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Healthcare systems are under pressure from an aging population, rising costs, and increasingly complex

conditions and treatments. Although data are determined to play a bigger role in how doctors diagnose and

prescribe treatments, they struggle due to a lack of time and an abundance of structured and unstructured

information. To address this challenge, we introduce MediCoSpace, a visual decision-support tool for more

efficient doctor-patient consultations. The tool links patient reports to past and present diagnoses, diseases,

drugs, and treatments, both for the current patient and other patients in comparable situations.MediCoSpace
uses textual medical data, deep-learning supported text analysis and concept spaces to facilitate a visual

discovery process. The tool is evaluated by fivemedical doctors. The results show thatMediCoSpace facilitates
a promising, yet complex way to discover unlikely relations and thus suggests a path toward the development

of interactive visual tools to provide physicians with more holistic diagnoses and personalized, dynamic

treatments for patients.
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1 INTRODUCTION

With an aging population and rising healthcare costs, the pressure on healthcare systems is in-
creasing [19]. This pressure is especially felt by doctors and nurses. While not a universal cure,
information systems promise to make a significant impact to help doctors with documentation, in-
formation retrieval, and decision support. One example is the introduction of the electronic health
record (EHR) system, where EHRs contain medical narratives. These are textual notes about the
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Fig. 1. Doctor’s simplified workflow, current problems for diagnosing non-straightforward conditions, and
how our tool can help.

patient’s condition and progress, to which doctors mainly contribute and onwhich diagnoses heav-
ily rely [33]. However, analyzing the information contained in these notes is hard because of the
complexity of medical issues, the different formats of the EHR systems, and the usability of hospi-
tal systems displaying these notes. These systems display textual notes as lengthy lists of narrative
text that require extensive scrolling, which leads to information overload and consequently narra-
tive fragmentation [58]. These lengthy lists are not surprising because, on average, individual notes
contain 642 words [51] and patients have hundreds of them. Chronically ill patients often have the
most notes, e.g., a patient with chronic kidney disease in the U.S. has on average 338 notes [49].
Physicians in the U.S. spend on average 5 [47] to 9 [59] minutes to review the patient information
in the EHR per patient encounter (in total 1.5 hours per day [59]). However, this slightly differs per
specialty, e.g., endocrinologists spend the most time reviewing EHRs (33% more) and cardiologists
the least (44% less) [59].

Especially, diagnosing patients with non-trivial conditions is a tedious task, which could take
up to 4.8 years [16] and generate many notes. It is not surprising that physicians misdiagnose
approximately 5% [18] to 15% [45] of their patients, ranging from 5% in radiology to 12% in emer-
gency medicine [45]. These errors can have serious consequences regarding the patient’s chances
of health and treatment success, medical costs (testing for diagnostic purposes accounts for ap-
proximately 10% of the healthcare costs in the U.S. [45]), and the doctor’s time (0.1% of hospital
visits and 0.4% of hospital admission in the U.S. are results of diagnostic error-associated adverse
events [45]).

Visual analytic tools could aid in getting a more holistic overview of the patient, especially,
for the doctor’s decision-making process for diagnosing and devising treatment plans. For exam-
ple, Sultanum et al. [56] redesign the structure of the EHR notes, by linking notes with similar
medical concepts together, to find the patient narrative. However, there are limits to how much in-
formation can be assessed in relation: the relationships between diseases (including diagnoses and
symptoms), drugs, and treatments. Likewise, we observe lacking tool support for linking poten-
tially discovered relationships back to textual notes and proposing interesting parts of the patient
history compared to similar patients.
Our contributions are threefold: (1) Insights into decision-support based on EHRs and prob-

lem characteristics of analyzing EHRs for diagnosing patients based on interviews with doctors.
(2) A novel visual analytics decision-support tool, MediCoSpace, for augmenting doctor-patient
consultations to give doctors in hospitals and general practitioners a data-driven overview of
possible relations between diseases, drugs, and treatments, both historically and present, and
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related to similar patients. (3) Results from user expert evaluations that show how MediCoSpace
could broaden the doctors’ solution space, offer new areas of interest, reduce personal biases
and stimulate communication between different medical specialties. In the following sections, we
introduce related work leading to the problem characterization and requirements. We then ex-
plain the data processing pipelines and describe the visualization features of the tool, which are
evaluated by medical experts. Finally, we discuss the findings and conclude with future research
opportunities.

2 RELATEDWORK

This section focuses on previous work on the processing and analysis of EHRs.

2.1 Text Processing and Semantic Concept Extraction from EHRs

Since EHR notes consist of free text, text analysis methods, including approaches that incorpo-
rate knowledge graphs or apply language models, can be used to extract the essential concept
information. Linking data to an ontology is a common practice. Li et al. [39] present a design
framework for named behavioral ontology learning from text. The framework describes linguistic
and statistical approaches to address tasks such as variable and synonymous relationship extrac-
tion. Knowledge graphs [5, 31, 52] provide insights into (hierarchical) relations and the structure
of medical concepts in relation to medical ontology knowledge. For instance, Li et al. [40] present
a visual analytics approach by linking medical event sequences to a subgraph in a medical knowl-
edge graph using a domain-knowledge–guided recurrent neural network (DG-RNN) model. Such
approaches are effective, yet limited to the information stored in the particular knowledge graph
in use.
Deep-learning-based language models (e.g., BERT [11]) have reached high performance in di-

verse natural language processing tasks. These models are pre-trained on large corpora, learn-
ing language structures in an unsupervised manner. Furthermore, domain or task-specific fine-
tuning, i.e., adapting the pre-trained weights according to language characteristics of a specific
domain (also known as additional pre-training) or downstream task [12], is also commonly used
in the medical domain. There are several medical domain-specific adaptations of BERT, such as
BioBERT [38] and PubMedBert [23] (both additionally pre-trained models on large-scale biomedi-
cal corpora), and ClinicalBERT [29] and clinical-kb-bert [25] (both additionally pre-trained on the
MIMIC-III [35] dataset to capture patient-record related information and clinical-kb-bert is also
pre-trained on UMLS [7] ontology knowledge). Neural language models can be used for differ-
ent analysis purposes and downstream tasks. First, we can fine-tune them for the named entity
recognition task. For instance, Sun et al. [57] fine-tune BioBERT on a machine reading compre-
hension task that allows it to predict named entity (chemicals, diseases, and proteins) occurrences.
Second, we can use them to generate contextualized embedding representations (e.g., on word,
sentence, or even document level). To understand named-entity similarity, we can thus use a med-
ical domain-adapted language model to compute their embedding representations and apply a
similarity function to determine their similarity. Since this is a very general approach and is not
restricted to specific named-entity categories, we apply it in our work. Also, Loureiro et al. [41] use
a languagemodel for amedical entity linking taskwith theMedMentions [44] dataset, whereby the
embedding similarity is one step (in addition to entity classification) in their processing pipeline
to link entities to an ontology.

