to log log(t). Hence,
there exists M such that (3.5.19) holds for i ⩾ 1, recalling t̂i = (1− δ ′)ti,
and the definition of Kt,t ′ in (3.1.1).

We now prove Proposition 3.5.6. We construct the segment −→π (i)

q,1 for
i ⩽ κ(i) and q ∈ {u, v}.

Proof of Proposition 3.5.6. Let Edeg := {∀i ⩾ 0 : D←q0(t̂i) ⩾ s
(i)

0 }. By Lemma
3.5.3 and the choice of (s(i)0 )i⩾0 in (3.5.14a) we have that

P(¬Edeg) ⩽ cδ
′.

We write Pdeg(·) := P( · | Edeg). We will first show that with probability
close to one, the sets of connectors are sufficiently large. More precisely,
for a set of vertices {π

(i)

k }k⩽κ(i),i⩽Kt,t/2, such that π(i)

k ∈ L
(i)

k and setting
π

(i)

0 := π0 = q0 for all i, we show that

Pdeg

( ⋃
i⩽Kt,t/2

⋃
k⩽κ(i)

{
|A

(i)

k+1

(
π

(i)

k

)
| ⩽ n(i)

k

})
⩽ δ1

(
s
(0)

0

)
, (3.5.20)



108 distance evolutions

where δ1
(
s
(0)

0

)
is a function that tends to 0 as s(0)0 tends to infinity and, for

c1 > 0 chosen below,
n

(i)

k := c1δ
′(s(i)k )εk . (3.5.21)

Then, conditioning on the complement of the event in (3.5.20), we will
bound the minimal weight of connections to L

(i)

k+1 via the sets A
(i)

k+1

(
π

(i)

k

)
using (3.5.16) and arrive to (3.5.12) and (3.5.13) using the construction of
the greedy path in (3.5.16). We follow the same steps as in Lemma 2.3.10.
For notational convenience we leave out the superscript (i) for the various
sequences and sets whenever it is clear from the context. For a set of
vertices V ⊂ [t ′], define D←V (t ′) :=

∑
x∈VD

←
x (t ′). By Lemma 2.3.8, the

probability that an arbitrary vertex in (t̂i, ti] is in Ak+1(πk), is at least

pk(πk,Lk+1) :=
1

t̂2i
ηD←πk(t̂i)D

←
Lk+1

(t̂i), (3.5.22)

for some constant η > 0, where this event happens independently of
the other vertices. Since the set (t̂i, ti] contains δ ′ti vertices, the random
variable |Ak+1(πk)| stochastically dominates a binomial random variable,
i.e.,

|Ak+1(πk)|
d
⩾ Bin

(
δ ′ti,pk(πk,Lk+1)

)
=: Ak. (3.5.23)

Let c2 := c2.3.9 be the constant from Lemma 2.3.9. Conditioning on
D←Lk+1(t̂i) yields that

E[Ak] ⩾ E
[
Ak | D←Lk+1(t̂i) ⩾ c2t̂is

2−τ
k+1

]
·P
(
D←Lk+1(t̂i) ⩾ c2t̂is

2−τ
k+1

)
,

(3.5.24)
where the latter factor equals 1− o(1) by Lemma 2.3.9. Since πk ∈ Lk,
we have that D←πk(t̂i) ⩾ sk. We substitute this and the conditioned bound
on D←Lk+1(t̂i) in (3.5.24) into pk(πk,Lk+1) in (3.5.22). By the recursive
definition of s(i)k in (3.5.14b) and n(i)

k in (3.5.21) we obtain that there exists
c1 > 0 such that

E[Ak] ⩾ δ
′ti
ηc2t̂i(s

(i)

k+1)
2−τs

(i)

k

t̂2i
(1− o(1)) ⩾ 2c1δ

′(s(i)k )εk = 2n(i)

k .

An application of Chernoff’s bound and the constructed stochastic domi-
nation (3.5.23) yields for π(i)

k ∈ L
(i)

k that

Pdeg
(
|A

(i)

k+1

(
π

(i)

k

)
| ⩽ n(i)

k

)
⩽ exp

(
−n(i)

k /4
)
.
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For details we refer the reader to the proof of Lemma 2.3.10. We return to
(3.5.20). By a union bound over the layers k ⩽ κ(i) and times (ti)i⩽Kt,t/2,
it remains to show that

Kt,t/2∑
i=1

κ(i)∑
k=1

exp
(
−n(i)

k /4
)
−→ 0, as s(0)0 →∞, (3.5.25)

with n(i)

k from (3.5.21). We postpone showing this to the end of the proof.
Define the conditional probability measure

Pd,c(·) := P

(
·
∣∣∣Edeg ∩

Kt,t/2⋂
i=1

κ(i)⋂
k=1

{
|A

(i)

k+1

(
π

(i)

k

)
| > n

(i)

k

})
.

Thus, the path segment −→π q,1 from q0 to the inner core exists Pd,c-a.s. We
greedily choose the vertices (y(i)

k ,π(i)

k+1) as in (3.5.16). We bound the weight
of the segment, i.e., the rhs of (3.5.17) to prove (3.5.12) and (3.5.13). Let
L

(i)
m,n be i.i.d. copies of L. Since the minimum of N i.i.d. random variables

is nonincreasing in N, the weighted distance between π(i)

k and π(i)

k can be
bounded for k ⩽ κ(i) − 1, i.e., for k ⩽ κ(i) and i ⩽ Kt,t/2, Pd,c-a.s.

d
(L)

ti

(
π

(i)

k ,π(i)

k+1

)
⩽ min
j∈[n(i)

k ]

(
L

(i)

1,j + L
(i)

2,j

)
.

Applying (⋆) in (2.3.24) yields for ξ ∈ (0, 1) that

Pd,c

(
d

(L)

ti

(
π

(i)

k ,π(i)

k+1

)
⩾ F(−1)L1+L2

((
n

(i)

k

)−1+ξ))
⩽ exp

(
−
(
n

(i)

k

)ξ),
where F(−1)L1+L2

denotes the generalised inverse of the distribution of the sum
of two i.i.d. copies of L. Recall the bound (3.5.17). By a union bound over
the subsegments (π(i)

k ,yik,π(i)

k+1) for k ⩽ κ(i) and the times (ti)i⩽Kt,t/2,

Pd,c

( ⋃
i⩽Kt,t/2

{
d

(L)

ti
(q0, Core(i)) ⩾

κ(i)−1∑
k=0

F
(−1)
L1+L2

((
n

(i)

k

)−1+ξ)})

⩽
Kt,t/2∑
i=0

κ(i)−1∑
k=0

exp
(
−
(
n

(i)

k

)ξ). (3.5.26)
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To bound the error probabilities in (3.5.25) and (3.5.26), and the sum inside
the event in (3.5.26), we bound n(i)

k from below. By its definition in (3.5.21),
the bound on ti in (3.4.48) and the bound on s(i)k in (3.5.18)

n
(i)

k = c1δ
′(s(i)k )εk

⩾ c1δ
′
(
δ ′s(0)0

(
t̂i/t

)1/(τ−1))c ′(τ−2)−kεk
= c1δ

′
(
δ ′s(0)0 (1− δ ′)1/(τ−1) exp

(τ− 2
τ− 1

(τ− 2)−i
))c ′(τ−2)−kεk

Assuming that s(0)0 ⩾ δ
′2(1− δ ′)2/(τ−1), we obtain since εk = (k+ 1)−2 by

definition above (3.5.14a)

n
(i)

k ⩾ c1δ
′
(

exp
(1
2

log(s(0)0 ) +
τ− 2

τ− 1
(τ− 2)−i

))c ′(τ−2)−kεk
= c1δ

′ exp
(c ′
2

log(s(0)0 )(k+ 1)−2(τ− 2)−k

+
τ− 2

τ− 1
(k+ 1)−2(τ− 2)−(i+k)

)
. (3.5.27)

Since (τ− 2)−k grows exponentially for τ ∈ (2, 3), while εk = (1+ k)−2

decreases polynomially, there exist c3 > 0, c4 > 1 such that n(i)

k ⩾
c1δ
′ exp(log(s0)c3ck4 + c3c

k+i
4 ). Substituting this bound into (3.5.25) and

(3.5.26), we observe that the terms are summable in both i and k and tend
to zero as s(0)0 tends to infinity.

We are left with relating the sum on the rhs in the event in (3.5.26) to
the rhs in (3.5.12) and (3.5.13), respectively, assuming that s(0)0 is large.
Recalling (3.5.27), we assume s(0)0 is sufficiently large so that there exists
c5 > 0

(n(i)

k )(1−ξ) ⩾ exp
(
2c5(k+ 1)

−2(τ− 2)−(i+k)
)
.

Since z 7→ F
(−1)

L (1/z) is nonincreasing, and κ(i) ⩽ Kt,ti/2+M by (3.5.19),
we obtain

κ(i)−1∑
k=0

F
(−1)
L1+L2

((
n

(i)

k

)−1+ξ)

⩽

Kt,ti/2+M−1∑
k=0

F
(−1)
L1+L2

(
exp

(
− 2c5(k+ 1)

−2(τ− 2)−(i+k)
))

.
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Recall ε > 0 from the statement of Proposition 3.5.6. In Claim 3.A.3 we
show that for all ε > 0 there exists M > 0 such that

Kt,ti/2+M−1∑
k=0

F
(−1)
L1+L2

(
exp

(
−c5(k+ ζ)

−2(τ− 2)−(i+k)
))

⩽ (1+ ε1{I2(L)=∞})Qt,ti +M.

Substituting this bound inside the event in (3.5.26) and recalling that s(0)0
is chosen sufficiently large so that the total error probability from (3.5.25)
and (3.5.26) is at most Cδ ′ yields Proposition 3.5.6.

Step 4. Bridging the inner core

We prove a lemma that shows that the path segments (π(i)
core)i⩽Kt,t/2 exist

and their total weight is bounded from above by a constant for all i. Recall
Core(i) from (3.5.11).

Lemma 3.5.8. Consider the preferential attachment model with power-law ex-
ponent τ ∈ (2, 3). Let {w(i)

u ,w(i)
v }i⩽Kt,t/2 be a set of vertices such that for all i,

w
(i)
u ,w(i)

v ∈ Core(i). Then for every δ ′ > 0, there exists M > 0 such that

P

( ⋃
i⩽Kt,t/2

{
d

(L)

ti
(w(i)
u ,w(i)

v ) ⩾M
})
⩽ δ ′. (3.5.28)

Proof. From [81, Proposition 3.2] it follows for FPA that for fixed i, whp,

P
(

diam(ti)
G (Core(i)) ⩽

2(τ− 1)

3− τ
+ 6
)
⩾ 1− o(1/ti), (3.5.29)

where diam(t ′)
G (V) := maxw1,w2∈V d

(G)

t ′ (w1,w2) for a set of vertices V ⊂
[t ′]. The statement (3.5.29) holds also for VPA as explained in the proof of
Proposition 2.3.5. A union bound yields that

P

( ⋃
i⩽Kt,t/2

{
diamG(Core(i)) >

2(τ− 1)

3− τ
+ 6

})
=

Kt,t/2∑
i=1

o(1/ti) = o(1),

since Kt,t = O(log log(t)), and ti is increasing in i. We sketch how to
extend this result to weighted distances, using the construction in the
proof of [81, Proposition 3.2] which in turn relies on [36, Chapter 10]. In
[81, Proposition 3.2] it is shown that the inner core dominates an Erdős-
Rényi random graph (ERRG) G(ni,pi), where there is an edge between
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two vertices x,y ∈ Core(i) if there is a connector in [(1− δ ′)ti, ti] in PAti ,
where

ni =
√
ti, pi =

1

2
t

1
(τ−1)−1

i log−2(ti).

The weight on the edge (w1,w2) in the ERRG is L(i,y) + L(y,j), where
y is a uniformly chosen connector of w1 and w2 in PAti . Now, for the
construction used in [36, Chapter 10], one can embed two ri-regular trees
of depth ∆ > 0 in the ERRG, rooted in w(i)

u and w(i)
v , respectively, whp.

Here ri ⩾ tai , for some a > 0, and ∆ is a constant such that all vertices at
distance ∆ from their root are members of both trees. Denote this event by
Etree. On this event, there are at least ri disjoint paths from w

(i)
u to w(i)

v in
PAti of 4∆ edges, and we can bound

d
(L)

ti
(w(i)
u ,w(i)

v ) ⩽ min
n⩽ri

4∆∑
j=1

L
(n)
j ,

for i.i.d. copies of L. Moreover, for F(−1)L1+...L4∆
being the distribution of the

sum of 4∆ i.i.d. copies of L, for C sufficiently large

P

( ⋃
i⩽Kt,t/2

{
min
j⩽tai

4∆∑
j=1

L
(n)
j ⩾ C

})
⩽
Kt,t/2∑
i=1

(
1− FL1+...L4∆(C)

)tai < δ ′,
since by choosing C large, but independently of t, FL1+...L4∆(C) can be
brought arbitrarily close to 1. The asserted bound (3.5.28) follows from a
union bound over the above event and ¬Etree.

Step 5. Gluing the segments

We are ready to prove the main proposition of this section.

Proof of Proposition 3.5.1. Recall Lemma 3.5.5. We have to show that at the
times (ti)i⩾0 there is a path from u to v such that its total weight is
bounded from above by the rhs between brackets in (3.5.9) and (3.5.10),
with probability at least 1− δ. Let C3.5.6 be the constant from Proposi-
tion 3.5.6. Set δ ′ = δ/(7+ 2C3.5.6). Let M3.5.2 and M3.5.6 be the constants
obtained from applying Lemma 3.5.2 and Proposition 3.5.6 for δ ′, respec-
tively. Lastly, let M3.5.8 be the constant from applying Lemma 3.5.8 for
δ ′. The existence of the path segments follows now directly from a union
bound over the events described in Lemma 3.5.3 and Proposition 3.5.6
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for q ∈ {u, v}, and Lemma 3.5.8. Hence, the summed error probability is
(2 · 3+ 2C+ 1)δ ′ = δ. The total weight of the constructed paths (π(i))i⩾0 is
bounded from above by 2Qt,ti + 2(M3.5.2 +M3.5.6) +M3.5.8 for all i ⩾ 0.
Thus, setting ML := 2(M3.5.2 +M3.5.6) +M3.5.8 in the statement of Propo-
sition 3.5.1 finishes the proof.

3.a remaining proofs

3.a.1 Lower bound

Proof of Lemma 3.4.10. We verify (3.4.26) by induction. Recall the initial
values in (3.4.24) and (3.4.25). We initialize the induction for j = 1. By
(2.4.5), since x < t ′

f
(t,t ′)
[i,i+1)(t

′, x) = p(t ′, x) = νx−γt ′γ−1 = νt ′γ−1 · x−γ + 0 · xγ−1,

establishing (3.4.26) for j = 1. We advance the induction so that we may
assume (3.4.26) for j = k. Then, using the definition of f in (3.4.17), which
counts only the good paths and relies on the product form of p in (2.4.5),
we can write

f
(t,t ′)
[i,i+k+1)(t

′, x) ⩽
t ′∑

z=ℓi+k,t ′

f
(t,t ′)
[i,i+k)(t

′, z)p(z, x).

This bound does not hold with equality, because the first factor on the
rhs counts the good self-avoiding paths from t ′ to z, but the vertex x is
not necessarily excluded in these paths, while these paths are excluded
on the lhs. Recall from (2.4.5) that p(z, x) = ν(x∧ z)−γ(x∨ z)γ−1. Since f
only counts the good paths, observe that if z < x, then x > ℓi+k,t ′ . Thus,
splitting the sum in two, whether z ⩾ x or z < x, we obtain that

f
(t,t ′)
[i,i+k+1)(t

′, x) ⩽ νx−γ
t ′∑

z=ℓi+k,t ′∨x

f
(t,t ′)
[i,i+k)(t

′, z)zγ−1 (3.A.1)

+ 1{x>ℓi+k,t ′}
νxγ−1

x−1∑
z=ℓi+k,t ′

f
(t,t ′)
[i,i+k)(t

′, z)z−γ.
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By the induction hypothesis (3.4.26), we have that

f
(t,t ′)
[i,i+k+1)(t

′, x) ⩽ νx−γϕ[i,i+k)

t ′∑
z=ℓi+k,t ′∨x

z−1

+ νx−γψ[i,i+k)

t ′∑
z=ℓi+k−1,t ′∨x

z2γ−2

+ 1{x>ℓi+k,t ′}
νxγ−1ϕ[i,i+k)

x−1∑
z=ℓi+k,t ′

z−2γ

+ 1{x>ℓi+k,t ′}
νxγ−1ψ[i,i+k)

x−1∑
z=ℓi+k−1,t ′

z−1,

where the lower summation bounds in the second sum on both rows
changed as a result of the indicator in (3.4.26). Approximating the sums
by integrals yields that there exists c = c(ν,γ) such that

f
(t,t ′)
[i,i+k+1)(t

′, x) ⩽ x−γc
(
ϕ[i,i+k) log(t ′/ℓi+k−1,t ′) +ψ[i,i+k)t

′2γ−1)
+ 1{x>ℓi+k,t ′}

xγ−1c
(
ϕ[i,i+k)ℓ

1−2γ
i+k,t ′

+ψ[i,i+k) log(t ′/ℓi+k−1,t ′)
)

and (3.4.26) holds by the definitions (3.4.24) and (3.4.25), as shifting the
index of the terms in the logarithm is allowed because k 7→ ℓk,t ′ is non-
increasing. The bound (3.4.27) follows analogously. The first indicator
follows since the sum on the rhs in the analogue of (3.A.1) is equal to zero
if x = t ′, since p(t ′, t ′) = 0 by definition in Proposition 2.4.4, i.e.,

t ′∑
z=ℓi+k,t ′∨t

′

f
(t,t ′)
[0,k)(q, z)p(z, t ′) = f(t,t

′)
[0,k)(q, t ′)p(t ′, t ′) = f(t,t

′)
[0,k)(q, t ′) · 0 = 0.

Lemma 3.A.1 (Upper bound on t ′/ℓ(t)k,t ′). There exists a constant B3.A.1 =

B3.A.1(γ,ν) such that for B > B3.A.1,

t ′/ℓ(t)k,t ′ ⩽ exp
(
B
(
1∨ log(t ′/t)

)(
τ− 2

)−k/2).

Proof. Let γ = 1/(τ− 1) so that 1/(τ− 2) = γ/(1− γ). We omit the super-
script (t) of ℓ(t)k,t ′ . We prove by induction. For the induction base k = 0,
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t ′/ℓ0,t ′ ⩽ t ′/(δ ′t). The advancement of the induction follows from [45,
Lemma A.5, after (A.29)], which contains the appendices of [46]. Recall
α[0,k), β[0,k), ℓk,t ′ from (3.4.22), (3.4.23), and (3.4.34b), respectively. Write
ηk,t ′ := t ′/ℓk,t ′ , and let c = c(γ,ν) be the constant from Lemma 3.4.10.
To use the same calculations as [45, Lemma A.5, after (A.29)], we need to
show that there exists C = C(γ,ν) > 1, such that(

η−1k+2,t ′ + 1/t
′
)γ−1

⩽ C
(
η
γ
k,t ′ + η

1−γ
k+1,t ′ log(ηk+1,t ′)

)
. (3.A.2)

We start bounding the lhs. Observe that (⊛) in (3.4.34b) holds by definition
of the arg max in the opposite direction when we replace ℓk,t ′ by ℓk,t ′ + 1,
i.e.,

α[0,k)(ℓ
(t)

k,t ′ + 1)
1−γ ⩾

(
k log(t ′)

)−3.

Combining this with (3.4.22) yields(
ℓk+2,t ′ + 1

t ′

)γ−1
⩽ log3(t ′)(k+ 2)3α[0,k+2)t

′1−γ

= c log3(t ′)(k+ 2)3α[0,k+1)t
′1−γ log(ηk+1,t ′)

+ c log3(t ′)(k+ 2)3β[0,k+1)t
′γ

=: T1 + T2. (3.A.3)

Substituting (⊛) from (3.4.34b) in T1 yields

T1 := c log3(t ′)(k+ 2)3α[0,k+1)t
′1−γ log(ηk+1,t ′)

⩽ c(k+ 2)3
1

(k+ 1)3
ℓ
γ−1
k+1,t ′t

′1−γ log(ηk+1,t ′)

⩽ c

(
k+ 2

k+ 1

)3
η
1−γ
k+1,t ′ log(ηk+1,t ′). (3.A.4)

Hence, T1 is bounded by the second term on the rhs in (3.A.2) for C
sufficiently large. For T2, we substitute (3.4.23) and (3.4.34b) to get

T2 := c log3(t ′)(k+ 2)3β[0,k+1)t
′γ

= c2 log3(t ′)(k+ 2)3
(
t ′γα[0,k)ℓ

1−2γ
k,t ′ + t ′γβ[0,k) log(ηk,t ′)

)
⩽ c2

(
k+ 2

k

)3
η
γ
k,t ′ + c

2 log3(t ′)(k+ 2)3t ′γβ[0,k) log(ηk,t ′)

=: cT21 + cT22.
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The term cT21 can be captured by the first term on the rhs in (3.A.2).
For T22, by (3.4.22), β[0,k)t

′γ ⩽ c−1α[0,k+1)t
′1−γ. Using (3.4.34b) and that

ηk,t ′ is nonincreasing, we further bound

T22 ⩽ log3(t ′)(k+ 2)3 log(ηk,t ′)α[0,k+1)t
′1−γ

⩽ (k+ 2)3 log(ηk,t ′)
1

(k+ 1)3
ℓ
γ−1
k+1,t ′t

′1−γ

⩽

(
k+ 2

k+ 1

)3
log(ηk+1,t ′)η

1−γ
k+1,t ′ . (3.A.5)

Thus, cT22 can be captured by the second term on the rhs in (3.A.2) for C
sufficiently large. The desired bound (3.A.2) follows by combining (3.A.3),
(3.A.4), and (3.A.5) by increasing the constant C in (3.A.2). Now that we
have established (3.A.2), the proof is finished by step-by-step following
the computations in [45, Lemma A.5, after (A.29)].

Recall E(q)
bad from (3.4.4), and define E

(q)
good :=

⋂Kt,t ′
k=0 ¬E

(q)
bad(k, t ′). We de-

fine the conditional probability measure

Pq−good( · ) := P( · | E(q)
good),

and write Eq−good for its corresponding expectation.

Lemma 3.A.2 (Upper bound on neighbourhood size). Consider the preferen-
tial attachment model under the same assumptions as Proposition 3.4.12. Let q be
a typical vertex in PAt. Then for t ′ ⩾ t

Pq−good

(Kt,t ′+2⋃
k=1

{
|∂B

(t ′)
G (q,k)| ⩾ exp

(
2B(1∨ log(t

′

t ))(τ− 2)
−k/2

)})
⩽ 2 exp

(
−B(1∨ log(t

′

t ))
)
. (3.A.6)

Proof. We first bound Eq−good
[
|∂B

(t ′)
G (q,k)|

]
, and let the result follow by

a union bound on the events in (3.A.6) and Markov’s inequality. Condi-
tionally on E

(q)
good, all vertices at distance k < Kt,t ′ can only be reached via

t ′-good q-paths. Recall f(t,t
′)

[0,k)(q, x) from (3.4.17) and its interpretation as
an upper bound for the expected number of good paths from q to x of
length k. Thus, we have by the law of total probability, and the definition
of good paths in Definition 3.4.3,

Eq−good
[
|∂B

(t ′)
G (q,k)|

]
⩽

1

P
(
E
(q)
good

) t ′∑
x=ℓk,t ′

f
(t,t ′)
[0,k)(q, x).
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Recalling (3.4.36), we see that it is sufficient to bound the sum on the rhs.
Now, applying the bound in (3.4.27) on f yields for some c1, c2 > 0,

t ′∑
x=ℓk,t ′

f
(t,t ′)
[0,k)(q, x) ⩽ α[0,k)

t ′∑
x=ℓk,t ′

x−γ +β[0,k)

t ′∑
x=ℓk−1,t ′

xγ−1

⩽ c1
(
α[0,k)t

′1−γ +β[0,k)t
′γ)

⩽ c2α[0,k+1)t
′1−γ. (3.A.7)

The last line follows since by (3.4.22), t ′γβ[0,k) ⩽ α[0,k+1)t
′γ−1/c, and

k 7→ α[0,k) is non-decreasing. We bound the rhs in (3.A.7) in terms of
(t ′/ℓk,t ′). By (⊛) in (3.4.34b) and Lemma 3.A.1

α[0,k+1)t
′1−γ ⩽ ((k+ 1) log(t ′))−3(t ′/ℓk+1,t ′)

1−γ

⩽ ((k+ 1) log(t ′))−3

· exp
(
B(1− γ)

(
1∨ log(t ′/t)

)
(τ− 2)−

k+1
2

)
.

This yields that for B sufficiently large

Eq−good
[
|∂B

(t ′)
G (q,k)|

]
⩽

2c

P
(
E
(q)
good

) exp
(
B(1∨ log(t ′/t))(τ− 2)−k/2

)
⩽ exp

(
B ′(1∨ log(t ′/t))(τ− 2)−k/2

)
,

where the last bound follows for some B ′ > B as

P
(
E
(q)
good

)
= 1− δ ′ + o(1)

by (3.4.36). The assertion (3.A.6) follows by a union bound over (3.A.6)
and summing over k.

3.a.2 Upper bound

Claim 3.A.3. Recall Kt,ti from (3.1.1), I2(L) from (2.1.2), andQt,ti from (3.3.2).
Let L1 and L2 be two independent copies of the random variable L. For all
c5, ε,M > 0, there exists ML > 0 such that

Kt,ti/2+M−1∑
k=0

F
(−1)
L1+L2

(
exp

(
−2c5(k+ 1)

−2(τ− 2)−(i+k)
))

⩽ (1+ ε1{I2(L)=∞})Qt,ti +ML.

(3.A.8)
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Proof. We proceed along the same lines as in the proof of Proposition 2.3.4.
To shorten notation, we define

Q̃t,ti :=

Kt,ti/2+M−1∑
k=0

F
(−1)
L1+L2

(
exp

(
− 2c5(k+ 1)

−2(τ− 2)−(i+k)
))

First, we relate the inverse F(−1)L1+L2
(·) to F(−1)L (·) by observing that for x > 0

FL1+L2(x) = P(L1 + L2 ⩽ x) ⩾ P(max{L1,L2} ⩽ x/2) =
(
FL(x/2)

)2.

Hence, for any z > 0, it holds that FL1+L2(z) ⩽ 2F
(−1)
L (

√
z), so that for

some M1 > 0

Q̃t,ti ⩽ 2

Kt,ti/2+M−1∑
k=0

F
(−1)
L

(
exp

(
− c5(k+ 1)

−2(τ− 2)−(i+k)
))

⩽M1 + 2

Kt,ti/2∑
k=0

F
(−1)
L

(
exp

(
− c5(k+ 1)

−2(τ− 2)−(i+k)
))

,

since z 7→ F
(−1)
L (1/z) is nonincreasing and bounded. Define b := inf{x :

F
(−1)
L (x) > 0} and L ′ := L− b, so that by (⋆) in (3.4.49)

Q̃t,ti ⩽M1 + bKt,ti

+ 2

∫ Kt,ti
2

x=0
F
(−1)

L ′

(
exp

(
− c5(x+ 1)

−2(τ− 2)−i−x
))

dx

⩽M2 + bKt,ti

+ 2

∫ Kt,ti
2

x=x0

F
(−1)

L ′

(
exp

(
− c5(x+ 1)

−2(τ− 2)−i−x
))

dx (3.A.9)

for some large constants x0,M2 > 0. Apply the change of variables

(k+ 1)−2(τ− 2)−x = (τ− 2)−y/2 ⇔ y = 2x− 4
log(x+ 1)
| log(τ− 2)|

.

Differentiating both sides, rearranging terms, and using y = Θ(x) yields a
bound for dx, i.e.,(

1−
2/| log(τ− 2)|

x+ 1

)
dx =

1

2
dy ⇒ dx ⩽

1

2

(
1+

C

y+ 1

)
dy,
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for some constant C > 0 and x ⩾ x0 sufficiently large. Continuing to
bound (3.A.9) from above, we obtain if x0 is sufficiently large

Q̃t,ti ⩽M2 + bKt,ti

+

∫Kt,ti−4 log(1+Kt,ti)
| log(τ−2)|

y=2x0−4
log(x0+1)
| log(τ−2)|

(
1+

C

y+ 1

)
F
(−1)

L ′

(
exp

(
− c5(τ− 2)

−i−
y
2

))
dy

⩽M2 + bKt,ti (3.A.10)

+

∫Kt,ti
y=x0

(
1+

C

y+ 1

)
F
(−1)

L ′

(
exp

(
− c5(τ− 2)

−i−y/2
))

dy.

Recall I2(L ′) from (2.1.2). We first assume I2(L ′) <∞. In this case, there
exists M3 > 0 such that∫∞

y=x0

C

y+ 1
F
(−1)

L ′

(
exp

(
− (τ− 2)−

y
2
))

dy < M3.

Using that the integrand in (3.A.10) is bounded, we obtain for some
M4 > 0

Q̃t,ti ⩽M2 +M3 + bKt,ti +

∫Kt,ti
y=x0

F
(−1)
L ′

(
exp

(
− c5(τ− 2)

−i−y/2
))

dy

⩽M4 + bKt,ti +

∫Kt,ti
y=0

F
(−1)
L ′

(
exp

(
− c5(τ− 2)

−i−y/2
))

dy. (3.A.11)

Since L ′ = L− b by definition, and using that the integration interval has
length Kt,ti , we obtain

Q̃t,ti ⩽M4 +

∫Kt,ti
y=0

F
(−1)
L

(
exp

(
− c5(τ− 2)

−(y+2i)/2
))

dy

=M4 +

∫Kt,ti+2i
y=2i

F
(−1)
L

(
exp

(
− c5(τ− 2)

−y/2
))

dy

by shifting the integration boundaries. Recall Kt,t −Kt,ti = 2i by (3.5.15),
yielding

Q̃t,ti ⩽M4 +

∫Kt,t
y=Kt,t−Kt,ti

F
(−1)
L

(
exp

(
− c5(τ− 2)

−y/2
))

dy.
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We leave it to the reader to verify using another change of variables and
(∗) in (3.4.49) that, similarly to the proof for the lower bound after (3.4.49),
there exists M5 such that∫Kt,t

y=Kt,t−Kt,ti

F
(−1)
L

(
exp

(
− c5(τ− 2)

−y/2
))

dy

−

Kt,t∑
k=Kt,t−Kt,ti+1

F
(−1)
L

(
exp

(
− (τ− 2)−k/2

))
dy ⩽ M5.

This establishes (3.A.8) when I2(L) < ∞. If I2(L) = ∞, we observe that
there exists M6 such that∫Kt,ti

y=x0

C

y+ 1
F
(−1)
L ′

(
exp

(
− c5(τ− 2)

−y/2
))

dy

< M6 + ε

∫Kt,ti
y=x0

F
(−1)
L ′

(
exp

(
− c5(τ− 2)

−y/2
))

dy.

We use this bound in (3.A.10), bound b ⩽ (1+ ε)b, and follow the same
steps as from (3.A.11) onwards, carrying a factor (1+ ε) for the integrals.







4
C L U S T E R - S I Z E D E C AY O N K S R G S

4.1 introduction

In this part we study component sizes in i-KSRGs, introduced in Section
1.3. For nearest-neighbour Bernoulli percolation on Zd [42], it is a result of
a sequence of works [5, 9, 47, 110, 158, 171] that, considering a supercritical
model, i.e., p > pc(Zd) – the critical percolation probability on Zd– and
|C(0)| being the number of vertices in the cluster containing the origin,

P(k ⩽ |C(0)| <∞) = exp
(
−Θ(kζ)

)
, (4.1.1)

with ζ = (d − 1)/d. Intuitively, the stretched exponential decay with
exponent (d− 1)/d emanates from the fact that all the Ω(k(d−1)/d) edges
on the boundary of a cluster C with |C| ⩾ k need to be absent: the tail decay
in (4.1.1) is determined by surface tension. More recently, these results have
been extended to Bernoulli percolation on general classes of transitive
graphs [56, 139].

In the next chapters and the accompanying paper [151], we consider
P(k ⩽ |C(0)| <∞) for i-KSRGs for which the degree distribution and/or
the edge-length distribution are heavy-tailed, and identify when this
structural inhomogeneity changes the surface-tension driven behaviour of finite
clusters. We will see that in those cases, the cluster-size decay in (4.1.1) is
still stretched exponential, but the exponent ζ changes. Its value (together
with our proof techniques) reflects the structure of the infinite/giant
component in spatial graph models: it describes the size and structure
of a “backbone” decorated with “traps” – almost isolated peninsulas
attached to a well-connected component. This topological description is of
independent interest, e.g., it affects the behaviour of random walk [59].

Our starting points are continuum and classical long-range percolation
(CLRP and LRP) [4, 216], examples of models where the edge-length
distribution has a heavy tail, while the degree distribution is light-tailed.
Relating to the distribution of small clusters in supercritical settings as
in (4.1.1), the autors of [58] gave a polylogarithmic upper bound on the
size of the second-largest component |C(2)

n | of long-range percolation in a
box of volume n, with unidentified exponent, which is the only known

123
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result in this direction. In long-range percolation, each potential edge
{u, v} ∈ Zd×Zd is independently present with probability proportional to
βα∥u− v∥−dα for some α > 1, β > 0. Our combined results (Chapters 5–6,
and [151]) show that, under the additional assumption that β is sufficiently
large if (d− 1)/d > 2−α,

P(k ⩽ |C(0)| <∞) = exp
(
− kmax{2−α+o(1),(d−1)/d}),

|C(2)
n | = (logn)1/max{2−α+o(1),(d−1)/d},

showing stretched-exponential decay similar to (4.1.1), up to a o(1)-error
term in the exponent when 2−α > (d− 1)/d.

Our main focus is to prove (4.1.1) for models where both the degree- and
the edge-length distribution are heavy-tailed, such as scale-free percolation
(SFP) [63], continuum scale-free percolation (CSFP) [67]; geometric inho-
mogeneous random graphs (GIRG) [40], hyperbolic random graphs (HRG)
[169], the ultra-small scale-free geometric network [228]; scale-free Gilbert
model (SGM) [122], the Poisson Boolean model with random radii [103],
the age- and the weight-dependent random connection models (ARCM)
[105, 107]. Concerning sizes of small clusters in these models, the only
known result concerns the asymptotic size of the second-largest com-
ponent of HRGs [162]. Among the more classical models, for random
geometric graphs and Bernoulli percolation on them, the papers [175, 211]
identify |C

(2)
n |.

In Chapter 5 we prove the stretched exponential decay and identify the
values of ζ in (4.1.1) for (regions of the parameter space of) supercriti-
cal continuum scale-free percolation, geometric inhomogeneous random
graphs, and hyperbolic random graphs (CSFP, GIRG, HRG). We intro-
duce a novel proof technique, the cover expansion, and give a quantitative
backbone-and-traps description of the giant component; which is novel
for these models. Additionally, we unfold the general relation between the
cluster-size decay and the size of the second-largest component, which
yields a weak law of large numbers for the size of the giant component as a
side result. In [151], we establish (4.1.1) for the scale-free Gilbert model, for
the age-dependent random connection model, for continuum long-range
percolation, and other regions of the parameter space of CSFP, GIRG, and
HRG. The results here and in the accompanying paper [151] together also
determine the speed of the lower tail of large deviations for the size of the
giant component |C(1)

n | for all these models. With the same ζ as the one in
the cluster-size decay, for all sufficiently small ρ > 0,

P
(
|C(1)
n | < ρn

)
= exp

(
−nζ+o(1)

)
. (4.1.2)
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In Chapter 5 we present the lower bound and in [151] the upper bound.

4.2 four regimes of ζ in the phase diagram

In KSRGs in general, one can determine the value of the exponent ζ of
the cluster-size decay via the following back-of-the-envelope calculation,
that is based on the lower bound and aims to find a spatially localized
component of size Θ(k). Consider two neighboring boxes Λ(1)

k ,Λ(2)

k of
volume k in Rd, and compute, as a function of k, the expected number
of edges E[|E(Λ(1)

k ,Λ(2)

k )|] between vertices in these boxes, and also the
expected number of vertices in Λ(1)

k having at least one edge towards a
vertex in Λ(2)

k , E[|V(Λ(1)

k →Λ
(2)

k )|]. If these two quantities are the same order,
and are both Θ(kζ), then the probability that none of the potential edges is
present is exp(−Θ(kζ)). The non-presence of all these edges is necessary
for a large isolated cluster of size Θ(k) to be confined to its original box. If,
however, we find E[|V(Λ(1)

k →Λ
(2)

k )|] = o(E[|E(Λ(1)

k ,Λ(2)

k )|]), and the former
quantity is Θ(kζ), then typically there are a few high-mark vertices that
have many edges to the neighboring box. The most likely way to have
a component of size Θ(k) is then to simply not have any of these vertices
present in the two boxes, again happening with probability exp(−Θ(kζ)).
Clearly, large finite clusters can be non-localized, so the rigorous version of
this argument only gives lower bounds. Nevertheless, it describes the most
likely way of connectivity towards and within the infinite/giant component
and gives a conjecture for the value of ζ.

Based on this intuition, we distinguish four possible types of connectivity
that describe how neighboring boxes are connected. We call the type of
connectivity that produces the largest contribution to E[|V(Λ(1)

k →Λ
(2)

k )|]

the dominant type. Changes of the dominant type give the phase diagram
of ζ in the parameter space. We visualize these phases in Figure 6a for
models using κprod, κpa, or κmax. All arguments below are meant as k→∞.
We say that the model shows dominantly

(ll) low-low-type connectivity if the main contribution to E[|V(Λ(1)

k →Λ
(1)

k )|]

is coming from pairs of low-mark vertices (vertices with mark Θ(1))
at distance Θ(k1/d) from each other. We find E[|V(Λ(1)

k → Λ
(2)

k )|] =

Θ(E[|E(Λ(1)

k ,Λ(2)

k )|)] = Θ(kζll), where

ζll := 2−α, (4.2.1)

which neither depends on κ nor on τ since low-mark vertices are
not affected by those. Models with parameters falling in this regime
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behave qualitatively similarly to long-range percolation. We present
proofs for parameters regimes where ζll is dominant in [151]. In KSRGs
with kernels in (1.3.4) this regime may occur if both α < τ− 1 and
α < 2.

(lh) low-high-type connectivity if E[|E(Λ(1)

k ,Λ(2)

k )]≫ E[|V(Λ(1)

k →Λ
(2)

k )|] and
the main contributions are coming from edges between a high-mark and
a low-mark vertex (Θ(1)) at distance Θ(k1/d). A vertex has high-mark
here when its mark is Ω(kγlh), where

γlh := 1− 1/α

is the smallest exponent such that a linear proportion of vertices of mark
Ω(kγlh) in Λ(1)

k is connected to some low-mark vertex in Λ(2)

k . Vertices
of mark Ω(kγlh) have to be absent to find a large but finite component
confined to Λ(1)

k , and since E[|V(Λ(1)

k → Λ
(2)

k )|] = Θ(k1−γlh(τ−1)), we
obtain

ζlh := 1− γlh(τ− 1) = 1− (τ− 1)(1− 1/α). (4.2.2)

We prove in our accompanying paper [151] that this type of behaviour
is dominant in KSRGs with kernels κmax, κsum, and κpa (e.g. for the
age-dependent random connection model [105] and scale-free Gilbert
model [122]) when both α ∈ (τ− 1, (τ− 1)/(τ− 2)), and τ ∈ (2, 3)
holds.

(hh) high-high-type connectivity if E[|E(Λ(1)

k ,Λ(2)

k )|] ≫ E[|V(Λ(1)

k → Λ
(2)

k )|],
and the main contributions are coming from edges between two high-
mark vertices at distance Θ(k1/d). A vertex has high mark here when
its mark is Ω(kγhh), where γhh is the smallest exponent such that a
linear proportion of vertices of mark Ω(kγhh) in Λ(1)

k is connected by an
edge to a high-mark vertex in Λ(2)

k . This leads in expectation to Θ(kζhh)

many high-mark vertices in Λ(1)

k and Λ(2)

k (which have to be absent
to find a large but finite component), where ζhh := 1 − γhh(τ − 1).
The formula of γhh depends on the choice of the kernel κ. For the
interpolating kernel κ1,σ from (1.3.5) that we use in this chapter we
find

γhh =


1− 1/α

σ+ 1− (τ− 1)/α
, if τ ⩽ 2+ σ,

1

σ+ 1
, if τ > 2+ σ,

(4.2.3)
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leading to1

ζhh = 1− γhh(τ− 1) =


2+ σ− τ

σ+ 1− (τ− 1)/α
, if τ ⩽ 2+ σ,

2+ σ− τ

σ+ 1
, if τ > 2+ σ.

(4.2.4)

In Chapter 5 we focus on this phase and show that this type of
connectivity can be dominant in KSRGs with kernel κprod: (continuum)
scale-free percolation (SFP) [63, 67], geometric inhomogeneous random
graphs (GIRG) [40] and hyperbolic random graphs (HRG) [169]) when
τ < 3 and α ⩾ τ− 1.

(nn) nearest-neighbour-type connectivity if

E[|E(Λ(1)

k ,Λ(2)

k )|] = Θ(E[|V(Λ(1)

k →Λ
(2)

k )|]),

and the main contributions are coming from edges of length Θ(1)
between low-mark vertices close to the shared boundary of the two
boxes. The expected number of such edges and vertices is Θ(kζnn)

where
ζnn := (d− 1)/d. (4.2.5)

KSRGs with kernel κtriv and threshold profile show this type of con-
nectivity behaviour in their entire parameter space, e.g., random geo-
metric graphs and nearest-neighbour percolation on Zd. KSRGs with
either non-trivial kernel or long-range profile also show this phase
in a region of the parameter space, e.g. long-range percolation when
α > 1+ 1/d. Chapter 6 treats sub-regions of this phase in the (α, τ)
parameter-plane.

In general we conjecture that for any model belonging to the KSRG frame-
work, the value of ζ in (4.1.1) is determined by whichever connectivity type
yields the largest contribution to E[|E(Λ(1)

k ,Λ(2)

k )|] and E[|V(Λ(1)

k →Λ
(2)

k )|].
Formally we may only compute

max{ζll, ζlh, ζhh, ζnn} =: ζ,

yielding the conjectured exponent in (4.1.1). See also the overview in Table
2, and Figure 6a.

1 We will never use the formula for ζhh when it is negative: then, some other connectivity
type is dominant.
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Model Kernel ζ

Bond-percolation on Zd [113] κtriv, κ0,0 ζnn

Random geometric graph [210] ζnn

Long-range percolation [216] max{ζll, ζnn}

Continuum long-range percolation [4] max{ζll, ζnn}

Scale-free percolation [63] κprod, κ1,1 max{ζhh, ζll, ζnn}

Continuum scale-free percolation [67] max{ζhh, ζll, ζnn}

Geometric inhomogeneous random graph [40] max{ζhh, ζll, ζnn}

Hyperbolic random graph [169] ζhh

Age-dependent random connection model [105] κpa, κ1,τ−2 max{ζlh, ζll, ζnn}

Scale-free Gilbert graph [122] κmax, κ1,0 max{ζlh, ζll, ζnn}

Ultra-small scale-free geometric network [228] κmin, κ0,1 max{ζhh, ζnn}

Interpolating KSRG κ1,σ max{ζll, ζlh, ζhh, ζnn}

Table 2: Models belonging to the KSRG framework, their kernels, and the (con-
jectured) value of their cluster-size decay exponent ζ. Horizontal lines
separate models with different kernels. See Table 1 for the vertex sets
and profiles that are used by these models.

The interpolation kernel allows for unified proof techniques, and shows
how the possible dominant regimes (ll, lh, hh, and nn) fade into each other
as the interpolation parameter σ changes gradually, see Figure 6b. We then
state our conjecture, visualized in Figure 6, see also Table 2.

Conjecture 4.2.1. We conjecture that for supercritical KSRGs in Rd with kernel
κ1,σ, for all (α, τ) ∈ (1,∞]× (2,∞], (4.1.1) and (4.1.2) hold with

ζ = max{ζll, ζlh, ζhh, ζnn}

whenever ζ > 0. When α = ∞ and/or τ = ∞, the value of ζ is obtained by taking
the corresponding limit of ζ = ζ(α, τ).

4.2.1 Three related works

The results in this chapter, combined with [151], prove Conjecture 4.2.1 for i-
KSRGs on Poisson point processes (PPP) whenever max{ζll, ζlh, ζhh}⩾ζnn=
d−1
d and σ⩽τ−1 (the non-green regions in Figure 6). When max{ζll, ζlh}>

ζhh (the blue and yellow regions in Figure 6), or when the maximum is
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(a) Phase-diagrams of ζ = ζ(τ,α) for models with kernels κprod, and κpa or κmax, plotted
as a function of 1/(τ− 1) and 1/α. The y-axis (i.e., 1/(τ− 1) = 0) also describes the
phase diagram of (continuum) long-range percolation that has kernel κtriv, while the
models on the x-axis (1/α = 0) coincide with models using a threshold profile function
in (1.3.3). When 1/α > 1 or 1/(τ− 1) > 1, then G∞ is connected and each vertex has
infinite degree almost surely [121]. A white color within the square means that the
model is subcritical for each value p,β in (1.3.1) [108].

(b) Phase-diagrams of ζ = ζ(σ, τ) for fixed values of α in (1.3.3), plotted as a function of
1/(τ− 1) on the x-axis and σ/(τ− 1) on the y-axis. The identity line y=x corresponds
to models using kernel κprod ≡ κ1,1, the x-axis to models using κmax≡κ1,0 and the
cross-diagonal x+y = 1 to models using κpa ≡ κ1,τ−2. The origin captures models
with κtriv≡κ0,0. Observe that ζlh (blue) is never dominant above the diagonal y ⩾ x
(equivalently, σ ⩾ 1), while ζhh (red) is never dominant below the cross-diagonal
x+y = 1 (equivalently, σ⩽ τ−2). In the quadrant x+y⩾ 1,y⩽ x all four exponents
‘compete’ for dominance. Each of the diagrams (except α ⩾ (d− 1)/(d− 2)) can be
extended to y=σ/(τ− 1)>1, by simply extending the linear boundary lines separating
the regions; when α⩾(d− 1)/(d− 2), the line separating the nn- from the hh-regime is
given by x+y=1+(d−1)(1−1/α).

Figure 6: Phase diagrams of the (conjectured) cluster-size decay for kernel-based spatial
random graphs. Theorem 5.1.2 proves the upper bound in the red regions, and it
gives the lower bounds above the x+ y ⩾ 1 line on Figure 6b, for all four colors
simultaneously, with logarithmic correction terms on phase boundary lines.
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non-unique (on region boundaries), we have a o(1) error in the exponent ζ,
while in the open red region our bound is sharp. Regarding the speed of
the lower tail of large deviations (LTLD) for the size of the giant component
(as in (4.1.2)), we prove Conjecture 4.2.1 up to a o(1) error whenever
max{ζll, ζlh, ζhh}>0 and σ⩽τ− 1 (all parameters for which the model can
be supercritical in d= 1). Thus, up to o(1)-errors in some regions, these
results prove Conjecture 4.2.1 fully for locally finite i-KSRGs on PPPs when
d=1 and σ⩽τ−1. In dimension d ⩾ 2, the present chapter and [151] leave
open (only) the regime where ζnn is maximal, but we still obtain partial
results in this regime (see the following paragraphs). In Chapter 6, we
prove Conjecture 4.2.1 fully for long-range percolation on Zd whenever the
edge density is sufficiently high, i.e., also when ζnn is maximal.

Upper bounds. In this chapter we prove the upper bound on the cluster-
size decay and |C

(2)
n | for ζ = ζhh, which is sharp in the red regions in

Figure 6, and still non-trivial whenever τ<2+ σ (above the cross-diagonal
in Figure 6b), using a “backbone construction”. In [151] we show upper
bounds on the speed of LTLD for the size of the giant component using
a renormalization scheme driven by vertex-marks. This yields an upper
bound that matches the conjectured exponent ζ in (4.1.2) up to o(1) when
max{ζll, ζlh, ζhh}>0. In [151] we use this LTLD-type result to construct a
backbone (whose construction is different from the construction in this
chapter). Using that, we prove the upper bounds on the cluster-size decay
and |C

(2)
n | when ζ ̸=ζnn, obtaining up to o(1)-matching upper bounds for

ζ∈ {ζll, ζlh} in (4.1.1) (blue and yellow regions in Figure 6). Only the hh-
regime requires σ⩽τ−1. All upper bounds for ζ=ζll extend to i-KSRGs
where the vertex locations are given by Zd. In Chapter 6 we show the
upper bounds for long-range percolation on Zd when ζnn > ζll, assuming
sufficiently high edge-density. We use combinatorial methods in Chapter 6,
since the backbone construction fails for LRP when ζnn is dominant.

Lower bounds. This chapter proves, for the whole parameter-space, the
lower bound for the speed of LTLD for the size of the giant component in
(4.1.2). LTLD is related to the lower bound on the cluster-size decay and
|C

(2)
n |, once we additionally prove that a box with appropriately restricted

vertex-marks still contains a linear-sized component. Here, we prove this
when τ<2+σ using the backbone construction; the (different) backbone
construction in [151] yields it for τ⩾ 2+σ. In Chapter 6, the high edge-
density assumption ensures the existence of a giant in a box. The lower
bounds do not require σ⩽ τ−1, extend to i-KSRGs on Zd, and do not
contain o(1)-error terms.
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T H E H I G H - H I G H R E G I M E

Based on [149]:
Cluster-size decay in supercritical kernel-based spatial random graphs,

J. Jorritsma, J. Komjáthy, D. Mitsche,
Preprint arXiv:2303.00712, 2023.

The next section makes definitions and our findings formal for our results
in the hh-regime.

5.1 model and main results

We start by defining kernel-based random graphs, similar to the definition
in [107], but specifically for the interpolating kernel κ1,σ in (1.3.5). We
denote by ∥x − y∥ the Euclidean distance between x,y ∈ Rd, and for
x ∈ Rd, s > 0, we denote a box of volume s in Rd centered at x by

Λs(x) = Λ(x, s) := x+ [−s1/d/2, s1/d/2]d (5.1.1)

If x = 0, we write Λs. For a discrete set V we write
(
V
2

)
:= {{u, v},u ∈

V , v ∈ V ,u ̸= v} for the list of unordered pairs in V .

Definition 5.1.1 (Interpolating kernel-based spatial random graph, i-K-
SRG). Fix α > 1, τ > 1,d ∈ N, σ ∈ R. Let Ξ denote an inhomogeneous
Poisson-point process on Rd × [1,∞) with intensity measure

µτ(dx× dw) := Leb⊗ FW(dw) := dx× (τ− 1)w−τdw (5.1.2)

For some p ∈ (0, 1],β > 0, we define the connectivity function with κ1,σ

from (1.3.5) as

p
(
(xu,wu), (xv,wv)

)
:=


pmin

{
1,
(
β
κ1,σ(wu,wv)
∥xv − xu∥d

)α}
, if α <∞,

p1

{
β
κ1,σ(wu,wv)
∥xv − xu∥d

⩾ 1

}
, if α = ∞.

(5.1.3)
Conditionally on Ξ, the infinite random graph G∞ = (V(G∞),E(G∞)) is
given by V(G∞) = Ξ and for each pair u = (xu,wu), v = (xv,wv) ∈ Ξ the

131
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edge {u, v} is in E(G∞) with probability p
(
(xu,wu), (xv,wv)

)
; conditionally

independently given Ξ.
Write for [a,b) ⊆ R+, Ξn[a,b) := Ξ∩ (Λn× [a,b)). For the finite induced

subgraphs of G∞ on Ξn[a,b) and Ξn := Ξn[1,∞), we respectively write

Gn[a,b) := (Vn[a,b),En[a,b)), Gn := (Vn,En). (5.1.4)

We call Ξ a realization of the vertex set. We denote the measure induced
by the Palm version of Ξ where a vertex at location x is present (with
unknown mark) by Px.

Both the vertex set V and the profile function ρ in (5.1.3) can be replaced
to obtain more general KSRGs. We expect that our results generalise to
KSRGs with lattices as vertex sets, although some of our current proof
techniques do not apply, since they make use of the independence property
of PPPs. The projection of the vertex set V = Ξ onto the spatial dimensions
is a unit-intensity Poisson point process. The formula in (5.1.3) restricts
to models with either a threshold-profile (α=∞) or a specific long-range
profile (cf. ρα(t) in (1.3.3)), for readability. Our results readily extend to
more general regularly varying profiles and fitness distributions, i.e., they
allow slowly varying functions in (1.3.3) and (5.1.2), but then the exponent
ζ needs to be corrected by an additive o(1) term.

The interpolating KSRG model includes models with kernels κmax, κpa,
κprod as special cases. The parameter p governs Bernoulli percolation of
the edges, and a higher β increases the edge density. While p,β do not
affect ζ, they may influence supercriticality for certain values of (α, τ,σ,d),
see [63, 108, 109] on robustness of some KSRGs. See Section 1.3 above for
the role of (α, τ,σ,d).

Main results

We proceed to the main results of this chapter. Define the multiplicity of the
maximum of a finite set Z ⊂ R as:

m(Z) := mZ :=
∑
ζ∈Z

1{ζ = max(Z)}. (5.1.5)

Recall ζll, ζlh, ζhh, and ζnn from (4.2.1), (4.2.2), (4.2.4), and (4.2.5), respec-
tively.

Theorem 5.1.2 (Subexponential decay). Consider a supercritical i-KSRG model
in Definition 5.1.1, with parameters α > 1, τ ∈ (2, 2+ σ), σ > 0, and d ∈ N.
Then there exists A > 1 such that, for all k ⩾ 1:
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(i) For Z = {ζll, ζlh, ζhh, ζnn} and n ∈ (Ak,∞]

P0
(
|Cn(0)| ⩾ k, 0 /∈ C(1)

n

)
⩾ exp

(
−Akmax(Z) logmZ−1(k)

)
, (5.1.6)

(ii) if additionally σ ⩽ τ− 1, then for all n ∈ (Ak1+ζhh/α,∞]

P0
(
|Cn(0)| ⩾ k, 0 /∈ C(1)

n

)
⩽ A exp

(
− (1/A)kζhh

)
. (5.1.7)

The results also hold when α = ∞ by taking the appropriate limit in ζhh(α) in
(4.2.4).

We will obtain the following statement as a corollary from Theorem
5.1.2.

Corollary 5.1.3 (Law of large numbers for the size of the giant component).
Consider a supercritical i-KSRG model in Definition 5.1.1, with parameters
α > 1, τ ∈ (2, 2+ σ), σ ∈ (0, τ− 1], and d ∈N. Then,

|C
(1)
n |

n

P−→ P0
(
|C∞(0)| = ∞), as n→∞. (5.1.8)

The analogue for the size of the second-largest component in Gn is the
following theorem.

Theorem 5.1.4 (Second-largest component). Consider a supercritical i-KSRG
model as in Definition 5.1.1, with parameters α > 1, τ ∈ (2, 2+ σ), σ > 0, and
d ∈N. Then the following hold:

(i) For Z = {ζll, ζlh, ζhh, ζnn}, there exist constants A, δ,n0 > 0, such that for
all n ∈ [1,∞)

P
(
|C(2)
n | ⩾ (1/A)

(
log(n)/((log log(n))mZ−1

)1/max(Z)
)
⩾ 1−n−δ,

(5.1.9)

(ii) If additionally σ ⩽ τ− 1, then for all δ > 0, there exists A > 0 such that
for all n ∈ [1,∞)

P
(
|C(2)
n | ⩽ A log1/ζhh(n)

)
⩾ 1−n−δ. (5.1.10)

The results also hold when α = ∞ by taking the appropriate limit in ζhh(α) in
(4.2.4).
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We make a few remarks about the two theorems. The assumption
τ∈ (2, 2+σ), (corresponding to x+ y ⩾ 1 on Figure 6b) ensures that the
model is supercritical for all p,β > 0 in (5.1.3), see Proposition 5.4.13

below, implying that there exists a unique infinite component C(1)∞ . The
condition τ < 2+σ also ensures ζhh > 0. In part (ii), the condition σ⩽τ− 1
is automatically satisfied for models with kernels κ1,σ with σ⩽1, including
κprod ≡ κ1,1, because τ > 2. While we believe the restriction σ⩽τ−1 is a
technical condition, it reflects the change of the tail exponent of the degree
distribution at σ = τ− 1: the contribution of higher-fitness vertices to the
degree of a vertex is negligible compared to the total degree only when
σ<τ−1 [179]. The assumption n > k1+ζhh/α in Theorem 5.1.2(ii) is also a
technical artifact of our proof, and can be relaxed to n > k1+ε using results
from [151]. The lower bound in (5.1.6) is the same as in Conjecture 4.2.1,
here we prove it in the region τ∈(2, 2+σ), and in [151] when τ⩾2+ σ.

The next theorem shows that the stretch-exponent ζ is also related to
lower large deviations of the largest component. Contrary to the theorems
above, it holds also for τ ⩾ 2+ σ.

Theorem 5.1.5 (Speed of lower-tail large deviations of the giant). Consider a
supercritical i-KSRG model as in Definition 5.1.1, with parameters α > 1, τ > 2,
σ ⩾ 0, and d ∈N. There exists a constant A > 0 such that for all ρ > 0, and n
sufficiently large, with Z = {ζll, ζlh, ζhh, ζnn},

P
(
|C(1)
n | < ρn

)
⩾ exp

(
− 1
Aρ ·nmax(Z) logmZ−1(n)

)
. (5.1.11)

In [151], we give an almost matching upper bound for the left-hand side
in (5.1.11) for some ρ > 0, with an error of o(1) in the exponent of n. Next,
we interpret our results for κprod models.

Example 5.1.6 (Matching bounds for product-kernel models). In the open
region in the (α, τ,σ,d)-phase diagram where ζhh is the unique maximum
– corresponding to the (hh)-regime – our bounds in (5.1.6) and (5.1.7), and
in (5.1.9) and (5.1.10) are matching. This gives sharp bounds for scale-free
percolation, geometric inhomogeneous random graphs, and hyperbolic random
graphs. In these three models σ = 1, and whenever max{ζll, ζlh, ζhh, ζnn} =

ζhh = (3− τ)/(2− (τ− 1)/α) (the red region in Figure 6a), then

P(k ⩽ |C(0)| <∞) = exp(−Θ(kζhh)),

P
(
|C(1)
n | < ρn

)
⩾ exp

(
− 1
Aρn

ζhh
)
,

P
(
A−1 log1/ζhh(n) ⩽ |C(2)

n | ⩽ A log1/ζhh(n)
)
⩾ 1−n−δ.
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In [151], we present similar bounds for these κprod-KSRGs when max(Z) =
ζll = 2−α, which occurs when α ∈ (1, min{τ− 1, 1+ 1/d}) (corresponding
to the yellow region in Figure 6a). For κprod models, ζlh is never maximal,
hence these models present only three phases in their phase diagram for
ζ. For (threshold) hyperbolic random graphs (HRG), [162] proved that
|C

(2)
n | = Θ((logn)2/(3−τ)), which is included in Theorem 5.1.4: there is an

isomorphism between HRGs and a 1-dimensional KSRG model with σ=1,
τ ∈ (2, 3),α = ∞ (see [40] or [166, Section 9]). Since for HRG we have
α = ∞, all small components are localized in space in HRGs. However,
when α <∞, the long-range edges lead to de-localized small components.
This makes proofs of lower bounds somewhat more and upper bounds
significantly more complicated than those in [162] (at least up to our
judgement).

5.1.1 Notation

For a discrete set S, we write |S| for the size of the set. For a subset K ⊆ Rd,
let Vol(K) denote the Lebesgue measure of K, ∂K be its boundary and Kc

its complement. We denote the complement of an event A by ¬A. Formally
we define a vertex v by a pair of location and mark, i.e., v := (xv,wv), but
we will sometimes still write v ∈ K if xv ∈ K. We write for Q ⊆ Rd and
a ⩽ b

ΞQ[a,b) := Ξ∩
(
Q× [a,b)

)
, and Ξs[a,b) := ΞΛs [a,b) (5.1.12)

for the restriction of the vertices with mark in [a,b) and location in Q and
Λs from (5.1.1) respectively. By convention, we set (α− 1)/α := 1 if α = ∞
throughout the chapter.

5.2 methodology

5.2.1 Upper bounds

After sketching the strategy for upper bound on the size of the second-
largest component, we explain how to obtain the cluster-size decay from
it, then we sketch the lower bound.
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5.2.1.1 Second-largest component

We aim to show an upper bound of the form

P
(
|C(2)
n | ⩾ k

)
⩽ (n/c) exp(−ckζhh) =: errn,k. (5.2.1)

for arbitrary values of n ⩾ poly(k) and some constant c > 0. Such a bound
yields (5.1.10) when one substitutes k = A log1/ζhh(n) for a sufficiently
large constant A = A(δ) > 0. Throughout the outline we assume that
(n/k)1/d ∈N. The proof consists of four revealment stages, illustrated in
Figure 7.

Step 1. Building a backbone. We set whh := Θ(kγhh) with γhh > 0 from
(4.2.3). We partition the volume-n box Λn into n/k smaller sub-boxes
of volume k. In this first revealment step we only reveal the location
and edges between vertices in Ξn[whh, 2whh), obtaining the graph Gn,1 :=

Gn[whh, 2whh). We show that Gn,1 contains a connected component Cbb

that contains Θ(kζhh) many vertices in each subbox, that we call backbone
vertices. We show that this event – say Abb – has probability at least
1− errn,k. We do this by ordering the subboxes so that subboxes with
consecutive indices share a (d− 1)-dimensional face, and by iteratively
connecting Θ(kζhh) many vertices in the next subbox to the component we
already built, combined with a union bound over all subboxes. The event
Abb ensures us to show that independently for all v ∈ Ξn[2whh,∞),

P
(
v↔ Cbb | Abb, v ∈ Ξn[2whh,∞)

)
⩾ 1/2, (5.2.2)

regardless of the location of v. We call vertices in Ξn[2whh,∞) connector
vertices.

Step 2: Revealing low-mark vertices. We now also reveal all vertices with
mark in [1,whh), and all their incident edges to Gn,1 and towards each
other, i.e., the graph Gn,2 := Gn[1, 2whh) ⊇ Gn,1.

Step 3: Pre-sampling randomness to avoid merging of small components.
To show (5.2.1), in the fourth revealment stage below we must avoid
small-to-large merging: when the edges to/from some v ∈ Ξn[2whh,∞) are
revealed, a set of small components, each of size smaller than k, could
merge into a component of size at least k without connecting to the
giant component. If we simply revealed Ξn[2whh,∞) after Step 2, (5.2.2)
would not be sufficient to show that small-to-large merging occurs with
probability at most 1− errn,k. So, we pre-sample randomness: we split
Ξn[2whh,∞) into two PPPs:

Ξn[2whh,∞) = Ξ(sure)
n [2whh,∞)∪ Ξ(unsure)

n [2whh,∞),
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where Ξ(sure)
n [2whh,∞),Ξ(unsure)

n [2whh,∞) are independent PPPs with equal
intensity: using (5.2.2) and helping random variables that encode the
presence of edges, we pre-sample whether a connector vertex connects
for sure to Cbb by at least one edge; forming Ξ(sure)

n [2whh,∞). Vertices in
Ξ

(unsure)
n [2whh,∞) might still connect to Cbb since 1/2 is only a lower bound

in (5.2.2), but we ignore that information. We crucially use the property
that thinning a PPP yields two independent PPPs. The adaptation of our
technique to lattices as vertex-set seems non-trivial due to this step. We
reveal now Ξ

(unsure)
n [2whh,∞). Let Gn,3 ⊇ Gn,2 be the graph induced on the

vertex set
Vn,3 := Ξn[1, 2whh)∪ Ξ(unsure)

n [2whh,∞). (5.2.3)

Step 4: Cover expansion, a volume-based argument. We now reveal
Ξ

(sure)
n [2whh,∞) and merge all components of size at least k with the largest

component in Gn,3 with probability at least 1 − errn,k. Small-to-large
merging cannot happen since vertices in Ξ(sure)

n [2whh,∞) all connect to Cbb.
We argue how to obtain (5.2.1).

Step 4a: Not too dense components via proper cover. For a component C ⊆
Gn,3, the proper cover Kn(L) ⊆ Λn is the union of volume-1 boxes centered at
the vertices of C (the formal definition below is slightly different). Fixing a
constant δ > 0, we say that C is not too dense if

Vol(Kn(C)) ⩾ δ|C|. (5.2.4)

Using the connectivity function p in (5.1.3) and whh = Θ(kγhh), there exists
k0 such that for any k ⩾ k0 and any pair of vertices u ∈ Vn,3 in (5.2.3) and
v ∈ Ξ(sure)

n [2whh,∞) within the same volume-1 box,

p(u, v) ⩾ p/2. (5.2.5)

Using this bound and that Ξ(sure)
n [2whh,∞) is a PPP, when |C| ⩾ k, with prob-

ability at least 1− errn,k, at least Θ(kζhh) many vertices of Ξ(sure)
n [2whh,∞)

fall inside Kn(C) and at least one of them connects to C by an edge. Since
these vertices belong to Ξ(sure)

n [2whh,∞), they connect to Cbb by construction,
merging C with the component containing Cbb.

Step 4b: Too dense components via cover-expansion. We still need to
handle components C ⊆ Gn,3 with |C| ⩾ k but the opposite of (5.2.4).
These may exist (outside the component of Cbb) since the PPP Ξn contains
dense areas, e.g., volume-one balls with Θ(log(n)/ log log(n)) vertices. We



138 the high-high regime

introduce a deterministic algorithm, the ‘cover-expansion algorithm’, that
outputs for any (deterministic) set L of at least k vertices a set Kexp(L) ⊂
Rd, called the expanded cover of L, that satisfies (5.2.4) and a bound similar
to (5.2.5) (provided that σ ⩽ τ−1). In the design of the set Kexp(L) we
quantify the idea that a connector vertex can be farther away in space from
a too dense subset L ′ ⊆ L, while ensuring connection probability at least
p/2 to L ′, as if L ′ contains a single vertex. We apply this algorithm with
L = C for components of size at least k of Gn,3 that do not satisfy (5.2.4)
and do not contain Cbb. The remainder of the proof is identical to Step 4a.
Steps 4a, 4b, and a union bound over all components of size at least k in
Gn,3 yield (5.2.1).

5.2.1.2 Subexponential decay, upper bound.

Consider k fixed. We obtain the cluster-size decay (5.1.7) for any n ∈
[poly(k),nk] with nk = exp(Θ(kζhh)) by substituting nk into (5.2.1). To
extend it to larger n, we first identify the lowest mark w(n) such that all
vertices with mark at least w(n) belong to the giant component C(1)

n ⊆ Gn
with sufficiently high probability (in n). Then we embed Λnk in Λn and
show that

P0
(
|Cn(0)| ⩾ k, 0 ̸∈ C(1)

n

)
⩽ P0

(
|C(2)
nk

| ⩾ k
)
+ P0

(
C(1)
nk

⊈ C(1)
n

)
+ P0

(
|Cn(0)| ⩾ k, 0 ̸∈ C(1)

n , |Cnk(0)| < k
)
.

(5.2.6)

Figure 7: Upper bound. The y-axis represents marks, the x-axis represents space.
After Steps 1 and 2 there is a component C⋆ containing the backbone
that is connected to some small components from Gn[1,whh). After Step
3, the unsure connectors are revealed: there is small-to-large merging;
some unsure connectors connect to the backbone. After Step 4, each
component of size at least k merged with the largest component via a
sure-connector; unmerged small components and unsure-connectors
outside C

(1)
n remain.
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The first term on the right-hand side has the right error bound by (5.2.1).
We relate the second term to the event that for some ñ ∈ (nk,n] there is no
polynomially-sized largest component or the second-largest component
is too large. The event in the third term implies that one of the at most
k− 1 vertices in Cnk(0) has an edge of length Ω(n

1/d
k /k), which will have

probability at most errnk,k, since these vertices have mark at most w(nk).

5.2.2 Lower bound

For the subexponential decay, we compute the probability of a specific
event satisfying k ⩽ |C(0)| <∞. We draw a ball B of volume Θ(k) around
the origin, and compute an optimally suppressed mark-profile: the PPP Ξ must
fall below a (d+ 1)-dimensional mark-surface M := {(x, f(x)), x ∈ Rd}, i.e.,
wv ⩽ f(xv) must hold for all (xv,wv) ∈ Ξ. We write {Ξ ⩽M} for this event.
The value of f(x) is increasing in ∥x− ∂B∥ since high-mark vertices close
to ∂B are most likely to have edges crossing ∂B. M is optimized so that
P(Ξ ⩽M) ∼ P(B ̸↔ Bc | Ξ ⩽M), where {B ̸↔ Bc} is the event that there
is no edge present between vertices in B and those in its complement.
Both events occur with probability exp(−Θ(kmax{ζll,ζlh,ζhh,ζnn})), up to loga-
rithmic correction terms. We then find an isolated component of size at
least k inside B using a technique that works when τ < 2+ σ. We use
a boxing argument to extend this argument to the lower bound on the
second-largest component of Gn, similar to [162], and to obtain a lower
bound on P(|C(1)

n | < ρn).

5.2.3 Generalisation of results

Most of our results extend to more general (interpolating) KSRGs than
that in Definition 5.1.1. In particular, one can replace the spatial location of
vertices to be Zd (or any other lattice), called i-KSRGs on Zd. To prove this
generalisation, one needs to replace concentration inequalities for Poisson
random variables by Chernoff bounds for Binomial random variables
and replace integrals over Rd by summations over Zd. We believe that
Theorems 5.1.2–5.1.5 fully extend to σ > τ− 1 and i-KSRGs on Zd, by
pre-sampling more information (similar to Step 3) already before Step 1.
We decided to not include this, avoiding the extra amount of required
technicalities. We highlight the lemmas and propositions that do not
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immediately generalise by adding a ⋆ to their statement (e.g. Proposition
5.4.1).

Besides that, all results extend to i-KSRGs where the number of vertices
is fixed to be n, where each vertex u has an iid mark from distribution FW
in (5.1.2) in Definition 5.1.1, and an independent uniform location in the
volume-n box Λn.

Moreover, all results (even when restricted to the graph in Λn) extend to
the Palm-version Px of P where the vertex set Ξ is conditioned to contain
a point at location x ∈ Λn with unknown mark (which is not a priori
obvious, since the model restricted to a finite box around the origin is not
translation-invariant). We will omit this in our statements and proofs, and
only add the superscript x to our notation if we explicitly use the Palm
version.

Organisation of the chapter

In Section 5.3 we explain the cover expansion from Step 4 in the outline
of the upper bound. This technique is a novel technical contribution and
is interesting in its own right. We use it also in [151]. In Section 5.4 we
prove the upper bound on the size of the second-largest component. Then
in Section 5.5 we extend it to the cluster-size decay, and show Corollary
5.1.3. In Section 5.6 we discuss the lower bounds, including the proof
of Theorem 5.1.5. The first propositions in Sections 5.4—5.6 immediately
imply the proofs of Theorems 5.1.2 and 5.1.4, as we verify near the end of
Section 5.6.

5.3 the cover and its expansion

The goal of this section is to develop the cover-expansion technique in Step
4b of Section 5.2.1.1. The statements apply also to KSRGs on vertex sets
other than a PPP. First we define a desired property for a set of vertices
based on their spatial locations. Recall the definition Λs(x) = Λ(x, s) from
(5.1.1).

Definition 5.3.1 (s-expandable point-set). Let S ⊂ Rd× [1,∞) be a discrete
set of points, and s > 0. We call S s-expandable if for all x ∈ Zd and all
s ′ ∈ {s+ ℓ/(edd/223d) : ℓ ∈N},

|S∩Λs ′(x)|/s ′ ⩽ e.
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A discrete set S ⊂ Rd is s-expandable if there are no large boxes,
centered at any site z ∈ Zd, with too high ratio of number of vertices in
S in the box vs its volume. Further, if S is s-expandable, then any subset
of S is s-expandable; also, if S is s-expandable, then for all s̃ ⩾ s, S is
also s̃-expandable. The next proposition solves the problem of too-dense
components in space, cf. (5.2.4).

Proposition 5.3.2 (Covers and expansions for s-expandable sets). Consider
an i-KSRG with connection probabilities between vertices given by (5.1.3) with
kernel κ1,σ and profile function with parameter α > 1 and (arbitrary) marked
vertex set V = {(xv,wv)}v∈V. For a given w > 2ddd/2/β, let s(w) > 0 satisfy

s(w) := (2dβw)1/(1−1/α). (5.3.1)

Then, for any s(w)-expandable L ⊆ V∩Λn of vertices (for some n > 0), there is
a set Kn(L) ⊆ Λn with

Vol(Kn(L)) ⩾
1

24d+1edd/2
|L|, (5.3.2)

such that all vertices v ∈ V∩Kn(L) with mark wv ⩾ w satisfy independently
of each other that

P
(
v↔ L | V

)
⩾ p/2. (5.3.3)

We use two different constructions for the set Kn(L). If L is not too
dense (see (5.2.4)), we will use a proper cover (see Definition 5.3.6 below).
If, however, the points of L are densely concentrated in small areas, we
will use a new (deterministic) algorithm, the cover-expansion algorithm,
producing an expanded cover (see Definition 5.3.7 below) that still satisfies
the connection probability in (5.3.3). This will prove Proposition 5.3.2. We
start with some preliminaries:

Definition 5.3.3 (Cells in a volume-n box). Let B̃z be a box of volume 1
centered around z ∈ Zd. For any two neighbouring boxes B̃z, B̃z ′ , allocate
the shared boundary ∂B̃z ∩ ∂B̃z ′ to precisely one of the boxes. For each
u ∈ Zd such that u /∈ Λn but B̃u ∩Λn ̸= ∅, let z(u) := arg min{∥u− z∥ :
z ∈ Λn ∩Zd}, and then define for each z ∈ Zd ∩Λn the cell of z as

Bz :=
(
B̃z ∩Λn

)
∪
( ⋃
u∈Zd:z(u)=z

(
B̃u ∩Λn

))
.

In words, boxes that have their center inside Λn but are not fully con-
tained in Λn are truncated, while boxes that have their centers outside
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Λn but intersect it are merged with the closest box with center inside Λn.
Clearly, at every point of Λn at most 2d cells are merged together, and
only 1/2 of the radius in each coordinate can be truncated. Thus, for each
cell Bz

sup{∥x− y∥ : x,y ∈ Bz} ⩽ 2
√
d; and 2−d ⩽ Vol(Bz) ⩽ 2d. (5.3.4)

Definition 5.3.4 (Notation for cells containing vertices). Let L ⊂ Λn be the
set of locations of a set of vertices in any given realization (V, (wv)v∈V).
Let {Bzi}

m ′
i=1 be the cells with L∩Bzi ̸= ∅. Let Li := L∩Bzi , ℓi := |Li| and

L := |L| =
∑m ′

i=1 ℓi.

We will distinguish two cases for the arrangement of the vertices among
the cells: either the number of cells is linear in the number of vertices, or
there is a positive fraction of all cells that all contain ‘many’ vertices. To
make this more precise, we prove the next combinatorial claim.

Claim 5.3.5 (Pigeon-hole principle for cells). Let δ ∈ (0, 1), ν ⩾ 1, and
ℓ1, . . . , ℓm ′ ⩾ 1 integers such that

∑
i⩽m ′ ℓi = L. If m ′ < L(1− δ)/ν then

∃ I ⊆ [m ′] : ∀i ∈ I : ℓi ⩾ ν, and
∑
i∈I

ℓi ⩾ δL. (5.3.5)

Proof. Assume for contradiction that δ,ν, ℓ1, . . . , ℓm ′ are such that m ′ <
L(1− δ)/ν holds but (5.3.5) does not hold. Let J := {j : ℓj < ν} ⊆ [m ′] and
let Jc := [m ′]\J. Then ∀i ∈ Jc : ℓi ⩾ ν and hence, we assumed the opposite
of (5.3.5), it holds that

∑
j∈Jc ℓj < δL. Since the total sum is L, this implies

that
∑
j∈J ℓj ⩾ (1− δ)L. Moreover, since ℓj < ν for j ∈ J, it must hold that

|J| ⩾ (1− δ)L/ν, which then gives a contradiction with the assumption in
that m ′ < L(1− δ)/ν.

We define the first possibility for the set Kn(L), which is inspired by
Claim 5.3.5 with ν = edd/223d and δ = 1/2.

Definition 5.3.6 (Proper cover). We say that L admits a proper cover if
m ′ ⩾ |L|/(2edd/223d), in Definition 5.3.4, and we define the cover of L as

K
(prop.)
n (L) :=

⋃
i∈[m ′]

Bzi , satisfying Vol(K(prop.)
n ) ⩾

1

dd/2e24d+1
|L|.

By (5.3.4), ν = edd/223d, and δ = 1/2, hence, we obtain the desired
volume bound on the right-hand side above, establishing (5.3.2) for sets
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admitting a proper cover. Moreover, consider now (xv,wv) ∈ (Bzi ∩L)×
[1,∞) and u := (xu,wu) ∈ Bzi × [w,∞) with Bzi ⊆ K

(prop.)
n . Then ∥xu −

xv∥ ⩽ 2
√
d by (5.3.4). Since we assumed w ⩾ 2ddd/2/β above (5.3.1),

using (5.1.3) and (1.3.5),

p(u, v) ⩾ pmin{1, (βκ1,σ(w, 1)/(2
√
d)d)α}

= pmin{1, (βw/(2
√
d)d)α} ⩾ p.

(5.3.6)

This shows (5.3.3) for sets admitting a proper cover. The argument for
α = ∞ is similar.

The remainder of this section focuses on sets L that do not admit a
proper cover, i.e., the number of cells that contain vertices of L is too
small. We define an “expanded” cover, obtained after applying a suitable
volume-increasing procedure to ∪i∈[m ′]Bzi that will be explained at the
end of the section.

5.3.1 Cover expansion

In this section we assume that L does not admit a proper cover. By
Claim 5.3.5, and re-indexing cells in Definition 5.3.4, without loss of
generality we may assume that I = [m] ⊆ [m ′] satisfies (5.3.5) with ν =

edd/223d and δ = 1/2. We use Λ(x, s) in (5.1.1) here for the box of volume
s centered at x ∈ Rd.

Definition 5.3.7 (Cover expansion). Let L be a set of locations of vertices
that does not admit a proper cover in the sense of Definitions 5.3.4 and 5.3.6.
Let [m] := {j : ℓj ⩾ edd/223d} ⊆ [m ′] satisfying (5.3.5) with ν = edd/223d

and δ = 1/2. The cover expansion is defined as a subset of labels J(⋆) ⊆ [m]

and corresponding boxes (B(⋆)

j )j∈J(⋆) ⊂ Rd, centered at (zj)j∈J(⋆) , together

with an allocation ⋆7→ of the cells Bzi : i ⩽ m to these boxes, with

Cells(⋆)

j :=
⋃
i⩽m

{
i : Bzi

⋆7→ B
(⋆)

j

}
, (5.3.7)

satisfying the following properties:

(disj.) the boxes (B(⋆)

j )j∈J(⋆) are pairwise disjoint sets in Rd;
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(vol.) for all j ∈ J(⋆); we have

B
(⋆)

j = Λ
(
zj,

1

edd/223d
∑

i∈Cells(⋆)j

ℓi

)
,

Vol(B(⋆)

j ) =
1

edd/223d
∑

i∈Cells(⋆)j

ℓi;
(5.3.8)

(near) for each i ∈ [m] ; i ∈ Cells(⋆)

j

∥zi − zj∥d ⩽ dd/2Vol(B(⋆)

j ). (5.3.9)

We define the expanded cover of L as

K(exp)
n (L) := Λn ∩

( ⋃
j∈J(⋆)

B
(⋆)

j

)
(5.3.10)

and call B(⋆)

j the expanded boxes.

A few comments about Definition 5.3.7: (disj) and (vol) together ensure
that the total volume of the expanded cover is proportional to |L|. Further,
(vol) ensures that Vol(B(⋆)

j ) is proportional to the number of vertices that
are in cells allocated to B(⋆)

j . Finally, (near) ensures that the center zi of
each cell Bzi is relatively close to the center of the box to which it is
allocated. Observe that when the final box B(⋆)

j is large, (5.3.9) allows for
large distances between allocated initial cells and the center of B(⋆)

j .

Proposition 5.3.8 (Every set has either a proper cover or a cover expansion).
Assume L does not admit a proper cover defined in Definition 5.3.6. Then there
exists a cover expansion for L in the sense of Definition 5.3.6 and 5.3.7. Further,
the total volume of the expanded cover is linear in |L|, i.e.,

Vol(K(exp)
n (L)) ⩾

1

24d+1edd/2
|L|. (5.3.11)

We defer the proof of existence of the desired cover expansion to the end
of the section. Assuming that a cover expansion exists, we show now the
linearity of its volume along with some other observations. Afterwards,
we show how Proposition 5.3.2 follows from Proposition 5.3.8.

Observation 5.3.9 (Cover-expansion properties). Consider the cover expan-
sion of a set L that does not admit a proper cover according to Definition 5.3.6.
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(i) Every expanded box has volume at least 1, i.e., for all j ∈ J(⋆), Vol(B(⋆)

j ) ⩾ 1.

(ii) For any cell with Bzi
⋆7→ B

(⋆)

j ,

sup
{
∥xu − xv∥ : xu ∈ Li, xv ∈ B(⋆)

j

}
⩽ 4
√
dVol(B(⋆)

j )1/d.

(iii) For every box B(⋆)

j , there exists a box B ′j centered at zj such that

Vol(B ′j) = d
d/223dVol(B(⋆)

j ), and |L∩B ′j| ⩾ eVol(B ′j). (5.3.12)

(iv) If L is s-expandable, then for all j ∈ J(⋆)

Vol(B(⋆)

j ) ⩽ d−d/22−3ds. (5.3.13)

(v) The total volume of a cover expansion is linear in |L|, i.e., (5.3.11) holds.

Proof. Part (i) is a consequence of Definition 5.3.7: every cell with label at
most m has ℓi ⩾ edd/23d, so by (vol), i.e., (5.3.8), Observation (i) follows.

For part (ii) we apply the triangle inequality: since xu ∈ Li, it holds
that xu ∈ Bzi , and so by (5.3.4), ∥xu − zi∥ ⩽ 2

√
d; and by (5.3.9) ∥zi −

zj∥ ⩽
√
dVol(B(⋆)

j )1/d; hence ∥xu − zj∥ ⩽ 2
√
d +
√
dVol(B(⋆)

j )1/d. Also,
for any xv ∈ B(⋆)

j it holds that ∥zj − xv∥ ⩽ (
√
d/2)Vol(B(⋆)

j )1/d by (5.3.8).
Combining these bounds and using Vol(B(⋆)

j )1/d ⩾ 1 yields

∥xu − xv∥ ⩽ 2
√
d+ (3

√
d/2)Vol(B(⋆)

j )1/d ⩽ (7
√
d/2)Vol(B(⋆)

j )1/d

⩽ 4
√
dVol(B(⋆)

j )1/d,

and part (ii) is proven. For part (iii), note that part (ii) applied to u ∈ Li ⊂
Bzi and zj, yields that

sup
i∈Cells(⋆)j

{
∥xu − zj∥ : xu ∈ Li

}
⩽ 4
√
dVol(B(⋆)

j )1/d.

Consequently, the box B ′j centered at zj of volume

Vol(B ′j) = d
d/223dVol(B(⋆)

j )

contains all u ∈ Li with i ∈ Cells(⋆)

j . Hence, using (5.3.8), we obtain

|L∩B ′j| ⩾
∑

i∈Cells(⋆)j

ℓi = edd/223dVol(B(⋆)

j ) = eVol(B ′j), (5.3.14)
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and part (iii) follows. For part (iv), by combining (5.3.14) with Defini-
tion 5.3.1 we see that L can only be s-expandable if Vol(B ′j) ⩽ s. Rear-
rangement of the first part of (5.3.12) yields (5.3.13).

Finally, for part (v), by an argument similar to (5.3.4), Vol(B(⋆)

j ∩Λn) ⩾
2−dVol(B(⋆)

j ) for all j ∈ J(⋆). Since all boxes of the cover expansion are
disjoint, and each cell is allocated once, (5.3.8) and (5.3.10) imply that

Vol(K(exp)
n (L)) =

∑
j∈J(⋆)

Vol(B(⋆)

j ∩Λn) ⩾ 2−d
∑
j∈J(⋆)

Vol(B(⋆)

j )

=
1

e24ddd/2
∑
j∈J(⋆)

∑
i∈Cells(⋆)j

ℓi

=
1

edd/224d
∑
i⩽m

ℓi ⩾
1

edd/224d+1
L,

where the last bound follows by the assumption in Definition 5.3.7 that
ℓi ⩾ edd/223d for i ⩽ m, and the initial assumption that (5.3.5) in Claim
5.3.5 holds for [m] with δ = 1/2.

Proof of Proposition 5.3.2 assuming Proposition 5.3.8. For sets L that admit a
proper cover, we recall the reasoning below Definition 5.3.6 (in particular
(5.3.6)) which implies both bounds (5.3.2) and (5.3.3) in Proposition 5.3.2.
Let L be an s-expandable set that does not admit a proper cover. Let K(exp)

n

be an expanded cover given by the boxes (B(⋆)

j )j∈J(⋆) , J(⋆) ⊆ [m] and an

allocation ⋆7→ of the initial cells (Bzi)i∈[m] to these boxes. The existence of
this cover expansion is guaranteed by Proposition 5.3.8. The volume bound
(5.3.2) follows from (5.3.11) in Proposition 5.3.8. Hence, it only remains to
verify (5.3.3).

Let u = (xu,wu) ∈ K
(exp)
n × [w,∞). By (disj), and (5.3.10), there exists

j ∈ J(⋆) such that xu ∈ B(⋆)

j . Recall from (5.3.7) that Cells(⋆)

j are the cells
allocated to B(⋆)

j , and from Definition 5.3.4 that Li = L ∩ Bzi . Let now
L

(⋆)

j := ∪
i∈Cells(⋆)j

Li. Recall the formula of the connection probability from

(5.1.3).
Case (1): α <∞. By Observation 5.3.9(ii) for any v = (xv,wv) ∈ L

(⋆)

j , and
any xu ∈ B(⋆)

j , using the lower bounds for the marks wv ⩾ 1,wu ⩾ w, and
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that κ(wu,wv) = (wu ∨wv)(wu ∧wv)
σ for some σ ⩾ 0, we obtain using

(5.1.3) that

p
(
u, v
)
= pmin

{
1,βα

κ(wu,wv)α

∥xv − xu∥dα
}

⩾ pmin
{
1,

βαwα

(4
√
d)αdVol(B(⋆)

j )α

}
=: r.

By (5.3.8), |L(⋆)

j | =
∑
i∈Cells(⋆)j

ℓi = edd/223dVol(B(⋆)

j ). Hence, we have

P
(
∄(xv,wv) ∈ L

(⋆)

j : (xu,wu)↔ (xv,wv)
)

⩽ (1− r)edd/223dVol(B(⋆)
j )

⩽ exp
(
− pedd/223dmin

{
Vol(B(⋆)

j ),βαwα(4
√
d)−αdVol(B(⋆)

j )1−α
})

.

Since α ⩾ 1, and L is s-expandable, we can use the upper bound in (5.3.13)
on Vol(B(⋆)

j ) to bound the second term in the minimum on the right-hand
side of the last row, and we use Vol(B(⋆)

j ) ⩾ 1 by Observation 5.3.9(i) to
bound the first term. We obtain

P
(
∄(xv,wv) ∈ L

(⋆)

j : (xu,wu)↔ (xv,wv)
)

⩽ exp
(
− pedd/223dmin

{
1,βαwα(4

√
d)−αds1−α(d−d/22−3d)1−α

})
= exp(−pe min{dd/23d, (2dβ)αwαs1−α}) ⩽ exp(−ep) ⩽ p/2,

where we used in the last row that dd/23d > 1 and also that the bound on
w in (5.3.1) ensures that the second term inside the minimum is at least 1,
and that exp(−ep) ⩽ p/2 for p ∈ [0, 1]. This concludes the proposition for
α <∞.

Case (2): α = ∞. Using the same bounds as for α <∞ on the distance,
mark and volume of boxes, but now (5.1.3) for α = ∞, for any u =

(xu,wu) ∈ B(⋆)

j × [w,∞) and any v = (xv,wv) ∈ L
(⋆)

j that

p
(
(xu,wu), (xv,wv)

)
⩾ p1{βw > (4

√
d)dVol(B(⋆)

j )}

⩾ p1{βw > (4
√
d)dd−d/22−3ds}

= p1{βw > 2−ds} = p ⩾ p/2,

where in the one-but-last step we used (5.3.1), finishing the proof of
α = ∞.
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We observe that the case α = ∞ does not use of the size of L(⋆)

j , and only
requires a single vertex in it, which is intuitive considering the threshold
nature of p in (5.1.3). It remains to prove Proposition 5.3.8, which is the
content of the following subsection.

5.3.2 The algorithm producing the cover expansion

Now we give the algorithm producing the expanded cover of any discrete
set L without a proper cover, thence, proving the desired proposition.

Setup for the algorithm.

Recall the notation from Definitions 5.3.4 and 5.3.7. Throughout, we will
assume that L does not admit a proper cover in Definition 5.3.6 and that
(Bzi : i ∈ [m]) are the cells satisfying (5.3.5). Contrary to Definition 5.3.7,
which allocates the initial cells Bzi to boxes B(⋆)

j , the algorithm allocates the
labels i, i ⩽ m of the initial cells Bzi towards each other in discrete rounds
r ∈N. We write i r7→ j to indicate that label i is allocated to label j in the
allocation of round r. We also write

r7→ := {(i, j) : i r7→ j}i⩽m;

Cells(r)

j :=
⋃
i⩽m

{
i : i

r7→ j
}

;

J(r) := {j : Cells(r)

j ̸= ∅}.

In each round r ⩾ 0, the boxes {B
(r)

j }j∈J(r) , and the centers of these boxes

are completely determined by r7→ by the formula

B
(r)

j := Λ

(
zj,

1

edd/223d
∑

i∈Cells(r)j

ℓi

)
for j ∈ J(r); (5.3.15)

where Λ(x, s) is a box of volume s centered at x ∈ Rd (see (5.1.1)). Since
label j corresponds to center zj across different rounds, by slightly abusing
notation we also write Bzi

r7→ B
(r)

j if and only if i r7→ j. We say that r7→
satisfies one (or more) conditions in Definition 5.3.7 if (B(r)

j )j∈J(r) with

allocation r7→ satisfies the condition(s).
The algorithm starts with the identity as initial allocation 07→ that induces

possibly overlapping boxes B(0)

1 , . . . ,B(0)
m ; we will show that 07→ already

satisfies (near) and (vol.) of Definition 5.3.7. In each stage the algorithm
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attempts to remove an overlap – a non-empty intersection – between a pair
of boxes by re-allocating a few cell labels, while maintaining properties
(near) and (vol.); we achieve (disj) in the last round r⋆. The last round
r⋆ <∞ corresponds to the final output, by setting J(⋆) := J(r⋆);B(⋆)

j := B(r⋆)

j

and defining Bzi
⋆7→ B

(⋆)

j if and only if i r
⋆

7→ j.

The cover-expansion algorithm.

(input) (Bzi)i∈[m] and Li = L ∩ Bzi satisfying (5.3.5) with ν = edd/223d

and δ = 1/2.

(init.) Set r := 0, and allocate j 07→ j for all j ⩽ m.

(while) If (B(r)

j )j∈J(r) in (5.3.15) are all pairwise disjoint, set r⋆ := r; and

return J(⋆) := J(r⋆);B(⋆)

j := B(r⋆)

j and ⋆7→ :=
r⋆7→.

Otherwise, let j1(r) ∈ J(r) be the label corresponding to the largest
box B(r)

j1(r)
with an overlap with some other box in round r, and let

j2(r) be the label of the largest box that overlaps with B(r)

j1(r)
(using

an arbitrary tie-breaking rule). Define

I
(r)

1 := Cells(r)
j2(r)

∩
{
i : ∥zi − zj1(r)∥ ⩽

√
dVol(B(r)

j1(r)
)1/d

}
i⩽m;

I
(r)

2 := Cells(r)
j2(r)

\ I
(r)

1 .
(5.3.16)

Then we define r+17→ by only re-allocating labels in Cells(r)
j2(r)

as fol-
lows:

(i) for i ∈ I
(r)

1 we allocate i r+17→ j1(r), i.e., the labels of cells in
Cells(r)

j2(r)
that are sufficiently close to the center of B(r)

j1(r)
in

order to satisfy (5.3.9) are re-allocated to j1(r);

(ii) for i ∈ I
(r)

2 we allocate i r+17→ i, i.e., the labels of cells that are
potentially too far away from the center of B(r+1)

j1(r)
are re-allocated

back to themselves;

(iii) for i ∈ [m] \ (Cells(r)

j2
), we set i r+17→ k if and only if i r7→ k (that

is, r+17→ agrees with r7→ outside labels in Cells(r)

j2(r)
).

Increase r by one and repeat (while).

We make the immediate observation:
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Observation 5.3.10. In each iteration of (while), I(r)1 in (5.3.16) is always non-
empty. Moreover,

Vol
(
B

(r+1)

j1(r)

)
− Vol

(
B

(r)

j1(r)

)
⩾ 1. (5.3.17)

Proof. It can be shown inductively that j r7→ j holds for all j ∈ J(r). Since
the boxes B(r)

j1(r)
and B(r)

j2(r)
overlap, the distance of their centers ∥zj2(r) −

zj1(r)∥ is at most the diameter of B(r)

j1(r)
, which is

√
dVol(B(r)

j1(r)
)1/d. Hence,

j2(r) ∈ I
(r)
1 . Since each cell contains ℓi ⩾ edd/223d many vertices by the

assumption in (input), we obtain by (5.3.15)

Vol
(
B

(r+1)

j1(r)

)
− Vol

(
B

(r)

j1(r)

)
⩾

ℓj2(r)

edd/223d
⩾ 1.

Proof of Proposition 5.3.8. Once having shown that a cover expansion of L
exists, the bound on its volume (5.3.11) holds by Observation 5.3.9(v). So
it remains to show that the algorithm produces in finitely many rounds an
output satisfying all conditions of a cover expansion given in Definition
5.3.7.

The algorithm stops in finitely many rounds. We argue using a monotonicity
argument. We say that a vector a = (a1, . . . ,am) ∈ Rm is non-increasing
if ai ⩾ ai+1 for all i ⩽ m − 1. We use the lexicographic ordering for
non-increasing vectors a, b ∈ Rm: let a >L b if there exists a coordinate
j ⩽ m such that aℓ = bℓ for all ℓ < j and aℓ > bℓ for ℓ = j.

For all r ∈N, J(r) ⊆ [m], and hence, m(r) := |J(r)| ⩽ m. Let a(r) ∈ Rm be
the non-increasing vector of the re-ordered (Vol(B(r)

j ))j∈J(r) appended with
(m−m(r))-many zeroes. By Observation 5.3.10, the entry corresponding to
Vol
(
B

(r)

j1(r)

)
in a(r) increases in a(r). Moreover, the entry corresponding to

Vol
(
B

(r)

j2(r)

)
“crumbles” into smaller volumes (corresponding to boxes with

label in I
(r)

2 ) that appear in a(r). Since by definition, j1(r) corresponds to
the largest box among (B(r)

j )j∈J(r) that has an overlap with some other box,
so also Vol(B(r)

j2(r)
) ⩽ Vol(B(r)

j1(r)
), and the allocation of labels except those

in Cells(r)

j2(r)
remains unchanged, these together imply that a(r+1) >L a(r).

Finally, for any r and any j ∈ J(r), Vol(B(r)

j ) ⩽ |L|/(edd/223d) =: b by (5.3.8),
implying that for all r, (b, . . . ,b) >L a(r). So, (a(r))r⩾0 is an increasing
bounded sequence with respect to >L, with an increase of at least 1
per step by (5.3.17). Hence, (a(r))r⩾0 converges and attains its limit after
finitely many rounds, i.e., r⋆ <∞.

The output corresponds to a cover expansion. We now prove that the output
J(⋆), ⋆7→ and the corresponding boxes in (5.3.15) satisfy the conditions of
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Definition 5.3.7. By the stopping condition in step (while) of the algo-
rithm, (B(⋆)

j )j∈J(⋆) satisfy (disj.), and by their definition in (5.3.15), also
(vol.). We need to still verify (near). We show this by induction: initially,

for (B(0)

j )j∈J(0) ,
07→, (near) holds, since in (init.) all labels are allocated to

themselves, so Cells(0)

j = {j}, and thus the left-hand side in (5.3.9) is 0.

Assume then r > 0. We prove that (near) holds for r+17→ , assuming that it
holds for r7→. Recall from (while) that j1(r) is the label of the largest box
that has an overlap; j2(r) is the label of the largest box overlapping with
B

(r)

j1(r)
; by (5.3.16), I(r)1 is the set of labels in Cells(r)

j2(r)
re-allocated to j1(r),

and I
(r)

2 = Cells(r)

j2(r)
\ I

(r)

1 is the set labels allocated in round r to j2(r), and
in round r+ 1 to themselves. We distinguish between four cases for the
proof of the inductive step:

• Assume i /∈ (Cells(r)

j1(r)
∪Cells(r)

j2(r)
) and let k be such that i r+17→ k. By

(while) part (iii), Cells(r+1)

k = Cells(r)

k , so by the induction hypothesis,

(5.3.9) holds for r+17→ .

• Assume i ∈ Cells(r)

j1(r)
. Since B(r)

j1(r)
⊊ B

(r+1)

j1(r)
by (5.3.15) and (5.3.17),

considering ∥zi − zj1(r)∥ and the left-hand side in (5.3.9) stay the
same, while the right-hand side increases, so the inequality required
for (near) still holds.

• Assume i ∈ I
(r)

1 ⊆ Cells(r)

j2(r)
. The definition of I(r)1 in (5.3.16) forces

that ∥zi − zj1(r)∥ satisfies (5.3.9).

• Assume i ∈ I
(r)

2 = Cells(r)

j2
\ I

(r)

1 : (5.3.9) holds for the same reason as

for the base case, i.e., since i r+17→ i, ∥zi − zi∥ = 0 trivially satisfies
(5.3.9).

Having all possible cases covered, this finishes the proof of the induction.
Since r⋆ <∞, this finishes the proof of Proposition 5.3.8.

5.3.3 Poisson point processes are expandable

We end this section by showing that a Poisson point process is typically
s-expandable for s sufficiently large. Recall Λn = [−n1/d/2,n1/d/2]d.

Lemma 5.3.11 (PPPs are expandable). Let Γ be a Poisson point process on Rd

equipped with an absolutely continuous intensity measure µ such that µ(dx) ⩽
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Leb(dx). Then there exists a constant C5.3.11 = C5.3.11(d) > 0 such that for
any s > 0,

P
(
Γ ∩Λn is not s-expandable

)
⩽ C5.3.11n exp(−s).

Proof. Using stochastic domination of point processes, without loss of
generality we can assume that Γ has intensity measure Leb(dx). Let us
define R(s) := {s+ ℓ/(edd/223d) : ℓ ∈ N}, the range of volumes of boxes
that we need to consider in Definition 5.3.1. By a union bound over the at
most n possible centers of the boxes in Λn, and by translation invariance
of Leb, it holds that

P
(
Γ ∩Λn is not s-expandable

)
= P

(
∃x ∈ Zd ∩Λn, ∃s ′ ∈ R(s) : |Λs ′(x)∩ Γ | ⩾ es ′

)
⩽ n

∑
s ′∈R(s)

P
(
|Λs ′ ∩ Γ | ⩾ es ′

)
.

(5.3.18)

Since the intensity of Γ is equal to one, by Lemma 5.C.1, each summand is
at most exp(−s ′) on the right-hand side. Hence, using that

∑∞
ℓ=a f(ℓ) ⩽∫∞

a−1 f(x)dx for a monotone non-increasing function, we obtain for the
summation in (5.3.18)

P
(
Γ ∩Λn is not s-expandable

)
⩽ n exp(−s)

∞∑
ℓ=0

exp
(
− ℓ/(edd/223d)

)
⩽ n exp(−s)

∫∞
−1

exp
(
− x/(edd/223d)

)
dx

= n exp(−s)edd/223d exp
(
1/(edd/223d)

)
.

The proof of the lemma follows for C5.3.11 = edd/223d exp
(
1/(edd/223d)

)
.

5.4 upper bound : second-largest component

The main goal of this section is to prove the following proposition for
general values of n and k, which readily implies Theorem 5.1.4(ii), i.e.,
(5.1.10). Recall ζhh = 1− γhh(τ− 1) from (4.2.4). We restrict ourselves to
σ ∈ (τ− 2, τ− 1], since σ ⩽ τ− 2 implies that ζhh ⩽ 0. We recall from
Section 5.2.3 that the superscript ⋆ below indicates that the result does not
generalise to i-KSRGs on Zd.
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Proposition⋆ 5.4.1. Consider a supercritical i-KSRG model in Definition 5.1.1,
and parameters α > 1, τ > 2 and d ∈ N. Assume further that also σ ∈ (τ−

2, τ− 1]. There exists a constant c5.4.1 > 0 such that whenever n > k1+ζhh/α it
holds that

P
(
|C(2)
n | ⩾ k

)
⩽ (n/c5.4.1) exp

(
− c5.4.1k

ζhh
)
. (5.4.1)

We follow the steps of the methodology from Section 5.2.1.1. The bulk
of the work is to establish Steps 1 and 3, since we already developed the
cover expansion of Step 4 in Section 5.3. We first introduce some notation.
We aim to partition the box Λn into disjoint subboxes of (roughly) volume
k. Define

n ′ := k⌊(n/k)1/d⌋d. (5.4.2)

The box Λn ′ ⊆ Λn is the largest box inside Λn that can be partitioned
into n ′/k disjoint subboxes of volume exactly k (boundaries are allocated
uniquely similar to Definition 5.3.3). Let the boxes of this partitioning
of Λn ′ be Q1, . . . ,Qn ′/k, labeled so that Qi shares a boundary (that is,
a (d− 1)-dimensional face) with Qi+1 for all i < n ′/k. Define for each
u = (xu,wu) ∈ Ξn ⊂ Λn

Q(u) := arg min
Qi

∥xu −Qi∥, (5.4.3)

with the convention that ∥xu −Qi∥ = 0 if xu ∈ Qi, and take the box with
the smallest index if the minimum is non-unique. Similarly to (5.3.4), we
observe that for any point u ∈ Ξn ⊂ Λn

sup
y∈Q(u)

∥xu − y∥ ⩽ 2
√
dk1/d. (5.4.4)

Step 1. Construction of the backbone

Recall the definition of Gn[a,b) from (5.1.4) in Definition 5.1.1. We first
show that, for some whh = whh(k), the graph Gn,1 := Gn[whh, 2whh) con-
tains a so-called backbone, a connected component Cbb that contains at
least sk = Θ(kζhh) vertices in every subbox. Using α and β from Defini-
tion 5.1.1, define the constant C1 to be the solution of the equation

(p/16)βαC
1−(σ+1)α/(τ−1)
1 (2

√
d)−αd = log(2), if α <∞, (5.4.5)

βC
−(1+σ)/(τ−1)
1 d−d/22−d−2σ = 1, if α = ∞. (5.4.6)
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We set, with γhh from (4.2.3),

whh := whh(k) := C
−1/(τ−1)
1 kγhh ,

sk := (C1/16)k
1−γhh(τ−1) = kw

−(τ−1)
hh /16.

(5.4.7)

To avoid cumbersome notation, we assume that sk ∈N. Recall the notation
ΞQ[a,b) from (5.1.12). Let

Abb := Abb(n,k) :=

{
Gn,1 contains a conn. component Cbb(n,k) s.t.

for all i ⩽ (n ′/k) : |ΞQi [whh, 2whh)∩ Cbb| ⩾ sk

}
.

(5.4.8)
On Abb, let Cbb := Cbb(n,k), the backbone, be the largest component in
Gn[whh, 2whh) that satisfies the event Abb. In the following lemma we
obtain a lower bound on the probability that there exists a backbone.
Observe that sk = Θ(kζhh) in (5.4.7), so the decay on the right-hand side in
(5.4.9) below is of the same order as the desired decay in Proposition 5.4.1.

Lemma 5.4.2 (Backbone construction). Consider a supercritical i-KSRG model
as in Definition 5.1.1, and parameters α > 1, τ ∈ (2, 2+ σ), σ ⩾ 0, d ∈ N.
There exist constants c5.4.2 = c5.4.2(p,β,d,α, τ,σ) > 0 and k1 ∈N such that
for k ⩾ k1 and all n satisfying n ⩾ k1+ζhh/α we have

P
(
¬Abb(n,k)

)
⩽ 3(n/k) exp

(
− c5.4.2sk

)
. (5.4.9)

Proof. Towards proving (5.4.9), we reveal Ξn[whh, 2whh), i.e., only the vertex
set of Gn,1, and define

Apoi := {∀i ⩽ n ′/k : |ΞQi [whh, 2whh)| ⩾ 4sk}. (5.4.10)

On Apoi, every box contains enough vertices in Gn,1. Reveal now the edges
of Gn,1 only within each of the boxes (Qi)i⩽n ′/k: let Hi,1 be the induced
subgraph of Gn,1 on ΞQi [whh, 2whh), and define

J := min {i : Hi,1 contains a component C with |C| ⩾ sk} . (5.4.11)

We write J = ∞ if no such box-index exists. Then

P(¬Abb) ⩽ P(¬Apoi) + P(J = ∞ | Apoi)

+

n ′/k∑
i=1

P(J = i | Apoi)P(¬Abb | {J = i}∩Apoi).
(5.4.12)
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We first bound P(¬Apoi) from above. The distribution of |ΞQi [whh, 2whh)|

is Poisson1 with mean kw−(τ−1)
hh (1− 2−(τ−1)) = 16(1− 2−(τ−1))sk ⩾ 8sk

by (5.1.2), (5.4.7) and since τ ⩾ 2. Lemma 5.C.1 yields

P
(
|ΞQi [whh, 2whh)|⩽4sk

)
⩽ P

(
Poi(8sk)⩽4sk

)
⩽ exp

(
− 4sk(1− log(2))

)
.

Since 1− log(2) ⩾ 1/4, by a union bound over the at most n ′/k ⩽ n/k
subboxes we get

P(¬Apoi) ⩽ (n/k) exp(−sk). (5.4.13)

We will now show an upper bound on the summands in (5.4.12) that
holds uniformly in i. For this, we iteratively ‘construct’ a backbone. The
subboxes Q1, . . . ,Qn ′/k are ordered so that Qi and Qi+1 share a boundary
for all i. On {J = i}, we know that Hi,1 inside Qi contains a connected
component C with at least sk many vertices. We now reveal edges between
Qi and Qi+1, and bound the probability that there are at least sk many
vertices in Qi+1 that are connected by an edge to C: denote this set of
vertices by Ṽi+1. Next, we apply the same bound to show that at least sk
many vertices in Qi+2 connect by an edge to Ṽi+1, and so on. For ℓ < i,
we proceed similarly. Although {J = i} implies that the induced graph
Hℓ,1 ∈ Qℓ does not contain a large enough connected component, we can,
thanks to conditioning on Apoi, still ensure that at least sk many vertices
in Qi−1 connect directly by an edge to the connected component C in Qi,
irrespective of the vertex positions in Qi−1. Again, denote these vertices by
Ṽi−1. We repeat this procedure for ℓ ∈ {i− 2, . . . , 1}. Hence, for ℓ ⩾ i, we
need to analyse the probability that a vertex in Qℓ+1 connects to a vertex in
Ṽℓ, conditionally on |Ṽℓ| ⩾ sk. Since by assumption τ < 2+σ, by definition
of γhh in (4.2.3) for all τ < σ+ 2 and α ⩽∞, it holds that

1− (1+ σ)γhh ⩾ 0, and 2+ σ− τ > 0. (5.4.14)

Let cd be the volume of the unit d-dimensional ball. Then let k1 be the
smallest integer so that, depending on the value of α, the following bounds
hold (with C1 = C1(α) from (5.4.5)-(5.4.6), respectively):

(1− p)C1k
ζhh
1 /16 ⩽ 1/2, and

(C1/4)k
ζhh
1 ⩽ exp

(
pβcd2

−d
(
C
−1/(τ−1)
1 k1

)(2+σ−τ)γhh/8
)
.

(5.4.15)

The Euclidean distance between vertices in neighbouring boxes is at most
2
√
dk1/d (twice the diameter of a single box), and all considered vertices

1 In fact, since Ξ is conditioned to contain 0 in Definition 5.1.1, the density of Ξ in Q(0) is
slightly different. This effect is negligible, and we ignore it in our computations throughout.
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have mark at least whh. When α = ∞, we use that γhh = 1/(1+ σ) (see
(4.2.3)), and so w1+σhh /k = Θ(1) by (5.4.7). We obtain using (5.4.6), p in
(5.1.3), that for any u = (xu,wu) ∈ ΞQℓ+1 [whh, 2whh),

P
(
(xu,wu)↔ Ṽℓ | |Ṽℓ| ⩾ sk

)
⩾ 1−

(
1− p1

{ βw1+σhh

(2
√
d)dk

⩾ 1
})sk

= 1− (1− p)sk ⩾ 1/2,

(5.4.16)

for all k ⩾ k1 by the first criterion in (5.4.15). When α < ∞, using p in
(5.1.3) for u ∈ Qℓ+1 with wu ⩾ whh, either the minimum is at 1 below in
(5.4.17) (in which case the right-hand side of (5.4.16) remains valid) or, the
minimum in p is attained at the second term below in (5.4.17): then we
substitute sk from (5.4.7),

P
(
(xu,wu)↔ Ṽℓ | |Ṽℓ| ⩾ sk

)
⩾ 1−

(
1− pmin

{
1,βα(2

√
d)−αdw

(1+σ)α
hh k−α

})sk (5.4.17)

= 1−
(
1− pβα(2

√
d)−αdw

(1+σ)α
hh k−α

)kw−(τ−1)
hh /16

⩾ 1− exp
(
− (p/16)βα(2

√
d)−αdw

(1+σ)α−(τ−1)
hh k1−α

)
.

By choice of whh, and γhh and C1 and as defined in (5.4.7), (5.4.5), and
(4.2.3), respectively, factors containing k cancel, and after simplification we
arrive at

P
(
u↔ Ṽℓ | |Ṽℓ| ⩾ sk

)
⩾ 1− exp

(
− (p/16)βα(2

√
d)−αdC

1−(1+σ)α/(τ−1)
1

)
= 1/2. (5.4.18)

Combining (5.4.18) with (5.4.16), we obtain a lower bound of 1/2 for
all α > 1 for any u ∈ ΞQℓ+1 [whh, 2whh). On Apoi (see (5.4.10)) there are
at least 4sk vertices in ΞQℓ+1 [whh, 2whh). Each of these vertices connects
conditionally independently by an edge to vertices in Ṽℓ with probability
at least 1/2, so for all ℓ ⩾ i

P
(
|Ṽℓ+1| ⩾ sk | |Ṽℓ| ⩾ 4sk,Apoi

)
⩾ P

(
Bin(4sk, 1/2 ) ⩾ sk

)
⩾ 1− exp(−sk/4),

where the last bound follows by Chernoff’s bound, see e.g. [145, Theo-
rem 2.1]. When J = i and ℓ < i, we can analogously bound the probability
that |Ṽℓ| ⩾ sk, conditionally on |Ṽℓ+1| ⩾ sk. By a union bound over the at



5.4 upper bound : second-largest component 157

most n ′/k subboxes (with indices both smaller as well as larger than i),
we obtain

P
(
¬Abb | {J = i}∩Apoi

)
⩽ (n ′/k) exp(−sk/4)

⩽ (n/k) exp(−sk/4).

The bound holds for all i ⩽ n ′/k. Using this in the summation on the
right-hand side of (5.4.12), and using (5.4.13) to bound P(¬Apoi), (5.4.12)
turns into

P
(
¬Abb

)
⩽ (n/k) exp(−sk) + P(J = ∞ | Apoi)

+ (n/k) exp(−sk/4)P(J ̸= ∞ | Apoi)

⩽ 2(n/k) exp(−sk/4) + P(J = ∞ | Apoi).

(5.4.19)

It remains to bound P(J = ∞ | Apoi), with J from (5.4.11). For this we show
that the graph Hi,1 induced on ΞQi [whh, 2whh) stochastically dominates
a soft random geometric graph above its connectivity threshold. Indeed,
consider (xu,wu) and (xv,wv) in ΞQi [whh, 2whh). Then using (5.1.3), for
α = ∞,

p
(
(xu,wu), (xv,wv)) ⩾ pmin

{
1,βαw(1+σ)α

hh ∥xu − xv∥−dα
}
⩾ p,

whenever ∥xu − xv∥ ⩽ β1/dw(1+σ)/d
hh =: rhh. The calculation for α = ∞ is

analogous yielding the same radius rhh and same lower bound p. Hence,
Hi,1 ≽ RGi where in RGi is a soft random geometric graph: conditioned
on Apoi, there are say Ni ⩾ 4sk many vertices in ΞQi [whh, 2whh), and two
vertices are connected by an edge with probability p whenever they are
within distance rhh = β1/dw

(1+σ)/d
hh of each other. Writing Br for the

Euclidean ball of radius r around the origin and for some dimension
dependent constant cd, the expected degree of a vertex at any location in
RGi is thus, conditional on Ni:

E[degRGi(v) | Ni] ⩾ pNi
Vol(Brhh)/2

d

k
= Ni · pcdβ2−d ·w1+σhh /k. (5.4.20)

We apply [212, Equation (2.6) below Theorem 2.1] to RGi, and combine it
with Hi,1 ≽ RGi to obtain

P(Hi,1 not connected | Ni) ⩽ P(RGi not connected | Ni)

⩽ Ni exp
(
− E[degRGi(v) | Ni]

)
.
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On the event Apoi,Ni ⩾ 4sk holds for all i. Hence, by (5.4.20), uniformly
for all i ⩽ n ′/k,

P(Hi,1 not connected | Apoi) ⩽ sup
Ni⩾4sk

Ni exp
(
− E[degRGi(v) | Ni]

)
⩽ 4sk exp

(
− 4sk · pcdβ2−d ·w1+σhh /k

)
⩽ (C1/4)k

ζhh exp
(
− pcdβw

2+σ−τ
hh /4

)
,

where we used sk from (5.4.7) to obtain the last row. Using the second
criterion in (5.4.15), for all k ⩾ k1,

P(Hi,1 not connected | Apoi) ⩽ exp(−pcdβ2−dw2+σ−τhh /8) =: p1.

By (5.4.14), the exponent of whh is positive. Since the induced subgraphs
(Hi,1)i⩽n ′/k are independent (being contained in disjoint boxes Qi), and
the number of boxes is n ′/k = ⌊(n/k)1/d⌋d ⩾ n/(2k), using the definition
of whh from (5.4.7), we get

P(J=∞ |Apoi)⩽ P(∀i ⩽ n ′/k : Hi,1 not connected | Apoi) ⩽ p
n/(2k)
1

⩽ exp
(
− pcdβ2

−d−4(n/k)w2+σ−τhh

))
⩽ exp

(
− pcdβ2

−d−4C
−(2+σ−τ)(τ−1)
1 (n/k)kγhh(2+σ−τ)

)
.

Using (4.2.3) and (4.2.4), it is elementary to check that γhh(2+ σ− τ) =

ζhh(1− 1/α). Hence, whenever n/k > kζhh/α, the exponent of k on the
right-hand side is (at least) ζhh. Since we assumed n ⩾ k1+ζhh/α, this
is indeed the case. Furthermore, since sk = (C1/16)k

ζhh by (5.4.7), with
c2 := (pcdβ2

−d+1)C
−(2+σ−τ)(τ−1)−1
1 , using C1 from (5.4.5)), we obtain

that P(J = ∞ | Apoi) ⩽ exp(−c2sk). Combined with (5.4.19), this yields
the statement of the lemma in (5.4.9) with c5.4.2 := min{c2, 1/4}.

We will end Step 1 with a claim that shows (5.2.2), using notation for the
construction of the graph Gn that facilitates later steps that we introduce
first. We recall the definition of i-KSRG from Definition 5.1.1. Given the
vertex set Ξ, it is standard practice to use independent uniform random
variables to facilitate couplings with the edge-set. This definition here
is more general and allows for other helping random variables as well,
leading to different distributions on graphs. This will be useful later.

Definition 5.4.3 (Graph encoding). Let ξ ⊂ Rd × [1,∞) be a discrete set
and assume that Ψξ =

{
φu,v : φu,v ∈ [0, 1], {u, v} ∈

(
ξ
2

)}
is a collection

of random variables given ξ. For a given connectivity function p : (Rd ×
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[1,∞))2 → [0, 1], we call G ′ = (V ′,E ′) the (sub)graph encoded by (ξ,Ψξ, p)
if V ′ = ξ and for all {u, v} ∈

(
ξ
2

)
, with u = (xu,wu), v = (xv,wv),{

{u, v} ∈ E ′
}
⇐⇒

{
φu,v ⩽ p

(
(xu,wu), (xv,wv)

)}
. (5.4.21)

Given Ξ in (5.1.2), and p from (5.1.3), let ΨΞ be a collection of independent
Unif[0, 1] random variables given Ξ. G∞ in Definition 5.1.1 is then the graph
encoded by (Ξ,ΨΞ, p). Writing Ψn[a,b) :=

{
φu,v ∈ ΨΞ : {u, v} ∈

(
Ξn[a,b)
2

)
}

and Ψn := Ψn[1,∞), Gn in (5.1.4) is then the graph encoded by (Ξn,Ψn, p).

An immediate corollary is the following:

Corollary 5.4.4. Assume G̃, Ĝ are two random graphs, encoded respectively by
(Ξ̃, Ψ̃, p), and (Ξ̂, Ψ̂, p) for respective point processes Ξ̃, Ξ̂ on Rd × [1,∞) using
the same connectivity function p. If (Ξ̃, Ψ̃) and (Ξ̂, Ψ̂) have the same law then
the encoded graphs G̃ and Ĝ also have the same law.

The collection of (conditionally) independent uniform variables Ψn =

{φu,v : {u, v} ∈
(
Ξn
2

)
} and the connectivity function p determine the

presence of edges in Gn. By (5.4.21), if for some r > 0 it holds that
φu,v ⩽ r ⩽ p(u, v), then {u ↔ v}. Writing Q(u) for the box containing
or closest to u ∈ Ξn (see (5.4.3)), let vu(1), vu(2), . . . , vu(sk), . . . denote the
vertices in Q(u)∩ Cbb, in decreasing order with respect to their marks. Let

S(u) :=
{
vu(1), . . . , vu(sk)

}
. (5.4.22)

Claim 5.4.5 (Connections to the backbone). Consider an i-KSRG satisfying the
conditions of Proposition 5.4.1. Fix n and k and assume Gn,1 satisfies the event
Abb(n,k). Let Ψn = {φu,v : {u, v} ∈

(
Ξn
2

)
} be a collection of i.i.d. Unif[0, 1]

random variables and rk := 1− 2−1/sk . Then, for all u ∈ Ξn[2whh(k),∞) and
v ∈ S(u), p(u, v) ⩾ rk and

P
(
∀v ∈ S(u) : φu,v > rk | Gn,1,Abb

)
= P

(
∃v ∈ S(u) : φu,v ⩽ rk | Gn,1,Abb

)
= 1/2.

(5.4.23)

Proof. On the event Abb, Cbb ⊆ Gn,1 satisfies (5.4.8) and in particular S(u)
in (5.4.22) is well-defined and has size sk. Since {φu,v} is a collection of
iid Unif[0, 1] random variables, (cf. Definition 5.4.3), one must set rk :=

1− 2−1/sk for (5.4.23) to hold. Hence, it only remains to show p(u, v) ⩾ rk
in the statement.

With Q(u) and S(u) from (5.4.3) and (5.4.22), respectively, by (5.4.4),
every u ∈ Ξn[2whh,∞) is at distance at most 2

√
dk from any vertex in
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v ∈ S(u). Then since wu ⩾ 2whh ⩾ whh, and |S(u)| = sk, the computations
(5.4.16) – (5.4.18) word-by-word carry through with Ṽℓ replaced by S(u),
obtaining

P(u↔ S(u) | Gn,1,Ξn,Abb) = 1−
∏

v∈S(u)

(1−p(u, v)) ⩾ 1− (1− zk)
sk⩾1/2,

with zk either equaling p in the right-hand side of (5.4.16) or the appro-
priate expression in the right-hand side of (5.4.17), that bound individually
each p(u, v) from below. Following now the calculations towards (5.4.18)
ensures that in both cases zk ⩾ 1− 2−1/sk . The assumptions on k ⩾ k1 in
(5.4.15) are also needed for this (for instance that p ⩾ rk).

Step 2. Revealing low-mark vertices

Having established that Gn,1 contains a backbone with sufficiently high
probability, we define Gn,2 := Gn[1, 2whh) ⊇ Gn,1.

Step 3. Presampling the vertices connecting to the backbone

We make Step 3 of Section 5.2.1.1 precise now. Step 3 ensures that during
Step 4 below no small-to-large merging occurs when revealing the connector
vertices of Ξn[2whh,∞). That is, components of size smaller than k do
not merge into a larger component via edges towards a connector vertex
v ∈ Ξn[2whh,∞) that is not connected to the backbone Cbb (Cbb will be
contained in the giant component of Gn). So, we partially pre-sample some
randomness that encodes the presence of some edges.

For a pair n,k, we now present the alternative graph-encoding Ĝn
of KSRGs (cf. Definitions 5.1.1 and 5.4.3) and verify that Ĝn and Gn in
Definition 5.1.1 have the same law. The difference between the encoding
in Definition 5.4.3 and the construction of Ĝn is that in the latter the edge-
variables φu,v are no longer independent Unif[0, 1] random variables, but
are sampled from a suitable (conditional) joint distribution, whenever
u ∈ Ξn[2whh(k),∞) and v ∈ S(u) from (5.4.22). Recall rk = 1− 2−1/sk

from Claim 5.4.5, with whh(k) := whh and sk defined in (5.4.7).

Definition 5.4.6 (Alternative graph construction). Fix n and k. Let Gn,2 =

Gn[1, 2whh(k)) from Definition 5.1.1 be the graph encoded by the tuple(
Ξn[1, 2whh),Ψn[1, 2whh), p

)
. Let Ξ̂(unsure)

n [2whh,∞) and Ξ̂(sure)
n [2whh,∞) be
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two independent Poisson point processes on Λn × [2whh,∞) with intensity
(1/2)Leb⊗ FW(dw), with FW as in (5.1.2), and let

Ξ̂n[2whh,∞) := Ξ̂(unsure)
n [2whh,∞)∪ Ξ̂(sure)

n [2whh,∞). (5.4.24)

Let Σn := {Uu,v : u ∈ Ξ̂n[2whh,∞), v ∈ Ξn[1, 2whh) ∪ Ξ̂n[2whh,∞)} be
a collection of i.i.d. Unif[0, 1] random variables (conditionally on these
PPPs).

(i) If Gn,1 = Gn[whh, 2whh) ⊆ Gn,2 does not satisfy the event Abb in
(5.4.8), then set Ψ̂n := Ψn[1, 2whh) ∪ Σn in Definition 5.4.3 to construct
Ĝn ⊇ Gn,2 on Ξn[1, 2whh)∪ Ξ̂n[2whh,∞), i.e.,

Ĝn := (Ξn[1, 2whh)∪ Ξ̂n[2whh,∞),Ψn[1, 2whh)∪ Σn, p).

(ii) If Gn,1 ⊆ Gn,2 satisfies the event Abb, then we construct Ĝn ⊇ Gn,2

conditionally on Gn,2 as follows. For each u ∈ Ξ̂n[2whh,∞) in (5.4.24), the
set of vertices S(u) ⊆ Ξn[1, 2whh) is a deterministic function of Gn,1 ⊆ Gn,2,
given by (5.4.22). Let

Ψ̂(iid,unsure)
n :=

{
Uu,v : u ∈ Ξ̂(unsure)

n [2whh,∞),

v ∈ Ξ̂(unsure)
n [2whh,∞)∪ Ξn[1, 2whh) \ S(u)

}
,

Ψ̂(iid,sure)
n :=

{
Uu,v : u ∈ Ξ̂(sure)

n [2whh,∞),

v ∈ Ξ̂(sure)
n [2whh,∞)∪ Ξn[1, 2whh) \ S(u)

}
,

Ψ̂(iid,both)
n :=

{
Uu,v : u ∈ Ξ̂(sure)

n [2whh,∞),

v ∈ Ξ̂(unsure)
n [2whh,∞)

}
(5.4.25)

be disjoint subsets of Σn, and write Ψ̂(iid)
n := Ψ̂

(iid,unsure)
n ∪ Ψ̂(iid,sure)

n ∪ Ψ̂(iid,both)
n

for the union. Conditionally on Ξ̂(unsure)
n [2whh,∞), Ξ̂(sure)

n [2whh,∞) and the
graph Gn[1, 2whh), define also the collections of random variables

Ψ̂(cond,unsure)
n :=

{
φ̂u,v : u ∈ Ξ̂(unsure)

n [2whh,∞), v ∈ S(u)
}

, (5.4.26)

Ψ̂(cond,sure)
n :=

{
φ̂u,v : u ∈ Ξ̂(sure)

n [2whh,∞), v ∈ S(u)
}

, (5.4.27)

so that for different vertices u1,u2 ∈ Ξ̂n[2whh,∞), the sets {φ̂u1,v}v∈S(u1)
and {φ̂u2,v ′}v ′∈S(u2) are independent. The joint distribution of {φ̂u,v}v∈S(u)

for a single u ∈ Ξ̂(unsure)
n [2whh,∞) is as follows: for any (zu,v)v∈S(u) ∈

[0, 1]S(u) of length sk, and with rk = 1− 2−1/sk ,

P
(
∀v ∈ S(u) : φ̂u,v ⩽ zu,v | u ∈ Ξ̂(unsure)

n [2whh,∞)
)

(5.4.28)

:= P
(
∀v ∈ S(u) : Uu,v ⩽ zu,v | ∀v ∈ S(u) : Uu,v > rk

)
.
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Similarly we define the joint distribution of {φ̂u,v}v∈S(u) for a single
u ∈ Ξ̂(sure)

n [2whh,∞) as follows: for any sequence (zu,v)v∈S(u) ∈ [0, 1]S(u)

of length sk,

P
(
∀v ∈ S(u) : φ̂u,v ⩽ zu,v | u ∈ Ξ̂(sure)

n [2whh,∞)
)

:= P
(
∀v ∈ S(u) : Uu,v ⩽ zu,v | ∃v ∈ S(u) : Uu,v ⩽ rk

)
.