2.2 Physician-centric Visual Analysis of EHRs

Doctors use information systems to access and extend EHRs. Currently, Epic [14] is one of the
most common commercial EHR systems, which, according to doctors, still suffers from problems,
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see the top of Figure 1. In general, in the research community, interactive EHR visualizations are
most often visualized using bar/line/pie charts, glyphs, and timelines [60]. For example, LifeLines
was one of the first tools to visualize textual notes from EHRs as events on a timeline [17]. Re-
searchers have used this timeline structure to visualize EHRs of individual patients abundantly
[6, 10, 24, 26, 28, 42, 56, 58] to, for example, display cause and effect [48] or disease progression
[50]/risk [40] prediction. Also, Sultanum et al. [56] researched the importance of visualizing text
for assisting doctors. Moreover, van der Linden et al. [58] visualized EHRs in a multiscale way to
find the fragmented narratives based on the different tasks of the doctor.
Furthermore, stepping away from individual patients, many researchers have visualized patient

cohorts as flow visualizations [21, 22, 30, 34, 36, 64, 65] for disease progression, which have limita-
tions in identifying relations. Therefore, Jin et al. [34] visualized causal relations between medical
events and two groups. Furthermore, many researchers have used text [20] or basic plots (e.g.,
line plots) [15] to display summary statistics and heatmaps [30] for visualizing research around
the diagnosis process using medical concepts. For example, Hur et al. [30] focused on diagnosis
predictions, for which they used different heatmaps (one for the entire cohort, one for the patient,
or one to show the difference between them) to show the weights of the medical concepts used in
their model.
While these tools make important steps, the diagnosis and creation of non-trivial treatment

plans are more difficult than more trivial ones. To our knowledge, no medical decision-support
system addresses relationships between diseases, drugs, and treatments combined with advanced
search support within the patient’s history and across similar patients, and links this back to pa-
tient reports to discover and leverage possibly overlooked relations.

3 PROBLEM CHARACTERIZATION

In this section, we describe the first steps of our user-centered design (UCD) process [63].

3.1 Physician’s Workflow

By interviewing a cardiologist (D1), a general practitioner (D2), a medical student (D3), and two
medical doctors in internal medicine (D4) and cardiology (D5) about their workflows and com-
paring them to the processes from Balogh et al. [4] and Adler–Milstein et al. [1], we identified
the following general workflow for diagnosing and making treatment plans for non-trivial condi-
tions for doctors of all specialties and experience levels, see Figure 1. Accordingly, the interviewed
doctors were from different specialties and experience levels. First, the doctor looks up patient ap-
pointment details. The patient already went through the experiencing health problems and engaged
with the healthcare system stages from Balogh et al. [4]. Second, the doctor reviews the EHR for
the medical history and the current disease(s) as preparation (related to the information integra-
tion and interpretation stage [1, 4]). Third, the doctor speaks with the patient and might conduct
physical tests (related to the information gathering stage [1, 4]). Fourth, the doctor reviews the EHR
in more detail to find previous and present diagnoses, issues and physiology, and how the patient
appears to progress. Based on this, next steps (related to the formulation of next steps [1]) could
be conversations with colleagues and possibly diagnostic testing (related to the information gath-
ering stage [1, 4]). Also, the doctor matches the symptoms to the most probable diseases to form a
working diagnosis (related to working/leading diagnosis stage [1, 4]), after which they research the
best treatment option online and communicate this to the patient. This is often an iterative pro-
cess possibly with multiple cycles based on certain outcomes. These final steps also correspond
to the final stages of Balogh et al.’s [4] and Adler–Milstein et al.’s [1] processes. We noticed that
it differs per specialty how much information the doctors require from the EHR. For example,
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internal medicine requires a deep dive into the EHR because patients often have vague symptoms,
while a cardiologist often needs less information because medical imaging often indicates the main
problems directly.
Also, doctors indicated that it is hard to find the correct disease based on ambiguous symptoms.

The occurrence frequency of a disease also needs to be taken into account, as well as the patient’s
lifestyle context; and sometimes it is hard to mentally let go of an initial diagnosis. Visual analytics
can assist the doctor (in stages two and four of our workflow) in finding relations between symp-
toms, diseases, treatments, and drugs to get a more holistic overview of the patient to guide the
doctor in information gathering, finding working diagnoses, and possible treatments.

3.2 Tool Requirements

In designing MediCoSpace, we focus on the fourth workflow step, the in-depth EHR review. From
this, we derive the following requirements based on a thematic analysis [8] of the interviews:

R1: Ability to see relations between diseases, drugs, and treatment of past and present for the
current patient.

R2: Ability to see when certain concepts or co-occurrences are mentioned.
R3: Ability to find similar diseases, drugs, or treatments based on a current disease, drug, or

treatment.
R4: Ability to compare the patient’s relations to similar patients to see similarities and

differences.
R5: Ability to link the relations back to the original textual notes of this patient.
R6: Ability to save interesting findings.

4 DATA PROCESSING AND FEATURE EXTRACTION PIPELINE

This section describes our data sources and processing pipelines, see Figure 2, to show relations
between diseases, drugs, and treatments concepts (i.e., medical entities). In the remainder of this
article, we use the following mini case: the task involves generating a diagnosis for a patient with
non-straightforward conditions (mainly cardiovascular diagnoses and a vague current diagnosis;
weakness). We want to see if MediCoSpace can help the doctor with diagnosing this more clearly.
We picked a patient with mainly cardiovascular diagnoses because of the time restrictions of the
evaluation (cardiologists require less of an in-depth analysis).

4.1 Data Sources

We used the Unified Medical Language System (UMLS) version 2019AB [7] as ontology knowledge
of medical terminology. We also used the MIMIC-III [35] dataset as patient record input. Both are
the most extensive, freely available sources suited for our research. The patient from the mini
case had 112 notes with, on average, 300 words and four hospital admissions of, on average,
7 days. This patient had (sub-)diagnoses from 20 (sub-)specialties, e.g., cardiology. We compared
this patient to a population of 19 random patients with similar main cardiovascular diagnoses, see
Section 5. They had, on average, 151 notes containing 460 words, two hospital admissions of, on
average, 14 days, and (sub-)diagnoses from 19 (sub-)specialties.
To measure named-entity similarity, we use an adapted version of BERT called clinical-kb-

bert [25], where the MIMIC-III as well as knowledge base information from UMLS is added into
the model pre-training. We chose this model since the authors show that clinical-kb-bert outper-
forms the corresponding model with no knowledge base information and other state-of-the-art
models. We adapted their model with a pooling layer. By initializing this adapted model with their
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Fig. 2. Data processing pipelines to extract medical concepts from the text. Using two different data sources,
we run two parallel pipelines; (1) processing data from medical ontologies to generate the medical concept
spaces; and (2) processing the EHRs to extract patient medical entities. Lastly, we link the outcomes of both
pipelines to power the visual workspace. The light gray boxes under the arrows describe the in- and outputs
of each step.

pre-trained weights, we further fine-tuned the model onMedNLI dataset [54] and cosine similarity
loss. The MedNLI dataset contains 11,232 training, 1,395 development, and 1,422 test instances. All
other training hyper-parameters from Hao et al. [25] were maintained. We applied several metrics
to evaluate the model’s performance on the sentence-pair similarity task. We only used sentences
from the MedNLI dataset and not from the notes of the mini case patient for the evaluation. We
used the training and test split as proposed by MedNLI [54] for the evaluation. Compared to other
models we tested, such as biobert-nli, bio-clinicalBert, PubMedBert, the fine-tuned clinical-kb-bert
reached the highest performance, see Table 1.

4.2 Medical Ontology Processing for Concept Space Generation

As described before, we used a medical ontology (UMLS) to build a backbone for our analysis. In
particular, we extracted concepts related to diseases, drugs, and treatments UMLS vocabularies
ICD [62], ATC [61], and CCS [2], respectively. To map these concepts to medical entities found
in the patient record data, we used our fine-tuned language model to compute an embedding for
each concept to be able to apply similarity functions. The result of this processing pipeline is a
dictionary of three concept spaces, whereby each concept space consists of a set of concepts (i.e.,
medical entities) that are represented by their names (i.e., strings) and corresponding embedding
vectors.