(5.4.29)
We define Ĝn as the graph encoded by (Ξ̂n, Ψ̂n, p), where

Ξ̂n := Ξn[1, 2whh)∪ Ξ̂(unsure)
n [2whh,∞)∪ Ξ̂(sure)

n [2whh,∞),

Ψ̂n := Ψn[1, 2whh)∪ Ψ̂(iid)
n ∪ Ψ̂(cond,unsure)

n ∪ Ψ̂(cond,sure)
n .

(5.4.30)

An immediate corollary is the following statement.

Corollary 5.4.7. Consider an i-KSRG Ĝn following Definition 5.4.6 for some
n,k. On the event Abb(n,k), every vertex in Ξ̂(sure)

n [2whh,∞) is connected by an
edge to Cbb(n,k) in Ĝn.

Proof. The conditioning in (5.4.29) guarantees that for all vertices u ∈
Ξ̂

(sure)
n [2whh,∞) at least one φ̂u,v ⩽ rk occurs among the edge-variables

{φ̂u,v : v ∈ S(u)}, where S(u) ⊆ Cbb (cf. (5.4.22)). Since φ̂u,v ⩽ rk ⩽ p(u, v)
holds by Claim 5.4.5, this ensures that {u, v} is in the edge set of Ĝn by the
graph-encoding in Definition 5.4.3.

Proposition 5.4.8. Fix a connectivity function p. The law of the random graph
Ĝn formed by Definition 5.4.6 is identical to the law of the random graph Gn
formed by Definition 5.4.3.

Proof. By Corollary 5.4.4 it is sufficient to show that (Ξ̂n, Ψ̂n) defined in
(5.4.30) has the same distribution as (Ξn,Ψn) from Definition 5.4.6. By
standard properties of PPPs, Ξn can be written as two independent PPPs
defined on the same space, each having half the intensity measure of Ξn.
Thus, by the construction of Ξ̂n[1, 2whh) in Definition 5.4.6, it holds that
the PPPs Ξn and Ξ̂n have the same law. Hence, we may couple the vertex
sets so that a.s. Ξn = Ξ̂n, and only need to show that the collection of
variables encoding the edges, Ψn and Ψ̂n, share the same law, conditionally
under the given vertex set realization (say) Ξ̂n. By (5.4.30) in Definition
5.4.6, the graph Gn,2 spanned on Ξn[1, 2whh) ⊆ Ξ̂n is determined by
Ψn[1, 2whh) = {φu,v : u, v ∈ Ξn[1, 2whh)} in Definition 5.4.3. Thus Gn,2 has
the same distribution both in Definition 5.4.3 and in Definition 5.4.6.

(i) If now Ψn[1, 2whh) is such that the graph Gn,2 does not satisfy
the event Abb, by (i) of Definition 5.4.6, the statement holds since both
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{φu,v} and {Uu,v} are i.i.d. uniforms whenever u ∈ Ξ̂n[2whh,∞), i.e.,
Ψ̂n \Ψn[1, 2whh) = Σn and Ψn \Ψn[1, 2whh) have the same distribution.

(ii) If Ψn[1, 2whh) is such that the graph Gn,2 does satisfy the event
Abb, then we work conditionally on a realization of the graph Gn,2 =

(Ξn[1, 2whh),Ψn[1, 2whh), p), and also on the coupled realization of the
PPPs Ξn[2whh,∞) = Ξ̂n[2whh,∞). Let us define the conditional probability
measure (of the edges) under the coupling by

P⋆(·) := P( · | Gn,2,Ξn[2whh,∞)) = P( · | Gn,2, unlabeled Ξ̂n[2whh,∞)),
(5.4.31)

where in the conditioning we do not reveal to which sub-PPP (either
Ξ̂

(sure)
n [2whh,∞) or Ξ̂(unsure)

n [2whh,∞)) a vertex in Ξ̂n[2whh,∞) belongs to.
Using Ψ̂n from (5.4.30) and Ψ̂(iid)

n ⊆ Σn from (5.4.25) (containing independent
copiesUu,v of Unif[0, 1] random variables, like Ψ in Definition 5.4.3), we see
that variables in Ψn \Ψn[1, 2whh) and Ψ̂n \Ψn[1, 2whh) also share the same
(joint) law of i.i.d. Unif[0, 1] whenever u and v are such u ∈ Ξ̂n[2whh,∞) and
that v /∈ S(u). Moreover, in (5.4.26)-(5.4.27), the collections {φ̂u,v}v∈S(u)

are independent across u for different vertices u ∈ Ξ̂n[2whh,∞). So for

Ĝn
d
= Gn we are left with showing that for any fixed u ∈ Ξ̂n[2whh,∞) =

Ξn[2whh,∞), under the measure P⋆,{
φu,v, v ∈ S(u)

} d
=

{
φ̂u,v, v ∈ S(u)

}
. (5.4.32)

We first analyse the distribution of the left-hand side, i.e., φu,v being
i.i.d. from Definition 5.4.3. Let (zu,v)v∈S(u) ∈ [0, 1]S(u) be any sequence of
length sk. By Claim 5.4.5, and the law of total probability

P⋆
(
∀v ∈ S(u) : φu,v ⩽ zu,v

)
(5.4.33)

= (1/2)P⋆
(
∀v ∈ S(u) : φu,v ⩽ zu,v | ∀v ∈ S(u) : φu,v > rk

)
+ (1/2)P⋆

(
∀v ∈ S(u) : φu,v ⩽ zu,v | ∃v ∈ S(u) : φu,v ⩽ rk

)
.

We now analyse the right-hand side in (5.4.32). By the construction in
(5.4.24), Ξ̂n[2whh,∞) is the union of two i.i.d. sub-PPPs. Under P⋆ in
(5.4.31) we did not reveal to which sub-PPP vertices belong to. Hence, for
each u ∈ Ξ̂n[2whh,∞), independently of each other

P⋆(u ∈ Ξ̂(unsure)
n [2whh,∞) | u ∈ Ξ̂n[2whh,∞))

= P⋆(u ∈ Ξ̂(sure)
n [2whh,∞) | u ∈ Ξ̂n[2whh,∞)) = 1/2.
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Thus, by the law of total probability, and using the distributions of
(φu,v)v∈S(u) given by (5.4.28), (5.4.29),

P⋆
(
∀v ∈ S(u) : φ̂u,v ⩽ zu,v

)
(5.4.34)

= (1/2)P⋆
(
∀v ∈ S(u) : φ̂u,v ⩽ zu,v | u ∈ Ξ̂(unsure)

n [2whh,∞)
)

+ (1/2)P⋆
(
∀v ∈ S(u) : φ̂u,v ⩽ zu,v | u ∈ Ξ̂(sure)

n [2whh,∞)
)

= (1/2)P⋆
(
∀v ∈ S(u) : Uu,v ⩽ zu,v | ∀v ∈ S(u) : Uu,v > rk

)
+ (1/2)P⋆

(
∀v ∈ S(u) : Uu,v ⩽ zu,v | ∃v ∈ S(u) : Uu,v ⩽ rk

)
.

Note that {Uu,v}u,v and {φu,v}u,v are both sets of independent Unif[0, 1]
random variables by Definitions 5.4.6 and 5.4.3, respectively. Hence, (5.4.32)
follows by combining (5.4.33) and (5.4.34).

For the remainder of this section, we assume that we construct Gn
following Definition 5.4.6 and write

Ξn[2whh,∞) := Ξ(unsure)
n [2hh,∞)∪ Ξ(sure)

n [2whh,∞)

as the union of two independent Poisson point processes of equal inten-
sity, such that if Gn,2 = G[1, 2whh) satisfies Abb in (5.4.8), every vertex in
Ξ

(sure)
n [2whh,∞) connects by an edge to Cbb, by Corollary 5.4.7.
To finish Step 3, on the event Abb, we define Gn,3 := (Vn,3,Ψn,3, p), with

Vn,3 := Ξn[1, 2whh)∪ Ξ(unsure)
n [2hh,∞),

Ψn,3 := Ψn[1, 2whh)∪ Ψ̂(iid,unsure)
n ∪ Ψ̂(cond,unsure)

n ,
(5.4.35)

i.e., the graph spanned on Vn,3. We call the vertices in Ξ(sure)
n [2whh,∞)

sure-connector vertices. If the event Abb does not hold then we say that the
construction failed and we leave Gn,3 undefined.

Step 4. Cover expansion

In this step, we ensure that all components of size at least k of Gn,3 merge
with the giant component of Gn via edges towards sure-connector vertices,
with error probability errn,k from (5.2.1). The next lemma proves this using
the cover-expansion technique of Section 5.3. The notion of expandability
is from Definition 5.3.1, and sk is from (5.4.7). Let for some c ′5.4.9 > 0

Aexp(c
′
5.4.9) := Aexp(n,k, c ′5.4.9) :=

{
Vn,3 is (c ′5.4.9sk)-expandable

}
.

(5.4.36)
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Lemma⋆ 5.4.9 (Cover-expansion and σ ⩽ τ− 1). Consider an i-KSRG satisfy-
ing the conditions of Proposition 5.4.1. For any c ′5.4.9 > 0

P
(
¬Aexp(c

′
5.4.9)

)
⩽ C5.3.11n exp(−c ′5.4.9sk). (5.4.37)

Moreover, if σ ⩽ τ− 1, there exist k2, c5.4.9, c ′5.4.9 > 0, such that conditionally
on any realization of Gn,3 satisfying Abb ∩Aexp(c

′
5.4.9), for all k ⩾ k2 and any

connected component C of Gn,3 with |C| ⩾ k,

P
(
C ̸↔ Ξ(sure)

n [2whh,∞) | Gn,3,Abb ∩Aexp(c
′
5.4.9)

)
⩽ exp

(
− c5.4.9sk

)
.

(5.4.38)

Proof. The statement (5.4.37) follows directly for any c ′5.4.9 > 0 from its
definition in (5.4.36) and Lemma 5.3.11. In Proposition 5.3.2, for a given
mark w, the function s(w) in (5.3.1) describes the necessary “expandability
parameter”, such that all vertices with mark at least w in Kn(L) connect
to any s(w)-expandable set L of vertices with probability at least p/2. We
shall take w := 2whh, the lowest possible mark in Ξ(sure)

n . By Definition
5.3.1 of expandability, if Vn,3 is (c ′5.4.9sk)-expandable, it is also s(2whh)-
expandable whenever

s(2whh) ⩾ c
′
5.4.9sk. (5.4.39)

We compute the left-hand side using the value of whh from (5.4.7) and the
function s(w) from (5.3.1):

s(2whh) =
(
2d+1βC

−1/(τ−1)
1

)1/(1−1/α)
kγhh/(1−1/α).

By (5.4.7) and (4.2.4), it holds that sk = Θ(k1−γhh(τ−1)) = Θ(kζhh). Using
(4.2.4), it is elementary to verify that γhh/(1− 1/α) ⩾ ζhh if and only if
σ ⩽ τ− 1. Thus, if σ ⩽ τ− 1, (5.4.39) holds for some c ′5.4.9 > 0, whenever
k > k2 for some sufficiently large k2 ⩾ 1, that ensures the condition w >
2ddd/2/β in Proposition 5.3.2. On the event Aexp(c

′
5.4.9), Vn,3 is thus also

s(2whh)-expandable (since it is c ′5.4.9sk expandable). Since expandability
carries through for subsets of Vn,3 (below Definition 5.3.1), any subset
of Vn,3 is s(2whh)-expandable. Hence, Proposition 5.3.2 is applicable for
any set L ⊆ Vn,3 and w := 2whh, and guarantees the existence of a set
Kn(L) ⊆ Λn satisfying (5.3.2) and (5.3.3).

Consider an arbitrary connected component C of Gn,3 that satisfies
|C| ⩾ k. With Kn(C) from Proposition 5.3.2, we define the set of sure-
connector vertices inside Kn(C) connected to C as

HC := {v ∈ Kn(C)∩ Ξ(sure)
n [2whh,∞)

)
: v↔ C}. (5.4.40)
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Since Ξ(sure)[2whh,∞) is a Poisson process, the number of its points in
Kn(C) follows a Poisson distribution. Since each of these points connects
by an edge independently to C with probability at least p/2 by (5.3.3), and
an independent thinning of a PPP is another PPP; we obtain using the
intensity measure in Definition 5.4.6 by the volume bound (5.3.2) on Kn(C)

for |C| ⩾ k and c := (p/4)2−(4d+1)2−(τ−1)d−d/2/e > 0

P
(
|HC| = 0 | Gn,3,Abb ∩Aexp(c

′
5.4.9)

)
⩽ P

(
Poi
(
(p/2) · (1/2) ·Vol(Kn(C)) · (2whh)

−(τ−1)
)
= 0
)

⩽ exp
(
− (p/4)Vol(Kn(C))(2whh)

−(τ−1)
))

⩽ exp
(
− c · kw−(τ−1)

hh

)
= exp

(
− 16c · sk

)
,

where we used sk from (5.4.7) in the last step. Since {|HC| > 0} in (5.4.40)
implies {C ↔ Ξ

(sure)
n [2whh,∞)}, this finishes the proof of (5.4.38) with

c5.4.9 := 16(p/4)2
−(4d+1)2−(τ−1)d−d/2/e.

Combining everything: preventing too large components

Proof of Proposition 5.4.1. Assume that k ⩾ max{k1,k2} defined in Lemmas
5.4.2 and 5.4.9, respectively, and that n > k1+ζhh/α, i.e., n satisfies the
bound in Lemma 5.4.2. We construct Gn ⊇ Gn,3 following Definition
5.4.6, where Gn,3 from (5.4.35) is the subgraph of Gn induced on Vn,3 =

Ξn[1, 2whh)∪Ξ(unsure)
n [2whh,∞). The events Abb in (5.4.8) and Aexp(c

′
5.4.9) :=

Aexp in (5.4.36) are measurable with respect to Gn,3. By the law of total
probability (taking expectation over realizations of Gn,3), we obtain

P
(
|C(2)
n | ⩾ k

)
⩽ E

[
1{Abb∩Aexp}P

(
|C(2)
n | ⩾ k | Gn,3,Aexp ∩Abb

)]
+ P

(
¬Abb

)
+ P

(
¬Aexp

)
. (5.4.41)

The not-yet revealed vertices after Step 3 are Vn \ Vn,3 = Ξ
(sure)
n [2whh,∞),

and by Corollary 5.4.7 each vertex in Ξ(sure)
n [2whh,∞) connects by an edge

to Cbb. Thus each component C ⊉ Cbb of Gn,3 either remains the same in
Gn or it merges with the component containing Cbb via a vertex in V\Vn,3.
Hence, conditionally on Abb and Gn,3,{

|C(2)
n | ⩾ k

}
⊆ {∃ a component C of Gn,3 : |C| ⩾ k,C ̸↔ Ξ(sure)

n [2whh,∞)}.
(5.4.42)

By a union bound over the at most |Vn,3|/k components of size at least k,
(5.4.38) of Lemma 5.4.9 yields

P
(
|C(2)
n | ⩾ k | Gn,3,Aexp ∩Abb

)
⩽ (|Vn,3|/k) exp

(
− c5.4.9sk

)
.
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Substituting this bound into (5.4.41), and using Lemmas 5.4.2 and 5.4.9 to
bound the last two terms yields

P
(
|C(2)
n | ⩾ k

)
⩽ (E

[
|Vn,3|

]
/k) exp

(
− c5.4.9sk

)
+ (3n/k) exp

(
− c5.4.2sk

)
+C5.3.11n exp

(
− c ′5.4.9sk

)
.

Since Vn,3 ⊆ Ξn by construction, E[|Ξn|] = n by (5.1.2), and sk = Θ(kζhh)

by (5.4.7), this finishes the proof of Proposition 5.4.1 for k ⩾ max{k1,k2}
and n > k1+ζhh/α. For k < max{k1,k2}, (5.4.1) is trivially satisfied for
c5.4.1 > 0 sufficiently small.

The backbone: intermediate results

We state two corollaries of the proof of Proposition 5.4.1, and two propo-
sitions based on the backbone constructions for later use. We defer the
detailed proofs to the appendix and only give a sketch here. We start with
a corollary of the proof of Proposition 5.4.1.

Corollary⋆ 5.4.10 (Backbone becoming part of the giant). Consider an i-
KSRG satisfying the conditions of Proposition 5.4.1. Then conditionally on the
graph Gn,2 = Gn[1, 2whh) satisfying Abb(n,k) in (5.4.8),

P
(
Cbb(n,k) ⊈ C(1)

n | Gn,2,Abb(n,k)
)
⩽ (n/c5.4.1) exp

(
− c5.4.1k

ζhh
)
.

(5.4.43)

Proof sketch. By definition of the backbone in (5.4.8), the backbone contains
at least k vertices. The proof of Proposition 5.4.1 “merges” each component
of size at least k with the backbone, with error probability given on the
right-hand side of (5.4.43). Hence, the component containing the backbone
is the only remaining component of size at least k.

The next corollary follows from Lemma 5.4.2. It is not sharp but it yields
a useful temporary estimate.

Corollary 5.4.11 (Lower bound on largest component). Consider a super-
critical interpolating KSRG model as in Definition 5.1.1 with parameters α > 1,
τ ∈ (2, 2+σ), σ ⩾ 0, d ∈N. For each δ > 0, there exists a constant A > 0 such
that for all n sufficiently large

P
(
|C

(1)
n | ⩽ n(A log(n))−1/ζhh

)
⩽ n−δ.
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Proof. If Abb(n,kn) holds for some kn, then the largest component C
(1)
n

must have at least the size of the backbone Cbb(n,kn). Setting k = kn =

(A log(n))1/ζhh in (5.4.9), the backbone exists with probability at least
1−n−δ for A = A(δ) sufficiently large, since sk = skn = (C1/16)A log(n)
by (5.4.7). Then its size is at least (n ′/k)sk ⩾ (n ′/k) = Θ(nk

−1/ζhh
n ) by

definition of n ′ in (5.4.2), finishing the proof.

The next proposition shows that all vertices with a sufficiently high mark
(simultaneously) belong to the largest component C(1)

n with polynomially
small error probability.

Proposition⋆ 5.4.12 (Controlling marks of non-giant vertices). Consider an
i-KSRG in the setting of Theorem 5.1.2(ii). For all δ > 0, there exists Mδ > 0

such that for w(n, δ) = (Mδ log(n))(1−σγhh)/ζhh

P
(
∃u ∈ Ξn[w(n, δ),∞) : u /∈ C(1)

n

)
⩽ n−δ. (5.4.44)

Proof sketch. We give the detailed proof in the Appendix on page 197, and
here a sketch. We consider k as a free parameter, so using Lemma 5.4.2
with k = kn = Θ

(
log1/ζhh(n)

)
, a backbone Cbb(n,kn) exists and satisfies

Cbb(n,kn) ⊆ C
(1)
n , with probability at least 1− n−δ by Corollary 5.4.10

and Lemma 5.4.2 (the same calculation as the proof of Corollary 5.4.11).
The choice of w = w(n, δ) is so that a vertex u with mark wu ⩾ w(n, δ)
connects to each backbone-vertex in its own subbox with probability at
least p in (5.1.3). For u to not be contained in C

(1)
n , these skn many edges

must be all absent. Then we apply concentration inequalities to obtain the
result.

Remark. Combined with the proof of the lower bound of Theorem 5.1.4
below in Section 5.6, one may show that Proposition 5.4.12 is sharp up to
a constant factor, i.e., there exist constants δ,mw > 0 such that for all n
sufficiently large

P
(
∃v ∈ Ξn[(mw log(n))(1−σγhh)/ζhh ,∞) : v /∈ C(1)

n

)
⩾ 1−n−δ.

We state a proposition that 0 is with constant probability in a linear-
sized component in the induced subgraph Gn,2 = Gn[1, 2whh(k)) with k =

kn = polylog(n) and whh(k) from (5.4.7). Let Cn,2(0) be the component
containing 0 in Gn,2 ⊆ Gn, by setting Cn,2(0) to be the empty set if w0 ⩾
2whh(k).
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Proposition 5.4.13 (Existence of a large component). Consider a supercritical
i-KSRG model as in Definition 5.1.1, with parameters α > 1, τ ∈ (2, 2+ σ),
σ ⩾ 0, d ∈ N. There exist constants ρ,m > 0 such that for all n sufficiently
large, when k = kn = (m log(n))1/ζhh ,

P0
(
|Cn,2(0)| ⩾ ρn

)
⩾ ρ, and P0

(
|C∞(0)| = ∞) ⩾ ρ. (5.4.45)

Proof sketch. For the first inequality in (5.4.45), we build a connected back-
bone on vertices with mark in [whh(kn), 2whh(kn)) using Lemma 5.4.2.
Then we use a second-moment method to show that the origin and lin-
early many other vertices are connected to this backbone via paths along
which the vertex marks are increasing. The second statement follows simi-
larly, forming an infinite path along which the marks are increasing. The
detailed proof can be found in Appendix 5.A.1.

5.5 upper bound : subexponential decay

In this section we prove Theorem 5.1.2(ii). We carry out the plan in Section
5.2.1.2 in detail. Instead of arguing directly for KSRGs with parameters
described in Theorem 5.1.2(ii), we derive general conditions that ensure
that a bound on the size of the second-largest component as in Proposition
5.4.1 readily implies subexponential decay. Recall from Definition 5.1.1 that
Px denotes the conditional measure that V contains a vertex at location
x ∈ Λn, that has an unknown mark from distribution FW .

Proposition 5.5.1 (Prerequisites for subexponential decay). Consider a
supercritical i-KSRG model as in Definition 5.1.1, with parameters α > 1, τ > 2
and d ∈ N. Assume that there exist ζ,η, c, c ′,η,Mc > 0, and a function
n0(k) = O(k

1+c ′), such that for all k sufficiently large constant and whenever
n ∈ [n0(k),∞), with w(n, c) :=Mc logη(n) it holds that for any x ∈ Λn

Px
(
|C(2)
n | ⩾ k

)
⩽ nc

′
exp

(
− ckζ

)
, (5.5.1)

Px
(
|C(1)
n | ⩽ nc

)
⩽ n−1−c, (5.5.2)

Px
(
∃v ∈ Ξn[w(n, c),∞) : v /∈ C(1)

n

)
⩽ n−c. (5.5.3)

Then there exists a constant A > 0 such that for all k sufficiently large constant
and n satisfying n ∈ [n0(k),∞],

P0
(
|Cn(0)| ⩾ k, 0 /∈ C(1)

n

)
⩽ A exp

(
− (1/A)kζ

)
, (5.5.4)

and
|C

(1)
n |

n

P−→ P0
(
|C∞(0)| = ∞), as n→∞. (5.5.5)
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Observe that (5.5.4) does not follow from a naive application of (5.5.1),
since we sharpened the polynomial prefactor on the right-hand side of
(5.5.1) to a universal constant A in (5.5.4), and in (5.5.4) n = ∞ is also
allowed in (5.5.4). The inequalities (5.5.1)–(5.5.3) are satisfied when τ ∈
(2, 2+ σ) and σ ⩽ τ− 1 by Propositions 5.4.1 and 5.4.12 and Corollary
5.4.11 (we leave it to the reader to verify that the results hold also for the
Palm-version Px of P). Thus, Theorem 5.1.2(ii) follows immediately after
we prove Proposition 5.5.1. We state and prove an intermediate claim that
we need for Proposition 5.5.1. We write C

(1)

Q for the largest component in
the graph induced on vertices in Q ⊆ Rd.

Claim 5.5.2 (Leaving the giant). Consider a supercritical i-KSRG model as
in Definition 5.1.1, under the same setting as Proposition 5.5.1. Assume that
(5.5.1)–(5.5.3) hold, n is sufficiently large and let N ∈ [n,∞]. Then there exists
δ > 0 such that for any box Qn ⊆ ΛN with Vol(Qn) = n, any x ∈ Qn, n
sufficiently large, and all N ⩾ n, it holds for u := (x,wu) that

Px
(
u ∈ C

(1)

Qn
,u /∈ C

(1)

N

)
⩽ n−δ. (5.5.6)

Proof. We will first prove the following bound that holds generally for
a sequence of increasing graphs Gn ⊆ Gn+1 ⊆ . . . , whose largest and
second-largest components we denote by C(1)

n and C(2)
n , respectively. Let

(kn)n⩾0 and (Kn)n⩾0 be two non-negative sequences such that kn+1 <
Kn for all n ⩾ 0. Then, for all 0 < n ⩽ N ⩽∞,

P
(
u ∈ C(1)

n ,u /∈ C(1)

N

)
⩽

N∑
ñ=n

(
P
(
|C

(1)

ñ | < Kñ
)
+ P

(
|C

(2)

ñ | > kñ
))

. (5.5.7)

We verify the bound using an inductive argument. We define for ñ ⩾ n
the events

A(ñ) :=
{
|C

(1)

ñ | ⩾ Kñ
}
∩
{
|C

(2)

ñ+1| ⩽ kñ+1
}

.

Since by assumption kñ+1 < Kñ, the event A(ñ) ensures that |C(1)

ñ | is al-
ready larger than |C

(2)

ñ+1|, hence A(ñ) implies that C(1)

ñ ⊆ C(1)

ñ+1. Iteratively
applying this argument yields that ∩ñ∈[n,N]A(ñ) implies that {C(1)

n ⊆ C(1)

N }.
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We combine this with the observation that given that u ∈ Vn, it holds that
{u ∈ C(1)

n ,u /∈ C(1)

N } ⊆ {C
(1)
n ⊈ C(1)

N }. This yields

P
(
u ∈ C(1)

n ,u /∈ C(1)

N

)
⩽ P

(
C(1)
n ⊈ C(1)

N

)
(5.5.8)

⩽ P

(
{C(1)
n ⊈ C(1)

N }∩
N−1⋂
ñ=n

A(ñ)

)
+

N−1∑
ñ=n

P
(
¬A(ñ)

)
⩽ 0+

N∑
ñ=n

(
P
(
|C

(1)

ñ | < Kñ
)
+ P

(
|C

(2)

ñ | > kñ
))

,

showing (5.5.7). We move on to (5.5.6) for which we have to define the
increasing sequence of graphs. Consider any sequence of boxes (Qñ)ñ⩾n
such that Qn ⊆ Qn+1 ⊆ · · · ⊆ QN := ΛN and Vol(Qñ) = ñ, and let Gñ
denote the induced subgraph of G on Qñ for ñ ∈ [n,N], that is conditioned
to contain a vertex at location x ∈ Qn. Using the assumed lower bound
on |C

(1)

ñ | in (5.5.2), we set Kñ := ñc, and using the assumed upper bound
on |C

(2)

ñ | in (5.5.1), there exists a large constant A so that whenever n is
sufficiently large, and ñ ⩾ n, by setting kñ := (A log(ñ))1/ζhh , it holds that

Px
(
|C

(1)

Qñ
| < Kñ

)
⩽ ñ−c−1, Px

(
|C

(2)

Qñ
| > kñ

)
⩽ ñ−c−1.

Clearly kñ+1 < Kñ for ñ ⩾ n, so that substituting the bounds into (5.5.8)
and summing over ñ ⩾ n yields the assertion (5.5.6) for any δ < c and n
sufficiently large.

We continue to prove Proposition 5.5.1, starting with some notation. For
some ε ∈ (0, min{α− 1, τ− 2}), and using c, c ′,η, ζ, and w(n, c) from the
statement of Proposition 5.5.1

Nk := exp(kζc/(2c ′)), nk := Nεk,

wNk := w(Nk, c) =Mc(k
ζ)η( c2c ′ )

η, tk := n
1/d
k /(2k).

(5.5.9)

Note that Nk,nk = exp(Θ(kζ)). For n ⩽ Nk, the statement (5.5.4) follows
directly from (5.5.1), since when n = Nk, the right-hand side of (5.5.1)
becomes kdc

′
exp(−kζc/2) ⩽ exp(−kζc/4), so we may set any A such that

1/A ⩽ c/2 in (5.5.4). So we may assume in the remainder of the section that
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n > Nk. We write for CΛ(x,n)(u) the component of vertex u := (x,wu) ∈ V

in the graph G∞ restricted to Λ(x,n). Define for x ∈ Rd the two events

Alow−edge(x,nk,Nk,wNk) (5.5.10)

:=

{
|CΛ(x,nk)(u)| < k,∃v1, v2 ∈ ΞΛ(x,Nk)[1,wNk) such that

v1 ∈ CΛ(x,nk)(u), ∥xv1 − xv2∥ ⩾ tk, and v1 ↔ v2

}
,

Along−edge(x,nk,Nk,wNk) (5.5.11)

:=
{
∃v1 ∈ ΞΛ(x,nk)[1,wNk),∃v2 ∈ Ξ \ ΞΛ(x,Nk), v1 ↔ v2

}
.

The next lemma relates the probability of the event {|Cn(u)| ⩾ k,u /∈
C

(1)
n } to the events Alow−edge and Along−edge using the assumed bounds in

Proposition 5.5.1.

Lemma 5.5.3 (Extending the box-sizes). Consider a supercritical i-KSRG
model as in Definition 5.1.1, under the same setting as Proposition 5.5.1. Assume
that (5.5.1)–(5.5.3) hold. Then there exists A ′ > 0 such that for all n with
n ∈ [Nk,∞], whenever u = (x,wu) ∈ V is a vertex with ∥x−∂Λn∥ ⩾ N1/dk /2,

Px
(
|Cn(u)| ⩾ k,u /∈ C(1)

n

)
(5.5.12)

⩽ A ′ exp
(
− (1/A ′)kζ

)
+ P0

(
Alow−edge(0,nk,Nk,wNk)

)
+ P0

(
Along−edge(0,nk,Nk,wNk)

)
.

Proof. Let ñ ⩾ 1, and denote by C
(1)

Λ(x,ñ) the largest connected component
in the induced subgraph of G∞ inside the box Λ(x, ñ) ⊆ Λn. For a vertex
u = (x,wu) ∈ V define

Aleave−giant(x, ñ) := {u ∈ C
(1)

Λ(x,ñ),u /∈ C(1)
n }, (5.5.13)

Amark−giant(x,Nk,wNk) :=
{
∀v ∈ ΞΛ(x,Nk)[wNk ,∞) : v ∈ C

(1)

Λ(x,Nk)

}
.

(5.5.14)

The first events relates to (5.5.6) in Claim 5.5.2, while the second one to
(5.5.3) of Proposition 5.5.1. The values of nk < Nk ⩽ n from (5.5.9) and that
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we assumed ∥x− ∂Λn∥ ⩾ N1/dk /2 ensure that Λ(x,nk)⊆Λ(x,Nk)⊆Λn.
Then we bound{
|Cn(u)| ⩾ k,u /∈ C(1)

n

}
⊆

{
|Cn(u)| ⩾ k,u /∈ C(1)

n ,u /∈ C
(1)

Λ(x,nk)
, |C(2)

Λ(x,nk)
| ⩾ k

}
∪
{
u ∈ C

(1)

Λ(x,nk)
,u /∈ C(1)

n

}
∪
{
|Cn(u)| ⩾ k,u /∈ C(1)

n ,u /∈ C
(1)

Λ(x,nk)
, |C(2)

Λ(x,nk)
| < k

}
⊆

{
|C

(2)

Λ(x,nk)
| ⩾ k

}
∪ Aleave−giant(x,nk) (5.5.15)

∪
{
|Cn(u)| ⩾ k,u /∈ C(1)

n ,u /∈ C
(1)

Λ(x,nk)
, |CΛ(x,nk)(u)| < k

}
.

Applying probabilities on both sides we obtain the inequality stated
in (5.2.6) for x=0. We introduce a shorthand notation for the third event
on the right-hand side of (5.5.15), i.e.,

Agoal :=
{
|Cn(u)| ⩾ k,u /∈ C(1)

n ,u /∈ C
(1)

Λ(x,nk)
, |CΛ(x,nk)(u)| < k

}
Define the auxiliary events

Abecomes−large := {|CΛ(x,nk)(u)| < k, |Cn(u)| ⩾ k},

Aoutof−giant(nk,n) := {u /∈ C(1)
n ,u /∈ C

(1)

Λ(x,nk)
},

(5.5.16)

and observe that Agoal = Abecomes−large ∩Aoutof−giant(nk,n). In order to
bound P(Agoal), we distinguish whether u enters the giant at the interme-
diate box of size Nk ∈ (nk,n) or not:

Agoal ⊆ {u ∈ C
(1)

Λ(x,Nk)
,u /∈ C(1)

n }

∪ {|Cn(u)| ⩾ k,u /∈ C
(1)

Λ(x,Nk)
,u /∈ C

(1)

Λ(x,nk)
, |CΛ(x,nk)(u)| < k}

= Aleave−giant(x,Nk)∪
(
Abecomes−large ∩Aoutof−giant(nk,Nk)

)
,

(5.5.17)

with Aleave−giant(x, ñ) defined in (5.5.14). We observe that Abecomes−large in
(5.5.16) implies that at least one of the at most k− 1 vertices in CΛ(x,nk)(u)

has an incident edge crossing the boundary of Λ(x,nk), and so there must
exist a “fairly” long edge either inside the cluster CΛ(x,nk)(u) or between a
vertex in CΛ(x,nk)(u) and a vertex in Cn(u) \ CΛ(x,nk)(u). More precisely,

recalling tk = n
1/d
k /(2k), define

Aedge :=

{
|CΛ(x,nk)(u)| < k,∃v1 ∈ CΛ(x,nk)(u),

v2 ∈ Ξ : v1 ↔ v2, ∥v1 − v2∥ ⩾ tk

}
. (5.5.18)
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We argue that Abecomes−large ⊆ Aedge. By the pigeon-hole principle, if all
edges adjacent to all vertices in CΛ(x,nk)(u) were shorter than tk, the
furthest point that could be reached from x with at most k− 1 edges has
Euclidean norm at most (k− 1)tk < n

1/d
k /2, and thus its location would

be inside Λ(x,nk), contradicting the definition of Abecomes−large in (5.5.16).
Returning to (5.5.17), we obtain that

Agoal ⊆ Aleave−giant(x,Nk)∪
(
Aedge∩Aoutof−giant(nk,Nk)

)
⊆ Aleave−giant(x,Nk)∪

(
Aedge∩{u /∈ C

(1)

Λ(x,Nk)
}
)
.

In order to bound the existence of long edges, we put restrictions on the
marks: we distinguish whether all vertices in ΞΛ(x,Nk) \ C

(1)

Λ(x,Nk)
have

mark at most wNk – this is the event Amark−giant(x,Nk,wNk) in (5.5.14) –
or not. We obtain

Agoal ⊆ Aleave−giant(x,Nk)∪
(
¬Amark−giant(x,Nk,w)

)
∪
(
Aedge ∩ {u /∈ C

(1)

Λ(x,Nk)
∩Amark−giant(x,Nk,w)}

)
.

(5.5.19)

The intersection with {u /∈ C
(1)

Λ(x,Nk)
}∩Amark−giant(x,Nk,wNk) in the last

event ensures that all vertices in the cluster of uwith location in Λ(x,Nk) ⊇
Λ(x,nk) have mark at most wk. We make another case distinction, with
respect to the locations of the vertices the edge e⩾tk of length at least tk
that exists on the event Aedge in (5.5.18). Namely, e⩾tk either has both end-
points in ΛNk or it has one endpoint inside Λnk and the other one outside
ΛNk . For the first event, we obtain the event Alow−edge(x,nk,Nk,wk), and
for the latter Along−edge(x,nk,Nk,wk), respectively (defined in (5.5.10)—
(5.5.11)). Hence,

Aedge ∩ {u /∈ C
(1)

Λ(x,Nk)
}∩Amark−giant(x,Nk,wNk)

⊆ Alow−edge(x,nk,Nk,wk)∪Along−edge(x,nk,Nk,wk).

Using this in (5.5.19), then substituting (5.5.19) back into (5.5.15), and then
taking probabilities yields

Px
(
|Cn(u)| ⩾ k,u /∈ C(1)

n

)
(5.5.20)

⩽ Px
(
|C

(2)

Λ(x,nk)
| ⩾ k

)
+ Px

(
¬Amark−giant(x,Nk,w)

)
+

∑
ñ∈{nk,Nk}

Px
(
Aleave−giant(x, ñ)

)
+ Px

(
Alow−edge(x,nk,Nk,w)

)
+ Px

(
Along−edge(x,nk,Nk,w)

)
.
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The event Aleave−giant(x, ñ) = {u ∈ C
(1)

Λ(x,ñ),u /∈ C
(1)
n } considers the graph

in the box Λn (which is centered at the origin) and therefore does not
necessarily have the same probability for all x ∈ Λn. The four other events
consider the graph in boxes centered at x. Hence, we translate those events
(and the Palm measure Px) by −x to obtain

Px
(
|Cn(u)| ⩾ k,u /∈ C(1)

n

)
⩽ P0

(
|C(2)
nk

| ⩾ k
)
+ P0

(
¬Amark−giant(0,Nk,w)

)
+

∑
ñ∈{nk,Nk}

Px
(
u ∈ C

(1)

Λ(x,ñ),u /∈ C(1)
n

)
+ P0

(
Alow−edge(0,nk,Nk,w)

)
+ P0

(
Along−edge(0,nk,Nk,w)

)
,

The first two terms can be bounded by substituting the definitions nk,Nk =

exp
(
Θ(kζ)

)
in (5.5.9) into the assumed bounds on the probabilities in

Proposition 5.5.1. The terms in the sum are bounded from above by
n−δ
k = exp

(
−Θ(kζ)

)
by Claim 5.5.2. This finishes the proof of (5.5.12).

We move on to bounding P0(Alow−edge) on the right-hand side of (5.5.12)
in Proposition 5.5.3, with Alow−edge from (5.5.10). To do so, we need an aux-
iliary claim that controls the probability that for every point in ΞNk [1,wNk)
there are not “too many” points at distance at least tk, with tk = n

1/d
k /(2k).

We define first for i ⩾ 1, and u = (xu,wu) ∈ Ξnk [0,w) the annuli

Ri(xu) :=
(
Λ
(
xu, (2itk)d

)
\Λ
(
xu, (2i−1tk)d

))
× [1,∞). (5.5.21)

With the measure µτ from (5.1.2), we then define the bad events

Adense :=
{
∃i ⩾ 1,u ∈ Ξnk [1,wNk) : |ΞNk ∩Ri(xu)| > 2 · µτ

(
Ri(xu)

)}
.

(5.5.22)

In the following auxiliary claim we give an upper bound on P
(
Adense

)
. Its

proof is standard, based on Palm theory and Chernoff bounds, see page
206 of Appendix 5.B.

Claim 5.5.4. For all c, δ > 0, there exists n0 such that P0
(
Adense

)
⩽ n−c

k for
all nk ⩾ max{n0,kd+δ}.

We can now analyse P0(Alow−edge) in Lemma 5.5.3. The next claim
holds for the specific choices of nk,Nk,wNk and tk in (5.5.9) for all k is
sufficiently large, but extends to more general settings, e.g. KSRGs defined
on any vertex set that satisfies ¬Adense in (5.5.22).
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Claim 5.5.5 (No low-mark edge from a small component). Consider an i-
KSRG that satisfies the conditions in Proposition 5.5.1. For any ε ∈ (0, min{α−

1, τ− 2}) in (5.5.9), there exists a constant A ′ > 0, such that for k sufficiently
large

P0
(
Alow−edge(0,nk,Nk,w) | ¬Adense

)
⩽

{
A ′ exp(−(1/A ′)kζ), if α <∞,

0, if α = ∞.
(5.5.23)

Proof. Assume first α = ∞. The event Alow−edge(0,nk,Nk,wNk) is by
definition in (5.5.10) restricted to vertices of mark at most wNk = w(Nk, c)
in (5.5.9). We write tk in (5.5.9) as tk = exp((ε/d)kζ)/(2k), which is larger
than βw1+σNk

= βM1+σ
c ((c/(2c ′))kζ)η(σ+1) for k sufficiently large. Hence,

the indicator in p(u, v) is then 0 by (5.1.3), so a connection between u, v
can not occur.

Assume α < ∞. To obtain an upper bound on the left-hand side of
(5.5.23), we condition on the full realization Ξ satisfying the event ¬Adense

containing 0:

P0
(
Alow−edge(0,nk,Nk,w) | ¬Adense

)
= E0

[
P0
(
Alow−edge(0,nk,Nk,wNk) | Ξ,¬Adense

)]
.

(5.5.24)

Let us denote the subgraph of Gnk with edges of length at most tk =

n
1/d
k /(2k) by Gnk(⩽ tk) and write Cnk(0,⩽ tk) for the component in this

graph containing the origin. Clearly,{
|Cnk(0)| < k,∃v1, v2 ∈ ΞNk [1,wNk) s.t.

v1 ∈ Cnk(0), ∥xv1 − xv2∥ ⩾ tk, and v1 ↔ v2

}

⊆
{
|Cnk(0,⩽ tk)| < k,∃v1, v2 ∈ ΞNk [1,wNk) such that

v1 ∈ Cnk(0,⩽ tk), ∥xv1 − xv2∥ ⩾ tk, and v1 ↔ v2

}
,

where the left-hand side is the definition of Alow−edge in (5.5.10). Condi-
tionally on Ξ, all edges of length at least tk are present independently of
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edges shorter than tk. We obtain by a union bound over all vertices in
Ξnk [1,wNk) ⊆ Ξ,

P0
(
¬Alow−edge(0,nk,Nk,wNk) | Ξ,¬Adense

)
⩽

∑
v1∈Ξnk [1,wNk)

P0
(
v1 ∈ Cnk(0,⩽ tk), |Cnk(0,⩽ tk)| < k | Ξ,¬Adense

)
∑

v2∈ΞNk [1,wNk):
∥xv1−xv2∥⩾tk

p(v1, v2)

︸ ︷︷ ︸
:=T(v1)

. (5.5.25)

Using the definitions of p in (5.1.3), κ1,σ from (1.3.5), the upper bound on
|Ri(v1)| in Adense in (5.5.22), and mark bounds wv1 ,wv2 ⩽ wNk , and the
distance bound ∥xv1 − xv2∥ ⩾ 2−(i−1)tk when xv2 ∈ Ri(xv1) in (5.5.21),
the following bound holds uniformly for all v1 ∈ ΞNk [1,wk):

T(v1) ⩽
∑
i⩾1

∑
v2∈ΞNk [1,wk)
v2∈Ri(v1)

p(v1, v2)

⩽
∑
i⩾1

∑
v2∈ΞNk [1,wk)
v2∈Ri(v1)

pβακα1,σ(wNk ,wNk)2
−(i−1)αdt−αdk

⩽ 2
∑
i⩾1

tdk(2
id − 2(i−1)d)pβακα1,σ(wNk ,wNk)2

−(i−1)αdt−αdk

= 2(2d − 1)pβαw
α(σ+1)
Nk

t
(1−α)d
k

∑
i⩾1

2−(α−1)(i−1)d. (5.5.26)

Since α > 1 by assumption in Theorem 5.1.2, the sum on the right-hand
side is finite. This gives a bound on T(v1) in (5.5.25) that does not depend
on v1. Hence, returning to (5.5.25),∑
v1∈Ξnk [1,wNk)

P0
(
v1 ∈ Cnk(0,⩽ tk), |Cnk(0,⩽ tk)| < k | Ξ,¬Adense

)
= E0

[
1{|Cnk(0,⩽tk)|<k}

∑
v1∈Ξnk [1,wNk)

1{v1∈Cnk(0,⩽tk)}
| Ξ,¬Adense

]
< k,

since on realizations of the graph satisfying {Cnk(0,⩽ tk) ⩽ k}, the sum
that follows is at most k− 1. Substituting this with (5.5.26) into (5.5.25)
yields for (5.5.24), that for some constant C > 0

P0
(
Alow−edge(0,nk,Nk,wNk) | ¬Adense

)
⩽ Ckwα(σ+1)Nk

t
(1−α)d
k .
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Substituting on the right-hand side the choices of tk = n
1/d
k /(2k), and

nk = exp(ε(c/2)kζ) from (5.5.9), yield (5.5.23) for any ε > 0 (using wNk is
polynomial in k).

The last claim bounds the last term in Lemma 5.5.3. Recall Along−edge

from (5.5.11).

Claim 5.5.6 (No long edge from a small component). Consider a supercritical
i-KSRG model in Definition 5.1.1 with parameters α > 1, τ > 2 and d ∈ N.
Assume N ⩾ n ⩾ 1, and w ⩾ 1 such that

(N1/d −n1/d)/2 ⩾ max
{√
dn1/d, (βw1+σ)1/d,N1/d/4

}
. (5.5.27)

There exists a constant C5.5.6 > 0 such that

P0
(
∃v1 ∈ Ξn[1,w), ∃v2 ∈ Ξ \ ΞN : v1 ↔ v2

)
⩽ C5.5.6w

c5.5.6nN−min{α−1,τ−2}(1+ 1{α=τ−1} log(N)).
(5.5.28)

In particular, for nk, Nk, wNk as in (5.5.9), if ε = ε(Mc,η) ∈ (0, min{α−

1, τ − 2}) is sufficiently small, then for k sufficiently large, with Along−edge

defined in (5.5.11),

P0
(
Along−edge(0,nk,Nk,wNk)

)
⩽ exp

(
− εkζhh

)
. (5.5.29)

Proof. We defer the proof of (5.5.28) (based on a first-moment method)
to Appendix 5.B on page 207. The bound (5.5.29) follows directly from
(5.5.28) by substituting nk, Nk and wNk from (5.5.9) to (5.5.28), then using
that wNk and log(Nk) are polynomial in k and of much smaller order than
nk and Nk.

Having bounded all terms on the right-hand side in (5.5.12), we finish
the section:

Proof of Proposition 5.5.1. For n ⩽ Nk, using that Nk = exp
(
(c/2)kζ

)
,

Proposition 5.5.1 follows directly from (5.5.1), since

P0
(
|Cn(0)| ⩾ k, 0 /∈ C(1)

n

)
⩽ P0

(
|C(2)
n | ⩾ k

)
⩽ Nk exp

(
− ckζ

)
= exp

(
− (c/2)kζ

)
.

We now consider n > Nk. Recall the values of nk,wNk , and tk from (5.5.9).
Lemma 5.5.3 and Claims 5.5.4–5.5.6 directly imply (5.5.4) in Proposition
5.5.1. We will now prove the law of large numbers (5.5.5). In [134] it is
shown that finite i-KSRGs Gn = (Vn,En) rooted at a vertex at the origin
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(see Definition 5.1.1) converge locally to their infinite rooted version (G∞, 0)
as n→∞. We refer to [127] and its references for an introduction to local
limits. We use the concept of local limits as a black box and verify a
necessary and sufficient condition for the law of large numbers for the
size of the giant component for graphs that have a local limit by Van
der Hofstad [128, Theorem 2.2]. We state the condition: let (Gn)n⩾1 be a
sequence of graphs with |Vn| = n that converges locally in probability to
(G∞,∅) (here ∅ denotes the root of the graph). Assume that

lim
k→∞ lim sup

n→∞
1

n2
E
[ ∑
u,v∈Vn

1{|Cn(u)|⩾k, |Cn(v)|⩾k,C(u) ̸=C(v)}

]
= 0, (5.5.30)

then, as n→∞,
|C

(1)
n |

n

P−→ P
(
|C∞(∅)| = ∞).

To verify condition (5.5.30), we have to consider a model satisfying |Vn| =

n. Therefore, we consider i-KSRGs on Λn that are conditioned to have
|Vn| = n. All our previous results extend to this model, as remarked in
Section 5.2.3. We analyze the indicator random variables in (5.5.30) for a
fixed pair u, v ∈ Vn. We distinguish whether one of them is part of the
largest component to obtain

{|Cn(u)| ⩾ k, |Cn(v)| ⩾ k, Cn(u) ̸= Cn(v)}

⊆ {|Cn(u)| ⩾ k,u /∈ C(1)
n }∪ {|Cn(v)| ⩾ k, v /∈ C(1)

n }.

Using linearity of expectation over the n2 vertex pairs in the sum of (5.5.30),
and that all n vertices are identically distributed, we obtain that

lim
k→∞ lim sup

n→∞
1

n2
E
[ ∑
u,v∈Vn

1{|Cn(u)|⩾k,|Cn(v)|⩾k,C(u) ̸=C(v)}

]
⩽ lim
k→∞ lim sup

n→∞ 2P
(
|Cn(U)| ⩾ k,U /∈ C(1)

n

)
,

where U is a vertex with a uniform location X ∈ Λn and mark wu fol-
lowing distribution FW . We condition on the location X = x, to obtain
that

P
(
|Cn(U)| ⩾ k,U /∈ C(1)

n

)
⩽ P

(
∥X− ∂Λn∥<N1/dk /2

)
+
1

n

∫
x∈Λn:∥x−∂Λn∥⩾N1/dk /2

Px
(
|Cn(u)|⩾k,u /∈ C(1)

n

)
dx.

The first term tends to zero as n→∞, while the second term is of order
exp

(
−Ω(kζ)

)
by Lemma 5.5.3 and Claims 5.5.4–5.5.6 that apply for all



180 the high-high regime

n ⩾ Nk and x such that ∥x−∂Λn∥ ⩾ N1/dk /2. Thus, the second term tends
to zero as k→∞. This finishes the proof of the condition (5.5.30). The law
of large numbers (5.5.5) follows.

5.6 lower bounds

In this section we prove Theorem 5.1.2(i). We first show that certain pre-
requisite inequalities imply the lower bound on the cluster-size decay, and
afterwards we verify these inequalities for τ ∈ (2, 2+ σ). Eventually, we
prove Theorem 5.1.5. We define for some constant η > 0 the function and
set

wη(ℓ) := (log(ℓ))η, Λℓ,η := Λℓ × [1,wη(ℓ)),

Cℓ,η(0) := the component containing (0,w0) in Gℓ[1,wη(ℓ)),
(5.6.1)

i.e., Cℓ,η(0) is the component of (0,w0) in the graph induced on vertices in
Λℓ,η – and let Cℓ,η(0) := ∅ if w0 ⩾ wη(ℓ). We recall m(Z), the multiplicity
of the maximum of Z, from (5.1.5); and the exponents ζll, ζlh, ζhh, ζnn from
(4.2.1), (4.2.2), (4.2.4), and (4.2.5). Define for some small constant ε > 0 to
be defined later, and Z = {ζll, ζlh, ζhh, ζnn}

kn,ε :=

{(
ε log(n)/(log log(n))mZ−1

)1/max(Z), if max(Z) > 0,

exp
(
(ε log(n))1/(mZ−1)

)
, if max(Z) = 0,mZ > 1.

(5.6.2)
Note that ζnn = d−1

d , which is equal to 0 only if d = 1, and positive
otherwise. Thus, only in dimension d = 1 one can have kn,ε different from
Θ(polylog(n)). More precisely, for d = 1, kn,ε = Θ(poly(n)) if only one
out of {ζll, ζlh, ζhh} is zero, and the others are negative; and it is stretched
exponential in the logarithm if at least two elements out of {ζll, ζlh, ζhh}

are zero, and none of them is positive. If the three values ζll, ζlh, ζhh are all
negative, then the model is always subcritical when d = 1 [108].

By an “i-KSRG on Zd” we mean the model mentioned in Section 5.2.3,
i.e., when Ξ is replaced by vertices in Zd having iid marks from distribu-
tion FW in (5.1.2) in Definition 5.1.1.

Proposition 5.6.1 (Lower bound holds when linear-sized giant on truncated
weights exists). Consider a supercritical i-KSRG model in Definition 5.1.1 with
parameters α ∈ (1,∞], τ ∈ (2,∞], σ ⩾ 0, d ∈ N, or a supercritical i-KSRG
on Zd with additionally min{p,pβα} < 1 in (5.1.3). Assume that there exist
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constants η, ρ > 0 such that for all ℓ sufficiently large, and with Cℓ,η(0) from
(5.6.1),

P0
(
|Cℓ,η(0)| ⩾ ρℓ

)
⩾ ρ. (5.6.3)

Then there existsA > 0 such that for all n ∈ [Ak,∞], with Z = {ζll, ζlh, ζhh, ζnn},

P0
(
|Cn(0)| ⩾ k, 0 /∈ C(1)

n

)
⩾ exp

(
−Akmax(Z) logmZ−1(k)

)
. (5.6.4)

Moreover, there exists δ, ε > 0, such that for all n sufficiently large, with kn,ε

from (5.6.2),
P
(
|C(2)
n | > kn,ε

)
⩾ 1−n−δ. (5.6.5)

By Proposition 5.4.13, the condition (5.6.3) is satisfied when τ ∈ (2, 2+σ),
implying Theorem 5.1.2(i). In [151], we show that (5.6.3) holds whenever
max{ζll, ζlh, ζhh} > 0 and the model is supercritical. We prove Proposition
5.6.1 by formalizing the reasoning at the beginning of Section 4.2. First, we
assume that the vertex set is given by the PPP Ξ in Definition 5.1.1. Then
we explain how to extend to i-KSRGs on Zd.

5.6.1 Finding a localized component

The goal of this section is to prove Proposition 5.6.1. First we aim to bound
the probability of {Cn(0) ⩾ k, 0 /∈ C

(1)
n } in (5.6.4) from below. To do so, we

write it as the intersection of “almost independent” events, for which we
introduce some notation now:

Two large components.

We write Λ(x, s) = Λs(x) for a box of volume s centered at x, see (5.1.1).
We define for a constant Min > 0 the radius and Euclidean ball

rk := (kMin)
1/d, BkMin := {x ∈ Rd : ∥x∥ ⩽ rk}, (5.6.6)

where Min > 1/ρ is implicitly defined given ρ from Proposition 5.6.1, such
that ∥∂Λk/ρ − ∂BkMin∥ = rk/2, implying also that Λk/ρ ⊆ BkMin . We
would like to constrain Cn(0) to the ball BkMin , and we would like to find
a component outside BkMin that is larger than |Cn(0)|. We ‘construct’ these
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Figure 8: A visualization of the γ-suppressed profile Mγ. The horizontal axis
represents space, the vertical axis represents marks. {Ξ ⩽Mγ} demands
no vertices in the yellow region. Anoedge(γ) demands that there is no
edge between vertices in the inner and vertices in the outer blue region,
Acomponents requires that the two red areas contain large components;
Aregular(η) ensures that Ξ is ‘close to being typical’ in the red areas Rin
and Rout.

two components, with the constant Mout := 2d+2Min, on vertices in the
(hyper)rectangles (see also (5.6.1))

Rin := Λk/ρ,η = Λ(0,k/ρ)×
[
1,wη(k/ρ)

)
,

Rout := Λ(xout,kMout/ρ)×
[
1,wη(kMout/ρ)

)
,

Λin := Λ(0,k/ρ),

Λout := Λ(xout, (kMout/ρ)),

(5.6.7)

where xout := (xout
1 , 0, . . . , 0) ∈ Rd is defined implicitly given ρ such that

∥∂Λ(xout,kMout/ρ) − ∂BkMin∥ := rk/2. We assume that n is sufficiently
large so that Λin ∪ Λout ⊆ Λn. Let Cin(0) be the component of (0,w0)
in the subgraph of Gn induced on vertices in Rin, where Cin(0) = ∅ if
w0 ⩾ wη(k/ρ). Since Rin ⊆ BkMin , it is immediate that Cin(0) ⊆ ΞBkMin

.
Let C

(1)

out be the largest component in the subgraph of Gn induced on
vertices in Rout. Define the events

A
(k)

ingiant := {|Cin(0)| ⩾ k}, A
(k)

outgiant := {|C
(1)

out| ⩾ kMout},

A
(k)

insmall := {|ΞBkMin
| ⩽ kMout/2}, A

(k)

components := A
(k)

ingiant ∩A
(k)

outgiant.
(5.6.8)

Isolation

On A
(k)

components, Cn(0) ⊇ Cin(0) could still connect to the giant/infinite
component. To prevent this, we will ban edges that cross the boundary of
BkMin as follows. In Section 5.2.2 we informally described an “optimally-
suppressed mark-profile”. We first define a suppressed mark-profile, then
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optimise its shape. Let γ ∈ (0, 1/(σ + 1)] be a constant. We define, for
Cβ := (2β)1/d, and for x ∈ Rd with ∥x− ∂BkMin∥ = |∥x∥− rk| =: z, the
γ-suppressed profile by

fγ(z) :=


1 if z ⩽ Cβ,

(z/Cβ)
γd if z ∈ (Cβ, rk],

(z/Cβ)
d(rk/Cβ)

−d(1−γ) if z > rk,

(5.6.9)

Mγ := {(xv, fγ(|∥xv∥− rk|)) : xv ∈ Rd}. (5.6.10)

We say that v is below, on, or above Mγ if wv is at most, equal to, or strictly
larger than fγ(|∥xv∥− rk|), respectively. We say Ξ ⩽ Mγ if all points in
Ξ are below Mγ, see Figure 8. We split the PPP Ξ into four independent
PPPs, whether points fall below or above Mγ, and inside or outside BkMin :

Ξin
⩽Mγ

:= {(xu,wu) ∈ Ξ : xu ∈ BkMin ,wu ⩽ fγ(|∥xu∥− rk|)},
Ξout
⩽Mγ

:= {(xv,wv) ∈ Ξ : xv /∈ BkMin ,wv ⩽ fγ(|∥xv∥− rk|)},
Ξin
>Mγ

:= {(xu,wu) ∈ Ξ : xu ∈ BkMin ,wu > fγ(|∥xu∥− rk|)},
Ξout
>Mγ

:= {(xv,wv) ∈ Ξ : xv /∈ BkMin ,wv > fγ(|∥xv∥− rk|)}.

(5.6.11)

For A,B ⊆ Ξ we denote by |E(A,B)| the number of edges between vertices
in A and B. Define

{Ξ ⩽Mγ} = {|Ξin
>Mγ

∪ Ξout
>Mγ

| = 0}, A
(k)

noedge(γ) := {|E(Ξin
⩽Mγ

,Ξout
⩽Mγ

)| = 0}.
(5.6.12)

Under {Ξ ⩽Mγ}∩A(k)

noedge(γ), the vertices in BkMin are not connected to
the unique infinite component when n = ∞ and are isolated from the rest
of Gn when n <∞. We comment on the profile function fγ in (5.6.9). The
event {Ξ ⩽Mγ} demands no vertices within distance Cβ from ∂BMin , since
fγ(|∥x∥− rk|) = 1 for ∥x− ∂BkMin∥ ⩽ Cβ, and vertex marks are above 1
a.s. The function fγ is continuous and increasing in z: the closer a point
x is to the boundary of BkMin , the stronger the restriction on its mark in
Ξ ⩽Mγ. This is natural since vertices with higher mark close to ∂BkMin

are more likely to have an edge crossing this boundary, which we want
to prevent. While the event {Ξ ⩽Mγ} becomes less likely when γ is small,
A

(k)

noedge(γ) becomes more likely. This naturally leads to an optimization
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problem, that we set up next. Let Y = {0,α− (τ− 1), (σ+ 1)α− 2(τ− 1)},
and define

γ¬nn :=

 max
0<γ⩽1/(σ+1)

{
γ : 1− γ(τ− 1)

(⋆)

⩾ 2−α+ γmax(Y)}, if α <∞,

1/(σ+ 1), if α = ∞,

ζ¬nn := 1− γ¬nn(τ− 1), (5.6.13)

The inequality (⋆) holds for γ = 0 since α > 1 by assumption, therefore
γ¬nn > 0 and is well-defined. We call f⋆ := fγ¬nn the optimally-suppressed
mark-profile (and show below that it is indeed “optimal”) and write M⋆ :=

Mγ¬nn . We define the isolation event using the events in (5.6.12), see also
Figure 8:

A
(k)

isolation := {Ξ ⩽M⋆}∩A(k)

noedge(γ¬nn). (5.6.14)

Ensuring almost independence

The events A
(k)

isolation and {|Cin(0)| ⩾ k} in (5.6.8) are correlated, since
{|Cin(0)| ⩾ k} may push up the number of high-mark vertices in Rin, mak-
ing A

(k)

isolation less likely. To overcome the dependence, we introduce two
auxiliary events that ensure regularity of Ξ in the hyperrectangles Rin,Rout

from (5.6.7). Using wη from (5.6.1), define, using cin := 1/ρ, cout :=Mout/ρ:

j⋆in := min{j ∈N : wη(kcin)/2
j < 1},

j⋆out := min{j ∈N : wη(kcout)/2
j < 1)}.

(5.6.15)

and writing loc ∈ {in, out}, define

Iloc
j := [wη(kcloc)/2

j,wη(kcloc)/2
j−1), 1 ⩽ j < j⋆loc. (5.6.16)

Using Λin,Λout in (5.6.7), the intensity measure µτ of Ξ in (5.1.2), and
Ξloc(I

loc
j ) for the vertices in Ξ∩ (Λloc × Iloc

j ), consider the following events
(see also Figure 8) for loc ∈ {in, out}:

A
(k,loc)
regular(η) := {∀j ⩽ j⋆loc : |Ξloc(I

loc
j )| ⩽ 2µτ(Λloc × Iloc

j )},

A
(k)

regular(η) := A
(k,in)
regular(η)∩A

(k,out)
regular(η).