4.3 EHR Processing for Patient Medical Entity Extraction

The second processing pipeline is related to the processing of EHR data. First, we applied pre-
processing methods to clean the data (removed the anonymized, tagged names) and separate the
original text into meaningful sentences using the spaCy [27] library. After the data pre-processing,
we used the ScispaCy [3] model to extract a set of medical named entity candidates from sentences.
It uses a task-specific model for medically named entity extraction introduced by Lample et al. [37].
We chose this model for the purpose of generalization, i.e., we selected a flexible, fast model with a
performance close to state-of-the-art that does not need entity information to identify entities [3].
From ScispaCy we chose the model that has the best performance on a named entity mention
detection task, independent of the specific entity categories [3]. This allows us to apply the same
data processing pipeline to other data than the MIMIC-III dataset. This occurs if we want to extend
MediCoSpace in the future to, for example, include medical paper abstracts as an extra knowledge
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Table 1. We Fine-tuned Multiple State-of-the-art Models on
the MedNLI Dataset for the Natural Language Inference Task

cosine pearson cosine spearman

biobert-nli 0.79 0.78
bio-clinicalBert 0.77 0.75
PubMedBert 0.76 0.77

clinical-kb-bert 0.81 0.79

These models learned to predict whether a “hypothesis” is true, false,

or undetermined given a “premise.” We can understand how well

these models perform by evaluating the sentence pair similarity. The

sentence similarity task is typically evaluated through different

correlation metrics. The evaluation metrics show that clinical-kb-bert
outperforms other models on this task.

source for doctors to read about new research for certain non-trivial treatments. To be able to
link the extracted entity candidates back to the original UMLS concepts, we used our fine-tuned
language model to represent each candidate as an embedding vector. Hence, the outcome of this
pipeline is a dictionary with medical entity candidates that are represented by their names (i.e.,
strings) and embedding vectors, as well as the original text and its associated metadata (e.g., time
when the record was created).

4.4 Linking Concept Spaces and Patient Medical Entities

Since physicians use synonyms, abbreviations, or misspelled names to refer to concepts in the EHR
data, we mapped the medical entity candidates to concepts in the UMLS ontology. We computed
the cosine similarity

cos(A,B) =
AB

‖A‖‖B‖ =
∑

n

i=1 AiBi√∑
n

i=1 (Ai )2
√∑

n

i=1 (Bi )
2

(1)

between the medically named entity candidate vectors and the UMLS concept vectors. We then
linked entity candidates to UMLS concepts whose similarity exceeds 0.9 (we set this threshold
after evaluating several manual test iterations). The patient had 1,321 concepts: 970 diseases,
321 drugs, and 30 treatment concepts. The entire population yielded 5,410 concepts (3,841 dis-
eases, 1,462 drugs, and 107 treatment concepts). The reason for computing embedding similarity
for entity linking instead of using other entity linking methods (e.g., linking entities to a knowl-
edge base) was the generalizability of the approach. This allows us to apply this method to other
data with different named entity categories, without requiring us to adapt the knowledge base.
Moreover, it took approximately one hour to compute all concepts for the mini case patient on a
conventional laptop.

5 VISUAL ANALYSIS WORKSPACE

We designedMediCoSpace using a UCD process [63] and relevant NIST standards for good design
principles [63]. We will only describe the most important principles and UCD process steps for our
tool. Overall, our tool consists of a limited number of major components (conceptual model and
information density principles [63]). First, the general patient information provides basic patient
information and a quick summary (clinical decision support—patient information summary princi-
ple [63]) (Figure 3(a)). Second, the doctor can record the current note about the patient (Figure 3(b)).
Third, the doctor can select interesting concept relations in the co-occurrence heatmap (Figure 3(e))
(R1/4) and find related concepts (R3) in the similarity plots (Figure 3(d)). The note text (Figure 3(f))

ACM Transactions on Management Information Systems, Vol. 14, No. 2, Article 15. Publication date: January 2023.
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Fig. 3. MediCoSpace’s interface with general patient information at the top (a), the current note the doctor
is working on (b), and the search and filter options (c). The bottom part consists of similarity plots (d.1–3),
a co-occurrence overview heatmap (e) with frequency filter (e.2) and reorder options (e.1), and a timeline
(f1) with clusters of notes (f.2–3). Textual information from the data sources is blanked or replaced by “main
category [number]”, e.g., e.4.

is highlighted (R2/5) based on the selected relation. Finally, the user can save interesting findings
back into the current note (R6). These components (placed in this order) help see multiple facets
of the disease, drugs, and treatment relations in the patient’s history in a single view (clinical
decision support—patient history principle [63]), while taking the doctor’s workflow (workflow
principle [63]) into account. The data from the mini case is displayed in the visualizations.

5.1 Similarity Plots

The similarity plots show similarities between drugs, treatments, and diseases (R3). Since doctors
are not used to complex visualizations that are not used in day-to-day clinical practice, we chose
simple scatter plot visualizations. Each scatter plot displays either the diseases (Figure 3(d).1), drugs
(Figure 3(d).2), or treatments (Figure 3(d).3). Each concept–disease, drug, or treatment–is repre-
sented by a circle. We calculated the circles’ coordinates using the UMAP [43] dimensionality
reduction algorithm on concept embedding vectors, see Section 4. The smaller circles (Figure 4(f))
are concepts that only occur in the population, and the bigger circles (Figure 4(c)) are concepts that
occur in the patient and possibly the population. The closer two circles are, the more similar they
are. The user can hover over a circle to see the concept name. The darker the color is, the higher
the concept occurrence is in the text. The user can zoom in and select concepts (indicated by a pink
border) and concepts that co-occurred with these (get a black border) in the notes by brushing, see
Figure 4(b), (c). Moreover, MediCoSpace links the brushed concepts to highlights in the heatmap
(clinical decision support—contextual patient details and visual design—highlight principles [63]),
see Section 5.2 and Figure 4(d)–(e). The user can only brush one scatter plot at a time to avoid
confusion. The user can clear the brush by clicking a button, see Figure 4(a). We based the colors
for the circles and highlighting on ColorBrewer [9] (visual design—color principle [63]).

ACM Transactions on Management Information Systems, Vol. 14, No. 2, Article 15. Publication date: January 2023.
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Fig. 4. Connected brushing of the similarity plots. The circles in the brushed area are marked pink (b), and
all the circles that co-occurred in the notes with this circle are marked black (c) shows a few examples.
Corresponding cells in the heatmap are kept (e), while unrelated cells are lowered in opacity (d). The user
can remove the brush by clicking a button (a). Smaller circles only occur in the population (the ellipses
surrounding (f) contain a few examples).

5.2 Co-occurrence Heatmap

This central component displays the relations between drugs, diseases, and treatments concepts
(requirement R1) occurring in the patient’s notes by using the co-occurrence of these concepts
in the same notes. For example, if we have concepts c_a, c_b, and c_c, we want to display the
co-occurrence of each concept pair in a heatmap matrix. This results in a 3 × 3 matrix with a
shortened version of the name of the concept c_a, c_b, and c_c as labels on both axes. The label
color depends on the category of the concept (e.g., disease) and is the same as the similarity plot
colors. Every concept pair occurs twice in the heatmap (except for the diagonal), once above and
below the diagonal in mirrored positions.
If all concept pairs were displayed, the heatmap became too overwhelming for the doctors.

Therefore, we used the parent concepts (e.g., a heart disease can have cardiovascular system as par-
ent) from the UMLS dataset to display a heatmap with main categories (overview heatmap) at first
(visual design—view simplification, functional grouping, and data visualization principles [63]). Its
value is a summation of the co-occurrence of child concept pairs, where one child belongs to one
of the two parent concepts and the other child to the other. The cells above the diagonal contain
the co-occurrence frequency in the population of similar patients, and the cells below the diagonal
display the co-occurrence frequency of the patient, see Figure 6(a). This allows us to compare the
concept relations of the patient to the population (requirement R4). Cells on the diagonal are split
in half, one for the population and one for the patient.
We used the Viridis color map [13] because it represents the data well and is colorblind-friendly

(visual design—color principle [63]), see Figure 3(e).2. We used a logarithmic color scale to better
display frequency difference under 100 because these are more important to the doctors than small
differences between very high frequencies.
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Fig. 5. When a cell is clicked in the overview heatmap, the child concepts of one parent are displayed as
rows and the concepts of the other as columns (d). The parent concepts are displayed as breadcrumbs (a).
Hovered cells highlight (c) and trigger a pop-up with the concept name and frequency (b). When a cell is
clicked in this detailed heatmap, the co-occurrence of the selected concepts are highlighted in the clusters
of notes (f) and in the opened notes (h). The entire note will be displayed (g), and the highlighting can be
removed upon clicking a button (e). The actual concept names are replaced by “concept [number]”.

MediCoSpace supports several linked interactions, starting with heatmap interactions. If the user
clicks on a cell in the overview heatmap, the view changes to a detailed heatmap where the child
concepts of one parent are displayed as rows and the concepts of the other as columns (clinical
decision support—contextual patient details principle [63]), see Figure 5. The user can hover over
a cell to highlight it and see the full name of the concept labels on the axes belonging to that cell
and the co-occurrence frequency in the patient and population (error prevention—information
suppression principle [63]]), see Figure 5(b). The visualization highlights (visual design—highlight
principle [63]) the cell belonging to the same concept pair on the other side of the diagonal (always
present in an unfiltered overview heatmap, but not always present in the detailed heatmap).Medi-
CoSpace links this to the similarity plots, where the corresponding concepts are highlighted (two
circles if a cell is hovered in the detailed heatmap and all the child concept circles of two-parent
concepts if a cell is hovered in the overview heatmap). The main parent concepts are displayed
as a breadcrumb trail above the heatmap (Figure 5(a)), and by clicking on the title of the heatmap,
the user can go back to the overview heatmap. If the user clicks on a cell in this detailed heatmap
(Figure 5(c)), the co-occurrence of the concepts this cell represents are highlighted (visual design—
highlight principle [63]) in the note clusters and in the notes in yellow (requirements R2 and R5),
see (Figure 5(f), (h)).
Second, there are several interactions to filter or reorder views: The heatmap and similarity plots

can be filtered based on a range of co-occurrence frequencies using the slider legend on the right,
see Figure 7(b), (e). Also, the user can switch the absolute values of co-occurrence frequencies of
the population cells to the relative value (frequency concept pair (a, b) population–frequency con-
cept pair (a, b) patient, related to the error prevention—pre-processed information principle [63]),
see Figure 6(d). We used a diverging color map with colors not present in the visualization yet.
Moreover, the user can reorganize the rows and columns based on alphabetical order of the labels
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Fig. 6. Different ordering options for the axis of the heatmaps: alphabetical order (a), concept category (b), or
frequency of the patient or population (c). Instead of the absolute values, the relative values of the population
compared to the patient can be displayed (d). Population data is displayed above the diagonal and patient
data below.

(Figure 6(a)), the category (disease, drug, and treatment) of the labels (Figure 6(b)), and the average
co-occurrence frequency of the patient or population (Figure 6(c)).
Third, there are interactions connected to other components (conceptual model—integration

principle [63]). If the user brushes concepts in the similarity plots, the cells belonging to these
concepts in the detailed heatmap or the parent concepts in the overview heatmap are kept
(Figure 4(e), visual design—highlight changes principle [63]), and all other cell fades to a low opac-
ity (Figure 4(d)). Furthermore, the user can save interesting relations by clicking on the correspond-
ing axis label in the heatmap. These labels are added to the current note on the top. The idea is
that clicking on these saved relations restores the respective heatmap filter on this information (re-
quirement R6). The user can also select a time period on the timeline, and then only the concepts
occurring in that time period are displayed (requirement R1), see Figure 7(c).
We explored design alternatives for the heatmap in previous iterations: the first iteration was

a conceptual design [63], which visualized the relations using hierarchical edge bundling. After
a cognitive walkthrough [63] and interviews with D1 and three domain experts (analyzed using
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Fig. 7. The user filtered on co-occurrence frequency (b) and time (c). Only the cells (a), concepts (e), and
notes (f) inside these ranges are kept. Clusters outside the time period are made transparent (d). Either filter
can be removed by clicking a button (f).

a thematic analysis [8]), the results stated that this visualization might be too complex for doc-
tors and chaotic due to the number of bundles. In the second iteration (a detailed design [63]),
the current heatmap was split up into different heatmaps; one for all the patient data, one for se-
lected population concepts, and one for specific time periods after each other. After a cognitive
walkthrough [63] and interviews with D2 and four domain experts (analyzed using a thematic
analysis [8]), the results stated that the second heatmap had low explorative qualities, the third
heatmap became too big, and the overview was lost. Therefore, we merged all these features in
the current interactive heatmap.

5.3 Timeline with Clusters of Notes

The search/filter options (Figure 3(c)) and the timeline with clusters of notes (Figure 3(f)) were
taken from previous work [58] because they provide a clear overview of the patient notes over time
with integrated search. The textual notes are clustered around admission or polyclinical check-
ups with similar diagnoses. All the notes are displayed as dark-gray buttons (error prevention—
information suppression principle [63]) in the cluster, and the user can open them by clicking [58]
(clinical decision support—contextual patient details principle [63]). In previous work, the cluster
boxes contained word summaries, which were out of the scope of this work and thus removed.

6 EVALUATION: EXPERT USER STUDY

This section describes medical experts’ opinions to see if the complex process of designing Medi-
CoSpace was worthwhile.

6.1 Methodology

We conducted a formative usability test [63] and used the checklists from Sperrle et al. [55] to
evaluate our tool with participants D3-D5, as D1 and D2 were preoccupied due to COVID-19.
MediCoSpace was displayed locally, and the evaluation lasted one hour. First, we gave an introduc-
tion and the participants signed an informed consent form. We recorded the evaluation sessions
and transcribed them anonymously, after which we deleted the recordings. We asked the doctors
to think aloud to understand their thought process [63]. Second, we asked the doctor to imagine
being in a doctor’s office of the future with data-driven visualizations being commonplace. Third,
we conducted a semi-structured interview about data-driven techniques in healthcare and their
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assessment of the tool in general. Fourth, we showed a demo ofMediCoSpace, and fifth, we sketched
the mini case, see Section 4. The user evaluation was kept open-ended to give a satisfying represen-
tation of insight capabilities [46] and not restrict participants [53]. Sixth, the participant filled in a
system usability scale [56, 63] and scored the different visual components present inMediCoSpace.
Finally, we concluded each session with a semi-structured interview about the usefulness of the
tool, (non-)preferred components, and perceived usability.
The analysis consisted of a qualitative (interviews and think aloud protocols) and a quantitative

part (the system usability scales, the component scores, and insights measurements [46, 53]). The
qualitative parts were analyzed using a thematic analysis [8], where a theme needed the support of
all doctors. The insight measurements consisted of the number of insights (distinct observations
of the doctor), a hypothesis score (scale: 1 = reading text, 5 = well structured and substantiated
hypotheses) to determine how much the insights helped with the forming of hypotheses, time to
reach these insights, and if insights were expected or not [46, 53].

6.2 Results

This section discusses the results of the evaluation based on the themes of the thematic analysis,
NIST standards, and quantitative results.