(5.6.17)

Finally, fix a realization of the induced subgraphs

GRin ∪ GRout = (ΞRin ,E(GRin))∪ (ΞRout ,E(GRout))
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so that the vertex set ΞRin ∪ ΞRout satisfies the event A(k)

regular(η) for some
η > 0, and define the conditional probability measure and expectation by

P̃io
(
·
)
:= P

(
· | GRin ∪ GRout ,A

(k)

regular(η)
)
,

Ẽio[ · ] := Ẽio
[
· | GRin ∪ GRout ,A

(k)

regular(η)
]
.

(5.6.18)

In the conditioning we reveal both the vertex and edge sets in the disjoint
boxes Rin,Rout. The event A(k)

regular(η) checks the number of vertices in hy-

perrectangles inside Rin,Rout, hence A
(k)

regular(η) is measurable with respect
to GRin ,GRout and in principle can be left out of the conditioning in (5.6.18).
We state a lemma that will imply Proposition 5.6.1.

Lemma 5.6.2 (Lower bound for isolation). Consider a supercritical i-KSRG
model in Definition 5.1.1 with parameters α ∈ (1,∞], τ ∈ (2,∞], σ ⩾ 0, and
d ∈N, or a supercritical i-KSRG on Zd with additionally p < 1 in (5.1.3). For
any constant η > 0 in (5.6.1), there exists A > 0, such that for any realization of
GRin ∪ GRout that satisfies A(k)

regular(η), with Z = {ζll, ζlh, ζhh, ζnn}, with P̃io from
(5.6.18)

P̃io
(
A

(k)

isolation

)
⩾ exp

(
−Ar

dmax(Z)
k logmZ−1(rk)

)
. (5.6.19)

The same bound holds for the Palm-version P̃0

io of P̃io.

We now show that Proposition 5.6.1 follows directly from Lemma 5.6.2.

Proof of Proposition 5.6.1, assuming Lemma 5.6.2. We first show (5.6.4). Re-
call A(k)

components,A(k)

insmall from (5.6.8), and A
(k)

isolation,A(k)

regular(η) from (5.6.14),
(5.6.17) respectively. The intersection of these events implies {|Cn(0)| ⩾
k, 0 /∈ C

(1)
n }, since |Cn(0)| ⩾ |Cin(0)| ⩾ k, and A

(k)

isolation ensures that Cn(0)
is fully contained in BkMin . Hence, |Cn(0)| ⩽ |ΞBkMin

| ⩽ kMout/2 and
|Cout| ⩾ kMout ensure that Cn(0) is not the largest component of Gn. So,
by the law of total probability

P0
(
|Cn(0)| ⩾ k, 0 /∈ C(1)

n

)
⩾ P0

(
A

(k)

components ∩A(k)

isolation ∩A
(k)

insmall ∩A
(k)

regular(η)
)

⩾ P0
(
A

(k)

components ∩A(k)

isolation ∩A
(k)

regular(η)
)
− P0

(
¬A

(k)

insmall

)
= P0

(
A

(k)

components ∩A(k)

regular(η)
)
P0
(
A

(k)

isolation | A
(k)

components ∩A(k)

regular(η)
)

− P0
(
¬A

(k)

insmall

)
. (5.6.20)

Recall A(k)

insmall = {|ΞBkMin
| ⩽ kMout/2} from (5.6.8), and Mout = 2d+2Min

above (5.6.7). The box with side-length 2rk = 2(kMin)
1/d (by definition in
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(5.6.6)) centered at the origin is the smallest box that contains BkMin . Using
the intensity measure µτ from (5.1.2), and writing B

⩽
kMin

:= {(x,wx) ∈
Rd+1 : x ∈ BkMin ; (x,wv) ⩽Mγ}, we have

µτ(B
⩽
kMin

) ⩽ 2dkMin = 2d+2kMin/4 =Moutk/4,

and by a standard concentration inequality for Poisson random variables
(see Lemma 5.C.1 for x = 2), there exist c ′, c > 0 such that, since rk =

Θ(k1/d),

P0
(
¬A

(k)

insmall

)
⩽ exp(−c ′rdk) = exp(−ck). (5.6.21)

Returning to (5.6.20), the event A(k)

regular(η) = A
(k,in)
regular(η) ∩A

(k,out)
regular(η), de-

fined in (5.6.17), holds with probability tending to 1 as k→∞, again by
concentration inequalities for Poisson random variables (see Lemma 5.C.1
for x = 2). Hence,

P0
(
A

(k)

components ∩A(k)

regular(η)
)
⩾ P0

(
A

(k)

components
)
− P0

(
¬(A(k)

regular(η)
)

= P0
(
A

(k)

components
)
− ok(1). (5.6.22)

We recall from (5.6.8) that A
(k)

components = {|Cin(0)| ⩾ k} ∩ {|C
(1)

out| ⩾ kMout}.
Translate the hyperrectangle Rout in (5.6.7) containing C

(1)

out to the origin of
Rd (using wη(ℓ)) in (5.6.1)):

R ′out := Λ(0,kMout/ρ)× [1,wη(kMout/ρ)) = ΛkMout/ρ,η, (5.6.23)

and write C
(1)

out ′ ,Cout ′(0) for the largest component and for the component
containing (0,w0) in the subgraph of Gn induced by vertices in R ′out. As
before, we ignore the conditioning (0,w0) ∈ Ξ in Definition 5.1.1 in our
computations. By the translation invariance of the annealed measure and
that the events {|Cin(0)| ⩾ k} and {|C

(1)

out| ⩾Moutk} are independent because
they are induced subgraphs of the disjoint hyperrectangles Rin and Rout

in (5.6.7),

P0
(
A

(k)

components
)
= P0

(
|Cin(0)| ⩾ k

)
P
(
|C

(1)

out ′ | ⩾Moutk
)

⩾ P0
(
|Cin(0)| ⩾ k

)
P0
(
|Cout ′(0)| ⩾Moutk

)
.

The bound P0
(
|Cℓ,η(0)| ⩾ ρℓ

)
⩾ ρ in (5.6.3) in Proposition 5.6.1 holds for all

ℓ sufficiently large. In particular, since Cin(0) = Ck/ρ,η(0) by definition of
Rin in (5.6.7), and Cout ′(0) = CkMout/ρ,η(0) by definition of R ′out in (5.6.23),
we obtain for k sufficiently large

P0
(
A

(k)

components
)
⩾ P0

(
|Ck/ρ,η(0)| ⩾ k

)
P0
(
|CkMout/ρ,η(0)| ⩾Moutk

)
⩾ ρ2, (5.6.24)
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implying that P0
(
A

(k)

components∩A(k)

regular(η)
)
⩾ ρ2−ok(1) > 3ρ2/4 in (5.6.22).

Since the event A(k)

components ∩A(k)

regular(η) is measurable with respect to the
σ-algebra generated by the subgraph GRin ∪GRout , we take expectation over
all possible realizations of the latter, and recalling the measure P̃io from
(5.6.18),

P0
(
A

(k)

isolation | A
(k)

components ∩A(k)

regular(η)
)

= E0
[
P0
(
A

(k)

isolation | GRin ∪ GRout ,A
(k)

regular(η)
)]

= E0
[
P̃0

io(A
(k)

isolation)
]
.

Apply now Lemma 5.6.2 on the right-hand side, and substitute the bound
3ρ2/4 below (5.6.24) into (5.6.22) and then in turn into (5.6.20) and (5.6.21),
to obtain for k sufficiently large

P0
(
A

(k)

components ∩A(k)

isolation ∩A
(k)

insmall ∩A
(k)

regular(η)
)

⩾ (ρ2/2) exp
(
−Ar

dmax(Z)
k logmZ−1(rk)

)
⩾ (ρ2/2) exp

(
−A ′kmax(Z) logmZ−1(k)

)
.

(5.6.25)

We obtained the second row by substituting rk = (kMin)
1/d in (5.6.6) and

setting A ′ := AM
max(Z)
in /2 that also compensates for the constants from

the log-correction term. Observe that max(Z) < 1, so that the right-hand
side in (5.6.21) is of smaller order than the right-hand side in (5.6.19). By
(5.6.20) this finishes the proof of (5.6.4). We turn to the proof of (5.6.5).

Lower bound on second-largest component. We generalise an argument from
[162]. We have to bound P

(
|C

(2)
n | ⩽ kn,ε

)
from above for a suitably chosen

ε in the definition of kn,ε in (5.6.2). To do so, we fix ϑ > 0 to be specified
later, and assume for simplicity that n(1−ϑ)/d ∈ N. We then partition
Λn into mn := n1−ϑ many subboxes Λ(1)

ñ , . . . ,Λ(mn)

ñ , centered respectively
at x1, . . . , xmn , each of volume ñ := nϑ. By disjointness, the induced
subgraphs G

(1)

ñ , . . . ,G(mn)

ñ in these boxes are independent realizations of
Gñ, translated to x1, . . . , xmn . We write G̃

(1)

ñ , . . . , G̃(mn)

ñ for the induced
subgraphs, translated back to the origin; Ξ̃(in,i)

⩽M⋆
for the vertex set in G̃

(i)

ñ

that is below M⋆ and inside BkMin after the translation, see (5.6.11); and
write Ξ(in,i)

⩽M⋆
for the same vertex set before the translation. For the translated

subgraphs
(
G̃

(i)

ñ )i⩽mn
, we define for k = kn,ε the same events as in (5.6.8),

(5.6.14), (5.6.17),

A
(i)

good := A
(kn,ε),i
components ∩A

(kn,ε),i

isolation ∩A
(kn,ε),i

insmall ∩A
(kn,ε),i

regular(η),
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where now in the definition of these events we replace C□(0) with the
component containing the point of Ξ closest to the origin 0 ∈ Rd for
□ ∈ {in, ñ}. We also assume that ñ = nϑ is sufficiently large compared to
kn,ε in (5.6.2) so that the spatial projection of the box Rout still fits within
Λñ. This can be ensured even if kn,ε = Θ(nε) is maximal in (5.6.2) by
choosing ε < ϑ. If A(i)

good holds for some i ⩽ mn, then the induced graph

G
(i)

ñ in subbox Λ(i)

ñ contains a component C
(i)

ñ in Ξ(in,i)
⩽M⋆

(which we call a
‘candidate’ second-largest component of Gn) with size at least kn,ε that
is not the largest component in its own box, and all vertices in Λ(i)

ñ are
below M⋆(xi), i.e., M⋆ shifted to xi. If additionally for all i there is no
edge between Ξ(in,i)

⩽M⋆
to a vertex outside Λ(i)

ñ , then the component C(i)

ñ is
not the giant and is larger than kn,ε. Taking complements we obtain that{

|C(2)
n | ⩽ kn,ε} ⊆ {∃i ⩽ mn : Ξ(in,i)

⩽M⋆
↔ Ξn \ Ξ

(i)

ñ }∪
( ⋂
i⩽mn

(
¬A

(i)

good

))
.

By translation invariance, a union bound, and the independence of the
graphs (G(i)

ñ )i⩽mn
in disjoint boxes,

P
(
|C(2)
n | ⩽ kn,ε

)
⩽ mnP

(
Ξin
⩽M⋆

↔ Ξn \ Ξñ}
)
+
(
1− P

(
A

(1)

good

))mn

=: T1 + T2. (5.6.26)

By the definitions in (5.6.11) and (5.6.6), each u ∈ Ξin
⩽M⋆

has ∥xu∥ ⩽
rk with k = kn,ε, and mark wu ⩽ f⋆(rkn,ε), (f⋆ = fγ¬nn is from below
(5.6.13)), hence Ξin

⩽M⋆
⊆ Ξ(2rkn,ε)

d [1, f⋆(rkn,ε)) ⊆ Ξñ, whenever (2rkn,ε)
d =

kn,εMin2
d < nϑ, which holds whenever ε < ϑ by (5.6.2). Hence we can

bound T1 as

T1 ⩽ mnP
(
Ξ(2rkn,ε)

d [1, f⋆(rkn,ε))↔ Ξn \ Ξñ}
)
.

We can directly apply Claim 5.5.6 on the right-hand side, i.e., setting
there N := ñ = nϑ and n := (2rkn,ε)

d = kn,εMin2
d (by (5.6.6)) and

w := f⋆(rkn,ε). The profile f⋆ = fγ¬nn is defined below (5.6.13), using (5.6.9)
with exponent γ¬nn and rk = (Mink)

1/d in (5.6.6), and finally kn,ϵ from
(5.6.2) we obtain

w := f⋆(rkn,ε) = C
−γ¬nnd
β r

γ¬nnd
kn,ε

= C−γ¬nnd
β M

γ¬nn
in kγ¬nn

n,ε

Condition (5.5.27) holds since N = nϑ ≫ kn,ε ≫ w. Then Claim 5.5.6
yields for some C > 0

T1⩽n
1−ϑC5.5.6f⋆(rkn,ε)

c5.5.6(2rkn,ε)
dn−ϑmin{α−1,τ−2}(1+1{α=τ−1} log(nϑ)

)
⩽ C log(n) · k1+γ¬nnc5.5.6

n,ε ·n1−ϑmin{α,τ−1}.
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Since kn,ε in (5.6.2) is at most nε, as long as 1 − ϑmin(α, τ − 1) < 0,
we can choose ε > 0 in (5.6.2) sufficiently small such that for any δ ∈
(0, ϑmin{α, τ− 1}− 1), for all n sufficiently large,

T1 ⩽ n
−δ. (5.6.27)

We turn to bound T2 in (5.6.26) using (1− x)mn ⩽ exp(−mnx), where we
apply (5.6.25) on x = P(A(1)

good) to obtain a lower bound on the exponent

mnP
(
A

(1)

good

)
⩾ (ρ2/2)n1−ϑ exp

(
−A ′k

max(Z)
n,ε logmZ−1(kn,ε)

)
= (ρ2/2) exp

(
(1− ϑ) log(n) −A ′kmax(Z)

n,ε logmZ−1(kn,ε)
)
.

In order to show T2 ⩽ n−δ in (5.6.26), it is much stronger to show that
with m(Z) − 1 = m ′

∀ε ′ > 0, there exists ε1 > 0 such that for all ε < ε1:

A ′k
max(Z)
n,ε logm ′(kn,ε) < ε

′ log(n).
(5.6.28)

We recall the definition of kn,ε in (5.6.2). While kn,ε may be as large as
nε, only when max(Z) = 0, so effectively the expression in (5.6.28) is still
small. We formally check:

Case 1. max(Z) > 0. We substitute kn,ε in the first row of (5.6.2) to
(5.6.28)

A ′k
max(Z)
n,ε logm ′(kn,ε)=A

′ ε log(n)
log log(n))m ′

logm ′
(( ε log(n)
(log log(n))m ′

)1/max(Z)
)

.

The last factor is at most (maxZ)−m ′(log log(n))m
′
, and (5.6.28) follows

whenever ε < ε ′(maxZ)m
′
/A ′.

Case 2. max(Z) = 0. We substitute kn,ε in the second row of (5.6.2) to
(5.6.28)

A ′k
max(Z)
n,ε logm ′(kn,ε) = A

′( log
(

exp
[
(ε log(n))1/m

′]))m ′
= A ′ε log(n),

and (5.6.28) again follows. Choose now any ϑ < 1/min{α, τ− 1}, and then
combine (5.6.27) with T2 ⩽ n−δ to bound (5.6.26). This finishes the proof
of (5.6.5) and hence Proposition 5.6.1 subject to Lemma 5.6.2.

5.6.2 Isolation

We aim to prove Lemma 5.6.2. We suppress the superscripts (k) of events,
and leave it to the reader to verify that the results extend to the Palm-
version P̃0

io of P̃io, which is defined in (5.6.18). We work towards bounding
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the event in (5.6.19) via a few lemmas/claims, also related to the back-of-
the-envelope reasoning of Section 4.2. Recall fγ,Mγ from (5.6.9), (5.6.10),
the PPPs in (5.6.11), and ζnn=

d−1
d from (4.2.5).

Lemma 5.6.3 (Vertices above Mγ). Consider a supercritical i-KSRG under the
conditions of Lemma 5.6.2. For each γ ∈ (0, 1/(σ+ 1)], there exists a constant
C5.6.3 > 0 such that

Ẽio
[
|Ξin
>Mγ

∪ Ξout
>Mγ

|
]
⩽


C5.6.3r

d(1−γ(τ−1))
k , if 1− γ(τ− 1) > ζnn,

C5.6.3r
dζnn
k log(rk), if 1− γ(τ− 1) = ζnn,

C5.6.3r
dζnn
k , if 1− γ(τ− 1) < ζnn.

(5.6.29)

Recall the multiplicity m of the maximum from (5.1.5).

Lemma 5.6.4 (Edges between vertices below Mγ). Consider a supercritical
i-KSRG under the conditions of Lemma 5.6.2 with α < ∞. Let Y = {0,α−

(τ− 1), (σ+ 1)α− 2(τ− 1)}. For each γ ∈ (0, 1/(σ+ 1)] there exists a constant
C5.6.4 = C5.6.4(ρ) > 0 such that for any realization of ΞRin ∪ ΞRout that satisfies
Aregular(η) in (5.6.17) for some η > 0,

Ẽio
[
|E
(
Ξin
⩽Mγ

,Ξout
⩽Mγ

)
|
]

⩽


C5.6.4r

d(2−α+γmax(Y))
k logm(Y)−1(rk), if 2−α+ γmax(Y) > ζnn,

C5.6.4r
dζnn
k logm(Y)(rk), if 2−α+ γmax(Y) = ζnn,

C5.6.4r
dζnn
k , if 2−α+ γmax(Y) < ζnn.

(5.6.30)

Proof sketch of Lemmas 5.6.3 and 5.6.4. We defer the lengthy integrals to the
appendix on page 210 but we give some intuition. The expectation Ẽio

in (5.6.18) is conditional on Ξ ∩ (Rin ∪Rout) where Rin,Rout in (5.6.7) are
hyperrectangles below Mγ for all η, since wη(ℓ) is poly-logarithmic in ℓ in
(5.6.1). Hence Ξ>Mγ

is independent of the conditioning in Ẽio, so

Ẽio
[
|Ξin
>Mγ

∪ Ξout
>Mγ

|
]
= E

[
|Ξin
>Mγ

∪ Ξout
>Mγ

|
]
= µτ

(
Rd+1>Mγ

)
, (5.6.31)

with the intensity µτ in (5.1.2), and where we denote Rd+1>Mγ
the points

of Rd+1 above the d-dimensional surface Mγ, see (5.6.10). Define the
hyperrectangle R↑ := [−2rk, 2rk]d × [rγk ,∞) and Aβ := {x ∈ Rd, ∥x∥ ∈
[rk −Cβ, rk +Cβ]}× [1,∞), an annulus in Rd times all mark-coordinates.
Then by definition of fγ in (5.6.9), (R↑ ∪Aβ) ⊆ Rd+1>Mγ

, and µτ(R↑ ∪Aβ) =
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Θ(r
d(1−γ(τ−1))
k + rd−1k ). Careful integration shows that the right-hand

side of (5.6.31) is of the same order, unless 1− γ(τ− 1) = (d− 1)/d = ζnn,
when we get an extra log(rk) factor.

For Lemma 5.6.4, we use independence of Ξ in disjoint sets: inside
and outside of Rin,Rout. When counting edges with at least one point
in Rin ∪ Rout, we use that Ξ in these sets is regular, i.e., A(k)

regular holds,
and outside these sets we integrate using the intensity µτ in (5.6.29). We
explain now how the exponents of rk in (5.6.30) arise: the expected number
of edges between vertices of constant mark within constant distance of
∂BkMin is Θ(rd−1k ) = Θ(rdζnn

k ), which yields lower bounds for all cases
in (5.6.30). Let 0 ⩽ γ1 ⩽ γ2 ⩽ γ such that σγ1 + γ2 ⩽ σ+ 1. Using µτ
in (5.1.2), the expected number of pairs (u, v) ∈ Ξin

⩽Mγ
× Ξout

⩽Mγ
within

distance Θ(rk) from ∂BkMin , and marks wu = Θ(kγ1),wv = Θ(kγ2) is

E[Pairs(γ1,γ2)] := Θ
(
r
d(1−γ1(τ−1))
k · rd(1−γ2(τ−1))k

)
= Θ

(
r
d(2−(γ1+γ2)(τ−1))
k

)
.

The typical Euclidean distance between such vertices is Θ(rk). Therefore,
by the connection probability p in (5.1.3), a pair of such vertices are
connected with probability roughly Θ(rdα(σγ1+γ2−1)k ), and hence there
are

E[Edges(γ1,γ2)] := E[Pairs(γ1,γ2)] ·Θ(rdα(σγ1+γ2−1)k )

= Θ
(
r
d(2−α+γ1(σα−(τ−1))+γ2(α−(τ−1)))
k

)
.

(5.6.32)

such edges in expectation. The proof below on page 211 reveals that the
expectation of |E(Ξin

⩽Mγ
,Ξout

⩽Mγ

)
| can be bounded by maximizing (5.6.32)

with respect to γ1,γ2, i.e., edges between vertices of mark Θ(kγ
⋆
1) and

Θ(kγ
⋆
2), with the optimal pair (γ⋆1,γ⋆2) dominate the whole expectation.

Depending on (σ,α, τ), the optimal (γ⋆1,γ⋆2) is either

(ll) (0, 0), pairs of low-mark vertices, which, when substituted in (5.6.32)
yields 0 ∈ Y in (5.6.30);

(lh) (0,γ), pairs of one low-mark vertex and one high-mark vertex, which,
when substituted in (5.6.32) yields α− (τ− 1) ∈ Y in (5.6.30);

(hh) (γ,γ), pairs of high-mark vertices, which, when substituted in (5.6.32)
yields (σ+ 1)α− 2(τ− 1) ∈ Y in (5.6.30);

or the convex combinations of these if the maximum in Y is non-unique,
leading to the poly-logarithmic correction terms in (5.6.30). These three
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options of (γ⋆1,γ⋆2), combined with the Θ(rd−1k ) many low-mark edges
close to the boundary explain what we call the dominant types of connectivity
in Section 4.2. We remark that without the assumption that γ ⩽ 1/(σ+ 1),
the optimal solution in (hh) would change to (γ∧ 1/(σ+ 1),γ∧ 1/(σ+

1)).

Lemmas 5.6.3 and 5.6.4 hold for any γ ⩽ 1/(σ+ 1). Now we show that
setting γ = γ¬nn from (5.6.13) minimizes the sum of (5.6.29) (increasing in
γ) and (5.6.30) (decreasing in γ).

Claim 5.6.5 (The optimally-suppressed mark-profile). Consider a supercrit-
ical i-KSRG under the conditions of Lemma 5.6.2. Let Z = {ζll, ζlh, ζhh, ζnn}.
There exists a constant C5.6.5 > 0 such that when α <∞

Ẽio
[
|Ξin
>M⋆

∪ Ξout
>M⋆

|
]
⩽ C5.6.5Ẽio

[
|E
(
Ξin
⩽M⋆

,Ξout
⩽M⋆

)
|
]

⩽ C5.6.5C5.6.4r
dmax(Z)
k logmZ−1(rk),

(5.6.33)

and when α = ∞
Ẽio
[
|Ξin
>M⋆

∪ Ξout
>M⋆

|
]
⩽ C5.6.5r

dmax(Z)
k logmZ−1(rk). (5.6.34)

We postpone the proof, based on elementary rearrangements of the
formulas of ζll, ζlh, ζhh, and ζhh, to the appendix on page 217. We proceed
with a claim towards bounding the event A

(k)

noedge in (5.6.12), its proof
explaining the restriction γ ⩽ 1/(σ + 1) in γ¬nn in (5.6.13). We recall
p(u, v) defined in (5.1.3).

Claim 5.6.6 (Cross-edge probability bounds). Consider a supercritical i-
KSRG under conditions of Lemma 5.6.2, and assume γ ⩽ 1/(σ+ 1). For any
(u, v) ∈ Ξin

⩽Mγ
× Ξout

⩽Mγ

p(u, v) ⩽

{
2−α, if α <∞,

0, if α = ∞.
(5.6.35)

Proof. We show that whenever u, v are below Mγ and on different sides
of ∂BkMin , then βκ1,σ(wu,wv)/ ∥xu − xv∥d ⩽ 1/2. By definition of p
in (5.1.3), this directly implies (5.6.35). To see this bound, for σ ⩾ 0 the
connection probability p is increasing in the marks. Therefore, without loss
of generality we will assume that u ∈ BkMin and v /∈ BkMin fall exactly on
Mγ, and that k is large enough that rk ⩾ Cβ. Since fγ in (5.6.9) switches
formula at rk outside ∂BkMin , we distinguish two cases.
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Case 1. Assume |∥xv∥− rk| ⩽ rk. Since fγ in (5.6.9) and the explanation
below (5.6.12) both u, v are at least Cβ distance from ∂BkMin . Thus, for
any (u, v), there exist t ⩾ 2Cβ, ν ∈ (0, 1) such that ∥xu − ∂BkMin∥ =

rk− ∥xu∥ = (1−ν)t, and ∥xv− ∂BkMin∥ = ∥xv∥− rk = νt. By the triangle
inequality ∥xu − xv∥ ⩾ t. Hence, wv = C

−γd
β (νt)γd,wu = C

−γd
β ((1 −

ν)t)γd by assuming u, v being on Mγ and fγ in (5.6.9). Using κ1,σ in
(1.3.5), and ν ∈ (0, 1)

β
κ1,σ(wu,wv)
∥xu − xv∥d

⩽ βC−γd(σ+1)
β

max{(1− ν)t,νt}γdmin{(1− ν)t,νt}σγd

td

⩽ βC−γd(σ+1)
β td(γ(σ+1)−1).

The right-hand side is non-increasing in t whenever γ ⩽ 1
σ+1 . Since t ⩾

2Cβ ⩾ Cβ, and Cβ = (2β)1/d

β
κ1,σ(wu,wv)
∥xu − xv∥d

⩽ βC−dγ(σ+1)
β C

d(γ(σ+1)−1)
β = βC−d

β = 1/2.

Case 2. Assume |∥xv∥ − rk| > rk. In this case ∥xv − ∂BkMin∥ ⩾ ∥xu −

∂BkMin∥, and ∥xv − xu∥ ⩾ ∥xv − ∂BkMin∥ = |∥xv∥ − rk|. Since fγ(z) is
increasing, wv = fγ(|∥xv∥ − rk|) ⩾ fγ(rk) ⩾ fγ(|∥xu∥ − rk|) = wu. We
obtain by definition of κ1,σ in (1.3.5) and (5.6.9)

β
κ1,σ(wu,wv)
∥xu − xv∥d

⩽ β
fγ(|∥xv∥− rk|)fγ(|∥xu∥− rk|)σ

|∥xv∥− rk|d

⩽ βC−γd(σ+1)
β |∥xv∥− rk|dr−d(1−γ)k r

σγd
k |∥xv∥− rk|−d

= βC
−γd(σ+1)
β r

−d(1−γ(σ+1))
k ⩽ 1/2.

where to obtain the second inequality we used that fγ(|∥xu∥− rk|)σ ⩽
r
σγd
k , and to obtain the second row the power of |∥xv∥− rk| canceled. The

bound 1/2 follows because rk ⩾ Cβ, γ ⩽ 1/(σ+ 1) and Cβ = (2β)1/d.

We are ready to prove Lemma 5.6.2.

Proof of Lemma 5.6.2. We will obtain a lower bound on P̃io
(
{Ξ ⩽ Mγ} ∩

A
(k)

noedge(γ)
)

for arbitrary γ ∈ (0, 1/(σ+ 1)]. Then we maximise this bound

by setting γ = γ¬nn, yielding the event A(k)

isolation in (5.6.14) and the bound
in Lemma 5.6.2. The events {Ξ⩽Mγ} and A

(k)

noedge (defined in (5.6.12)) are

independent of each other under P̃io in (5.6.18), since having no points
above Mγ is independent of the conditioning in P̃io (since each point in
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Rin ∪Rout is below Mγ if k is sufficiently large), and A
(k)

noedge only depends
on points of Ξ below Mγ. Hence

P̃io
(
{Ξ ⩽Mγ}∩A(k)

noedge(γ)
)
= P̃io

(
Ξ ⩽Mγ

)
P̃io
(
A

(k)

noedge(γ)
)
. (5.6.36)

We analyse the two probabilities separately. For the first term, by the above
independence,

P̃io
(
Ξ ⩽Mγ

)
= P̃io

(
|Ξin
>Mγ

∪ Ξout
>Mγ

| = 0
)
= exp

(
− Ẽio

[
|Ξin
>Mγ

∪ Ξout
>Mγ

|
])

,
(5.6.37)

for which we will use Lemma 5.6.3 shortly. We now turn to the second fac-
tor in (5.6.36). By definition of A(k)

noedge in (5.6.12), and using the conditional
independence of edges,

P̃io
(
A

(k)

noedge(γ)
)
= Ẽio

[ ∏
u∈Ξin

⩽Mγ
,v∈Ξout

⩽Mγ

(1− p(u, v))

]
. (5.6.38)

We distinguish now the two cases α = ∞ and α <∞.
Case α = ∞. By Claim 5.6.6, since γ ⩽ 1/(σ+ 1) by assumption, p(u, v) = 0
for each factor, hence P̃io

(
A

(k)

noedge(γ)
)
= 1. Since the right-hand side of

(5.6.37) is increasing in γ, we set γ = 1/(σ+ 1) = γ¬nn when α = ∞ by
(5.6.13). Combining then (5.6.36) with (5.6.37) and Claim 5.6.5, it follows
that

P̃io
(
{Ξ ⩽M⋆}∩A(k)

noedge(γ¬nn)
)
⩾ exp

(
−C5.6.3r

dmax(Z)
k logmZ−1(rk)

)
,

finishing the proof of the lemma for α = ∞.
Case α < ∞. By Claim 5.6.6, for all (u, v) ∈ Ξin

⩽Mγ
× Ξout

⩽Mγ
it holds that

1− p(u, v) ⩾ 1− 2−α since γ ⩽ 1/(σ+ 1) by assumption. Hence, there
exists a constant c > 0 such that for all such (u, v) we have 1− p(u, v) ⩾
exp(−c · p(u, v)). Using this in (5.6.38) and that s 7→ exp(−s) is a convex
function, Jensen’s inequality gives a lower bound in terms of the expected
number of edges between vertices below Mγ, i.e.,

P̃io
(
A

(k)

noedge(γ)
)
⩾ Ẽio

[
exp

(
− c

∑
u∈Ξin

⩽Mγ
,

v∈Ξout
⩽Mγ

p(u, v)

)]

⩾ exp

(
− cẼio

[ ∑
u∈Ξin

⩽Mγ
,

v∈Ξout
⩽Mγ

p(u, v)

])

= exp
(
− cẼio

[
|E
(
Ξin
⩽Mγ

,Ξout
⩽Mγ

)
|
])

. (5.6.39)
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Together with (5.6.36) and (5.6.37), we obtain that

P̃io
(
{Ξ ⩽Mγ}∩A(k)

noedge(γ)
)

⩾ exp
(
−
(
Ẽio
[
|Ξin
>Mγ

∪ Ξout
>Mγ

|
]
+ cẼio

[
|E
(
Ξin
⩽Mγ

,Ξout
⩽Mγ

)
|
]))

. (5.6.40)

By Lemmas 5.6.3 and 5.6.4, the first expectation is decreasing, while the
second one is increasing in γ on the right-hand side. By (5.6.33) in Lemma
5.6.5, when we set γ = γ¬nn in (5.6.13), we obtain that (5.6.40) turns into
(5.6.19), finishing the proof of Lemma 5.6.2 when V = Ξ.

Proof of Lemma 5.6.2 for i-KSRGs on Zd. We explain how to adapt the proof
for i-KSRGs on Zd using the extra assumption min{p,pβα} < 1 in Lemma
5.6.2. Since the vertex set V = Zd, the event Ξ ⩽Mγ as defined in (5.6.10)
would never hold, since Zd does have points within distance Cβ from
∂BkMin (see fγ in (5.6.9) and the reasoning below (5.6.12)). Hence, we
must adjust the definition of fγ within distance Cβ of ∂BkMin to be any
constant c > 1. Then the upper bound 2−α on p(u, v) in Claim 5.6.6 can
be replaced by min{p,pβα} < 1 (the edge-retention probability for vertices
at distance 1 in (5.1.3)), that only affects constant prefactors in (5.6.39) and
(5.6.40).

The proofs of the preliminary Lemmas 5.6.3 and 5.6.4 remain valid by
replacing concentration bounds for Poisson random variables by concen-
tration bounds for Binomial random variables, and replacing integrals over
Rd by summations over Zd. The proof of Claim 5.6.5 remains verbatim
valid.

Proofs of Theorems 5.1.2, 5.1.4. Proposition 5.6.1 yields the lower bounds
for both theorems, since its condition (5.6.3) on having a large enough
component on restricted marks occurs with positive probability by Propo-
sition 5.4.13, under the assumption τ < 2+ σ. The assumption τ > 2 is
necessary to have a locally finite graph. Propositions 5.4.1 and 5.5.1 imply
the upper bounds (i.e., part (ii)) in Theorems 5.1.4 and 5.1.2, respectively.
The conditions in Proposition 5.5.1 are satisfied by Propositions 5.4.1, 5.4.12

and Claim 5.5.2. The condition τ < 2+ σ is needed for Claim 5.4.5, which
yields that a constant proportion of high-mark vertices, i.e., vertices having
mark Ω(kγhh), is connected by an edge to another high-mark vertex. This
allows to construct a backbone of high-mark vertices (Lemma 5.4.2), and
to merge components of size at least k with the backbone via a high-mark
vertex in (5.4.42). The additional condition σ ⩽ τ− 1 in Theorems 5.1.2
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and 5.1.4 is needed in the cover-expansion step (Lemma 5.4.9) in the proof
of Proposition 5.4.1.

It remains to prove Theorem 5.1.5, whose proof is based on Lemma
5.6.2.

Proof of Theorem 5.1.5. For ρ ⩾ 1 the statement is trivial. There exists a
constant C > 0 such that for any ρ ∈ (0, 1) and n ⩾ 1 a box of volume n
is contained in the union of ⌈C/ρ⌉ (partially overlapping) balls of volume
nρ/2. Fix ρ ∈ (0, 1), and write Ξ(i) for the vertices in the i-th ball of such a
cover of balls of volume nρ/2. Recall that |E(A,B)| denotes the number of
edges between the sets A,B. Then

{|C(1)
n | < ρn} ⊇

⋂
i⩽⌈C/ρ⌉

{|E(Ξ(i),Ξ \ Ξ(i))| = 0}∩ {|Ξ(i)| < ρn} (5.6.41)

Indeed, on the event on the right-hand side, each connected component of
Gn is fully contained in some ball (or the intersection of some balls) with
at most ρn vertices. We apply an FKG inequality to bound the probability
of intersection from below.

We give a (natural) definition of increasing events, using the collection
Ψ from Definition 5.4.3 that encodes the presence of edges using a set of
uniform random variables ΨΞ = {φu,v : u, v ∈ Ξ}. We say that a function
f(Ξ,ΨΞ) defined on the marked vertex set Ξ and edge-variable set ΨΞ is
increasing if it is non-decreasing in Ξ with respect to set inclusion (formally,
if Ξ ′ ⊇ Ξ,ΨΞ ′ ⊇ ΨΞ, then f(Ξ ′,ΨΞ ′) ⩾ f(Ξ,ΨΞ) holds), as well as coordinate-
wise non-increasing with respect to the edge variables (formally, if Ψ ′Ξ
satisfies φ ′u,v ⩽ φu,v for all u, v ∈

(
Ξ
2

)
, then f(Ξ,Ψ ′Ξ) ⩾ f(Ξ,ΨΞ) holds).

Intuitively this means that more vertices and edges increase the value of f.
Similarly to [79], we obtain that for two increasing functions f1, f2,

E[f1(Ξ,ΨΞ) · f2(Ξ,ΨΞ)] = E
[
E[f1(Ξ,ΨΞ) · f2(Ξ,ΨΞ) | Ξ]

]
⩾ E

[
E[f1(Ξ,ΨΞ) | Ξ] ·E[f2(Ξ,ΨΞ) | Ξ]

]
⩾ E[f1(Ξ,ΨΞ)

]
·E[f2(Ξ,ΨΞ)],

by applying FKG to the random graph conditioned to have Ξ as its vertex
set for the first inequality, and then FKG for point processes for the second
inequality [173, Theorem 20.4]. We say that an event A is decreasing iff the
function −1A is increasing. It follows that for decreasing events A,A ′

P
(
A∩A ′

)
= E[(−1A(Ξ,ΨΞ)) · (−1A ′(Ξ,ΨΞ))]

⩾ E[1A(Ξ,ΨΞ)] ·E[1A ′(Ξ,ΨΞ)] = P
(
A
)
·P
(
A ′
)
.

(5.6.42)
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Observe that the events on the right-hand side in (5.6.41) are all decreasing
(adding vertices/edges make the events less likely to occur) so that (5.6.42)
applies. Hence,

P
(
|C(1)
n | < ρn

)
⩾

∏
i⩽⌈C/ρ⌉

P
(
|E(Ξ(i),Ξ \ Ξ(i))| = 0

)
·P
(
|Ξ(i)| < ρn

)
. (5.6.43)

Since each ball has volume nρ/2, the event {|Ξ(i)| < ρn} holds with probabil-
ity at least 1/2 by concentration inequalities for Poisson random variables
(Lemma 5.C.1 for x = 2). To bound P

(
|E(Ξ(i),Ξ \ Ξ(i))| = 0

)
, we consider

the optimally-suppressed mark profile translated to the center of the i-th
ball, with kMin replaced by nρ/2. We restrict Ξ to be below the mark
profile, and to have no edges between Ξ(i) and Ξ \ Ξ(i). We apply Lemma
5.6.2, integrate over all realisations of Gin,Gout satisfying Aregular, and use
that the event Aregular in the conditioning in P̃io in (5.6.18) holds with high
probability by Poisson concentration (Lemma 5.C.1 for x = 2), see the
argument below (5.6.21). We obtain that for all i ⩽ ⌈C/ρ⌉,

P
(
|E(Ξ(i),Ξ \ Ξ(i))|=0

)
·P
(
|Ξ(i)|<ρn

)
⩾ 12 exp

(
−Θ(nmax(Z) logmZ−1(n))

)
,

which yields the desired statement in (5.1.11) when taking the product
over ⌈C/ρ⌉ balls in (5.6.43).

5.a proofs based on backbone construction

We present the proofs of the propositions at the end of Section 5.4.

Proof of Proposition 5.4.12. We will first derive a bound on

P
(
∃v ∈ Ξn[w,∞) : v /∈ C(1)

n

)
for arbitrary w ⩾ 1. We make use of the backbone construction from
Section 5.4: we will show that vertices with mark at least w are likely to
connect to the backbone Cbb, which will be a subset of the giant component.
Observe that the event in (5.4.44) allows us to choose the size of the boxes
when we build the backbone, i.e., the value of k is not yet defined with
respect to w. We define k = k(w) implicitly by w =: A1k

1−σγhh , where A1
is a large enough constant to be determined later. We aim to show that for
some A2 > 0,

P
(
¬Amark−giant(n,w)

)
:= P

(
∃v ∈ Ξn[A1k1−σγhh ,∞) : v /∈ C(1)

n

)
⩽ n exp

(
−A2k

ζhh
)
.

(5.A.1)
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If this bound holds, then substituting w = wn = (Mw log(n))(1−σγhh)/ζhh

yields

k(wn) = A
−1/(1−σγhh)
1 w

1/(1−σγhh)
n = A

−1/(1−σγhh)
1 (Mw logn)1/ζhh ,

which, when substituted back to (5.A.1) yields (5.4.44) if Mw is chosen
sufficiently large.

Recall Abb(n,k) and Cbb(n,k) from (5.4.8). Distinguishing two cases
depending on whether Abb(n,k) holds for Gn,2 = Gn[1, 2whh) or not (with
whh(k) in (5.4.7)), by Lemma 5.4.2,

P
(
¬Amark−giant(n,w)

)
⩽ P

(
¬Abb

)
+ E

[
1{Abb}

P
(
¬Amark−giant(n,w) | Gn,2,Abb

)]
⩽ 3n exp(−c5.4.2sk)

+ E
[
1{Abb}

P
(
¬Amark−giant(n,w) | Gn,2,Abb

)]
.

(5.A.2)

On the event Abb, there is a backbone Cbb. This backbone is either not
part of the giant component, or if it is, then a vertex with mark at least w
outside the giant has no connection to any of the vertices in the backbone.
Hence, conditionally on the event Abb,

¬Amark−giant(n,w) ⊆ {Cbb ⊈ C(1)
n }∪ {∃v ∈ Ξn[w,∞) : v ̸↔ Cbb,Cbb ⊆ C(1)

n }.

By a union bound and Corollary 5.4.10, this implies that

P
(
¬Amark−giant(n,w) | Gn,2,Abb

)
⩽(n/c5.4.1) exp

(
− c5.4.1k

ζhh
)
+ P

(
∃v ∈ Ξn[w,∞) : v ̸↔ Cbb | Gn,2,Abb

)
.

(5.A.3)

Recall that Gn,2 is the graph spanned on vertices with mark in [1, 2whh),
see Definition 5.4.6. With C1 from (5.4.5)–(5.4.6), we may assume A1 ⩾
2C

−1/(τ−1)
1 . Since whh = C

−1/(τ−1)
1 kγhh defined in (5.4.7), and since 1−

(1+ σ)γhh ⩾ 0 (see (5.4.14)), this implies that

w = A1k
1−σγhh ⩾ 2whh = 2C

−1/(τ−1)
1 kγhh . (5.A.4)

Hence, vertices of mark at least w are part of Ξn[2whh,∞) and are not
revealed in Gn,2. Conditioning on the number of vertices |Ξn[w,∞)|, the
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location of each vertex is independent and uniform in Λn. Taking a union
bound over these vertices in Ξn[w,∞), yields

P
(
∃v ∈ Ξn[w,∞) : u ̸↔ Cbb | Gn,2,Abb

)
⩽ E[|Ξn[w,∞)|] ·P

(
v ̸↔ Cbb | Gn,2,Abb, v ∈ Ξn[w,∞)

)
⩽ nP

(
v ̸↔ Cbb | Gn,2,Abb, v ∈ Ξn[w,∞)

)
. (5.A.5)

Let Q(v) be as in (5.4.3). Conditionally on Abb, Q(v) contains at least
sk = Θ(kζhh) vertices in Cbb with mark in [whh, 2whh), wherewhh is defined
in (5.4.7), yielding the set of vertices S(v) in (5.4.22). We use the distance
bound in (5.4.4), and p, κ1,σ defined in (5.1.3), and (1.3.5), respectively, and
the value w in (5.A.4), to obtain that for any v ∈ Ξn[w,∞) and u ∈ S(v),
when α <∞,

p(u, v) ⩾ pmin
{
1,
(
βκ1,σ(whh,A1k1−σγhh)(2

√
d)−dk−1

)α}
= pmin

{
1,
(
βC

−σ/(τ−1)
1 kσγhhA1k

1−σγhh(2
√
d)−dk−1

)α}
= p,

whenever A1 ⩾ (2
√
d)dC

σ/(τ−1)
1 /β, since the exponent of k in the second

term of the minimum is 0. The same bound holds when α = ∞. Since v
connects by an edge to each of the sk = Θ(kζhh) many backbone vertices
in S(u) with probability at least p, conditionally independently of each
other, we bound (5.A.5) by

P
(
∃v ∈ Ξn[w,∞) : v ̸↔ Cbb | Gn,2,Abb

)
⩽ n(1− p)sk .

Since sk = Θ(kζhh) in (5.4.7), combining this with (5.A.2) and (5.A.3)
yields (5.A.1) for A2 sufficiently small. As argued below (5.A.1), this yields
(5.4.44).

5.a.1 Construction of a linear-sized component

This section presents the proof of the first statement of Proposition 5.4.13.
At the end of the section, we comment how the proof can be adjusted to
obtain the second statement considering the infinite model. Throughout
the proof, we will consider the Palm version of P, conditioning Ξ to contain
a vertex at location 0. We will leave it out in the notation. We will show
using a second-moment method that linearly many vertices connect to
the backbone Cbb(n,k) for a properly chosen k. First we introduce some
notation. Recall C1 from (5.4.5)-(5.4.6). We implicitly define k = kn as the
solution of the equation

(C1/16)k
ζhh
n := (2/c5.4.1) log(n), (5.A.6)
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yielding m = (2/c5.4.1)
1/ζhh16/C1 in the statement of Proposition 5.4.13,

and the mark-truncation value in the definition of Gn,2 at 2whh(kn) =

2C
−1/(τ−1)
1 k

γhh
n from (5.4.7), with whh(kn) = (Mw log(n))γhh/ζhh for some

constant Mw. We reveal the graph Gn,1 = Gn[whh(kn), 2whh(kn)) (defined
above (5.4.5)), conditioned to satisfy the event Abb(n,kn) in (5.4.8). Recall-
ing the intensity measure of the Poisson vertex set µτ from (5.1.2), for any
constant mw ⩾ 1 we define the event

A ′reg :=
{
|Ξn[mw, 2mw)|

/
µτ
(
Λn × [mw, 2mw)

)
∈ [1/2, 2]

}
, (5.A.7)

that is, that the PPP in Λn is regular in the sense that the number of
constant-mark vertices is roughly as expected. Writing w0 for the mark of
0, we define the conditional probability measure

P̃bb( · ) := P
(
· | A ′reg,Abb(n,kn),Gn,1,w0 ∈ [mw, 2mw)

)
, (5.A.8)

with corresponding expectation Ẽbb. We state a lemma that implies Propo-
sition 5.4.13.

Lemma 5.A.1 (Constructing a component). Consider a supercritical i-KSRG
under the same conditions as Proposition 5.4.13. Take kn as in (5.A.6). For any
mw ⩾ 1, for all sufficiently large n,

P
(
A ′reg,Abb(n,kn),w0 ∈ [mw, 2mw)

)
⩾ m−(τ−1)

w /2. (5.A.9)

Moreover, there exist constants mw ⩾ 1, ρ > 0, such that for all sufficiently large
n

P̃bb
(
|Cn,2(0)| ⩾ ρ5.A.1n

)
⩾ ρ5.A.1. (5.A.10)

To prove the lemma (in particular the second statement), we need
to define auxiliary notation and an auxiliary claim: we define for u :=

(xu,wu) ∈ Ξn[mw, 2mw) the event

{u
π−→ Cbb} :=

{
∃ a path in Gn,2 from u to Cbb(n,kn), s.t.

vertices (except u) having mark in R+ \ [mw, 2mw)

}
.

(5.A.11)
Recall Λ(0, s) from (5.1.1) the box centered at 0 of volume s, and that
u = (xu,wu) denotes the location and mark of a vertex u ∈ Ξ. The next
claim states that if u and 0 are both vertices with mark in [mw, 2mw),
falling into different subboxes Q(0) ̸= Q(u) ((5.4.3)) with respect to the
boxing defined by kn above (5.4.3), then the event that both 0 and u

connect to the backbone Cbb happens with constant probability.
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Claim 5.A.2 (Paths to the backbone). Consider a supercritical i-KSRG under
the conditions of Proposition 5.4.13. There exist positive constants mw, q5.A.2,
C5.A.2 > 0 such that for all u ∈ Ξn[mw, 2mw) with xu /∈ Λ(0,C5.A.2kn), and
n sufficiently large

P̃bb

(
{0

π−→ Cbb(n,kn)}

∩ {u π−→ Cbb(n,kn)}

∣∣∣∣ u ∈ Ξn[mw, 2mw),

xu /∈ Λ(0,C5.A.2kn)

)
⩾ q5.A.2.

Proof. We will build what we call "mark-increasing paths". Recall kn =

(m log(n))1/ζhh in Prop. 5.4.13 and that whh(kn) = (Mw log(n))γhh/ζhh

computed below (5.A.6). Define

j∗ := max{j : 2j+1mw < whh(kn)}, (5.A.12)

and define for 0 ⩽ j ⩽ j∗ and x ∈ Λn the following boxes and disjoint
mark intervals

Qj(x) := Λ
(
x,β2−σd−d/2(2jmw)σ+1

)
∩Λn,

Ij := [2jmw, 2j+1mw), (5.A.13)

and write Qj∗+1 := Q(x), i.e., the volume-kn subbox containing x in the
partitioning of Λn for the backbone construction given in (5.4.3), and
define also Ij∗+1 := [whh(kn), 2whh(kn)). Even with the truncation by Λn
in (5.A.13), the volume bound

β2−σ−dd−d/2(2jmw)
σ+1 ⩽ Vol(Qj(x)) ⩽ β2−σd−d/2(2jmw)σ+1

(5.A.14)
holds for all x ∈ Λn and j ⩽ j∗ similarly to (5.3.4). By (5.1.2), the number
of vertices of Ξ in Qj(xu)× Ij has Poisson distribution with mean

µτ
(
Qj(xu)× Ij

)
⩾ 2−1β(2jmw)

−(τ−1)2−σ−dd−d/2(2jmw)
σ+1, (5.A.15)

where we used that 1 − 2−(τ−1) ⩾ 2−1 for τ > 2. Moreover, (5.A.12)
implies 2jmw ⩽ whh(kn) for all j ⩽ j⋆ and substituting this in (5.A.13)
with whh(kn) = C

−1/(τ−1)
1 k

γhh
n from (5.4.7) yields

Qj(x) ⊆ Λ
(
x,β2−σd−d/2(whh(n))

σ+1
)

= Λ
(
x,β2−σd−d/2C−(σ+1)/(τ−1)

1 k
γhh(σ+1)
n

)
⊆ Λ

(
x,β2−σd−d/2C−(σ+1)/(τ−1)

1 kn
)
=: Q⋆(x),

where the last inclusion follows from γhh ⩽ 1/(σ + 1) by (5.4.14). Let
diam(Q⋆(x)) =: Ck

1/d
n denote the diameter of Q⋆(x), and let Q⋄ :=
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Λ(0, 21/dCkn) denote the box centered at 0, so diam(Q⋄) = 2diam(Q⋆).
For any xu /∈ Q⋄, and all pairs j, j ′ ⩽ j∗, it holds that

Qj(xu)∩Qj ′(0) = ∅, (5.A.16)

and thus the PPPs restricted to Qj(xu)× Ij are independent of each other
and ofQj ′(0)× Ij ′ for all j, j ′ ⩽ j∗. On the conditional measure P̃bb, defined
in (5.A.8), we fixed (revealed) the realization of Ξn[whh(kn), 2whh(kn)).
Edges among Ξn[whh(kn), 2whh(kn)) and Ξ∩ (Qj∗(xu)× Ij∗) are thus also
present conditionally independently. We define for u = (xu,wu) =: u0 the
event of having a "mark-increasing path" (a subevent of {u π−→Cbb} defined
in (5.A.11)):

{u⇝ Cbb} :=

{∃(u1, . . . ,uj∗+1),uj∗+1 ∈ Cbb :

∀j ∈ [j∗ + 1] : uj ∈ Qj(xu)× Ij,uj−1 ↔ uj

}
. (5.A.17)

on which there is a path from u to the backbone, where the jth vertex on the
path is inQj(xu)× Ij (that are disjoint across j). The mark of uj∗+1 is in the
right range by definition Ij∗+1 of below (5.A.13). By this disjointness and
(5.A.16), the events {0⇝ Cbb} and {u⇝ Cbb} are independent conditionally
on Ξn[whh(kn), 2whh(kn)).

To bound P̃bb(u ⇝ Cbb) from below, we greedily ‘construct’ a path
from u = u0 to the backbone. By assumption wu ∈ [mw, 2mw) hence
u0 ∈ Q0(xu)× I0. We first bound the probability that u0 connects by an
edge to a vertex u1 ∈ Q1(xu)× I1. Then, if there is such a connection, we
choose u1 to be an arbitrary vertex connected to u0, and give a uniform
lower bound (over the possible u1) on the probability that it connects by
an edge to a vertex u2 ∈ Q2(xu)× I2. We continue this process until we
reach uj∗ that has mark just smaller than the minimal mark of vertices in
the backbone, by definition of j∗ in (5.6.15). Then we find a connection
from uj∗ to the backbone. We now bound the probability that two vertices
uj−1 and uj are connected by an edge.

By construction, wuj−1 ⩾ 2
j−1mw, wuj ⩾ 2

jmw. Hence, with the kernel
κ1,σ from (1.3.5), and volume bound (5.A.14), we obtain

βκ1,σ(wuj−1 ,wuj)=βw
σ
uj−1

wuj⩾βm
σ+1
w 2(σ+1)j−σ ⩾ β2−σ(2jmw)

σ+1

⩾ dd/2Vol(Qj(xu)).

Further, ∥xuj−1 −xuj∥d ⩽ dd/2Vol(Qj(xu)) = β2−σ(2jmw)σ+1 by (5.A.13),
hence

p(uj−1,uj) ⩾ pmin
{
1,

(βκ1,σ(wuj ,wuj+1))
α

∥xuj − xuj+1∥αd
}
= p.
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The same computation (without α in the exponent) is valid for α =∞. Having already chosen uj−1 on the path, each v ∈ Ξn ∩ (Qj(xu)×
Ij) connects independently by an edge to uj−1 with probability p. The
conditioning in the measure P̃bb in (5.A.8) only affects the number of
vertices with mark in [mw, 2mw) and in [whh, 2whh). Due to independence
of the number of points of PPPs in disjoint sets, for j ⩽ j∗, the number of
candidate vertices for the role of uj is thus stochastically dominated from
below by a Poi

(
pµτ(Qj(xu)× Ij)

)
random variable. The mean is at least

pβ2−σ−d−1d−d/2(2jmw)
2+σ−τ by (5.1.2) and (5.A.15). For j = j∗ + 1 we

use that the vertices in the backbone in Qj∗+1 × Ij∗+1 are exactly those in
Q(u)× [whh, 2whh), that we denoted by S(u) in (5.4.22):

P̃bb
(
¬{u⇝ Cbb)

)
⩽ P̃bb

(
uj∗ ̸↔ S(u)

)
+

j∗∑
j=1

P
(
Poi(pβ2−σ−d−1d−d/2(2jmw)2+σ−τ) = 0

)
⩽ P̃bb

(
uj∗ ̸↔ S(u)

)
(5.A.18)

+

∞∑
j=1

exp
(
− pβ2−σ−d−1d−d/2(2jmw)

2+σ−τ
)
.

Since τ < 2+ σ by assumption, the sum is finite and decreasing in mw.
By definition of j∗ and Ij∗ in (5.A.12), wuj∗ ⩾ 2

j∗mw ⩾ whh/4. We recall
that Q(xu) is the subbox of volume kn in the partitioning for the backbone
containing xu ((5.4.3)), that contains at least skn backbone vertices of
mark at least whh(kn), both defined in (5.4.7). When α < ∞, we follow
the computations in (5.4.17), (that are also valid under the conditional
measure P̃bb from (5.A.8), ensuring that Cbb(n,kn) exists and |S(u)| ⩾ skn
by Abb in (5.4.8)), and use that uj∗ is at distance at most 2

√
dk
1/d
n from

any vertex in S(u), to obtain

P̃bb
(
uj∗ ̸↔S(u)

)
(5.A.19)

⩾1−
(
1− pmin{1,βαd−αd/22−(2σ+d)αw

(1+σ)α
hh k−αn }

)skn
⩾1−exp

(
pmin{skn ,βαd−αd/22−(2σ+d)αw

(1+σ)α
hh k−αn skn}

)
.

Using that skn = knw
−(τ−1)
hh /16, whh = C

−1/(τ−1)
1 k

γhh
n , and γhh = (α−

1)/((σ+ 1)α− (τ− 1)), we have

w
(1+σ)α
hh k−αn skn ⩾ 2

−4w
(1+σ)α−(τ−1)
hh k1−αn = 2−4C

1−(1+σ)α/(τ−1)
1 .



204 the high-high regime

Using this bound on the right-hand side in (5.A.19), this yields combined
with (5.A.18) that there exists a constant q > 0 such that if mw is suffi-
ciently large P̃bb

(
u⇝ Cbb

)
⩾ q establishing Claim 5.A.2 when α <∞, by

the reasoning about independence below (5.A.17).
When α = ∞, the choice of C1 in (5.4.6) ensures that for any vertex

ubb ∈ Cbb ∩Q(u) that

p(uj∗ ,ubb) ⩾ p1
{
β
κ1,σ(whh/4,whh)

2ddd/2kn
⩾ 1

}
= p,

establishing Lemma 5.A.2 for α = ∞ when combined with (5.A.18) for
mw sufficiently large.

We are now ready to prove Lemma 5.A.1.

Proof of Lemma 5.A.1. We first show (5.A.9). By a union bound, concen-
tration inequalities for Poisson random variables (Lemma 5.C.1 for x ∈
{1/2, 2}) and FW(dw0) = (τ− 1)w−τ

0 dw in Definition 5.1.1, it follows that
P(¬A ′reg) = exp(−Θ(nm−(τ−1)

w )) = o(1), and thus

P
(
¬
(
A ′reg ∩Abb ∩ {w0 ∈ [mw, 2mw)}

))
⩽ P

(
¬Abb

)
+ P

(
w0 /∈ [mw, 2mw)

)
+ o(1)

⩽ P
(
¬Abb

)
+ 1− (1− 2−(τ−1))m

−(τ−1)
w + o(1).

By the choice of k = kn in (5.A.6), the first term tends to zero by Lemma
5.4.2 as n tends to infinity. Since 1 − 2−(τ−1) > 1/2 for τ > 2, for n
sufficiently large (depending also on the constant mw) it follows that

P
(
¬
(
A ′reg ∩Abb ∩ {w0 ∈ [mw, 2mw)}

))
⩽ 1−m−(τ−1)

w (1− 2−(τ−1))+o(1)

⩽ 1−m−(τ−1)
w /2,

and (5.A.9) follows. We proceed to (5.A.10). Conditionally on the realiza-
tion of Gn,1 satisfying Abb (present in the conditioning in P̃bb in (5.A.8)),
we define the following set and random variable:

U := {u ∈ Ξn[mw, 2mw) : u
π−→ Cbb},

X := 1{
0
π−→Cbb

} ∑
u∈Ξn[mw,2mw):
xu/∈Λ(0,C5.A.2kn)

1{
u

π−→Cbb

}, (5.A.20)
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with π−→ from (5.A.11). The measure P̃bb is a conditional measure where
A ′reg (defined in (5.A.7)) holds and so

|Ξn[mw, 2mw)| ⩽ 2µτ(Λn × [mw, 2mw)).

Using µτ in (5.1.2), we obtain that deterministically under P̃bb:

X2 ⩽ 4
(
µτ(Λn × [mw, 2mw)

)2
⩽ 4(m−(τ−1)

w n)2.

When 0 ∈ U holds, then |Cn,2(0)| ⩾ |U| ⩾ X, and so we apply Paley-
Zygmund’s inequality to X under the measure P̃bb, which yields for
ρ ′ := Ẽbb[X]/(2n) that

P̃bb
(
|Cn,2(0)| ⩾ ρ

′n
)
⩾ P̃bb

(
|U| ⩾ ρ ′n, 0 ∈ U

)
⩾ P̃bb

(
X ⩾ Ẽbb[X]/2

)
⩾ (1/4)

Ẽbb[X]
2

Ẽbb[X2]
⩾

Ẽbb[X]
2

16n2m
−2(τ−1)
w

.

(5.A.21)
We now bound the numerator on the right-hand side from below. Con-
ditionally on |Ξn[mw, 2mw)|, the vertices have a uniform location in Λn,
so

P̃bb
(
xu /∈ Λ(0,C5.A.2kn) | u ∈ Ξn[mw, 2mw), |Ξn[mw, 2mw)|

)
=
(
n−C5.A.2kn

)
/n ⩾ 1/2,

where the last inequality follows from assuming that n is sufficiently
large (recall kn = Θ

(
log1/ζhh(n)

)
by (5.A.6)). The conditioning on A ′reg

implies that |Ξn[mw, 2mw)| ⩾ µτ(Λn × [mw, 2mw))/2. Using linearity of
expectation of X in (5.A.20), and the tower rule, (by first conditioning on
|Ξn[mw, 2mw)|) we obtain for n sufficiently large

Ẽbb
[
X
]
⩾ (µτ(Λn × [mw, 2mw))/2)

· Ẽbb

[
P̃bb

(
xu /∈ Λ(0,C5.A.2kn) | u ∈ Ξn[mw, 2mw), |Ξn[mw, 2mw)|

)]
· P̃bb

(
{0

π−→ Cbb}∩ {u π−→ Cbb} | u ∈ Ξn[mw, 2mw), xu /∈ Λ(0,C5.A.2kn)
)

⩾ nm−(τ−1)
w (1− 2−(τ−1))(1/2) · (1/2) · q5.A.2

⩾ nq5.A.2m
−(τ−1)
w 2−3,

where the second bound follows if mw is chosen as in Claim 5.A.2, and
from the definition of µτ in (5.1.2); the last bound holds since 2−(τ−1) ⩽
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1/2 for τ > 2. Substituting the last bound (5.A.22) in the numerator on the
right-hand side to (5.A.21), we have obtained that

P̃bb
(
|Cn,2(0)| ⩾ ρ

′n) ⩾ 2−10q25.A.2,

holds with ρ ′ = Ẽbb[X]/(2n) ⩾ q5.A.2m
−(τ−1)
w 2−4, which yields which

yields the statement of Lemma 5.A.1 for

ρ5.A.1 = min{q5.A.2m
−(τ−1)
w 2−4, 2−10q25.A.2}.

Proof of Proposition 5.4.13. We start with the first inequality in (5.4.45). Us-
ing P̃bb in (5.A.8), we observe that the bound in Lemma 5.A.1 holds uni-
formly over all realizations of Gn,1 satisfying Abb. Hence, by first taking
expectation over these possible realizations, we obtain that

P(Cn,2(0) | A
′
reg,Abb(n,kn),w0 ∈ [mw, 2mw]) ⩾ ρ5.A.1

also holds. The statement now follows with ρ := ρ5.A.1m
−(τ−1)
w /2 by

the law of total probability combining (5.A.9) and (5.A.10) of Lemma
5.A.1. The second inequality in (5.4.45) for n = ∞ follows from the same
construction as the greedy path in the proof of Claim 5.A.2 below (5.A.17),
making the greedy path infinitely long. We leave it to the reader to fill in
the details.

5.b proofs using first-moment method

We start with the proof of Claim 5.5.4.

Proof of Claim 5.5.4. By Palm theory and symmetry of the PPP µτ on Rd,
recalling that we conditioned on 0 ∈ Ξ in Definition 5.1.1, we consider
Ri(0) in (5.5.21) for some i ⩾ 1. We estimate the mean from below using
tk = n

1/d
k /(2k)

λi := µτ(Ri(0)) = (2itk)
d − (2i−1tk)

d = (2i−1tk)
d(2d − 1)

⩾ 2d(i−1)(2k)−dnk ⩾ 2
d(i−2)nδk.