6.2.1 Clinical Reasoning and Decision Support. The first theme was clinical reasoning and
decision support. The quality of the hypotheses and the doctor’s reasoning (extracted from the
think-aloud protocols and recorded interactions) informed us about the performance of our tool
in relation to clinical reasoning and decision support. Based on the different insights over time
the hypotheses increased in depth (the hypothesis score of the current insight increased based on
information from previous insights). D3 and D4 reached a score of 3.0 and D4 a score of 3.5 at the
end of the evaluation. The doctors did not reach the highest score because they still needed to get
used to the presented information to form a complete mental model to navigate quickly between
the information in the different components (conceptual model principle [63]). However, the
average time to find insights was low, 8 seconds. Also, the doctors already found five unexpected
insights (see Figure 8) during the short evaluation, from which four helped to give information
about relevant non-cardiovascular diseases to form diagnoses.
The doctors used the heatmap, the timeline with notes, filters and general patient information

to form the hypotheses. MediCoSpace offered the flexibility to complete the workflow of the mini
case task in the way the individual doctors preferred (related to the workflow principle [63]). For
example, after reading the general patient information, D4 started with the filters and then the
heatmap, while D3 and D5 started with the timeline with notes. Also, four of the unexpected
insights were found using the heatmap. Furthermore, the similarity plots were barely used during
the evaluation and the participants were divided about the usefulness (score of 5.7, see Figure 9).

6.2.2 Information Density, Integration, and Organization. The second theme was: information
density, integration, and organization. First, the information density could be improved. Currently,
participants scored our tool 6.3, 6, and 5.3 for being an addition, improving the work efficiency
(related to workflow principle [63]), and providing a quick overview respectively, see Figure 10.
This was influenced by the amount of information displayed in the similarity view (see Section 5.1)
and the co-occurrence heatmap (see Section 5.2), and the familiarity of the visualizations (related
to the visual design—view simplification and data visualization principles [63]). This was reflected
in the scores (between 3.3 and 7.7) for the questions about the usage, see Figure 10.
According to the participants, theywantedmore pre-processed information to reduce the cells in

the heatmap (error prevention—pre-processed information principle [63]) to filter out unimportant
information to get an even more simplified view (visual design—view simplification principle [63])
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Fig. 8. Insight measurements, where every circle is an insight. The seconds to gain an insight started when
the doctor was done with the previously gaining insight. No insight was incorrect.

Fig. 9. Component ranking scores. Scores: 1 = very bad; 10 = very good.

to help with the diagnosis process (clinical decision support principle [63]). They proposed to
improve this based on the relative frequencies with the population and by filtering out low co-
occurrences, concepts not related to their specialty, and outdated notes. Although, this should be
done very carefully because the doctor needs to be aware of which information is hidden (related
to the error prevention—information suppression principle [63]).
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Fig. 10. System usability scale.

Second, participants thought it was well integrated, and there was a low inconsistency (scores
of 7.3 and 3.3, respectively, see Figure 10, the conceptual model—integration principle [63]). Also,
linking the information in the similarity plots, heatmap, and timeline by highlighting was consid-
ered useful (visual design—highlighting principle [63]). Third, the participants also experienced
the organization structure and the interactions of the tool as positive and logical.

D3: “All the EHR systems look very hard in the beginning. But I think people can learn it quickly
due to its consistent and organized structure.”

Overall, the participants stated that extracting disease, drugs, and treatments from the text, dis-
playing their relations, and linking them to the notes is beneficial because it is impossible to read
all the notes during the short patient consultations (related to the clinical decision support princi-
ple [63]). Furthermore, MediCoSpace can reduce bias to certain diagnoses (D3), give an overview
of the patient narrative (D4), and facilitate communication and collaboration between different
specialties (D5):

“Every specialty lives on their island, and there are complaints that fit multiple specialties. Here
your idea could help.”

Furthermore, the tool could improve the accuracy of the found information (D3), the speed of
finding information (D4), the communication between colleagues (D3, D5), and the reliability (D3).

D3: “This interface is more reliable because all the data is in one place.”

In conclusion, the participants recognized the problem and thought that our tool could help them
after implementing some small improvements–despite feeling a bit overwhelmed by the amount
of information.

7 DISCUSSION

In this article, we researched a novel approach to medical decision-support for doctors for diag-
nosing and treating patients. The MediCoSpace tool applies visual analytics to show the relations
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between diseases, treatments, and drugs and link them back to the textual notes from the EHR.
The interviewed medical professionals recognized the problems identified in Figure 1 and the
need to solve these problems. In general, they found that the idea of showing relations between
disease, drugs, and treatments of certain time periods for a single patient is beneficial (require-
ments R1 and R2) and could improve their diagnosing workflow. Yet, doctors could not form a
complete conceptual model of our tool because the visualizations needed less information. This
could be accomplished after carefully pruning relations for a simplified view. Therefore, it was
not possible yet to form well-substantiated hypotheses. Doctors, however, deemed comparing a
single patient to a population of similar patients (requirement R4), linking the relations back to
the notes (requirement R5), and saving interesting findings (requirement R6) beneficial to their
workflow. The doctors mentioned that our tool could reduce personal biases and stimulate com-
munication between different medical specialties, which were not our initial goals but positive
outcomes.

7.1 Limitations

There are several limitations to our study. First, only five doctors were available (due to COVID-
19). Moreover, each user evaluation only lasted one hour, again due to the doctors’ busy schedules.
This resulted in a very short onboarding time. Combined with the complexity and visual density
(richness of all the displayed details) of the tool, the doctors mostly could not complete the given
scenario and form a complete diagnosis. Currently, following the doctor through a complete work-
flow cycle would take too long and would require access to their patient’s EHR.

7.2 Future Work

In general, more research is needed into using data-centric approaches for medical decision-
making for diagnosis and treatment planning. While researchers are making big steps in providing
medical data sources and making rich information available to doctors, a crucial counterpart, tools,
especially of the visual analytics kinds, are equally important pieces in a larger puzzle. Looking at
MediCoSpace, small things, such as pre-filtering, can reduce the amount of information displayed
in the heatmaps. Also, pop-ups could help point out interesting information in the heatmaps.
On the side of text analysis and processing pipelines, we see tangible future improvements: First,

more standardization in recording EHR notes would help to better extract concepts. Doctors use
abbreviations, forget punctuation and make spelling mistakes, which is something to take into ac-
count in the data preparation. In the future, this could also be done interactively. For example, cer-
tain areas of concern could be flagged by an algorithm and medical technicians could correct this.
Second, the current relations can also be extended to facilitate interdisciplinary patient treatment
by highlighting specific multiple-specialty relations. Furthermore, linking to external data sources
can help increase the confidence in doctors’ diagnoses and potentially make treatment plans more
reliable. For example,MediCoSpace can link highlighted relations to the latest scientific articles to
provide up-to-date information. On the visualization side, more research is needed to validate if
displaying the similarity between disease, drugs, and treatments is useful (requirement R3).
Moreover, additional research is needed in data security; when a new patient or population

notes are added, the updated data structure needs to be stored and accessed safely. From a usabil-
ity point of view, we need to ensure that no hazardous errors occur. Healthcare technology ISO
standards [32] could help with the above and a summative usability test [63] could help to evaluate
the production-ready tool.
In conclusion, we present our visual analytics tool, not as a final answer to a growing problem

space, but to open many other directions to explore in this research area.
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8 CONCLUSION

This article describes a novel way to provide decision-support for doctors to diagnose and devise
treatments for patients by extracting and showing relations between disease, drug, and treatments
of a single patient over time. This is coupled with the ability to visually compare individual pa-
tients to a population of similar patients by means of medical concepts extracted from their EHR
information. We identified the doctor’s workflow and limitations of current systems; based on
these and interviews, we researched how visual analytics could help. Our tool,MediCoSpace, both
in the design process and validation with medical professionals provides us with insights into
the information need of doctors about these relations and showed the potential to improve the
communication between doctors, reduce personal bias and get a more holistic view of the patient.
MediCoSpace is a contribution to a growing field of data-driven machine-learning supported med-
ical decision-making approaches that aim at improving medical care and easing the pressure on
worldwide healthcare systems.

The visualization JavaScript files can be found here: https://github.com/SannevdLinden/
MediCoSpace.

ACKNOWLEDGMENTS

We want to thank Fabian Viehmann; the data analysis section is based on his master graduation
project. Moreover, we want to thank all the participants for their time and valuable feedback.

REFERENCES

[1] Julia Adler-Milstein, Jonathan H. Chen, and Gurpreet Dhaliwal. 2021. Next-generation artificial intelligence for di-

agnosis: From predicting diagnostic labels to “wayfinding”. JAMA 326, 24 (2021), 2467–2468. DOI:https://doi.org/10.
1001/jama.2021.22396

[2] AHRQ. 2022. Clinical Classifications Software (CCS) for ICD-9-CM Fact Sheet. Retrieved Jan 14, 2022 from https://www.

hcup-us.ahrq.gov/toolssoftware/ccs/ccsfactsheet.jsp.

[3] Allen institute of artificial intelligence. 2020. Scispacy. Retrieved Apr 9, 2021 from https://allenai.github.io/scispacy/.

[4] Erin P. Balogh, Bryan T. Miller, John R. Ball, and editors. 2015. Committee on diagnostic error in health care; Board

on health care services; institute of medicine; The national academies of sciences, engineering, and medicine. In

Proceedings of the Improving Diagnosis in Health Care.
[5] Sergio Baranzini, Sui Huang, Sharat Israni, and Mike Keiser. 2022. WHAT is SPOKE? Retrieved Jan 11, 2022 from

https://spoke.ucsf.edu/.

[6] Vijayaraghavan Bashyam, William Hsu, Emily Watt, Alex A. T. Bui, Hooshang Kangarloo, and Ricky K. Taira. 2009.

Problem-centric organization and visualization of patient imaging and clinical data. Radiographics 29, 2 (2009), 331–
343. DOI:https://doi.org/10.1148/rg.292085098

[7] Olivier Bodenreider. 2004. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic
Acids Research 32, suppl_1 (2004), D267–D270. DOI:https://doi.org/10.1093/nar/gkh061

[8] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative Research in Psychology
3, 2 (2006), 77–101. DOI:https://doi.org/10.1191/1478088706qp063

[9] Cynthia Brewer, Mark Harrower, Ben Sheesley, Andy Woodruff, and David Heyman. 2013. COLORBREWER 2.0 Color
Advice for Cartography. Retrieved October 11, 2021 from https://colorbrewer2.org/#.

[10] Alex A. T. Bui, Denise R. Aberle, and Hooshang Kangarloo. 2007. TimeLine: Visualizing integrated patient records.

IEEE Transactions on Information Technology in Biomedicine 11, 4 (2007), 462–473. DOI:https://doi.org/10.1109/TITB.
2006.884365

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional

transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Jill Burstein, Christy Doran, and Thamar

Solorio (Eds.), Association for Computational Linguistics, 4171–4186. DOI:https://doi.org/10.18653/v1/n19-1423
[12] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020. Fine-tuning

pretrained language models: Weight initializations, data orders, and early stopping. arXiv:2002.06305. Retrieved from

https://arxiv.org/abs/2002.06305.

ACM Transactions on Management Information Systems, Vol. 14, No. 2, Article 15. Publication date: January 2023.

https://github.com/SannevdLinden/MediCoSpace
https://doi.org/10.1001/jama.2021.22396
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccsfactsheet.jsp
https://allenai.github.io/scispacy/
https://spoke.ucsf.edu/
https://doi.org/10.1148/rg.292085098
https://doi.org/10.1093/nar/gkh061 
https://doi.org/10.1191/1478088706qp063
https://colorbrewer2.org/#
https://doi.org/10.1109/TITB.2006.884365
https://doi.org/10.18653/v1/n19-1423
https://arxiv.org/abs/2002.06305


15:18 S. van der Linden et al.

[13] Enthought. 2015. A Better Default Colormap for Matplotlib | SciPy 2015 | Nathaniel Smith and StÃľfan van der Walt.
Retrieved October 11, 2021 from https://www.youtube.com/watch?v=xAoljeRJ3lU.

[14] Epic. 2022. Epic with the Patient at Heart. Retrieved Jan 14, 2022 from https://www.epic.com/.

[15] Hossein Estiri and Kari Stephens. 2017. DQe-v: A database-agnostic framework for exploring variability in electronic

health record data across time and site location. eGEMs 5, 1 (2017), 1–10. DOI:https://doi.org/10.13063/2327-9214.1277
[16] William R. H. Evans. 2018. Dare to think rare: Diagnostic delay and rare diseases. The British Journal of General Practice

68, 670 (2018), 224–225. DOI:https://doi.org/10.3399/bjgp18X695957
[17] Sarah Faisal, Ann Blandford, and Henry W. W. Potts. 2013. Making sense of personal health information: Chal-

lenges for information visualization. Health Informatics Journal 19, 3 (2013), 198–217. DOI:https://doi.org/10.1177/
1460458212465213

[18] Hamish Fraser, Enrico Coiera, and David Wong. 2018. Safety of patient-facing digital symptom checkers. The Lancet
392, 10161 (2018), 2263–2264. DOI:https://doi.org/10.1016/S0140-6736(18)32819-8

[19] Stephen Gilbert, Alicia Mehl, Adel Baluch, Caoimhe Cawley, Jean Challiner, Hamish Fraser, Elizabeth Millen, Maryam

Montazeri, Jan Multmeier, Fiona Pick, Claudia Richter, Ewelina Türk, Shubhanan Upadhyay, Vishaal Virani, Nicola

Vona, Paul Wicks, and Claire Novorol. 2020. How accurate are digital symptom assessment apps for suggesting con-

ditions and urgency advice? A clinical vignettes comparison to GPs. BMJ Open 10, 12 (2020), e040269. DOI:https:
//doi.org/10.1136/bmjopen-2020-040269

[20] Benjamin S. Glicksberg, Boris Oskotsky, Phyllis M. Thangaraj, Nicholas Giangreco, Marcus A. Badgeley, Kipp W.

Johnson, Debajyoti Datta, Vivek A. Rudrapatna, Nadav Rappoport, Mark M. Shervey, Riccardo Miotto, Theodore C.

Goldstein, Eugenia Rutenberg, Remi Frazier, Nelson Lee, Sharat Israni, Rick Larsen, Bethany Percha, Li Li, Joel T.

Dudley, Nicholas P. Tatonetti, and Atul J. Butte. 2019. PatientExploreR: An extensible application for dynamic visual-

ization of patient clinical history from electronic health records in the OMOP common data model. Bioinformatics 35,
21 (2019), 4515–4518. DOI:https://doi.org/10.1093/bioinformatics/btz409

[21] David Gotz and Harry Stavropoulos. 2014. Decisionflow: Visual analytics for high-dimensional temporal event se-

quence data. IEEE Transactions on Visualization and Computer Graphics 20, 12 (2014), 1783–1792. DOI:https://doi.org/
10.1109/TVCG.2014.2346682

[22] David Gotz and KristWongsuphasawat. 2012. Interactive intervention analysis. In Proceedings of the AmericanMedical
Informatics Association Annual Symposium. 274–280.