Hence, since |ΞNk ∩Ri(0)| is distributed as Poi(λi) with λi > 2d(i−2)nδk, by
Chernoff bounds for Poisson random variables (see Lemma 5.C.1 applied
with x = 2, using 1+ 2 log(2) − 2 ⩾ 1/4),

P
(
|ΞNk ∩Ri(0)| > 2 · µτ

(
Ri(0)

))
⩽ exp(−λi(1+ 2 log 2− 2))

⩽ exp
(
− 2d(i−2)−2nδk

)
,
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and the statement follows for every c > 0, i.e.,

P
(
Adense

)
= P

(
∃u ∈ Ξnk [1,w), i ⩾ 1 : |ΞNk ∩Ri(xu)| > 2 · µτ

(
Ri(xu)

))
⩽ E[|Ξnk [1,w)|] · P

(
∃i ⩾ 1 : |ΞNk ∩Ri(0)| > 2 · µτ

(
Ri(0)

))
⩽ nk

∑
i⩾1

exp
(
− 2d(i−2)−2nδk

)
⩽ 2nk exp

(
− 2−d−2nδk

)
= o(n−c

k ).

Now we prove Claim 5.5.6 used for the upper bound of subexponential
decay.

Proof of Claim 5.5.6. For compact sets K1,K2 ⊆ Rd, we define ∥K1 −
K2∥ := min{∥x− y∥, x ∈ K1,y ∈ K2}. We define

t̃k := ∥∂ΛN − ∂Λn∥ = (N1/d −n1/d)/2.

The definition of Along−edge in (5.5.11) implies that

Along−edge(n,N,w) ⊆
{
∃u ∈ Ξn[1,w), v ∈ Ξ : ∥xu − xv∥ ⩾ t̃k,u↔ v

}
,

so that after conditioning on Ξn[1,w) it follows by a union bound that

P
(
Along−edge(n,N,w)

)
⩽ E

[ ∑
u∈Ξn[1,w)

P
(
∃v ∈ Ξ : ∥xu − xv∥ ⩾ t̃k,u↔ v | u ∈ Ξn[1,w)

)]

=: E

[ ∑
u∈Ξn[1,w)

q(u)

]
(5.B.1)

Assume α < ∞. Since the diameter of Λn is
√
dn1/d, the lower bound

on N in the statement of Claim 5.5.6 implies that ∥xu − xv∥ ⩽ t̃k for
all xu, xv ∈ Λn. Hence, v /∈ Ξn whenever ∥xu − xv∥ > t̃k. This implies
by Markov’s bound, using the connection probability in (5.1.3), and that
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wu ⩽ w and the intensity µτ and the translation invariance of the intensity
of Ξ in (5.1.2), that for all u ∈ Ξn,

q(u) ⩽ E

[ ∑
v∈Ξ:∥xu−xv∥>t̃k

pmin
{
1,
(
β
κ1,σ(w,wv)
∥xu − xv∥d

)α }]

= p(τ− 1)

∫∞
wv=1

∫
xv:∥xu−xv∥⩾t̃k

min
{
1,
(
β
κ1,σ(w,wv)
∥xu − xv∥d

)α}
w−τ
v dwvdxv

(5.B.2)

= p(τ− 1)

∫∞
wv=1

w−τ
v

∫
xv:∥xv∥⩾t̃k,∥xv∥d⩽βκ1,σ(w,wv)

dwvdxv

+ p(τ− 1)

∫∞
wv=1

(βκ1,σ(w,wv))αw−τ
v∫

xv:∥xv∥⩾t̃k,∥xv∥d⩾βκ1,σ(w,wv)
∥xv∥−αddwvdxv

=: T1 + T2, (5.B.3)

where we cut the integral into two based on the value on the minimum.
We analyse the two integrals separately. Analyzing T1, the integration with
respect to xv gives the Lebesgue measure of the set {xv : t̃dk ⩽ ∥xdv∥ ⩽
βκ1,σ(w,wv)}, which is nonzero only if this set is nonempty, and then can
be bounded from above by cdβκ1,σ(w,wv) for some constant depending
only on d. So we obtain

T1 ⩽ cdpβ(τ− 1)
∫∞
wv=1

1{̃tdk ⩽ βκ1,σ(w,wv)}κ1,σ(w,wv)w−τ
v dwv

= cdpβ(τ− 1)
( ∫w
wv=1

1{̃tdk ⩽ βww
σ
v }ww

σ−τ
v dwv

+

∫∞
wv=w

1{̃tdk ⩽ βw
σwv}w

σw1−τv dwv
)

,

where in the last step we used the definition of κ1,σ in (1.3.5) and cut
the integration into two based on the minimum of w and wv. Since we
assumed t̃k ⩾ βwσ+1 in the statement of the lemma, and wσv ⩽ w

σ, the
indicator in the first integral is 0. Moving the indicator in the second
integral into the integration boundary yields

T1 ⩽ cdpβw
σ(̃tdk/(βw

σ))−(τ−2) = cdpβ
τ−1wσ(τ−1)t̃

−d(τ−2)
k . (5.B.4)
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We turn to T2 in (5.B.3). For some d-dependent constant c ′d, using again
κ1,σ in (1.3.5)

T2 ⩽ pc
′
d(τ− 1)

∫∞
wv=1
(βκ1,σ(w,wv))αw−τ

v max{̃tdk ,βκ1,σ(w,wv)}1−αdwv

= pc ′d(τ− 1)

∫w
wv=1

(βwwσv )
αw−τ

v max{̃tdk ,βwwσv }
1−αdwv (5.B.5)

+ pc ′d(τ− 1)

∫∞
wv=w

(βwσwv)
αw−τ

v max{̃tdk ,βwσwv}1−αdwv. (5.B.6)

For the first integral, we bound wσv ⩽ w
σ, and observe that by the assump-

tion t̃k ⩾ βwσ+1 in the statement of the lemma, the maximum is always
attained at t̃dk . Hence,

(5.B.5) ⩽ pc ′d(βw
σ+1)αt̃

−(α−1)d
k . (5.B.7)

We split the integral in (5.B.6) according to where the maximum is attained,
i.e.,

(5.B.6) = pc ′dβw
σ(τ− 1)

∫∞
wv=max{w,t̃dk/(w

σβ)}
w

−(τ−1)
v dwv

+1{t̃dk/(w
σβ)⩾w}pc

′
d(τ−1)̃t

−(α−1)d
k

∫ t̃dk/(wσβ)
wv=w

(βwσwv)
αw−τ

v dwv

= pc ′dβw
σ(τ− 1)

∫∞
wv=t̃dk/(w

σβ)
w

−(τ−1)
v dwv

+ pc ′d(τ− 1)̃t
−(α−1)d
k (βwσ)α

∫ t̃dk/(wσβ)
wv=w

wα−τv dwv

=
pc ′d(βw

σ)τ−1(τ− 1)

τ− 2
t̃
−d(τ−2)
k

+ pc ′d(τ− 1)̃t
−(α−1)d
k (βwσ)α

∫ t̃dk/(wσβ)
wv=w

wα−τv dwv (5.B.8)

where the second step follows from the assumption that t̃k ⩾ βwσ+1 in
the statement of the lemma. For the remaining integral on the right-hand
side of (5.B.8), say T22, we consider three cases, i.e., for some C > 0

T22 ⩽


Ct̃

−(α−1)d
k (βwσ)α

(̃
tdk/(w

σβ)
)α−(τ−1) if α > τ− 1,

Ct̃
−(α−1)d
k (βwσ)α log

(̃
tdk/(w

σβ)
)

if α = τ− 1,

Cwα−(τ−1)t̃
−(α−1)d
k (βwσ)α if α < τ− 1,
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Elementary rewriting of the first and third case yields

T22 ⩽


Ct̃

−d(τ−2)
k (βwσ)τ−1 if α > τ− 1,

Ct̃
−d(α−1)
k (βwσ)α log

(̃
tdk/(w

σβ)
)

if α = τ− 1,

Ct̃
−d(α−1)
k βαwα(σ+1)−(τ−1) if α > τ− 1.

Combining this bound with (5.B.8), then (5.B.7) and (5.B.4), gives in (5.B.3)
and (5.B.1) that for some C > 0,b > 0

P
(
Along−edge(n,N,w)

)
⩽ C ′wbt̃−dmin{α−1,τ−2}

k (1+ 1{α=τ−1} log(tk))E[|Ξn[1,w)]|]

⩽ CwbN−dmin{α−1,τ−2}(1+ 1{α=τ−1}) log(N))n,

where the last bound follows by the assumed bound in (5.5.27), since
t̃k = (N1/d−n1/d)/2, and the intensity of Ξn[1,w) in (5.1.2). This finishes
the proof of (5.5.28) when α <∞.

It remains to show the bound for the case α = ∞. In this case, the same
calculations hold, with only T1 in (5.B.3) present, since the connection
probability is 0 when the minimum in (5.B.2) is not at 1.

We proceed with the proofs of two lemmas for the lower bound.

Proof of Lemma 5.6.3. We recall from (5.6.31) that it is sufficient to bound
µτ(R

d+1
>Mγ

)=E
[∣∣Ξin

>Mγ

∣∣]+E
[∣∣Ξout

>Mγ

∣∣]. We introduce some notation: for two
functions g(k),h(k), we write g≲h if g=O(h). Since fγ(x) is symmetric
around the boundary of ∂BkMin (see its definition in (5.6.9)), it is easy
to see that E

[∣∣Ξin
>Mγ

∣∣]⩽E
[∣∣Ξout

>Mγ

∣∣]. Since ζnn = (d− 1)/d by (4.2.5), for
(5.6.29) it is sufficient to show that

E
[∣∣Ξout

>Mγ

∣∣] ≲ rd(1−γ(τ−1)) + (1+1{1−γ(τ−1)=1−1/d} log(r))rd−1. (5.B.9)

Using the intensity measure of Ξ in (5.1.2), switching to polar coordi-
nates in the first d directions, and integrating with respect to the mark-
coordinate, we obtain using the exact form of fγ in (5.6.9)

E
[∣∣Ξout

>Mγ

∣∣] ≲ ∫∞
z=0

(z+ rk)
d−1

∫∞
fγ(z)

(τ− 1)w−τdwdz (5.B.10)

≲
∫Cβ
z=0

(z+ rk)
d−1dz+

∫rk
z=Cβ

(z+ rk)
d−1z−dγ(τ−1)dz

+

∫∞
z=rk

(z+ rk)
d−1(zdr

−d(1−γ)
k )−(τ−1)dz =: I1 + I2 + I3.
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The integration length of I1 is a constant, so I1 ≲ rd−1k . For I2 we apply
the binomial theorem, i.e.,

I2 ≲
d−1∑
j=0

r
j
k

∫rk
Cβ

z(1−γ(τ−1))d−1−jdz. (5.B.11)

Analyzing the summands separately, we obtain for j ⩽ d− 1

r
j
k

∫rk
Cβ

z(1−γ(τ−1))d−1−jdz ≲


r
d(1−γ(τ−1))
k if d(1− γ(τ− 1)) > j,

log(rk)r
j
k if d(1− γ(τ− 1)) = j,

r
j
k if d(1− γ(τ− 1)) < j.

Using these bounds, which are increasing for j ∈ [d− 1], in (5.B.11), we
obtain

I2 ≲ (1+ 1{1−γ(τ−1)=1−1/d} log(rk))rd−1k + r
d(1−γ(τ−1))
k . (5.B.12)

It remains to bound I3 in (5.B.10). Using that τ > 2 by assumption, and
z+ rk ⩽ 2z,

I3 ≲ r
d(1−γ)(τ−1)
k

∫∞
z=rk

z−d(τ−2)−1dz

≲ rd((1−γ)(τ−1)−(τ−2))
k = r

d(1−γ(τ−1))
k .

Together with the bound on I1 below the definitions of I1, I2, and I3 in
(5.B.11), and on I2 in (5.B.12), this proves (5.B.9) and also finishes the proof
of (5.6.29).

Proof of Lemma 5.6.4. We split the expected number of edges depending
on the locations of the endpoints of the vertices.

Ẽio

[∣∣E(Ξin
⩽Mγ

,Ξout
⩽Mγ

)∣∣] = Ẽio

[∣∣E(Ξin
⩽Mγ\Rin

,Ξout
⩽Mγ\Rout

)∣∣]
+ Ẽio

[∣∣E(ΞRin ,Ξout
⩽Mγ\Rout

)∣∣]
+ Ẽio

[∣∣E(ΞRin ,ΞRout

)∣∣]
+ Ẽio

[∣∣E(Ξin
⩽Mγ\Rin

,ΞRout

)∣∣] (5.B.13)

We analyse the first term on the right-hand side and at the end we
sketch how the bounds could be adapted for the other three terms. Since
Aregular(η) is measurable with respect to ΞRin ∪ ΞRout , it can be left out of
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the conditioning. Further, points of Ξ in disjoint sets are independently
present, hence

E
[∣∣E(Ξin

⩽Mγ\Rin
,Ξout

⩽Mγ\Rout

)∣∣ ∣∣∣ΞRin ∪ ΞRout ,Aregular(η)
]

= E
[∣∣E(Ξin

⩽Mγ\Rin
,Ξout

⩽Mγ\Rout

)∣∣]
⩽ E

[∣∣E(Ξin
⩽Mγ

,Ξout
⩽Mγ

)∣∣].
(5.B.14)

We use the notation g ≲ h if g = O(h). We integrate over the locations and
marks of the vertices in Ξin

⩽Mγ
∪ Ξout

⩽Mγ
by writing z(x) = ∥x− ∂BkMin∥,

and upper bound the connectivity function p in (5.1.3) to obtain

E
[∣∣E(Ξin

⩽Mγ
,Ξout

⩽Mγ

)∣∣]
≲

∫
xu:∥xu∥⩽rk

∫
xv:∥xv∥⩾rk

∫fγ(z(xu))
wu=1

∫fγ(z(xv))
wv=1

(κ1,σ(wu,wv))α

∥xu − xv∥αd
w−τ
u w−τ

v dwvdwudxvdxu.

(5.B.15)

We analyse the double integral over the marks. Define

g1(z1, z2) :=
∫fγ(z1)
w1=1

∫fγ(z2)
w2=1

κ1,σ(w1,w2)w−τ
1 w−τ

2 dw1dw2.

Using the definition and symmetry of κ1,σ in (1.3.5), we reparametrise by
w ⩽ w̃ and using that fγ is increasing

g1(z1, z2) ≲
∫fγ(z1∧z2)
w=1

∫fγ(z1∨z2)
w̃=w

κ1,σ(w, w̃)(ww̃)−τdw̃dw

=

∫fγ(z1∧z2)
w=1

wσα−τ
∫fγ(z1∨z2)
w̃=w

w̃α−τdw̃dw.

The definition fγ in (5.6.9) undergoes a change at z = rk. When integrating,
we have nine cases depending on whether the exponents are below, equal
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to, or above −1 each. This yields for z2 ⩽ min{z1, rk} (so fγ(z2) = 1∨

(z2/Cβ)
γd) that g1(z1, z2) ≲ g(z1, z2), with

g(z1, z2) :=

fγ(z1)
α−(τ−1)z

γd(σα−(τ−1))
2 , if α > τ− 1,σα > τ− 1,

fγ(z1)
α−(τ−1) log(z2), if α > τ− 1,σα = τ− 1,

fγ(z1)
α−(τ−1), if α > τ− 1,σα < τ− 1,(

1+ log
(fγ(z1)
fγ(z2)

))
z
γd((σ+1)α−2(τ−1))
2 , if α = τ− 1,σα > τ− 1,

log(fγ(z1)) log(z2), if α = τ− 1,σα = τ− 1,

log(fγ(z1)), if α = τ− 1,σα < τ− 1,

z
γd((σ+1)α−2(τ−1))
2 , if α < τ− 1, (σ+ 1)α > 2(τ− 1),

log(z2), if α < τ− 1, (σ+ 1)α = 2(τ− 1),

1, if α < τ− 1, (σ+ 1)α < 2(τ− 1).
(5.B.16)

Returning to (5.B.15), we use g(z1, z2) to bound the inner two integrals
from above. We take a case-distinction on whether the vertex u (inside)
or v (outside) is closer to the boundary ∂BkMin . Then we obtain (since
fγ(x) = 1 when z(x) ⩽ Cβ by (5.6.9)),

E
[∣∣E(Ξin

⩽Mγ
,Ξout

⩽Mγ

)∣∣]
≲

∫
xu:∥xu∥⩽rk−Cβ

∫
xv:∥xv∥>2rk

∥xu − xv∥−αdg(z(xu), z(xv))dxvdxu

+

∫
xu:∥xu∥⩽rk−Cβ

∫
xv:z(xv)⩽z(xu)

∥xu − xv∥−αdg(z(xu), z(xv))dxvdxu

+

∫
xv:Cβ⩽∥xv∥−rk⩽rk

∫
xu:z(xu)⩽z(xv)

∥xu − xv∥−αdg(z(xu), z(xv))dxvdxu

=: I1 + I2a + I2b =: I1 + I2. (5.B.17)

To evaluate the integrals we change variables. For I1 we use z(xu) ⩽ rk,
and g is increasing in both its arguments, and that ∥xu − xv∥ ⩾ |∥xv∥−
rk| ⩾ z(xv) := t and use polar coordinates in the second row below.
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Then ∥xv∥ = t+ rk. Thus, since there are Θ((t+ rk)d−1) points outside at
distance t from ∂BkMin ,

I1 ≲
∫
xu:∥xu∥⩽rk−Cβ

∫
xv:∥xv∥>2rk

|∥xv∥− rk|−αdg(rk, z(xv))dxvdxu

≲ rdk

∫
t>rk

(t+ rk)
d−1t−αdg(rk, t)dt ≲ rdk

∫
t⩾rk

t−d(α−1)−1g(rk, t)dt.

(5.B.18)

Before substituting the definition of g into the bound, we recall that
fγ(t) = C

−γd
β tdr

−d(1−γ)
k for t > rk by (5.6.9). The following elementary

integration inequalities will be helpful soon:

rdk

∫
t⩾rk

t−d(α−1)−1fγ(t)
α−(τ−1)dt

≲ rd−d(1−γ)(α−(τ−1))
k

∫
t⩾rk

t−d(τ−2)−1dt

≲ rd(2−α+γ(α−(τ−1)))
k , (5.B.19)

rdk

∫
t⩾rk

t−d(α−1)−1dt ≲ rd(2−α)k . (5.B.20)

Substituting the definition of g in (5.B.16) into (5.B.18), since rk < t, we
must set z2 = rk in g in (5.B.16). We obtain then by elementary integration
on (5.B.18) and the bounds in (5.B.19)-(5.B.20) that:

I1 ≲



r
d(2−α+γ((σ+1)α−2(τ−1)))
k , if α > τ− 1,σα > τ− 1,

r
d(2−α+γ(α−(τ−1)))
k log(rk), if α > τ− 1,σα = τ− 1,

r
d(2−α+γ(α−(τ−1)))
k , if α > τ− 1,σα < τ− 1,

r
d(2−α+γ((σ+1)α−2(τ−1))
k , if α = τ− 1,σα > τ− 1,

r
d(2−α)
k log2(rk), if α = τ− 1,σα = τ− 1,

r
d(2−α)
k log(rk), if α = τ− 1,σα < τ− 1,

r
d(2−α+γ((σ+1)α−2(τ−1)))
k , if α < τ− 1, (σ+ 1)α > 2(τ− 1),

r
d(2−α)
k log(rk), if α < τ− 1, (σ+ 1)α = 2(τ− 1),

r
d(2−α)
k , if α < τ− 1, (σ+ 1)α < 2(τ− 1).

(5.B.21)
We turn to I2a in (5.B.17), handling the case when the outside vertex v
is closer to the boundary ∂BkMin than u, implying z(xv) ⩽ z(xu). We
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reparametrise this integral based on the distance zu from ∂BkMin of the
inside vertex u. Indeed, when zu ∈ [Cβ, rk] then ∥xu∥ = rk − zu. Since
v is closer, we must also have that zv = ∥xv∥− rk ∈ [Cβ, zu], and hence
t := ∥xu − xv∥ ∈ [zu +Cβ, 2rk]. Hence,

I2a ≲
∫rk
zu=Cβ

∫
xu:rk−∥xu∥=zu

∫2rk
t=zu+Cβ

∫zu
zv=Cβ

∫
xv:z(xv)=zv,
∥xu−xv∥=t

t−αdg(zu, zv)dxvdzvdtdxudzu.

The integrand does not depend on xv anymore, hence the most inside
integral, over xv, can be bounded from above by maximizing the Lebesgue
measure of where xv may fall: xv has distance t from xu and distance
zv from the boundary. Some geometry shows that xv is then on the
intersection of two spheres with radii t and rk + zv, respectively, with
Lebesgue measure then at most Θ(td−2). We can also integrate over all
the potential locations xu, giving a factor Θ((rk − zu)d−1), so we obtain

I2a ≲
∫rk
zu=Cβ

(rk − zu)
d−1

∫2rk
t=zu+Cβ

td−2−αd
∫zu
zv=Cβ

g(zu, zv)dzvdtdzu

≲
∫rk
zu=Cβ

(rk − zu)
d−1z

−d(α−1)−1
u

∫zu
z=Cβ

g(zu, zv)dzvdzu, (5.B.22)

where we integrated over t to obtain the second row. Treating I2b in
(5.B.17) is very similar, but now we reparametrise the integral based on
the distance zv of v from the boundary and the distance t = ∥xu− xv∥. We
obtain

I2b ≲
∫rk
zv=Cβ

∫
xv:∥xv∥−rk=zv

∫3rk
t=zv+Cβ

∫zv
zu=Cβ

∫
xu:zu=z(xu),
∥xu−xv∥=t

t−αdg(zu, zv)dxudzudtdxvdzv

≲
∫rk
zv=Cβ

(rk + zv)
d−1z

−d(α−1)−1
v

∫zv
zu=Cβ

g(zu, zv)dzudzv.

This bound dominates the bound on I2a in (5.B.22). Applying the binomial
theorem on (rk + zv)

d−1, we obtain

I2 = I2a + I2b ≲
d−1∑
j=0

r
j
k

∫rk
zv=Cβ

z
d(2−α)−2−j
v

∫zv
zu=Cβ

g(zu, zv)dzudzv.

(5.B.23)
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We evaluate the inner integral using the definition of g in (5.B.16), and
since zu ⩽ zv we set z1 = zv, z2 = zu in (5.B.16), and fγ(z) = (z/Cβ)

γd,
and obtain the nine cases:∫zv
zu=Cβ

g(zu, zv)dzu

≲



z
γd((σ+1)α−2(τ−1))+1
v , if α > τ− 1,σα > τ− 1,

z
γd(α−(τ−1))+1
v log(zv), if α > τ− 1,σα = τ− 1,

z
γd(α−(τ−1))+1
v , if α > τ− 1,σα < τ− 1,

z
γd((σ+1)α−2(τ−1))+1
v , if α = τ− 1,σα > τ− 1,

zv log2(zv), if α = τ− 1,σα = τ− 1,

zv log(zv), if α = τ− 1,σα < τ− 1,

z
γd((σ+1)α−2(τ−1))+1
v , if α < τ− 1, (σ+ 1)α > 2(τ− 1),

zv log(zv), if α < τ− 1, (σ+ 1)α = 2(τ− 1),

zv, if α < τ− 1, (σ+ 1)α < 2(τ− 1).

(5.B.24)

For Y = {0,α − (τ − 1), (σ + 1)α − 2(τ − 1)}, recall that m(Y) counts the
multiplicity of the maximum in Y. Substituting (5.B.24) into (5.B.23), the
nine cases can be summarized as obtaining the integrand of

z
d(2−α+γmax(Y))−1−j
v logm(Y)−1(zv),

so that following the similar reasoning as from (5.B.11) to (5.B.12),

I2 ≲


r
d(2−α+γmax(Y))
k logm(Y)−1(rk), if d(2−α+ γmax(Y))) > d− 1,

r
d(2−α+γmax(Y))
k logm(Y)(rk), if d(2−α+ γmax(Y))) = d− 1,

rd−1k , if d(2−α+ γmax(Y))) < d− 1,

where the second bound follows from similar reasoning as in (5.B.11)
leading to (5.B.12). The presence of a (d − 1) term and the additional
log-factors ensure that the bound on I2 dominates the bound on I1 in
(5.B.21). Recalling that I1 + I2 dominates the expected number of edges



5.C auxiliary proofs 217

below the γ-suppressed profile from (5.B.17), this yields by (5.B.14) and
ζnn = (d− 1)/d that

E
[∣∣E(Ξin

⩽Mγ\Rin
,Ξout

⩽Mγ\Rout

)∣∣ ∣∣∣ΞRin ∪ ΞRout ,Aregular(η)
]

≲


r
d(2−α+γmax(Y))
k logm(Y)−1(rk), if 2−α+ γmax(Y)) > ζnn,

r
d(2−α+γmax(Y))
k logm(Y)(rk), if 2−α+ γmax(Y)) = ζnn,

rd−1k , if 2−α+ γmax(Y)) < ζnn.

To obtain bounds on the other three expectations in (5.B.13), one can
replace the integrals over the marks in (5.B.15) by summing over the mark
intervals Ij defined in (5.6.15): the upper bounds on the number of vertices
using the definitions of A(k,in)

regular(η) and A
(k,out)
regular(η) in (5.6.17) ensure that

the total number of points in each interval only differs from its expectation
by a constant factor. Then one can use an upper bound on the mark of each
vertex in Iloc

j in (5.6.16), given by Iloc
j = [wη(kcloc)/2

j,wη(kcloc)/2
j−1), and

thus also the mark is at most a factor two larger than the mark of a typical
vertex in Iloc

j . Lastly, the distance between vertices in Rin and outside BkMin

(but within distance rk of BkMin) can be bounded from below by rk/2
by Lemma 5.A.1, and analogously we can bound the distance between
vertices in Rout and vertices inside BkMin . We leave it to the reader to fill
in the details.

5.c auxiliary proofs

It remains to prove Claim 5.6.5.

Proof of Claim 5.6.5. We first assume α < ∞. We set γ := γ¬nn defined in
(5.6.13) in Lemmas 5.6.3 and 5.6.4, and compare the exponents of rdk on the
right-hand sides of (5.6.29) and (5.6.30), respectively. We will show that
the three cases there can be ‘merged’ by taking the exponent of rdk = Θ(k)

to be max(Z), and the exponent of the log-factors in (5.6.29) and (5.6.30)
is then at most mZ − 1. We distinguish whether (⋆) in (5.6.13) holds with
equality or inequality. Let Y = {0,α−(τ− 1), (σ+ 1)α− 2(τ− 1)} as defined
above (5.6.13) and Z = {ζll, ζlh, ζhh, ζnn} as usual.

Case 1A. Assume 1 − γ¬nn(τ − 1) > 2 − α + γ¬nn max(Y), and α < ∞.
This, by (5.6.13) implies that γ¬nn = 1/(σ + 1). Considering that Y =
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{0,α−(τ− 1), (σ+ 1)α− 2(τ− 1)}, the assumed inequality of Case 1A turns
then into the following three inequalities after elementary rearrangements:

(σ+ 1)(α− 1) > τ− 1,

α < (σ+ 1)(α− 1),

(σ+ 1)α− (τ− 1) < (σ+ 1)(α− 1).

(5.C.1)

Solving the last inequality yields σ < τ− 2, which readily implies ζhh < 0

by its definition in (4.2.4). The second inequality implies that α > 1+1/σ >
1+ 1/(τ− 2), which is equivalent to ζlh < 0. We are left with showing that
ζll = 2−α < 0. The first inequality, and (σ+ 1)/(τ− 1) < 1 (coming from
the third inequality), yield

1

α− 1
<
σ+ 1

τ− 1
< 1,

which is equivalent to α > 2. Summarizing, we obtained that under the
assumption of Case 1A, max{ζll, ζlh, ζhh} < 0 ⩽ ζnn, hence max(Z) = ζnn

and m(Z) = 1. We also check that in this case the exponents of rdk in (5.6.29)
and (5.6.30) are respectively at most ζnn = (d− 1)/d ⩾ 0. This is true since

2−α+ γ¬nn max(Y) < 1− γ¬nn(τ− 1) = 1−
τ− 1

σ+ 1
< 0,

where the first inequality follows by the assumption of Case 1A, and the
second one by the last inequality in (5.C.1). Hence, under Case 1A, the
third case holds in (5.6.29) and (5.6.30), the exponent of rdk is ζnn = max(Z)
in this case, and there are no logarithmic factors, which is also reflected in
m(Z) − 1 = 0. Hence, both inequalities in the statement of (5.6.33) hold in
Case 1A.

Case 1B) Assume ζ¬nn = 1− γ¬nn(τ− 1) = 2−α+ γ¬nn max(Y) and α <∞. The exponents of rdk in (5.6.29) and (5.6.30) match by assumption, and
the three cases can be summarized as this exponent being max{ζ¬nn, ζnn}.
By the equality assumption for Case 1B, we compute that

γ¬nn =
α− 1

max(Y) + τ− 1
= min

{α− 1

τ− 1
,
α− 1

α
,

α− 1

(σ+ 1)α− (τ− 1)

}
.

(5.C.2)
Since γ¬nn ⩽ 1/(σ+ 1) by (5.6.13), it is elementary to verify that the third
term may be minimal only when τ ⩽ 2+ σ.
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Assume τ ⩽ 2+ σ. Using (5.C.2), (4.2.1), (4.2.2), (4.2.4), it is elementary
to verify that

ζ¬nn = 1− min
{α− 1

τ− 1
,
α− 1

α
,

α− 1

(σ+ 1)α− (τ− 1)

}
(τ− 1)

= max{ζll, ζlh, ζhh}.
(5.C.3)

It immediately follows that max{ζ¬nn, ζnn} = max(Z). Hence, the expo-
nents of rdk in (5.6.29) and (5.6.30) equal to max(Z), which is what we
aimed for in (5.6.33). We now treat the exponent of the logarithm in
(5.6.30) and in (5.6.29). Recall that m in (5.1.5) denotes the multiplic-
ity of the maximum of a set. From (5.C.2) and (5.C.3) it follows that
m(Y) = m({ζll, ζlh, ζhh}). Hence, using that ζ¬nn = max{ζll, ζlh, ζhh},

m(Z) = m({ζll, ζlh, ζhh, ζnn})

= m(Y)1{ζ¬nn>ζnn} + (m(Y) + 1)1{ζ¬nn=ζnn} + 1{ζ¬nn<ζnn}

(5.C.4)

The relations between ζnn and 1− γ¬nn(τ− 1) on the one hand, and ζnn

and 2−α+ γ¬nn max(Y) on the other hand, are the same by our equality
assumption in Case 1B. This confirms that the log-factor in (5.6.29) is at
most the log-factor in (5.6.30), showing therefore the first inequality of
(5.6.33), and that the log-factor in (5.6.30) equals what we aimed for in the
second inequality of (5.6.33), thereby finishing Case 1B when τ ⩽ 2+ σ.

Assume τ > 2 + σ. The minimum in (5.C.2) is never attained at the
third term (and equivalently the maximum in Y is never attained at
(σ+ 1)α− 2(τ− 1)). Similarly to (5.C.3), we obtain that ζ¬nn = max{ζll, ζlh}.
Moreover, ζhh < 0 ⩽ ζnn by the formula for ζhh in (4.2.4), yielding
max(Z) = max{ζll, ζlh, ζnn} = max{ζ¬nn, ζnn}. Hence, the exponents of
rdk in (5.6.29) and (5.6.30) equal to max(Z), which is what we aimed for
in (5.6.33). For the log-factor we argue similarly as in (5.C.4) and below,
with the additional restriction that the maximum in Y is never attained at
(σ+ 1)α− 2(τ− 1), and the maximum in Z is never attained at ζhh.

Case 2. Assume α = ∞. Since ζll = 2− α = −∞, ζlh = −(τ− 2) < 0

(τ > 2 by assumption in Lemma 5.6.2), and ζnn = (d − 1)/d ⩾ 0, we
obtain max{ζll, ζlh, ζhh, ζnn} = max{ζhh, ζnn} = max{1− γhh(τ− 1), ζnn} by
the formula of ζhh in (4.2.4). Since γhh = γ¬nn when α = ∞, it follows
that the exponents of rdk and log(rk) in (5.6.29) and (5.6.34) coincide. This
finishes the proof.

Lastly, we state a Poisson concentration bound (without proof) that we
often rely on in the chapter.
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Lemma 5.C.1 (Poisson bound [186]). For x > 1,

P
(
Poi(λ) ⩾ xλ

)
⩽ exp(−λ(1+ x log(x) − x)),

and for x < 1

P
(
Poi(λ) ⩽ xλ

)
⩽ exp(−λ(1− x− x log(1/x)).
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T H E N E A R E S T- N E I G H B O U R R E G I M E

Based on [150]:
Cluster-size decay in supercritical long-range percolation,

J. Jorritsma, J. Komjáthy, D. Mitsche,
Preprint arXiv:2303.00724, 2023.

6.1 model and main results

In the previous chapter and the accompanying paper [151], we investi-
gate(d) the influence of inhomogeneity in the graph on the cluster-size
distribution in i-KSRGS, see Section 1.3, where both the degree distribution
and the edge-length distribution have heavy tails. We show(ed) that if the
tails are “heavy enough”, that P(k ⩽ |C(0)| <∞) decays stretched expo-
nentially with exponent at least (d− 1)/d. We leave the part of the phase
diagram open where the model parameters are such that the conjectured
exponent in (4.1.1) stays (d− 1)/d.

In particular, the paper [151] also considers long-range percolation (LRP)
[4, 216] (see Theorem 6.1.3 below for the result), and leaves open a region
of the phase diagram of cluster-size decay. This missing region for LRP is
the main focus in this chapter.

Definition 6.1.1 (Long-range percolation (LRP)). Fix constants d ∈N,α > 1,
p ∈ (0, 1), and β > 0. We consider the random graph G∞ = (V(G∞),E(G∞))

with V(G∞) = Zd such that each edge {x,y} is included in E(G∞), independently
of all the other edges, with probability

p
(
∥x− y∥

)
:= p ·

(
min

{
1,

β

∥x− y∥d
})α

, (6.1.1)

where ∥ · ∥ := ∥ · ∥2 denotes the (Euclidean) 2-norm throughout this chapter. We
set Λn := Zd ∩ [−n−1/d/2,n1/d/2)d and En := {{x,y} ∈ E∞ : {x,y} ⊆ Λn},
and write Gn := (Λn,En) for the induced subgraph of G∞ on Λn. We write
C(0) and Cn(0) for the connected component containing the origin in G∞ and
Gn, respectively.

221
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Throughout the chapter we assume that the parameters are such that the
graph is supercritical, i.e.,

P
(
|C(0)| = ∞) > 0,

implying that there exists a unique infinite component almost surely [4,
96]. We write C

(i)
n for the i-th largest component in Gn, and for n = ∞,

C
(1)∞ for the unique infinite component in G∞. We will also assume that

min{p,pβα} < 1, so that the graph is not connected almost surely. We state
our main result.

Theorem 6.1.2 (Second-largest component and cluster-size decay). Consider
supercritical long-range percolation on Zd for d ⩾ 2 and α > 1+ 1/d. If β in
(6.1.1) is sufficiently large (depending on p,α,d), or if β ⩾ 1 and p is sufficiently
close to 1, then there exist constants A, δ > 0 such that for all n sufficiently large,

P
(
1
A(log(n))d/(d−1) ⩽ |C(2)

n | ⩽ A(log(n))d/(d−1)
)
⩾ 1−n−δ.

Under the same assumptions, for all k sufficiently large, whenever n = ∞ or
n(log(n))−2d/(d−1) ⩾ k,

−k−(d−1)/d log
(
P
(
|Cn(0)| ⩾ k, 0 /∈ C(1)

n

))
∈ [1/A,A]. (6.1.2)

Lastly, under the same assumptions,

|C
(1)
n |

n

P−→ P
(
|C(0)| = ∞), as n→∞. (6.1.3)

Note that (6.1.2) allows for n = ∞. Our results can be extended to hold
when β < 1 and pβα are sufficiently close to one. In Remark 6.1 we discuss
a further generalisation. Theorem 6.1.2 complements the result of [151]
applied to long-range percolation that we state here for completeness.

Theorem 6.1.3 (Complementary result for α < 1+ 1/d [151]). Consider
supercritical long-range percolation on Zd for d ⩾ 1 and α < 1+ 1/d. There
exists constants A, δ > 0 such that for all ε > 0 and n sufficiently large,

P
(
1
A(log(n))1/(2−α) ⩽ |C(2)

n | ⩽ A(log(n))1/(2−α−ε)
)
⩾ 1−n−δ. (6.1.4)

Moreover, for all k sufficiently large, whenever n ∈ [Ak,∞],

−k−(2−α) log
(
P
(
|Cn(0)| ⩾ k, 0 /∈ C(1)

n

))
∈ [1/A,Akε]. (6.1.5)

Lastly, under the same assumptions,

|C
(1)
n |

n

P−→ P
(
|C(0)| = ∞), as n→∞.
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In Theorem 6.1.3 we do not require β or p sufficiently large, and also
allow one-dimensional models: when d = 1, LRP is supercritical when
α ⩽ 2 = 1+ 1/d and when p, β are sufficiently large [86, 216]. When d = 1

and α > 2, LRP is subcritical for any p,β > 0 such that p(1) < 1 [216], so
Theorems 6.1.2 and 6.1.3 together give a complete picture for the cluster-
size decay for supercritical long-range percolation (under the additional
assumption that β or p is sufficiently large when α > 1+ 1/d). In [151],
we also study the phase boundary α = (d− 1)/d. In that case the lower
bounds (6.1.4) and (6.1.5) contain lower order correction factors, that we
conjecture to be sharp. We omit further details here. To the extent of our
knowledge, for LRP, the only related results regarding the distribution
of smaller clusters in supercritical LRP is an upper bound on the second-
largest component with unidentified exponent by Crawford and Sly [58]
for α ∈ (1, 2) in dimension 1 and α ∈ (1, 1+ 2/d) in dimensions 2 and
higher. For (sub)critical LRP with α ∈ (1, 2), a polynomial upper bound on
P(|C(0)| ⩾ n) is established in [138].

Before proceeding to the technical contributions, we remark that our
results could be generalised to a more general class of random graph
models on Zd. Theorem 6.1.2 extends to random graph models on Zd with
independent edges for any connectivity function that has a lighter tail than
p in Theorem 6.1.2, provided that the probability of ‘short-range’ edges is
still sufficiently large. In particular, it extends to spread-out percolation, in
which two vertices within distance R are connected independently with
probability p, or long-range percolation models in which the connection
probability decays subpolynomially. We refrain from proving the result in
this generality, since it would require many technically involved changes
in the already technical Chapter 5.

Remark. Consider the percolation model on Zd where each pair of vertices
x,y ∈ Zd is connected by an edge with probability p(∥x− y∥) for some
function p : [0,∞) → [0, 1), independently of other vertex pairs. Let
J : [0,∞)→ [0, 1) be a function that satisfies supr>0 J(r) < 1, and∫

x:x∈Rd
∥x∥J(∥x∥) <∞. (6.1.6)

Then we have the following two cases:

1) If the connectivity function p is of the form

p(∥x∥) = J(∥x∥/β),
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and there is an ε > 0 such that J(x) > ε whenever x < ε, then
(6.1.2)–(6.1.3) hold for all sufficiently large β depending on ε.

2) If the connectivity function is of the form

p(∥x∥) =

 p if ∥x∥ = 1,
J(∥x∥) if ∥x∥ > 1,

then (6.1.2)–(6.1.3) hold for all p sufficiently close to 1.

The integral in the condition (6.1.6) represents the order of the expected
number of edges {x,y} for which the line-segment (x,y) crosses a fixed
box of volume one. If this number is finite, Theorem 6.1.2 holds in more
generality. The connectivity function p from Definition 6.1.1 satisfies the
integrability condition (6.1.6) if and only if α > 1+ 1/d. We conjecture that
the upper bounds in (6.1.2)–(6.1.2) remain valid if (6.1.6) is violated (but no
longer match the lower bounds). However, this would require a different
proof technique.

We state a proposition that contains the main technical contribution of
this paper. Together with statements from Chapter 5, where we establish
the relation between the second-largest component and the cluster-size
decay for spatial random graph models more generally, this proposition
will readily imply Theorem 6.1.2.

Proposition 6.1.4 (Second-largest component, upper bound). Consider
supercritical long-range percolation on Zd for α > 1+ 1/d, d ⩾ 2. If β in (5.1.3)
is sufficiently large (depending on p,α,d), or if β ⩾ 1 and p is sufficiently close
to 1, then there exists a constant A > 0 such that for all k sufficiently large and
for all n satisfying n(log(n))−2d/(d−1) ⩾ k:

P
(
|C(2)
n | ⩾ k

)
⩽ n log(n) exp

(
− k(d−1)/d

)
.

We believe that Proposition 6.1.4, and hence Theorem 6.1.2, should
hold for any values of β,p that lead to a supercritical graph: however,
this would require non-trivial adaptations of our proof techniques. This
proposition also can be extended to β < 1 such that pβα is sufficiently
close to 1.

6.1.1 Idea of proof

The proof of Proposition 6.1.4 relies on a careful first-moment analysis
in which we count all possible candidates of isolated components of size
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at least k. The starting point is the classic isoperimetric inequality that
says that any set S of at least k vertices has an edge-boundary of size
|∂S| = Ω(k(d−1)/d). These edges need to be absent when S is a connected
component (or simply component below), i.e., detached from the rest of
the graph. The combinatorial difficulty arises when we account for all
possible candidate components S: the structure of S is more complex than
for nearest-neighbour bond percolation in Zd, since S can be “delocalized”
in space. The second difficulty arises in the finite box Λn ⊆ Zd, where
we need to take boundary effects into account caused by possibly shared
boundary of ∂S and ∂Λn.

To resolve these two complications, we distinguish two types of compo-
nents: the first type consists of several “blocks” connected by long edges:
each block is a connected subset of Zd (with respect to nearest-neighbour
relation in Zd). We consider each possible combination of blocks with
fixed total outer edge-boundary size m, and give an upper bound on the
probability that these blocks form a connected component by counting all
possible spanning trees on these blocks. We show that the combinatorial
factor arising from counting all potential components with boundary m
is at most exponential in m. We then use the large value of β or p in our
favor to prove that the probability that such a component is formed and
isolated is sufficiently small.

The second type of potential component S contains a large block that
has a large overlap with the boundary of Λn, and consequently |∂S| inside
Λn may be small. In this case we enumerate all such blocks and use an
adapted isoperimetric inequality to still ensure that many edges need to
be absent, thereby showing the right error probability.

Organization

In Section 6.2, we derive an intermediate upper bound for P
(
|C

(2)
n | ⩾

k
)
, defining the two types of components formally. Then, we state two

lemmata and show that they imply Proposition 6.1.4. We prove the two
lemmata in separate sections. In the last section we use the result of
Proposition 6.1.4 to prove Theorem 6.1.2.

Notation

For A ⊆ VH, we write H[A] for the induced subgraph of H on vertices in
A. Denote by Zd∞ the graph on the vertex set Zd and an edge between
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x,y ∈ Zd if and only if ∥x−y∥∞ = 1. Similarly, let Zd1 be the graph on the
vertex set Zd and an edge between x,y ∈ Zd if and only if ∥x− y∥1 = 1.
As already mentioned, we write ∥ · ∥ := ∥ · ∥2. For two sets A,B ⊆ Zd,
denote by ∥A− B∥p = min{∥x− y∥p | x ∈ A,y ∈ B}. We say that a path
π = (v1, v2, v3, . . . ) is self-avoiding if its vertices are all distinct.

6.2 preliminaries and setup

Throughout the rest of the paper, we assume that d ⩾ 2, α > 1+ 1/d, and
n1/d ∈ N. We will now formalise the concepts from the proof outline
in Section 6.1.1 that eventually lead to two lemmas for each of the two
described types of components. To ensure that the upcoming definitions
naturally follow each other, we will postpone the (sometimes standard)
proofs of intermediate claims to the appendix. We start with a definition to
describe sets of Λn that form (subsets of) the second-largest component.

Definition 6.2.1 (Connected sets and blocks). We call a set A ⊆ Zd of
vertices 1-connected or a block, if the graph Zd1 [A] consists of a single
connected component. We similarly define A being ∗-connected if the graph
Zd∞[A] consists of a single connected component. We write

A :=
{
A ⊆ Λn | A is 1-connected

}
,

A∗ :=
{
A ⊆ Λn | A is ∗-connected

}
.

(6.2.1)

We say that a sequence of sets A1,A2, . . . ⊆ Zd is 1-disconnected if ∥Ai −
Aj∥1 > 1 for all i ̸= j. We say that a set A ⊆ Λn consists of blocks A1, . . . ,Ab
if Ai is a blocks for 1 ⩽ i ⩽ b, if the sequence (Ai)i⩽b is 1-disconnected,
and their union equals A.

We say that a vertex x is surrounded by A ∈ A if each infinite 1-connected
self-avoiding path starting from x contains a vertex of A. We define for
A ∈ A its closure Ā as

Ā = A∪ {x ∈ Zd : x surrounded by A}. (6.2.2)

We call the maximal 1-connected subsets of Ā \A the holes of A, and write
HA for the collection of holes.

We make a few comments. The closures of blocks will be used for the
first type of components described in Section 6.1.1. Take now a block
A ⊆ Λn. Then x can only be surrounded by A if x ∈ Λn too, hence
A ⊆ Λn implies that Ā ⊆ Λn.
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Due to the presence of long-range edges, a component in long-range
percolation may consist of multiple 1-disconnected blocks (some of them
possibly consisting of a single vertex). We define the notion of a block
graph.

Definition 6.2.2 (Block graph). Let A1, . . . ,Ab ∈ A be a sequence of
blocks, and consider a graph G on vertices VG ⊇ ∪i⩽bAi. The block graph
HG((Ai)i⩽b) = (VHG

,EHG
) of G on blocks A1, . . . ,Ab is defined as

VHG
:= {1, . . . ,b}, EHG

:=
{
{i, j} : Ai ↔G Aj

}
.

In words, the vertices of each block are contracted to a single vertex in
the block-graph, and two corresponding vertices for the blocks i and j
are connected in the block graph if and only if there exists an edge in the
original graph G between (some vertices in) the two blocks. We continue
with a simple claims, with proof in the appendix on page 261.

Claim 6.2.3 (Unique block-decomposition of components). Let C be a finite
component of a graph G with vertex set either Λn or Zd. Then C can be uniquely
decomposed into a 1-disconnected sequence (Ai)i⩽b of blocks, with b < ∞, so
that he block graph HG((Ai)i⩽b) is connected.

Later, we will enumerate subsets S ⊆ Λn of vertices that potentially form
a component of LRP in Λn. To ensure that a subset is isolated from the
rest of the graph, there must be no edges from S to its "surrounding" inside
Λn. This motivates the following definition of boundaries with respect to
Λn.

Definition 6.2.4 (Boundaries). Let A ⊆ Λn. We define the exterior boundary
of A with respect to Λn and Zd, respectively, as

∂extA := {x ∈ Λn : ∥x−A∥1 = 1},
∂̃extA := {x ∈ Zd : ∥x−A∥1 = 1}.

(6.2.3)

We define the interior boundary ofAwith respect toΛn and Zd, respectively,
as

∂intA := {x ∈ A : ∥x− ∂extA∥1 = 1},
∂̃intA := {x ∈ A : ∥x− ∂̃extA∥1 = 1}.

(6.2.4)

If, in words, we mention the exterior, interior, or outer boundary of A then
– unless explicitly specified differently – we mean with respect to Λn.
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We mention that ∂̃intΛn is the ‘usual’ vertex boundary of Λn. The
boundary ∂̃extA may contain vertices outside Λn, and will be useful in
the enumeration of subsets forming isolated components below. It may
happen that a block A contains (many) vertices of ∂̃intΛn. On such regions,
A may not have external boundary vertices, implying that there ∂intA

is also empty. The next claim contains basic properties of blocks, their
closures, and their boundaries, with proof in the Appendix on page 262.

Claim 6.2.5 (Blocks, their closures and their boundaries). The following four
statements hold:

(i) For any block B, ∂̃intB̄ ⊆ ∂̃intB.

(ii) Let B1,B2 be 1-disconnected blocks such that B̄1 ∩ B̄2 ̸= ∅. Then either
B̄1 ⊆ B̄2 or B̄2 ⊆ B̄1.

(iii) Let B1,B2 be 1-disconnected blocks such that B̄1 ∩ B̄2 = ∅. Then B̄1, B̄2
are also 1-disconnected from each other.

(iv) For any block B, ∂̃intB̄ and ∂̃extB̄ are ∗-connected.

(v) For any hole H of a block B, we have that H = H̄, so ∂intH and ∂extH are
∗-connected.

We point out that the fourth statement of the preceding claim is [76,
Lemma 2.1]. The next claim shows that the sizes of the boundaries with
respect to Λn and Zd are of the same order, provided that the set is
smaller than 3n/4. Moreover, it contains an isoperimetric inequality that we
extensively use below. The proof is given in the appendix on page 263.

Claim 6.2.6 (Boundary bounds and isoperimetry). There exists δ > 0 such
that for all A ⊆ Λn with |A| ⩽ 3n/4 or A∩ ∂̃intΛn = ∅,

|∂intA| ⩾ δ|∂̃intA|
(⋆)

⩾ δ|A|(d−1)/d,

|∂extA| ⩾ δ|∂̃extA|
(⋆)

⩾ δ|A|(d−1)/d.
(6.2.5)

The inequalities with (⋆) hold for any A ⊆ Λn without conditions on A.

The next lemma is due to Peierls (its proof is given in the appendix on
page 266) and is crucial for the enumeration of blocks that satisfy A = Ā.

Lemma 6.2.7 (Peierls’ argument). There exists a constant cpei > 0 such that
for all x ∈ Zd and m ∈N,

|{A ∈ A : A ∋ x,A = Ā, |∂̃intA| = m}| ⩽ exp(cpeim). (6.2.6)
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We remark that the proof relies on the fact that ∂̃intA is ∗-connected [76,
Lemma 2.1] (which would not hold if A contained holes, or may not hold
if one replaces ∂̃intA by ∂intA).

In (6.2.5), we would like to replace ∂intA by ∂intĀ from (6.2.2) (enumera-
tion of sets that are equal to their closure would allow us to use Peierls’
argument). However, then the isoperimetric inequality (6.2.5) may not hold
anymore if the total boundary size of the holes in A is too large compared
to ∂intĀ, which could happen if |Ā| > 3n/4. We define two types of blocks,
based on the size of the closures of the blocks (that is, whether Claim 6.2.6
applies to Ā or not), i.e.,

Asmall := {A ∈ A : |Ā| ⩽ 3n/4, and Ā = A},

Alarge :=
{
A ∈ A : |Ā| > 3n/4, and |A| ⩽ n/2

}
.

(6.2.7)

For each of the sets we define an event, i.e.,

E1(b) :=

∃ 1-disconn. (Ai)i⩽b ∈ Asmall

∣∣∣∣∣∣∣
(∪i∂̃intAi) ̸↔Gn (Λn\∪iAi),

|∪iAi| ⩾ k,

HGn((Ai)i⩽b) connected

 ,

(6.2.8)

E2 := {∃A ∈ Alarge : A ̸↔Gn ∂extA}. (6.2.9)

The following deterministic claim holds for any graph on vertices in Λn.
It shows that the union of these events contains the event {|C(2)

n | ⩾ k}. In
particular, the proof reveals why we could restrict to sets with A = Ā in
the definition of Asmall in (6.2.7).

Claim 6.2.8. Consider the graph Gn from Definition 6.1.1, with C
(2)
n the second

largest component of Gn. Then

{
|C(2)
n | ⩾ k

}
⊆ E2 ∪

( ⌊n/2⌋⋃
b=1

E1(b)
)

.

Proof of Claim 6.2.8. Clearly
{
|C

(2)
n | ⩾ k

}
⊆ {∃ a component C of Gn : |C| ∈

[k, ⌊n/2⌋]}. The size restriction n/2 is needed since otherwise C
(2)
n would

be the largest component. Take any such C. We use Claim 6.2.3 to first
uniquely decompose C into 1-disconnected (hence disjoint) blocks A1, . . .,
Ab for some b ⩾ 1. Since k ⩽ |C| ⩽ n/2, |Ai| ⩽ n/2 also holds for all i ⩽ b,
and also b ⩽ n/2, and

∑
i⩽b |Ai| ⩾ k.

We distinguish two cases. Either (1) there is at least one block that is in
Alarge or (2) all the blocks are in A \Alarge. In the first case the event E2
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in (6.2.9) holds: the block of C satisfying Alarge (say A1) is per definition
1-disconnected from the other blocks of C, and since C is a component of
Gn, A1 is Gn-disconnected from its exterior boundary, hence E2 holds for
A := A1 in (6.2.9).

In case (2) all the blocks (Ai)i⩽b are in A \Alarge, and, since they form
the component C, the graph Gn spanned on ∪i⩽bAi is connected, while
their union is disconnected in Gn from the rest of the graph. Finally their
disjointness and |C| ∈ [k,n/2] ensures that |∪i⩽bAi| ∈ [k,n/2]. Formally
we describe this event as (changing the sets to be denoted by Bi to avoid
clash of notation later):

Ẽ1(b) :=

∃1-disconn.(Bi)i⩽b∈A\Alarge

∣∣∣∣∣∣∣
Gn[∪i⩽bBi] connected,

|∪i⩽bBi| ∈ [k,n/2],

(∪i⩽bBi) ̸↔Gn (Λn\∪i⩽bBi)

 .

Taking a union over the number of blocks and combining the two cases,
we arrive at{

|C(2)
n | ⩾ k

}
⊆ {∃ a component C of Gn : |C| ∈ [k,n/2]} ⊆ E2 ∪

(
∪⌊n/2⌋b=1 Ẽ1(b)

)
.

We will show that
⌊n/2⌋⋃
b=1

Ẽ1(b) ⊆
⌊n/2⌋⋃
b ′=1

E1(b
′). (6.2.10)

Take now any 1-disconnected blocks (B1, . . . ,Bb) for which Ẽ1(b) holds.
The conditions of Claim 6.2.5 are satisfied for any pair Bi,Bj with i ̸= j,
hence for each pair, B̄i and B̄j are either 1−disconnected disjoint sets, or
one contains fully the other one. Choose now those sets in {B̄1, . . . , B̄b}
that are not contained in any other set in the same list. We then obtain an
integer b ′ ⩽ b and a 1-disconnected subset {B̄i1 , . . . , B̄ib ′ } ⊆ {B̄1, . . . , B̄b}
such that

b⋃
i=1

Bi ⊆
b⋃
i=1

B̄i =

b ′⋃
j=1

B̄ij . (6.2.11)

Let B1, . . . ,Bb in A \ Alarge be an arbitrary sequence of 1-disconnected
blocks satisfying Ẽ1(b), and assume without loss of generality that the
indices i1, . . . , ib ′ correspond to indices 1, . . . ,b ′, and we may thus as-
sume that the sets B̄1, . . . , B̄b ′ satisfy (6.2.11). Since (B̄1, . . . , B̄b ′) is a 1-
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disconnected sequence of blocks that are equal to their own closure, (6.2.10)
follows if

{Gn[∪i⩽bBi] connected} ⊆ {HGn((B̄i)i⩽b ′) connected}, (6.2.12)

{|∪i⩽b Bi| ∈ [k,n/2]} ⊆ {|∪i⩽b B̄i| ⩾ k}, (6.2.13)

{(∪i⩽bBi) ̸↔Gn (Λn \∪i⩽bB̄i)} ⊆ {(∪i⩽b ′ ∂̃intB̄i) ̸↔Gn (Λn \∪i⩽b ′B̄i)},
(6.2.14)

since then all conditions for E1(b ′) defined in (6.2.8) are satisfied by setting
Ai = B̄i for all i ⩽ b ′.

For the first inclusion (6.2.12) we observe that{
Gn[∪i⩽bBi] connected

}
⊆

{
HGn((Bi)i⩽b) connected

}
⊆

{
HGn((B̄i)i⩽b ′) connected

}
,

since the left-hand side was assumed in Ẽ1(b), the block graph being
connected is a less demanding event than the actual spanned graph being
connected, and the second containment follows since each set of edges
in Gn that ensures that HGn((Bi)i⩽b) is connected, also ensures that the
block graph on the closures of (Bi)i⩽b is connected.

The second inclusion (6.2.13) is trivial since ∪i⩽bBi ⊆ ∪i⩽b ′B̄i by
(6.2.11). For the third inclusion (6.2.14) we have to argue that the set
of edges that is excluded on the right-hand side is smaller than the
set of excluded edges on the left-hand side. Clearly (Λn \ ∪i⩽bBi) ⊇
(Λn \∪i⩽b ′B̄i), and by part (i) in Claim 6.2.5 it follows that ∂intB̄i ⊆ Bi.

We state two lemmas that together with Claim 6.2.8 prove Proposition
6.1.4.

Lemma 6.2.9 (Unlikely block graphs). Let Gn be long-range percolation on
Λn as in Definition 6.1.1 with d ⩾ 2, α > 1+ 1/d. There exists a constant
c6.2.9 > 0, such that for all p ∈ (0, 1), there exists β⋆ = β⋆(p,d,α) > 0 such
that for all β ⩾ β⋆, and k,n sufficiently large,

P

( ⌊n/2⌋⋃
b=1

E1(b)

)
⩽ n log(n) exp

(
− c6.2.9 log

(
1
1−p

)
β1/dk(d−1)/d

)
.

(6.2.15)
Moreover, there exists pd < 1 such that β⋆ ⩽ 1 for all p ∈ (pd, 1).

Lemma 6.2.10 (No large isolated component). Let Gn be long-range percola-
tion onΛn as in Definition 6.1.1 with d ⩾ 2, α > 1+1/d. There exists a constant
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c6.2.10 > 0 such that for all p ∈ (0, 1), there exists β⋆ = β⋆(p,d,α) > 0 so that
for all β ⩾ β⋆, and n sufficiently large

P
(
E2
)
⩽ exp

(
− c6.2.10 log

(
1
1−p

)
β(d−1)/d2 n

(d−1)/d

log2(n)

)
. (6.2.16)

Moreover, there exists pd < 1 such that β⋆ ⩽ 1 for all p ∈ (pd, 1).

We prove the two lemmata in the following sections.

6.3 spanning trees on block graphs

We work towards proving Lemma 6.2.9. Recall the event E1(b) from (6.2.8),
and Asmall for the blocks of Λn without holes and closure of size at most
3n/4 from (6.2.7) on which there should be a connected block graph
HGn((Ai)i⩽b) (see Definition 6.2.2). By a union bound over all possible
1-disconnected sequences of blocks (A1, . . . ,Ab) ⊆ Asmall whose total size
is at least k, we obtain

P
(
E1(b)

)
⩽
1

b!

∑
A1

· · ·
∑
Ab

P

(
HGn((Ai)i⩽b) is connected,

(∪i⩽b∂̃intAi) ̸↔Gn (Λn\∪i⩽bAi)

)
,

where the factor 1/b! corrects for the permutations of (A1, . . . ,Ab) yielding
the same blocks, but ordered differently. Using the independence of edges
in long-range percolation in Definition 6.1.1, we obtain

P
(
E1(b)

)
⩽
1

b!

∑
A1

· · ·
∑
Ab

P
(
HGn((Ai)i⩽b) is connected

)
·P
(
(∪i⩽b∂̃intAi) ̸↔Gn (Λn\∪i⩽bAi)

)
.

(6.3.1)

The block graph HGn((Ai)i⩽b) can only be connected if it contains a
spanning tree on its blocks. To count these spanning trees, we introduce
the rooted labeled f-tree. In the following definition, we use that each tree on
b vertices has b− 1 edges.

Definition 6.3.1 (f-tree). Let Fb be the set of vectors f = (f1, . . . , fb) ∈Nb
0

satisfying
∑
i∈[b] fi = b− 1, f1 + . . .+ fj ⩾ j for all j ∈ [b− 1]. We call

f the vector of forward degrees. A rooted labeled tree on b vertices is an
f-tree if the root has label 1, and it has an outgoing edge to each of the
vertices with labels 2, . . . , f1 + 1, vertex 2 has an outgoing edge to each
of the vertices with labels f1 + 2, . . . , f1 + f2 + 1, and so on, the vertex
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with label j has an outgoing edge to each of the vertices with labels
2+

∑j−1
i=1 fi, . . . , 1+

∑j
i=1 fi. If (i, j) is a directed edge in an f-tree, then

we say that i is the parent of j and j is the child of i. We say that the
labeled block graph HGn((Ai)i⩽b) is f-connected, if it contains an f-tree on
its vertices (1, 2, . . . ,b).

Given a forward-degree vector f and a labeled set of vertices, the f-tree
is uniquely determined. The construction ensures that the block with
label b must be a leaf, i.e., it has forward degree fb = 0, and its parent
corresponds to the label of the last nonzero entry of f. Further, given a tree
T with labeling f ∈ Fb, upon removing the leaf with label b, we obtain a
tree T \ {b} on {1, . . . ,b− 1} with a labeling in Fb−1.

Further, an f-tree always has vertex 1 as its root, and the forward
neighbours of any vertex have consecutive labels. Hence, not all the
b! labelings of a tree T are valid labelings, i.e., no vector f ∈ Fb can
be associated to some labelings. However, for a fixed tree T on a con-
nected block graph HGn((Ai)i⩽b), there is at least one permutation σ of
(1, 2, . . . ,b) with σ(1) = 1 and a vector f ∈ Fb such that HGn((Aσ(i))i⩽b)

is f-connected. In other words, we can relabel the blocks so that the new
labeling (1,σ(2), . . . σ(b)) is a proper labeling of T , for some f ∈ Fb in
Definition 6.3.1. We denote the set of permutations of (1, 2, . . . ,b) with 1 a
fixed point by S1b. Note that the choice of the spanning tree T may not be
unique if HGn((Ai)i) is connected. We obtain on the first factor inside the
sum in (6.3.1) that

P
(
HGn((Ai)i⩽b) connected

)
= P

( ⋃
f∈Fb

⋃
σ∈S1b

{
HGn((Aσ(i))i⩽b) is f-connected

})
. (6.3.2)

If, for a given (f,σ) the block graph is HGn((Aσ(i))i⩽b) is f-connected,
then there are

∏
i fi! other pairs (f ′,σ ′) such that HGn((Aσ ′(i))i⩽b) is

f ′-connected, counting the isomorphisms of rooted trees: namely, the
(consecutive) labels of the forward neighbours of any vertex v may be
permuted (yielding the factor fv! for each vertex), resulting in permuting
the labels in the forward-subtrees of v accordingly. For any such (f,σ) and
(f ′,σ ′), we then also have that

∏b
i=1 fi! =

∏b
i=1 f

′
i!. Hence, in the above
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union each rooted tree T (with root fixed) on HGn((Aσ ′(i))i⩽b) is counted∏
i=1 fi! times. Thus, we obtain from (6.3.2) that

P
(
HGn((Ai)i⩽b) connected

)
⩽

∑
f∈Fb

( b∏
i=1

1

fi!

) ∑
σ∈S1b

P
(
HGn((Aσ(i))i⩽b) is f-connected

)
.

We substitute this into (6.3.1), and use that the second factor inside the
sum in (6.3.1) is invariant under label permutations. So we arrive at

P
(
E1(b)

)
⩽
1

b

∑
f∈Fb

( b∏
i=1

1

fi!

)∑
A1

1

(b− 1)!

∑
σ∈S1b

∑
A2

· · ·
∑
Ab(

P
(
HGn((Aσ(i))i⩽b) is f-connected

)
·P
(
(∪i∂̃intAσ(i)) ̸↔Gn (Λn\∪iAσ(i))

))
.

We will now argue that the sum over the permutations and the factor
1/(b − 1)! cancel each other. Given A1, let (B2, . . . ,Bb) be an arbitrary
1-disconnected sequence of 1-connected blocks in Asmall of total size at
least k− |A1| (also 1-disconnected from A1). Then, for any permutation
σ ∈ S1b, in the summations over the blocks A2, . . . ,Ab, there is precisely
one combination of blocks such that Aσ(i) = Bi for all i ⩽ b. Hence,
when summing over all permutations σ ∈ S1b, we counted the case that
the blocks are A1,B2, . . . ,Bb exactly (b− 1)! times. This cancels the factor
1/(b− 1)!, and we arrive at

P
(
E1(b)

)
⩽
1

b

∑
f∈Fb

( b∏
i=1

1

fi!

) ∑
A1,...,Ab

P
(
HGn((Ai)i⩽b) f-connected

)
·P
(
(∪i⩽b∂̃intAi) ̸↔Gn (Λn\∪i⩽bAi)

)
,

where we omitted under the summation of the blocks A1, . . . Ab are 1-
disconnected from each other. Lastly, we prescribe the sizes of the bound-
aries of the blocks. We introduce the possible boundary-length vectors:

Mb(k) :=

{
m = (mi)

b
i=1 ⊆Nb : ∃(Ai)bi=1 ⊆ Asmall

∣∣∣∣∣ |∂̃intAi| = mi,

|∪i⩽b Ai| ⩾ k

}
.

(6.3.3)
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Then,

P
(
E1(b)

)
⩽
1

b

∑
m∈Mb(k)

∑
f∈Fb

( ∏
i∈[b]

1

fi!

) ∑
A1,...,Ab:

|∂̃intAi|=mi

(
(6.3.4)

P
(
HGn((Ai)i) f-conn.

)
·P
(
∪i ∂intAi ̸↔Gn Λn \∪iAi

))
,

where we omitted under the summation that the blocks are 1-disconnected
from each other and in Asmall. In what follows we we omit these descrip-
tions under the sum for readability. The next two statements will imply
Lemma 6.2.9.

Statement 6.3.2 (Counting spanning trees). Let Gn be long-range percolation
on Λn as in Definition 6.1.1 with d ⩾ 2, α > 1+ 1/d. There exists c6.3.2 > 0

such that for all fixed m ∈Mb(1)∑
f∈Fb

( ∏
i∈[b]

1

fi!

) ∑
A1,...,Ab∈Asmall,
|∂̃intAi|=mi ∀i⩽b

P
(
HGn((Ai)i) is f-connected

)

⩽ n exp
(
(c6.3.2 + log(pβα))

∑
i∈[b]

mi

)
.

(6.3.5)

Statement 6.3.3 (Isolation). Let Gn be long-range percolation on Λn as in
Definition 6.1.1 with d ⩾ 2, α > 1+ 1/d. There exists c6.3.3 > 0 such that
for each β ⩾ 1, any m ∈ Mb(1), and any 1-disconnected blocks A1, . . . ,Ab ∈
Asmall with |∂̃intAi| = mi for all i,

P
(
(∪i∂̃intAi) ̸↔Gn (Λn\∪iAi)

)
⩽ exp

(
− c6.3.3 log

(
1
1−p

)
β1/d

∑
i∈[b]

mi

)
.

(6.3.6)

We prove the two statements below and show first that Lemma 6.2.9
follows from them.

Proof of Lemma 6.2.9, assuming Statements 6.3.2 and 6.3.3. We substitute the
bounds from Statements 6.3.2 and 6.3.3 into the right-hand side of (6.3.4)
and obtain

P
(
E1(b)

)
(6.3.7)

⩽
1

b

∑
m∈Mb(k)

n exp
(
−
(
c6.3.3 log

(
1
1−p

)
β1/d − c6.3.2 − log(pβα)

)∑
i∈[b]

mi

)
.
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In what follows, we evaluate the summation over the vectors m ∈Mb(k).
We recall from (6.3.3) that m represents the vector of interior boundary
sizes of 1-connected sets (Ai)i⩽b ∈ Asmall with total size at least k, and
Ai = Āi ⩽ 3n/4 for all i ⩽ b by the definition of Asmall in (6.2.7). In (6.3.3),
the boundary is taken with respect to Zd, i.e., not with respect to Λn.
By the isoperimetric inequality in Claim 6.2.6, for all blocks (Ai)i⩽b it
simultaneously holds that |∂̃intAi| ⩾ |Ai|

(d−1)/d. Since the function g(k) =
k(d−1)/d is concave, we obtain for all m ∈ Mb(k) and any A1, . . . ,Ab ∈
Asmall that

m1 + . . .+mb = |∂̃intA1|+ . . .+ |∂̃intAb|

⩾ |A1|
(d−1)/d + . . .+ |Ab|

(d−1)/d ⩾ k(d−1)/d.

We define the set Mb(k, ℓ) := {m ∈ Mb(k) : m1 + . . . +mb = ℓ}. By
standard estimates (using that each summand is at least one), we bound
|Mb(k, ℓ)| ⩽

(
ℓ+b
b

)
⩽
(
2ℓ
ℓ

)
⩽ 22ℓ ⩽ e2ℓ. Hence, separating the summation

in (6.3.7) according to the possible values of
∑
imi = ℓ ⩾ k(d−1)/d, we

arrive at

P
(
E1(b)

)
(6.3.8)

⩽
1

b

∞∑
ℓ=k(d−1)/d

n exp
(
− ℓ
(
c6.3.3 log

(
1
1−p

)
β1/d − c6.3.2 − log(pβα) − 2

))
.

Since b ⩽ ⌊n/2⌋, we obtain by a union bound over the number of blocks
that

P
(
∪b⩽⌊n/2⌋ E1(b)

)
(6.3.9)

⩽
⌊n/2⌋∑
b=1

1

b

∞∑
ℓ=k(d−1)/d

n exp
(
− ℓ
(
c6.3.3 log

(
1
1−p

)
β1/d − c− log(pβα)

))
.

We investigate the factor after ℓ in the exponent. For fixed p ∈ (0, 1), this
factor is positive whenever β is sufficiently large, depending on p,d,α,
yielding β⋆(p,d,α) in Lemma 6.2.9. Evaluating the geometric summation
yields (6.2.15), where the factor logn comes from the first summation
in (6.3.9). Whenever p is sufficiently close to 1 (larger than pd, for some
dimension-dependent pd < 1), β⋆ = 1 can be also chosen since in this case
the factor log( 1

1−p)β
1/d dominates the term − log(pβα) for all β ⩾ 1, and

the statement holds with β⋆ = 1.
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6.3.1 Proof of Statement 6.3.2

We start with a geometric claim.

Claim 6.3.4. There exists a constant C6.3.4 > 0 such that for each block A ∈
Asmall in Λn and all r ∈N∣∣{(x,y) ∈ Zd ×Zd : x ∈ A,y /∈ A, ∥x− y∥ ∈ (r, r+ 1]

}∣∣ ⩽ C6.3.4r
d|∂̃intA|.

(6.3.10)

Proof. We start counting line-segments of the right length with endpoints
in Zd crossing a single unit square that will be centered later at some
vertex in ∂̃intA.

Let B0 := [−1/2, 1/2]d. For two vertices x,y ∈ Zd, let Lx,y denote the
segment between x and y on the unique line connecting x and y. Define

Cross(r) := {(x,y) ∈ Zd ×Zd : ∥x− y∥2 ∈ (r, r+ 1],Lx,y ∩ B0 ̸= ∅}.

We will show that there exists a constant C6.3.4 > 0 such that

|Cross(r)| ⩽ C6.3.4r
d. (6.3.11)

Indeed, for each pair (x,y) ∈ Cross(r), at least one of the inequalities
∥x∥ ⩾ r/2 and ∥y∥ ⩾ r/2 is satisfied. Without loss of generality we may
assume that ∥x∥ ⩾ r/2, and then also ∥x∥ ⩽ r+ 1. Fix then such a vertex x.
Let Sx denote the smallest spherical cone with apex at x that completely
contains B0. This cone has then radius between ∥x∥+ 1/2 and ∥x∥+

√
d/2.

Let Sx(r) denote a cone with apex x that has the same boundary lines (and
the same angle) as Sx, but radius exactly r. Then, every y ∈ Zd such that
(x,y) ∈ Cross(r) must be contained in Sx(r+ 1) \ Sx(r), since all half-lines
emanating from x that cross B0 are contained in Sx(∞), and ∥x− y∥ ∈
(r, r+ 1]. Since the radius of Sx(r+ 1) is at most by a factor two larger than
the radius of Sx for all r ⩾ 1, by homothety of the cones, |(Sr+1 \ Sr)∩Zd|

is bounded from above by a dimension-dependent constant, and so for
each x with ∥x∥ ∈ [r/2, r + 1], the number of pairs (x,y) ∈ Cross(r) is
bounded from above by a dimension-dependent constant. Summing over
all the at most O(rd) many such x, we obtain (6.3.11) for some C6.3.4 > 0.

To arrive to (6.3.10), the block A ∈ Asmall in (6.2.7) ensures that A = Ā.
Its inner boundary ∂̃intA is then ∗-connected by Claim 6.2.5 Part (iv) ([76,
Lemma 2.1]). This implies that there exists a continuous surface fully
contained in ∂̃intA separating vertices in A \ ∂̃intA from vertices in Λn \A.
Hence, for each pair x ∈ A and y /∈ A, there exists (at least one) vertex
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z ∈ ∂̃intA such that Lx,y intersects the axis-parallel box z+ B0. Here x = z
may occur. The statement of the claim now follows by (6.3.11) when
summing the at most C6.3.4r

d such pairs for each vertex z in the boundary
of A.

We continue with a lemma treating the connectedness of the block
graphs, i.e., the inner summation on the left-hand side of (6.3.5) in State-
ment 6.3.2. We point out that in this lemma we only bound the event that
the block graph HGn is connected, not the event that the actual graph is
connected.

Lemma 6.3.5. Let Gn be long-range percolation on Λn as in Definition 6.1.1
with d ⩾ 2, α > 1+ 1/d. There exists a constant C6.3.5 > 0 such that for all
m ∈Mb(1), f ∈ Fb,∑
A1...,Ab∈Asmall,
|∂̃intAi|=mi ∀i⩽b

P
(
HGn((Ai)i∈[b]) f-conn.

)
⩽ n(C6.3.5pβ

α)b−1
∏
i∈[b]

ecpeimimfii ,

(6.3.12)
where we omitted from the summation that A1, . . . Ab are 1-disconnected from
each other.

We comment that it is this lemma in the proof that crucially uses that
α > 1+ 1/d.

Proof. We will prove the statement by induction on b. We first define the
finite constant, using that α > 1+ 1/d as follows:

C6.3.5 := C6.3.4

∞∑
r=1

r−(α−1)d, (6.3.13)

We start with the initialization. Assume first that b = 1, which corresponds
to a tree on a single vertex (representing the block A1), so its forward
degree f1 = 0. A tree on a single vertex is connected by convention. We
obtain∑
A1∈Asmall:

|∂̃intA1|=m1

P
(
HGn((A1)) f-conn.

)
⩽

∑
x∈Λn

|{A1 ∈ Asmall : A1∋x, |∂̃intA|=m1}|.

Since A = Ā for all A ∈ Asmall by definition in (6.2.7), we can apply Peierls’
argument in Lemma 6.2.7, that yields, since |Λn| = n,∑

A1∈Asmall:

|∂̃intA1|=m1

P
(
HGn((A1))) is f-connected

)
⩽

∑
x∈Λn

ecpeim1 = necpeim1 .
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Since mf11 = m01 = 1, this finishes the induction base for (6.3.12). We now
advance the induction. Assume (6.3.12) holds up to b − 1. Let f ∈ Fb
and consider the summation over Ab ∈ Asmall on the left-hand side in
(6.3.12). By construction of the f-tree in Definition 6.3.1, the b-th block
is a leaf in the f-tree, and fb = 0. Its parent in the f-tree is the largest
vertex-label ℓ in f that is nonzero, and the remaining labeled graph upon
removing b is a tree, with a labeling in Fb−1 (see the comment below
Definition 6.3.1). Then, the forward degrees of this new tree are given by
f ′ := (f1, . . . , fℓ−1, fℓ − 1, fℓ+1, . . . , fb−1) ∈ Fb−1, since the forward degree
of the vertex ℓ decreased by one upon removing the leaf b. With this
notation at hand,

{HGn((Ai)i∈[b]) is f-connected}

= {HGn((Ai)i∈[b−1]) is f ′-connected}∩ {Aℓ ↔Gn Ab}.

Independence of edges in Gn by Definition 6.1.1 yields∑
A1,...,Ab

P
(
HGn((Ai)i∈[b]) f-conn.

)
(6.3.14)

⩽
∑

A1,...,Ab−1

P
(
HGn((Ai)i∈[b−1]) f ′-conn.

)∑
Ab

P
(
Aℓ ↔Gn Ab

)
where in the subscripts of the sums (and also in the remainder of the proof)
we omitted the conditions that the sets have to satisfy: A1, . . . ,Ab ∈ Asmall,
and |∂intAi| = mi for all i ⩽ b.

We focus on the summation over Ab. Here, Ab ∈ Asmall and Ab is 1-
disconnected from Aℓ. We decompose the sum according to the length r
of an edge (x,y) connecting x ∈ Aℓ and y ∈ Ab, and use that ∥x− y∥ > 1
by the 1-disconnectedness of Aℓ,Ab. By the connection probability (5.1.3)
and a union bound, it follows that∑
Ab

P
(
Aℓ ↔Gn Ab

)
⩽

∞∑
r=1

∑
x∈Aℓ,y∈Zd\Aℓ

1{∥x−y∥∈(r,r+1]}

∑
Ab∋y

P
(
x↔Gn y)

⩽ pβα
∞∑
r=1

r−αd
∑

x∈Aℓ,y∈Zd\Aℓ

1{∥x−y∥∈(r,r+1]}

∑
Ab∋y

1.

(6.3.15)
In the last row the sum over y runs over a larger set than the actual
allowed set of vertices: we did not exclude vertices from the other blocks
{A1, . . . ,Aℓ−1,Aℓ+1, . . . ,Ab−1}. Using (6.2.6), we bound the last sum over
Ab from above by exp(cpeimb) . Next, we can apply Claim 6.3.4 to evaluate
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the summation over x ∈ Aℓ,y ∈ Zd \Aℓ, since this sum equals the set
described in (6.3.10) with A = Aℓ. The conditions of the claim are satisfied
since Aℓ = Āℓ by assuming Aℓ ∈ Asmall. Hence,∑

x∈Aℓ,y∈Zd\Aℓ

1{∥x−y∥∈(r,r+1]}

∑
Ab∋y

1 = ecpeimbC6.3.4r
d|∂̃intAℓ|

= ecpeimbC6.3.4r
dmℓ.

Substituting this back into (6.3.15) yields with the constant C6.3.5 from
(6.3.13),

∑
Ab

P
(
Aℓ ↔Gn Ab

)
⩽ pβαmℓecpeimbC6.3.4

∞∑
r=1

r(1−α)d

= C6.3.5pβ
αmℓecpeimb .

We substitute this bound back into (6.3.14), and use the induction hypoth-
esis:∑
A1,...,Ab

P
(
HGn((Ai)i∈[b]) f-conn.

)
⩽ C6.3.5pβ

αmℓecpeimb

∑
A1,...,Ab−1

P
(
HGn((Ai)i∈[b−1]) f ′-conn.

)
⩽ C6.3.5pβ

αmℓecpeimbn(C6.3.5pβ
α)b−2

1

mℓ

∏
i∈[b−1]

ecpeimimfii .

We used that f ′i = fi for all i ̸= ℓ, i ⩽ b− 1, and f ′ℓ = fℓ − 1 by construction,
yielding the 1/mℓ factor. We can rearrange the expression and obtain
(6.3.12), using that fb = 0 (the last block is a leaf). This finishes the
proof.

We are ready to prove Statement 6.3.2.

Proof of Statement 6.3.2. Using Lemma 6.2.9 in (6.3.5) of Statement (6.3.2),
we arrive at∑

f∈Fb

( ∏
i∈[b]

1

fi!

) ∑
A1,...,Ab

P
(
HGn((Ai)i) is f-connected

)
(6.3.16)

⩽ n
∑

f∈Fb

(C6.3.5pβ
α)b−1

∏
i∈[b]

ecpeimimfii
fi!

.
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We first analyse a single summand, i.e., the value for a fixed f ∈ Fb. By
Stirling’s approximation, there exists a constant c > 1 such that fi! ⩾
(fi/e)fi/c. Thus,

n(C6.3.5pβ
α)b−1

∏
i∈[b]

ecpeimimfii
fi!

⩽ n(C6.3.5pβ
α)b−1 exp

(
cpei

∑
i∈[b]

mi

)
cb

∏
i∈[b]

(mi · e
fi

)fi
.

It follows from standard differentiation techniques that for any a, x ⩾ 1,
the function ga(x) = (ae/x)x is maximized at x = a. Maximizing all
factors (mie/fi)fi at fi = mi yields that (mie/fi)fi ⩽ emi for all i ⩽ b.
Since by definition of Fb in Definition 6.3.1, we have f1 + . . .+ fb = b− 1

for all f ∈ Fb, we have

n(C6.3.5pβ
α)b−1

∏
i∈[b]

ecpeimimfii
fi!

⩽ n(C6.3.5pβ
α)b−1 exp

(
(cpei + 1)

∑
i∈[b]

mi

)
cbeb−1

⩽ n exp
((

log(pβα) + 2+ cpei + c
′) ∑
i∈[b]

mi

)
for c ′ = c ′(c,C6.3.5), where to obtain the last row we used that b− 1 ⩽ b ⩽
m1 + . . .+mb by the fact that each block has at least one inner boundary
vertex. Substituting this back into (6.3.16), we obtain with c ′′ := 2+cpei +c

′

n
∑

f∈Fb

(C6.3.5pβ
α)b−1

∏
i∈[b]

ecpeimimfii
fi!

⩽ n exp
(
(c ′′ + log(pβα))

∑
i∈[b]

mi

) ∑
f∈Fb

1.

Using again that f1 + . . .+ fb = b− 1 for all f ∈ Fb, and using the same
combinatorial bounds as for m above (6.3.8), we obtain |Fb| ⩽

(
2b
b

)
⩽

22b ⩽ exp
(
2
∑
i∈[b]mi

)
, finishing the proof with c6.3.2 := c

′′ + 2.

Proof of Statement 6.3.3

We start with a geometric claim. Recall Asmall from (6.2.7), and holes from
Definition 6.2.1.
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Claim 6.3.6. Let (A1, . . . ,Ab) ⊆ A be a 1-disconnected sequence of blocks
without holes (i.e., Ai = Āi for all i ⩽ b), with A := ∪i⩽bAi ⊆ Λn. Then,
(Λn \ A) ∪ (∪i⩽b∂̃intAi) ⊇ ∂̃intΛn. Moreover, (Λn \ A) ∪ (∪i⩽b∂̃intAi) is
∗-connected.

Proof. We first show that that (Λn \A)∪ (∪i⩽b∂̃intAi) ⊇ ∂̃intΛn. When x ∈
(∂̃intΛn \A), then x ∈ Λn \A. The (only) other case is when x ∈ ∂̃intΛn ∩A.
Then there must exist Ai ⊆ Λn such that x ∈ Ai. Since x ∈ ∂̃intΛn and
A ⊆ Λn, it follows from (6.2.3) in Definition 6.2.4 that there is a vertex
y in Zd \ Λn neighbouring x. Since x ∈ Ai ⊆ Λn, we evidently have
y /∈ Ai, hence y ∈ ∂̃extAi. As a result of (6.2.4), x ∈ ∂̃intAi, establishing the
statement.

We turn to prove ∗-connectedness of (Λn \A) ∪ (∪i⩽b∂̃intAi). Using
Claim 6.2.3, we decompose the set Λn\A into a 1-disconnected sequence
of 1-connected blocks (Bj)j⩽b ′ for some b ′ ⩾ 1:

∪j⩽b ′Bj = Λn \A. (6.3.17)

To keep track of indices, for each set ∂̃intAi we associate a vertex ai for
i ⩽ b, and also for each block Bj a vertex tj, for j ⩽ b ′. Define the subsets
Ia ⊆ {a1, . . . ,ab} and It ⊆ {t1, . . . , tb ′} so that for all i ⩽ b, ai ∈ Ia if
and only if ∂̃intAi ∩ ∂̃intΛn ̸= ∅, and for all j ⩽ b ′, tj ∈ It if and only if
Bj ∩ ∂̃intΛn ̸= ∅. In words, these are the vertices corresponding to the sets
that intersect the boundary of Λn.

By the first statement of the claim and (6.3.17), ∂̃intΛn is completely
contained in (∪i⩽b∂̃intAi)∪ (∪j⩽b ′Bj), hence It ∪ Ia is non-empty. Since
the indices of the sets/blocks that have an intersection with ∂̃intΛn are all
collected in Ia and It, respectively, we have

∂̃intΛn ⊆
( ⋃
i:ai∈Ia

∂̃intAi

)
∪
( ⋃
j:tj∈It

Bj

)
=: D. (6.3.18)

Since we assumed that Ai = Āi for all i ⩽ b, Claim 6.2.5(iv) is applicable
and hence ∂̃intAi is ∗-connected for each i ⩽ b. Further, (Bj)j⩽b ′ are blocks,
i.e., 1-connected and also ∗-connected. So, because ∂̃intΛn is 1-connected
in dimensions 2 and higher, it is also ∗-connected, and hence the set D on
the right-hand side of (6.3.18) is also ∗-connected.

We now decompose the set (∪j⩽b ′Bj) ∪ (∪i⩽b∂̃intAi) (using the edges
of graph Zd∞) into ∗-connected components, in other words, sets that are
∗-connected themselves but they are ∗-disconnected from each other. Our
goal is then to show that there is only a single component, namely, the
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one containing vertices of D. Assume now that there exists another ∗-
connected component C of (∪j⩽b ′Bj)∪ (∪i⩽b∂̃intAi) that does not contain
any vertices of D in (6.3.18). Being a component in Zd∞ also means C is
then not ∗-connected to D. By the ∗-connectedness of each set in (Bj)j⩽b ′

and (∂̃intAi)i⩽b, this is only possible if C is a union of some of (Bj)j⩽b ′
and (∂̃intAi)i⩽b. Define then IC ⊂ {a1, . . . ,ab}∪ {t1, . . . t ′b} so that ai ∈ IC
if and only if ∂̃intAi ⊆ C, and similarly tj ∈ IC if and only if Bj ⊆ C. With
formulas

C = (∪i:ai∈IC ∂̃intAi)∪ (∪j:tj∈ICBj) ∗-connected component,

IC ∩ (Ia ∪ It) = ∅,
(6.3.19)

where the second statement is equivalent to C ∩D = ∅. Take now the
closest vertex in ∪j:tj∈ICBj to ∂̃intΛn, i.e., let (with arbitrary tie-breaking
rule)

x⋆ := arg min
x∈Bj: tj∈IC

∥x− ∂̃intΛn∥1, and x⋆ ∈ Bj⋆ with tj⋆ ∈ IC. (6.3.20)

Since tj⋆ ∈ IC, by our assumption in (6.3.19) the block Bj⋆ does not intersect
∂̃intΛn. So

∥x⋆ − ∂̃intΛn∥1 = ∥Bj⋆ − ∂̃intΛn∥1 ⩾ 1. (6.3.21)

Hence, there exists a vertex y⋆ ∈ Λn \Bj⋆ such that ∥y⋆− ∂̃intΛn∥1 = ∥x⋆−
∂̃intΛn∥1 − 1 and ∥x⋆−y⋆∥1= 1. This vertex y⋆ cannot be part of ∪j:tj∈CBj
since x⋆ was minimal, and y⋆ cannot be part of (∪j⩽b ′Bj) \ (∪j:tj∈CBj)
by 1-disconnectedness of the sets (Bj)j⩽b ′ , see above (6.3.17). So, there
exists a block Aℓ such that y⋆ ∈ Aℓ for some ℓ ⩽ b. Then immediately also
y⋆ ∈ ∂̃intAℓ, since x⋆ ∈ Bj⋆ serves as an external boundary vertex for y⋆ in
Aℓ.

We also observe that via the pair (x⋆,y⋆) the block Bj⋆ is 1-connected
(and ∗-connected) to Aℓ. Hence, since we assumed C ⊇ Bj⋆ is a ∗-connected
component, Aℓ ⊆ C, equivalently, aℓ ∈ IC and so by (6.3.19), aℓ /∈ Ia. This
then implies that Aℓ ∩ ∂̃intΛn = ∅ by definition of Ia above (6.3.18). Hence,
∥Aℓ − ∂̃intΛn∥1 ⩾ 1 and in turn ∂̃extAℓ ⊆ Λn. By the same reasoning as
for the existence of x⋆,y⋆ below (6.3.21), we find a vertex y◦ ∈ ∂̃intAℓ that
is closest to ∂̃intΛn within ∂̃intAℓ, and a vertex x◦ ∈ ∂̃extAℓ that is strictly
closer to ∂̃intΛn than y◦, with ∥x◦ − y◦∥1 = 1. We arrive at the sequence
of (in)equalities:

∥x◦ − ∂̃intΛn∥1 + 1 = ∥y◦ − ∂̃intΛn∥1 = ∥∂̃intAℓ − ∂̃intΛn∥1
⩽ ∥y⋆ − ∂̃intΛn∥1
= ∥x⋆ − ∂̃intΛn∥1 − 1,

(6.3.22)
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where the inequality in the middle follows since y⋆ ∈ ∂̃intAℓ by construc-
tion, and the equalities follow by the choices of y◦, x◦ and x⋆,y⋆ below
(6.3.21).

Since y◦ ∈ ∂̃intAℓ, x◦ ∈ ∂̃extAℓ and the sequence of blocks (Ai)i⩽b is
1-disconnected, x◦ is not in (∪i⩽bAi) = A. Hence, x◦ ∈ Λn \A = ∪j⩽b ′Bj,
so there exists some j◦ ⩽ b ′ so that x◦ ∈ Bj◦ .

The block Bj◦ is then 1-connected via the pair (x◦,y◦) to ∂̃intAℓ, which
is itself ∗-connected, and via the pair (x⋆,y⋆) the set ∂̃intAℓ is 1-connected
to Bj⋆ . Hence, Bj◦ ,Aℓ,Bj⋆ are all in the same ∗-connected component C.

However, ∥x◦ − ∂̃intΛn∥1 < ∥x⋆ − ∂̃intΛn∥1 by the inequality (6.3.22),
which contradicts that x⋆ was a vertex in (∪j:tj∈ICBj) that minimized
∥x− ∂̃intΛn∥1. So, the ∗-connected component that contains D in (6.3.18)
contains all blocks ∪j⩽b ′Bj = Λn \A.

Starting from (6.3.20) with reversing the role of the blocks (Bj)j⩽b ′ and
the sets (∂̃intAi)i⩽b, the same reasoning yields that IC ∩ {a1, . . . ,ab} = ∅,
and hence the ∗-connected component that contains D in (6.3.18) contains
also all sets ∪i⩽b∂̃intAi. Together, we conclude thus that ∪i⩽b∂̃intAi ∪
(Λn \A) is ∗-connected.

Proof of Statement 6.3.3. We assume β ⩾ 1. Let A1, . . . ,Ab ∈ Asmall, and
denote A := ∪i⩽bAi. We define the set of potential edges between the
interior boundary of A with respect to Zd and the set of vertices outside
A within distance β1/d as

∆(A) :=
{
{x,y} | x ∈ ∪i⩽b∂̃intAi,y ∈ (Λn \A) : ∥y− x∥ ∈ [1,β1/d]

}
.

Considering the event on the left-hand side of (6.3.6) in Statement 6.3.3, we
would like (∪i⩽b∂̃intAi) to be not Gn-connected to the rest of the graph.
In order to achieve this, in particular, all edges in ∆(A) must be absent.
Hence,

P
(
(∪i⩽b∂̃intAi) ̸↔Gn (Λn \∪i⩽bAi)

)
⩽ (1− p)|∆(A)| (6.3.23)

= exp
(
− log( 1

1−p)|∆(A)|
)

.

Our goal is to show that for some constant c > 0,

|∆(A)| ⩾ cβ1/d
∑
i∈[b]

|∂̃intAi| = cβ
1/d

∑
i∈[b]

mi, (6.3.24)

which then immediately yields (6.3.6) in combination with (6.3.23). In
what follows we estimate |∆(A)|. In order to do so, we will make use of
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the boundary ∂intAi, i.e., the interior boundary with respect to the box
Λn. Using that all blocks in Asmall have size at most 3n/4 by definition
in (6.2.7), the conditions of the isoperimetric inequality in Claim 6.2.6 are
satisfied, and hence δmi ⩽ |∂intAi| ⩽ mi for all i ⩽ b. Hence, (6.3.24)
is equivalent to showing that that there exists c ′ > 0 such that for any
1-disconnected blocks A1, . . . ,Ab ∈ Asmall, with A = ∪i⩽bAi

|∆(A)| ⩾ c ′β1/d
∑
i∈[b]

|∂intAi|, (6.3.25)

since then (6.3.24) holds with c = c ′δ.
In order to show (6.3.25), our goal is to find enough pairs of vertices in

∆(A) around a linear fraction of vertices in ∪i⩽b∂intAi. For this, we claim
that a set T := {(xℓ,yℓ)}ℓ⩾1 with the following properties exists:

(i) xℓ ∈ ∪i∂intAi, yℓ ∈ ∪i∂extAi, and ∥xℓ − yℓ∥ = 1 for all ℓ ⩾ 1;

(ii) each vertex z ∈ Λn appears at most once in a pair in T;

(iii) |T| ⩾
∑
i∈[b] |∂intAi|/(2d).

Note that requirement (i) implies that all (xℓ,yℓ) ∈ T are elements of
Λn ×Λn. We now show that a set T exists. Consider the following greedy
algorithm: order the vertices in ∪i∂intAi in an arbitrary order, to obtain the
list (v1, v2, . . . , vM) with M =

∑
i∈[b] |∂intAi|. Since each vj is in ∪i∂intAi,

for each vj there is at least one vertex yj ∈ ∪i∂extAi ⊆ (Λn \A) with
∥vj − yj∥ = 1 by Definition 6.2.4 (recall that the sets A1, . . . ,Ab are 1-
disconnected). Starting with T1 := {(v1,y1)}, going through the ordering of
(vj)j one-by-one, append the pair (vj,yj) to the list Tj−1, if and only if yj
has not been contained in any pair of Tj−1 yet and so obtain Tj. Set then
T := TM. Since any y ∈ ∪i∂extAi neighbours at most 2d many interior
boundary vertices, adding a certain pair (vj,yj) only affects at most 2d− 1
other indices where a pair may not be added later. Hence,

|T| ⩾
1

2d

∑
i∈[b]

|∂intAi|. (6.3.26)

Next, assume that β1/d ⩾ 2
√
d+ 2 and set R := ⌊(β1/d − 1)/

√
d⌋ ⩾ 1.

Take any pair (xℓ,yℓ) ∈ T. Since ∪i⩽b∂̃intAi ∪ (Λn \A) is ∗-connected by
Lemma 6.3.6, there exists a self-avoiding path

π(xℓ) = (xℓ, z
(xℓ)

1 , . . . , z(xℓ)R ) ⊆ ∪i⩽b∂̃intAi ∪ (Λn \A) (6.3.27)
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(since the set on the right-hand side contains ∂̃intΛn, which has size
Θ(n(d−1)/d), the set on the right-hand side has size at least R for n
sufficiently large, so such a self-avoiding path of length R then exists). By
the triangle inequality,

∥xℓ − z(xℓ)j ∥ ⩽
√
dR ⩽ β1/d, ∥yℓ − z(xℓ)j ∥ ⩽

√
dR+ 1 ⩽ β1/d. (6.3.28)

Define now the type typ(z(xℓ)j ) := xℓ if z(xℓ)j ∈ (Λn \A) and set typ(z(xℓ)j ) :=

yℓ if z(xℓ)j ∈ ∪i⩽b∂̃intAi. Then define the set of (unordered) pairs represent-
ing potential edges in Gn

∆(xℓ,yℓ) :=
{
{z

(xℓ)

1 , typ(z(xℓ)1 )}, . . . , {z(xℓ)R , typ(z(xℓ)R )}
}
⊆ ∆(A). (6.3.29)

The inclusion holds since for each of these pairs, exactly one element is in
Λn \A and the other one is in ∪i⩽b∂̃intAi, and the distance between the
two vertices of each pair is at most β1/d by (6.3.28). We claim that

|∆(A)| ⩾
∣∣∣ ⋃
(xℓ,yℓ)∈T

∆(xℓ,yℓ)
∣∣∣ ⋄⩾ (1/2)

|T|∑
ℓ=1

|∆(xℓ,yℓ)| = |T| · R/2. (6.3.30)

To see the inequality with ⋄, we show that each potential edge {z, z ′} ∈
Λn×Λn appears at most twice in a set in the union in the middle. Consider
{z, z ′} ∈ Λn × Λn. First, assume that there exists ℓ such that (z, z ′) =
(xℓ,yℓ) ∈ T or (z ′, z)=(xℓ,yℓ) ∈ T. Without loss of generality, we assume
that the pair is ordered such that (z, z ′) = (xℓ,yℓ) ∈ T. Then there is no
(xj,yj) ∈ T different from (xℓ,yℓ) such that {z, z ′} ∈ ∆(xj,yj), since each
element in ∆(xj,yj) contains either xj or yj, which are different from xℓ
and from yℓ by requirement (ii) in the construction of T. Moreover, the
element {z, z ′}= {xℓ,yℓ} is contained at most once in the set ∆(xℓ,yℓ), since
the first coordinates in (6.3.29) are all different as they form a self-avoiding
path, and the first coordinates do no not contain xℓ = z by (6.3.27).

Next, assume that (z, z ′), (z ′, z) /∈ T, but {z, z ′} is contained in some
∆(xℓ,yℓ). Then, either z or z ′ must be equal to either xℓ or to yℓ by
(6.3.29). Assume without loss of generality that z ∈ {xℓ,yℓ}, and therefore
z ′ /∈ {xℓ,yℓ}. Thus, {z, z ′} is contained exactly once in ∆(xℓ,yℓ). The only
way that {z, z ′} could be in a set ∆(xℓ ′ ,yℓ ′) for some (xℓ ′ ,yℓ ′) ̸= (xℓ,yℓ),
is when z ′ ∈ {xℓ ′ ,yℓ ′} and (xℓ ′ ,yℓ ′) ∈ T for some ℓ ′ ̸= ℓ. This implies that
the element {z, z ′} can be contained at most twice in a set in the union in
(6.3.30), namely in ∆(xℓ,yℓ) and ∆(xℓ ′ ,yℓ ′), and the inequality ⋄ in (6.3.30)
holds.
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Combining (6.3.30) with (6.3.26), R = ⌊(β1/d − 1)/
√
d⌋, and the assump-

tion that β1/d ⩾ 2
√
d+ 2, (see before (6.3.28)), we arrive at

|∆(A)| ⩾
R

4d

∑
i∈[b]

|∂intAi| =
1

4d

⌊
β1/d − 1√

d

⌋ ∑
i∈[b]

|∂intAi|

⩾
β1/d

8d
√
d

∑
i∈[b]

|∂intAi|,

since whenever x ⩾ 2
√
d+ 2, then ⌊(x− 1)/

√
d⌋ ⩾ x/2

√
d.

This proves (6.3.25) whenever β1/d ⩾ 2
√
d+ 2. For the case 1 ⩽ β1/d ⩽

2
√
d + 2, we use that each vertex on the interior boundary is within

distance one from a vertex on the exterior boundary, hence

|∆(A)| ⩾
∑
i∈[b]

|∂intAi| ⩾
β1/d

2
√
d+ 2

∑
i∈[b]

|∂intAi|,

and so (6.3.25) holds for both cases with c := 1/max{8d
√
d, 2
√
d+ 2}. This

finishes the proof of Statement 6.3.3.

6.4 counting holes

We turn to the proof of Lemma 6.2.10. We set up a few preliminaries about
holes. Recall that A denotes the 1-connected blocks in Λn from (6.2.1),
and that Alarge = {A ∈ A : |Ā| > 3n/4, |A| ⩽ n/2} from (6.2.7). Recall also
from Definition 6.2.1 that the holes HA of a 1-connected set A ∈ A are
the 1-connected subsets of Ā \A. By Definition 6.2.1, each hole H ∈ HA is
surrounded by A. This implies that H does not intersect the boundary of
the box ∂intΛn. Hence, it follows by Definition 6.2.4 of the boundaries that
for all H ∈ HA

∂intH = ∂̃intH ⊆ ∂extA. (6.4.1)

Hence, comparing this to E2 = {∃A ∈ Alarge : A ̸↔Gn ∂extA} from (6.2.9),
we obtain that

P
(
E2
)
⩽ P

(
∃A ∈ Alarge : A ̸↔Gn (∪H∈HA∂intH)

)
. (6.4.2)

The following definition (and claim) of principal holes will ensure that the
total size of the boundaries of the holes of A in (6.4.1) is sufficiently large
compared to the combinatorial factor arising from the number of possible
sets A there.
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Definition 6.4.1 (Principal holes). Let A ⊆ Λn. A hole H ∈ HA has type
i ∈N if 2i−1 < |H| ⩽ 2i. We write HA(i) ⊆ HA for the set of holes of A of
type i. A hole-type i is called principal for a set A if

|HA(i)| = |{H : H ∈ HA(i)}| ⩾ 2
−i−3i−2n =: hn(i). (6.4.3)

Since |HA(i)| is an integer for all i, the inequality |HA(i)| ⩾ ⌈hn(i)⌉ also
holds whenever the inequality in (6.4.3) holds. Hence, we define for i ∈N

Alarge(i) := {A ∈ Alarge : |HA(i)| ⩾ ⌈hn(i)⌉
}

, (6.4.4)

and observe that A may appear in both Alarge(i) and Alarge(j) if both type i
and type j are principal for A. Define the following β-dependent constants

R2 = R2(β) := max
{⌊β1/d√

d

⌋
, 1
}

,

i⋆ = i⋆(β) := 1+
⌈
log2(R2)

⌉
.

(6.4.5)

Claim 6.4.2 (Large blocks have a principal hole-type). For all A ∈ Alarge,
there exists iA ⩽ ⌈log2(n)⌉ such that hole-type i is principal, i.e.,

Alarge ⊆
⋃

i⩽⌈log2(n)⌉

Alarge(i). (6.4.6)

There exists a constant c6.4.3 > 0 such that for all A ⊆ Λn, with iA a principal
hole-type for A, ∑

H∈HA(iA)

|∂intHi| ⩾ c6.4.2 i
−2
A 2−iA/d n. (6.4.7)

Moreover, for each hole H with type i ⩾ i⋆ in (6.4.5),

|∂extH| ⩾ R
(d−1)/d
2 . (6.4.8)

Proof. We argue by contradiction for the first part. By definition of Alarge

in (6.2.7), |Ā| ⩾ 3n/4, and also |A| ⩽ n/2. Hence, the total size of the
holes is at least n/4, i.e., | ∪H∈HA H| =

∑
H∈HA |H| ⩾ n/4 hold. Suppose

(6.4.3) holds in the opposite direction for all i ⩾ 1. Since the holes are
1-disconnected and form together the complement of Ā \A, it follows
from the size requirement in Definition 6.4.1 that∣∣∣ ⋃

H∈HA

H
∣∣∣ = ∑

H∈HA

|H| ⩽
∑
i⩾1

|HA(i)|2
i ⩽

n

8

∑
i⩾1

i−2 < n/4,
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since the sum converges increasingly to π2/6 = 1.64... < 2. This contradicts
the assumption that the total size is at least n/4, so there must be at least
one principal hole-type, say iA. The restriction i ⩽ ⌈log2(n)⌉ follows since
the number of vertices in Λn is n, and H > 2(⌈log2(n)⌉+1)−1 thus can never
be satisfied. This shows (6.4.6).

We turn to (6.4.7). As argued before (6.4.1), holes do not intersect the
boundary of the box ∂intΛn. So, ∂extH = ∂̃extH, and |∂extH| ⩾ |H|(d−1)/d by
Claim 6.2.6 for each hole. Combined with |H| > 2iA−1 for all H ∈ HA(iA)

and the lower bound |HA(iA)| ⩾ 2−iA−3i−2n in (6.4.3), this yields that∑
H∈HA(iA)

|∂intH| ⩾
∑

H∈HA(iA)

|H|(d−1)/d

⩾ 2iA(d−1)/d2(d−1)/d|HA(iA)|

⩾ 2−(d−1)/d2iA(d−1)/d · 2−iA−3i−2A n

⩾ c6.4.2 i
−2
A 2−iA/d n,

for some constant c6.4.2 > 0. Lastly, we prove (6.4.8). Using again that
∂extH ⩾ |H|(d−1)/d for each hole, we obtain for any hole H with type
i ⩾ i⋆,

|∂extH| ⩾ |H|(d−1)/d > 2(i⋆−1)(d−1)/d ⩾
(
2log2(R2)

)(d−1)/d
= R

(d−1)/d
2 .

This finishes the proof of the claim.

We use a union bound on (6.4.6) first in (6.4.2) (with the convention that
the empty sum from 1 to i⋆ is 0). We arrive at

P
(
E2
)
⩽
i⋆−1∑
i=1

P
(
∃A ∈ Alarge(i) : A ̸↔Gn ∪H∈HA∂intH

)
(6.4.9)

+

⌈log2(n)⌉∑
i=i⋆

P
(
∃A ∈ Alarge(i) : A ̸↔Gn ∪H∈HA∂intH

)
. (6.4.10)

We will now bound these two sums, the first one corresponding to small
principal hole types, the second one corresponding to large principal hole
types.

Excluding small principal hole types

We bound the two sums on the right-hand side of (6.4.9) separately and
start with the first one.
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Claim 6.4.3 (Sets with small principal hole-types are unlikely components).
Let Gn be long-range percolation on Λn as in Definition 6.1.1 with d ⩾ 2, α > 1,
and i⋆(β) from (6.4.5). Then there exists c6.4.3 > 0 such that for all β ⩾ 1

Errsmall :=

i⋆−1∑
i=1

P
(
∃A ∈ Alarge(i) : A ̸↔Gn ∪H∈HA∂intH

)
(6.4.11)

⩽ i⋆2
n exp

(
−nc6.4.3

(
log
(
1
1−p

)
β(d−1)/d2/(1+ log2(β

1/d))2
))

.

The claim shows that the probability that large sets with small princi-
pal hole types appear as a component of Gn, decays exponentially in n
whenever β is sufficiently large or p sufficiently close to 1.

Proof. We may assume that i⋆(β) > 0 in (6.4.5), since otherwise the sum
would be empty and the bound holds trivially. We start estimating a single
summand on the left-hand side of (6.4.11). Consider some A ∈ Alarge(i).
By Definition 6.4.1,

hA := |HA| ⩾ |HA(i)| ⩾ hn(i) = 2
−i−3i−2n.

We now find enough potential edges that all must be absent in order for
the event {A ̸↔Gn ∪H∈HA∂intH} in (6.4.11) to occur. By (6.4.7) in Claim
6.4.2, since i is a principal hole-type of A ∈ Alarge(i)

|∪H∈HA ∂intH| =
∑

H∈HA(i)

|∂intH| ⩾ c6.4.2i
−22−i/dn =: ℓi. (6.4.12)

We now obtain a lower bound on |A| using the isoperimetric inequality
of Zd in Claim 6.2.6. By definition of ∂̃intA in Definition 6.2.4, and since
∂̃intA ⊆ ∂̃intĀ by Claim 6.2.5(i), it follows from Claim 6.2.6 applied to Ā
that for all A ∈ Alarge,

|A| ⩾ |∂̃intA| ⩾ |∂̃intĀ| ⩾ |Ā|(d−1)/d ⩾ (3/4)(d−1)/dn(d−1)/d.

Take now a vertex x ∈ ∂intH ⊆ ∂extA and recall R2(β) from (6.4.5). Then,
since |A| diverges with n and A is 1-connected, whenever n is sufficiently
large compared to β,

|{y ∈ A : ∥y− x∥ ⩽ R2(β)}| ⩾ R2(β), ∀x ∈ ∪H∈HA∂intH.

Hence, by (6.4.12),∣∣{{x,y} : x ∈ ∪H∈HA∂intH,y ∈ A : ∥y− x∥ ⩽ R2(β)
}∣∣ ⩾ R2 · |∪H∈HA ∂intH|

⩾ R2ℓi.
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These edges must be all absent in order for {A ̸↔Gn ∪H∈HA∂intH} to occur
for A ∈ Alarge(i) in (6.4.11). Using a union bound and the independence
of edges, we obtain

P
(
∃A ∈ Alarge(i) : A ̸↔Gn ∪H∈HA∂intH

)
⩽

∑
A∈Alarge(i)

P
(
A ̸↔Gn ∪H∈HA∂intH

)
⩽

∑
A∈Alarge(i)

(1− p)R2ℓi ⩽ 2n(1− p)R2ℓi ,

where we used that Alarge(i) counts subsets of Λn, and the number of
subsets of Λn is at most 2n. This bounds a single summand in (6.4.11).
To evaluate the sum, recalling that ℓi = c6.4.2i

−22−i/dn from (6.4.12), we
have

Errsmall ⩽
i⋆(β)−1∑
i=1

2n(1− p)R2ℓi

= 2n
i⋆(β)∑
i=1

exp
(
−n log( 1

1−p)R2c6.4.2i
−22−i/d

)
⩽ i⋆2

n exp
(
−nc6.4.22

−1/d log
(
1
1−p

)
R
(d−1)/d
2 /(log2(R2) + 1)

2
)

,

where for the last inequality we used that for all i ⩽ i⋆ − 1 = ⌈log2(R2)⌉,
we have that 2−i/di−2 ⩾ 2−1/dR

−1/d
2 /(log2(R2) + 1)

2. Recalling that
R2 = max{⌊β1/d/

√
d⌋, 1} from (6.4.5), the statement in (6.4.11) follows

by changing the constant factor in the exponent to obtain c6.4.3.

Excluding large principal holes

We turn to the second sum in (6.4.10).

Claim 6.4.4 (Sets with large principal hole-types are unlikely components).
Let Gn be long-range percolation on Λn as in Definition 6.1.1 with d ⩾ 2, α > 1,
and i⋆(β) from (6.4.5). Then there exists c6.4.3 > 0 such that

Errlarge :=

⌈log2(n)⌉∑
i=i⋆

P
(
∃A ∈ Alarge(i) : A ̸↔Gn ∪H∈HA∂intH

)
⩽ exp

(
− c6.4.4 log

(
1
1−p

)
β(d−1)/d2 log−2(n)n(d−1)/d

)
.

(6.4.13)

when β(d−1)/d2 is sufficiently large or p is sufficiently close to one.
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Proof. Similarly to the small principal hole-types, we will find enough
potential edges that all must be absent in order for the events on the
left-hand-side in (6.4.13) to occur. Take a fixed ordering L of vertices in
Λn so that x1 <L x2 <L · · · <L xn with respect to this ordering (e.g.,
the lexicographic ordering). For a block A ∈ Alarge(i) (which has at least
⌈hn(i)⌉ holes of type i by (6.4.3)), we order its holes HA in such a way
that the holes of type i are H(1)

A , . . . ,H|HA(i)|

A , and that for all r < s ⩽ |HA(i)|

the vertices smallest in the ordering within H(r)

A and H(s)

A – say xr ∈ H(r)

A

and xs ∈ H(s)

A – satisfy xr <L xs. We obtain, when excluding edges from A

towards only its first ⌈hn(i)⌉ holes of type i

P
(
∃A ∈ Alarge(i) : A ̸↔Gn ∪H∈HA∂intH

)
⩽ P

(
∃A ∈ Alarge(i) : A ̸↔Gn ∪j⩽⌈hn(i)⌉∂intH

(j)

A

)
, (6.4.14)

⩽ P
(
∃A ∈ Alarge(i) : ∪j⩽⌈hn(i)⌉∂extH

(j)

A ̸↔Gn ∪j⩽⌈hn(i)⌉∂intH
(j)

A

)
,

(6.4.15)

where to get the second row we only look at edges emanating from A that
are on the exterior boundaries of the holes. This is an upper bound since
∂extH

(j)

A ⊆ A by (6.4.1) for all j ⩽ ⌈hn(i)⌉. If for two blocks A,A ′ ∈ Alarge(i),
the first ⌈hn(i)⌉ holes coincide, also the exterior boundaries of these first
⌈hn(i)⌉ holes coincide, and the event in (6.4.15) excludes the exact same
edges. So, a simple union bound over A in (6.4.15) would overcount the
non-presence of those edges too many times. Instead, we carry out a union
bound over all possible lists of the first ⌈hn(i)⌉ holes. To this end, we
consider for all A ∈ Alarge(i) the following:

D(A) := Λn \ {∪j⩽⌈hn(i)⌉H
(j)

A },

D(i) := {D : ∃A ∈ Alarge(i),D = D(A)}.
(6.4.16)

Since D(A) shares the first ⌈hn(i)⌉ holes with A,

{∪j⩽⌈hn(i)⌉∂extH
(j)

D(A) ̸↔Gn ∪j⩽⌈hn(i)⌉∂intH
(j)

D(A)}

= {∪j⩽⌈hn(i)⌉∂extH
(j)

A ̸↔Gn ∪j⩽⌈hn(i)⌉∂intH
(j)

A

}
.

Hence, in (6.4.15) we can group the blocks in Alarge(i) that all map to the
same D ∈ D(i), and obtain that

P
(
∃A ∈ Alarge(i) : ∪j⩽⌈hn(i)⌉∂extH

(j)

A ̸↔Gn ∪j⩽⌈hn(i)⌉∂intH
(j)

A

)
,

= P
(
∃D ∈ D(i) : ∪j⩽⌈hn(i)⌉∂extH

(j)

D ̸↔Gn ∪j⩽⌈hn(i)⌉∂intH
(j)

D

)
⩽

∑
D∈D(i)

P
(
∪j⩽⌈hn(i)⌉ ∂extH

(j)

D ̸↔Gn ∪j⩽⌈hn(i)⌉∂intH
(j)

D

)
. (6.4.17)



6.4 counting holes 253

We combine the following three observations to bound a single summand
in the last row. First, each vertex x ∈ ∂intH

(j)

D is at distance one from at
least one vertex yx ∈ ∂extH

(j)

D ⊆ D ⊆ Λn (by definition, a hole H(j)

D does
not intersect ∂̃intΛn). Second, for all j ⩽ ⌈hn(i)⌉, |∂extH

(j)

D | ⩾ R(d−1)/d2 by
(6.4.8) and the fact that i ⩾ i⋆. Third, the exterior boundary of a hole
∂extH

(j)

D is ∗-connected by Claim 6.2.5(v).
Hence, for each vertex x ∈ ∂intH

(j)

D , starting from yx ∈ ∂extH
(j)

D , one can
find a ∗-connected set of vertices Bx ⊆ ∂extH

(j)

D that satisfies

|Bx| ⩾ R
(d−1)/d
2 , and ∀z ∈ Bx : ∥x− z∥ ⩽

√
dR

(d−1)/d
2 .

Then, the edges {{x, z} : x ∈ ∂intH
(j)

D , z ∈ Bx} all need to be absent for
the event in (6.4.17) to occur, and the distance bound on ∥x− z∥ ensures,
using (6.1.1) and that R2 = max{β1/d/

√
d, 1} in (6.4.5), that all these edges

are present with probability p whenever β ⩾ 1. Combining then (6.4.14),
(6.4.15) with (6.4.17), it follows by the independence of edges in Gn that

P
(
∃A ∈ Alarge(i) : A ̸↔Gn ∪H∈HA∂intH

)
⩽

∑
D∈D(i)

∏
j⩽⌈hn(i)⌉

(1− p)|∂intH
(j)
D |·R(d−1)/d

2 .

We will now encode the holes of D ∈ D(i) similar to the encoding
of the blocks in Section 6.3. We write xD := (x1, . . . , x⌈hn(i)⌉) for the
vertices with the smallest label in the L-ordering within the respective
holes H(1)

D , . . . ,H⌈hn(i)⌉
D . Let us write Λ⌈hn(i)⌉,<n for the vectors x ∈ Λ⌈hn(i)⌉n

with xr <L xs for all r < s. By the initial ordering of the holes above
(6.4.14), xD ∈ Λ⌈hn(i)⌉,<n . Let then mj := |∂intH

(j)

D | for all j ⩽ ⌈hn(i)⌉, and
write mD := (m1, . . . ,m⌈hn(i)⌉). Define then for all x ∈ Λ⌈hn(i)⌉,<n , and
m ∈N⌈hn(i)⌉:

D(i, x, m) := {D ∈ D(i) : xD = x, mD = m}.

The set D ∈ D(i) has the first ⌈hn(i)⌉ holes of some A ∈ Alarge(i) where
D(A) = D, and for that A, hole-type i was principal in terms of Defi-
nition 6.4.1 and (6.4.4). Definition 6.4.1 readily implies that Claim 6.4.2
is applicable to already the first ⌈hn(i)⌉ many holes of A, and in turn,
D. Hence, the total interior boundary size m :=

∑⌈hn(i)⌉
j=1 mj satisfies

that m ⩾ c6.4.2i
−22−i/dn. So for m ⩾ c6.4.2i

−22−i/dn we introduce the
possible boundary-length vectors with total size m:

Mi(m) :=
{

m ∈N⌈hn(i)⌉ : m1 + . . .+m⌈hn(i)⌉ = m
}

. (6.4.18)
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Returning to (6.4.17), we decompose the summation on the right hand
side as follows:

P
(
∃A ∈ Alarge(i) : A ̸↔Gn ∪H∈HA∂intH

)
(6.4.19)

⩽
∑

m⩾c6.4.2i−22−i/dn

∑
m∈Mi(m)

∑
x∈Λ⌈hn(i)⌉,<

n

∑
D∈D(i,x,m)

(6.4.20)

∏
j⩽⌈hn(i)⌉

(1− p)|∂intH
(j)
D |·R(d−1)/d

2

=
∑

m⩾c6.4.2i−22−i/dn

(1− p)mR
(d−1)/d
2

∑
m∈Mi(m)

∑
x∈Λ⌈hn(i)⌉,<

n

∑
D∈D(i,x,m)

1.

Now we evaluate the number of terms of the last three summations. Each
block D ∈ D(i, x, m) is uniquely characterized by its ⌈hn(i)⌉ holes by
(6.4.16). Having fixed the vectors x and m, we apply Lemma 6.2.7 to each
hole H(j)

D with H(j)

D ∋ xj and |∂intH
(j)

D | = mj to count the size of D(i, x, m).
The lemma is applicable since for each hole H, we have H = H̄ by Claim
6.2.5(v). Hence, there are at most exp(cpeimj) possible holes of interior

boundary size mj containing xj. So, for all x ∈ Λ⌈hn(i)⌉n and m ∈Mi(m),

|D(i, x, m)| ⩽
∏

j⩽⌈hn(i)⌉

exp
(
cpeimj

)
= exp(cpeim).

Moreover, by (6.4.18), m ⩾ ⌈hn(i)⌉, and so |Mi(m)| ⩽
(
m+⌈hn(i)⌉

m

)
⩽

22m ⩽ e2m. Next, since the vertices in x are ordered, there are at most(
n

⌈hn(i)⌉
)

many choices for the vector x ∈ Λ⌈hn(i)⌉,<n . Using these bounds
in (6.4.19) and evaluating the geometric sum in m it follows for some
C > 0 that

P
(
∃A ∈ Alarge(i) : A ̸↔Gn ∪H∈HA∂intH

)
(6.4.21)

⩽

(
n

⌈hn(i)⌉

) ∑
m⩾c6.4.2i−22−i/dn

(1− p)mR
(d−1)/d
2 exp

(
(cpei + 2)m

)
⩽C

(
n

⌈hn(i)⌉

)
exp

((
cpei + 2− log

(
1
1−p

)
R
(d−1)/d
2

)
c6.4.2i

−22−i/dn
)

,

whenever (1− p)R
(d−1)/d
2 ecpei+2 < 1 (see R2(β) in (6.4.5)). We recall from

(6.4.3) that hn(i) = 2−i−3i−2n, and using
(
n
h

)
⩽ (e ·n/h)h it follows(

n

⌈hn(i)⌉

)
⩽ (e2i+3i2)i

−22−i−3n+1

⩽ exp
(
(i+ 4+ 2 log(i))

(
i−22−i−3n+ 1

))
, (6.4.22)
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where we also used that 2 < e to obtain the right-hand-side. Using
this bound in the right-hand side of (6.4.21), we may compare the ex-
ponents. Let i◦ be the smallest i ∈ N such that for all n ⩾ 1 and all
i ∈ [i◦, ⌈log2(n)⌉],

(i+ 4+ 2 log(i))(i−22−i−3n+ 1) < c6.4.2i
−22−i/dn.

Then for i ⩾ i◦,

P
(
∃A ∈ Alarge(i) : A ̸↔Gn ∪H∈HA∂intH

)
⩽ C exp

((
cpei + 3− log

(
1
1−p

)
R
(d−1)/d
2

)
c6.4.2i

−22−i/dn
)

.
(6.4.23)

Using that i◦ is a constant that only depends on d, (comparing the coeffi-
cients of c6.4.2n in (6.4.21) to (6.4.22)) we require that R(d−1)/d2 log

(
1
1−p

)
is large enough so that for all i ⩽ i◦,

(cpei + 2)i
−22−i/d + (i+ 4+ 2 log(i))

(
i−22−i−3 + 1

)
/c6.4.2

⩽ 1
2R

(d−1)/d
2 log

(
1
1−p

)
i−22−i/d.

In this case we obtain that for all i ⩽ i◦

P
(
∃A ∈ Alarge(i) : A ̸↔Gn ∪H∈HA∂intH

)
⩽ C exp

(
− 1
2 log

(
1
1−p

)
R
(d−1)/d
2 c6.4.2i

−22−i/dn
)
.

(6.4.24)

We recall that R2 = Θ(β1/d) from (6.4.5), so by combining (6.4.23) and
(6.4.24) it follows for some c ′ > 0 that, whenever β(d−1)/d2 log

(
1
1−p

)
is

sufficiently large,

P
(
∃A ∈ Alarge(i) : ∂intA ̸↔Gn ∪H∈HA(i)∂intH

)
⩽ C exp

(
− c ′ log

(
1
1−p

)
β(d−1)/d2i−22−i/dn

)
.

We apply this bound to all summands in (6.4.13), use that the terms
are increasing in i, that the last term is i = ⌈log2(n)⌉ (so 2−i/di−2n ⩾
2−1/d(log2(n) + 1)

−2n(d−1)/d for all i), and obtain for some c6.4.4 > 0

and n sufficiently large

⌈log2(n)⌉∑
i=i⋆+1

P
(
∃A ∈ Alarge(i) : ∂intA ̸↔Gn ∪H∈HA(i)∂intH

)
⩽ exp

(
− c6.4.4 log

(
1
1−p

)
β(d−1)/d2(log(n))−2n(d−1)/d

)
.

This finishes the proof of Lemma 6.2.10.
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We are ready to give the final proofs of the section.

Proof of Lemma 6.2.10. We recall the bound (6.4.9) – (6.4.10) on the proba-
bility on the event E2 = {∃A ∈ Alarge : A ̸↔Gn (∪H∈HA∂intH)}, splitting
it into two sums: one sum (6.4.9) for small principal holes, and one sum
(6.4.10) for large principal holes. As an immediate corollary of Claims 6.4.3
and 6.4.4, we obtain for the constant i⋆ from (6.4.5) that

P
(
E2
)
⩽ i⋆2

n exp
(
−nc6.4.3

(
log
(
1
1−p

)
β(d−1)/d2/(1+ log2(β

1/d))2
))

+ exp
(
−
n(d−1)/d

log−2(n)
c6.4.4 log

(
1
1−p

)
β(d−1)/d2

)
.

If log
(
1
1−p

)
β(d−1)/d2 is sufficiently large, the first term decays exponen-

tially in n. Under this assumption, the second term on the right-hand
side dominates the expression. The existence of β⋆(p,d,α) the follows
for fixed p immediately. Similarly, whenever p is sufficiently close to 1,
then log

(
1
1−p

)
β(d−1)/d2 is already sufficiently large for β = 1, and hence

β⋆(p,d,α) = 1 can be set in this interval, finishing the proof of the final
statement.

Proof of Proposition 6.1.4. The proof is immediate from Claim 6.2.8 and
Lemmata 6.2.9 and 6.2.10. The condition n(logn)−2d/(d−1) ⩾ k implies
that k(d−1)/d ⩽ n(d−1)/d/(logn)2, so that the error bound from (6.2.15)
dominates the error bound from (6.2.16). The coefficient of −k(d−1)/d

in the exponent can be made at least 1 by choosing either β sufficiently
large or p sufficiently close to 1 and β ⩾ 1 so that the total coefficient
c6.2.9 log( 1

1−p)β
1/d + c6.2.10 log( 1

1−p)β
(d−1)/d2 > 1 holds.

6.5 proof of theorem 6 .1 .2

We will verify the statements in Theorem 6.1.2, based on Proposition 6.1.4.

Upper bounds

The upper bound on the second-largest component in (6.1.2) follows im-
mediately from Proposition 6.1.4, by substituting k = A(log(n))d/(d−1)

for some large constant A = A(δ). For the upper bound on the cluster-size
decay and the lower bounds, we recall two statements from Chapter 5

which considers a more general class of percolation models where vertices
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have associated vertex marks. The model long-range percolation in Def-
inition 6.1.1 hence forms a subclass of the model in Chapter 5 in which
the vertex set is Zd and all the vertex marks are identical to 1. Due to this,
conditions that regard vertices with high vertex-marks in Chapter 5 are
automatically satisfied for the long-range percolation model in Definition
6.1.1. We rephrase Proposition 5.5.1 to the setting of long-range percolation
of Definition 6.1.1 by setting all vertex marks identical to 1 in Chapter 5.