[23] Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng Gao, and

Hoifung Poon. 2021. Domain-specific language model pretraining for biomedical natural language processing. ACM
Transactions on Computing for Healthcare 3, 1 (2021), 23 pages. DOI:https://doi.org/10.1145/3458754

[24] Catalina Hallett. 2008. Multi-modal presentation of medical histories. In Proceedings of the 13th International Confer-
ence on Intelligent User Interfaces. 80–89. DOI:https://doi.org/10.1145/1378773.1378785

[25] Boran Hao, Henghui Zhu, and Ioannis Paschalidis. 2020. Enhancing clinical BERT embedding using a biomedical

knowledge base. In Proceedings of the 28th International Conference on Computational Linguistics. International Com-

mittee on Computational Linguistics, 657–661. DOI:https://doi.org/10.18653/v1/2020.coling-main.57

[26] Jamie S. Hirsch, Jessica S. Tanenbaum, Sharon Lipsky Gorman, Connie Liu, Eric Schmitz, Dritan Hashorva, Artem

Ervits, David Vawdrey, Marc Sturm, and Noémie Elhadad. 2015. HARVEST, a longitudinal patient record summarizer.

Journal of the American Medical Informatics Association 22, 2 (2015), 263–274. DOI:https://doi.org/10.1136/amiajnl-

2014-002945

[27] MatthewHonnibal. 2022. Industrial Strength Natural Language Processing. Retrieved Apr 9, 2021 from https://spacy.io/.

[28] William Hsu, Ricky K. Taira, Suzie El-Saden, Hooshang Kangarloo, and Alex A. T. Bui. 2012. Context-based electronic

health record: Toward patient specific healthcare. IEEE Transactions on Information Technology in Biomedicine 16,

2 (2012), 228–234. DOI:https://doi.org/10.1109/TITB.2012.2186149
[29] Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. 2019. ClinicalBERT: Modeling clinical notes and predicting

hospital readmission. (CHIL 2020 Workshop). Retrieved Mar 20, 2021 from https://github.com/kexinhuang12345/

clinicalBERT.

[30] Cinyoung Hur, JeongAWi, and YoungBin Kim. 2020. Facilitating the development of deep learning models with visual

analytics for electronic health records. International Journal of Environmental Research and Public Health 17, 22 (2020),
8303. DOI:https://doi.org/10.3390/ijerph17228303

[31] Fahd Husain, Rosa Romero-Gómez, Emily Kuang, Dario Segura, Adamo Carolli, Lai Chung Liu, Manfred Cheung, and

Yohann Paris. 2021. A multi-scale visual analytics approach for exploring biomedical knowledge. In Proceedings of
the 2021 IEEE Workshop on Visual Analytics in Healthcare. IEEE, 30–35. DOI:https://doi.org/10.1109/VAHC53616.2021.
00010

[32] ISO. 2022. 35.240.80 - IT applications in health care technology. Retrieved June 10, 2022 from https://www.iso.org/ics/

35.240.80/x/.

ACM Transactions on Management Information Systems, Vol. 14, No. 2, Article 15. Publication date: January 2023.

https://www.youtube.com/watch?v=xAoljeRJ3lU
https://www.epic.com/
https://doi.org/10.13063/2327-9214.1277
https://doi.org/10.3399/bjgp18X695957
https://doi.org/10.1177/1460458212465213
https://doi.org/10.1016/S0140-6736(18)32819-8
https://doi.org/10.1136/bmjopen-2020-040269
https://doi.org/10.1093/bioinformatics/btz409
https://doi.org/10.1109/TVCG.2014.2346682
https://doi.org/10.1145/3458754
https://doi.org/10.1145/1378773.1378785
https://doi.org/10.18653/v1/2020.coling-main.57
https://doi.org/10.1136/amiajnl-2014-002945
https://spacy.io/
https://doi.org/10.1109/TITB.2012.2186149
https://github.com/kexinhuang12345/clinicalBERT
https://doi.org/10.3390/ijerph17228303
https://doi.org/10.1109/VAHC53616.2021.00010
https://www.iso.org/ics/35.240.80/x/


MediCoSpace 15:19

[33] Lotte Groth Jensen and Claus Bossen. 2016. Factors affecting physicians’ use of a dedicated overview interface in an

electronic health record: The importance of standard information and standard documentation. International Journal
of Medical Informatics 87, 2016 (2016), 44–53. DOI:https://doi.org/10.1016/j.ijmedinf.2015.12.009

[34] Zhuochen Jin, Shunan Guo, Nan Chen, Daniel Weiskopf, David Gotz, and Nan Cao. 2020. Visual causality analysis

of event sequence data. IEEE Transactions on Visualization and Computer Graphics 27, 2 (2020), 1343–1352. DOI:https:
//doi.org/10.1109/TVCG.2020.3030465

[35] Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li-Wei H. Lehman, Mengling Feng, Mohammad Ghassemi, Benjamin

Moody, Peter Szolovits, Leo A. Celi, and Roger G. Mark. 2016. MIMIC-III, a freely accessible critical care database.

Scientific Data 3, 1 (2016), 1–9. DOI:https://doi.org/10.1038/sdata.2016.35
[36] Josua Krause, Adam Perer, and Harry Stavropoulos. 2015. Supporting iterative cohort construction with visual tem-

poral queries. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2015), 91–100. DOI:https://doi.org/10.
1109/TVCG.2015.2467622

[37] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural ar-

chitectures for named entity recognition. In Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics,

260–270. DOI:https://doi.org/10.18653/v1/N16-1030
[38] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 2020.

BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36,
4 (2020), 1234–1240. DOI:https://doi.org/10.1093/bioinformatics/btz682

[39] Jingjing Li, Kai Larsen, and AhmedAbbasi. 2020. TheoryOn: A design framework and system for unlocking behavioral

knowledge through ontology learning. MIS Quarterly 44, 4 (2020), 1733–1772. DOI:https://doi.org/10.25300/MISQ/

2020/15323

[40] Rui Li, Changchang Yin, Samuel Yang, Buyue Qian, and Ping Zhang. 2020. Marrying medical domain knowledge with

deep learning on electronic health records: A deep visual analytics approach. Journal of Medical Internet Research 22,

9 (2020), e20645. DOI:https://doi.org/10.2196/20645
[41] Daniel Loureiro and Alípio Mário Jorge. 2020. MedLinker: Medical entity linking with neural representations and

dictionary matching. Advances in Information Retrieval 12036 (2020), 230–237. DOI:https://doi.org/10.1007/978-3-030-
45442-5_29

[42] Lena Mamykina, Stuart Goose, David Hedqvist, and David Beard. 2004. CareView: Analyzing nursing narratives for

temporal trends. In Proceedings of the CHI’04 extended abstracts on Human Factors in Computing Systems. 1147–1150.
DOI:https://doi.org/10.1145/985921.986010

[43] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. 2018. UMAP: Uniform manifold approximation

and projection. Journal of Open Source Software 3, 29 (2018), 861. DOI:https://doi.org/10.21105/joss.00861
[44] Sunil Mohan and Donghui Li. 2019. Medmentions: A large biomedical corpus annotated with umls concepts. In Pro-

ceedings of the 2019 Conference on Automated Knowledge Base Construction (AKBC’19). DOI:10.24432/C5G59C
[45] David E. Newman-Toker, Kathryn M. McDonald, and David O. Meltzer. 2013. How much diagnostic safety can we

afford, and how should we decide? A health economics perspective. BMJ Quality and Safety 22, Suppl 2 (2013), ii11–

ii20. DOI:https://doi.org/10.1136/bmjqs-2012-001616

[46] Chris North. 2006. Toward measuring visualization insight. IEEE Computer Graphics and Applications 26, 3 (2006), 6–9.
DOI:https://doi.org/10.1109/MCG.2006.70

[47] J. Marc Overhage and David McCallie Jr. 2020. Physician time spent using the electronic health record during outpa-

tient encounters: A descriptive study. Annals of Internal Medicine 172, 3 (2020), 169–174. DOI:https://doi.org/10.7326/
M18-3684

[48] Heekyong Park and Jinwook Choi. 2012. V-model: A new innovative model to chronologically visualize narrative

clinical texts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 453–462. DOI:https:
//doi.org/10.1145/2207676.2207739

[49] Rimma Pivovarov and Noémie Elhadad. 2015. Automated methods for the summarization of electronic health records.

Journal of the American Medical Informatics Association 22, 5 (2015), 938–947. DOI:https://doi.org/10.1093/jamia/

ocv032

[50] Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj, Michaela Hardt, Peter J. Liu, Xiaobing Liu, Jake

Marcus, Mimi Sun, Patrik Sundberg, Hector Yee, Kun Zhang, Yi Zhang, Gerardo Flores, Gavin E. Duggan, Jamie Irvine,

Quoc Le, Kurt Litsch, Alexander Mossin, Justin Tansuwan, De Wang, James Wexler, Jimbo Wilson, Dana Ludwig,

Samuel L. Volchenboum, Katherine Chou, Michael Pearson, Srinivasan Madabushi, Nigam H. Shah, Atul J. Butte,

Michael D. Howell, Claire Cui, Greg S. Corrado, and Jeffrey Dean. 2018. Scalable and accurate deep learning for

electronic health records. npj Digital Medicine 1 (2018), Article No. 18. DOI:https://doi.org/10.1038/s41746-018-0029-1
[51] Adam Rule, Steven Bedrick, Michael F. Chiang, and Michelle R. Hribar. 2021. Length and redundancy of outpatient

progress notes across a decade at an academic medical center. JAMA Network Open 4, 7 (2021), e2115334–e2115334.

DOI:https://doi.org/10.1001/jamanetworkopen.2021.15334

ACM Transactions on Management Information Systems, Vol. 14, No. 2, Article 15. Publication date: January 2023.

https://doi.org/10.1016/j.ijmedinf.2015.12.009
https://doi.org/10.1109/TVCG.2020.3030465
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1109/TVCG.2015.2467622
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.25300/MISQ/2020/15323
https://doi.org/10.2196/20645
https://doi.org/10.1007/978-3-030-45442-5_29
https://doi.org/10.1145/985921.986010
https://doi.org/10.21105/joss.00861
https://doi.org/10.24432/C5G59C
https://doi.org/10.1136/bmjqs-2012-001616
https://doi.org/10.1109/MCG.2006.70
https://doi.org/10.7326/M18-3684
https://doi.org/10.1145/2207676.2207739
https://doi.org/10.1093/jamia/ocv032
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1001/jamanetworkopen.2021.15334


15:20 S. van der Linden et al.

[52] Alberto Santos, Ana R. Colaço, Annelaura B. Nielsen, Lili Niu, Philipp E. Geyer, Fabian Coscia, Nicolai J. Wewer

Albrechtsen, Filip Mundt, Lars Juhl Jensen, and Matthias Mann. 2020. Clinical knowledge graph integrates proteomics

data into clinical decision-making. bioRxiv (2020), 1–35. DOI:https://doi.org/10.1101/2020.05.09.084897
[53] Purvi Saraiya, Chris North, and Karen Duca. 2005. An insight-based methodology for evaluating bioinformatics vi-

sualizations. IEEE Transactions on Visualization and Computer Graphics 11, 4 (2005), 443–456. DOI:https://doi.org/10.
1109/TVCG.2005.53

[54] Chaitanya Shivade. 2019. MedNLI - A Natural Language Inference Dataset For The Clinical Domain. Retrieved Apr. 3,

2021 from https://physionet.org/content/mednli/1.0.0/.

[55] Fabian Sperrle, Mennatallah El-Assady, Grace Guo, Rita Borgo, Duen Horng Chau, Alex Endert, and Daniel Keim.

2021. A survey of human-centered evaluations in human-centered machine learning. In Proceedings of the Computer
Graphics Forum. Wiley Online Library, 543–568. DOI:https://doi.org/10.1111/cgf.14329

[56] Nicole Sultanum, Michael Brudno, Daniel Wigdor, and Fanny Chevalier. 2018. More text please! Understanding and

supporting the use of visualization for clinical text overview. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1–13. DOI:https://doi.org/10.1145/3173574.3173996

[57] Cong Sun, Zhihao Yang, LeiWang, Yin Zhang, Hongfei Lin, and JianWang. 2021. Biomedical named entity recognition

using BERT in the machine reading comprehension framework. Journal of Biomedical Informatics 118, 2021 (2021),

103799. DOI:https://doi.org/10.1016/j.jbi.2021.103799
[58] Sanne van der Linden, Jarke J. van Wijk, and Mathias Funk. 2021. Multiple scale visualization of electronic health

records to support finding medical narratives. In Proceedings of the Eurographics Workshop on Visual Computing for
Biology and Medicine. DOI:https://doi.org/10.2312/vcbm.20211351

[59] Gautam Verma, Alexander Ivanov, Francis Benn, Anil Rathi, Nathaniel Tran, Ashwad Afzal, Parag Mehta, and John F.

Heitner. 2020. Analyses of electronic health records utilization in a large community hospital. PloS One 15, 7 (2020),
e0233004. DOI:https://doi.org/10.1371/journal.pone.0233004

[60] Qiru Wang and Robert S. Laramee. 2022. EHR STAR: The state-of-the-art in interactive EHR visualization. In Proceed-
ings of the Computer Graphics Forum. Wiley Online Library, 69–105. DOI:https://doi.org/10.1111/cgf.14424

[61] WHO. 2022. Anatomical Therapeutic Chemical (ATC) Classification. Retrieved Jan 14, 2022 from https://www.who.int/

tools/atc-ddd-toolkit/atc-classification.

[62] WHO. 2022. International Statistical Classification of Diseases and Related Health Problems (ICD). Retrieved Jan 14, 2022
from https://www.who.int/classifications/classification-of-diseases.

[63] Michael E. Wiklund, Jonathan Kendler, Limor Hochberg, andMatthew B.Weinger. 2015. Technical basis for user inter-

face design of health IT. Grant/Contract Reports (NISTGCR), National Institute of Standards and Technology, Gaithers-
burg, MD. DOI:https://doi.org/10.6028/NIST.GCR.15-996

[64] Krist Wongsuphasawat, John Alexis Guerra Gómez, Catherine Plaisant, Taowei David Wang, Meirav Taieb-Maimon,

and Ben Shneiderman. 2011. LifeFlow: Visualizing an overview of event sequences. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 1747–1756. DOI:https://doi.org/10.1145/1978942.1979196

[65] Tianyi Zhang, Thomas H. McCoy, Roy H. Perlis, Finale Doshi-Velez, and Elena Glassman. 2021. Interactive cohort

analysis and hypothesis discovery by exploring temporal patterns in population-level health records. In Proceedings
of the 2021 IEEE Workshop on Visual Analytics in Healthcare. IEEE, 14–18. DOI:https://doi.org/10.1109/VAHC53616.
2021.00007

Received 14 January 2022; revised 29 June 2022; accepted 3 September 2022

ACM Transactions on Management Information Systems, Vol. 14, No. 2, Article 15. Publication date: January 2023.

https://doi.org/10.1101/2020.05.09.084897
https://doi.org/10.1109/TVCG.2005.53
https://physionet.org/content/mednli/1.0.0/
https://doi.org/10.1111/cgf.14329
https://doi.org/10.1145/3173574.3173996
https://doi.org/10.1016/j.jbi.2021.103799
https://doi.org/10.2312/vcbm.20211351
https://doi.org/10.1371/journal.pone.0233004
https://doi.org/10.1111/cgf.14424
https://www.who.int/tools/atc-ddd-toolkit/atc-classification
https://www.who.int/classifications/classification-of-diseases
https://doi.org/10.6028/NIST.GCR.15-996
https://doi.org/10.1145/1978942.1979196
https://doi.org/10.1109/VAHC53616.2021.00007