Proposition 6.5.1 (Prerequisites for the upper bound). Consider supercritical
long-range percolation with parameters α > 1, and d ∈N. Assume that there ex-
ist ζ, c, c ′ > 0 and a function g(k) = O(k1+c

′
) such that for all n, k sufficiently

large, whenever n ⩾ g(k), it holds that

P
(
|C(2)
n | ⩾ k

)
⩽ nc

′
exp

(
− ckζ

)
, (6.5.1)

P
(
|C(1)
n | ⩽ nc

)
⩽ n−1−c. (6.5.2)

Then there exists a constant A > 0 such that for all n,k, sufficiently large such
that g(k) ⩽ n ⩽∞

P
(
|Cn(0)| ⩾ k, 0 /∈ C(1)

n

)
⩽ exp

(
− (1/A)kζ

)
,

and
|C

(1)
n |

n

P−→ P
(
|C(0)| = ∞), as n→∞.

We have just proved the prerequisite (6.5.1) for our case in Proposition
6.1.4 with ζ = (d− 1)/d, c = 1 and c ′ = 2. The other prerequisite (6.5.2) is
a consequence of the following lemma ((6.5.3) below in particular). The
second statement of the lemma, (6.5.4) will be needed for the lower bound
of Theorem 6.1.2 shortly.

Lemma 6.5.2. Consider long-range percolation in Definition 6.1.1 with α > 1
and d ⩾ 2. For all p ∈ (0, 1), there exists β⋆ = β⋆(p,d,α) > 0 such that for all
β ⩾ β⋆ there exists ρ > 0 such that for n sufficiently large

P
(
|C(1)
n | ⩾ ρn

)
⩾ 1− exp

(
− ρn(d−1)/d

)
, (6.5.3)

P
(
|Cn(0)| ⩾ ρn

)
⩾ ρ. (6.5.4)

For each d ⩾ 2, there exists pd < 1 such that β⋆ ⩽ 1 for all p ∈ (pd, 1).

Proof. We start with showing (6.5.3). If p is sufficiently close to one, then
we can do the following. Taking Gn as a realization of LRP in Λn, and
retaining only the edges of Gn that are between nearest neighbor vertices



258 the nearest-neighbour regime

in Zd1 , we obtain the classical iid nearest-neighbor Bernoulli percolation
in Λn. Denote this graph by G(nn)

n and its largest component by C
(1)
n (G(nn)

n ).
Then since E(G(nn)

n ) ⊆ E(Gn), for the sizes of the largest components it
holds that |C(1)

n | ⩾ |C
(1)
n (G(nn)

n )|. Since p is sufficiently close to 1, the surface
order large devation result of [76, Theorem 1.1] applies to C

(1)
n (G(nn)

n ), and
(6.5.3) immediately follows.

Assume now that p is not sufficiently close to 1 for the nearest-neighbor
subgraph to ensure the required result. Let

m(n) :=

⌈
n1/d

β1/d/(2
√
d)

⌉d
. (6.5.5)

Partition Λn into m(n) identical boxes Q1,Q2,Qm(n), each of sidelength
r(n) = n1/d/m(n)1/d ⩽ β1/d/(2

√
d). Denote ni := |Zd ∩Qi| the number

of vertices in box Qi. Then, for n large enough, for all i ⩽ m(n) it holds
that ni ∈ [C(β), 4C(β)], where for all n sufficiently large

C(β) := Vol(Q1)/2 = r(n)d/2 ∈
[

β

4(2
√
d)d

,
β

2(2
√
d)d

]
. (6.5.6)

Let us say thatQi,Qj are adjacent boxes if they share a (d−1)-dimensional
face. Since the diameter of each box is at most β1/d/2, by (5.1.3), if Qi,Qj
are adjacent boxes,

P ({x,y} ∈ E(Gn)) = p for all x ∈ Qi ∩Zd,y ∈ Qj ∩Zd, (6.5.7)

independently of other edges. The same is true when x,y ∈ Qi ∩Zd both.
Let us denote the subgraph of Gn induced by the vertices in the box Qi

by Gn(Qi). Gn(Qi) then stochastically dominates an Erdős-Rényi random
graph with ni ∈ [C(β), 4C(β)] vertices and edge probability p. Since p is
constant, for any fixed ε > 0, by choosing β (and hence also C(β)) large
enough depending on ε, the probability that Gn(Qi) is connected is at
least 1− ε by [35]. Further, the graphs (Gn(Qi))i⩽m(n) are independent
since they are induced subgraphs of long-range percolation on vertices in
disjoint boxes, and edges are present independently in Gn by Definition
6.1.1.

We define an auxiliary graph G. First we define the vertex set. Every box
Qi corresponds to a vertex vi, for each i ⩽ m(n), and two vertices vi, vj
in G are adjacent if the corresponding boxes Qi,Qj are adjacent, i.e., they
share a (d− 1)-dimensional face. Similarly, one can define the 1-distance
between any two vertices vi, vj by the length of the shortest path between
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vi, vj via adjacent vertices. Hence, the vertices of G then form a box Λ̃m(n)

of volume m(n) of Zd1 . This we call the re-normalised lattice.
Now we define the edge-set of G. We declare a vertex vi of G active

when Gn(Qi) is connected. Edges of G will be only present between active
(and adjacent) vertices. Assuming that two vertices vi, vj ∈ G are adjacent
and both active, we declare the edge between v1 and v2 open, equivalently,
present in E(G), if there exist vertices x ∈ Qi ∩Zd,y ∈ Qj ∩Zd with
the edge {u, v} ∈ E(Gn). Conditional on vi, vj being active, by (6.5.7),
the nearest-neighbor edge between v1 and v2 is open with probability
1− (1− p)ninj ⩾ 1− (1− p)C(β)2 ⩾ 1− ε, where the last inequality holds
for arbitrarily small ε > 0 by making C = C(β) in (6.5.6) large enough.
Different edges of E(G) are present conditionally independently given that
the end-vertices are active.

Let us denote by H the induced graph obtained from G on active vertices
and open edges E(G). By the observation above, the vertices (vi)i⩽m(n)

form a box Λ̃m(n) of volume m(n) of Zd1 . Then H stochastically dominates
a site-bond percolation of Z1d in Λ̃m(n).

More precisely, since vertices of G are active independently with proba-
bility at least 1− ε, and edges of G between adjacent vertices are present
conditionally independently again with probability at least 1− ε, each
edge in the renormalised lattice Λ̃m(n) is open with probability at least
(1− ε)3. The model is 1-dependent, since the state of any edge {vi, vj} of
H depends only on edges sharing at least one vertex with {vi, vj}.

Since ε can be chosen arbitrarily small, by [176, Theorem 0.0], the graph
H therefore stochastically dominates iid nearest-neighbor bond percolation
G⋆ on Λ̃m(n) with parameter p⋆ that can also be made arbitrarily close
to 1. Hence for the sizes of the largest connected components |C

(1)
n (H)| ⩾

|C
(1)
n (G⋆)| holds. Thus, [76, Theorem 1.1] applies to |C

(1)
n (G⋆)|, and so for

some c(β) > 0 we obtain that using (6.5.5)

P
(
|C(1)
n (H)| ⩾ ρm(n)

)
⩾ e−cm(n)(d−1)/d ⩾ 1− e−c(β)n

(d−1)/d
(6.5.8)

Since in each box Qi that an active vi ∈ G corresponds to contains at least
C(β) vertices and the graphs G(Qi) are connected, it holds deterministi-
cally that |C(1)

n (Gn)| ⩾ C(β)|C
(1)
n (H)|. This, combined with (6.5.8) implies

(6.5.3).
We turn now to prove (6.5.4). Consider a smaller box Λ2−dn. Define then

Zℓ :=
∑

x∈Λ
2−dn

1{|C2−dn(x)|⩾ℓ}
.
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We argue that {C(1)
n ⩾ ℓ} ⊆ {Zℓ ⩾ ℓ}. Indeed, if the largest component is at

least of size ℓ then in Zℓ at least ℓ many indicators are 1. Then applying
a Markov’s inequality with ℓ = ρ2−dn followed by a union bound yields
that

P(C(1)
n ⩾ ρ2

−dn) ⩽ P(Zρ2−dn ⩾ ρ2
−dn)

⩽
E[Zρ2−dn]

ρ2−dn
⩽

1

ρ2−dn

∑
x∈Λ

2−dn

P
(
|C2−dn(x)| ⩾ ρ2

−dn
)
.

If for all x ∈ Λ2−dn it would hold that P
(
|C2−dn(x)| ⩾ ρ2

−dn
)
⩽ ρ/2, then

the right hand side would be at most 1/2. This would then contradict
(6.5.3) for 2−dn in place of n.

Hence, there must exist x ∈ Λ2−dn such that P
(
|C2−dn(x)| ⩾ ρ2

−dn
)
⩾

ρ/2. Let x ∈ Λ2−dn be such a vertex. Then, by the translation invariance
of the infinite model G∞, looking at the component of the origin C

(−x)

2−dn
(0)

inside the box Λ2−dn(−x), it holds that

P
(
|C

(−x)

2−dn
(0)| ⩾ ρ2−dn

)
= P

(
|C2−dn(x)| ⩾ ρ2

−dn
)
.

However, the shifted box Λ2−dn(−x) ⊆ Λn for any x ∈ Λ2−dn, and hence
C

(−x)

2−dn
(0) ⊆ Cn(0). Hence, we obtain

P
(
|Cn(0)| ⩾ ρ2

−dn
)
⩾ P

(
|C2−dn(x)| ⩾ ρ2

−dn
)
⩾ ρ/2.

Hence, (6.5.4) follows by adapting the constant ρ.

Since both prerequisites of Proposition 6.5.1 are satisfied, this finishes
the proof of the upper bounds of Theorem 6.1.2.

Lower bounds

For the lower bound we adapt the lower bound from Chapter 5, rephrased
to the model of long-range percolation of Definition 6.1.1, by setting the
vertex set to Zd and all vertex marks to 1. Proposition 5.6.1 –the lower
bound of cluster-size decay and second-largest component– requires that
in a box of volume ℓ a linear sized (at least ρℓ) giant component on vertices
with marks in the interval [1, polylog(ℓ)] exists, with probability at least
ρ > 0. Since in long-range percolation all vertex marks are identical to 1,
this requirement (5.6.3) turns into the requirement (6.5.9) below.
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Proposition 6.5.3 (Prerequisites for the lower bound). Consider supercritical
long-range percolation with parameters α > 1+ 1/d, d ⩾ 2, and assume that
min{p,pβα} ∈ (0, 1). Assume that there exists a constant ρ > 0 such that for all
n sufficiently large,

P
(
|Cn(0)| ⩾ ρn

)
⩾ ρ. (6.5.9)

Then there exists A > 0 such that for all n ∈ [Ak,∞],

P
(
|Cn(0)| ⩾ k, 0 /∈ C(1)

n

)
⩾ exp

(
−Ak(d−1)/d

)
. (6.5.10)

Moreover, there exists δ, ε > 0, such that for all (finite) n sufficiently large

P
(
|C(2)
n | ⩽ ε(log(n))d/(d−1)

)
⩽ n−δ. (6.5.11)

Since Lemma 6.5.2 has just proved in (6.5.4) the requirement (6.5.9),
and in Theorem 6.1.2 we have also assumed that min{p,pβα} < 1, the
lower bounds in Theorem 6.1.2 follow from Proposition 6.5.3, in particular,
(6.5.11) implies the lower bound in (6.1.2), and after taking logarithm of
both sides, (6.5.10) implies the lower bound in (6.1.2).

6.a proofs of preliminary claims

Proof of Claim 6.2.3. Identify a path on Zd1 with its vertex set. We define
an equivalence class ∼C,1 on the vertices of C, where x ∼C,1 y if and only if
there is a 1-connected path π consisting of vertices of C that connects x and
y (i.e., the edges of this path are not necessarily part of the edges of G). We
then define the blocks A1,A2, . . . ,Ab as the equivalence classes of ∼C,1. In
other words, start from any vertex x ∈ C and define its block as all vertices
that x is 1-connected to using paths only vertices of C (but the edges of
Zd1 ), and then we iterate this over all x ∈ C, yielding the (different) blocks
A1,A2, . . . ,Ab.

Each Ai is 1-connected since every pair of vertices in Ai is connected
by a 1-connected path by the definition of ∼C,1, i.e., Ai is a block. Further,
if i ̸= j then ∥Ai −Aj∥1 > 1 must hold, since otherwise there would be
a 1-connected path from some x ∈ Ai to some y ∈ Aj, and that would
contradict x ̸∼C,1 y. Uniqueness of this decomposition follows because ∼C,1

is an equivalence relation.
We show that the block graph HG((Ai)i⩽b) is connected. Suppose

otherwise. This means that there is a subset of blocks whose union is
not connected to the union of all the other blocks (w.l.o.g. we may as-
sume that for the first k blocks for some k ∈ [1,b− 1] this happens, i.e.,
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(∪i⩽kAi) ̸↔G (∪i>kAi). However, this contradicts that C is a component
of G.

Proof of Claim 6.2.5. We show that ∂̃intB̄ ⊆ ∂̃intB. We argue by contradiction.
Assume that there exists x ∈ ∂̃intB̄ \ ∂̃intB. Since ∂̃intB̄ ⊆ B̄ = B∪ (∪H∈HBH)
and B is disjoint from B̄ \ B, there are two cases. Either x ∈ B \ ∂̃intB or
x ∈ (∪H∈HB H) \ ∂̃intB.

For the first case assume that x ∈ B \ ∂̃intB. Then all its Zd1 -neighbouring
vertices were also in B by Definition 6.2.4 of the interior boundary. Thus x
is surrounded by B, and hence x ∈ B̄. Similarly, the neighbouring vertices
are also in B̄, contradicting that x ∈ ∂̃intB̄.

For the second case assume that x ∈ (∪H∈HBH). Then x was surrounded
by B, but then also all its Zd1 -neighbouring vertices were either a member
of B or surrounded by B, contradicting again that x ∈ ∂̃intB̄.

We move on to part (ii). Assume that B̄1 ∩ B̄2 ̸= ∅, then there exists x ∈
B̄1 ∩ B̄2. Since B1 and B2 are Zd1 -disconnected, it is excluded that x ∈ B1 ∩
B2. Assume x ∈ (B̄2 \ B2) ∩ B1. Since x is surrounded by B2, any vertex
y ∈ B1 must be surrounded by B2, since ∥B1−B2∥1 ⩾ 2 and B1 itself is Zd1 -
connected. Hence, B̄1 ⊆ B̄2. The argument for x ∈ (B̄1 \B1)∩B2 follows
analogously. Lastly, assume that there exists x ∈ (B̄1 \B1)∩ (B̄2 \B2). Then
there exists, for some j ⩾ 1, a path π = (x, x1, . . . , xj) on Zd1 such that
xj ∈ ∂intB1 ∪ ∂intB2 and xℓ ∈ (B̄1 \B1)∩ (B̄2 \B2) for all ℓ ⩽ j− 1. Assume
w.l.o.g. that xj ∈ ∂intB1. Since there were no vertices from B2 on the path
and x is surrounded by B2, it must follow that also xj is surrounded by
B2. Similar to the previous case, it follows that B̄1 ⊆ B̄2.

Part (iii) claims that when B̄1 ∩ B̄2 = ∅, and initially B1,B2 are 1-
disconnected, then ∥B̄1 − B̄2∥1 ⩾ 2. By definition of the distance ∥ · ∥1
between sets, we have

∥B̄1 − B̄2∥1 = min
x1∈B̄1\B1,x2∈B̄2\B2

{
∥B1 −B2∥1,

∥x1 −B2∥1, ∥B1 − x2∥1,

∥x1 − x2∥1
}

.

(6.A.1)

Each 1-connected path from xi ∈ B̄i \Bi to any y /∈ B̄i must cross a vertex
in ∂̃intB̄i. Consequently,

∥x1 −B2∥1 ⩾ ∥x1 − ∂̃intB̄1∥1 + ∥∂̃intB̄1 −B2∥1
⩾ ∥x1 − ∂̃intB̄1∥1 + ∥∂̃intB1 −B2∥1 ⩾ 2,

where the second inequality follows since ∂̃intB̄1 ⊆ ∂̃intB1 by part (i), and
the third inequality since by 1-disconnectedness of B1 and B2 the second
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term on the right-hand side is at least two. The third and fourth term in
the minimum in (6.A.1) can be bounded similarly. It follows that B̄1 and
B̄2 are 1-disconnected.

The fourth statement is immediate from [76, Lemma 2.1] which states
that the interior and exterior boundaries with respect to Zd of any ∗-
connected set are ∗-connected as well.

We turn to the last statement, and show that for any hole H of a block B,
H = H̄, i.e., that H does not contain holes. This is true since H was formed
as a maximal 1-connected subset of the vertices in Λn \B surrounded by
B, see below (6.2.2) in Definition 6.2.1. So if there were a hole J inside H,
then J must be part of B, which would then contradict the 1-connectedness
of B, since ∥J − ∂extH∥ ⩾ 2 as H fully surrounds J. The fact that the
interior and exterior boundaries of a hole are ∗-connected follows now
from Part (iv).

Proof of Claim 6.2.6. The proof is inspired by an argument by Deuschel
and Pisztora [76, Proof of (A.3)]. The inequalities with (⋆) in (6.2.5) follow
by standard isoperimetric inequalities, but we will also derive them below.

We will first show the bounds for ∂int and ∂̃int. At the end of the proof
we adjust it to ∂ext and ∂̃ext. We start by showing that there exists δ ′ > 0
such that ∂intA ⩾ δ ′∂̃intA for all A ⊆ Λn of size at most 3n/4. Fix such a
set A ⊆ Λn. We recall an inequality related to the isoperimetric inequality
by Loomis and Whitney [178, Theorem 2]. For a set A ⊆ Λn, let Si
denote the projection of A onto the i-th coordinate hyperplane. That is,
for a vertex with coordinates x = (x1, . . . , xi−1, xi, xi+1, . . . , xd) we define
πix := (x1, . . . , xi−1, 0, xi+1, . . . , xd). Then

|A|d−1 ⩽
∏
i∈[d]

|Si|. (6.A.2)

Let i⋆ be the dimension that contains the largest projected set Si⋆ (ties
broken arbitrarily), so that as a result of (6.A.2),

|Si⋆ | ⩾ |A|(d−1)/d. (6.A.3)

We abbreviate S = Si⋆ , and write π⋆ for the the i⋆-th projection. For s ∈ S
we define the preimage of s as

π↑⋆ := {y ∈ A : π⋆(y) = s}

We now call a vertex s ∈ S a fiber if there is no vertex in ∂intA that projects
to s via π⋆. Formally we define the fibers of S as

F := {s ∈ S : ∄y ∈ ∂intA with π⋆(y) = s}. (6.A.4)
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The pre-image of any fiber vertex does not contain any vertex of ∂intA

within Λn, hence, it contains a full length-n1/d line Ls connecting the two
opposite faces of Λn, with π⋆(Ls) = s. This is because all vertices that
share all coordinates with s except the i⋆th coordinate, project to s via π⋆,
so A must contain all of them (the possibility of A containing none of Ls is
excluded by assuming s ∈ S), otherwise there would be a boundary vertex
of A among them. Then the pre-image of any such fiber vertex intersects
the box-boundary ∂̃intΛn in exactly 2 vertices:

|π↑⋆(s)∩ ∂̃intΛn| = |π↑⋆(s)∩ ∂̃intA| = 2, ∀s ∈ F.

The pre-image of vertices in F does not contribute to ∂intA by their
definition in (6.A.4). By the same definition, the pre-image of each vertex
z ∈ S \ F contains at least one vertex in ∂intA. A similar argument as the
one for fibers shows that the pre-image of each vertex z ∈ S \ F contains at
least two vertices in ∂̃intA. Formally

|π↑⋆(z)∩ ∂intA| ⩾ 1 and |π↑⋆(z)∩ ∂̃intA| ⩾ 2 ∀z ∈ S \ F.

The difference between the above two intersections is the number of
vertices that A∩Ls ∩ ∂̃intΛn contains. We obtain

|π↑⋆(z)∩ ∂̃intA|− |π↑⋆(z)∩ ∂intA| ⩽ 2 ∀z ∈ S \ F.

We characterise z ∈ S \ F according to this difference. For i ∈ {0, 1, 2} we
define

(S \ F)i :=
{
z ∈ S \ F : |π↑⋆(z)∩ ∂̃intA|− |π↑⋆(z)∩ ∂intA| = i

}
.

Then

|∂̃intA| =
∑
s∈F

|π↑⋆(s)∩ ∂̃intA|+
∑

i∈{0,1,2}

∑
z∈(S\F)i

|π↑⋆(z)∩ ∂̃intA|

= 2|F|+
∑

i∈{0,1,2}

∑
z∈(S\F)i

|π↑⋆(z)∩ ∂̃intA|

= 2|F|+
∑

i∈{0,1,2}

∑
z∈(S\F)i

(|π↑⋆(z)∩ ∂intA|+ i).

Now we consider the ratio of the boundaries, i.e.,

|∂intA|

|∂̃intA|

=

∑
i∈{0,1,2}

∑
z∈(S\F)i |π

↑
⋆(z)∩ ∂intA|

2|F|+ |(S \ F)1|+ 2|(S \ F)2|+
∑
i∈{0,1,2}

∑
z∈(S\F)i |π

↑
⋆(z)∩ ∂intA|

.
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Taking the set sizes |(S \ F)i|, |F| fixed, it is elementary to see that the ratio
is increasing in the summands of the double sum, i.e., its minimal value is
attained when all summands are minimal. Now we use that each of the
summands is at least 1, and obtain

|∂intA|

|∂̃intA|
⩾

|S \ F|

2|F|+ |(S \ F)1|+ 2|(S \ F)2|+ |S \ F|
.

We bound the denominator from above, i.e.,

|F|+ |S \ F|+ |F|+ |(S \ F)1|+ |(S \ F)2|+ |(S \ F)2| ⩽ 3|S|,

to obtain
|∂intA|

|∂̃intA|
⩾

|S \ F|

3|S|
.

We focus on the ratio on the right-hand side. For each vertex s ∈ F, there
are n1/d-many vertices in A that are projected onto it (namely Ls). Using
also |S| ⩾ |A|(d−1)/d by (6.A.3) and n ⩾ (4/3)|A|, we get

|A| ⩾ |F|n1/d =
|F|

|S|
|S|n1/d ⩾

|F|

|S|
|A|(d−1)/dn1/d ⩾ (4/3)1/d

|F|

|S|
|A|.

After rearranging we obtain |F| ⩽ (3/4)1/d|S|, and

|∂intA| ⩾
(
1− (3/4)1/d

)
|∂̃intA|/3

follows. The second inequality in (6.2.5) follows immediately from (6.A.3),
since each projected vertex corresponds to at least two boundary vertices
with respect to Zd, i.e., |∂̃intA| ⩾ 2|S| ⩾ 2|A|(d−1)/d.

We turn to the inequality concerning ∂extA and ∂̃extA in (6.2.5). The
inequality with (⋆) in (6.2.5) holds for the same reason as for ∂intA. To
obtain a lower bound on the ratio |∂extA|/|∂̃extA|, we use that each exterior
boundary vertex is within distance one from an interior boundary vertex,
which holds for both for ∂ and ∂̃. Since each vertex has at most 2d vertices
within distance one, it follows that

|∂extA| ⩾
1

2d
· |∂intA| ⩾

1

2d
· 1− (3/4)1/d

3
· |∂̃intA|

⩾
1

2d
· 1− (3/4)1/d

3
· 1
2d
· |∂̃extA|,

and the proof is finished for δ = (2d)−2
(
1− (3/4)1/d

)
/3.
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Proof of Lemma 6.2.7. We first show that there exists c ′pei > 0 such that for
all x ∈ Zd and m ∈N

|{A ⊆ Λn : A ∋ x, |A| = m,A is ∗-connected}| ⩽ exp(c ′peim). (6.A.5)

Let A be in the set on the left-hand side. Since A is ∗-connected, the
induced subgraph Zd∞[A] contains a spanning tree containing x, which
can be associated to a walk on the spanning tree (for example, walking
through the tree in depth-first order), visiting each vertex in A at most
twice. Since the degree of any vertex is 3d − 1 in Zd∞, the walk has at most
3d − 1 options at each step for its next vertex, and has length at most 2m.
This shows (6.A.5).

For (6.2.6), we observe that each set A without holes (A = Ā) can be
uniquely reconstructed from its interior boundary ∂̃intA (a vertex is in
Ā \ ∂̃intA iff it is surrounded by ∂̃intA), which is ∗-connected [76, Lemma
2.1]. Since we assume |∂̃intA| = m, the isoperimetric inequality (6.2.5)
ensures that |A| ⩽ C1m

d/(d−1) for some C1 > 0 for all m ∈ N. This
interior boundary must either contain x or surround x as defined in
Definition 6.2.4.

We claim that there is a constant C > 0 such that ∥x − ∂̃intA∥2 ⩽
Cm1/(d−1) for all x,A with A ∋ x and A = Ā. Indeed, suppose oth-
erwise. Then, on Zd, vertices in the Euclidean ball of radius Cm1/(d−1)

around x would be contained fully in A (without containing a vertex of
∂̃intA). This would mean, for some dimension-dependent constant cd, that
|A| ⩾ cd(Cm1/(d−1))d, which contradicts that |A| ⩽ md/(d−1) by Claim
6.2.6 when C is chosen sufficiently large.

Hence, we may find a vertex y ∈ ∂̃intA∩ Ball(Cm1/(d−1), x) where the
latter set denotes the Euclidean ball of radius Cm1/(d−1) around x. Then,
since ∂̃intA is a ∗-connected set of size m, (6.A.5) ensures that the number
of possible sets S that may form ∂̃intA is exp(cpeim). Summing over the
possible choices of y ∈ Ball(Cm1/(d−1), x), we arrive at

|{A ∈ A : A ∋ x,A = Ā, |∂̃intA| = m}| ⩽ cdC
dmd/(d−1) exp(c ′peim).

The result follows by absorbing the factor cdCmd/(d−1) into the constant
cpei.
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Based on [152]
Not all interventions are equal for the second peak,

J. Jorritsma, T. Hulshof, J. Komjáthy,
Chaos, Solitons & Fractals, 2020 (139).

7.1 introduction

When recovering from a disease grants temporary immunity against it, it
can happen that an epidemic dies out locally, but survives elsewhere, re-
turning at a later point in time. We observe a “second peak”. A second peak
can also happen when interventions are effectively applied to slow down
the spread of a disease locally, but are then lifted. This phenomenon has a
clear geometric component. Standard compartmental models for epidemic
curves are inherently a-geometric, because they assume a perfectly mixed
population. Although there are variants of standard compartmental mod-
els that do allow for geometric influences [80, 120, 224], we focus here on
agent-based epidemiological models that allow for a natural embedding of
the population in a geometric space. As a result of our modelling choices,
the underlying contact network cannot be approximated by branching
processes as in [17, 18, 19, 93], and the epidemic cannot be approximated
well by a system of differential equations, making explicit calculations less
tractable than in the mentioned papers.

In this chapter, we study this geometric effect empirically. We conduct
a simulation study about the effect of temporary immunity on the spread of
a disease on various agent-based models. Immunity being only tempo-
rary has been observed for various types of coronaviruses, see [95] and
references therein. When this simulation study was conducted, it was still
debated whether the COVID-19 epidemic provides lasting or temporal
immunity, see e.g. [159]. Besides temporary immunity, we investigate the
effect of three different interventions:

• Intervention Isoc: social distancing,

269
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• Intervention Itrav: traveling restrictions, and

• Intervention Ideg: limiting the number of social contacts.

Our simulation results may serve as a qualitative indication of possible
outcomes of epidemic spread and intervention strategies for highly infec-
tious diseases, such as the COVID-19 pandemic. It also gives qualitative
predictions about the ways an epidemic might (or might not) return, de-
pending on the average duration and level of temporary immunity. The
focus is twofold: first, on understanding how the underlying space affects
the outcome of the simulations, and second, to see and compare the effect
of the three intervention strategies on the pandemic. For the first goal, we
compare four scenarios with various underlying geometries:

• Scenario Sgrid: The underlying network is “purely geometric”, ig-
noring long-range connections. For this scenario we use the square
nearest-neighbour torus Z2n as the base graph.

• Scenario Scm: The underlying network is a “mean-field network”,
ignoring the spatial component. For this scenario we use the configu-
ration model, which can mimic the local statistical properties of real
human contact networks, such as degree distributions.

• Scenario Sgirg: The underlying network is a mixture between a geomet-
ric and mean-field network. For this we use Geometric Inhomogeneous
Random Graphs, which possess geometric features and can match the
statistical properties of real human contact networks.

• Scenario Sode: The epidemic is modeled in a “mean-field continuous
space”, ignoring the spatial component and approximating the dis-
crete population by a continuum. For this we use systems of ordinary
differential equations (also called: a compartmental model), which are
currently the most popular tool for epidemic curve modelling.

Our aim is to compare these models, and see what the effect is of consider-
ing more realistic representations of the underlying space and spreading
mechanisms. We emphasize that this chapter provides qualitative esti-
mates, not quantitative ones. As a result, the study here might underpin
or support certain intervention strategies more than others, but we refrain
from (and see no justification for) using these simplified models to make
numerical predictions with respect to the COVID-19 outbreak.
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Organisation.

We first introduce the epidemic model and define the four underlying net-
works (corresponding to the four scenarios). In Section 7.3 we present the
results of the first experiment that compares the four different scenarios.
After that, in Section 7.4, we elaborate on the intervention methods and
present the results of a second experiment which compares these inter-
vention methods. We remark that this chapter focuses on the main results
from the paper [152]. For a more detailed and quantitative discussion of
the simulations and results, including extra figures that confirm the results,
we refer to the original paper [152].

7.2 model description : epidemics with temporary immunity

We choose the simplest possible model that shows the behaviour that
we would like to observe: the effect of temporary immunity. Other states
could easily be added, such as an incubation period (exposed state) (as e.g.
in [170]), deaths, asymptomatic cases, etc. The model is similar to the one
studied in [62]. For simplicity, we describe the dynamics in discrete time.
A continuous-time version is analogous and shows the same qualitative
behaviour. The spreading process changes at discrete time steps, t =

{0, 1, 2, . . . }. We fix the network G in advance and think of nodes in the
network as individuals. Each node in the network can be in three possible
states: susceptible (S), infected (I) or temporarily immune (R). The temporarily
immune state is often called temporarily removed, hence the abbreviation
(R). The neighbours of a node u are nodes with a direct connection (also
called link, or edge) to u. A connection may correspond to a friendship or
an acquaintance, or simply a contact event. The discrete time dynamics
between the three states are described as follows (see also Figure 9):

• Infecting: Each infected node, while being infectious, infects each of its
neighbours within the network with probability β at every time-step.
Infections to different neighbours happen independently.

• Healing: When infectious, each node heals with probability γ at ev-
ery time-step, independently of other nodes, and independently of
infecting other nodes. The average infectious period of an infected
node is 1/γ time-steps. Upon healing, the node becomes temporarily
immune.
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Susceptible Infected
Temporarily
Immune

β, from each

infected neighbor

independently

γ

η

Figure 9: Schematic diagram of node states and their transition probabilities. A susceptible
node u may only become infected when it has at least one infected neighbour.
Each of the infected neighbours infects u with probability β, independently, in
each step.

• Losing immunity: Each temporarily immune node loses its immunity
with probability η at every time-step, independently of other nodes.
The average immune period of a node is thus 1/η time-steps. After
losing immunity, the node becomes susceptible again.

We run these dynamics on three different networks, obtaining the scenarios
Scm, Sgirg, and Sgrid, and adapt the dynamics to obtain the continuous
model Sode. We introduce the four scenarios, and afterwards explain the
intervention methods.

7.2.1 Scenario Sgrid: Lattice network models

Arguably the simplest geometric network model is the nearest-neighbour
lattice. To avoid boundary effects, and make the network completely
homogeneous, we shall study epidemics on the torus Z̃2n. For simplicity,
we assume that

√
n ∈N.

Definition 7.2.1 (Nearest-neighbour tori). Arrange nodes on a square grid,
and label them with two coordinates u = (x,y), for x,y ∈ {1, 2 . . . ,

√
n}. To

obtain Z2n, connect u = (x1,y1) to v = (x2,y2) when either x1 = x2 and
|y1 − y2| = 1 mod

√
n or y1 = y2 and |x1 − x2| = 1 mod

√
n. To obtain

Z̃2n, connect u = (x1,y1) to v = (x2,y2) when |x1 − x2| ⩽ 1 mod n and
|y1 − y2| ⩽ 1 mod

√
n. The networks have n nodes.

Lattice models are homogeneous and the typical graph distance within
the network is large, it grows polynomially with the number of nodes.
We recall that the typical graph distance d(G)

n (u, v) denotes the number of
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connections on the shortest path between nodes u and v that are sampled
uniformly at random from the graph on n vertices. We have

d(G)
n (u, v) = Θ(

√
n). (7.2.1)

7.2.2 Scenario Scm: The configuration model and other a-geometric network
models

A-geometric random network models are often used as null-models to
compare network data to purely random networks. In Section 1.2.1, we
described a commonly used model, the configuration model, and men-
tion rank-1 inhomogeneous random graphs as alternative that behaves
qualitatively similarly. The main advantage of these simple models is that
they can mimic the degree distribution of real-life networks. We choose
the erased configuration model for baseline comparison, which is obtained
from the Configuration Model from Definition 1.2.1 by removing any
possible multi-edges and self-loops to obtain a simple graph.

While the configuration model easily accommodates power-law node
degrees, and has the small-world property, it neither contains communi-
ties nor clustering [82, 217]. Communities are parts of the network that
have significantly more connections towards each other than the same
number of randomly selected nodes. One could argue that clustering and
communities in human contact networks often arise due to spatial effects:
people living nearby tend to know each other with higher probability. The
following network accommodates for clustering and communities, while
also keeping node degree variability high.

7.2.3 Scenario Sgirg: Geometric Inhomogeneous Random Graphs

For our last class of networks we run the SIRS epidemic on a mixture of
pure geometric and purely random network models. For this we use a
general Geometric Inhomogeneous Random Graph (GIRG) model, that is
a state-of-the-art model for real-world social and technological networks,
embedded in geometric space. The presence of underlying geometry
underpins the model: individuals are embedded in space, just like in real
life, allowing for local community structures to be present in the contact
network, leading to strong clustering [40, 217]. The GIRG incorporates
edges bridging spatial distance on all scales, ranging from short to long-
range edges, as well as a high variability of node degree: in fact, the model
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is scale-free in two respects: both in spatial distance that edges cover, and
in node-degree variability [40].

Contact- or activity networks of humans have been found to show similar
behaviour, including heavy-tailed degree distributions, strong clustering,
and community structures [7, 32, 195, 200, 202], as well as heavy-tailed
distance-distribution for edges, see references in [140].

The kernel-based spatial random graphs described in Section 1.3 were
amongst others developed to incorporate these features and contain ge-
ometric inhomogeneous random graphs as a special case [7, 32, 83, 200,
198]. We formally define GIRGs. We denote by x∧ y the minimum of two
numbers x,y.

Definition 7.2.2 (Geometric Inhomogeneous Random Graph (GIRG)). Fix
n ⩾ 1 the number of nodes, and a dimension d ⩾ 1. Assign to each
node u ∈ {1, 2, . . . ,n} an i.i.d. fitness wu ⩾ 1 such that P

(
wu ⩾ w

)
=

w−(τ−1) for some τ > 1, and a spatial location xu chosen uniformly in a
d-dimensional box of volume n. Fix α > 0. For any pair of nodes u, v with
fixed wu,wv, xu, xv, connect them by an edge with probability

P(u is connected by an edge to v) ≍
( wuwv

∥xu − xv∥d
)α

∧ 1, (7.2.2)

where ∥ · ∥ denotes the Euclidean norm, independently of other edges.
Throughout the chapter, we set the dimension d = 2 for all considered
graphs.

GIRGs have a natural interpretation: the fitness expresses the ability of
nodes to have many connections, and α is the long-range parameter (the
smaller α is, the more the model favors longer connections). This gives
an intuitive way of modelling travel restrictions: increasing α, decreases
the probabilities of long edges. Indeed, in (7.2.2), for two nodes u, v with
locations xu, xv, the ratio

Ru,v :=
wuwv

∥xu − xv∥2

is raised to the power α, so as long Ru,v < 1, increasing α reduces the
chance of a long connection being present. When τ > 3, the node fitnesses
are, typically, not high enough1 so that, typically, Ru,v < 1, hence the
intervention of increasing α is very effective. The typical distance increases
from poly-logarithmic to polynomial in the network size. On the other

1 Node fitnesses are less than
√
n for all nodes, with high probability.
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hand, when τ ∈ (2, 3), node pairs with ratio Ru,v > 1 happen frequently
enough (even on global scale, nodes with fitness Ω(

√
n) are present),

hence, increasing α turns out to be ineffective in reducing the typical
distance in the network, since many long-range edges remain.

The parameter space of GIRG is rich enough to model many desired
features observed in real networks.

(a) Extreme variability of the number of neighbours (degrees). In net-
works this corresponds to the presence of a few individuals with
extreme influence on spreading processes, the hubs or superspreaders.
Mathematically, this corresponds to the empirical distribution of
node degrees following a power-law, as in (1.1.1) above. Hence, we
choose a power-law fitness distribution for the fitnesses.

(b) Connections present on all length-scales. The abundance of long-
range connections is tuned by α in (7.2.2): the smaller α, the more
likely are long-range connections.

(c) Small and ultra-small distances. The power-law exponent τ and the
long-range parameter α tune the typical graph distance d(G)

n (u, v),
see [30, 39, 63, 66, 116]:

d(G)
n (Un,Vn) =


Θ(log logn) when τ ∈ (2, 3),α > 1

O
(
(logn)ζ

)
when τ > 3,α ∈ (1, 2)

Ω(
√
n) when τ > 3,α > 2.

(7.2.3)

Comparing this to the typical distance in the configuration model
and to the lattice models in (7.2.1), one sees that geometry and long-
range connections play a role with respect to distances when τ > 3,
and the model interpolates between the small-world configuration
model and the lattice.

(d) Strong clustering and local communities. Empirically, clustering
quantifies the effect commonly known as “a friend of a friend is
also likely to be my friend”. Mathematically, clustering means the
presence of triangles in the network. Communities and clustering are
naturally present in GIRG, because the model favors connections
between nodes that are close to each other in space.

For the spread of information or infections in such networks, it is known
that large-degree nodes and many triangles have opposing effects. On the
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Susceptible Infected
Temporarily
Immune

β ·S ·I/N γ

η

Figure 10: Schematic diagram of states and their transition rates in the continuous com-
partmental model. Infected individuals make contact at rate β to randomly
chosen individuals, as a result, the number of susceptibles increases at rate
β·S·I/N. This is a mean-field approximation of the graph model in Section 7.2,
see Figure 9.

.

one hand, nodes of large degree (also called hubs, super-spreaders, or
influencers) contribute to fast dissemination, and foster explosive propa-
gation of information or infections [84, 112, 207, 209]. On the other hand,
clustering and community structures provide natural barriers that slow
down the process, while long-range edges accelerate the spread [16, 141,
148, 157, 184].

7.2.4 Scenario Sode: SIRS compartmental model

For baseline comparison to continuous epidemic models, we use a contin-
uous SIRS model, where there are only three possible states, susceptible
(S), infected (I) or temporarily immune (R), in a total population of N in-
dividuals. Susceptible individuals may become infected via a contact to
infectious individuals, while infectious individuals heal and thus become
temporarily immune. The assumption is that individuals make contact
with a random individual at rate β. Immune individuals loose their im-
munity at a certain rate η and become susceptible again. The deterministic
ordinary differential equation (ODE) model is governed by the three main
parameters:

• β: rate of infecting a susceptible individual when being infected,

• γ: rate of healing, and becoming temporarily immune,

• η: rate of losing temporal immunity and becoming susceptible again.

See Figure 10 for a schematic diagram. We assume the population size
is N and that each infected individual can infect any susceptible person
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(the underlying graph is the complete graph), denote by S(t), I(t),R(t) the
number of susceptible, infected and temporarily immune individuals at
time t, then the corresponding ordinary differential equation becomes:

dS
dt

= −
βIS

N
+ ηR

dI
dt

= +
βIS

N
− γI

dR
dt

= +γI− ηR

For the infection to survive, β > γ is necessary, otherwise limt→∞ I(t) = 0.
When β > γ holds, this ODE has a stationary state, which is explicitly
computable:

S(∞) = N
γ

β
, I(∞) = N

η

η+ γ

(
1−

γ

β

)
, R(∞) = N

γ

η+ γ

(
1−

γ

β

)
.

Observe that the equilibrium proportion of infected is roughly linear in η,
as long as η≪ γ. One can also compute the basic reproduction number,
R0 = β/γ, and observe that R(∞) = I(∞) · (γ/η). Qualitatively, the ODE
exhibits either (sub)critical behaviour, implying extinction, or supercritical
behaviour, as described in Section 7.3.2 below.

We remark that the above model can be generalised to incorporate spatial
structures by adding extra compartments [80, 120, 224] that represent the
spatial locations. For such models, the value of R0 remains explicitly
computable and is influenced by the spectrum of the adjacency matrix
that describes the underlying network [224].

7.3 experiment 1 : new phenomena in geometric networks

We highlight the most important results of our first experiment, and illus-
trate these results using figures. A complete overview of the simulations
can be found in [152], which considers a larger set of parameters, and
states more quantitative results.

7.3.1 Simulation setup

Throughout this chapter, the underlying networks for the different sce-
narios are sampled once per parameter setting and kept constant over the
simulation runs. On every graph, for every described parameter setting of
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(a) Supercritical: β = 0.38.

0 200 400 600 800 1000
0

20

40

60

80

100 Deimmunization rate
0.005

Time

(b) Subcritical: β=0.13, η=0.005.

Figure 11: Solutions of the ODE when N = 160000, γ = 0.14 with 100 initially infected
nodes. The infection almost seemingly disappears from the system before the
second peak appears when η = 0.001. The infection is subcritical when β < γ.

the SIRS model, the results are based on 100 simulations of the epidemic
spreading starting from a single node. This node is sampled uniformly
at random at the beginning of every simulation, and differs per run. All
networks have the same number of N = 160000 nodes, all with the same
average degree E[deg(u)] = 8: two configuration models with τ = 2.5 and
τ = 3.3, respectively, three geometric inhomogeneous random graphs
(GIRG) with (τ,α) = (2.5, 2.3), (3.3, 1.3) and (3.3, 2.3) respectively, and the
modified lattice Z̃2. The continuous line on the figures, see e.g. Figure 12

shows the median of infected individuals, the shaded area covers 95% of
all runs for which the number of infected nodes was positive.

7.3.2 Phases of SIRS on continuous compartmental models

For Scenario Sode, the parameters may be set such that the epidemic is
either subcritical, critical, or supercritical, see Figure 11. We briefly describe
these so-called phases for comparison.

1) Subcritical and critical phase: Immediate extinction. Whenever the basic
reproduction number, R0 = β/γ ⩽ 1, the epidemic dies out without
producing a peak. For β/γ < 1, it dies out quickly (logarithmic in
the initial number of infected), while for β/γ = 1 it dies out slowly
(polynomial in the initial number of infected).

2) Supercritical phase: Peaks of decreasing magnitude towards a limiting
stationary proportion. Whenever β/γ > 1, the proportion of infected
population stabilizes at η

η+γ

(
1− γ

β

)
. There are several larger peaks
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before the equilibrium is reached. The incline and decline of peaks
are exponential.

7.3.3 New supercritical phases in SIRS epidemics on network models

The presence of the network structure, as well as the underlying space,
combined with temporary immunity has a surprising effect on the quali-
tative behaviour of the epidemic. More specifically, new phases arise in
the phase diagram compared to those in Section 7.3.2. The duration of
the immune period plays a more profound role than in the continuous
compartmental model of Section 7.2.4, where the single supercritical phase
is entirely determined by the ratio β/γ = R0 of the infection rate and the
healing rate.

The final size of the epidemic is, at least for the most commonly known
SIR model, often computable even for network models. We refer to the
works [17, 18, 19, 93, 146, 192, 197, 208, 223] for SIR models in mean-field
type networks, and the phase diagram for SIRS on the lattice [62, Figure
1]. Many of the cited papers assume that the degree distribution of the
underlying has finite variance, while we consider infinite-variance degree
distributions as well.

For the GIRGs that we consider, the branching process approximations
used in the cited papers are no longer valid, and there is no explicit
formula known for the value of R0 or an alternative threshold parameter
that describes whether a first peak occurs with probability bounded away
from 0.

For the SIRS epidemic spread on all three network models (Scenarios
Sgrid, Scm, and Sgirg) we observe the following phases2, with 2S below
being new compared to Scenario Sode.

1) Subcritical and critical phase: immediate extinction. The epidemic goes
extinct almost immediately (for all runs), and the number of infected
decays exponentially in this case. When R0 ≈ 1, the epidemic may
die out more slowly. We emphasize that the critical and subcritical

2 Due to the stochastic nature of the model, the phases 1, 2S, 2M are, (at least on a finite
but large network) intertwined. This means that for a given fixed set of parameter β,γ,η,
a single run of the SIRS epidemic may enter any of the three phases, with different
probabilities. However, the probability of entering a given phase undergoes a sharp
transition in the parameter values: for fixed β,γ, a small change in η results in a shift from
almost always seeing phase 2S to almost always seeing phase 2M. We believe that the
long-survival probabilities are monotone in η.
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(a) Single peak when immunity is long-lasting (η = 0.002). Fewer long-
range connections leads to slower incline and decline of the curves.
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(b) Later peaks when immunity is short-lasting (η = 0.009); time starts
at 50 days. Fewer long-range connections yield heavy oscillations
after the first peak.
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(c) Later peaks when immunity is short-lasting (η = 0.009); fewer hubs
yield heavy oscillations after the first peak.

Figure 12: Supercritical phases for network-based models. The network CM(3.3) corre-
sponds to Scenario Scm (without intervention), GIRG(3.3,1.3) and GIRG(2.5,
1.3) to Scenario Sgirg (without intervention), and GIRG(3.3,2.3) to Scenario Sgirg
(with intervention Itrav, see Section 7.4 below). GIRG(2.5, 1.3) corresponds to
a network where the degree distribution asymptotically has infinite variance
(corresponding to many hubs being present in the network), while GIRG(3.3,
1.3) corresponds to finite variance (fewer hubs).

.
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phase do not separate so clearly on the stochastic SIRS model on
networks: due to the stochastic nature, the epidemic might die out
quickly even when R0 > 1. For the extinction time (logarithmic
vs polynomial of the network size), the initial number of infected
individuals plays a more important role. This is, however, out of
the scope of our current study and we do not pursue this direction
further.

2) Supercritical phases: possible large outbreak. With positive probability,
there is a large outbreak. For network-based SIRS, the supercritical
phase separates into two sub-phases:

2S) Extinction after a Single peak: when the duration of the immune
period is long, the epidemic has a single peak, after which it
immediately goes extinct. Heuristically, the reason for the ex-
istence of this new phase is that after the first epidemic peak,
earlier infected nodes become immune and maintain their im-
munity long-enough to provide barriers in the network that the
infection cannot pass through. This phenomenon is known as
‘depletion of susceptibles’ [218] and visualized in Figure 12a.

2M) Long-time survival, Many peaks: when the duration of the immu-
nity period is relatively short, the epidemic follows a (qualita-
tively) similar curve to the one observed in the ODE in Section
7.2.4. There is a first major outbreak, followed by smaller sec-
ond, third, etc., peaks, decreasing in magnitude, and eventu-
ally settling on a (meta-stable) stationary proportion of infected
and immune population. This is visualized in Figure 12b. We
mention that this equilibrium is a meta-stable state, since the
all-susceptible configuration is an absorbing state. The time to
reach that, however, is exponentially long in the network size,
see [48]. Figure 13 visualizes when the epidemic can exhibit
phase 2M.

Contrary to networks, the Sode scenario discussed above is a continuous
system. As a result, the second peak is always present, which explains the
absence of phase 2S in this compartmental model.

The first peak. The height of the first peak, in all models, is insensitive to η,
just like for standard continuous compartmental models, visualized below
in Figure 17 for Scenario Sgirg. A possible explanation for this insensitivity
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Figure 13: A comparison of the frequency of entering phase 2M during 100 simulation
runs on eight different networks with the same average degree 8 and number of
nodes N = 160000, as a function of the η. The frequencies were computed using
a 100 runs for all parameter values (η) and models, with β = 0.225,γ = 0.2. For
all networks we see a sharp transition at a critical value of η where the system
moves from phase 2S (single peak followed by extinction) to 2M (survival with
multiple peaks).

is that during the initial spread, the SIRS process is closely approximated
by an SIR process, where temporarily immune nodes are simply removed.

The configuration model with the smallest τ has the smallest threshold
ηc, followed closely by GIRG with (τ,α) = (2.5, 1.3). The grid Z̃2n and
GIRG with τ = 3.3 and α = 2.3 have the highest ηc (≈ 0.085 and ≈ 0.01),
these are networks where the typical distance is linear.

Shape and location of the first peak: For Scenario Scm, the shape of the first
and later peaks are similar to that of Scenario Sode, i.e., exponential incline
followed by exponential decline, see Figure 12. Scenario Sgrid (not present
in the figures) is different: it has a linear incline followed by linear decline
when η is large. The shape of the curve for Scenario Sgirg depends on the
parameter values: as long as there are many long-range connections, and
hubs in the network (nodes with very high degree), the curve resembles
that of Scenario Scm. When this is not the case, Scenario Sgirg starts to
gradually resemble the epidemic curve of the grid (Scenario Sgrid): linear
incline followed by linear decline, see Figure 12a.

Besides that, we find that the epidemic curves for Sgirg and the a-
geometric scenario Scm are in good match, as long as the long range
parameter α of GIRG is in the interval (1, 2) when τ > 3, see Figure 14.
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(a) Long immunity (η = 0.002),
many hubs (τ = 2.5): single peak.
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(b) Shorter immunity (η=0.009),
many hubs (τ = 2.5): many peaks.
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(c) Long immunity (η = 0.002),
few hubs (τ = 3.3): single peak.
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(d) Shorter immunity (η = 0.009),
few hubs (τ = 3.3): many peaks.
Time starts at 50 days.

Figure 14: A comparison of the number of infected on the configuration model versus
GIRG with matching parameters. The two scenarios match unless τ > 3 and
α > 2, corresponding to the green curves. Figure (c) and (d) coincide with
Figure 12(a-b) and included again for comparison to τ = 2.5.

For τ ∈ (2, 3), hubs dominate the network, and the role of the parameter
α is insignificant. This is in accordance with theoretical results (7.2.3),
where distances are doubly-logarithmic regardless of the value α as long
as τ ∈ (2, 3).

When τ > 3, the effect of the long range parameter α plays a crucial
role. When α > 2, even when keeping the average degree and the degree
distribution the same, the curve is flattened significantly. In this parameter
range, even though hubs are present in the network, they mostly connect
to nearby nodes. As a result, the typical distance is significantly larger (see
(7.2.3)) and the infection needs more time to spread.

The linear growth was also investigated in a similar setting recently in
[221]. There, the authors proposed to model the contact network using the
related (one-dimensional) Newman-Watts model [199]. The mathematical
explanation for seeing a linear growth curve is as follows: these models
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are embedded in geometry, and the parameters are such that long edges
do not dominate yet, and hence the typical ball-growth is polynomial. This
is in accordance with theoretical results related to the typical distance in
the network being short (poly-logarithmic) when there are many long-
connections but long (polynomial) when these are scarce, see (7.2.3). See
[170] and references therein for the role of long-connections.

After the first peak: topology-dependent fluctuations. The fluctuations
after the first peak are highly dependent on the network topology as can
be seen in Figure 12c. For power-law networks with infinite asymptotic
variance (τ < 3), there is no second peak and the system reaches equilib-
rium very quickly after the first peak. For finite variance networks (τ > 3),
several further peaks occur. The transition is even more profound when
interventions change the topology, see Section 7.4.2 below.

We mention that for Scenario Sgirg the way the second peak happens is
entirely different from the first peak: the initial spread is local, emanating
from the source, (with some long connections causing non-local new
infection centers), while the second peak is spread out, infections occur
everywhere in space. This is quite natural, since during the initial wave,
the epidemic fills the space, and thus the second peak happens roughly
when the immunity arising from the first wave starts to wear off, at which
time the epidemic is endemic. This is why we never see the epidemic to
die out after a second peak. It either dies out after the first peak, or many
peaks occur and the system reaches equilibrium.

We conclude that epidemics modeled on networks can exhibit phenom-
ena, mostly related to the later behaviour of the epidemic, that continuous
ODE approximations or a-geometric networks fail to capture.

7.4 experiment 2 : modelling intervention methods on girgs

We turn to the second experiment, which compares intervention methods
under the SIRS epidemic. These intervention methods we model only
on GIRGs, since GIRGs offer an intuitive way of modifying the original
network to model interventions. We introduce the methods, and explain
how we modify the topology of the ‘original’ network.

(Isoc) During the COVID-19 outbreak, many governments issued a collec-
tion of social distancing measures: keeping 1.5 meter distance from
each other, wearing face masks and gloves, washing hands frequently,
and so on. Such measures reduce the number of contact moments
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between individuals and thus decrease the chance for the virus to
spread. When the social distancing measures are not combined with
travel restrictions, this results in the underlying contact network
to lose its connections roughly randomly, see also [75]. Hence, we
model the effect of social distancing by randomly removing a certain
proportion of edges in the network, such that each edge is removed
independently of other edges. The same method is used to model
social distancing in e.g. [206].

(Itrav) During the COVID-19 outbreak, there was restricted travel between
countries, and even within countries. As a result, the underlying
contact network loses some of its long connections. Such travel re-
strictions are modeled in two different ways. First, it is modeled
by drawing for each present edge a random exponential threshold
with a common mean L, and cutting the edge if it exceeds its thresh-
old value, resulting in a connection-length distribution that decays
exponentially above the threshold L. We call this intervention the
strong travel restriction. Secondly, it is also modeled by increasing the
long-range parameter α to αnew (see Section 7.2.3 for a discussion of
the model parameters of GIRGs).

(Ideg) Another intervention measure is to limit the maximal number of
contact a person can have. On the contact level, this rule barely affects
individuals with a low number of contacts, but it aims to decrease
the number of contact of ‘superspreaders’ in the network: nodes
that have a relatively high degree. Limiting the maximal number
of contacts per person is modeled by prescribing a maximal node
degree M. For each node u with degree higher than M, randomly
chosen connections of u are cut until at most M connections remain.

7.4.1 Simulation setup

We choose the parametersM,L,αnew so that the average degree is the same
after all interventions to enable comparison between the interventions.
We model the interventions on two GIRGs, corresponding to the first two
universality classes with respect to the typical distance from (7.2.3). The
GIRG with τ = 2.5 has average degree 9.6 and contains N = 160000 nodes.
The networks after intervention have average degree ≈ 4.9. The GIRG
with τ = 3.3 has average degree 8.7 and contains N = 160000 nodes. The
networks after intervention have average degree ≈ 4.7. As before, the
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(a) GIRGs with many hubs: τ = 2.5.
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(b) GIRGs with few hubs: τ = 3.3.

Figure 15: The first peak under interventions. The hard no-travel rule is most effective in
flattening the curve: both in its height as well as the day of the peak. The first
peak disappears before day 60 in all cases. The curves for the weak no-travel
rule and social distancing are almost identical. Explanation of the legend: social
distancing (“GIRG(2.5, 1.3) perc” and “GIRG(3.3, 1.3) perc”), the hard no-travel
rule (“GIRG(2.5, 1.3) long” and “GIRG(3.3, 1.3) long”), limiting the maximal
number of contact (“GIRG(2.5, 1.3) hub” and “GIRG(3.3, 1.3) hub”), and the
weak no-travel rule (“GIRG(2.5, 2.37)” and “GIRG(3.3, 1.9)”).

.

results are based on 100 simulations of the epidemic spreading starting
from a single node. This node is sampled uniformly at random at the
beginning of every simulation, and differs per run. The continuous line
on the figures shows the median of infected individuals, the shaded area
is covers 95% of all runs for which the number of infected nodes was
positive.

7.4.2 Comparison of intervention methods Isoc, Itrav, Ideg on GIRGs

We state the most important, qualitative findings of the intervention
methods on Scenario Sgirg, the geometric scale-free network model. For
additional quantitative values and additional figures we refer to [152].
Long-survival probabilities drop. Each intervention pushes the probability
of the system entering phase (2M) lower for a fixed parameter setting
β,γ,η. When increasing η (thus decreasing the immunity duration), at
a critical ηc the system abruptly goes from dominantly phase 2S from
dominantly phase 2M, (a sharp threshold). The threshold ηc of long sur-
vival is increased under all interventions, see Figure 17b. In this respect,
interventions Itrav and Ideg perform best.



7.4 experiment 2 : modelling intervention methods on girgs 287

50 100 150 200 250
0

1000

2000

3000

4000

5000

6000 Graph
GIRG(2.5, 1.3) perc
GIRG (2.5, 2.37)
GIRG (2.5, 1.3)

Deimmunization rate 0.009

Time

In
fe

ct
ed

(a) Social distancing (“GIRG(2.5, 1.3) perc”),
as well as the weak no-travel rule
(“GIRG(2.5, 2.37)”) on GIRGs with
many hubs (τ = 2.5). No second peak
can be observed, just like on the original
network.
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(b) Limiting the maximal number of contact
(“GIRG(2.5, 1.3) hub”), and the hard no-
travel rule (“GIRG(2.5, 1.3) long’"): sec-
ond and further peaks are periodically
present, with decreasing magnitude and
period roughly the average immunity
duration.
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(c) Later effects of interventions on GIRGs
with less hubs (τ = 3.3. Social distancing
(“GIRG(3.3, 1.3) perc”), as well as the
weak no-travel rule (“GIRG(3.3, 1.9)”)
compared to the original network
(“GIRG(3.3, 1.3)”). Second and fur-
ther peaks are present, equilibrium is
reached within 600 days.
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(d) Limiting the maximal number of contact
(“GIRG(3.3, 1.3) hub”), and the hard
no-travel rule (“GIRG(3.3, 1.3) long’"):
second and further peaks are more
profound, equilibrium is only reached
around 1200 days. The first peak of the
red curve (corresponding to truncating
long edges) is the first peak of the epi-
demic, contrary to the others.

Figure 16: Effect of interventions on GIRGs.

The height of the first peak drops. In all interventions, the height of the first
peak is dropping, by at least as much as the shrinkage in average node
degree (intervention Isoc) and even more with other interventions. The
most effective intervention in this respect is the strong no-travel rule, see
Figure 17a. The first peak is insensitive to the immunity rate η.

Elongated first peak. The time and duration of the first peak is later/longer
than without intervention. For keeping physical distance, the time shift is
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(a) First peak under interventions.
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(b) Second peak under interventions.

Figure 17: The effect of interventions on the height of the first and second peak, as a
function of η (the inverse of the average immunity period). The height of the
first peak is insensitive to the duration of immunity , and cutting long edges
is most effective in reducing the first peak. For the second peak, limiting node
degree pushes the critical η for appearance of the second peak from 0.002
to 0.006. However, for larger η the second peak is twice as high as for other
interventions. Abbreviations in the legend: ‘hub’: limiting maximal node degree,
‘long’: strong restriction on travel, ‘perc’: social distancing. GIRG(3.3, 1.3) is the
original network, GIRG(3.3, 1.9) corresponds a weak restriction on travel.

the least apparent (a few time steps), while for intervention Itrav it is the
most profound, a factor of 10, see Figure 15b.

Higher second peak. Intervention Itrav and Ideg result in a higher second
peak, or even make a second peak appear where originally it was not
present. The worst intervention in this respect is intervention Ideg (limiting
the maximum degree), where the second peak can be as high as 1/3 of the
first peak, see Figure 17b. For infinite variance degree GIRG, the strong
travel restriction also causes a second peak, while social distancing and
increasing α do not, see [152, Figure 21].

We give a possible explanation for a higher second peak. Under in-
tervention Ideg (limiting number of contacts via limiting node degree)
and Intervention Itrav (cutting long-edges), there are no more hubs in the
network: nodes with very high degree. In networks that contain hubs,
the hubs infect a large proportion of their neighbours roughly. Moreover,
hubs are much closer to each other (in terms of graph distance) than in
networks without hubs, thus the infection can travel quickly between hubs.
The randomness ensures that the infection times are not synchronized,
explaining the absence of oscillations in the epidemic curve. To summarize,
hubs stabilise the system.
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We give a possible explanation for a higher second peak. Under in-
tervention Ideg (limiting number of contacts via limiting node degree)
and Intervention Itrav (cutting long-edges), there are no more hubs in the
network: nodes with very high degree. In networks that contain hubs, the
typical graph distance is much smaller than in networks without hubs,
and there are typically many short paths from low-degree vertices to
hubs. As a result, once a node loses its immunity, it is almost immediately
infected afterwards via an infected hub, shortening the the time spent in
the susceptible state. This happens for almost all nodes in the network,
and the randomness ensures that the infection times are not synchronized,
explaining the absence of oscillations in the epidemic curve. To summarize,
hubs stabilise the system.

Once the hubs are removed, the typical graph distance increases, nodes
stay susceptible for a longer time, which leads to oscillations in the system
since vertices close to each other in graph distance are infected around
the same time. Limiting node degree without travel restrictions has the
strongest effect on the removal of hubs. Limiting travel reduces the degree
of hubs, but does not remove them completely: nodes that were hubs
before the intervention, have typically many local connections as well.

More oscillations to reach equilibrium. Interventions Ideg and Itrav, while
they are most effective regarding the first peak, introduce high oscillations
in the system, and the time to reach equilibrium can be much longer than
in the original model (from a few days to more than a thousand days).
Again, these oscillations are explained by the lack of stabilisation. See
Figure 16 for these later effects.

To summarize, we conclude that the effect of interventions vary to a
high extent and depend on the precise way the intervention changes the
network topology. Non-geometric models such as the configuration model
fail to capture these various effects.
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8.1 introduction

Agent-based epidemiological models allow a population to be embedded
in a geometric space to capture the effect of the “local” and “long-distance”
contacts that arise in real populations. We use a stochastic susceptible-
exposed-infected-removed (SEIR) type agent-based model to study the
efficacy of contact-tracing applications such as the mobile phone contact-
tracing applications that have been introduced during the COVID-19

epidemic. Our simulation study compares the efficacy of four different
uptake scenarios for the contact-tracing application (CTA), combined with
the effect of quarantining measures of various strengths.

We compare four uptake scenarios of the CTA given a probability
p ∈ [0, 1]:

• Srand: each individual uses the CTA independently of the rest with
probability p;

• the users are selected by one of two different recommender scenar-
ios: each individual is an initial user with probabability pinit and
recommends the CTA to some of their contacts:

– Sbasic: a uniformly chosen neighbour;

– Sring: roughly half of its neighbours (each neighbour uses the
app with probability 1/2 independently of the rest);

291
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• Sdeg: a (hypothetical) degree-targetted uptake scenario, in which
CTA-users are the (p · 100)% individuals with the highest number of
connections.

For the recommender-based scenarios we choose pinit such that the final
uptake percentage is (p · 100)%. In each of these CTA-uptake scenarios,
we assume that individuals in the population will quarantine themselves
as soon as their symptoms are sufficiently strong (exceeding a certain
threshold). At this point, users of the CTA also notify their CTA-using
contacts, who also quarantine themselves.

The ring recommendation method has some connections with a certain
vaccination protocol, called ring vaccination, hence the name. Ring vac-
cination has been successful in the past to eradicate small pox [219] and
has also been used against Ebola [119]. Such recommender scenarios have
previously been shown to be effective in the context of vaccines [137] on
synthetic models.

Basic recommendation also has connections to a vaccination protocol
called acquaintance vaccination which typically outperforms random vac-
cination in network models [41, 54]. The main difference between the two
scenarios is that in acquaintance vaccination, only the neighbours of the
randomly-chosen set of “initial users” receive the vaccine rather than the
users themselves. This makes sense in the context of trying to allocate a
limited supply of vaccines, but not in our context — it is reasonable to
assume that anyone recommending the app to a friend will also install it
themselves.

We remark that degree-targetted uptake is an unrealistic scenario to
consider, since it requires a complete knowledge of the contact network.
However, studying the performance of this hypothetical scenario gives a
baseline comparison for determining the potential performance of a given
uptake percentage.

We examine the combined effect of differing CTA-uptake scenarios and
different symptom thresholds for quarantine. We decouple the effects of
CTA-uptake scenarios and symptom thresholds from the effects of testing
delays, which have been studied in [167]. In order to focus on the former,
we work in an idealised hypothetical scenario where testing is immediate
upon symptom onset (or where there is only a single virus present in
the population that could cause the symptoms) and where the symptom-
severity does not influence the probability of a virus transmission between
two individuals. We emphasise that our study is qualitative, rather than
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quantitative, and we aim for universally valid observations in terms of the
performance of CTA-uptake scenarios.

Main observations

In our first experiment (Section 8.3) we qualitatively compare the four
uptake scenarios. In all uptake scenarios, we find that contact-tracing
applications (CTAs) are effective in decreasing the size of an epidemic (the
total number of people that get infected) and in decreasing the maximum
number of people who are simultaneously hospitalised, and typically this
effectiveness increases linearly or super-linearly with the percentage of
the population that use CTA. In these respects, we show that CTAs are
effective even with low uptake rates. This confirms the results of a recent
study modelling CTAs in Washington state [1].

The novelty of our study is to compare recommendation-based uptake
with random uptake, where we find that recommending can significantly
improve the efficacy of the CTA. In brief, we find that in scenarios where
the CTA is recommended to acquaintances the epidemic size and maxi-
mum hospital load decrease at a much higher rate than the rate that would
be achieved by randomly selecting the same number of CTA users. One
might expect these advantages of recommendation-based uptake to come
at the cost of increased quarantine. This is true, however in networks with
fewer super-spreaders the quarantine load decreases with uptake percent-
age (after an initial increase). Once the uptake percentage is sufficiently
high, recommendation-based uptake leads to less quarantine, rather than
more. Finally, we emphasise that the uptake percentage necessary to com-
pletely eradicate the epidemic from the population is generally very high,
as was also found in [172], though this is not the focus of this chapter.

In our second experiment (Section 8.4) we study the impact of the
severity of quarantine measures, both on the epidemic itself and on the
economic disruption that it may cause (measured in terms of the time that
people spend in quarantine over the course of the epidemic). Already un-
der “mild” quarantine measures, the maximum hospital load is drastically
reduced and the size of the epidemic is somewhat reduced. However, the
economic disruption caused by quarantine is very high. Perhaps surpris-
ingly, imposing stricter quarantine measures (i.e., quarantining individuals
already with less severe symptoms), ensures not only that the epidemic
is better contained, but also that the economic disruption is lower (under
strict enough social distancing measures, travel restrictions, and suffi-
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ciently high app uptake). The critical point on the ‘quarantine-strictness
scale’ above which the social disruption starts decreasing comes earlier
in recommender scenarios and degree-targetted uptake than in random
uptake, and even earlier if individuals are more restricted in their move-
ments, i.e., the underlying contact network does not have many long-range
connection, ranging over large spatial distances.

As a disclaimer, we recall that we study a case where a single SEIR
(susceptible-exposed-infected-removed) epidemic is present in the pop-
ulation (see Section 8.2.2) and individuals who are not infected do not
show any symptoms similar to those that are caused by the virus under
investigation. This might be unrealistic for certain types of diseases, but
might be a better approximation of reality for others. Finally, we emphasise
that we aim for qualitative, comparative results that are robust against
changes in the dynamics and the underlying contact network. We refrain
from making numerical predictions.

Organisation

In the following section we describe the underlying contact networks
that model the population and the epidemic model. We then explain
and interpret our main findings regarding the CTA-uptake scenarios and
the quarantining measures. For additional baseline comparisons and the
robustness of parameters, we refer to [100]. The software used for the
simulations is available at [155]. Besides our own code, we used [220]
to run simulations in parallel, and [31] to sample the four underlying
networks for the population (geometric inhomogeneous random graphs).

8.2 modelling the epidemic

We use a SEIR-type (susceptible-exposed-infected-removed) agent-based
models to model the spread of the epidemic, where individuals may or
may not show symptoms. The model is defined precisely in Section 8.2.2.
Roughly, each agent goes through the following stages upon infection: ex-
posed, infected, either symptomatic or asymptomatic, and finally removed.
Upon showing symptoms, individuals using the CTA send notifications
to the other CTA users that they are in contact with, who then move to
quarantine for a fixed duration of time. The model involves a quarantin-
ing scheme: agents who show sufficiently severe symptoms and agents
notified via the CTA both move into quarantine.
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We start by introducing the underlying network.

8.2.1 Networks to model the population

To be able to carry out our study, we represent the underlying contact
network of individuals (nodes, or agents) as a network. Based on the
universality results in Chapter 7, our primary choice for the underlying
contact network is a mixture of pure geometric and purely random network
models, called Geometric Inhomogeneous Random Graphs, which possess
geometric features and can match the statistical properties of real human
contact networks, such as degree distributions and clustering, as well as
long-range connections.

We recall that there are two robust parameters of GIRGs that control the
qualitative features of the network: a parameter τ controls the variability
in the number of neighbours that individual nodes have (the number of
neighbours of a node is called its “degree”). Smaller values of τ correspond
to more variability, while keeping the average the same.

A second parameter α controls the number of long-range edges: long-
range edges would tend to be present in populations without travel re-
strictions, (as observed in real-life contact networks, see e.g. [61, 102, 225]).
A value of α close to 1 corresponds to having many long-range edges, in
this case the network resembles an ageometric (or mean-field) network
model; while increasing α reduces the number of long-range contacts,
thus transforming the network into one where the underlying geometry
is intrisically more apparent. For more information, we refer to Section
7.2.3 above. The following summary will help the reader to understand
the experimental results reported below.

• τ = 2.3: a GIRG with plenty of “super-spreaders” (nodes with many
connections) due to degree variability,

• τ = 3.3: a GIRG with fewer super-spreaders,
• α = 1.3: a GIRG with many long-range edges, hence the underlying

geometry is "less apparent",
• α = 2.3 a "more geometric" GIRG, i.e., a network that resembles a

lattice better, since it does not have too many long-range connections.

The parameter values (τ,α) are chosen to represent each universality class
of GIRGs with respect to typical distance in the network, see (7.2.3).

For baseline comparison, in the paper [100], we also study the case when
the underlying network is a “mean-field network”, ignoring the spatial
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component. For this scenario we used the configuration model, which can
mimic the local statistical properties of real human contact networks, such
as degree distributions. We refer to [100] for these results, that are all
similar to the results on GIRGs that we present in the current chapter.

8.2.2 SEIR with quarantining: The epidemic model

The epidemic model that we use is a refinement of the agent-based version
of the discrete-time SEIR model. The spreading process changes at discrete
time steps, t = {0, 1, 2, . . . }, each time step corresponds to, say, a day. We fix
the network G in advance. We think of nodes in the network as individuals,
and denote the set of nodes by V. The neighbours of a node u are nodes
with a direct connection (also called link, or edge) to u. A connection may
correspond to a friendship or an acquaintance, or simply a contact event.

The model has a parameter q ∈ [0, 1] corresponding to quarantine-
strictness. The quantity q is the fraction of individuals whose symptoms
would be so severe that they would go into home-quarantine if infected.
Determining the value of q is a social/economic decision. The model
reflects this decision as follows. For each node, independently, and in
advance of the epidemic simulation, it is determined randomly, with
probability q, whether the individual corresponding to this node will,
upon infection, develop symptoms exceeding the socially-determined
symptom severity threshold, and then go into home-quarantine. The set of
nodes which will do so is called Vsev and the set of nodes which will not is
called Vmild. During the epidemic, nodes in Vsev that become infected will
go into home-quarantine. One may worry about uncooperative individuals
who do not self-isolate, despite having sufficiently severe symptoms. We
do not need to adjust the model to account for these, since the quarantine-
strictness q can be viewed as the fraction of individuals that would develop
sufficiently-severe symptoms, and would be willing to self-isolate. Note
that the actual distribution of the symptom-strength in the population is
irrelevant to the problems that we study; the only relevant parameter is
the final proportion q. The assumption that we do make, however, is that
each individual has an independent symptom-strength variable, making
Vsev a random set of nodes.

Definition 8.2.1 (SEISeR model). Determine the node sets Vsev and Vmild.
Nodes in Vsev can be in five possible states: susceptible (S), exposed (E),
infectious but not yet showing severe symptoms (I), infectious and showing severe
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symptoms (Se), or removed (R), while nodes in Vmild can only be in state
(S), (E), (I) or (R). At t = 0, a subset of nodes E0 ⊂ V is put in state (E),
all other nodes are in state (S) (susceptible). The discrete time dynamics
between the states are described as follows (see also Figure 18):

• Infecting: Each infectious node (in state (I)), infects each of its suscep-
tible neighbours within the network with probability β at every time
step. Infections to different neighbours happen independently. These
neighbour nodes enter state (E), exposed to the virus.

• Exposed→ Infectious (not (yet) severely symptomatic): When exposed to
the virus, each node becomes infectious (transitions to state (I)) with
probability γ at every time step, independently of other nodes.

• Infectious→ Severely Symptomatic: When a node in Vsev is in state (I),
(infectious but does not show severe symptoms yet), it transitions to
state (Se) with probability γsev = 1/2.5 at each time step.

• Infectious→ Removed: When a node in Vmild is in state (I), infectious
but does not show severe symptoms, it heals and transitions to state
(R) with probability ηmild = 1/7 at each time step.

• Severe Symptomatic → Removed: When a node is showing severe
symptoms, it heals with probability ηsev = 1/4.5 at every time step,
independently of other nodes. Upon healing, the node enters state R
(removed).

We emphasise that in our model, severely symptomatic nodes do not
infect anymore. We assume that they self-quarantine until being removed.
In reality, some infectious individuals may choose not to self-quarantine,
but we have already incorporated this into the model: Vsev contains only
nodes that would develop sufficiently severe symptoms, and would go
into home-quarantine.

To keep the parameter space tractable, we set γ = 1/3, ηmild = 1/7,
γsev = 1/2.5, and ηsev = 1/4.5. Thus, in the model, after being exposed to
the virus, it takes on average 3 days to become infectious and a further 7
days to heal completely for each individual. Nodes in Vsev infect for an
average of 2.5 days before showing symptoms and moving to isolation
(that lasts until their perfect healing) while nodes in Vmild are infectious for
an average of 7 days before removal. These values are based on empirical
findings e.g. in [115, 167, 168, 174], where we emphasise that our results
are robust in these parameters. Experiment 2 varies the value of q, which
is the expectation of |Vsev|/|V|.
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Figure 18: An illustration of the dynamical change of states. On the first transition arrow,
nI denotes the number of neighbours in state (I) of a susceptible node. Only
nodes in Vsev transition to state (Se). By setting 1/ηmild = 1/γsev + 1/ηsev the
average duration of having the virus in an individual’s system is 1/ηmild for
each node. Only nodes in the red circle can infect, while nodes in the blue circle
stay in home isolation.

Next, we describe our model for the CTA and define the necessary
modifications to the dynamics of the SEISeR model above to incorporate
the presence of a CTA. We recall the four uptake scenarios described in
Section 8.1.

Definition 8.2.2 (Random, basic-recommender, ring-recommender, and
degree-targetted CTA uptake). Before the epidemic starts, we determine
the sets Vu,Vnu of users and non-users of the application. We denote
by p = 100|Vu|/|V| the empirical uptake percentage after determining the
CTA-users according to one of the scenarios in Section 8.1.

Note that, to achieve the same uptake ratio p, the initial ratio of users
for the recommender-based scenarios pinit is smaller than p, see Figure 20.

Next, we describe the necessary modifications to the SEISeR model in
the presence of a CTA. Informally, a CTA user, upon either being tested
positive or simply showing sufficient symptoms, will notify its contacts
to stay in quarantine for a duration of T days (T = 14 in most countries),
regardless of whether these contacts themselves show symptoms.

Definition 8.2.3 (SEISeR with a contact-tracing application (CTA)). In
addition to the original states (S), (E), (I), (Se) and (R) of the SEISeR model,
there are five new states (NS), (NE), (NI), (NSe) and (NR), corresponding
to “notified” versions of the original states — we refer to these as “N-states”
and we refer to the original states as “O-states”. Only CTA-users (nodes in
Vu) will ever enter the N-states. They enter the N-states when they receive
a notification, via the CTA. They stay in the N-states until T = 14 days
have elapsed since the last notification received. While in N-states, they
self-quarantine, so cannot spread infection.
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The transitions between the N-states are exactly the same as the tran-
sitions between the original versions of these states, except that there is
no transition from (NS) to (NE), because the notified nodes in state (NS)
will be quarantining, so will not become exposed. See the black arrows
denoting transitions in Figure 19.

All nodes start in O-states, exactly as in the SEISeR model. After each
time step t, nodes move between the O-states and the N-states as follows:

• Notification: If a node in Vu starts to show sufficient symptoms
at time t (i.e., either it transitions from (I) to (Se) at time t or it
transitions from (NI) to (NSe) at time t) then it sends a notification
to all of its network-neighbours that are in Vu.

• Moving to N-states: If a node in an O-state receives a notification, it
moves to its corresponding N-state (following the corresponding red
arrow in Figure 19).

• Moving to O-states: If a node is in an N-state and it has not received a
notification for T = 14 time steps, then it moves to its corresponding
O-state (following the corresponding blue arrow in Figure 19).

8.2.3 Justification of modelling choices and robustness

We make a few comments to justify our modelling choices. Nodes in the
N-states and in state (Se) are assumed to be self-quarantining, so they
cannot spread infection. These are the blue nodes in Figure 19). Only
nodes in state (I) (coloured red) can spread infection.

Sending Notifications: The reason that nodes entering state (NSe) send
notifications (even though they are already self-quarantining) is that they
may have spread infection before entering the N-states (and starting to
quarantine): their neighbours may be in exposed or infectious states when
receiving the notification. In fact, while this model does not include testing,
such a scenario also happens in real life when an individual, already part
of a contact tracing chain, receives a positive test. In this case, the rest of
the contacts of this individual need to be notified as well.

Removed nodes in quarantine: The underlying SEISeR model assumes that
individuals can only be infected once (so “removed” nodes do not become
susceptible again). Despite this, in light of possible re-infection, many
countries (e.g. the Netherlands, where two of the authors are located) do
ask individuals who are notified to self-isolate, even if they have already
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have Covid-19. While transitioning from (R) to (NR) has no effect on the
course of the epidemic, it does have an effect on the total population’s
effective workforce (which we also study). Indeed, the self-isolating blue
nodes represent a social cost, since all of these nodes are self-isolating,
and cannot go to work. A node who is say, exposed when it receives a
notification via a CTA may go through all the phases (NE), (NI), (NSe),
(NR) before the T days are over. In this case it cannot become simply
removed and go back to work immediately, but has to wait out the T
days and then transition to state (R). For the same reason we make a
distinction between nodes in (Se) and (NSe): nodes in (Se) may leave home

S
Susceptible

E
Exposed

I
Infectious

R
Removed

Se

NSe

∗ N∗vertical edge colors:

set of notified nodes

NS NE NI NR

βnI γ ηmild

γsev ηsev

γ ηmild

γsev ηsev

T days after last notification received

upon notification by the CTA

Figure 19: An illustration of the dynamical state changes in the presence of a contract-
tracing application. The black arrows represent the transitions of the SEISeR
model and the corresponding transitions in the notified versions of the states.
After each time step, nodes move between the O-states (S), (E), (I), (Se) and (R)
and the N-states (NS), (NE), (NI), (NSe) and (NR). Moves to N-states (depicted
by red arrows) follow from CTA notifications. CTA users (nodes in Vu) receive
such notifications when neighbouring CTA users show sufficient symptoms,
thus transitioning from (I) to (Se) or from (NI) to (NSe). Nodes in blue states
are required to self-quarantine so cannot spread infection. Moves to O-states
(depicted by blue arrows) occur when a node has received no new notifications
for T = 14 days.



8.2 modelling the epidemic 301

isolation immediately after healing, while nodes in (NSe) have to wait for
the necessary total T days even after healing to be able to leave isolation.

Multiple notifications extend the quarantine time: We make a further com-
ment on why we choose to extend the quarantine by T days after an
additional notification is sent to a node already in an N-state. The reason
for this is again based on real life experience: since not all contacts and
hence notifications lead to infection, a second notification should not be
ignored. Whether individuals are actually willing to comply with such
rules belongs to behavioural science and is out of the scope of the current
study. We assume an idealised scenario where each node in Vu complies
with the rules. Varying the size of Vu captures the effect of less compliance
as well.

Robustness of choices: To conclude the justification, we emphasise that we
conduct a qualitative and comparative study. The model is sufficiently robust
that the conclusions of our study also apply under small changes to the
model. For example, if an uptake scenario performs better than another
with regard to this particular model, it will also perform better in a model
with slight changes, e.g. a model that does not extend the time of home
isolation when a second notification is received, or a model that does not
require already-removed nodes to go into quarantine.

We note that since each infectious node infects each of its susceptible
neighbours with probability β at each time step, this model is a reactive
process in the sense of [101].

8.2.4 Key performance indicators (KPIs)

To compare the performance of the four uptake scenarios as well as
the strictness of quarantining, we study three KPIs as a function of the
parameters.

• Size: The size of the epidemic, meaning the total number of individ-
uals ever infected during the whole course of the epidemic.

• HMax: The (approximated) maximum hospital load. In our study,
we define the hospital load at any time to be 5% of the number of
agents in infected states (symptomatic or asymptomatic) individuals.
Of course, the 5% is just a scaling, and changing this factor does not
change the shape of the curve. HMax is then the maximum of this
hospital load, over the course of the epidemic. This concept (without
scaling) is also known as ‘peak prevalence’ [181], which is arguably
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a better name: recovery after hospitalization can take longer, and,
moreover, there is a time lag between the onset of symptoms and
the moment of actual hospitalization. However, to keep the notation
and figures in line with [100], we will refer to HMax throughout the
chapter.

• Quar: The average number of days spend in quarantine per person,
over the course of the epidemic. We obtain this quantity as the
accumulated number of days spent in quarantine by the population,
divided by the total population size.

8.3 experiment 1 : application-uptake scenarios

An important aspect of our study is a comparison of the efficacy of four
different CTA-uptake scenarios. Suppose that p% of the population use
and also comply with a CTA, in the sense of reporting symptoms and
also going into self-quarantine when instructed to do so. We compare
the effectiveness of the CTA in terms of reducing the total size of the
epidemic (which we denote Size) and the maximum hospital load HMax,
when this p% uptake is achieved by the four uptake scenarios described
in Section 8.1. In terms of controlling the epidemic, one would expect
that it is desirable if the p% most influential members of the population
use the CTA, rather than a randomly-chosen p%. However, targetting the
application in this way incurs cost (it is necessary to determine which
members of the population have the most influence, and to persuade them
to use the application). The recommender scenarios provide a less-costly,
easier-to-implement solution.

8.3.1 Setup

We varied the CTA-uptake percentage for the four uptake scenarios on
six networks, each with 500, 000 individuals and average degree 13 (aver-
age degree 13 roughly corresponds to empirical findings concerning the
number of contacts per individual [194]), using the network models from
Section 8.2. In each case, we studied the effect of the CTA-uptake percent-
age and the uptake scenario (randomly chosen, degree-targetted, basic
recommender or ring recommender) on the three KPIs from Section 8.2.4.
We explain our results using the GIRGs from Section 8.2 with τ ∈ {2.3, 3.3}
and α = {1.3, 2.3}.
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Figure 20: The initial app uptake pinit% in relation to the final app uptake p% on four
networks and the different uptake scenarios. The curves for random uptake
degree-targetted uptake coincide and are straight lines, since it holds that
p% = pinit%, while for recommender scenarios p% > pinit%. Increasing p%
increases the probability that a node is recommended by multiple persons,
explaining the concave curves corresponding to the recommender scenarios.

The figures should be read as follows (unless mentioned otherwise).
For each parameter value, the plotted result is the median over 10 runs.
The shaded region around the plot covers the results of all 10 simulations.
The epidemic is started by infecting 100 individuals, chosen uniformly at
random. Simulation is halted when there are no more exposed or infected
vertices.

8.3.2 Hospital load and Epidemic Size: recommenders perform very well, ring
recommender best

The main message indicated by our simulations (row 2 of Figure 21) is
that introducing recommender scenarios strongly increases the efficacy
of a CTA in terms of reducing hospital load: having achieved uptake
p% via any recommender scenario is significantly more desirable (in
terms of reducing the maximum hospital load) than having achieved p%
uptake by randomly chosen members of the population. Furthermore, the
degree-targetted scenario works best, and the ring-recommender scenario
is almost as good as this. Adding the subscripts rand, deg, basic, and ring
to indicate the uptake scenarios, we find typically that

HMaxdeg(p) < HMaxring(p) < HMaxbasic(p) < HMaxrand(p). (8.3.1)

We explain what we mean by “typically” and in what sense Inequal-
ity (8.3.1) is intended. Obviously, it is not strictly true — for example if
the uptake percentage p% is 0% or 100%, then all uptake scenarios are
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Figure 21: The KPIs (Size, HMax, Quar) as a function of the CTA-uptake percentage p%
for the four CTA-uptake scenarios can be found in the rows. The population is
modeled using four GIRGs (arranged in the four columns): τ = 2.3 has more
super-spreaders and τ = 3.3 has fewer super-spreaders, α = 1.3 is less geometric
and α = 2.3 is more geometric. The x-axis shows the uptake percentage p%
varying from 0 to 100% at step size 5%. Simulations are done for the 21 values
of p% corresponding to these steps. The y-axis shows the corresponding value
of the KPI. The four uptake scenarios correspond to the four curves on each
figure. The simulations use β = 0.05 and q = 0.6.

equivalent. Furthermore, our results are numerical, and hence have some
inaccuracies. As can be seen from the second column of row 2 of the figure,
if the CTA works well enough to suppress the epidemic then the various
uptake scenarios are roughly equivalent, and cannot be compared. What
we mean by “typically” is that, as is apparent from row 2, when the CTA
uptake does matter, our data strongly suggest that the hospital max is
smallest under the degree-based scenario, next smallest under the ring
scenario, and largest (by some measure!) under the random scenario.

The same inequalities typically hold true for the size of the epidemic
(first row of Figure 21):

Sizedeg(p) < Sizering(p) < Sizebasic(p) < Sizerand(p).
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Figure 22: Simulations of an epidemic on two GIRGs with few super-spreaders (τ = 3.3)
and less geometry (α = 1.3), with uptake percentage p% = 55%. The x-axis
shows the time steps over which the epidemic is simulated. The y-axis of the
left figure shows the number of removed individuals over the course of the
epidemic. The y-axis of the right figure shows the number of hospitalised
individuals over time (in the same simulation). The plotted curves correspond
to the median over 20 runs (in the four scenarios); the shaded area covers
the 25th-75th percentile of these runs over time. The left figure shows that
the random uptake scenario is outperformed by all other scenarios and has a
steeper incline, leading to a situation where more people get infected. The right
figure shows that the number of hospitalised individuals is also higher under
the random uptake scenario. This figure corresponds to the p = 55% value in
the first two rows of the leftmost column of Figure 21.

Figure 22 shows a different depiction of this phenomenon at p = 5%. There,
the course of the epidemic is plotted against time. The epidemic curve on
the left represents the total number of infected individuals (during the
course of the epidemic). The epidemic curve on the right represents the
number of individuals that are currently infected. The figure demonstrates
how the random-uptake scenario is outperformed by the other uptake
scenarios.

The reason that recommender scenarios always perform better than the
random uptake scenario is explained by the so-called friendship-paradox
[90]: a friend of a random user is likely to have a higher number of contacts
than the random user itself, so a recommender scenario intrinsically finds
users with high numbers of connections. This effect is more pronounced
when the node-degrees are highly varying (τ = 2.3) and it is even more
pronounced in the ring-recommendation scenario. The reason for this is
that ring recommendation introduces highly connected clusters of CTA
users, and it is hard for the epidemic to thrive in such an environment: the
CTA clusters block its spreading.
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8.3.3 Improving CTA efficacy by slightly increasing uptake rates

We study the shape of the curves Size□(p) and HMax□(p) as p varies and
□ = rand, basic, ring, deg. Intuitively, we examine what happens when we
slightly increase the CTA-uptake percentage, especially in the (at least in
Europe) more realistic low-uptake regimes (< 50%).

Our first finding (see the second row of Figure 21) is that random uptake
decreases HMax roughly linearly in the uptake percentage p%. Here we
do not mean that the plotted yellow curves in the second row (which are
numerical approximations to HMaxrand(p)) are precisely linear — instead
we mean that the rate at which the hospital maximum decreases is roughly
constant, as the uptake percentage p% increases. This rate of decrease
depends on the underlying network (the four columns). It appears that
the epidemic size Sizerand(p) when τ = 2.3 (see the first row of Figure 21)
decreases concavely as the uptake percentage p% increases, meaning that
the size decreases more quickly for larger percentages p%.

A similar phenomenon has been observed for HMax for higher values
of the infection rate, β: the function HMax decreases concavely as p%
increases [100] for all networks (also when τ = 3.3).

We explain why the approximately linear decline is intuitively surpris-
ing, where it appears. For an infection to be prevented via the CTA, both
the infector and the infected individual have to use the CTA, and the
chance of this by random uptake is (p/100)2 ≪ p/100. Thus one’s first
guess would be that HMaxrand(p) and Sizerand(p) would be concave in p,
not linear, over all infectiousness parameters. Yet, our results combined
with [100] show that the curve is concave only in scenarios with high
infectiousness and in contact networks with strong underlying geometry.
The conclusion is that, even with random uptake, the CTA works better
than might be expected, decreasing Size and HMax roughly linearly for a
large range of parameter values (of infectiousness, and of the underlying
network), rather than concavely.

The recommender scenarios react even better to small increases in the
uptake percentage (for small values of p). Our experiments show (see
the first row of Figure 21) that all recommender scenarios (and especially
the ring-recommender scenario) react more strongly (than the random-
uptake scenario) to a slight increase in the uptake percentage p%. That
is, the epidemic size curves decrease at a faster rate under basic and
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ring recommendation, as compared to under the random uptake scenario.
Roughly, we find that for p% < 50% and a small positive number dp,

Sizering(p) − Sizering(p+ dp)≫ Sizerand(p) − Sizerand(p+ dp) > 0,

Sizebasic(p) − Sizebasic(p+ dp)≫ Sizerand(p) − Sizerand(p+ dp) > 0,

meaning that (apart from perhaps for τ = 3.3,α = 1.3), the total size of the
epidemic as a function of p decreases substantially more steeply for ring-
recommender and basic-recommender uptake than for the random uptake.
While this is true for both τ = 2.3 and τ = 3.3, in the situation where
there are many super-spreaders (τ = 2.3), the curves seem in addition
to be convex (meaning that the rate of decay is highest when the uptake
percentage is small).

For the maximum hospital load HMax, the effect is similar, but stronger
(see row 2 of Figure 21). Here the HMax curve is a convex curve for all
recommender scenarios.

In summary, we find that for many underlying contact networks, the
functions Sizering(p), Sizebasic(p), HMaxring(p), and HMaxbasic(p) are con-
vex, having a steep decline when p% < 50%, while Sizerand(p) and
HMaxrand(p) are linear or concave functions. This is illustrated further
in [100, Figures 4–5] where the level of infectiousness is varied: the phe-
nomenon is robust in the “supercritical” regime where there is a large
outbreak, apart from in graphs with few super-spreaders in situations
with very high infection rates. In this latter case the curves might coincide
or are more concave.

8.3.4 Geometry helps the CTA

A less obvious observation that we make is that (considering networks with
the same average number of connections per node), the more geometric
the underlying contact network is, the better the performance of the CTA
in terms of reducing the size of the epidemic and the maximum hospital
load, across the four uptake scenarios. In other words, lack of long-range
connections helps CTAs. This agrees with existing work on classical contact
tracing [87, 160], despite the increased heterogeneity introduced by random
app uptake; see [196] for a detailed survey.

Moreover, the positive effect of recommending becomes more exagger-
ated in geometric networks, see Figure 23. Emphasising in notation by
adding a superscript ‘geo’ and ‘ageo’ to emphasise whether the underlying
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Figure 23: The reduction in epidemic size achieved by CTAs with user recommendation
improves when the network has stronger geometry (for all values of p% < 85%).
Subfigures (A) and (C): The red dashed curve shows Sizegeo

rand(p) − Sizegeo
basic(p),

while the blue continuous curve shows Sizeageo
rand(p) − Sizeageo

basic(p) as a func-
tion of the uptake percentage p%. In subfigures (B), and (D), the red dashed
curve shows Sizegeo

rand(p) − Sizegeo
ring(p), while the blue continuous curve shows

Sizeageo
rand(p) − Sizeageo

ring (p) as a function of the uptake percentage p%. Observe
that the red dashed curves are (typically) above the blue curves. In subfigures
(A) and (B) the underlying network contains many super-spreaders, while in
subfigures (C) and (D) the network contains fewer: observe that the presence of
fewer super-spreaders makes the red dashed curve, the epidemic size difference
in geometric networks between recommender and random uptake, more spiky.
The simulation details are the same as those in Figure 21. For each parameter
value, the plotted result is the median over 10 runs.

network has strong geometry (α = 2.3) or less geometry (α = 1.3), we
typically find that (for fixed τ and reasonable uptake percentages)

Sizegeo
rand(p) − Sizegeo

basic(p)≫ Sizeageo
rand(p) − Sizeageo

basic(p),

Sizegeo
rand(p) − Sizegeo

ring(p)≫ Sizeageo
rand(p) − Sizeageo

ring (p).
(8.3.2)

This is illustrated on Figure 23, where the epidemic size difference (corre-
sponding to the number of infections that are prevented by the recommen-
dation) is plotted. Observe that the dashed red curve, corresponding to the
epidemic size difference in geometric networks stays above the blue curve,
corresponding to the epidemic size difference in ageometric networks. We
emphasise that both curves are positive, i.e., recommendation performs
better than random uptake in both geometric and ageometric networks.
The intuitive explanation for Inequality (8.3.2) is the same as what we gave
in Section 8.3.2: recommending has two main effects. The first effect is
finding the super-spreaders via the friendship-paradox effect. The second
effect of recommending is only present in geometric networks: recom-
mending also forms geometric barriers of CTA-users around a central
node. These barriers are hard for the infection to pass through.
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On the empirical side, we mention that a way to introduce more ge-
ometry into the underlying contact network is via travel restrictions as in
Chapter 7.

8.3.5 How costly is quarantine?

One might be afraid that using a CTA might cause a high quarantine
load on the population. However, row 3 of Figure 21 demonstrates that,
at least in the case of fewer super-spreaders (τ = 3.3) the average number
of days that an individual has to quarantine does not rise very steeply
with the CTA-uptake percentage p%. Note that the date for the case with
more superspreaders (τ = 2.3) has very high variance, so we do not draw
conclusions about this case. Note also that the conclusions are relevant in
situations where social-distancing measures make the underlying infection
rate not too high, this corresponds to the choice of β = 0.05 here. Though it
is beyond the scope of this study, note that quarantine time can be reduced
by providing prompt testing to people who are notified to quarantine by
the CTA.

Here we note a surprising feature that applies to underlying networks
with relatively few super-spreaders (τ = 3.3) in Figure 21. In this case,
Quar(p) is roughly unimodal, meaning that when the uptake percent-
age p% is small, the amount of quarantine time per person increases as p
increases. However, roughly, the amount of quarantine is maximised for
some p⋆% < 100%, and decreases above p⋆.

This means that using CTAs only increases the average quarantine time
below uptake p⋆ but not above it. We mention that p⋆ depends on the uptake
scenario, and comes earlier with recommendation scenarios than with
random uptake. In [100, Figure 7] the same phenomenon is observed for
various levels of infectiousness of the disease: this rough unimodality in
Quar(p) is robust for these underlying networks. However, it disappears
for networks where either there are more super-spreaders (so the data is
too noisy to draw conclusions) or the geometry is less apparent.

We conclude that, in this particular setting, using CTAs at high uptake
rates is effective not only for reducing the epidemic size and maximum
hospital load of the epidemic but also in reducing the average quarantine
length.
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8.3.6 Other parameter values

The experiments in Figure 21 assumed an epidemic model (see Sec-
tion 8.2.2) with a low rate of infection β = 0.05. This means that each
infectious node infects each of its susceptible neighbours with probabil-
ity β at every time step (e.g., every day). Low rates of infection can be
achieved by social-distancing measures. The results that we have men-
tioned so far are robust over other infection rates, see [100, Figure 4–7].

8.4 experiment 2 : strictness of quarantine measures

It has been observed that the severity of symptoms varies with the individ-
ual [53, 183, 205, 226]. In our model, we assume that there is an underlying
probability distribution that determines whether an individual would be
symptomatic in the case that this individual is infected, and also that there
is an underlying probability distribution determining the severity of these
symptoms. Policy makers may then impose quarantine or home isolation
on individuals that have symptoms above a certain severity-threshold;
setting the threshold is a political/economic decision. In our model, the
strictness of quarantine measures is represented by a value q ∈ [0, 1]. This
quantity q is the fraction of individuals whose symptoms would be so se-
vere that they would go into home-quarantine if infected. Strict quarantine
measures correspond to large values of q – in the extreme, taking q = 1

means that all infected individuals would go into home-quarantine. We
recall that we work under the assumption that all relevant symptoms are
caused by this virus, which is important for interpreting the results in this
section.

For any given epidemic, there is an underlying probability qsymp, which
is the proportion of infected individuals that experiences any symptoms
upon infection (mathematically, the probability of showing symptoms
upon infection). Implementing a quarantine-strictness q > qsymp would
require a program of mass testing. The implementation of such a test-
ing program is beyond the scope of this chapter, however we make two
remarks:

(1) For many epidemics, the value of qsymp is fairly high (for COVID-19,
the literature is varied, [214] finds a qsymp ≈ 0.3 over all population,
varying in age, [187, 203] find it ≈ 0.6 and ≈ 0.7, respectively, while
[118] finds it as high as ≈ 0.85).
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(2) our results indicate that setting quarantine-strictness even below
qsymp can still be effective for decreasing the epidemic size and
maximum hospital load.

The social benefits of quarantining measures are nuanced. While quar-
antining clearly helps to reduce the size of the epidemic (Size) and the
maximum hospital load (HMax), it also comes at the high societal cost
of reduced work capacity. As a policy maker, one might like to balance
the reduction in Size and HMax against Quar, the average number of
days spent in quarantine per person, over the course of the epidemic.
In Experiment 1 we took the fixed value q = 0.6. In Experiment 2, we
study how the setting of the quarantine-strictness q affects all of these
KPIs. In this experiment, we vary the quarantining strength q and the
CTA-uptake percentage p% for the four CTA-uptake scenarios. Our results
are summarised in Figure 24, that we elaborate below.

8.4.1 Reducing epidemic size & hospital load by stricter quarantining

Increasing the quarantine-strictness q (i.e., requiring individuals to quar-
antine even with mild symptoms) reduces the number of individuals who
are able to spread the virus, and hence reduces the epidemic size and
maximum hospital load of the epidemic. This is a very natural observa-
tion, valid across all parameter settings and underlying contact networks.
The top row of Figure 24 shows how the size of the epidemic decreases,
for various CTA-uptake percentages p%, as the quarantine-strictness q
increases. We observe that for q1 > q2, for any fixed p and uptake scenario
□ = rand, basic, ring, deg,

Size□,p(q1) ⩽ Size□,p(q2), HMax□,p(q1) ⩽ HMax□,p(q2).

However, the rate of decrease varies across uptake scenarios. Figure 25

shows that in the case with fewer super-spreaders (τ = 3.3) typically

Sizedeg,p(q) < Sizering,p(q) < Sizebasic,p(q) < Sizerand,p(q), (8.4.1)

by plotting the various uptake scenarios on the same diagram. To some
extent, Inequality (8.4.1) also holds with more super-spreaders (τ = 2.3)
but the curves for the recommendation scenarios are close, or overlapping,
in these cases. Similar results hold for HMax, as shown in [100].

Going back to Figure 24, we find that the Size and HMax curves are
steepest under degree-targetted uptake, ring recommendation is second



312 increasing efficacy of contact-tracing applications

Figure 24: Influence of the quarantine strictness q for various uptake percentages p%
and the four uptake scenarios: the KPIs are plotted against q, the quarantine
strictness. We work here with a fixed underlying GIRG with τ = 3.3 (fewer
super-spreaders) and α = 2.3 (more geometric). Each column represents a
given uptake scenario (random, basic-recommender and ring-recommender,
and degree-targetted). The x-axis shows the quarantine strictness q varying
from 0 to 1 at step size 0.05. Simulations are done for the 21 values of q
corresponding to these steps. There is an additional simulation point at 0.02 (in
order to avoid division by 0 in the computation for HMax and still have a point
close to 0). The y-axis shows the corresponding value of the KPI. The curves
on each figure correspond to the different uptake percentages, as labelled. For
each parameter value, the plotted result is the median over 5 runs. The shaded
region around the plot covers the results of all 5 simulations. The infection rate
is β = 0.05.
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(a) Less geometric (α = 1.3), few super-spreaders (τ = 3.3).

(b) More geometric (α = 2.3), few super-spreaders (τ = 3.3).

(c) Less geometric (α = 1.3), many super-spreaders (τ = 2.3).

(d) More geometric (α = 2.3), many super-spreaders (τ = 2.3).

Figure 25: Experiment 2 on four GIRGs. Each column represents an uptake percentage.
The x-axis shows the quarantine strictness q varying from 0 to 1 at step size 0.05.
Simulations are done for the 21 values of q corresponding to these steps. The
y-axis shows the corresponding value of the KPI. The curves in each figure
correspond to the different uptake scenarios, as labelled. For each parameter
value, the plotted result is the median over 5 runs. The shaded region around
the plot covers the results of all 5 simulations.
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best, while basic recommendation still performs better (declines more
steeply) than random uptake. This is similar to what we have already
observed in Section 8.3.

Figures 13–15 in [100] are qualitatively similar to Figure 24 and consider
GIRGs with other parameters. For network with more super-spreaders, the
effects are even more exaggerated. The observation that recommending
helps significantly already at very low uptake rates remains valid.

8.4.2 Improving CTA efficacy by slightly increasing quarantine strength

We next study the shape of the curves Size□,p(q) and HMax□,p(q) for
fixed p as q varies and □ = rand, basic, ring, deg. Intuitively, we examine
what happens when we slightly increase the quarantine strength q, espe-
cially in the mild-quarantine scenario where q < 0.5. We first note (From
Figure 24) that without a CTA present (p = 0%), HMax decreases roughly
linearly as a function of q. Whenever a CTA is present, (p% > 0%) HMax
becomes a steeply decreasing convex function of q for low q.

The main message is: a somewhat stricter quarantine rule can already
lower the maximum hospital load and thus “flatten the curve” very well
in the presence of a CTA. A similar observation is valid for Sizep(q): the
curve is concave for p% = 0%, while it becomes linear or convex when p
increases.

When the value of q is small (so the quarantine measures are not strict),
Figure 24 also shows that another way to flatten the curve is to increase
the uptake percentage: the rate at which Size and HMax decrease is
much higher for large CTA-uptake percentages: our numerical simulations
indicate that (for the values of p that we have tested) when p1 > p2 and
dq is a small positive number,

Sizep1(q) − Sizep1(q+ dq)≫ Sizep2(q) − Sizep2(q+ dq),

HMaxp1(q) − HMaxp1(q+ dq)≫ HMaxp2(q) − HMaxp2(q+ dq).

Thus a high(er) CTA uptake rate makes it possible to impose less strict
quarantine measures and yet keep the epidemic size and hospital load
under control.

We mention that these findings are robust across underlying networks.
Figures 13–15 in [100] illustrate qualitatively similar behaviour for net-
works with more long connections and super-spreaders.
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8.4.3 Reducing quarantining by quarantining

Although it is valuable to increase quarantine-strictness in order to re-
duce Size and HMax, one may wonder whether stricter quarantine mea-
sures require more social sacrifice. Our experiments demonstrate that
the picture is not this simple: Row 3 of Figure 24 shows that, for ev-
ery positive CTA-uptake percentage p% and every uptake scenario □ =

rand, basic, ring, deg, the curve Quar□,p(q) is roughly unimodal. Thus,
once q is sufficiently large (larger than some value q∗□,p depending on the
uptake scenario □ and the uptake percentage p%), increasing q actually
decreases the average number of days that people have to quarantine. One
reason for this might be that the quarantining decreases the spread of
the epidemic (so other individuals do not get infected and cause further
quarantining).

This observation is most useful if the CTA-uptake percentage p% is
high enough that q∗□,p < qsymp, so that quarantine-strictness quantities
q > q∗□,p are easy to implement in reality. Note that q⋆□,p also depends on
the infectiousness of the disease. Stricter social distancing, corresponding
to lower reproduction number, leads to lower value of q⋆□,p. Thus, when
social-distancing measures are in place, it will be more possible to reduce
the average time that people quarantine by setting q > q∗□,p.

8.5 conclusion and outlook

The research leading to Chapters 7 and 8 was performed in the early
stage of the COVID-19 pandemic (first six months of 2020), during which
there were many uncertainties about the evolution of the epidemic and the
impact of intervention measures (including contact-tracing applications).
Some of the results were presented to local governments. Although the
addressed research questions are less pressing at the moment, some of
the insights could still be of future importance from an epidemiological
perspective. Besides that, the simulation-based results show interesting
phenomena, which would be interesting to study from a mathematically
rigorous perspective.

We have used scale-free networks embedded in a geometric space to
study interventions methods. The geometry allows for intuitive modelling
of several intervention methods as seen in Chapter 7 for an SIRS epidemic:
social distancing, travel restrictions, and meeting a limited number of
people. We compared the effect of these interventions by ‘permanently’
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modifying the underlying contact network, while maintaining the same
average node-degree across interventions. We found that the strong travel
restrictions are most effective in elongating and diminishing the first peak:
the shape changes from exponential to linear. However, travel restrictions
and meeting a limited number of people result in a higher second peak,
where the latter restriction yields the highest second peak. We could
explain the effects of the intervention measures on an intuitive level, by re-
lating it to different universality classes for the typical graph distance. Our
main conclusion was that the behaviour of the epidemic highly depends
on the topology of the network.

An interesting topic for future research is to study the fluctuations of the
epidemic curve immediately after the first peak. In models with infinite
variance degrees (τ < 3, similar to the preferential attachment models
considered in Part i), the oscillations seem to be less significant than in
models with τ > 3. This result is even more exaggerated if the typical
graph distance is not of poly-logarithmic order.

One of the main goals of Chapter 7 was to compare the effect of an un-
derlying geometry influences the spread to two inherently non-geometric
network models: the configuration model and standard continuous com-
partmental models. It would be of interest to involve spatial variants of
the compartmental models into this comparison [80, 120, 224].

Several adjustments can be made to make the model more realistic.
Other compartments could be added, or one could study a scenario where
interventions are only applied once certain thresholds in the number of
infected nodes are exceeded, or are being lifted.

In Chapter 8 we considered a different epidemic model: instead of
temporary immunity we considered long-lasting immunity; besides that,
the presence of a contact-tracing application that induces quarantining
changed the dynamics significantly. While some of the observations (i.e.,
concavity or convexity of the size of the epidemic as the percentage of
CTA-users/quarantining-strictness is varied) are possibly hard to prove
rigorously, it would be of interest to prove that stricter quarantining can
lead to less quarantining for large enough values of q (possibly for a
simpler model than GIRGs), i.e., to show theoretically that the curve
Quarp(q) described in Section 8.4.3 is indeed unimodal.







9
D I S C U S S I O N A N D O P E N P R O B L E M S

In this thesis, we studied graph and weighted distances, and component
sizes in various scale-free random graphs. Our theoretical results from
Part i on distances in random graphs whose degree distribution has infinite
variance, gave (together with related results from literature) intuition for
the possible spread of COVID-19 as illustrated in our simulation-based
studies in Part iii. These studies showed that the underlying (possibly
spatial) structure of networks heavily influences epidemics. In Part ii we
studied the component structure in a large class of spatial random graph
models, which contains geometric inhomogeneous random graphs (the
random graph model used in Part iii) as a special case.

In Section 8.5 we have already mentioned possible directions for future
research related to Part iii. As Parts i and ii form the main contribution
of this thesis to the mathematical literature, we conclude the thesis by
discussing some possible avenues for future research that are related to
these parts.

9.1 first-passage percolation in scale-free random graphs

In Chapter 2 we established the first results on weighted distances in the
three preferential attachment models (PAMs) defined in Section 1.2.2: fixed
preferential attachment (FPA), variable preferential attachment (VPA), and
generalised variable preferential attachment (GVPA). The same universality
classes of weight distributions from Definition 2.1.3 appear for static
models as the Configuration Model (CM) [2, 22, 21], and for the spatial
models scale-free percolation (SFP), geometric inhomogeneous random
graphs (GIRG), hyperbolic random graphs (HRG) [136, 166], when τ ∈
(2, 3). Our technique developed for a dynamic model can be adapted to
obtain similar results on static models for weight distributions in the
conservative class. In particular, the improved recursion on (sk)k⩾0 in
(2.3.9) above can be used to prove tightness of typical weighted distances
in CM for τ ∈ (2, 3) around the main term under condition (2.2.3), proving
part of [2, Problem 2.10].

319
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For a fixed τ ∈ (2, 3), the main difference between CM and the pref-
erential attachment models studied in Part i is that all distances in the
three PAMs are roughly twice the distance in CM. For CM, the main
term of the graph distance is 2 log log(t)/| log(τ− 2)| [132], compared to
4 log log(t)/| log(τ − 2)| in PA. Combining the results on weighted dis-
tances in CM [2] with our results, after a variable transformation on the
sum in Qt in (2.1.3), the factor two extends to weighted distances, i.e.,

d
(L)

CMt(τ)
(u, v)

/
d

(L)

PAt(τ)
(u, v) −→ 2 , as t→∞.

This is due to the difference of the geometry of typical shortest paths: in
CM high-degree vertices are often directly connected via an edge, while in
the PAMs we need two edges to connect two high-degree vertices. This
factor two is studied in [72], where it is illustrated how this factor two
vanishes in GVPA(f) (see Definition 1.2.5) with power-law exponent τ = 3
and a function f that has logarithmic corrections.

For spatial preferential attachment as introduced in [142], an upper
bound on the graph distance is established in [123]: it uses a similar two-
connector procedure that we also use in Chapters 2 and 3. In the proof for
the upper bound, the authors show that two vertices with high degree
are connected via two edges, similarly to the non-spatial models. To the
extent of our knowledge, no matching lower bound for spatial preferential
attachment is known, although for the age-dependent random connection
model (a variant of the spatial preferential attachment), matching upper
and lower bounds are known when the typical graph distance scales as
Θ(log log(t)) [106]. Thus, it would be interesting to translate our results
on the typical weighted distance to these models.

Another interesting property is the hopcount, the number of edges on
the least-weighted path. For Erdős-Rényi random graphs (ERRG) with
i.i.d. exponential weights on the edges, it is known that the hopcount is
much larger than the graph distance [27]. We conjecture that a similar
result should hold for preferential attachment models with explosive edge
weights, as these models contain a subgraph on at least

√
t vertices (called

the inner core in Section 2.3) that dominates a dense ERRG. Moreover,
we expect that the hopcount in variable preferential attachment and fixed
preferential attachment is tight around the sequence 2K∗t for any weight
distribution of the form L = 1+ X with I(X) = ∞, improving Theorem
2.2.6. To show this, however, a better upper bound is necessary. For the
conservative class, extending Theorem 2.2.6 on the hopcount to weights
that are not bounded away from zero is more difficult, and requires a
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detailed study of the hopcount within the dense inner core. We also believe
that (2.2.3) in Theorem 2.2.5 is not a necessary condition. However, we
were not able to remove it in our proof of the upper bound.

Lastly, it would be interesting to study the geodesic (i.e., the least-
weighted path) in the neighbourhood of u and v in more detail. Would
it be possible to prove local weak limits of the geodesic of the parts close
to u and v? For CM, local weak limit theorems are established in [74]. We
conjecture that using Theorem 2.2.9 in the present chapter and results from
[24, 71, 97], similar results can be derived for PAMs. Another interesting
question would be to analyse the age distribution of the vertices on the
geodesic beyond the local neighbourhood of u and v.

9.2 evolving properties in pams and related models

Chapter 3 commences a research line by studying an evolving graph
property (other than the degree of fixed vertices [70, 193]). Statements
involving the evolution of a property describe the structure of the graph
during a time interval, rather than at a single time. We consider the evolution
of a global graph property: the distance evolution in two classical PAMs,
FPA and VPA. Studying a global graph property requires a more fine-
grained control of the entire graph than required for a local graph property,
such as the degree evolution of a fixed vertex, and yields more insight on
the evolution of the structure of the graph.

One of the main reasons to consider distances for these PAMs is that
they display a notable change over time. The growth terms decrease from
log log-order to constant order as the graph grows. This is in contrary
to, for example, the local clustering coefficient, a graph property related
to the number of triangles which a typical vertex is a member of. The
local clustering coefficient of a typical vertex is of constant order and
tends to zero for typical vertices due to the locally tree-like structure in
classical PAMs. However, one could analyse the local clustering coefficient
in versions of PAMs that are not locally tree-like. Static analyses of the
local clustering coefficient on spatial variants of PAMs have been done in
[105, 142]. The local clustering coefficient of the age-dependent random
connection model, a spatial variant of PAMs, has been done in [135].

A natural extension would be to study the distance evolution in PAMs
where the asymptotic degree distribution has finite variance. For this
regime, it is known that the static typical graph distance is of order
Θ(log(t)), but the precise constant has not been determined [81]. We
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expect that in this regime the time-scaling of the growth is different from
the scaling of the hydrodynamic limit in Corollary 3.1.2 and to see the
distance drop by a constant factor when t ′/t is of polynomial order, rather
than stretched exponential in the logarithm.

As mentioned above, matching lower and upper bounds were estab-
lished for graph distances for some regimes in the age-dependent random
connection model [106]. Parts of our techniques should help to establish
results on the distance evolution for this spatial model. The age-dependent
random connection model is a special case of the kernel-based spatial
random graphs (KSRGs) studied in Part ii (it uses the kernel κpa, and
the marks should be interpreted as a rescaled age). Relating Parts i and
ii of this thesis, it would be of interest to understand the evolution of
the component-size distribution in the age-dependent random connection
model.

In most PAMs the graph and its edge set are increasing over time. In
[57, 65] variations of PAMs are introduced where edges can be deleted. As
a result the distance evolution is no longer monotone and other behaviour
may be expected. The variations of PAMs mentioned in Section 1.2.3 all
have properties that can be considered from a non-static perspective.

9.3 cluster-size distribution in spatial random graphs

In Part ii and the accompanying paper [151] we study the cluster-size
decay of kernel-based spatial random graphs (KSRGs), and consider the in-
terpolating kernel κ1,σ in (1.3.5) to obtain the interpolation KSRG (i-KSRG)
that contains many well-known models as special cases. These works open
up several avenues for future research beyond proving Conjecture 4.2.1
for the entire parameter regime (without o(1)-errors, and also for i-KSRGs
on Zd).

Monotonicity of ζ in the nearest-neighbour regime

In the regimes where we have proofs for the cluster-size decay (6.1.2),
the stretch-exponent ζ = ζ(α, τ,σ,d) is monotone in the parameters. For
parameters such that ζnn = max{ζll, ζlh, ζhh} (see (4.2.4), (4.2.2), (4.2.1),
(4.2.5)) we can still show that the stretch-exponent ζ equals ζnn. Moreover,
for α, τ = ∞ (corresponding to nearest-neighbour bond percolation or the
soft random geometric graph), the cluster-size decay is also known to be
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stretched exponential with parameter ζ = (d− 1)/d [110, 158] (for the soft
random geometric graph it is only proven for d = 2 in [175, 211]).

This naturally raises the question whether ζ exists for any parame-
ters α, τ, σ, d, p, β that give rise to a supercritical i-KSRG. The non-
monotonicity of the second-largest component under inclusion of edges
makes this highly non-trivial. A positive answer to the question would
prove Conjecture 4.2.1 additionally for the parameter regime where ζnn >

max{ζll, ζlh, ζhh}.

Deviation principles for the size of the giant component.

Our results characterise the speed of the lower tail bound of large devi-
ations (LTLD) for the size of the largest component (up to o(1) error in
the exponent). It would be a natural (but far from trivial) extension to
remove the o(1)-error and determine also rate of the LTLD, thus obtaining
a large-deviation principle for the lower tail.

Instead of considering the lower tail bound for large deviations (of
which we show that it has stretched-exponential decay in many cases), an
alternative is to consider the upper tail bound. We expect that this bound
decays as a polynomial in n, rather than stretched exponentially. A related
work in progress is [133], which studies the upper tail bound for the total
number of edges in KSRGs.

As a side result of our study of small components, we established a weak
law of large numbers for the size of the largest component. Besides studying
large deviations of the size of the largest component, it would be of interest
to study lower-order deviations for the size of the giant component, and
to see when a central limit theorem (CLT) is satisfied. In [92], it is shown
that the number of isolated vertices in hyperbolic random graphs, a 1-
dimensional KSRG using the product kernel, satisfies a CLT if τ > 3 (when
the degree distribution has finite variance) and does not satisfy a CLT when
τ ∈ (2, 3) (corresponding to a degree distribution that asymptotically has
infinite variance). Of course, limit theorems could also be proven for other
graph properties than the size of the giant component, e.g. independence
number, domination number, set- and vertex-cover, similar to the laws of
large numbers established for the random geometric graph [185].
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Scaling limit of random walks.

The understanding of the geometry of clusters (both the largest/infinite
component and isolated component) could help in studying other prop-
erties of i-KSRGs, in particular simple random walks on these graphs.
Transience and recurrence of simple random walks on (special cases of)
i-KSRGs with non-trivial kernels have been studied in [107, 121], while
more recently the mixing time, and cover and hitting times have been
studied in [52, 161, 163].

Related to the study of evolutional properties in Chapter 3, it would be
of interest to study the evolution of the mixing time of a random walk in
the age-dependent random connection model.

(Sub)critical and dense i-KSRGs.

While supercritical KSRGs with non-trivial kernels have been studied ex-
tensively in the past years, the (sub)critical counterparts have received less
attention. The existence of subcritical and supercritical phases by varying
β are studied in [108, 109, 144], and first steps to study properties of sub-
critical KSRGs are made in [79] for higher dimensions. Yet, further steps
need to be taken before results for the cluster-size decay can be obtained
similar to [6] for nearest-neighbour percolation (in which case the decay is
exponential). For (sub)critical long-range percolation, a polynomial upper
bound on P

(
|C(0)| ⩾ n

)
is obtained in [138], but no lower bounds are

proven (for subcritical long-range percolation it is expected that the decay
is exponential, rather than polynomial).

For some parameter regimes of i-KSRGs, i.e., when τ < 2+ σ or α <
1/(τ− 2), the model is supercritical for every value of β ∈ (0,∞) and
p ∈ (0, 1) and the model is called robust [109]. For those parameters it
would be of interest to study sequences (βn)n⩾1 tending to zero so that the
sequence of KSRGs with parameters (α, τ,σ,d,βn) is in a critical window,
or chosen barely supercritical. Defining and identifying such regimes –
and finding a potential relation to ζ– would already be interesting, and
would allow for comparison to (non-spatial) analogues of the models:
the configuration model and rank-1 inhomogeneous random graph with
infinite variance degrees. For such models and parameters, the critical
window, and component sizes have been studied in a sequence of papers
[25, 77, 78].
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On the contrary, instead of considering sequences (βn)n⩾1 tending to
zero, one may consider sequences (βn)n⩾1 that tend to infinity, so that
the average degree is increasing in n. To the extent of our knowledge, no
results on KSRGs are known for such dense models.

Variations and generalisations of KSRGs

We highlight a few variations of KSRGs that could be interesting from
both a mathematical and (more) applied perspective. For instance, the
vertex set could be embedded in other metric spaces, e.g. a Riemannian
manifolds, or be formed by other point processes, or the edges may be
directed.

Alternatively, the role of the marks could be changed and could lead
to interesting behavior: instead of assigning an i.i.d. non-negative marks
Wu to each vertex u, one could assign i.i.d. vectors Wu := (W(1)

u , . . . ,W(r)
u )

whose entries are dependent. The kernel κ(Wu, Wv), described near (1.3.4)
for the traditional KSRG, should still be symmetric and map to R+. The
simplest kernel to work with, corresponding to κprod in (1.3.4), is to take
the inner product of the weights. The obtained graph with this inner-
product kernel could be viewed as a superposition of dependent KSRGs.
Thus, by choosing the distribution of W such that the entries are nega-
tively (respectively positively) correlated, one could model disassortative
(respectively assortative) communities, which could lead to graphs where
the giant component is non-unique. For non-spatial random graphs, this
model is known as the random dot product graph [227], which has gained
significant attention in the field of statistical inference (see [13] for an
overview).
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S U M M A RY

This thesis is centered around the analysis of supercritical random graphs
in which the parameters are tuned such that the degree distribution has
infinite variance, similar to many real-world networks. The theoretical
understanding of the models that is obtained in the first two parts of the
thesis, is used in the third part to give qualitative answers for questions
that arised during the COVID-19 pandemic, based on simulations.

Part I: Distances in preferential attachment models. In Chapter 2 we study
first-passage percolation, a theoretical model for information or disease
spreading, on three preferential attachment models: a dynamic random
graph model in which vertices arrive over time, and connect to vertices
that are already present in the graph, favouring connecting to already
high-degree vertices. Each edge is equipped with a non-negative i.i.d.
weight, representing the transmission time of a message to cross an edge.
The weighted distance between two vertices is the sum of the edge weights
along the least-weighted path in the graph between the two vertices. We
study the weighted distance between two typical vertices, i.e., vertices
chosen uniformly at random from the largest component when the graph
has size t, and the number of edges on this path, the typical hopcount.

We prove that there are precisely two universality classes of weight
distributions, called the explosive and conservative class, and describe
the limiting behavior precisely for any weight distribution. If the edge-
weight distribution is in the explosive class, the typical weighted distance
converges in distribution to a finite random variable that we describe in
terms of the explosion time of the local weak limit of the graph. If the
edge-weight distribution is in the conservative class, we prove that the
typical weighted distance tends to infinity, and we give explicit expression
for the main growth term around which the fluctuations are tight under
mild conditions on the weight distribution L.

In Chapter 3 we study how the weighted distance between two fixed
typical vertices ut, vt (sampled uniformly from the graph at time t) evolves
as the surrounding preferential attachment graph grows for time t ′ > t.
We identify a function Qt,t ′ such that the weighted distance between ut
and vt measured at time t ′, stays within a tight strip around the function
Qt,t ′ for all t ′ ⩾ t and any t sufficiently large.

Part II: Cluster-size decay in kernel-based spatial random graphs. In Part ii
we study the distribution of the sizes of finite connected components in a
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framework called kernel-based spatial random graph models (KSRGs). In these
models, the vertices are embedded in a d-dimensional Euclidean space
(nearby vertices are more likely to be connected), and equipped with a
positive mark (high-mark vertices are more likely to form connections).
The parameters are tuned such that the model is supercritical, that is, the
graph contains an infinite connected component almost surely. We show
for a wide range of KSRGs that the probability that a typical vertex is
in a finite component of size at least k, decays stretched exponentially
with k, i.e., exp(−Θ(kζ)) for some ζ ∈ (0, 1). We explicitly identify a
formula for ζ which undergoes several phase transitions in terms of the
model parameters: it depends amongst others on the amount of degree-
inhomogeneity and long-range connections in the graph.

In Chapter 5, we are specifically concerned with KSRGs that are similar
to continuum scale-free percolation and/or hyperbolic random graphs,
but also give intuition for the cluster-size decay for other models, such
as the age-dependent random connection model, that we study in more
detail in an accompanying paper that is not included in the thesis [151].

Our proofs always work if the structural inhomogeneity is “sufficiently
large” compared to the spatial dimension d. When there is less inhomo-
geneity in the graph, we expect that the cluster-size decay is similar to
the graph obtained by nearest-neighbor bond percolation on Zd (NNP),
and that the formula ζ depends only on the dimension d: in Chapter 6,
we study supercritical long-range percolation on Zd, where two vertices
x,y are connected by an edge with probability proportional to ∥x− y∥−αd,
independently of other edges. A small value of α corresponds to more
long-range edges. We show that when α > 1+ 1/d, under the (technical)
condition that the edge density is sufficiently high, the cluster-size decay
is stretched exponential with exponent ζ = (d− 1)/d, similar to NNP.

Part III: Agent-based modeling: infection spreading. Motivated by COVID-
19, we conduct two simulation-based studies of spreading processes on
networks: we demonstrate the influence of space and the presence of
structural inhomogeneity on various characteristics of spreading processes
(using a special instance of a KSRG), using spreading processes that are
more advanced and realistic than first-passage percolation. We compare
these characteristics to more traditional models for disease spreading
(such as compartmental models). We present how the KSRGs can be
used to model intervention strategies. This gives intuition for qualitative
implications of the intervention strategies in Chapter 7, and the usage of
contact-tracing applications to mitigate infection spread in Chapter 8.
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